National Library of Energy BETA

Sample records for renewable power systems

  1. Renewable Power Systems | Open Energy Information

    Open Energy Info (EERE)

    Renewable Power Systems Place: Bedford, England, United Kingdom Zip: MK42 9TW Sector: Renewable Energy Product: Bedford, UK based developer of renewable power systems. References:...

  2. Renewable Power Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    Power Systems LLC Jump to: navigation, search Name: Renewable Power Systems, LLC Place: Averill Park, New York Zip: 12018 Sector: Solar Product: Albany, New York-based solar...

  3. Power production from renewable resources in a gasification power system

    SciTech Connect (OSTI)

    Paisley, M.A.; Farris, G.; Bain, R.

    1996-12-31

    The US Department of Energy (DOE) has been a leader in the promotion and development of alternative fuel supplies based on renewable energy crops. One promising power generation technology is biomass gasification coupled with either a gas turbine in a combined cycle system or a fuel cell. The gasification of biomass can efficiently and economically produce a renewable source of a clean gaseous fuel suitable for use in these high efficiency power systems or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development and commercialization of the Battelle high-throughput gasification process for gas turbine based power generation systems. Projected process economics for a gas turbine combined cycle plant are presented along with a description of integrated system operation coupling a 200kW gas turbine power generation system to a 10 ton per day gasifier, and current commercialization activities. 6 refs., 3 figs., 1 tab.

  4. Ocean Renewable Power Co (ORPC) (TRL 7 8 System)- TidGen (TM) Power System Commercialization Project

    Broader source: Energy.gov [DOE]

    Ocean Renewable Power Co (ORPC) (TRL 7 8 System) - TidGen (TM) Power System Commercialization Project

  5. The RenewElec Project: Variable Renewable Energy and the Power System

    SciTech Connect (OSTI)

    Apt, Jay

    2014-02-14

    Variable energy resources, such as wind power, now produce about 4% of U.S. electricity. They can play a significantly expanded role if the U.S. adopts a systems approach that considers affordability, security and reliability. Reaching a 20-30% renewable portfolio standard goal is possible, but not without changes in the management and regulation of the power system, including accurately assessing and preparing for the operational effects of renewable generation. The RenewElec project will help the nation make the transition to the use of significant amounts of electric generation from variable and intermittent sources of renewable power.

  6. Connecting renewable power sources into the system

    SciTech Connect (OSTI)

    Wetzler, F.U.

    1982-11-01

    The many technical, legal, and economic issues that must be overcome before windmills, fuel cells, and photovoltaics can serve existing grids ae discusssed. Distributed storage and generation sources (DSGs) consist of energy converters to transform sun, wind, or chemical energy into electricity; a power conditioner to convert dc to ac; relays, breakers, and fuses for equipment protection and personnel safety; and appropriate load-metering equipment for billing customers. Aside from windmills and windfarms, there are few utility owned DSGs. The Public Utilities Regulatory Policy Act (1978) requires utilities to permit the connection to their power grids of private DSGs with capacities of up to 80 MW. In addition, the utilities must purchase the power from the DSG owned at ''just and reasonable rates'' and offer to supply backup power if the owner's facility malfunctions. Before connecting to a utility line, a DSG entrepreneur must meet certain specifications spelled out by the participating utility. Long-range power-distribution strategies will be needed to assess various automated distribution schemes that have been proposed, together with communication techniques to control and coordinate the small and large DSG within a highly complex power grid.

  7. Bimode uninterruptible power supply compatibility in renewable hybrid energy systems

    SciTech Connect (OSTI)

    Bower, W. ); O'Sullivan, G. )

    1990-08-01

    Inverters installed in renewable hybrid energy systems are typically used in a stand-alone mode to supply ac power to loads from battery storage when the engine-generator is not being used. Similarities in topology and in the performance requirements of the standby uninterruptible power supply (UPS) system and the hybrid system suggest the UPS could be used in hybrid energy systems. Another alternative to inverters with add-on charging circuits or standby UPS hardware is the Bimode UPS. The bimode UPS uses common circuitry and power components for dc to ac inversion and battery charging. It also provides an automatic and nearly instantaneous ac power transfer function when the engine-generator is started or stopped. The measured operating and transfer characteristics of a bimode UPS in a utility system and in a hybrid system are presented. The applicability of the bimode UPS to hybrid systems and its compatibility in a PV/engine-generator hybrid system are given.

  8. Chapter 4: Advancing Clean Electric Power Technologies | Hybrid Nuclear-Renewable Energy Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Hybrid Nuclear-Renewable Energy Systems Chapter 4: Technology Assessments Introduction and Background This Technology Assessment summarizes the current state of knowledge of nuclear-renewable hybrid

  9. Turner Hunt Ocean Renewable (TRL 4 System) - THOR's Power Method...

    Energy Savers [EERE]

    More Documents & Publications CX-004722: Categorical Exclusion Determination Vortex Hydro Energy (TRL 5 6 System) - Advanced Integration of Power Take-Off in VIVACE Ocean...

  10. Resource Planning for Power Systems: Integrating Renewables and New Technologies

    Broader source: Energy.gov [DOE]

    Become Kinetic is hosting a course to review resource planning issues and how they are being addressed to provide reliable and economic operation of the bulk power system.

  11. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect (OSTI)

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L.; Lawler, J.S.

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  12. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bulk Electric Power Systems: Operations and Transmission Planning Volume 4 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M.

  13. Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

  14. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, ...

  15. Purchasing Renewable Power for Federal Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Renewable Power for Federal Facilities Purchasing Renewable Power for Federal Facilities Federal agencies can purchase renewable power or renewable energy certificates ...

  16. Renewable Energy Powers Renewable Energy Lab, Employees

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Powers Renewable Energy Lab, Employees For more information contact: Mike Marsh (303) 275-4085 email: marshm@tcplink.nrel.gov Golden, Colo., July 9, 1997 -- The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) does more than just research renewable energy. It runs on it. And so do NREL employees. Site Operations Director John Shaffer today announced that the laboratory will purchase 4,000 kilowatt hours from Public Service Company of Colorado's (PSC)

  17. Renewable Electricity Futures Study Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Broader source: Energy.gov [DOE]

    This volume focuses on the role of variable renewable generation in creating challenges to the planning and operations of power systems and the expansion of transmission to deliver electricity from remote resources to load centers. The technical and institutional changes to power systems that respond to these challenges are, in many cases, underway, driven by the economic benefits of adopting more modern communication, information, and computation technologies that offer significant operational cost savings and improved asset utilization. While this volume provides background information and numerous references, the reader is referred to the literature for more complete tutorials.

  18. Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certificates, and On-Site Renewable Generation | Department of Energy Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Document describes renewable electricity, renewable energy certificates, and on-site renewable generation, which agencies and organizations can consider to diversify their energy supply and

  19. Hollett Takes on Renewable Power

    Broader source: Energy.gov [DOE]

    Doug Hollett, director of the Geothermal Technologies Office (GTO), was promoted to Deputy Assistant Secretary, Renewable Power, on November 21 and assumed responsibility for the Solar, Wind and...

  20. Power marketing and renewable energy

    SciTech Connect (OSTI)

    Fang, J.M.

    1997-09-01

    Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

  1. Brookfield Renewable Power Corp formerly Brascan Power Corp ...

    Open Energy Info (EERE)

    Brookfield Renewable Power Corp formerly Brascan Power Corp Jump to: navigation, search Name: Brookfield Renewable Power Corp (formerly Brascan Power Corp) Place: Toronto, Ontario,...

  2. Clear Wind Renewable Power | Open Energy Information

    Open Energy Info (EERE)

    Wind Renewable Power Jump to: navigation, search Name: Clear Wind Renewable Power Place: Minneapolis, Minnesota Zip: 55416 Sector: Wind energy Product: Clear Wind focuses its...

  3. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect (OSTI)

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  4. On-Site Renewable Power Purchase Agreements for Renewable Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    An on-site renewable power purchase agreement (PPA) enables Federal agencies to fund a renewable energy project by contracting to purchase the power generated by the system. The renewable energy equipment is installed and owned by a developer but located on-site at the agency facility.

  5. Renewable Power and Light | Open Energy Information

    Open Energy Info (EERE)

    Place: London, Greater London, United Kingdom Zip: W1 J5P2 Sector: Biofuels, Renewable Energy Product: Renewable Power and Light intend to become a power producer generating from...

  6. Fiscalini Farms Renewable Energy Power Generation Project

    SciTech Connect (OSTI)

    2009-02-01

    Funded by the American Recovery and Reinvestment Act of 2009 Fiscalini Farms L.P., in collaboration with University of the Pacific, Biogas Energy, Inc., and the University of California at Berkeley will measure and analyze the efficiency and regulatory compliance of a renewable energy system for power generation. The system will utilize digester gas from an anaerobic digester located at the Fiscalini Farms dairy for power generation with a reciprocating engine. The project will provide power, efficiency, emissions, and cost/benefit analysis for the system and evaluate its compliance with federal and California emissions standards.

  7. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  8. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, Michael; Ela, Erik; Hein, Jeff; Schneider, Thomas; Brinkman, Gregory; Denholm, Paul

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  9. Financing renewable energy for Village Power application

    SciTech Connect (OSTI)

    Santibanez-Yeneza, G.

    1997-12-01

    When one talks of rural development, no doubt, the issue of rural energy is not far behind. As a significant component of any development strategy, rural energy is seen as the engine for growth that can bring about economic upliftment in the countryside. Many approaches to rural energy development have been tried. These approaches differ from country to country. But regardless of structure and approach, the goal remain essentially the same: to provide rural communities access to reliable energy services at affordable prices. In recent years, as global concern for the environment has increased, many governments have turned to renewable energy as a more environment friendly alternative to rural electrification. Technological advances in renewable energy application has helped to encourage this use. System reliability has improved, development costs have, to some extent been brought down and varied application approaches have been tried and tested in many areas. Indeed, there is huge potential for the development of renewable energy in the rural areas of most developing countries. At the rural level, renewable energy resources are almost always abundantly available: woodwaste, agricultural residues, animal waste, small-scale hydro, wind, solar and even sometimes geothermal resources. Since smaller scale systems are usually expected in these areas, renewable energy technologies can very well serve as decentralized energy systems for rural application. And not only for rural applications, new expansion planning paradigms have likewise led to the emergence of decentralized energy systems not only as supply options but also as corrective measures for maintaining end of line voltage levels. On the other hand, where renewable energy resource can provide significant blocks of power, they can be relied upon to provide indigenous power to the grids.

  10. NREL and Sandia National Laboratories (SNL) Support of Ocean Renewable Power Company's TidGen™ Power System Technology Readiness Advancement Initiative Project

    SciTech Connect (OSTI)

    LiVecchi, Al

    2015-05-07

    This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In funding provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.

  11. NextLight Renewable Power LLC | Open Energy Information

    Open Energy Info (EERE)

    NextLight Renewable Power LLC Jump to: navigation, search Name: NextLight Renewable Power LLC Place: San Francisco, California Zip: 94111 Sector: Renewable Energy Product:...

  12. Federal On-Site Renewable Power Purchase Agreements | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Federal On-Site Renewable Power Purchase Agreements On-site renewable power ... to fund renewable energy projects with minimal ... Distributed Generation Projects: Webinar ...

  13. China Datang Corporation Renewable Power Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Corporation Renewable Power Co Ltd Jump to: navigation, search Name: China Datang Corporation Renewable Power Co Ltd Place: Beijing Municipality, China Sector: Renewable Energy...

  14. Model-Predictive Cascade Mitigation in Electric Power Systems With Storage and Renewables-Part I: Theory and Implementation

    SciTech Connect (OSTI)

    Almassalkhi, MR; Hiskens, IA

    2015-01-01

    A novel model predictive control (MPC) scheme is developed for mitigating the effects of severe line-overload disturbances in electrical power systems. A piece-wise linear convex approximation of line losses is employed to model the effect of transmission line power flow on conductor temperatures. Control is achieved through a receding-horizon model predictive control (MPC) strategy which alleviates line temperature overloads and thereby prevents the propagation of outages. The MPC strategy adjusts line flows by rescheduling generation, energy storage and controllable load, while taking into account ramp-rate limits and network limitations. In Part II of this paper, the MPC strategy is illustrated through simulation of the IEEE RTS-96 network, augmented to incorporate energy storage and renewable generation.

  15. Mainstream Renewable Power | Open Energy Information

    Open Energy Info (EERE)

    Name: Mainstream Renewable Power Place: Dublin, Ireland Zip: 18 Sector: Ocean, Solar, Wind energy Product: Developer of wind farms, solar, thermal and ocean stream projects....

  16. Balance-of-System Equipment Required for Renewable Energy Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For both stand-alone and grid-connected systems, you will need power conditioning equipment. Most electrical appliances ... Virtually all the available renewable energy technologies, ...

  17. Renew Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Power Inc Place: Champaign, Illinois Product: Developing a direct formic acid fuel cell. References: Renew Power Inc1 This article is a stub. You can help OpenEI by...

  18. Renewable Power Generation JV Company | Open Energy Information

    Open Energy Info (EERE)

    JV Company Jump to: navigation, search Name: Renewable Power Generation JV Company Place: India Product: India-based JV to develop green power projects. References: Renewable Power...

  19. Renewable Systems Interconnection: Executive Summary

    SciTech Connect (OSTI)

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  20. Western Renewable Energy Generation Information System | Open...

    Open Energy Info (EERE)

    Renewable Energy Generation Information System Jump to: navigation, search Name: Western Renewable Energy Generation Information System Place: Sacramento, California Zip:...

  1. Premier Power Renewable Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Premier Power Renewable Energy Inc Place: El Dorado Hills, California Zip: 95762 Product: US-based small and large-scale PV system...

  2. PowerIt Renewable Energy Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    PowerIt Renewable Energy Pvt Ltd Jump to: navigation, search Logo: PowerIt Renewable Energy Pvt Ltd Name: PowerIt Renewable Energy Pvt Ltd Address: Kalavath Cross Road,...

  3. Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Green Power Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation DOE/EE-0307 This guide can be downloaded from: www1.eere.energy.gov/femp/technologies/renewable_purchasingpower.html www.epa.gov/greenpower/ www.wri.org/publications www.resource-solutions.org/publications.php Office of Air (6202J) EPA430-K-04-015 www.epa.gov/greenpower March 2010 ISBN: 1-56973-577-8 Guide to Purchasing Green Power i Table of Contents Summary

  4. Wind Power Renewables | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Renewables Place: Norfolk, United Kingdom Zip: NR29 5BG Sector: Wind energy Product: Wind project developer Coordinates: 36.846825, -76.285069 Show Map Loading...

  5. Datang Sino Japan Chifeng Renewable Power Corp | Open Energy...

    Open Energy Info (EERE)

    Japan Chifeng Renewable Power Corp Jump to: navigation, search Name: Datang Sino-Japan (Chifeng) Renewable Power Corp Place: Inner Mongolia Autonomous Region, China Product:...

  6. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Environmental Management (EM)

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8,...

  7. National Renewable Energy Laboratory Wind and Water Power Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open House National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open...

  8. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8, ...

  9. SeaPower Pacific subsidiary of Renewable Energy Holdings Plc...

    Open Energy Info (EERE)

    SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie Corporation Ltd Jump to: navigation, search Name: SeaPower Pacific subsidiary of Renewable Energy Holdings Plc...

  10. Green Power Partner On-site Renewable Commitments | Department...

    Energy Savers [EERE]

    EPA Green Power Partnership's On-site Renewables Challenge, EPA is highlighting the tangible commitments made by partners to increase the deployment of on-site renewable energy ...

  11. BP Gas Power and Renewables | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: BP Gas, Power and Renewables Place: Central Milton Keynes, United Kingdom Zip: MK9 1ES Sector: Renewable Energy Product: Subsidiary of...

  12. EverPower Renewables (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    Renewables (Oregon) Jump to: navigation, search Name: EverPower Renewables Address: 70 NW Couch Street Place: Portland, Oregon Zip: 97209 Region: Pacific Northwest Area Sector:...

  13. CalRENEW-1 Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Name CalRENEW-1 Solar Power Plant Facility CalRENEW-1 Sector Solar Facility Type Photovoltaic Developer Cleantech America Location Fresno County, California Coordinates...

  14. National Renewable Energy Laboratory's Energy Systems Integration...

    Broader source: Energy.gov (indexed) [DOE]

    This brochure describes the Energy Systems Integration Facility at National Renewable Energy Laboratory. Download the National Renewable Energy Laboratory's energy systems ...

  15. Renewable Energy Systems Americas | Open Energy Information

    Open Energy Info (EERE)

    Americas Jump to: navigation, search Name: Renewable Energy Systems Americas Place: Broomfield, CO Website: www.res-americas.com References: Renewable Energy Systems Americas1...

  16. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From

  17. Modeling Photovoltaic Module-Level Power Electronics in the System Advisor Model; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such as DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.

  18. Biofuels and Renewable Energy Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Conventional Renewable Energy Wind Power Hydro Power Power System INL Home Biofuels and Renewable Energy Renewable energy resources are expected to play major role in...

  19. Maricopa County- Renewable Energy Systems Zoning Ordinance

    Broader source: Energy.gov [DOE]

    The Maricopa County Zoning Ordinance contains provisions for siting renewable energy systems. The ordinance defines renewable energy as "energy derived primarily from sources other than fossil...

  20. Battery storage for supplementing renewable energy systems

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  1. Tribal Renewable Energy Webinar: EPA Clean Power Plan: What Tribes...

    Energy Savers [EERE]

    Renewable Energy Webinar: EPA Clean Power Plan: What Tribes Need to Know Tribal Renewable Energy Webinar: EPA Clean Power Plan: What Tribes Need to Know November 18, 2015 11:00AM...

  2. ScottishPower Renewable Energy Holdings | Open Energy Information

    Open Energy Info (EERE)

    ScottishPower Renewable Energy Holdings Jump to: navigation, search Name: ScottishPower Renewable Energy Holdings Place: Glasgow, Scotland, United Kingdom Zip: G2 8SP Sector: Wind...

  3. Mississippi Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source WoodWood Waste Primary Renewable Energy ... Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - ...

  4. Kansas Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar ...

  5. EERE FY 2015 Budget Request Webinar -- Renewable Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Renewable Power EERE FY 2015 Budget Request Webinar -- Renewable Power EERE FY 2015 Budget Request Webinar, featuring Steve Chalk, Deputy Assistant Secretary for Renewable Power, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, as presented on Tuesday, April 1, 2014. eere_fy2015_budget_webinar_renewable_power_4-1-2014.pdf (3.3 MB) More Documents & Publications Office of Energy Efficiency and Renewable Energy FY 2015 Budget Request EERE FY 2016 Budget

  6. About Federal On-Site Renewable Power Purchase Agreements | Department...

    Broader source: Energy.gov (indexed) [DOE]

    the National Renewable Energy Laboratory in Golden, Colorado. A PPA funded the photovoltaic system installed on the Research Support Facility at the National Renewable Energy ...

  7. Renewable Energy Price-Stability Benefits in Utility Green Power...

    Office of Scientific and Technical Information (OSTI)

    Price-Stability Benefits in Utility Green Power Programs. 36 pp Citation Details In-Document Search Title: Renewable Energy Price-Stability Benefits in Utility Green Power ...

  8. Psm Nature Power Service Management Formerly Umweltkontor Renewable...

    Open Energy Info (EERE)

    Psm Nature Power Service Management Formerly Umweltkontor Renewable Energy AG Jump to: navigation, search Name: psm Nature Power Service & Management (Formerly Umweltkontor...

  9. Perspectives on renewable energy and Village Power

    SciTech Connect (OSTI)

    Hoffman, A.R.

    1997-12-01

    The author provides a brief overview of the role the Department of Energy has been playing in the area of renewable energy sources and their applications at a village level. Energy demand is rising sharply, and shortages are becoming more acute. Developing countries will present a large demand, and market opportunity over the next 40 years. Environmental concerns are a factor in the choice for what sources to promote and develop. The author touches on the features of renewable sources which makes them attractive to DOE for some applications, and what the goals of the department are in supporting this technology. Examples of applications at the level of village power are presented for both the US and abroad.

  10. A Stochastic Power Network Calculus for Integrating Renewable Energy Sources into the Power Grid

    SciTech Connect (OSTI)

    Wang, K; Ciucu, F; Lin, C; Low, SH

    2012-07-01

    Renewable energy such as solar and wind generation will constitute an important part of the future grid. As the availability of renewable sources may not match the load, energy storage is essential for grid stability. In this paper we investigate the feasibility of integrating solar photovoltaic (PV) panels and wind turbines into the grid by also accounting for energy storage. To deal with the fluctuation in both the power supply and demand, we extend and apply stochastic network calculus to analyze the power supply reliability with various renewable energy configurations. To illustrate the validity of the model, we conduct a case study for the integration of renewable energy sources into the power system of an island off the coast of Southern California. In particular, we asses the power supply reliability in terms of the average Fraction of Time that energy is Not-Served (FTNS).

  11. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider’s requirements and agreements. | Photo courtesy of Solar Design Associates, Inc. When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider's requirements and agreements. | Photo courtesy of Solar Design

  12. NC GreenPower Renewable Energy Credit Production

    Broader source: Energy.gov [DOE]

    NC GreenPower is requesting proposals for renewable energy credits associated with renewable energy, such as solar, PV, wind, small hydro of 10 MW or less, generated in North Carolina and supplied to the North Carolina electric grid.

  13. EERE Webinar: The Economic Potential of Renewable Power

    Broader source: Energy.gov [DOE]

    Please join the Office of Energy Efficiency and Renewable Energy for a webinar discussing their recent report analyzing the economic potential of renewable power in the United States. Estimating...

  14. Wyoming Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",307,3.8 " Solar","-","-" " Wind",1415,17.7 " WoodWood ...

  15. Missouri Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... Geothermal - - Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 WoodWood Waste - - MSW...

  16. Kansas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",3,"*" " Solar","-","-" " Wind",1072,8.5 " WoodWood ...

  17. Texas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",689,0.6 " Solar",14,"*" " Wind",9952,9.2 " WoodWood ...

  18. Nebraska Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... Geothermal - - Hydro Conventional 278 3.5 Solar - - Wind 154 2.0 WoodWood Waste - - MSW...

  19. Alaska Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 414 20.1 Solar - - Wind 7 0.4 WoodWood Waste - - MSW...

  20. Minnesota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",193,1.3 " Solar","-","-" " Wind",2009,13.7 " WoodWood ...

  1. New Jersey Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste... Total Net Summer Renewable Capacity 230 1.2 Geothermal - - Hydro Conventional 4 * Solar 28 ...

  2. West Virginia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",285,1.7 " Solar","-","-" " Wind",431,2.6 " WoodWood ...

  3. Kentucky Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... Geothermal - - Hydro Conventional 824 4.0 Solar - - Wind - - WoodWood Waste 52 0.3 MSW...

  4. Indiana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",60,0.2 " Solar","-","-" " Wind",1340,4.8 " WoodWood ...

  5. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste... Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - ...

  6. Illinois Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",34,0.1 " Solar",9,"*" " Wind",1946,4.4 " WoodWood ...

  7. Iowa Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",144,1 " Solar","-","-" " Wind",3569,24.5 " WoodWood ...

  8. New Hampshire Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Hampshire Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State ...

  9. New Hampshire Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent ...

  10. Renewable Energy Systems Tax Credit (Corporate) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corporate) Renewable Energy Systems Tax Credit (Corporate) < Back Eligibility Commercial Construction Residential InstallersContractors Multifamily Residential Savings Category...

  11. Integrating Renewable Energy Systems in Buildings (Presentation)

    SciTech Connect (OSTI)

    Hayter, S. J.

    2011-08-01

    This presentation on integrating renewable energy systems into building was presented at the August, 2011 ASHRAE Region IX CRC meetings.

  12. Renewable and Distributed Power in California Simplifying the...

    Open Energy Info (EERE)

    institutional structures and discussing whether these are sufficient to support the transition to renewable and distributed power development (focusing on California). Essay...

  13. Mulk Renewable Energy Aditya Solar Power Industries JV | Open...

    Open Energy Info (EERE)

    Arab Emirates Sector: Solar Product: UAE-based company that is developing a 200MW solar thermal plant in Sharjah. References: Mulk Renewable Energy & Aditya Solar Power...

  14. Global Renewable Power International Global RPI | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search Name: Global Renewable Power International (Global RPI) Place: Spain Sector: Wind energy Product: Spain-based developer of wind projects in Poland, Croatia...

  15. NNSA-lab-created new magnets will power renewable technology...

    National Nuclear Security Administration (NNSA)

    NNSA-lab-created new magnets will power renewable technology Wednesday, June 1, 2016 - ... available without polluting the earth, the new research holds much promise for providing ...

  16. United States Renewable Electric Power Industry Net Generation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" ...onal",289246,247510,254831,273445,260203 "Solar",508,612,864,891,1212 ...

  17. Federal On-Site Renewable Power Purchasing Issues

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers on-site renewable power purchasing issues for federal facilities.

  18. Operating Reserves and Variable Generation: A comprehensive review of current strategies, studies, and fundamental research on the impact that increased penetration of variable renewable generation has on power system operating reserves.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operating Reserves and Variable Generation A comprehensive review of current strategies, studies, and fundamental research on the impact that increased penetration of variable renewable generation has on power system operating reserves. Erik Ela, Michael Milligan, and Brendan Kirby NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5500-51978 August

  19. Texas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Geothermal - - Hydro Conventional 689 0.6 Solar 14 * Wind 9,952 9.2 WoodWood Waste 215 ...

  20. Montana Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 2,705 46.1 Solar - - Wind 379 6.5 WoodWood Waste - - MSW...

  1. Georgia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 2,052 5.6 Solar - - Wind - - WoodWood Waste 617 1.7 MSW...

  2. Colorado Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Geothermal - - Hydro Conventional 662 4.8 Solar 41 0.3 Wind 1,294 9.4 WoodWood Waste - - ...

  3. New York Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 4,314 11.0 Solar - - Wind 1,274 3.2 WoodWood Waste 86 0.2 ...

  4. Indiana Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Geothermal - - Hydro Conventional 60 0.2 Solar - - Wind 1,340 4.8 WoodWood Waste - - ...

  5. Idaho Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... 10 0.3 Hydro Conventional 2,704 67.8 Solar - - Wind 352 8.8 WoodWood Waste 68 1.7 ...

  6. Maine Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 738 16.6 Solar - - Wind 263 5.9 WoodWood Waste 600 13.6 ...

  7. Minnesota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Geothermal - - Hydro Conventional 193 1.3 Solar - - Wind 2,009 13.7 WoodWood Waste 177 ...

  8. South Carolina Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 1,340 5.6 Solar - - Wind - - WoodWood Waste 255 1.1 MSW...

  9. New Mexico Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",82,1 " Solar",30,0.4 " Wind",700,8.6 " WoodWood ...

  10. Nevada Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... 319 2.8 Hydro Conventional 1,051 9.2 Solar 137 1.2 Wind - - WoodWood Waste - - MSW...

  11. New Mexico Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Geothermal - - Hydro Conventional 82 1.0 Solar 30 0.4 Wind 700 8.6 WoodWood Waste - - ...

  12. Illinois Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Geothermal - - Hydro Conventional 34 0.1 Solar 9 * Wind 1,946 4.4 WoodWood Waste - - ...

  13. Tennessee Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 2,624 12.3 Solar - - Wind 29 0.1 WoodWood Waste 185 0.9 ...

  14. Pennsylvania Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... Geothermal - - Hydro Conventional 747 1.6 Solar 9 * Wind 696 1.5 WoodWood Waste 108 0.2 ...

  15. Iowa Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Geothermal - - Hydro Conventional 144 1.0 Solar - - Wind 3,569 24.5 WoodWood Waste - - ...

  16. Colorado Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",662,4.8 " Solar",41,0.3 " Wind",1294,9.4 " WoodWood ...

  17. Louisiana Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source WoodWood Waste Primary Renewable Energy ... Geothermal - - Hydro Conventional 192 0.7 Solar - - Wind - - WoodWood Waste 311 1.2 MSW...

  18. Maryland Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... Geothermal - - Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 WoodWood Waste 3 * MSW...

  19. North Carolina Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 1,956 7.1 Solar 35 0.1 Wind - - WoodWood Waste 481 1.7 ...

  20. Arkansas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 1,341 8.4 Solar - - Wind - - WoodWood Waste 312 2.0 MSW...

  1. Michigan Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... Geothermal - - Hydro Conventional 237 0.8 Solar - - Wind 163 0.5 WoodWood Waste 232 0.8 ...

  2. Hawaii Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Other Biomass Primary Renewable Energy Generation ... 31 1.2 Hydro Conventional 24 0.9 Solar 2 0.1 Wind 62 2.4 WoodWood Waste - - MSW...

  3. Kentucky Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",824,4 " Solar","-","-" " Wind","-","-" " WoodWood ...

  4. Georgia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",2052,5.6 " Solar","-","-" " Wind","-","-" " WoodWood ...

  5. Mississippi Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    ...Wood Waste" "Primary Renewable Energy Generation Source","WoodWood Waste" ... " Hydro Conventional","-","-" " Solar","-","-" " Wind","-","-" " WoodWood ...

  6. Virginia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",866,3.6 " Solar","-","-" " Wind","-","-" " WoodWood ...

  7. Arkansas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",1341,8.4 " Solar","-","-" " Wind","-","-" " WoodWood ...

  8. United Power- Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    United Power is providing rebates to their customers for the purchase of photovoltaic (PV), wind, and solar water heating systems. These incentives are separate from the rebates provided by the...

  9. Renewable Energy Positioning System: Energy Positioning: Control and Economics

    SciTech Connect (OSTI)

    2012-03-01

    GENI Project: The University of Washington and the University of Michigan are developing an integrated system to match well-positioned energy storage facilities with precise control technologies so the electric grid can more easily include energy from renewable power sources like wind and solar. Because renewable energy sources provide intermittent power, it is difficult for the grid to efficiently allocate those resources without developing solutions to store their energy for later use. The two universities are working with utilities, regulators, and the private sector to position renewable energy storage facilities in locations that optimize their ability to provide and transmit electricity where and when it is needed most. Expanding the network of transmission lines is prohibitively expensive, so combining well-placed storage facilities with robust control systems to efficiently route their power will save consumers money and enable the widespread use of safe, renewable sources of power.

  10. Ocean Power: Science Projects in Renewable Energy and Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Power (Four Activities) Grades: 5-8 Topic: Hydropower Owner: National Renewable Energy Laboratory This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. This lesson plan may contain links to other resources, including suggestions as to where to purchase materials. These links, product descriptions, and prices may change over time. Ocean Power For the Teacher The discussion of renewable energy sometimes focuses on

  11. Renewable energy delivery systems and methods

    DOE Patents [OSTI]

    Walker, Howard Andrew

    2013-12-10

    A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.

  12. Efficient electrochemical CO2 conversion powered by renewable energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R.; Zeng, Chenjie; Jin, Rongchao

    2015-06-29

    Here, the catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspondmore » to conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies

  13. Fuel Cell Power Plants Renewable and Waste Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * ...

  14. Model-Predictive Cascade Mitigation in Electric Power Systems With Storage and Renewables-Part II: Case-Study

    SciTech Connect (OSTI)

    Almassalkhi, MR; Hiskens, IA

    2015-01-01

    The novel cascade-mitigation scheme developed in Part I of this paper is implemented within a receding-horizon model predictive control (MPC) scheme with a linear controller model. This present paper illustrates the MPC strategy with a case-study that is based on the IEEE RTS-96 network, though with energy storage and renewable generation added. It is shown that the MPC strategy alleviates temperature overloads on transmission lines by rescheduling generation, energy storage, and other network elements, while taking into account ramp-rate limits and network limitations. Resilient performance is achieved despite the use of a simplified linear controller model. The MPC scheme is compared against a base-case that seeks to emulate human operator behavior.

  15. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 152,151 100.0 Total

  16. South Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 10,050 100.0 Total

  17. Tennessee Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",2624,12.3 " Solar","-","-" " Wind",29,0.1 " WoodWood ...

  18. Montana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",2705,46.1 " Solar","-","-" " Wind",379,6.5 " WoodWood ...

  19. Massachusetts Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Municipal Solid ... " Hydro Conventional",262,1.9 " Solar",4,"*" " Wind",10,0.1 " WoodWood ...

  20. Washington Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",21181,69.5 " Solar",1,"*" " Wind",2296,7.5 " WoodWood ...

  1. Maryland Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",590,4.7 " Solar",1,"*" " Wind",70,0.6 " WoodWood ...

  2. Vermont Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",324,28.7 " Solar","-","-" " Wind",5,0.5 " WoodWood ...

  3. United States Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",78825,7.6 " Solar",941,0.1 " Wind",39135,3.8 " WoodWood ...

  4. Michigan Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","WoodWood Waste" ... " Hydro Conventional",237,0.8 " Solar","-","-" " Wind",163,0.5 " WoodWood ...

  5. Florida Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas" "Primary Renewable Energy Generation Source","WoodWood Waste" ... " Hydro Conventional",55,0.1 " Solar",123,0.2 " Wind","-","-" " WoodWood ...

  6. Arizona Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",2720,10.3 " Solar",20,0.1 " Wind",128,0.5 " WoodWood ...

  7. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas" "Primary Renewable Energy Generation Source","Municipal Solid ... " Hydro Conventional","-","-" " Solar","-","-" " Wind",2,0.1 " WoodWood ...

  8. Wisconsin Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",492,2.8 " Solar","-","-" " Wind",449,2.5 " WoodWood ...

  9. California Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",10141,15.1 " Solar",475,0.7 " Wind",2812,4.2 " WoodWood ...

  10. Louisiana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    ...Wood Waste" "Primary Renewable Energy Generation Source","WoodWood Waste" ... " Hydro Conventional",192,0.7 " Solar","-","-" " Wind","-","-" " WoodWood ...

  11. Utah Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",255,3.4 " Solar","-","-" " Wind",222,3 " WoodWood ...

  12. Nevada Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",1051,9.2 " Solar",137,1.2 " Wind","-","-" " WoodWood ...

  13. New Jersey Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas" "Primary Renewable Energy Generation Source","Municipal Solid ... " Hydro Conventional",4,"*" " Solar",28,0.2 " Wind",8,"*" " WoodWood ...

  14. Connecticut Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas" "Primary Renewable Energy Generation Source","Municipal Solid ... " Hydro Conventional",122,1.5 " Solar","-","-" " Wind","-","-" " WoodWood ...

  15. Missouri Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",564,2.6 " Solar","-","-" " Wind",459,2.1 " WoodWood ...

  16. Maine Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",738,16.6 " Solar","-","-" " Wind",263,5.9 " WoodWood ...

  17. Connecticut Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste... Geothermal - - Hydro Conventional 122 1.5 Solar - - Wind - - WoodWood Waste - - MSW...

  18. Nebraska Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",278,3.5 " Solar","-","-" " Wind",154,2 " WoodWood ...

  19. Alaska Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",414,20.1 " Solar","-","-" " Wind",7,0.4 " WoodWood ...

  20. Hawaii Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Biomass" "Primary Renewable Energy Generation Source","Wind" "Capacity ... " Hydro Conventional",24,0.9 " Solar",2,0.1 " Wind",62,2.4 " WoodWood ...

  1. Idaho Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" ... " Hydro Conventional",2704,67.8 " Solar","-","-" " Wind",352,8.8 " WoodWood ...

  2. Alternative Trading Arrangements for Intermittent Renewable Power...

    Open Energy Info (EERE)

    Regulations: UtilityElectricity Service Costs This report examines the costs and benefits of various options for the design and governance of a centralised renewables...

  3. North Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 6,188 100.0 Total Net Summer Renewable Capacity 1,941 31.4 Geothermal - - Hydro Conventional 508 8.2 Solar - - Wind 1,423 23.0 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 10 0.2 Generation (thousand megawatthours) Total Electricity Net Generation 34,740 100.0 Total Renewable Net Generation 6,150

  4. Ohio Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 33,071 100.0 Total Net Summer Renewable Capacity 231 0.7 Geothermal - - Hydro Conventional 101 0.3 Solar 13 * Wind 7 * Wood/Wood Waste 60 0.2 MSW/Landfill Gas 48 0.1 Other Biomass 2 * Generation (thousand megawatthours) Total Electricity Net Generation 143,598 100.0 Total Renewable

  5. Oklahoma Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 72,251 100.0 Total Renewable Net Generation

  6. California Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    California Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable ... 2,004 3.0 Hydro Conventional 10,141 15.1 Solar 475 0.7 Wind 2,812 4.2 WoodWood Waste 639 ...

  7. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    can consider to diversify their energy supply and reduce the environmental impact of their electricity use. Download the Guide to Purchasing Green Power. (1.97 MB) More Documents ...

  8. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",32417,100 "Total Net Summer Renewable Capacity",3855,11.9 " Geothermal","-","-" " Hydro Conventional",3272,10.1 "

  9. New York Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",39357,100 "Total Net Summer Renewable Capacity",6033,15.3 " Geothermal","-","-" " Hydro Conventional",4314,11 "

  10. North Carolina Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",27674,100 "Total Net Summer Renewable Capacity",2499,9 " Geothermal","-","-" " Hydro Conventional",1956,7.1 "

  11. North Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",6188,100 "Total Net Summer Renewable Capacity",1941,31.4 " Geothermal","-","-" " Hydro Conventional",508,8.2 "

  12. Ohio Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",33071,100 "Total Net Summer Renewable Capacity",231,0.7 " Geothermal","-","-" " Hydro Conventional",101,0.3 "

  13. Oklahoma Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",21022,100 "Total Net Summer Renewable Capacity",2412,11.5 " Geothermal","-","-" " Hydro Conventional",858,4.1 " Solar","-","-"

  14. Oregon Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,261 100.0 Total Net Summer Renewable Capacity 10,684 74.9 Geothermal - - Hydro Conventional 8,425 59.1 Solar - - Wind 2,004 14.1 Wood/Wood Waste 221 1.6 MSW/Landfill Gas 31 0.2 Other Biomass 3 * Generation (thousand megawatthours) Total Electricity Net Generation 55,127 100.0

  15. Oregon Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",14261,100 "Total Net Summer Renewable Capacity",10684,74.9 " Geothermal","-","-" " Hydro Conventional",8425,59.1 "

  16. Pennsylvania Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",45575,100 "Total Net Summer Renewable Capacity",1984,4.4 " Geothermal","-","-" " Hydro Conventional",747,1.6 "

  17. Rhode Island Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,782 100.0 Total Net Summer Renewable Capacity 28 1.6 Geothermal - - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1 Wood/Wood Waste - - MSW/Landfill Gas 24 1.3 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net

  18. Rhode Island Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Primary Renewable Energy Capacity Source","Municipal Solid Waste/Landfill Gas" "Primary Renewable Energy Generation Source","Municipal Solid Waste/Landfill Gas" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",1782,100 "Total Net Summer Renewable Capacity",28,1.6 " Geothermal","-","-" " Hydro

  19. South Carolina Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",23982,100 "Total Net Summer Renewable Capacity",1623,6.8 " Geothermal","-","-" " Hydro Conventional",1340,5.6 "

  20. South Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",3623,100 "Total Net Summer Renewable Capacity",2223,61.3 " Geothermal","-","-" " Hydro Conventional",1594,44 "

  1. The Treatment of Renewable Energy Certificates, EmissionsAllowances, and Green Power Programs in State Renewables PortfolioStandards

    SciTech Connect (OSTI)

    Holt, Edward A.; Wiser, Ryan H.

    2007-04-17

    Twenty-one states and the District of Columbia have adopted mandatory renewables portfolio standards (RPS) over the last ten years. Renewable energy attributes-such as the energy source, conversion technology, plant location and vintage, and emissions-are usually required to verify compliance with these policies, sometimes through attributes bundled with electricity, and sometimes with the attributes unbundled from electricity and traded separately as renewable energy certificates (RECs). This report summarizes the treatment of renewable energy attributes in state RPS rules. Its purpose is to provide a source of information for states considering RPS policies, and also to draw attention to certain policy issues that arise when renewable attributes and RECs are used for RPS compliance. Three specific issues are addressed: (1) the degree to which unbundled RECs are allowed under existing state RPS programs and the status of systems to track RECs and renewable energy attributes; (2) definitions of the renewable energy attributes that must be included in order to meet state RPS obligations, including the treatment of available emissions allowances; and (3) state policies on whether renewable energy or RECs sold through voluntary green power transactions may count towards RPS obligations.

  2. Massachusetts Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Massachusetts Primary Renewable Energy Capacity Source Hydro Conventional Primary ... Geothermal - - Hydro Conventional 262 1.9 Solar 4 * Wind 10 0.1 WoodWood Waste 26 0.2 ...

  3. Florida Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas Primary Renewable Energy Generation Source WoodWood Waste ... Geothermal - - Hydro Conventional 55 0.1 Solar 123 0.2 Wind - - WoodWood Waste 344 0.6 ...

  4. EERE Fiscal Year 2017 Budget Webinar- Renewable Power

    Broader source: Energy.gov [DOE]

    Join the Office of Energy Efficiency and Renewable Energy (EERE) for a webinar hosted by Deputy Assistant Secretary for Renewable Power Doug Hollett to learn about EERE's fiscal year 2017 budget request. Deputy Assistant Secretary Hollett will be joined by José Zayas, Wind & Water Technologies Office Director; Lidija Sekaric, Solar Technologies Office Acting Director; and Sue Hamm, Geothermal Technologies Office Acting Director.

  5. Balance-of-System Equipment Required for Renewable Energy Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Balance-of-System Equipment Required for Renewable Energy Systems Balance-of-System Equipment Required for Renewable Energy Systems Both grid-connected and off-grid home renewable energy systems require additional “balance-of-system” equipment. Both grid-connected and off-grid home renewable energy systems require additional "balance-of-system" equipment. Whether you decide to connect your home renewable energy system to the electric grid or not, you

  6. Green Power Partnership On-site Renewables Challenge | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    use of on-site green power generated by partners by the end of the decade. The partnership tracks partners' annual combined on-site renewable energy use and is updated quarterly. ...

  7. Power system

    DOE Patents [OSTI]

    Hickam, Christopher Dale

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  8. Balance-of-System Equipment Required for Renewable Energy Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Both grid-connected and off-grid home renewable energy systems require additional balance-of-system equipment. Both grid-connected and off-grid home renewable energy...

  9. Renewing America's Nuclear Power Partnership for Energy Security and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Growth | Department of Energy Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8, 2008 - 4:14pm Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you, Jamie, for that kind introduction. And many thanks as well to Secretary Gutierrez, Deputy Secretary Sullivan and the entire Commerce team for convening this important event. As always, it's

  10. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Environmental Management (EM)

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric grid, research and consider equipment required...

  11. Power Flow Controller for Renewables: Transformer-less Unified Power Flow Controller for Wind and Solar Power Transmission

    SciTech Connect (OSTI)

    2012-02-08

    GENI Project: MSU is developing a power flow controller to improve the routing of electricity from renewable sources through existing power lines. The fast, innovative, and lightweight circuitry that MSU is incorporating into its controller will eliminate the need for a separate heavy and expensive transformer, as well as the construction of new transmission lines. MSU’s controller is better suited to control power flows from distributed and intermittent wind and solar power systems than traditional transformer-based controllers are, so it will help to integrate more renewable energy into the grid. MSU‘s power flow controller can be installed anywhere in the existing grid to optimize energy transmission and help reduce transmission congestion.

  12. Western Renewable Energy Generation Information System ACCOUNT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Renewable Energy Generation Information System ACCOUNT HOLDER REGISTRATION AGREEMENT (Also referred to as the "TERMS OF USE") June 22,2007 Revised May 1,2008 JUL 3 1 REC'D...

  13. Lincoln Electric System- Renewable Energy Rebate

    Broader source: Energy.gov [DOE]

    Customer-generators may also qualify for an incentive payment based on the amount of electricity generated by the renewable energy system that goes to the electricity grid. For more information o...

  14. Stand Alone Renewable Energy Systems Case Studies | Open Energy...

    Open Energy Info (EERE)

    Alone Renewable Energy Systems Case Studies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Stand Alone Renewable Energy Systems Case Studies AgencyCompany...

  15. Mini-Grid Renewable Energy Systems Case Studies | Open Energy...

    Open Energy Info (EERE)

    Mini-Grid Renewable Energy Systems Case Studies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Mini-Grid Renewable Energy Systems Case Studies AgencyCompany...

  16. Nevada Application For Renewable Energy System Generators | Open...

    Open Energy Info (EERE)

    renewable energy system. Form Type ApplicationNotice Form Topic Application Pursuant to NAC 704.8901 - 704.8937 for Renewable Energy System Generators Published Publisher Not...

  17. Renewable Energy Systems (RES Mediterranean) | Open Energy Information

    Open Energy Info (EERE)

    Mediterranean) Jump to: navigation, search Logo: Renewable Energy Systems (RES Mediterranean) Name: Renewable Energy Systems (RES Mediterranean) Address: 330 rue du Mourelet Z.I....

  18. Renewable Energy Systems (RES Scandinavia) | Open Energy Information

    Open Energy Info (EERE)

    Scandinavia) Jump to: navigation, search Logo: Renewable Energy Systems (RES Scandinavia) Name: Renewable Energy Systems (RES Scandinavia) Address: Lilla Bommen 1 Place:...

  19. Renewable Energy Systems (RES Australia and New Zealand) | Open...

    Open Energy Info (EERE)

    Australia and New Zealand) Jump to: navigation, search Logo: Renewable Energy Systems (RES Australia and New Zealand) Name: Renewable Energy Systems (RES Australia and New Zealand)...

  20. Renewable Energy Systems (RES UK and Ireland) | Open Energy Informatio...

    Open Energy Info (EERE)

    (RES UK and Ireland) Jump to: navigation, search Logo: Renewable Energy Systems (RES UK and Ireland) Name: Renewable Energy Systems (RES UK and Ireland) Address: Beaufort Court Egg...

  1. Renewable Energy Systems Inc (RES Americas) (Colorado) | Open...

    Open Energy Info (EERE)

    Inc (RES Americas) (Colorado) Jump to: navigation, search Logo: Renewable Energy Systems Inc (RES Americas) Name: Renewable Energy Systems Inc (RES Americas) Address: 11101 W....

  2. Federal On-Site Renewable Power Purchase Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Financing » Renewable Energy Procurement » Federal On-Site Renewable Power Purchase Agreements Federal On-Site Renewable Power Purchase Agreements Federal On-Site Renewable Power Purchase Agreements The Federal Energy Management Program (FEMP) provides project assistance to federal agencies interested in power purchase agreements (PPAs) for on-site renewable energy projects. A PPA is a financing option under FEMP's Renewable Energy Procurement (REP) Program. FEMP assists agencies

  3. Innovative Energy Storage Technologies Enabling More Renewable Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Innovative Energy Storage Technologies Enabling More Renewable Power Innovative Energy Storage Technologies Enabling More Renewable Power November 15, 2011 - 3:45pm Addthis The PNM Prosperity Energy Storage Project is the nation’s first combined solar generation and storage facility to be fully integrated into a utility’s power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM The PNM

  4. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect (OSTI)

    2011-01-01

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  5. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  6. Colorado's Prospects for Interstate Commerce in Renewable Power

    SciTech Connect (OSTI)

    Hurlbut, D. J.

    2009-12-01

    Colorado has more renewable energy potential than it is ever likely to need for its own in-state electricity consumption. Such abundance may suggest an opportunity for the state to sell renewable power elsewhere, but Colorado faces considerable competition from other western states that may have better resources and easier access to key markets on the West Coast. This report examines factors that will be important to the development of interstate commerce for electricity generated from renewable resources. It examines market fundamentals in a regional context, and then looks at the implications for Colorado.

  7. Islands and Our Renewable Energy Future (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

    2012-05-01

    Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

  8. Ridgewood Renewable Power LLC | Open Energy Information

    Open Energy Info (EERE)

    and Egypt. Projects developed include hydro, biomass, natural gas and landfill methane gas power plants. Coordinates: 40.700725, -73.895329 Show Map Loading map......

  9. EverPower Renewables | Open Energy Information

    Open Energy Info (EERE)

    44 East 30th Street Place: New York, New York Zip: 10016 Region: Northeast - NY NJ CT PA Area Sector: Wind energy Product: Develops wind power projects Website:...

  10. Vermont Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 108 101 101 100 100 Coal - - - - - Petroleum 108 101 ... Natural Gas includes single-fired and dual-fired plants ...

  11. The renewable electric plant information system

    SciTech Connect (OSTI)

    Sinclair, K.

    1995-12-01

    This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

  12. GDI Renewable Power | Open Energy Information

    Open Energy Info (EERE)

    Developing a 15.0MW biomass power plant in Watertown, Connecticut. The initiative is a joint venture between Tamarack Energy of Essex and Gemma Development of Glastonbury and is...

  13. Rhode Island Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 1,743 1,754 1,754 1,754 1,754 Coal - - - - - ... Natural Gas includes single-fired and dual-fired plants ...

  14. New Hampshire Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 2,411 2,371 2,235 2,226 2,262 Coal 528 528 528 528 ... Natural Gas includes single-fired and dual-fired plants ...

  15. Idaho Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 667 667 828 834 834 Coal 17 17 17 17 17 Petroleum 5 5 ... Natural Gas includes single-fired and dual-fired plants ...

  16. Connecticut Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 5,498 5,361 5,466 5,582 5,845 Coal 551 551 553 564 ... Natural Gas includes single-fired and dual-fired plants ...

  17. Maine Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 2,770 2,751 2,761 2,738 2,738 Coal 85 85 85 85 85 ... Natural Gas includes single-fired and dual-fired plants ...

  18. Oregon Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 3,349 3,686 3,653 3,626 3,577 Coal 585 585 585 585 ... Natural Gas includes single-fired and dual-fired plants ...

  19. Hawaii Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 2,208 2,209 2,208 2,223 2,196 Coal 180 180 180 180 ... Natural Gas includes single-fired and dual-fired plants ...

  20. United States Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 761,603 763,994 770,221 774,279 782,176 Coal 312,956 ... Natural Gas includes single-fired and dual-fired plants ...

  1. Alaska Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-923, "Power Plant Operations Report." ... Fossil 1,485 1,561 1,593 1,591 1,618 Coal 105 105 112 111 ... Natural Gas includes single-fired and dual-fired plants ...

  2. South Dakota Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 1,374 1,364 1,449 1,448 1,401 Coal 492 492 497 497 ... Natural Gas includes single-fired and dual-fired plants ...

  3. California Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 39,351 39,961 39,950 41,443 42,654 Coal 389 389 367 ... Natural Gas includes single-fired and dual-fired plants ...

  4. National Renewable Energy Laboratory's Energy Systems Integration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview | Department of Energy National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This brochure describes the Energy Systems Integration Facility at National Renewable Energy Laboratory. Download the National Renewable Energy Laboratory's energy systems integration facility overview. (4.91 MB) More Documents & Publications Facilities and Infrastructure Program FY 2016

  5. District of Columbia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source - Primary Renewable Energy Generation Source - ... Total Net Summer Renewable Capacity - - Geothermal - - Hydro Conventional - - Solar - - ...

  6. Tennessee Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 13,051 12,974 12,999 12,982 13,517 Coal 8,841 8,816 ... Natural Gas includes single-fired and dual-fired plants ...

  7. Minnesota Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 9,714 9,550 10,548 10,752 10,519 Coal 5,444 5,207 ... Natural Gas includes single-fired and dual-fired plants ...

  8. Mississippi Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 15,125 14,707 14,454 14,340 14,205 Coal 2,548 2,542 ... Natural Gas includes single-fired and dual-fired plants ...

  9. Michigan Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-923, "Power Plant Operations Report." ... Fossil 23,693 23,826 23,805 23,691 23,205 Coal 11,860 11,910 ... Natural Gas includes single-fired and dual-fired plants ...

  10. Washington Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 4,436 4,343 5,130 5,145 5,183 Coal 1,405 1,405 1,376 ... Natural Gas includes single-fired and dual-fired plants ...

  11. Oklahoma Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-923, "Power Plant Operations Report." ... Fossil 18,301 18,083 18,364 18,532 18,350 Coal 5,372 5,364 ... Natural Gas includes single-fired and dual-fired plants ...

  12. Colorado Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-923, "Power Plant Operations Report." ... Fossil 9,644 9,979 10,229 10,545 11,204 Coal 4,939 4,961 ... Natural Gas includes single-fired and dual-fired plants ...

  13. New Mexico Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 6,520 6,620 7,366 7,308 7,312 Coal 3,957 3,957 3,957 ... Natural Gas includes single-fired and dual-fired plants ...

  14. North Dakota Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-923, "Power Plant Operations Report." ... Fossil 4,222 4,212 4,212 4,243 4,247 Coal 4,127 4,119 4,119 ... Natural Gas includes single-fired and dual-fired plants ...

  15. North Carolina Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 19,673 20,247 20,305 20,230 20,081 Coal 13,113 13,068 ... Natural Gas includes single-fired and dual-fired plants ...

  16. Iowa Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-923, "Power Plant Operations Report." ... Fossil 9,496 10,391 10,340 10,467 10,263 Coal 6,097 6,967 ... Natural Gas includes single-fired and dual-fired plants ...

  17. New York Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 28,071 27,582 26,726 27,022 26,653 Coal 4,014 3,570 ... Natural Gas includes single-fired and dual-fired plants ...

  18. Kansas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 9,592 9,709 10,017 10,355 10,302 Coal 5,203 5,208 ... Natural Gas includes single-fired and dual-fired plants ...

  19. Kentucky Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 19,177 19,088 19,016 19,268 19,560 Coal 14,386 14,374 ... Natural Gas includes single-fired and dual-fired plants ...

  20. Louisiana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 23,904 23,379 23,207 23,087 23,906 Coal 3,453 3,482 ... Natural Gas includes single-fired and dual-fired plants ...

  1. Missouri Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 18,197 18,099 18,126 18,101 18,861 Coal 11,299 11,259 ... Natural Gas includes single-fired and dual-fired plants ...

  2. Texas Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-923, "Power Plant Operations Report." ... Fossil 92,088 91,494 91,450 87,547 92,136 Coal 19,843 19,817 ... Natural Gas includes single-fired and dual-fired plants ...

  3. Arkansas Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 10,965 11,807 11,756 11,753 12,451 Coal 3,846 3,846 ... Natural Gas includes single-fired and dual-fired plants ...

  4. South Carolina Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 12,100 12,682 13,281 13,189 13,207 Coal 6,088 6,641 ... Natural Gas includes single-fired and dual-fired plants ...

  5. Florida Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-923, "Power Plant Operations Report." ... Fossil 48,044 50,280 50,166 53,733 53,791 Coal 10,333 10,297 ... Natural Gas includes single-fired and dual-fired plants ...

  6. Pennsylvania Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 32,893 32,751 32,654 32,663 32,530 Coal 18,771 18,581 ... Natural Gas includes single-fired and dual-fired plants ...

  7. Delaware Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-923, "Power Plant Operations Report." ... Fossil 3,367 3,350 3,344 3,355 3,379 Coal 1,083 1,083 1,083 ... Natural Gas includes single-fired and dual-fired plants ...

  8. Maryland Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-923, "Power Plant Operations Report." ... Fossil 10,071 10,028 10,125 10,050 10,012 Coal 4,958 4,958 ... Natural Gas includes single-fired and dual-fired plants ...

  9. Georgia Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 28,238 28,096 28,078 28,103 28,087 Coal 13,438 13,275 ... Natural Gas includes single-fired and dual-fired plants ...

  10. Nebraska Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 5,478 5,423 5,459 6,123 6,169 Coal 3,204 3,204 3,204 ... Natural Gas includes single-fired and dual-fired plants ...

  11. West Virginia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 16,113 15,769 15,756 15,766 15,779 Coal 14,745 14,715 ... Natural Gas includes single-fired and dual-fired plants ...

  12. Alabama Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 21,804 21,784 22,372 22,540 23,519 Coal 11,557 11,544 ... Natural Gas includes single-fired and dual-fired plants ...

  13. Massachusetts Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 11,050 10,670 10,621 10,770 10,763 Coal 1,743 1,744 ... Natural Gas includes single-fired and dual-fired plants ...

  14. Montana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 2,671 2,671 2,682 2,701 2,782 Coal 2,460 2,458 2,442 ... Natural Gas includes single-fired and dual-fired plants ...

  15. Indiana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 26,899 26,922 26,850 26,808 26,186 Coal 19,718 19,759 ... Natural Gas includes single-fired and dual-fired plants ...

  16. Ohio Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-923, "Power Plant Operations Report." ... Fossil 31,582 31,418 31,154 31,189 30,705 Coal 22,264 22,074 ... Natural Gas includes single-fired and dual-fired plants ...

  17. Utah Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 6,398 6,830 6,819 6,897 6,969 Coal 4,891 4,871 4,871 ... Natural Gas includes single-fired and dual-fired plants ...

  18. Illinois Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 30,626 30,435 30,662 30,795 30,554 Coal 15,731 15,582 ... Natural Gas includes single-fired and dual-fired plants ...

  19. Wisconsin Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 14,000 13,926 15,015 14,928 14,964 Coal 7,063 6,945 ... Natural Gas includes single-fired and dual-fired plants ...

  20. Nevada Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-923, "Power Plant Operations Report." ... Fossil 8,412 8,638 9,942 9,950 9,914 Coal 2,657 2,689 2,916 ... Natural Gas includes single-fired and dual-fired plants ...

  1. Arizona Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 18,784 18,756 18,942 19,351 19,338 Coal 5,830 5,818 ... Natural Gas includes single-fired and dual-fired plants ...

  2. Virginia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 14,968 15,080 15,543 15,740 15,880 Coal 5,774 5,794 ... Natural Gas includes single-fired and dual-fired plants ...

  3. New Jersey Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Form EIA-923, "Power Plant Operations Report." ... Fossil 14,363 13,741 13,771 13,759 13,676 Coal 2,124 2,054 ... Natural Gas includes single-fired and dual-fired plants ...

  4. Wyoming Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 6,105 6,065 6,150 6,147 6,253 Coal 5,847 5,847 5,932 ... Natural Gas includes single-fired and dual-fired plants ...

  5. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer A. Meintz, T. Markel, E. Burton, L. Wang, J. Gonder, A. Brooker, and A. Konan Work sponsored by United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicles Technologies Office, Vehicle Systems Program The information contained in this poster is subject to a government license. 2015 IEEE PELS Workshop on

  6. Federal On-Site Renewable Power Purchase Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal On-Site Renewable Power Purchase Agreements Federal On-Site Renewable Power Purchase Agreements Federal On-Site Renewable Power Purchase Agreements The Federal Energy Management Program (FEMP) provides project assistance to federal agencies interested in power purchase agreements (PPAs) for on-site renewable energy projects. A PPA is a financing option under FEMP's Renewable Energy Procurement (REP) Program. FEMP assists agencies through the PPA evaluation and implementation process.

  7. Guide to purchasing green power. Renewable electricity, renewable energy certificates and on-site renewable generation

    SciTech Connect (OSTI)

    2004-09-30

    The Guide to Purchasing Green Power is intended for organizations that are considering the merits of buying green power as well as those that have decided to buy it and want help doing so. The Guide was written for a broad audience, including businesses, government agencies, universities, and all organizations wanting to diversify their energy supply and to reduce the environmental impact of their electricity use.The Guide provides an overview of green power markets and describes the necessary steps to buying green power. This section summarizes the Guide to help readers find the information they need.

  8. Overview of village scale, renewable energy powered desalination

    SciTech Connect (OSTI)

    Thomas, K.E.

    1997-04-01

    An overview of desalination technologies is presented, focusing on those technologies appropriate for use in remote villages, and how they can be powered using renewable energy. Technologies are compared on the basis of capital cost, lifecycle cost, operations and maintenance complexity, and energy requirements. Conclusions on the appropriateness of different technologies are drawn, and recommendations for future research are given.

  9. Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling

    SciTech Connect (OSTI)

    Burman, K.; Keller, J.; Kroposki, B.; Lilienthal, P.; Slaughter, R.; Glassmire, J.

    2011-11-01

    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid.

  10. RTP Green Fuel: A Proven Path to Renewable Heat and Power | Department...

    Energy Savers [EERE]

    RTP Green Fuel: A Proven Path to Renewable Heat and Power RTP Green Fuel: A Proven Path to Renewable Heat and Power Steve Lupton presentation at the May 9, 2012, Pyrolysis Oil ...

  11. Planning for Home Renewable Energy Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    controller in addition to power conditioning equipment, safety equipment, and meters and instrumentation. Choosing the Right Renewable Energy Technology To begin choosing the...

  12. QIN Renewable Energy Feasibility Study - Catching the Power of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    QIN Renewable Energy Feasibility Study Catching the Power of Energy 11/1/2004 2 11/1/2004 3 11/1/2004 4 Presented by... Natalie Charley, Project Coordinator, Quinault Nation Don Hopps, Director, Institute for Washington's Future Mark Pokryska, Project Manager, WorldWater Corporation and Ocean Power Technologies 11/1/2004 5 About the Quinault Indian Nation Southwest corner of the Olympic Peninsula in Western Washington 208,105 acres of land Over 2,980 tribal members Located on the Pacific Ocean

  13. OLADE-Geo-Information System Referenced Renewable Energy | Open...

    Open Energy Info (EERE)

    Website Website: www.hidroinformatica.orgsigerhomeesindex.html Cost: Free Language: Spanish; Castilian OLADE-Geo-Information System Referenced Renewable Energy...

  14. Idaho Power Develops Renewable Integration Tool for More Cost Effective Use

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Wind Power | Department of Energy Idaho Power Develops Renewable Integration Tool for More Cost Effective Use of Wind Power Idaho Power Develops Renewable Integration Tool for More Cost Effective Use of Wind Power September 22, 2014 - 3:47pm Addthis Idaho Power Company (IPC) has developed a Renewables Integration Tool (RIT) that enables grid operators to use wind energy more cost-effectively to serve electricity customers in Idaho and Oregon. The tool was developed under a Smart Grid

  15. Sample Documents for Federal On-Site Renewable Power Purchase Agreements |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Renewable Energy Procurement » Sample Documents for Federal On-Site Renewable Power Purchase Agreements Sample Documents for Federal On-Site Renewable Power Purchase Agreements To help streamline the federal on-site renewable power purchase agreement (PPA) process, the Federal Energy Management Program works with agencies and partners to assemble sample documents from completed PPA projects. See these sample documents for examples of requests for proposals (RFPs), land

  16. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience

    SciTech Connect (OSTI)

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.

  17. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    SciTech Connect (OSTI)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  18. Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power Generation from Solar Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Linkages from DOE’s Solar Photovoltaic R&D to Commercial Renewable Power from Solar Energy, a report from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

  19. Renewable

    Office of Scientific and Technical Information (OSTI)

    and Sustainable Energy V v y Jo ur na l Renewable Electronic structural and electroch em ... Duan Citation: J. Renewable Sustainable Energy 3, 013102 (2011); doi: 10.10631.3529427 ...

  20. America's Power Plan: Siting - Finding a Home for Renewable Energy...

    Open Energy Info (EERE)

    sites or wildlife. On the contrary, taking action today will provide long lasting benefits. The National Renewable Energy Laboratory's Renewable Electricity Futures Study...

  1. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Environmental Management (EM)

    Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric ... your needs, eliminating the expense of electricity storage devices like batteries. ...

  2. Fuel Cell Power Model for CHHP System Economics and Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Power Model for CHHP System Economics and Performance Analysis Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewablehydrogenworksho...

  3. Energy Systems Integration Facility at National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Energy Systems Integration Facility at National Renewable Energy Laboratory Energy Systems Integration Facility at National Renewable Energy Laboratory Addthis Energy Systems Integration Facility 1 of 7 Energy Systems Integration Facility The Energy Department's Energy Systems Integration Facility (ESIF) at the National Renewable Energy Laboratory in Golden, Colorado. The 182,500-square-foot facility houses 15 experimental laboratories and several outdoor test beds.

  4. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect (OSTI)

    Shane, Rodney

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  5. Off-Grid or Stand-Alone Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Grid or Stand-Alone Renewable Energy Systems Off-Grid or Stand-Alone Renewable Energy Systems Off-grid, or stand-alone, systems can be more cost-effective than connecting to the grid in remote locations. | Photo courtesy of Dave Parsons. Off-grid, or stand-alone, systems can be more cost-effective than connecting to the grid in remote locations. | Photo courtesy of Dave Parsons. For many people, powering their homes or small businesses using a small renewable energy system that is not

  6. District of Columbia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity Source","-" "Primary Renewable Energy Generation Source","-" "Capacity ... " Hydro Conventional","-","-" " Solar","-","-" " Wind","-","-" " WoodWood ...

  7. Planning for Home Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Buying & Making Electricity » Planning for Home Renewable Energy Systems Planning for Home Renewable Energy Systems Planning for a home renewable energy system is a process that includes analyzing your existing electricity use, looking at local codes and requirements, deciding if you want to operate your system on or off of the electric grid, and understanding technology options you have for your site. | Photo by Francis Fine Art Photography. Planning for a home

  8. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers

    SciTech Connect (OSTI)

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  9. Integrating Variable Renewable Energy in Electric Power Markets. Best Practices from International Experience, Summary for Policymakers

    SciTech Connect (OSTI)

    Cochran, Jaquelin; Bird, Lori; Heeter, Jenny; Arent, Douglas J.

    2012-04-30

    Many countries - reflecting very different geographies, markets, and power systems - are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  10. Renewable Energy in China: Xiao Qing Dao Village Power Wind/Diesel Hybrid Pilot Project

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    In 2000, DOE/NREL and the State Power Corporation of China (SPCC) developed a pilot project to electrify Xiao Qing Dao, a small island located in China's Yellow Sea. The project demonstrates the practicality of renewable energy systems for medium-scale, off-grid applications. It consists of four 10 k-W wind turbines connected to a 30-kW diesel generator, a 40-kW inverter and a battery bank.

  11. Enhanced Renewable Methane Production System Benefits Wastewater Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plants, Farms, and Landfills - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Enhanced Renewable Methane Production System Benefits Wastewater Treatment Plants, Farms, and Landfills Argonne National Laboratory Contact ANL About This Technology <p> Argonne&rsquo;s Enhanced Renewable Methane Production System &mdash; Process Schematic.</p> Argonne's Enhanced Renewable Methane Production System - Process Schematic.

  12. Sample Documents for Federal On-Site Renewable Power Purchase Agreements |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sample Documents for Federal On-Site Renewable Power Purchase Agreements Sample Documents for Federal On-Site Renewable Power Purchase Agreements To help streamline the federal on-site renewable power purchase agreement (PPA) process, the Federal Energy Management Program works with agencies and partners to assemble sample documents from completed PPA projects. See these sample documents for examples of requests for proposals (RFPs), land use agreements, and more.

  13. Integrating Variable Renewable Energy in Electric Power Markets. Best Practices from International Experience

    SciTech Connect (OSTI)

    Cochran, Jaquelin; Bird, Lori; Heeter, Jenny; Arent, Douglas J.

    2012-04-30

    Many countries—reflecting very different geographies, markets, and power systems—are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  14. An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) Paul Denholm, Yih-Huei Wan, Marissa Hummon, Mark Mehos March 2013 NREL/PR-6A20-58470 2 Motivation * Implement concentrating solar power (CSP) with thermal energy storage (TES) in a commercial production cost model o Develop approaches that can be used by utilities and system planners to incorporate CSP in standard planning tools * Evaluate the optimal dispatch of CSP with

  15. Grid-Connected Renewable Energy Systems Case Studies | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid-Connected Renewable Energy Systems Case Studies AgencyCompany Organization: World Bank Sector: Energy Topics:...

  16. Renewable Energy Systems Tax Credit (Personal) | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Personal) Renewable Energy Systems Tax Credit (Personal) < Back Eligibility Commercial Residential Multifamily Residential Savings Category Solar - Passive Solar Water Heat Solar...

  17. Energy Systems Integration Facility at National Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department's Energy Systems Integration Facility ... radical film for battery applications using a 3D ... Image: Dennis Schroeder, National Renewable Energy ...

  18. Renewable Energy Systems Inc (RES Americas) (Texas) | Open Energy...

    Open Energy Info (EERE)

    (Texas) Jump to: navigation, search Name: Renewable Energy Systems Inc (RES Americas) Address: 9050 Capital of Texas Hwy Place: Austin, Texas Zip: 78759 Region: Texas Area Sector:...

  19. Renewable Energy Systems Inc (RES Americas) | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Systems Inc (RES Americas) Address: 11101 W. 120th Ave Suite 400 Place: Broomfield, Colorado Zip: 80021 Region: Pacific Northwest Area Sector: Wind energy Product:...

  20. Renewable Systems and Energy Infrastructure Program Area Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Systems and Energy Infrastructure Program Area Director - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & ...

  1. Linkages from DOE's Wind Energy Program to Commercial Renewable Power Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report discusses linkages from the U.S. Department of Energy's Wind Energy Program research and development to commercial renewable power generation.

  2. Argonne OutLoud: Renewing Our Grid - Power for the 21st Century (Sept. 19,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013) | Argonne National Laboratory Renewing Our Grid - Power for the 21st Century (Sept. 19, 2013) Share Guenter Conzelmann

  3. Renewable Energy Systems Exemption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Wind (All) Hydroelectric Geothermal Heat Pumps Fuel Cells using Non-Renewable Fuels Landfill Gas Solar Pool Heating Wind (Small) Geothermal Direct-Use Fuel Cells...

  4. Renewable Energy Systems Property Tax Exemption

    Broader source: Energy.gov [DOE]

    The renewable energy property tax exemption cannot be claimed if another state tax abatement or exemption is claimed by the same building.

  5. Power management system

    DOE Patents [OSTI]

    Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.

    2007-10-02

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  6. Enhanced Renewable Methane Production System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates biological methane production rates at least fivefold. Low cost Delivers near-pipeline-quality gas and eliminates carbon dioxide emissions PDF icon methane_production_system

  7. Energy Systems Integration: NREL + Raytheon (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Energy Systems Integration Facility (ESIF) at the National Renewable Energy Laboratory (NREL) provides the R&D capabilities needed for private industry, academia, government, and public entities to collaborate on utility- scale solutions for integrating renewable energy and other efficiency technologies into our energy systems. To learn more about the ESIF, visit: www.nrel.gov/esif. NREL + RAYTHEON NREL has partnered with Raytheon Company, Primus Power, and Advanced Energy to

  8. Flexibility in 21st Century Power Systems

    SciTech Connect (OSTI)

    Cochran, J.; Miller, M.; Zinaman, O.; Milligan, M.; Arent, D.; Palmintier, B.; O'Malley, M.; Mueller, S.; Lannoye, E.; Tuohy, A.; Kujala, B.; Sommer, M.; Holttinen, H.; Kiviluoma, J.; Soonee, S. K.

    2014-05-01

    Flexibility of operation--the ability of a power system to respond to change in demand and supply--is a characteristic of all power systems. Flexibility is especially prized in twenty-first century power systems, with higher levels of grid-connected variable renewable energy (primarily, wind and solar). This paper summarizes the analytic frameworks that have emerged to measure this characteristic and distills key principles of flexibility for policy makers.

  9. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    Wind Powering America (EERE)

    Wind Powering America Fact Sheet Series Energy Efficiency & Renewable Energy Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(tm) wind

  10. Efficient electrochemical CO2 conversion powered by renewable energy

    SciTech Connect (OSTI)

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R.; Zeng, Chenjie; Jin, Rongchao

    2015-06-29

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not

  11. Efficient electrochemical CO2 conversion powered by renewable energy

    SciTech Connect (OSTI)

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R.; Zeng, Chenjie; Jin, Rongchao

    2015-06-29

    Here, the catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do

  12. Renewable Energy Systems Sales Tax Exemption

    Office of Energy Efficiency and Renewable Energy (EERE)

    "Renewable energy" is defined under 30 V.S.A. § 8002 as "energy produced using a technology that relies on a resource that is being consumed at a harvest rate at or below its natural regeneration...

  13. Renewable Hydrogen Production from Biological Systems

    Broader source: Energy.gov [DOE]

    Presentation by Matthew Posewitz, Colorado School of Mines, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  14. New Report: Renewable Power Economic Potential Has More Than Tripled

    Office of Energy Efficiency and Renewable Energy (EERE)

    The promise and appeal of renewable energy has long been clear: clean, inexhaustible, domestically sourced electricity could lead to enormous environmental, economic and resiliency benefits. For many years, the narrative included the caveat “…but it’s too expensive.” That story is changing fast, however, thanks to falling renewable energy technology costs, which should help renewable energy continue to grow across the United States.

  15. Organizational precedents for ownership and management of decentralized renewable-energy systems

    SciTech Connect (OSTI)

    Meunier, R.; Silversmith, J.A.

    1981-03-01

    Three existing organizational types that meet the decentralization criteria of local consumer ownership and control - cooperatives, Rural Electric Cooperatives, and municipal utilities - are examined. These three organizational precedents are analyzed in terms of their histories, structures, legal powers, sources of capital, and social and political aspects. Examples of related experiments with renewable energy technologies are given, and inferences are drawn regarding the organizations' suitability as vehicles for future implementation of decentralized renewable energy systems.

  16. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect (OSTI)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would

  17. Power System Dispatcher (Trainer)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Transmission Switching (J4100) 5555...

  18. Supervisory Power System Dispatcher

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations, J4800 Transmission Scheduling &...

  19. Integrating Renewable Energy into the Transmission and Distribution System of the U. S. Virgin Islands

    SciTech Connect (OSTI)

    Burman, K.; Olis, D.; Gevorgian, V.; Warren, A.; Butt, R.; Lilienthal, P.; Glassmire, J.

    2011-09-01

    This report focuses on the economic and technical feasibility of integrating renewable energy technologies into the U.S. Virgin Islands transmission and distribution systems. The report includes three main areas of analysis: 1) the economics of deploying utility-scale renewable energy technologies on St. Thomas/St. John and St. Croix; 2) potential sites for installing roof- and ground-mount PV systems and wind turbines and the impact renewable generation will have on the electrical subtransmission and distribution infrastructure, and 3) the feasibility of a 100- to 200-megawatt power interconnection of the Puerto Rico Electric Power Authority (PREPA), Virgin Islands Water and Power Authority (WAPA), and British Virgin Islands (BVI) grids via a submarine cable system.

  20. USDA Renewable Energy Systems and Energy Efficiency Improvement Grants

    Office of Energy Efficiency and Renewable Energy (EERE)

    USDA's Rural Business Cooperative-Service Agency, under the Rural Energy for America Program, is accepting applications for Renewable Energy Systems and Energy Efficiency Improvement grants of $20,000 or less to establish programs to assist agricultural producers and rural small businesses with evaluating the potential to incorporate renewable energy technologies into their operations.

  1. Community Renewable Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Renewable Resources Community Renewable Resources Community renewable programs provide community members with a renewable alternative to conventional energy sources in the form of power and/or financial benefit generated by renewable energy systems. Find community renewable resources below. DOE Resource A Guide to Community Shared Solar: Utility, Private, and NonProfit Project Development. Other Resource Interstate Renewable Energy Council: Community Renewables: Model Program Rules.

  2. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect (OSTI)

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO₂ nanowires, which are a promising replacement for RuO₂, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm⁻¹, a maximum energy density of approximately 15 Jcm⁻³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m⁻¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  3. Microsoft PowerPoint - Quinault Indian Nation Biomass Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... or it can be converted into E-Coal, which is a complete coal replacement. * Pellets: Can supply a dedicated and sustainable renewable supply of pellets away from commodity pricing. ...

  4. Renewable Energy and Inter-Island Power Transmission (Presentation)

    SciTech Connect (OSTI)

    Gevorgian, V.

    2011-05-01

    This presentation summarizes recent findings pertaining to inter-island connection of renewable and other energy sources, in particular, as these findings relate cable options, routing, specifications, and pros and cons.

  5. Linkages for DOE's Solar Photovoltaic R&D to Commercial Renewable Power from Solar Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy‘s (DOE) Solar Photovoltaic R&D Subprogram promotes the development of cost-effective systems for directly converting solar energy into electricity for residential, commercial, and industrial applications. This study was commissioned to assess the extent to which the knowledge outputs of R&D funded by the DOE Solar PV Subprogram are linked to downstream developments in commercial renewable power. A second purpose was to identify spillovers of the resulting knowledge to other areas of application. A third purpose was to lend support to a parallel benefit-cost study by contributing evidence of attribution of benefits to DOE.

  6. Microsoft PowerPoint - Response on Renewables FINALl_4.ppt

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Renewable Arizona Renewable Transmission Task Force Transmission Task Force BTA Response BTA Response Chairman of SWAT RTTF Chairman of SWAT RTTF Peter Krzykos Peter Krzykos BTA Workshop BTA Workshop May 22 May 22 - - 23 2008 23 2008 BTA Order BTA Order " " IT IS FURTHER ORDERED that in the next IT IS FURTHER ORDERED that in the next BTA, Commission regulated electric utilities, BTA, Commission regulated electric utilities, in consultation with the stakeholders, in consultation

  7. Renewable Energy Systems Ltd RES Group | Open Energy Information

    Open Energy Info (EERE)

    Ltd RES Group Jump to: navigation, search Name: Renewable Energy Systems Ltd (RES Group) Place: Hertfordshire, United Kingdom Zip: WD4 8LR Sector: Wind energy Product: UK based...

  8. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Richard Boardman; John Collins; Mark Ruth; Owen Zinaman; Charles Forsberg

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  9. COAL & POWER SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... stitutions * InternationalCoal Technology Export C&PS ... * Systems Integration * Plant Designs Central Power ... Boiler System - Indirect Fired Cycles - Pressurized ...

  10. Potential Role of Concentrating Solar Power in Enabling High Renewables Scenarios in the United States

    SciTech Connect (OSTI)

    Denholm, P.; Hand, M.; Mai, T.; Margolis, R.; Brinkman, G.; Drury, E.; Mowers, M.; Turchi, C.

    2012-10-01

    This work describes the analysis of concentrating solar power (CSP) in two studies -- The SunShot Vision Study and the Renewable Electricity Futures Study -- and the potential role of CSP in a future energy mix.

  11. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Interim Report 1

    SciTech Connect (OSTI)

    Hadley, Stanton W; Key, Thomas S

    2009-03-01

    The power transfer potential for bringing renewable energy into the Southeast in response to a renewable portfolio standard (RPS) will depend not only on available transmission capacity but also on electricity supply and demand factors. This interim report examines how the commonly used EIA NEMS and EPRI NESSIE energy equilibrium models are considering such power transfers. Using regional estimates of capacity expansion and demand, a base case for 2008, 2020 and 2030 are compared relative to generation mix, renewable deployments, planned power transfers, and meeting RPS goals. The needed amounts of regional renewable energy to comply with possible RPS levels are compared to inter-regional transmission capacities to establish a baseline available for import into the Southeast and other regions. Gaps in the renewable generation available to meet RPS requirements are calculated. The initial finding is that the physical capability for transferring renewable energy into the SE is only about 10% of what would be required to meet a 20% RPS. Issues that need to be addressed in future tasks with respect to modeling are the current limitations for expanding renewable capacity and generation in one region to meet the demand in another and the details on transmission corridors required to deliver the power.

  12. Power System Dispatcher

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Sierra Nevada Region Power Systems Operation N4000 114 Parkshore Drive Folsom, CA...

  13. Power System Planning: Emerging Practices Suitable for Evaluating the Impact of High-Penetration Photovoltaics

    SciTech Connect (OSTI)

    Bebic, J.

    2008-02-01

    This report explores the impact of high-penetration renewable generation on electric power system planning methodologies and outlines how these methodologies are evolving to enable effective integration of variable-output renewable generation sources.

  14. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    Many countries--reflecting very different geographies, markets, and power systems--are successfully managing high levels of variable renewable energy (RE) on the grid. Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Colorado and Texas), for example, have effectively integrated variable RE utilizing diverse approaches. Analysis of the results from these case studies reveals a wide range of mechanisms that can be used to accommodate high penetrations of variable RE (e.g., from new market designs to centralized planning). Nevertheless, the myriad approaches collectively suggest that governments can best enable variable RE grid integration by implementing best practices in five areas of intervention: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations.

  15. Renewables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this video on www.youtube.com, or enable JavaScript if it is disabled in your browser. Read the full transcript of the video Learn More: Wind Projects Map U.S. Wind Power Animation...

  16. Local Option- Sales and Use Tax Exemption for Renewable Energy Systems

    Broader source: Energy.gov [DOE]

    Eligible renewable energy property is defined as "any fixture, product, system, device or interacting group of devices that produce electricity from renewable resources, including, but not limite...

  17. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Eichman, Joshua

    2015-07-30

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is compared to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.

  18. FEMP Renewable Energy Overview

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    This four-page overview describes how Federal agencies can contact the Department of Energy's Federal Energy Management Program (FEMP) to obtain assistance in acquiring renewable energy systems, renewable fuels, and renewable ("green") power for use in their facilities and vehicles. Renewable resources, technologies, and fuels are described, as well as Federal goals for using clean, sustainable renewable energy; the current goal is to supply 2.5% of the Federal Government's energy with renewable sources by 2005. Also included is a description of the resources and technologies themselves and associated benefits.

  19. Power Control System

    Energy Science and Technology Software Center (OSTI)

    1995-02-24

    Power Control System (PCS) is used as a real time control software package for Supervisory Control and Data Acquistion (SCADA) in an electric utility control center environment.

  20. Assessment of Farmland Hosting Renewable Energy Systems

    Broader source: Energy.gov [DOE]

    Income generated from the sale of heat or power generated by solar, wind, biomass facilities is not considered income for the purposes of meeting eligibility requirements for assessment, valuatio...

  1. Wind power on BPA system sets another new record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELEASE Tuesday, March 20, 2012 CONTACT: Mike Hansen, BPA 503-230-4328 or 503-230-5131 Wind power on BPA system sets another new record The renewable resource passes 4,000...

  2. Modeling Power System Operation with Intermittent Resources

    SciTech Connect (OSTI)

    Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.; Carlsen, Leif C.

    2013-02-27

    Electricity generating companies and power system operators face the need to minimize total fuel cost or maximize total profit over a given time period. These issues become optimization problems subject to a large number of constraints that must be satisfied simultaneously. The grid updates due to smart-grid technologies plus the penetration of intermittent re- sources in electrical grid introduce additional complexity to the optimization problem. The Renewable Integration Model (RIM) is a computer model of interconnected power system. It is intended to provide insight and advice on complex power systems management, as well as answers to integration of renewable energy questions. This paper describes RIM basic design concept, solution method, and the initial suite of modules that it supports.

  3. AC power systems handbook

    SciTech Connect (OSTI)

    Whitaker, J.

    1991-01-01

    Transient disturbances are what headaches are made of. Whatever you call them-spikes, surges, are power bumps-they can take your equipment down and leave you with a complicated and expensive repair job. Protection against transient disturbances is a science that demands attention to detail. This book explains how the power distribution system works, what can go wrong with it, and how to protect a facility against abnormalities. system grounding and shielding are covered in detail. Each major method of transient protection is analyzed and its relative merits discussed. The book provides a complete look at the critical elements of the ac power system. Provides a complete look at the ac power system from generation to consumption. Discusses the mechanisms that produce transient disturbances and how to protect against them. Presents diagrams to facilitate system design. Covers new areas, such as the extent of the transient disturbance problem, transient protection options, and stand-by power systems.

  4. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Partnership, Renewable Energy, Systems Analysis, Systems Engineering, Water Power WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory...

  5. Hydrogen Fuel-Cell Unit to Provide Renewable Power to Honolulu Port

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unit to Provide Renewable Power to Honolulu Port - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  6. Tips: Renewable Energy | Department of Energy

    Office of Environmental Management (EM)

    Tips: Renewable Energy Tips: Renewable Energy Use solar power to heat water and more Today's solar power is highly efficient. You can buy systems to heat your water, provide...

  7. Energy Secretary Chu Applauds World's First All-Renewable Power Plant in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada | Department of Energy Secretary Chu Applauds World's First All-Renewable Power Plant in Nevada Energy Secretary Chu Applauds World's First All-Renewable Power Plant in Nevada May 3, 2012 - 3:00pm Addthis As part of the Obama Administration's all-out, all-of-the-above approach to American energy, the Energy Department today recognized the dedication of the world's first geothermal-solar power plant in Fallon, Nevada. The Stillwater geothermal project, which received $40 million in tax

  8. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Interim Report 2

    SciTech Connect (OSTI)

    Hadley, Stanton W; Key, Thomas S; Deb, Rajat

    2009-05-01

    Electricity consumption in the Southeastern US, not including Florida, is approximately 24% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient long distant transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. It shows that development of wind resources will depend not only on available transmission capacity but also on electricity supply and demand factors.

  9. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect (OSTI)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  10. Light-Powered Microbial Fuel Cell Offering Clean, Renewable Hydrogen-Based

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alternative Energy Source - Energy Innovation Portal Light-Powered Microbial Fuel Cell Offering Clean, Renewable Hydrogen-Based Alternative Energy Source Inventors: Daniel Noguera, Timothy Donohue, Marc Anderson, Katherine McMahon, M. Isabel Tejedor-Anderson, Yun Cho, Rodolfo Perez Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary One of the greatest challenges of our time is the need for new, renewable sources of energy to offset modern

  11. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  12. Residential Renewable Energy System Tax Credit

    Broader source: Energy.gov [DOE]

    To receive the credit applicants must obtain system certification from the State Energy office, or the systems must be installed by a contractor holding a contractor certification issued by the S...

  13. Fuel Cell Power Model for CHHP System Economics and Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Power Natural Gas Power Heat Natural Gas National Renewable Energy Laboratory ... National Renewable Energy Laboratory Innovation for Our Energy Future 8 2 g Integration ...

  14. District of Columbia Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Form EIA-923, "Power Plant Operations Report." ... Fossil 806 806 790 790 790 Coal - - - - - Petroleum 806 806 ... Natural Gas includes single-fired and dual-fired plants ...

  15. Solectria Renewables LLC | Open Energy Information

    Open Energy Info (EERE)

    Massachusetts Zip: 01843 Region: Greater Boston Area Sector: Solar Product: Power electronics and system for renewable energy power generation Website: www.solren.com...

  16. Property Tax Exemption for Renewable Energy Systems

    Broader source: Energy.gov [DOE]

    Beginning in October 2014, commercial and industrial systems (meeting the same technology requirements as above) are also eligible for the property tax exemption. The exemption is available for p...

  17. Property Tax Exemption for Renewable Energy Systems

    Broader source: Energy.gov [DOE]

    The Iowa Department of Revenue (DOR) has issued an opinion determining that the solar and wind exemption can be applied to systems whose "primary purpose" is to store or provide electricity for u...

  18. Tribal Renewable Energy Webinar: EPA Clean Power Plan: What Tribes...

    Broader source: Energy.gov (indexed) [DOE]

    November 18, 2015 11:00AM to 12:30PM MST The U.S. Environmental Protection Agency (EPA) will present on the final rule for the Clean Power Plan and the proposed Federal Plan and...

  19. Energy Secretary Chu Applauds World's First All-Renewable Power...

    Broader source: Energy.gov (indexed) [DOE]

    all-out, all-of-the-above approach to American energy, the Energy Department today recognized the dedication of the world's first geothermal-solar power plant in Fallon, Nevada. ...

  20. Improved Concentrating Solar Power Systems - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Energy Storage Energy Storage Find More Like This Return to Search Improved Concentrating Solar Power Systems National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Concentrating Solar Power (CSP) systems utilize solar energy to drive a thermal power cycle for the generation of electricity. CSP technologies include parabolic trough, linear Fresnel, central receiver or "power tower", and dish/engine systems.

  1. Environmental Standard Review Plan for the review of license renewal applications for nuclear power plants

    SciTech Connect (OSTI)

    O'Brien, J.; Kim, T.J.; Reynolds, S.

    1991-08-01

    The Environmental Standard Review Plan for the Review of License Applications for Nuclear Power Plants (ESRP-LR) is to be used by the NRC staff when performing environmental reviews of applications for the renewal of power reactor licenses. The use of the ESRP-LR provides a framework for the staff to determine whether or not environmental issues important to license renewal have been identified and the impacts evaluated and provides acceptance standards to help the reviewers comply with the National Environmental Policy Act.

  2. Session 5: Renewable Energy in the Transportation and Power SectorsŽ

    U.S. Energy Information Administration (EIA) Indexed Site

    5: "Renewable Energy in the Transportation and Power Sectors" Mr. Michael Schaal: Well, let's get started and we'll have people come in as we move along. Welcome to the session which addresses the topic of renewable energy and the transportation and power sectors, a topic that is very much on the minds of the public at large, policymakers who are pondering the cost benefits and preferred outcomes of a variety of current and potential future laws and regulations, and also researchers

  3. COAL & POWER SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COAL & POWER SYSTEMS STRATEGIC & MULTI-YEAR PROGRAM PLANS U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY GREENER, SOONER... THROUGH TECHNOLOGY INTRODUCTION .......... i-1 STRATEGIC PLAN ........ 1-1 PROGRAM PLANS Vision 21 .......................... 2-1 Central Power Systems ...... 3-1 Distributed Generation ..... 4-1 Fuels ................................ 5-1 Carbon Sequestration ....... 6-1 Advanced Research ........... 7-1 TABLE OF CONTENTS STRATEGIC & MULTI-YEAR PROGRAM

  4. NSTX Electrical Power Systems

    SciTech Connect (OSTI)

    A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

    1999-12-16

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems.

  5. Symbiotically integrated organic recycling/renewable energy systems

    SciTech Connect (OSTI)

    Hamburg, R.A.

    1983-06-01

    Two operating systems designed for the integrated recycling of organic materials and production of renewable energy are described. Both systems include the Chinese design, water-pressure biogas digesters, a solar greenhouse and algae/aquatic plant ponds, all in passive symbiotic relationships with a minimum of high technology sophistication. A discussion of fish ponds and fuel alcohol production is also included since they offer many possibilities for expanded integration.

  6. Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces. The demonstration was one of eight

  7. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  8. PPC Renewables | Open Energy Information

    Open Energy Info (EERE)

    PPC Renewables Jump to: navigation, search Name: PPC Renewables Place: Greece Sector: Renewable Energy Product: The renewables division of Public Power Corp. of Greece (PPC)....

  9. FEMP Offers Training on Federal On-Site Renewable Power Purchase Agreements

    Broader source: Energy.gov [DOE]

    This refreshed eTraining core course provides federal energy and facility managers and contracting officers with up-to-date knowledge and best practices for developing an on-site renewable power purchase agreement (PPA) on a federal site and includes current definitions, references, and guidance to help launch or accelerate a PPA project.

  10. Live Webinar on EEREs FY15 Budget for Renewable Power

    Broader source: Energy.gov [DOE]

    On April 1, 2014, the Office of Energy Efficiency & Renewable Energys (EERE) Wind and Water Power Technologies Office will present its FY15 budget. Deputy Assistant Secretary Steve Chalk will present the EERE overview and Program Director Jose Zayas will discuss details of the Programs FY15 budget request.

  11. Live Webinar on EERE’s FY15 Budget for Renewable Power

    Broader source: Energy.gov [DOE]

    On April 1, 2014, the Office of Energy Efficiency & Renewable Energy’s (EERE) Wind and Water Power Technologies Office will present its FY15 budget. Deputy Assistant Secretary Steve Chalk will present the EERE overview and Program Director Jose Zayas will discuss details of the Program’s FY15 budget request.

  12. National Renewable Energy Laboratory Report Identifies Research Needed to Address Power Market Design Challenges

    Broader source: Energy.gov [DOE]

    A new report by DOE's National Renewable Energy Laboratory identifies research opportunities to improve the ways in which wholesale electricity markets are designed, with a focus on how the characteristics of variable generation from wind and solar power can affect those markets.

  13. Tss4U BV formerly Holecsol R S Renewable Energy Systems and Shell...

    Open Energy Info (EERE)

    Tss4U BV formerly Holecsol R S Renewable Energy Systems and Shell Solar Energy Jump to: navigation, search Name: Tss4U BV (formerly Holecsol, R&S Renewable Energy Systems and Shell...

  14. Proton driver power supply system

    SciTech Connect (OSTI)

    C. Jach and D. Wolff

    2002-06-03

    This paper describes magnet power supply system for a proposed Proton Driver at Fermilab. The magnet power supply system consists of resonant dipole/quadrupole power supply system, quadrupole tracking, dipole correction (horizontal and vertical) and sextupole power supply systems. This paper also describes preliminary design of the power distribution system supplying 13.8 kV power to all proton Driver electrical systems.

  15. Flexibility in 21st Century Power Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    Flexibility of operation--the ability of a power system to respond to change in demand and supply--is a characteristic of all power systems. Flexibility is especially prized in twenty-first century power systems, with higher levels of grid-connected variable renewable energy (primarily, wind and solar). Sources of flexibility exist--and can be enhanced--across all of the physical and institutional elements of the power system, including system operations and markets, demand side resources and storage; generation; and transmission networks. Accessing flexibility requires significant planning to optimize investments and ensure that both short- and long-time power system requirements are met.

  16. Advancing System Flexibility for High Penetration Renewable Integratio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    penetrations of variable renewable electricity. China is actively contributing to this body of experience given the rapid growth in renewable electricity deployment there, while...

  17. Hybrid robust predictive optimization method of power system dispatch

    DOE Patents [OSTI]

    Chandra, Ramu Sharat; Liu, Yan; Bose, Sumit; de Bedout, Juan Manuel

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  18. Power line detection system

    DOE Patents [OSTI]

    Latorre, Victor R.; Watwood, Donald B.

    1994-01-01

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  19. Power line detection system

    DOE Patents [OSTI]

    Latorre, V.R.; Watwood, D.B.

    1994-09-27

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  20. TidGen Power System Commercialization Project

    SciTech Connect (OSTI)

    Sauer, Christopher R.; McEntee, Jarlath

    2013-12-30

    ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric

  1. National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

  2. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Final Report

    SciTech Connect (OSTI)

    Key, Thomas S; Hadley, Stanton W; Deb, Rajat

    2010-02-01

    Electricity consumption in the Southeastern US, including Florida, is approximately 32% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. We found that significant wind energy transfers, at the level of 30-60 GW, are expected to be economic in case of federal RPC or CO2 policy. Development of wind resources will depend not only on the available transmission capacity and required balancing resources, but also on electricity supply and demand factors.

  3. Wireless power transfer system

    DOE Patents [OSTI]

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  4. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  5. Pathways to Decarbonization. Natural Gas and Renewable Energy. Lessons Learned from Energy System Stakeholders

    SciTech Connect (OSTI)

    Pless, Jacquelyn; Arent, Douglas J.; Logan, Jeffrey; Cochran, Jaquelin; Zinaman, Owen; Stark, Camila

    2015-04-30

    Ensuring the resilience, reliability, flexibility, and affordability of the U.S. electric grid is increasingly important as the country addresses climate change and an aging infrastructure. State and federal policy and actions by industry, non-profits, and others create a dynamic framework for achieving these goals. Three principle low-carbon generation technologies have formed the basis for multiple scenarios leading toward a low-carbon, resilient, and affordable power system. While there is no “silver bullet,” one avenue identified by key stakeholders is the opportunity to invest in natural gas (NG) and renewable resources, both of which offer abundant domestic resource bases and contribute to energy independence, carbon mitigation, and economic growth. NG and renewable electricity (RE) have traditionally competed for market share in the power sector, but there is a growing experience base and awareness for their synergistic use (Cochran et al. 2014). Building upon these observations and previous work, the Joint Institute for Strategic Energy Analysis (JISEA), in collaboration with the Center for the New Energy Economy and the Gas Technology Institute, convened a series of workshops in 2014 to explore NG and RE synergies in the U.S. power sector. This report captures key insights from the workshop series, Synergies of Natural Gas and Renewable Energy: 360 Degrees of Opportunity, as well as supporting economic valuation analyses conducted by JISEA researchers that quantify the value proposition of investing in NG and RE together as complements.

  6. High power connection system

    DOE Patents [OSTI]

    Schaefer, Christopher E.; Beer, Robert C.; McCall, Mark D.

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  7. National Renewable Energy Laboratory's Energy Systems Integration Facility Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A megawatt-scale systems integration R&D facility. Unique Capabilites Hardware-in-the-Loop at Megawatt-scale Power Megawatt-scale power-in-the-loop allows researchers and manufacturers to conduct integration tests at full power and actual load levels in real-time simulation and evaluate component and system performance before going to market. High Performance Computing Data Center (HPCDC) Petascale computing at the HPCDC enables unprecedented large-scale modeling and simulation of material

  8. space exploration radioisotope power systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    space exploration radioisotope power systems - Sandia Energy Energy Search Icon Sandia ... SunShot Grand Challenge: Regional Test Centers space exploration radioisotope power ...

  9. Power System Dispatcher (Technical Writer)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations, J4900 Operations Reliability and...

  10. Integrating Variable Renewable Energy in Electric Power Markers: Best Practices from International Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience Jaquelin Cochran, Lori Bird, Jenny Heeter, and Douglas J. Arent NREL/TP-6A00-53732 April 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the

  11. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  12. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis [Burnt Hills, NY; Anderson, Todd Alan [Niskayuna, NY

    2008-02-19

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  13. Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Jin, Chunlian; Nguyen, Tony B.; Elizondo, Marcelo A.; Viswanathan, Vilayanur V.; Guo, Xinxin; Tuffner, Francis K.

    2010-04-01

    Wind production, which has expanded rapidly in recent years, could be an important element in the future efficient management of the electric power system; however, wind energy generation is uncontrollable and intermittent in nature. Thus, while wind power represents a significant opportunity to the Bonneville Power Administration (BPA), integrating high levels of wind resources into the power system will bring great challenges to generation scheduling and in the provision of ancillary services. This report addresses several key questions in the broader discussion on the integration of renewable energy resources in the Pacific Northwest power grid. More specifically, it addresses the following questions: a) how much total reserve or balancing requirements are necessary to accommodate the simulated expansion of intermittent renewable energy resources during the 2019 time horizon, and b) what are the most cost effective technological solutions for meeting load balancing requirements in the Northwest Power Pool (NWPP).

  14. Renewable Electricity-to-Grid Integration | Energy Systems Integration |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative transportation fuels All renewable & alternative fuels data reports Analysis & Projections Major Topics Most popular Alternative Fuels Capacity and generation Consumption Environment Industry Characteristics Prices Production Projections Recurring Renewable energy type All reports Browse by Tag Alphabetical Frequency Tag Cloud ‹ See all Renewable Reports

  15. Power Systems Development Facility

    SciTech Connect (OSTI)

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  16. Solar power system

    SciTech Connect (OSTI)

    Mcgrew, S.P.

    1980-05-27

    A system for generating electrical power from sunlight, comprises a focussing diffraction grating or other focussing, spectrally dispersive means and a photocell array. The diffraction grating focuses sunlight into a spectrally dispersed band. The photocell array is composed of cells with different spectral sensitivities, located in positions in the dispersed band corresponding to the cell spectral sensitivities so that the net conversion efficiency of sunlight to electricity exceeds the conversion efficiency attainable with nondispersive collectors and single material photocells. Alternate embodiments of the invention provide sun tracking means, reflective or transmissive diffraction gratings, flat or curved diffraction grating surfaces , on- or off-axis focus, and optical coatings on the photocell surfaces.

  17. Energy storage for hybrid remote power systems

    SciTech Connect (OSTI)

    Isherwood, W., LLNL

    1998-03-01

    Energy storage can be a cost-effective component of hybrid remote power systems. Storage serves the special role of taking advantage of intermittent renewable power sources. Traditionally this role has been played by lead-acid batteries, which have high life-cycle costs and pose special disposal problems. Hydrogen or zinc-air storage technologies can reduce life-cycle costs and environmental impacts. Using projected data for advanced energy storage technologies, LLNL ran an optimization for a hypothetical Arctic community with a reasonable wind resource (average wind speed 8 m/s). These simulations showed the life-cycle annualized cost of the total energy system (electric plus space heating) might be reduced by nearly 40% simply by adding wind power to the diesel system. An additional 20 to 40% of the wind-diesel cost might be saved by adding hydrogen storage or zinc-air fuel cells to the system. Hydrogen produced by electrolysis of water using intermittent, renewable power provides inexpensive long-term energy storage. Conversion back to electricity with fuel cells can be accomplished with available technology. The advantages of a hydrogen electrolysis/fuel cell system include low life-cycle costs for long term storage, no emissions of concern, quiet operation, high reliability with low maintenance, and flexibility to use hydrogen as a direct fuel (heating, transportation). Disadvantages include high capital costs, relatively low electrical turn-around efficiency, and lack of operating experience in utility settings. Zinc-air fuel cells can lower capital and life-cycle costs compared to hydrogen, with most of the same advantages. Like hydrogen systems, zinc-air technology promises a closed system for long-term storage of energy from intermittent sources. The turn around efficiency is expected to exceed 60%, while use of waste heat can potentially increase overall energy efficiency to over 80%.

  18. Development of a Renewable Hydrogen Energy Station | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Station Fuel Cell Power Plants Renewable and Waste Fuels Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011

  19. Flex power perspectives of indirect power system control through...

    Open Energy Info (EERE)

    Flex power perspectives of indirect power system control through dynamic power price (Smart Grid Project) Jump to: navigation, search Project Name Flex power perspectives of...

  20. Energy Efficiency & Renewable Energy Bond Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Heat Solar Photovoltaics Wind (All) Biomass Combined Heat & Power Fuel Cells using Non-Renewable Fuels Daylighting Lighting Energy Mgmt. SystemsBuilding Controls Caulking...

  1. Power Electronics Block Set

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The software consists of code that will allow rapid prototyping of advanced power electronics for use in renewable energy systems.

  2. Main Injector power distribution system

    SciTech Connect (OSTI)

    Cezary Jach and Daniel Wolff

    2002-06-03

    The paper describes a new power distribution system for Fermilab's Main Injector. The system provides 13.8 kV power to Main Injector accelerator (accelerator and conventional loads) and is capable of providing power to the rest of the laboratory (backfeed system). Design criteria, and features including simulation results are given.

  3. Solar thermal power system

    SciTech Connect (OSTI)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  4. Renewable Energy, Photovoltaic Systems Near Airfields. Electromagnetic Interference

    SciTech Connect (OSTI)

    Deline, Chris; Dann, Geoff

    2015-04-01

    Recent increases in photovoltaic (PV) systems on Department of the Navy (DON) land and potential siting near airfields prompted Commander, Naval Installations Command to fund the Naval Facilities Engineering Command to evaluate the impact of electromagnetic interference (EMI) from PV systems on airfield electronic equipment. Naval Facilities Engineering and Expeditionary Warfare Center tasked Department of Energy National Renewable Energy laboratory (NREL) to conduct the assessment. PV systems often include high-speed switching semiconductor circuits to convert the voltage produced by the PV arrays to the voltage needed by the end user. Switching circuits inherently produce electromagnetic radiation at harmonics of the switching frequency. In this report, existing literature is summarized and tests to measure emissions and mitigation methods are discussed. The literature shows that the emissions from typical PV systems are low strength and unlikely to cause interference to most airfield electronic systems. With diligent procurement and siting of PV systems, including specifications for FCC Part 15 Class A compliant equipment and a 250-foot setback from communication equipment, NREL anticipates little to no EMI impact on nearby communications or telemetry equipment.

  5. Impacts of Western Area Power Administration`s power marketing alternatives on utility demand-side management and conservation and renewable energy programs

    SciTech Connect (OSTI)

    Cavallo, J.D.; Germer, M.F.; Tompkins, M.M.

    1995-03-01

    The Western Area Power Administration (Western) requires all of its long-term firm power customers to implement programs that promote the conservation of electric energy or facilitate the use of renewable energy resources. Western has also proposed that all customers develop integrated resource plans that include cost-effective demand-side management programs. As part of the preparation of Western`s Electric Power Marketing Environmental Impact Statement, Argonne National Laboratory (ANL) developed estimates of the reductions in energy demand resulting from Western`s conservation and renewable energy activities in its Salt Lake City Area Office. ANL has also estimated the energy-demand reductions from cost-effective, demand-side management programs that could be included in the integrated resource plans of the customers served by Western`s Salt Lake City Area Office. The results of this study have been used to adjust the expected hourly demand for Western`s major systems in the Salt Lake City Area. The expected hourly demand served as the basis for capacity expansion plans develops with ANL`s Production and Capacity Expansion (PACE) model.

  6. Net-Zero Energy Buildings: A Classification System Based on Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options Shanti Pless and Paul Torcellini Technical Report NRELTP-550-44586 June 2010 Technical ...

  7. Local Option- Property Tax Exemption for Renewable Energy Systems

    Broader source: Energy.gov [DOE]

    Beginning in October 2013, a municipality may also adopt an ordinance to exempt commercial or industrial Class I renewable resources*, certain hydropower facilities**, or solar thermal or geother...

  8. United States Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",2274,2214,2229,2382,2405 "Hydro Conventional",77821,77885,77930,78518,78825 "Solar",411,502,536,619,941 "Wind",11329,16515,24651,34296,39135 "Wood/Wood Waste",6372,6704,6864,6939,7037 "MSW/Landfill Gas",3166,3536,3644,3645,3690

  9. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET

  10. Quantifiably secure power grid operation, management, and evolution : a study of uncertainties affecting the grid integration of renewables.

    SciTech Connect (OSTI)

    Gray, Genetha Anne; Watson, Jean-Paul; Silva Monroy, Cesar Augusto; Gramacy, Robert B.

    2013-09-01

    This report summarizes findings and results of the Quantifiably Secure Power Grid Operation, Management, and Evolution LDRD. The focus of the LDRD was to develop decisionsupport technologies to enable rational and quantifiable risk management for two key grid operational timescales: scheduling (day-ahead) and planning (month-to-year-ahead). Risk or resiliency metrics are foundational in this effort. The 2003 Northeast Blackout investigative report stressed the criticality of enforceable metrics for system resiliency - the grid's ability to satisfy demands subject to perturbation. However, we neither have well-defined risk metrics for addressing the pervasive uncertainties in a renewable energy era, nor decision-support tools for their enforcement, which severely impacts efforts to rationally improve grid security. For day-ahead unit commitment, decision-support tools must account for topological security constraints, loss-of-load (economic) costs, and supply and demand variability - especially given high renewables penetration. For long-term planning, transmission and generation expansion must ensure realized demand is satisfied for various projected technological, climate, and growth scenarios. The decision-support tools investigated in this project paid particular attention to tailoriented risk metrics for explicitly addressing high-consequence events. Historically, decisionsupport tools for the grid consider expected cost minimization, largely ignoring risk and instead penalizing loss-of-load through artificial parameters. The technical focus of this work was the development of scalable solvers for enforcing risk metrics. Advanced stochastic programming solvers were developed to address generation and transmission expansion and unit commitment, minimizing cost subject to pre-specified risk thresholds. Particular attention was paid to renewables where security critically depends on production and demand prediction accuracy. To address this concern, powerful

  11. Renewable Hawaii Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Renewable Hawaii Inc Place: Hawaii Sector: Renewable Energy Product: Renewables subsidiary of Hawaii Power Company. References: Renewable...

  12. Power Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems; steam, water, fuel, and environmental monitoring systems; alternative energy systems; reliability, availability, and maintainability assessments; and associated...

  13. Switching power pulse system

    DOE Patents [OSTI]

    Aaland, K.

    1983-08-09

    A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

  14. Wind to Power Systems | Open Energy Information

    Open Energy Info (EERE)

    Power Systems Jump to: navigation, search Name: Wind to Power Systems Place: Madrid, Spain Zip: 28108 Sector: Wind energy Product: Wind to Power Systems designs, supplies and...

  15. Power Systems of the Future: A 21st Century Power Partnership Thought Leadership Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AC36-08GO28308 Technical Report NREL/TP-6A20-62611 February 2015 Power Systems of the Future A 21 st Century Power Partnership Thought Leadership Report Owen Zinaman, Mackay Miller, Ali Adil, Douglas Arent, Jaquelin Cochran, and Ravi Vora National Renewable Energy Laboratory Sonia Aggarwal Energy Innovation: Policy and Technology LLC Minnesh Bipath South Africa National Energy Development Institute Carl Linvill Regulatory Assistance Project Ari David Columbia University Business School Richard

  16. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Cooling Systems for Low-Temperature Geothermal Power Production Andrea Ashwood and Desikan Bharathan Technical Report NREL/TP-5500-48765 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Hybrid Cooling Systems for

  17. Switching power pulse system

    DOE Patents [OSTI]

    Aaland, Kristian

    1983-01-01

    A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

  18. Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Kari Burman, Dan Olis, Vahan Gevorgian, Adam Warren, and Robert Butt National Renewable Energy Laboratory Peter Lilienthal and John Glassmire HOMER Energy LLC Technical Report NREL/TP-7A20-51294 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No.

  19. Energy Storage for Variable Renewable Energy Resource Integration - A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Jin, Chunlian; Balducci, Patrick J.; Elizondo, Marcelo A.; Guo, Xinxin; Nguyen, Tony B.; Tuffner, Francis K.; Viswanathan, Vilayanur V.

    2011-03-20

    This paper addresses the following key questions in the discussion on the integration of renewable energy resources in the Pacific Northwest power grid: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated. This analysis was performed with collaboration by the Bonneville Power Administration and funded by the Energy Storage Systems Program of the U.S. Department of Energy.

  20. Utilizing Load Response for Wind and Solar Integration and Power System Reliability

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.

    2010-07-01

    Responsive load is still the most underutilized reliability resource in North America. This paper examines the characteristics of concern to the power system, the renewables, and to the loads.

  1. Wind Turbine Generator System Power Performance Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2011-05-01

    Report on the results of the power performance test that the National Renewable Energy Laboratory (NREL) conducted on Entegrity Wind System Inc.'s EW50 small wind turbine.

  2. power-take-off system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power-take-off system - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  3. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    SciTech Connect (OSTI)

    Mann, M.K.; Spath, P.L.; Kadam, K.

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  4. Wireless power transfer test system

    DOE Patents [OSTI]

    Gilchrist, Aaron; Wu, Hunter; Sealy, Kylee D.; Israelsen, Paul D.

    2015-09-22

    A testing system for wireless power transfer systems, including a stationary plate, a rotating plate, and a driver to rotate the rotating plate with respect to the stationary plate.

  5. Hawaii Renewable Hydrogen Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Program State & Regional Initiatives Webinar 14 October 2009 Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute Chenoa Farnsworth Partner Kolohala Holdings, LLP Overview * Hawaii's Energy Situation * Mitch Ewan * Hawaii Power Park Project * Mitch Ewan * The Renewables-to-Hydrogen Fund * Chenoa Farnsworth Hawaii - Most Petroleum Dependent State Petroleum dependence for electricity - top six states Highest Electricity Prices in U.S. Hawaii and US

  6. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy D. Palchak and P. Denholm Technical Report NREL/TP-6A20-62275 July 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable

  7. Transforming Power Systems; 21st Century Power Partnership

    SciTech Connect (OSTI)

    2015-05-20

    The 21st Century Power Partnership - a multilateral effort of the Clean Energy Ministerial - serves as a platform for public-private collaboration to advance integrated solutions for the large-scale deployment of renewable energy in combination with deep energy ef?ciency and smart grid solutions.

  8. NREL Eastern Renewable Generation Integration Study Redefines What's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Possible for Renewables (Text Version) | Energy Systems Integration | NREL Eastern Renewable Generation Integration Study Redefines What's Possible for Renewables (Text Version) This is a text version of the video "Eastern Renewable Generation Integration Study: Redefining What's Possible for Renewable Energy." We started this study with a question. Can you take one of the largest power systems in the world-one that was designed to work with fossil fuels-and make it work with

  9. Reactive Power Compensating System.

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  10. Reactive power compensating system

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  11. Promethean Power Systems | Open Energy Information

    Open Energy Info (EERE)

    Power Systems Jump to: navigation, search Name: Promethean Power Systems Place: Cambridge, Massachusetts Zip: 2138 Product: US-based developer of a solar-powered...

  12. Study Shows Active Power Controls from Wind May Increase Revenues and Improve System Reliability

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE Wind Program and the National Renewable Energy Laboratory recently published a study conducted in collaboration with the Electric Power Research Institute and the University of Colorado. Researchers examined how the contribution of wind power providing active power controls could benefit the total power system economics, increase revenue streams, and improve the reliability and security of the nation’s power system, all while having negligible impacts on the turbine and its components.

  13. PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power Projects in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Cory, Karlynn; James, Ted

    2009-03-11

    Renewable power technologies are inherently capital-intensive, often (but not always) with relatively high construction costs and low operating costs. For this reason, renewable power technologies are typically more sensitive to the availability and cost of financing than are natural gas power plants, for example. In the United States, the bulk of renewable project finance in recent years has been provided by 'tax equity investors' (typically large investment banks and insurance companies) who partner with project developers through highly specialized financing structures (Bolinger, 2009; Cory et al., 2008; Harper et al., 2007). These structures have been designed primarily to capitalize on federal support for renewable power technologies, which has historically come in the form of tax credits and accelerated depreciation deductions. The number of tax equity investors active in the renewable power market has declined precipitously, however, as a result of the financial crisis that began unfolding across the globe in the summer of 2008. The resulting shortage and increased cost of project financing has, in turn, slowed the development of new renewable power projects, leading to layoffs throughout the entire industry supply chain. In recognition of the fact that tax-based policy incentives are not particularly effective when tax burdens are shrinking or non-existent, Congress included several provisions in 'The American Recovery and Reinvestment Act of 2009' (ARRA 2009) designed to make federal incentives for renewable power technologies more useful. Among these provisions is one that allows projects eligible to receive the production tax credit ('the PTC', see Text Box 1) to instead elect the investment tax credit ('the ITC', see Text Box 2). Another provision enables ITC-eligible projects (which now include most PTC-eligible renewable power projects) to instead receive--for a limited time only--a cash grant of equivalent value. These two provisions (among others

  14. Federal Loan Guarantees for Projects that Manufacture Commercial Technology Renewable Energy Systems and Components: August 10, 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    Federal Loan Guarantees for Projects that Manufacture Commercial Technology Renewable Energy Systems and Components: August 10, 2010

  15. NREL: Hydrogen and Fuel Cells Research - Renewable Electrolysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Electrolysis Photo of wind turbines. Wind turbines can be used to produce hydrogen through a process called renewable electrolysis. NREL's renewable electrolysis research focuses on designing, developing, and testing advanced experimental and analytical methods to improve electrolyzer stack and system efficiency. Related activities include: Characterizing electrolyzer performance under variable-input power conditions Designing and developing shared power-electronics packages and

  16. Advancing System Flexibility for High Penetration Renewable Integration

    SciTech Connect (OSTI)

    Milligan, Michael; Frew, Bethany; Zhou, Ella; Arent, Douglas J.

    2015-10-01

    This report summarizes some of the issues discussed during the engagement on power system flexibility. By design, the focus is on flexibility options used in the United States. Exploration of whether and how U.S. experiences can inform Chinese energy planning will be part of the continuing project, and will benefit from the knowledge base provided by this report. We believe the initial stage of collaboration represented in this report has successfully started a process of mutual understanding, helping Chinese researchers to begin evaluating how lessons learned in other countries might translate to China's unique geographic, economic, social, and political contexts.

  17. Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan

    SciTech Connect (OSTI)

    Yu-Ming Kuo; Yasuhiro Fukushima

    2009-03-15

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

  18. Hybrid2 - The hybrid power system simulation model

    SciTech Connect (OSTI)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van; Manwell, J.F.

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  19. NREL Power Systems Engineering Researchers Publish 33 Articles in Last Year

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Energy Systems Integration | NREL Power Systems Engineering Researchers Publish 33 Articles in Last Year February 18, 2016 NREL's Power Systems Engineering Center published 33 journal and magazine articles in the past year highlighting recent research in integrating renewable energy into power systems. NREL would like to acknowledge the U.S. Department of Energy for the funding support that made this research possible. Integrated Devices and Systems Research Lab Tests: Verifying that Smart

  20. Wind and Water Power Modeling and Simulation at the NWTC (Fact Sheet), NREL(National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Water Power Modeling and Simulation at the NWTC Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have developed a variety of computer modeling and simulation software tools to support the wind and water power industries and research communities with state-of-the-art design and analysis capabilities. Computer modeling and simulations allow designers to analyze many factors affecting wind turbines and plants, at a fraction of the

  1. Cross-State Renewable Portfolio Standard Compliance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-State Renewable Portfolio Standard Compliance Cross-State Renewable Portfolio Standard Compliance This analysis provides first-ever assessment of the extent to which renewable energy is crossing state borders to be used to meet renewable portfolio standard (RPS) requirements. Two primary methods for data collection are Renewable Energy Certificate (REC) tracking and power flow estimates. Data from regional REC tracking systems, state agencies, and utility compliance reports help understand

  2. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    SciTech Connect (OSTI)

    Engel, R. A.' Zoellick, J J.

    2007-07-31

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribe’s own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energy’s Tribal Program under First Steps grant award #DE-FG36-05GO15166. The program’s centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  3. Fuel Cell Power Model for CHHP System Economics and Performance Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Model for CHHP System Economics and Performance Analysis Fuel Cell Power Model for CHHP System Economics and Performance Analysis Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_steward.pdf (818.96 KB) More Documents & Publications Biogas Opportunities Roadmap Progress Report Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model Project Reports for Tulalip Tribes - 2003 Project

  4. Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014 August 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's

  5. Matching renewable energy systems to village-level energy needs

    SciTech Connect (OSTI)

    Ashworth, J.H.; Neuendorffer, J.W.

    1980-06-01

    This report provides a five step process for matching alternative renewable energy technologies with energy needs in rural villages of developing countries. Analytic tools are given for each of the five steps as well as information that can be expected. Twelve characterization criteria are developed to assist in the matching process. Three of these criteria, called discrimination criteria, are used for preliminary screening of technology possibilities for each need. The other criteria address site-specific temporal, climatic, social, cultural, and environmental characteristics of the energy need, technology, and cost considerations. To illustrate the matching process, seven basic human needs for energy are matched with seven potential renewable energy technologies. The final portion of the paper discusses the advantages of such a matching process and the resources required to initiate such an effort within a development project. Specific recommendations are given for field-testing this process and actions that could be taken immediately in basic research and development, applied research and technology modification, demonstrations, and commercialization to assist in the future diffusion of renewable energy technologies to rural areas of developing countries.

  6. Power Systems Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Knowledge of AC Power, power conversion, DC circuits, motors, power technology, and industrial control systems. * Uses independent judgment in applying standard engineering...

  7. Advancing System Flexibility for High Penetration Renewable Integration (Chinese Translation)

    SciTech Connect (OSTI)

    Milligan, Michael; Frew, Bethany; Zhou, Ella; Arent, Douglas J.

    2015-10-01

    This is a Chinese translation of NREL/TP-6A20-64864. This report summarizes some of the issues discussed during the engagement on power system flexibility. By design, the focus is on flexibility options used in the United States. Exploration of whether and how U.S. experiences can inform Chinese energy planning will be part of the continuing project, and will benefit from the knowledge base provided by this report. We believe the initial stage of collaboration represented in this report has successfully started a process of mutual understanding, helping Chinese researchers to begin evaluating how lessons learned in other countries might translate to China's unique geographic, economic, social, and political contexts.

  8. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  9. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  10. DOE Webinar: EERE'S Fiscal Year 2016 Budget Proposal- Renewable Power Sector

    Broader source: Energy.gov [DOE]

    The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) is hosting a webinar series featuring its Deputy Assistant Secretaries and the Technology Office Directors as they...

  11. DOE Webinar: EERE's Fiscal Year 2016 Budget Proposal- Renewable Power Sector

    Broader source: Energy.gov [DOE]

    The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) is hosting a webinar series featuring its Deputy Assistant Secretaries and the Technology Office Directors as they...

  12. NREL Power Systems Engineering Researchers Publish 33 Articles in Last Year

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Grid Modernization | NREL NREL Power Systems Engineering Researchers Publish 33 Articles in Last Year February 18, 2016 NREL's Power Systems Engineering Center published 33 journal and magazine articles in the past year highlighting recent research in integrating renewable energy into power systems. NREL would like to acknowledge the U.S. Department of Energy for the funding support that made this research possible. Integrated Devices and Systems Research Lab Tests: Verifying that Smart

  13. Quantifying the Level of Cross-State Renewable Energy Transactions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Two primary methods for data collection are Renewable Energy Certificate (REC) tracking and power flow estimates. Data from regional REC tracking systems, state agencies, and ...

  14. Solar-powered cooling system

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  15. Remote power systems with advanced storage technologies for Alaskan villages

    SciTech Connect (OSTI)

    Isherwood, W.; Smith, R.; Aceves, S.; Berry, G.; Clark, W.; Johnson, R.; Das, D.; Goering, D.; Seifert, R.

    1997-12-01

    Remote Alaskan communities pay economic and environmental penalties for electricity, because they must import diesel as their primary fuel for electric power production, paying heavy transportation costs and potentially causing environmental damage with empty drums, leakage, and spills. For these reasons, remote villages offer a viable niche market where sustainable energy systems based on renewable resources and advanced energy storage technologies can compete favorably on purely economic grounds, while providing environmental benefits. These villages can also serve as a robust proving ground for systematic analysis, study, improvement, and optimization of sustainable energy systems with advanced technologies. This paper presents an analytical optimization of a remote power system for a hypothetical Alaskan village. The analysis considers the potential of generating renewable energy (e.g., wind and solar), along with the possibility of using energy storage to take full advantage of the intermittent renewable sources available to these villages. Storage in the form of either compressed hydrogen or zinc pellets can then provide electricity from hydrogen or zinc-air fuel cells when renewable sources are unavailable.The analytical results show a great potential to reduce fossil fuel consumption and costs basing renewable energy combined with advanced energy storage devices. The best solution for our hypothetical village appears to be a hybrid energy system, which can reduce consumption of diesel fuel by over 50% with annualized cost savings by over 30% by adding wind turbines to the existing diesel generators. When energy storage devices are added, diesel fuel consumption and costs can be reduced substantially more. With optimized energy storage, use of the diesel generatorss can be reduced to almost zero, with the existing equipment only maintained for added reliability. However about one quarter of the original diesel consumption is still used for heating purposes

  16. Renewable Power Options for Electricity Generation on Kaua’i: Economics and Performance Modeling

    Broader source: Energy.gov [DOE]

    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii.

  17. ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS

    SciTech Connect (OSTI)

    CHRISTOPHER J. ZYGARLICKE; DONALD P. MCCOLLOR; JOHN P. KAY; MICHAEL L. SWANSON

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: ? Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. ? Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. ? Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. ? Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. ? Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. ? Evaluate corrosion for alloys being used in supercritical combustion systems.

  18. InPower Systems | Open Energy Information

    Open Energy Info (EERE)

    Name: InPower Systems Place: Carbondale, Colorado Zip: 81623 Sector: Geothermal energy, Solar Product: InPower Systems designs, installs and maintains turn-key solar, solar...

  19. Husk Power Systems | Open Energy Information

    Open Energy Info (EERE)

    Power Systems Jump to: navigation, search Name: Husk Power Systems Place: Patna, Bihar, India Zip: 800023 Sector: Biomass Product: India-based developer of mini biomass plants....

  20. Sathian Sun Power Systems | Open Energy Information

    Open Energy Info (EERE)

    Sathian Sun Power Systems Jump to: navigation, search Name: Sathian Sun Power Systems Place: Salem, Andhra Pradesh, India Sector: Solar Product: Manufacturer of solar street lights...

  1. Monolithic Power Systems | Open Energy Information

    Open Energy Info (EERE)

    Power Systems Jump to: navigation, search Name: Monolithic Power Systems Place: San Jose, California Zip: 95120 Product: A California-based analog semiconductor company....

  2. Nuclear power reactor instrumentation systems handbook. Volume...

    Office of Scientific and Technical Information (OSTI)

    Nuclear power reactor instrumentation systems handbook. Volume 1 Citation Details In-Document Search Title: Nuclear power reactor instrumentation systems handbook. Volume 1 You ...

  3. 2014 Renewable Energy Data Book

    Broader source: Energy.gov [DOE]

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  4. 2014 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Beiter, Philipp

    2015-11-15

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  5. 2014 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Beiter, Philipp

    2015-11-01

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  6. Technical evaluation of two 6-kW mono-Si photovoltaic systems at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Dyk, E.E. van; Strand, T.; Hansen, R.

    1996-05-01

    This paper presents an analysis of performance data on the two 6-kW{sub ac} grid-connected photovoltaic systems at the National Renewable Energy Laboratory (NREL). The performance parameters analyzed include dc and ac power, aperture efficiency, energy, capacity factor and performance index which are compared to plane-of-array irradiance, ambient temperature, and back-of-module temperature as a function of time, either daily or monthly. Power ratings of the systems were also obtained for data corresponding to different test conditions. This study has shown, in addition to expected seasonal trends, that system monitoring is a valuable tool in assessing performance and detecting faulty equipment. In addition, methods applied for this study may be used to evaluate and compare systems employing different cell technologies.

  7. NREL: Energy Systems Integration - Power Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis, and techniques to increase utility understanding of transmission grid integration issues and confidence in the reliability of emerging renewable energy applications. ...

  8. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Storage, Energy Storage Systems, News, News & Events, Partnership, Renewable Energy, Research & Capabilities, Systems Analysis, Water Power Natural Energy ...

  9. Careers in Renewable Energy

    SciTech Connect (OSTI)

    Waggoner, T.

    2001-01-15

    This publication describes the job opportunities, technologies, and market for each of the major renewable energy fields (wind power, solar power, bioenergy, geothermal energy, and hydropower).

  10. Design and implementation of a marine animal alert system to support Marine Renewable Energy

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Fu, Tao; Ren, Huiying; Martinez, Jayson J.; Myers, Joshua R.; Matzner, Shari; Choi, Eric Y.; Copping, Andrea E.

    2013-08-08

    Power extracted from fast moving tidal currents has been identified as a potential commercial-scale source of renewable energy. Device developers and utilities are pursuing deployment of prototype tidal turbines to assess technology viability, site feasibility, and environmental interactions. Deployment of prototype turbines requires permits from a range of regulatory authorities. Ensuring the safety of marine animals, particularly those under protection of the Endangered Species Act of 1973 (ESA) and the Marine Mammal Protection Act of 1972 has emerged as a key regulatory challenge for initial MHK deployments. The greatest perceived risk to marine animals is from strike by the rotating blades of tidal turbines. Development of the marine mammal alert system (MAAS) was undertaken to support monitoring and mitigation requirements for tidal turbine deployments. The prototype system development focused on Southern Resident killer whales (SRKW), an endangered population of killer whales that frequents Puget Sound and is intermittently present in the part of the sound where deployment of prototype tidal turbines is being considered. Passive acoustics were selected as the primary means because of the vocal nature of these animals. The MAAS passive acoustic system consists of two-stage process involving the use of an energy detector and a spectrogram-based classifier to distinguish between SKRW’s calls and noise. A prototype consisting of two 2D symmetrical star arrays separated by 20 m center to center was built and evaluated in the waters of Sequim Bay using whale call playback.

  11. NREL's Water Power Software Makes a Splash (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open-source software provides essential modeling and simulation help in water power research and development. Researchers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center are continuing their work on the Wave Energy Converter SIMulator (WEC-Sim), a free, open-source software modeling tool being jointly developed by NREL and Sandia National Laboratories. WEC-Sim promises to help level the playing field in the wave energy converter (WEC) industry. WEC-Sim allows

  12. Impact of Transmission on Resource Adequacy in Systems with Wind and Solar Power: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2012-02-01

    Variable generation is on track to become a significant contributor to electric power systems worldwide. Thus, it is important to analyze the effect that renewables will have on the reliability of systems. In this paper we present a new tool being implemented at the National Renewable Energy Laboratory, which allows the inclusion of variable generation in the power system resource adequacy. The tool is used to quantify the potential contribution of transmission to reliability in highly interconnected systems and an example is provided using the Western Interconnection footprint.

  13. Ultra Efficient Combined Heat, Hydrogen, and Power System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Efficient Combined Heat, Hydrogen, and Power System DE-EE0003679 FuelCell Energy, Inc. 10/1/2010 - 9/30/2011 Pinakin Patel FuelCell Energy Inc. ppatel@fce.com 203-825-6072 U.S. DOE Industrial Distributed Energy Portfolio Review Meeting Washington, D.C. June 1-2, 2011 2 FCE Overview * Leading fuel cell developer for over 40 years - MCFC, SOFC, PAFC and PEM (up to 2.8 MW size products) - Over 700 million kWh of clean power produced world-wide (>50 installations) - Renewable fuels: over

  14. Optimal planning and design of a renewable energy based supply system for microgrids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hafez, Omar; Bhattacharya, Kankar

    2012-03-03

    This paper presents a technique for optimal planning and design of hybrid renewable energy systems for microgrid applications. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is used to determine the optimal size and type of distributed energy resources (DERs) and their operating schedules for a sample utility distribution system. Using the DER-CAM results, an evaluation is performed to evaluate the electrical performance of the distribution circuit if the DERs selected by the DER-CAM optimization analyses are incorporated. Results of analyses regarding the economic benefits of utilizing the optimal locations identified for the selected DER within the system are alsomore » presented. The actual Brookhaven National Laboratory (BNL) campus electrical network is used as an example to show the effectiveness of this approach. The results show that these technical and economic analyses of hybrid renewable energy systems are essential for the efficient utilization of renewable energy resources for microgird applications.« less

  15. Dynamic Impregnator Reactor System (Poster), NREL (National Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic Impregnator Reactor System Multifaceted system designed for complex feedstock impregnation and processing Integrated Biorefi nery Research Facility | NREL * Golden, ...

  16. Uninterruptible power supply cogeneration system

    SciTech Connect (OSTI)

    Gottfried, C.F.

    1987-08-11

    A power system is described for providing an uninterruptible power supply comprising: a first generator means for supplying energy to a primary load; a second generator means connected to an electrical utility, the first and second generator means being connected by a common shaft, the first generator means being electrically isolated from the electrical utility; prime mover means connected to the common shaft, the prime mover means for supplying mechanical energy to the shaft; and controller means interposed electrically between the second generator means and the secondary external load, the controller means causing the second generator means to become disconnected from the secondary load upon interruptions in the secondary load.

  17. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications Michael Ulsh National Renewable Energy Laboratory Douglas Wheeler DJW Technology Peter Protopappas Sentech Technical Report NREL/TP-5600-52125 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole

  18. Catalog of DC Appliances and Power Systems

    SciTech Connect (OSTI)

    Garbesi, Karina; Vossos, Vagelis; Shen, Hongxia

    2010-10-13

    This document catalogs the characteristics of current and potential future DC products and power systems.

  19. Effective Ancillary Services Market Designs on High Wind Power Penetration Systems: Preprint

    SciTech Connect (OSTI)

    Ela, E.; Kirby, B.; Navid, N.; Smith, J. C.

    2011-12-01

    This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power. Ancillary services markets have been developed in many of the restructured power system regions throughout the world. Ancillary services include the services that support the provision of energy to support power system reliability. The ancillary services markets are tied tightly to the design of the energy market and to the physics of the system and therefore careful consideration of power system economics and engineering must be considered in their design. This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power.

  20. Power system applications for PASC converter systems

    SciTech Connect (OSTI)

    Donnelly, M.K.; Johnson, R.M.

    1994-04-01

    This paper shows, using computer EMTP simulations, some preliminary results of applying pulse amplitude synthesis and control (PASC) technology to single-source level voltage converter system. The method can be applied to any single terminal pair source with appropriate modifications in power extraction interface and computer control program to match source and load impedance characteristics. The PASC realization as discussed here employs banks of transformers, one bank per phase, in which the primaries are connected in parallel through a switch matrix to the dc source. Two opposite polarity primaries per transformer are pulsed alternatively in time to produce an oscillatory sinusoidal output waveform. PASC conversion system capabilities to produce both leading and lagging power factor power output in single-phase and three-phase {Delta} or Y configurations are illustrated. EMTP simulations are used to demonstrate the converter capabilities. Also included are discussions regarding harmonics and potential control strategies to adapt the converter to an application or to minimize harmonics.

  1. El Paso Electric Company - Small System Renewable Energy Certificate

    Open Energy Info (EERE)

    energy certificates (RECs) from its New Mexico customers who install small photovoltaic (PV) systems and wind systems up to 10 kilowatts (kW) in capacity and medium systems...

  2. Small Hydropower Systems: Energy Efficiency and Renewable Energy Clearinghouse

    SciTech Connect (OSTI)

    Nachman-Hunt, N.

    2001-07-05

    This fact sheet introduces consumers to small hydropower systems, and includes information on how the systems work and how to assess a stream site for hydropower suitability.

  3. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  4. Future Power Systems 21 - The Smart Customer | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Power Systems 21 - The Smart Customer Future Power Systems 21 - The Smart Customer Future Power Systems 21 - The Smart Customer: From Future Power Systems (FPS) articles 18...

  5. Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2013-11-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power system at the site.

  6. 2008 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  7. 2011 Renewable Energy Data Book

    SciTech Connect (OSTI)

    R. Gelman

    2013-02-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  8. Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options

    SciTech Connect (OSTI)

    Pless, S.; Torcellini, P.

    2010-06-01

    A net-zero energy building (NZEB) is a residential or commercial building with greatly reduced energy needs. In such a building, efficiency gains have been made such that the balance of energy needs can be supplied with renewable energy technologies. Past work has developed a common NZEB definition system, consisting of four well-documented definitions, to improve the understanding of what net-zero energy means. For this paper, we created a classification system for NZEBs based on the renewable sources a building uses.

  9. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    SciTech Connect (OSTI)

    Wiser, Ryan; Barbose, Galen; Holt, Edward

    2010-10-01

    Among the available options for encouraging the increased deployment of renewable electricity, renewables portfolio standards (RPS) have become increasingly popular. The RPS is a relatively new policy mechanism, however, and experience with its use is only beginning to emerge. One key concern that has been voiced is whether RPS policies will offer adequate support to a wide range of renewable energy technologies and applications or whether, alternatively, RPS programs will favor a small number of the currently least-cost forms of renewable energy. This report documents the design of and early experience with state-level RPS programs in the United States that have been specifically tailored to encourage a wider diversity of renewable energy technologies, and solar energy in particular. As shown here, state-level RPS programs specifically designed to support solar have already proven to be an important, albeit somewhat modest, driver for solar energy deployment, and those impacts are projected to continue to build in the coming years. State experience in supporting solar energy with RPS programs is mixed, however, and full compliance with existing requirements has not been achieved. The comparative experiences described herein highlight the opportunities and challenges of applying an RPS to specifically support solar energy, as well as the importance of policy design details to ensuring that program goals are achieved.

  10. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Meintz, A.; Markel, T.; Burton, E.; Wang, L.; Gonder, J.; Brooker, A.

    2015-06-05

    Analysis has been performed on the Transportation Secure Data Center (TSDC) warehouse of collected GPS second-by-second driving profile data of vehicles in the Atlanta, Chicago, Fresno, Kansas City, Los Angeles, Sacramento, and San Francisco Consolidated Statistical Areas (CSAs) to understand in-motion wireless power transfer introduction scenarios. In this work it has been shown that electrification of 1% of road miles could reduce fuel use by 25% for Hybrid Electric Vehicles (HEVs) in these CSAs. This analysis of strategically located infrastructure offers a promising approach to reduced fuel consumption; however, even the most promising 1% of road miles determined by these seven analysis scenarios still represent an impressive 2,700 miles of roadway to electrify. Therefore to mitigate the infrastructure capital costs, integration of the grid-tied power electronics in the Wireless Power Transfer (WPT) system at the DC-link to photovoltaic and/or battery storage is suggested. The integration of these resources would allow for the hardware to provide additional revenue through grid services at times of low traffic volumes and conversely at time of high traffic volumes these resources could reduce the peak demand that the WPT system would otherwise add to the grid.

  11. Jadoo Power Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: US-based fuel cell developer, Jadoo Power Systems Inc, produces high energy density power products for the law enforcement, military and electronic news gathering...

  12. Renewable Energy Certificate (REC) Tracking Systems: Costs & Verification Issues (Presentation)

    SciTech Connect (OSTI)

    Heeter, J.

    2013-10-01

    This document provides information on REC tracking systems: how they are used in the voluntary REC market, a comparison of REC systems fees and information regarding how they treat environmental attributes.

  13. New Horizons Mission Powered by Space Radioisotope Power Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Horizons Mission Powered by Space Radioisotope Power Systems New Horizons Mission Powered by Space Radioisotope Power Systems January 30, 2008 - 6:47pm Addthis Artist's concept of the New Horizons spacecraft during its planned encounter with Pluto and its moon, Charon. The craft's miniature cameras, radio science experiment, ultraviolet and infrared spectrometers and space plasma experiments are run by the Department of Energy's Radioisotope Thermoelectric Generator

  14. Modeling Power Systems as Complex Adaptive Systems

    SciTech Connect (OSTI)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  15. Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines Task 2 Final Report T.L. Alleman and R.L. McCormick Milestone Report NREL/MP-540-38643 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Analysis of Coconut-

  16. Power system design | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system design Subscribe to RSS - Power system design The design of the systems that would convert fusion energy into heat to create steam that would generate electricity. PPPL ...

  17. Planning for Home Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to gain the inspector's approval if you or your installer follow the National Electrical Code (NEC); install pre-engineered, packaged systems; properly brief the inspector on your...

  18. Uninterruptible power supply (UPS) systems

    SciTech Connect (OSTI)

    1997-04-01

    Use of this purchase specification is not mandatory. User should review the document and determine if it meets the user`s purpose. This document contains a fill-in-the-blanks guide specification for the procurement of uninterruptible power supply (UPS) systems greater than 10 kVA, organized as follows: Parts 1 through 7--technical requirements; Appendix A--technical requirements to be included in the proposal; Appendix B--UPS system data sheets to be completed by each bidder (Seller) and submitted with the proposal; Appendix C--general guidelines giving the specifier parameters for selecting a UPS system; it should be read before preparing an actual specification, and is not attached to the specification; Attachment 1--sketches prepared by the purchaser (Owner); Attachment 2--sample title page.

  19. Microsoft PowerPoint - Quinault Indian Nation Biomass Renewable Energy Opportunities and Strategies [Read-Only]

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Renewable Energy Opportunities and Strategies Presented By: Quinault Indian Nation in Partnership with American Community Enrichment, 501c3 Helping Rural Communities Thrive! Quinault Indian Nation 2014 Comprehensive Biomass for Heat Project Strategy Development Project Overview * Identify and confirm Tribal energy needs * Comprehensive review of QIN biomass availability* * Develop a biomass energy vision statement, goals and objectives * Identify and assess viable biomass energy

  20. Renewable Energy Price-Stability Benefits in Utility Green Power Programs

    SciTech Connect (OSTI)

    Bird, L. A.; Cory, K. S.; Swezey, B. G.

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.