National Library of Energy BETA

Sample records for renewable power case

  1. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, Renewable ...

  2. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, ...

  3. Renewable Energy Powers Renewable Energy Lab, Employees

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Powers Renewable Energy Lab, Employees For more information contact: Mike Marsh (303) 275-4085 email: marshm@tcplink.nrel.gov Golden, Colo., July 9, 1997 -- The ...

  4. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect (OSTI)

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  5. Renewable Power Systems | Open Energy Information

    Open Energy Info (EERE)

    Renewable Power Systems Place: Bedford, England, United Kingdom Zip: MK42 9TW Sector: Renewable Energy Product: Bedford, UK based developer of renewable power systems. References:...

  6. Power marketing and renewable energy

    SciTech Connect (OSTI)

    Fang, J.M.

    1997-09-01

    Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

  7. Brookfield Renewable Power Corp formerly Brascan Power Corp ...

    Open Energy Info (EERE)

    Brookfield Renewable Power Corp formerly Brascan Power Corp Jump to: navigation, search Name: Brookfield Renewable Power Corp (formerly Brascan Power Corp) Place: Toronto, Ontario,...

  8. Clear Wind Renewable Power | Open Energy Information

    Open Energy Info (EERE)

    Wind Renewable Power Jump to: navigation, search Name: Clear Wind Renewable Power Place: Minneapolis, Minnesota Zip: 55416 Sector: Wind energy Product: Clear Wind focuses its...

  9. Renewable Energy Case Studies | Open Energy Information

    Open Energy Info (EERE)

    Case Studies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Case Studies AgencyCompany Organization: National Renewable Energy Laboratory Sector:...

  10. Renewable Power and Light | Open Energy Information

    Open Energy Info (EERE)

    Place: London, Greater London, United Kingdom Zip: W1 J5P2 Sector: Biofuels, Renewable Energy Product: Renewable Power and Light intend to become a power producer generating from...

  11. Renewable Power Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    Power Systems LLC Jump to: navigation, search Name: Renewable Power Systems, LLC Place: Averill Park, New York Zip: 12018 Sector: Solar Product: Albany, New York-based solar...

  12. China Datang Corporation Renewable Power Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Corporation Renewable Power Co Ltd Jump to: navigation, search Name: China Datang Corporation Renewable Power Co Ltd Place: Beijing Municipality, China Sector: Renewable Energy...

  13. NextLight Renewable Power LLC | Open Energy Information

    Open Energy Info (EERE)

    NextLight Renewable Power LLC Jump to: navigation, search Name: NextLight Renewable Power LLC Place: San Francisco, California Zip: 94111 Sector: Renewable Energy Product:...

  14. Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan

    SciTech Connect (OSTI)

    Yu-Ming Kuo; Yasuhiro Fukushima

    2009-03-15

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

  15. Idaho Power Develops Renewable Integration Tool for More Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Power Develops Renewable Integration Tool for More Cost Effective Use of Wind Power Idaho Power Develops Renewable Integration Tool for More Cost Effective Use of Wind Power ...

  16. Mainstream Renewable Power | Open Energy Information

    Open Energy Info (EERE)

    Name: Mainstream Renewable Power Place: Dublin, Ireland Zip: 18 Sector: Ocean, Solar, Wind energy Product: Developer of wind farms, solar, thermal and ocean stream projects....

  17. Model-Predictive Cascade Mitigation in Electric Power Systems With Storage and Renewables-Part II: Case-Study

    SciTech Connect (OSTI)

    Almassalkhi, MR; Hiskens, IA

    2015-01-01

    The novel cascade-mitigation scheme developed in Part I of this paper is implemented within a receding-horizon model predictive control (MPC) scheme with a linear controller model. This present paper illustrates the MPC strategy with a case-study that is based on the IEEE RTS-96 network, though with energy storage and renewable generation added. It is shown that the MPC strategy alleviates temperature overloads on transmission lines by rescheduling generation, energy storage, and other network elements, while taking into account ramp-rate limits and network limitations. Resilient performance is achieved despite the use of a simplified linear controller model. The MPC scheme is compared against a base-case that seeks to emulate human operator behavior.

  18. Renew Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Power Inc Place: Champaign, Illinois Product: Developing a direct formic acid fuel cell. References: Renew Power Inc1 This article is a stub. You can help OpenEI by...

  19. Renewable Power Generation JV Company | Open Energy Information

    Open Energy Info (EERE)

    JV Company Jump to: navigation, search Name: Renewable Power Generation JV Company Place: India Product: India-based JV to develop green power projects. References: Renewable Power...

  20. PowerIt Renewable Energy Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    PowerIt Renewable Energy Pvt Ltd Jump to: navigation, search Logo: PowerIt Renewable Energy Pvt Ltd Name: PowerIt Renewable Energy Pvt Ltd Address: Kalavath Cross Road,...

  1. Purchasing Renewable Power for Federal Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Renewable Power for Federal Facilities Purchasing Renewable Power for Federal Facilities Federal agencies can purchase renewable power or renewable energy certificates (RECs) from a utility or other organization to meet federal renewable energy requirements. Renewable power and RECs are good choices for facilities where on-site projects may be difficult or capital budgets are limited. There are three methods for purchasing renewable energy that is not generated on a federal site:

  2. Wind Power Renewables | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Renewables Place: Norfolk, United Kingdom Zip: NR29 5BG Sector: Wind energy Product: Wind project developer Coordinates: 36.846825, -76.285069 Show Map Loading...

  3. SeaPower Pacific subsidiary of Renewable Energy Holdings Plc...

    Open Energy Info (EERE)

    SeaPower Pacific subsidiary of Renewable Energy Holdings Plc Carnegie Corporation Ltd Jump to: navigation, search Name: SeaPower Pacific subsidiary of Renewable Energy Holdings Plc...

  4. Datang Sino Japan Chifeng Renewable Power Corp | Open Energy...

    Open Energy Info (EERE)

    Japan Chifeng Renewable Power Corp Jump to: navigation, search Name: Datang Sino-Japan (Chifeng) Renewable Power Corp Place: Inner Mongolia Autonomous Region, China Product:...

  5. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Environmental Management (EM)

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8,...

  6. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8, ...

  7. National Renewable Energy Laboratory Wind and Water Power Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open House National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open...

  8. EERE FY 2015 Budget Request Webinar -- Renewable Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Renewable Power EERE FY 2015 Budget Request Webinar -- Renewable Power EERE FY 2015 Budget Request Webinar, featuring Steve Chalk, Deputy Assistant Secretary for Renewable Power, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, as presented on Tuesday, April 1, 2014. PDF icon eere_fy2015_budget_webinar_renewable_power_4-1-2014.pdf More Documents & Publications Office of Energy Efficiency and Renewable Energy FY 2015 Budget Request Quadrennial Technology

  9. BP Gas Power and Renewables | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: BP Gas, Power and Renewables Place: Central Milton Keynes, United Kingdom Zip: MK9 1ES Sector: Renewable Energy Product: Subsidiary of...

  10. CalRENEW-1 Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Name CalRENEW-1 Solar Power Plant Facility CalRENEW-1 Sector Solar Facility Type Photovoltaic Developer Cleantech America Location Fresno County, California Coordinates...

  11. EverPower Renewables (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    Renewables (Oregon) Jump to: navigation, search Name: EverPower Renewables Address: 70 NW Couch Street Place: Portland, Oregon Zip: 97209 Region: Pacific Northwest Area Sector:...

  12. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From

  13. Stand Alone Renewable Energy Systems Case Studies | Open Energy...

    Open Energy Info (EERE)

    Alone Renewable Energy Systems Case Studies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Stand Alone Renewable Energy Systems Case Studies AgencyCompany...

  14. Mini-Grid Renewable Energy Systems Case Studies | Open Energy...

    Open Energy Info (EERE)

    Mini-Grid Renewable Energy Systems Case Studies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Mini-Grid Renewable Energy Systems Case Studies AgencyCompany...

  15. Fiscalini Farms Renewable Energy Power Generation Project

    SciTech Connect (OSTI)

    2009-02-01

    Funded by the American Recovery and Reinvestment Act of 2009 Fiscalini Farms L.P., in collaboration with University of the Pacific, Biogas Energy, Inc., and the University of California at Berkeley will measure and analyze the efficiency and regulatory compliance of a renewable energy system for power generation. The system will utilize digester gas from an anaerobic digester located at the Fiscalini Farms dairy for power generation with a reciprocating engine. The project will provide power, efficiency, emissions, and cost/benefit analysis for the system and evaluate its compliance with federal and California emissions standards.

  16. Tribal Renewable Energy Webinar: EPA Clean Power Plan: What Tribes...

    Energy Savers [EERE]

    Renewable Energy Webinar: EPA Clean Power Plan: What Tribes Need to Know Tribal Renewable Energy Webinar: EPA Clean Power Plan: What Tribes Need to Know November 18, 2015 11:00AM...

  17. ScottishPower Renewable Energy Holdings | Open Energy Information

    Open Energy Info (EERE)

    ScottishPower Renewable Energy Holdings Jump to: navigation, search Name: ScottishPower Renewable Energy Holdings Place: Glasgow, Scotland, United Kingdom Zip: G2 8SP Sector: Wind...

  18. A Stochastic Power Network Calculus for Integrating Renewable Energy Sources into the Power Grid

    SciTech Connect (OSTI)

    Wang, K; Ciucu, F; Lin, C; Low, SH

    2012-07-01

    Renewable energy such as solar and wind generation will constitute an important part of the future grid. As the availability of renewable sources may not match the load, energy storage is essential for grid stability. In this paper we investigate the feasibility of integrating solar photovoltaic (PV) panels and wind turbines into the grid by also accounting for energy storage. To deal with the fluctuation in both the power supply and demand, we extend and apply stochastic network calculus to analyze the power supply reliability with various renewable energy configurations. To illustrate the validity of the model, we conduct a case study for the integration of renewable energy sources into the power system of an island off the coast of Southern California. In particular, we asses the power supply reliability in terms of the average Fraction of Time that energy is Not-Served (FTNS).

  19. Volunteers Leading Technology, A Case Study: Chewonki Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volunteers Leading Technology, A Case Study: Chewonki Renewable Hydrogen Project This presentation by Paul Faulstich focuses on the Chewonki Renewable Hydrogen Project. PDF icon ...

  20. On-Site Renewable Power Purchase Agreements for Renewable Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    An on-site renewable power purchase agreement (PPA) enables Federal agencies to fund a renewable energy project by contracting to purchase the power generated by the system. The renewable energy equipment is installed and owned by a developer but located on-site at the agency facility.

  1. Renewable Energy Price-Stability Benefits in Utility Green Power...

    Office of Scientific and Technical Information (OSTI)

    Price-Stability Benefits in Utility Green Power Programs. 36 pp Citation Details In-Document Search Title: Renewable Energy Price-Stability Benefits in Utility Green Power ...

  2. Psm Nature Power Service Management Formerly Umweltkontor Renewable...

    Open Energy Info (EERE)

    Psm Nature Power Service Management Formerly Umweltkontor Renewable Energy AG Jump to: navigation, search Name: psm Nature Power Service & Management (Formerly Umweltkontor...

  3. Power production from renewable resources in a gasification power system

    SciTech Connect (OSTI)

    Paisley, M.A.; Farris, G.; Bain, R.

    1996-12-31

    The US Department of Energy (DOE) has been a leader in the promotion and development of alternative fuel supplies based on renewable energy crops. One promising power generation technology is biomass gasification coupled with either a gas turbine in a combined cycle system or a fuel cell. The gasification of biomass can efficiently and economically produce a renewable source of a clean gaseous fuel suitable for use in these high efficiency power systems or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development and commercialization of the Battelle high-throughput gasification process for gas turbine based power generation systems. Projected process economics for a gas turbine combined cycle plant are presented along with a description of integrated system operation coupling a 200kW gas turbine power generation system to a 10 ton per day gasifier, and current commercialization activities. 6 refs., 3 figs., 1 tab.

  4. NREL: Energy Analysis - Renewable Energy Certificate and Green Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Markets Renewable Energy Certificate and Green Power Markets NREL's market analysis group examines the implications of customer choice on the market demand for renewable energy as well as renewable energy certificate (REC) markets that have emerged for compliance with state renewable energy standards. They have tracked the status of voluntary markets for renewable energy and conducted analyses of regional REC market demand. Key Analyses for 2015 Cover of Market Brief: Status of the Voluntary

  5. EERE Webinar: The Economic Potential of Renewable Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Please join the Office of Energy Efficiency and Renewable Energy for a webinar discussing their recent report analyzing the economic potential of renewable power in the United States. Estimating...

  6. NC GreenPower Renewable Energy Credit Production

    Broader source: Energy.gov [DOE]

    NC GreenPower is requesting proposals for renewable energy credits associated with renewable energy, such as solar, PV, wind, small hydro of 10 MW or less, generated in North Carolina and supplied to the North Carolina electric grid.

  7. United States Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    United States Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of U.S. ...

  8. United States Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Per...

  9. Tennessee Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State ...

  10. Tennessee Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent ...

  11. Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation

    Broader source: Energy.gov [DOE]

    Document describes renewable electricity, renewable energy certificates, and on-site renewable generation, which agencies and organizations can consider to diversify their energy supply and reduce the environmental impact of their electricity use.

  12. Federal On-Site Renewable Power Purchasing Issues

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers on-site renewable power purchasing issues for federal facilities.

  13. QIN Renewable Energy Feasibility Study - Catching the Power of...

    Energy Savers [EERE]

    QIN Renewable Energy Feasibility Study Catching the Power of Energy 1112004 2 1112004 3 1112004 4 Presented by... Natalie Charley, Project Coordinator, Quinault Nation Don ...

  14. Renewable and Distributed Power in California Simplifying the...

    Open Energy Info (EERE)

    institutional structures and discussing whether these are sufficient to support the transition to renewable and distributed power development (focusing on California). Essay...

  15. Global Renewable Power International Global RPI | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search Name: Global Renewable Power International (Global RPI) Place: Spain Sector: Wind energy Product: Spain-based developer of wind projects in Poland, Croatia...

  16. Mulk Renewable Energy Aditya Solar Power Industries JV | Open...

    Open Energy Info (EERE)

    Arab Emirates Sector: Solar Product: UAE-based company that is developing a 200MW solar thermal plant in Sharjah. References: Mulk Renewable Energy & Aditya Solar Power...

  17. The RenewElec Project: Variable Renewable Energy and the Power System

    SciTech Connect (OSTI)

    Apt, Jay

    2014-02-14

    Variable energy resources, such as wind power, now produce about 4% of U.S. electricity. They can play a significantly expanded role if the U.S. adopts a systems approach that considers affordability, security and reliability. Reaching a 20-30% renewable portfolio standard goal is possible, but not without changes in the management and regulation of the power system, including accurately assessing and preparing for the operational effects of renewable generation. The RenewElec project will help the nation make the transition to the use of significant amounts of electric generation from variable and intermittent sources of renewable power.

  18. Texas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Net Summer Renewable Capacity 10,985 10.1 Geothermal - - Hydro Conventional 689 0.6 ... Total Renewable Net Generation 28,967 7.0 Geothermal - - Hydro Conventional 1,262 0.3 ...

  19. Mississippi Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 15,691 100.0 Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste 235 1.5 MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 54,487 100.0 Total Renewable Net

  20. Missouri Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,739 100.0 Total Net Summer Renewable Capacity 1,030 4.7 Geothermal - - Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 Wood/Wood Waste - - MSW/Landfill Gas 8 * Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 92,313 100.0 Total Renewable

  1. Alaska Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,067 100.0 Total Net Summer Renewable Capacity 422 20.4 Geothermal - - Hydro Conventional 414 20.1 Solar - - Wind 7 0.4 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 6,760 100.0 Total Renewable Net

  2. West Virginia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 16,495 100.0 Total Net Summer Renewable Capacity 715 4.3 Geothermal - - Hydro Conventional 285 1.7 Solar - - Wind 431 2.6 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 80,789 100.0 Total Renewable Net

  3. South Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 10,050 100.0 Total

  4. Montana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 5,866 100.0 Total Net Summer Renewable Capacity 3,085 52.6 Geothermal - - Hydro Conventional 2,705 46.1 Solar - - Wind 379 6.5 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 29,791 100.0 Total

  5. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 152,151 100.0 Total

  6. Connecticut Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,284 100.0 Total Net Summer Renewable Capacity 281 3.4 Geothermal - - Hydro Conventional 122 1.5 Solar - - Wind - - Wood/Wood Waste - - MSW/Landfill Gas 159 1.9 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net

  7. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,389 100.0 Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - Wind 2 0.1 Wood/Wood Waste - - MSW/Landfill Gas 8 0.2 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 5,628

  8. North Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 6,188 100.0 Total Net Summer Renewable Capacity 1,941 31.4 Geothermal - - Hydro Conventional 508 8.2 Solar - - Wind 1,423 23.0 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 10 0.2 Generation (thousand megawatthours) Total Electricity Net Generation 34,740 100.0 Total Renewable Net Generation 6,150

  9. Ohio Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 33,071 100.0 Total Net Summer Renewable Capacity 231 0.7 Geothermal - - Hydro Conventional 101 0.3 Solar 13 * Wind 7 * Wood/Wood Waste 60 0.2 MSW/Landfill Gas 48 0.1 Other Biomass 2 * Generation (thousand megawatthours) Total Electricity Net Generation 143,598 100.0 Total Renewable

  10. Oklahoma Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 72,251 100.0 Total Renewable Net Generation

  11. Louisiana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,744 100.0 Total Net Summer Renewable Capacity 517 1.9 Geothermal - - Hydro Conventional 192 0.7 Solar - - Wind - - Wood/Wood Waste 311 1.2 MSW/Landfill Gas - - Other Biomass 14 0.1 Generation (thousand megawatthours) Total Electricity Net Generation 102,885 100.0 Total Renewable Net

  12. Maryland Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,516 100.0 Total Net Summer Renewable Capacity 799 6.4 Geothermal - - Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 Wood/Wood Waste 3 * MSW/Landfill Gas 135 1.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 43,607 100.0 Total Renewable

  13. Minnesota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,715 100.0 Total Net Summer Renewable Capacity 2,588 17.6 Geothermal - - Hydro Conventional 193 1.3 Solar - - Wind 2,009 13.7 Wood/Wood Waste 177 1.2 MSW/Landfill Gas 134 0.9 Other Biomass 75 0.5 Generation (thousand megawatthours) Total Electricity Net Generation 53,670 100.0 Total Renewable Net

  14. Nebraska Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,857 100.0 Total Net Summer Renewable Capacity 443 5.6 Geothermal - - Hydro Conventional 278 3.5 Solar - - Wind 154 2.0 Wood/Wood Waste - - MSW/Landfill Gas 6 0.1 Other Biomass 5 0.1 Generation (thousand megawatthours) Total Electricity Net Generation 36,630 100.0 Total Renewable

  15. New Mexico Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,130 100.0 Total Net Summer Renewable Capacity 818 10.1 Geothermal - - Hydro Conventional 82 1.0 Solar 30 0.4 Wind 700 8.6 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 6 0.1 Generation (thousand megawatthours) Total Electricity Net Generation 36,252 100.0 Total Renewable Net Generation 2,072 5.7

  16. Alternative Trading Arrangements for Intermittent Renewable Power...

    Open Energy Info (EERE)

    Regulations: UtilityElectricity Service Costs This report examines the costs and benefits of various options for the design and governance of a centralised renewables...

  17. Colorado Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,777 100.0 Total Net Summer Renewable Capacity 2,010 14.6 Geothermal - - Hydro Conventional 662 4.8 Solar 41 0.3 Wind 1,294 9.4 Wood/Wood Waste - - MSW/Landfill Gas 3 * Other Biomass 10 0.1 Generation (thousand megawatthours) Total Electricity Net Generation 50,721 100.0 Total Renewable Net Generation

  18. Hawaii Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Primary Renewable Energy Capacity Source Other Biomass Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,536 100.0 Total Net Summer Renewable Capacity 340 13.4 Geothermal 31 1.2 Hydro Conventional 24 0.9 Solar 2 0.1 Wind 62 2.4 Wood/Wood Waste - - MSW/Landfill Gas 60 2.4 Other Biomass 162 6.4 Generation (thousand megawatthours) Total Electricity Net Generation 10,836 100.0 Total Renewable Net

  19. Illinois Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 44,127 100.0 Total Net Summer Renewable Capacity 2,112 4.8 Geothermal - - Hydro Conventional 34 0.1 Solar 9 * Wind 1,946 4.4 Wood/Wood Waste - - MSW/Landfill Gas 123 0.3 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 201,352 100.0 Total Renewable Net Generation 5,257

  20. Indiana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,638 100.0 Total Net Summer Renewable Capacity 1,452 5.3 Geothermal - - Hydro Conventional 60 0.2 Solar - - Wind 1,340 4.8 Wood/Wood Waste - - MSW/Landfill Gas 53 0.2 Other Biomass s * Generation (thousand megawatthours) Total Electricity Net Generation 125,181 100.0 Total Renewable Net Generation 3,699 3.0

  1. Iowa Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,592 100.0 Total Net Summer Renewable Capacity 3,728 25.5 Geothermal - - Hydro Conventional 144 1.0 Solar - - Wind 3,569 24.5 Wood/Wood Waste - - MSW/Landfill Gas 11 0.1 Other Biomass 3 * Generation (thousand megawatthours) Total Electricity Net Generation 57,509 100.0 Total Renewable Net Generation 10,309

  2. Kansas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,543 100.0 Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar - - Wind 1,072 8.5 Wood/Wood Waste - - MSW/Landfill Gas 7 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 47,924 100.0 Total Renewable Net Generation 3,473 7.2

  3. Kentucky Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 20,453 100.0 Total Net Summer Renewable Capacity 893 4.4 Geothermal - - Hydro Conventional 824 4.0 Solar - - Wind - - Wood/Wood Waste 52 0.3 MSW/Landfill Gas 17 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 98,218 100.0 Total Renewable

  4. South Carolina Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Generation Source Hydro ... Conventional 1,340 5.6 Solar - - Wind - - WoodWood ... Gas 131 0.1 Other Biomass - - - No data reported. ...

  5. Delaware Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Gas Primary Renewable Energy Generation Source ... - - Hydro Conventional - - Solar - - Wind 2 0.1 WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  6. Virginia Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Virginia Primary Renewable Energy Capacity Source Hydro ... Hydro Conventional 866 3.6 Solar - - Wind - - WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  7. Connecticut Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Gas Primary Renewable Energy Generation Source ... Hydro Conventional 122 1.5 Solar - - Wind - - WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  8. Arkansas Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Generation Source Hydro ... Conventional 1,341 8.4 Solar - - Wind - - WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  9. Alabama Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Generation Source Hydro ... Conventional 3,272 10.1 Solar - - Wind - - WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  10. Mississippi Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi Primary Renewable Energy Capacity Source Wood... - - Hydro Conventional - - Solar - - Wind - - WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  11. Kentucky Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Kentucky Primary Renewable Energy Capacity Source Hydro ... Hydro Conventional 824 4.0 Solar - - Wind - - WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  12. Utah Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,497 100.0 Total Net Summer Renewable Capacity 528 7.0 Geothermal 42 0.6 Hydro Conventional 255 3.4 Solar - - Wind 222 3.0 Wood/Wood Waste - - MSW/Landfill Gas 9 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 42,249 100.0 Total Renewable

  13. Vermont Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,128 100.0 Total Net Summer Renewable Capacity 408 36.2 Geothermal - - Hydro Conventional 324 28.7 Solar - - Wind 5 0.5 Wood/Wood Waste 76 6.7 MSW/Landfill Gas 3 0.3 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 6,620 100.0 Total Renewable

  14. Wyoming Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,986 100.0 Total Net Summer Renewable Capacity 1,722 21.6 Geothermal - - Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 48,119 100.0 Total Renewable Net Generation 4,271 8.9

  15. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For more discussion of how each of the organizations that ... site listed in Chapter 10. Guide to Purchasing Green Power 5 ... Organizations might also teach staff how to answer general ...

  16. New York Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    York Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 39,357 100.0 Total Net Summer Renewable Capacity 6,033 15.3 Geothermal - - Hydro Conventional 4,314 11.0 Solar - - Wind 1,274 3.2 Wood/Wood Waste 86 0.2 MSW/Landfill Gas 359 0.9 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 136,962 100.0 Total

  17. New York Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",39357,100 "Total Net Summer Renewable Capacity",6033,15.3 " Geothermal","-","-" " Hydro Conventional",4314,11 "

  18. North Carolina Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,674 100.0 Total Net Summer Renewable Capacity 2,499 9.0 Geothermal - - Hydro Conventional 1,956 7.1 Solar 35 0.1 Wind - - Wood/Wood Waste 481 1.7 MSW/Landfill Gas 27 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 128,678 100.0 Total

  19. North Carolina Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",27674,100 "Total Net Summer Renewable Capacity",2499,9 " Geothermal","-","-" " Hydro Conventional",1956,7.1 "

  20. North Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",6188,100 "Total Net Summer Renewable Capacity",1941,31.4 " Geothermal","-","-" " Hydro Conventional",508,8.2 "

  1. Ohio Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",33071,100 "Total Net Summer Renewable Capacity",231,0.7 " Geothermal","-","-" " Hydro Conventional",101,0.3 "

  2. Oklahoma Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",21022,100 "Total Net Summer Renewable Capacity",2412,11.5 " Geothermal","-","-" " Hydro Conventional",858,4.1 " Solar","-","-"

  3. Oregon Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,261 100.0 Total Net Summer Renewable Capacity 10,684 74.9 Geothermal - - Hydro Conventional 8,425 59.1 Solar - - Wind 2,004 14.1 Wood/Wood Waste 221 1.6 MSW/Landfill Gas 31 0.2 Other Biomass 3 * Generation (thousand megawatthours) Total Electricity Net Generation 55,127 100.0

  4. Oregon Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",14261,100 "Total Net Summer Renewable Capacity",10684,74.9 " Geothermal","-","-" " Hydro Conventional",8425,59.1 "

  5. Pennsylvania Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 45,575 100.0 Total Net Summer Renewable Capacity 1,984 4.4 Geothermal - - Hydro Conventional 747 1.6 Solar 9 * Wind 696 1.5 Wood/Wood Waste 108 0.2 MSW/Landfill Gas 424 0.9 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 229,752 100.0

  6. Pennsylvania Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",45575,100 "Total Net Summer Renewable Capacity",1984,4.4 " Geothermal","-","-" " Hydro Conventional",747,1.6 "

  7. Rhode Island Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,782 100.0 Total Net Summer Renewable Capacity 28 1.6 Geothermal - - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1 Wood/Wood Waste - - MSW/Landfill Gas 24 1.3 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net

  8. Rhode Island Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Primary Renewable Energy Capacity Source","Municipal Solid Waste/Landfill Gas" "Primary Renewable Energy Generation Source","Municipal Solid Waste/Landfill Gas" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",1782,100 "Total Net Summer Renewable Capacity",28,1.6 " Geothermal","-","-" " Hydro

  9. South Carolina Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 23,982 100.0 Total Net Summer Renewable Capacity 1,623 6.8 Geothermal - - Hydro Conventional 1,340 5.6 Solar - - Wind - - Wood/Wood Waste 255 1.1 MSW/Landfill Gas 29 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 104,153 100.0 Total

  10. South Carolina Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",23982,100 "Total Net Summer Renewable Capacity",1623,6.8 " Geothermal","-","-" " Hydro Conventional",1340,5.6 "

  11. South Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",3623,100 "Total Net Summer Renewable Capacity",2223,61.3 " Geothermal","-","-" " Hydro Conventional",1594,44 "

  12. Louisiana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Primary Renewable Energy Capacity Source","Wood/Wood Waste" "Primary Renewable Energy Generation Source","Wood/Wood Waste" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",26744,100 "Total Net Summer Renewable Capacity",517,1.9 " Geothermal","-","-" " Hydro Conventional",192,0.7 "

  13. Maine Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 4,430 100.0 Total Net Summer Renewable Capacity 1,692 38.2 Geothermal - - Hydro Conventional 738 16.6 Solar - - Wind 263 5.9 Wood/Wood Waste 600 13.6 MSW/Landfill Gas 57 1.3 Other Biomass 35 0.8 Generation (thousand megawatthours) Total Electricity Net Generation 17,019 100.0 Total

  14. Maine Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",4430,100 "Total Net Summer Renewable Capacity",1692,38.2 " Geothermal","-","-" " Hydro Conventional",738,16.6 "

  15. Maryland Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",12516,100 "Total Net Summer Renewable Capacity",799,6.4 " Geothermal","-","-" " Hydro Conventional",590,4.7 "

  16. Massachusetts Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,697 100.0 Total Net Summer Renewable Capacity 566 4.1 Geothermal - - Hydro Conventional 262 1.9 Solar 4 * Wind 10 0.1 Wood/Wood Waste 26 0.2 MSW/Landfill Gas 255 1.9 Other Biomass 9 0.1 Generation (thousand megawatthours) Total Electricity Net Generation

  17. Massachusetts Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Municipal Solid Waste/Landfill Gas" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",13697,100 "Total Net Summer Renewable Capacity",566,4.1 " Geothermal","-","-" " Hydro Conventional",262,1.9

  18. Michigan Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 29,831 100.0 Total Net Summer Renewable Capacity 807 2.7 Geothermal - - Hydro Conventional 237 0.8 Solar - - Wind 163 0.5 Wood/Wood Waste 232 0.8 MSW/Landfill Gas 176 0.6 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 111,551 100.0 Total

  19. Michigan Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Wood/Wood Waste" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",29831,100 "Total Net Summer Renewable Capacity",807,2.7 " Geothermal","-","-" " Hydro Conventional",237,0.8 "

  20. Minnesota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",14715,100 "Total Net Summer Renewable Capacity",2588,17.6 " Geothermal","-","-" " Hydro Conventional",193,1.3 " Solar","-","-"

  1. Mississippi Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Primary Renewable Energy Capacity Source","Wood/Wood Waste" "Primary Renewable Energy Generation Source","Wood/Wood Waste" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",15691,100 "Total Net Summer Renewable Capacity",235,1.5 " Geothermal","-","-" " Hydro Conventional","-","-"

  2. Missouri Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",21739,100 "Total Net Summer Renewable Capacity",1030,4.7 " Geothermal","-","-" " Hydro Conventional",564,2.6 "

  3. Montana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",5866,100 "Total Net Summer Renewable Capacity",3085,52.6 " Geothermal","-","-" " Hydro Conventional",2705,46.1 "

  4. Nebraska Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",7857,100 "Total Net Summer Renewable Capacity",443,5.6 " Geothermal","-","-" " Hydro Conventional",278,3.5 "

  5. Nevada Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 11,421 100.0 Total Net Summer Renewable Capacity 1,507 13.2 Geothermal 319 2.8 Hydro Conventional 1,051 9.2 Solar 137 1.2 Wind - - Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 35,146 100.0 Total

  6. Nevada Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",11421,100 "Total Net Summer Renewable Capacity",1507,13.2 " Geothermal",319,2.8 " Hydro Conventional",1051,9.2 " Solar",137,1.2 "

  7. New Hampshire Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 4,180 100.0 Total Net Summer Renewable Capacity 671 16.1 Geothermal - - Hydro Conventional 489 11.7 Solar - - Wind 24 0.6 Wood/Wood Waste 129 3.1 MSW/Landfill Gas 29 0.7 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 22,196 100.0 Total

  8. New Hampshire Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",4180,100 "Total Net Summer Renewable Capacity",671,16.1 " Geothermal","-","-" " Hydro Conventional",489,11.7 "

  9. New Jersey Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 18,424 100.0 Total Net Summer Renewable Capacity 230 1.2 Geothermal - - Hydro Conventional 4 * Solar 28 0.2 Wind 8 * Wood/Wood Waste - - MSW/Landfill Gas 171 0.9 Other Biomass 20 0.1 Generation (thousand megawatthours) Total Electricity Net Generation

  10. New Jersey Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Primary Renewable Energy Capacity Source","Municipal Solid Waste/Landfill Gas" "Primary Renewable Energy Generation Source","Municipal Solid Waste/Landfill Gas" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",18424,100 "Total Net Summer Renewable Capacity",230,1.2 " Geothermal","-","-" " Hydro

  11. New Mexico Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",8130,100 "Total Net Summer Renewable Capacity",818,10.1 " Geothermal","-","-" " Hydro Conventional",82,1 " Solar",30,0.4 " Wind",700,8.6

  12. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",32417,100 "Total Net Summer Renewable Capacity",3855,11.9 " Geothermal","-","-" " Hydro Conventional",3272,10.1 "

  13. Alaska Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",2067,100 "Total Net Summer Renewable Capacity",422,20.4 " Geothermal","-","-" " Hydro Conventional",414,20.1 "

  14. Arizona Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,392 100.0 Total Net Summer Renewable Capacity 2,901 11.0 Geothermal - - Hydro Conventional 2,720 10.3 Solar 20 0.1 Wind 128 0.5 Wood/Wood Waste 29 0.1 MSW/Landfill Gas 4 * Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 111,751 100.0 Total

  15. Arizona Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",26392,100 "Total Net Summer Renewable Capacity",2901,11 " Geothermal","-","-" " Hydro Conventional",2720,10.3 "

  16. Arkansas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 15,981 100.0 Total Net Summer Renewable Capacity 1,667 10.4 Geothermal - - Hydro Conventional 1,341 8.4 Solar - - Wind - - Wood/Wood Waste 312 2.0 MSW/Landfill Gas 9 0.1 Other Biomass 6 * Generation (thousand megawatthours) Total Electricity Net Generation 61,000 100.0 Total

  17. Arkansas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",15981,100 "Total Net Summer Renewable Capacity",1667,10.4 " Geothermal","-","-" " Hydro Conventional",1341,8.4 "

  18. California Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    California Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 67,328 100.0 Total Net Summer Renewable Capacity 16,460 24.4 Geothermal 2,004 3.0 Hydro Conventional 10,141 15.1 Solar 475 0.7 Wind 2,812 4.2 Wood/Wood Waste 639 0.9 MSW/Landfill Gas 292 0.4 Other Biomass 97 0.1 Generation (thousand megawatthours) Total Electricity Net

  19. California Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",67328,100 "Total Net Summer Renewable Capacity",16460,24.4 " Geothermal",2004,3 " Hydro Conventional",10141,15.1 " Solar",475,0.7 "

  20. Colorado Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",13777,100 "Total Net Summer Renewable Capacity",2010,14.6 " Geothermal","-","-" " Hydro Conventional",662,4.8 " Solar",41,0.3 "

  1. Connecticut Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Primary Renewable Energy Capacity Source","Municipal Solid Waste/Landfill Gas" "Primary Renewable Energy Generation Source","Municipal Solid Waste/Landfill Gas" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",8284,100 "Total Net Summer Renewable Capacity",281,3.4 " Geothermal","-","-" " Hydro

  2. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Primary Renewable Energy Capacity Source","Municipal Solid Waste/Landfill Gas" "Primary Renewable Energy Generation Source","Municipal Solid Waste/Landfill Gas" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",3389,100 "Total Net Summer Renewable Capacity",10,0.3 " Geothermal","-","-" " Hydro

  3. Florida Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 59,222 100.0 Total Net Summer Renewable Capacity 1,182 2.0 Geothermal - - Hydro Conventional 55 0.1 Solar 123 0.2 Wind - - Wood/Wood Waste 344 0.6 MSW/Landfill Gas 491 0.8 Other Biomass 171 0.3 Generation (thousand megawatthours) Total Electricity Net Generation

  4. Florida Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Primary Renewable Energy Capacity Source","Municipal Solid Waste/Landfill Gas" "Primary Renewable Energy Generation Source","Wood/Wood Waste" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",59222,100 "Total Net Summer Renewable Capacity",1182,2 " Geothermal","-","-" " Hydro Conventional",55,0.1 "

  5. Georgia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 36,636 100.0 Total Net Summer Renewable Capacity 2,689 7.3 Geothermal - - Hydro Conventional 2,052 5.6 Solar - - Wind - - Wood/Wood Waste 617 1.7 MSW/Landfill Gas 17 * Other Biomass 4 * Generation (thousand megawatthours) Total Electricity Net Generation 137,577 100.0 Total

  6. Georgia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",36636,100 "Total Net Summer Renewable Capacity",2689,7.3 " Geothermal","-","-" " Hydro Conventional",2052,5.6 "

  7. Hawaii Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Primary Renewable Energy Capacity Source","Other Biomass" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",2536,100 "Total Net Summer Renewable Capacity",340,13.4 " Geothermal",31,1.2 " Hydro Conventional",24,0.9 " Solar",2,0.1 " Wind",62,2.4 "

  8. Idaho Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,990 100.0 Total Net Summer Renewable Capacity 3,140 78.7 Geothermal 10 0.3 Hydro Conventional 2,704 67.8 Solar - - Wind 352 8.8 Wood/Wood Waste 68 1.7 MSW/Landfill Gas - - Other Biomass 6 0.2 Generation (thousand megawatthours) Total Electricity Net Generation 12,025 100.0 Total

  9. Idaho Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",3990,100 "Total Net Summer Renewable Capacity",3140,78.7 " Geothermal",10,0.3 " Hydro Conventional",2704,67.8 "

  10. Illinois Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",44127,100 "Total Net Summer Renewable Capacity",2112,4.8 " Geothermal","-","-" " Hydro Conventional",34,0.1 " Solar",9,"*" "

  11. Indiana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",27638,100 "Total Net Summer Renewable Capacity",1452,5.3 " Geothermal","-","-" " Hydro Conventional",60,0.2 " Solar","-","-"

  12. Iowa Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",14592,100 "Total Net Summer Renewable Capacity",3728,25.5 " Geothermal","-","-" " Hydro Conventional",144,1 " Solar","-","-" "

  13. Kansas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",12543,100 "Total Net Summer Renewable Capacity",1082,8.6 " Geothermal","-","-" " Hydro Conventional",3,"*" "

  14. Kentucky Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",20453,100 "Total Net Summer Renewable Capacity",893,4.4 " Geothermal","-","-" " Hydro Conventional",824,4 "

  15. Utah Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",7497,100 "Total Net Summer Renewable Capacity",528,7 " Geothermal",42,0.6 " Hydro Conventional",255,3.4 " Solar","-","-"

  16. Vermont Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",1128,100 "Total Net Summer Renewable Capacity",408,36.2 " Geothermal","-","-" " Hydro Conventional",324,28.7 "

  17. Virginia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 24,109 100.0 Total Net Summer Renewable Capacity 1,487 6.2 Geothermal - - Hydro Conventional 866 3.6 Solar - - Wind - - Wood/Wood Waste 331 1.4 MSW/Landfill Gas 290 1.2 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 72,966 100.0 Total

  18. Virginia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",24109,100 "Total Net Summer Renewable Capacity",1487,6.2 " Geothermal","-","-" " Hydro Conventional",866,3.6 "

  19. Washington Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 30,478 100.0 Total Net Summer Renewable Capacity 23,884 78.4 Geothermal - - Hydro Conventional 21,181 69.5 Solar 1 * Wind 2,296 7.5 Wood/Wood Waste 368 1.2 MSW/Landfill Gas 39 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 103,473

  20. Washington Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",30478,100 "Total Net Summer Renewable Capacity",23884,78.4 " Geothermal","-","-" " Hydro Conventional",21181,69.5 "

  1. West Virginia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",16495,100 "Total Net Summer Renewable Capacity",715,4.3 " Geothermal","-","-" " Hydro Conventional",285,1.7 "

  2. Wisconsin Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 17,836 100.0 Total Net Summer Renewable Capacity 1,267 7.1 Geothermal - - Hydro Conventional 492 2.8 Solar - - Wind 449 2.5 Wood/Wood Waste 239 1.3 MSW/Landfill Gas 76 0.4 Other Biomass 12 0.1 Generation (thousand megawatthours) Total Electricity Net Generation 64,314 100.0 Total

  3. Wisconsin Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",17836,100 "Total Net Summer Renewable Capacity",1267,7.1 " Geothermal","-","-" " Hydro Conventional",492,2.8 "

  4. Wyoming Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",7986,100 "Total Net Summer Renewable Capacity",1722,21.6 " Geothermal","-","-" " Hydro Conventional",307,3.8 " Solar","-","-"

  5. Kansas Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Kansas Primary Renewable Energy Capacity Source Wind Primary ... - - Hydro Conventional 3 * Solar - - Wind 1,072 8.5 Wood... Absolute percentage less than 0.05. - No data reported. ...

  6. South Dakota Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dakota Primary Renewable Energy Capacity Source Hydro ... Conventional 1,594 44.0 Solar - - Wind 629 17.3 WoodWood ...Landfill Gas - - Other Biomass - 0.0 - No data reported. ...

  7. New York Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Generation Source Hydro ... Conventional 4,314 11.0 Solar - - Wind 1,274 3.2 Wood... Gas 1,671 1.2 Other Biomass - - - No data reported. ...

  8. Minnesota Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Primary Renewable Energy Capacity Source Wind ... Hydro Conventional 193 1.3 Solar - - Wind 2,009 13.7 Wood... Gas 340 0.6 Other Biomass 576 1.1 - No data reported. ...

  9. Illinois Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Wind Primary Renewable Energy Generation Source Wind ... Hydro Conventional 34 0.1 Solar 9 * Wind 1,946 4.4 Wood... Absolute percentage less than 0.05. - No data reported. ...

  10. Tennessee Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tennessee Primary Renewable Energy Capacity Source Hydro ... Conventional 2,624 12.3 Solar - - Wind 29 0.1 WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  11. Vermont Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vermont Primary Renewable Energy Capacity Source Hydro ... Conventional 324 28.7 Solar - - Wind 5 0.5 WoodWood ...Landfill Gas 25 0.4 Other Biomass - - - No data reported. ...

  12. New Jersey Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Jersey Primary Renewable Energy Capacity Source Municipal ... - - Hydro Conventional 4 * Solar 28 0.2 Wind 8 * WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  13. New Hampshire Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Generation Source Hydro ... Conventional 489 11.7 Solar - - Wind 24 0.6 WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  14. Missouri Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Missouri Primary Renewable Energy Capacity Source Hydro ... Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  15. Idaho Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Generation Source Hydro ... Conventional 2,704 67.8 Solar - - Wind 352 8.8 WoodWood ...Landfill Gas - - Other Biomass 24 0.2 - No data reported. ...

  16. Iowa Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Iowa Primary Renewable Energy Capacity Source Wind Primary ... Hydro Conventional 144 1.0 Solar - - Wind 3,569 24.5 Wood... Absolute percentage less than 0.05. - No data reported. ...

  17. Texas Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Wind Primary Renewable Energy Generation Source Wind ... Hydro Conventional 689 0.6 Solar 14 * Wind 9,952 9.2 Wood... Absolute percentage less than 0.05. - No data reported. ...

  18. Maine Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Generation Source Hydro ... Conventional 738 16.6 Solar - - Wind 263 5.9 WoodWood ... Gas 237 1.4 Other Biomass 27 0.2 - No data reported. ...

  19. Wisconsin Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wisconsin Primary Renewable Energy Capacity Source Hydro ... Hydro Conventional 492 2.8 Solar - - Wind 449 2.5 WoodWood ... Gas 470 0.7 Other Biomass 38 0.1 - No data reported. ...

  20. Nebraska Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Nebraska Primary Renewable Energy Capacity Source Hydro ... Hydro Conventional 278 3.5 Solar - - Wind 154 2.0 WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  1. Oregon Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Generation Source Hydro ... Conventional 8,425 59.1 Solar - - Wind 2,004 14.1 Wood... Absolute percentage less than 0.05. - No data reported. ...

  2. Alaska Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Alaska Primary Renewable Energy Capacity Source Hydro ... Conventional 414 20.1 Solar - - Wind 7 0.4 WoodWood ...Landfill Gas - - Other Biomass 6 0.1 - No data reported. ...

  3. Florida Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Gas Primary Renewable Energy Generation Source Wood... Hydro Conventional 55 0.1 Solar 123 0.2 Wind - - WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  4. Washington Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Generation Source Hydro ... Conventional 21,181 69.5 Solar 1 * Wind 2,296 7.5 Wood... Absolute percentage less than 0.05. - No data reported. ...

  5. Nevada Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Nevada Primary Renewable Energy Capacity Source Hydro ... Conventional 1,051 9.2 Solar 137 1.2 Wind - - WoodWood ...Landfill Gas - - Other Biomass - - - No data reported. ...

  6. Ohio Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Generation Source Hydro ... Hydro Conventional 101 0.3 Solar 13 * Wind 7 * WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  7. Oklahoma Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Wind Primary Renewable Energy Generation Source Wind ... Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood... Gas - 0.0 Other Biomass 97 0.1 - No data reported. ...

  8. Michigan Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Michigan Primary Renewable Energy Capacity Source Hydro ... Hydro Conventional 237 0.8 Solar - - Wind 163 0.5 WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  9. Louisiana Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Louisiana Primary Renewable Energy Capacity Source WoodWood ... Hydro Conventional 192 0.7 Solar - - Wind - - WoodWood ...Landfill Gas - - Other Biomass 74 0.1 - No data reported. ...

  10. Hawaii Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Biomass Primary Renewable Energy Generation Source Wind ... Hydro Conventional 24 0.9 Solar 2 0.1 Wind 62 2.4 WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  11. Utah Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Generation Source Hydro ... Hydro Conventional 255 3.4 Solar - - Wind 222 3.0 WoodWood ...Landfill Gas 56 0.1 Other Biomass - - - No data reported. ...

  12. Wyoming Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wyoming Primary Renewable Energy Capacity Source Wind ... Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood...Landfill Gas - - Other Biomass - - - No data reported. ...

  13. Pennsylvania Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Generation Source Hydro ... Hydro Conventional 747 1.6 Solar 9 * Wind 696 1.5 WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  14. Montana Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Montana Primary Renewable Energy Capacity Source Hydro ... Conventional 2,705 46.1 Solar - - Wind 379 6.5 WoodWood ...Landfill Gas - - Other Biomass - - - No data reported. ...

  15. West Virginia Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wind Primary Renewable Energy Generation Source Hydro ... Hydro Conventional 285 1.7 Solar - - Wind 431 2.6 WoodWood ...Landfill Gas - - Other Biomass - 0.0 - No data reported. ...

  16. Maryland Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Maryland Primary Renewable Energy Capacity Source Hydro ... Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  17. Rhode Island Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Rhode Island Primary Renewable Energy Capacity Source ... - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1 WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  18. Georgia Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Georgia Primary Renewable Energy Capacity Source Hydro ... Conventional 2,052 5.6 Solar - - Wind - - WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  19. New Mexico Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wind Primary Renewable Energy Generation Source Wind ... Hydro Conventional 82 1.0 Solar 30 0.4 Wind 700 8.6 Wood... Absolute percentage less than 0.05. - No data reported. ...

  20. Indiana Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Indiana Primary Renewable Energy Capacity Source Wind ... Hydro Conventional 60 0.2 Solar - - Wind 1,340 4.8 Wood... Absolute percentage less than 0.05. - No data reported. ...

  1. North Dakota Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Wind Primary Renewable Energy Generation Source Wind ... Hydro Conventional 508 8.2 Solar - - Wind 1,423 23.0 Wood... Absolute percentage less than 0.05. - No data reported. ...

  2. Massachusetts Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Massachusetts Primary Renewable Energy Capacity Source Hydro ... Hydro Conventional 262 1.9 Solar 4 * Wind 10 0.1 WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  3. Colorado Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Colorado Primary Renewable Energy Capacity Source Wind ... Hydro Conventional 662 4.8 Solar 41 0.3 Wind 1,294 9.4 Wood... Absolute percentage less than 0.05. - No data reported. ...

  4. North Carolina Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Primary Renewable Energy Capacity Source Hydro ... Conventional 1,956 7.1 Solar 35 0.1 Wind - - WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  5. EERE Fiscal Year 2017 Budget Webinar- Renewable Power

    Broader source: Energy.gov [DOE]

    Join the Office of Energy Efficiency and Renewable Energy (EERE) for a webinar hosted by Deputy Assistant Secretary for Renewable Power Doug Hollett to learn about EERE's fiscal year 2017 budget request. Deputy Assistant Secretary Hollett will be joined by José Zayas, Wind & Water Technologies Office Director; Lidija Sekaric, Solar Technologies Office Acting Director; and Sue Hamm, Geothermal Technologies Office Acting Director.

  6. Grid-Connected Renewable Energy Systems Case Studies | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid-Connected Renewable Energy Systems Case Studies AgencyCompany Organization: World Bank Sector: Energy Topics:...

  7. DOE Announces Webinars on Tribal Renewable Energy Case Studies...

    Broader source: Energy.gov (indexed) [DOE]

    You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars October 30: Renewable Energy Case Studies-Tribal and Developer ...

  8. Premier Power Renewable Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Premier Power Renewable Energy Inc Place: El Dorado Hills, California Zip: 95762 Product: US-based small and large-scale PV system...

  9. Renewing America's Nuclear Power Partnership for Energy Security and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Growth | Department of Energy Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8, 2008 - 4:14pm Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you, Jamie, for that kind introduction. And many thanks as well to Secretary Gutierrez, Deputy Secretary Sullivan and the entire Commerce team for convening this important event. As always, it's

  10. Hollett Takes on Renewable Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hollett Takes on Renewable Power Hollett Takes on Renewable Power January 6, 2015 - 11:41am Addthis Hollett speaks on the Energy Department's geothermal portfolio at the largest geothermal industry gathering of the year in Portland, Oregon, September 2014. Hollett speaks on the Energy Department's geothermal portfolio at the largest geothermal industry gathering of the year in Portland, Oregon, September 2014. Doug Hollett, director of the Geothermal Technologies Office (GTO), was promoted to

  11. Volunteers Leading Technology, A Case Study: Chewonki Renewable Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Volunteers Leading Technology, A Case Study: Chewonki Renewable Hydrogen Project Volunteers Leading Technology, A Case Study: Chewonki Renewable Hydrogen Project This presentation by Paul Faulstich focuses on the Chewonki Renewable Hydrogen Project. PDF icon education_presentation_faulstich.pdf More Documents & Publications EIS-0073: Final Environmental Impact Statement EIS-0063: Final Environmental Impact Statement EIS-0063: Draft Environmental Impact

  12. California Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California Primary Renewable Energy Capacity Source Hydro ... Conventional 10,141 15.1 Solar 475 0.7 Wind 2,812 4.2 ... 63,213 63,813 64,105 65,948 67,328 - No data reported. ...

  13. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect (OSTI)

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L.; Lawler, J.S.

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  14. Federal On-Site Renewable Power Purchase Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Financing » Federal On-Site Renewable Power Purchase Agreements Federal On-Site Renewable Power Purchase Agreements Federal On-Site Renewable Power Purchase Agreements On-site renewable power purchase agreements (PPAs) allow federal agencies to fund renewable energy projects with minimal up-front capital costs incurred. With a PPA, a developer installs a renewable energy system on agency property under an agreement that the agency will purchase the power generated by the system. The

  15. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Interim Report 1

    SciTech Connect (OSTI)

    Hadley, Stanton W; Key, Thomas S

    2009-03-01

    The power transfer potential for bringing renewable energy into the Southeast in response to a renewable portfolio standard (RPS) will depend not only on available transmission capacity but also on electricity supply and demand factors. This interim report examines how the commonly used EIA NEMS and EPRI NESSIE energy equilibrium models are considering such power transfers. Using regional estimates of capacity expansion and demand, a base case for 2008, 2020 and 2030 are compared relative to generation mix, renewable deployments, planned power transfers, and meeting RPS goals. The needed amounts of regional renewable energy to comply with possible RPS levels are compared to inter-regional transmission capacities to establish a baseline available for import into the Southeast and other regions. Gaps in the renewable generation available to meet RPS requirements are calculated. The initial finding is that the physical capability for transferring renewable energy into the SE is only about 10% of what would be required to meet a 20% RPS. Issues that need to be addressed in future tasks with respect to modeling are the current limitations for expanding renewable capacity and generation in one region to meet the demand in another and the details on transmission corridors required to deliver the power.

  16. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect (OSTI)

    2011-01-01

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  17. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  18. Ocean Renewable Power Co (ORPC) (TRL 7 8 System)- TidGen (TM) Power System Commercialization Project

    Broader source: Energy.gov [DOE]

    Ocean Renewable Power Co (ORPC) (TRL 7 8 System) - TidGen (TM) Power System Commercialization Project

  19. EverPower Renewables | Open Energy Information

    Open Energy Info (EERE)

    44 East 30th Street Place: New York, New York Zip: 10016 Region: Northeast - NY NJ CT PA Area Sector: Wind energy Product: Develops wind power projects Website:...

  20. Ridgewood Renewable Power LLC | Open Energy Information

    Open Energy Info (EERE)

    and Egypt. Projects developed include hydro, biomass, natural gas and landfill methane gas power plants. Coordinates: 40.700725, -73.895329 Show Map Loading map......

  1. United Power- Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    United Power is providing rebates to their customers for the purchase of photovoltaic (PV), wind, and solar water heating systems. These incentives are separate from the rebates provided by the...

  2. GDI Renewable Power | Open Energy Information

    Open Energy Info (EERE)

    Developing a 15.0MW biomass power plant in Watertown, Connecticut. The initiative is a joint venture between Tamarack Energy of Essex and Gemma Development of Glastonbury and is...

  3. Guide to purchasing green power. Renewable electricity, renewable energy certificates and on-site renewable generation

    SciTech Connect (OSTI)

    2004-09-30

    The Guide to Purchasing Green Power is intended for organizations that are considering the merits of buying green power as well as those that have decided to buy it and want help doing so. The Guide was written for a broad audience, including businesses, government agencies, universities, and all organizations wanting to diversify their energy supply and to reduce the environmental impact of their electricity use.The Guide provides an overview of green power markets and describes the necessary steps to buying green power. This section summarizes the Guide to help readers find the information they need.

  4. Overview of village scale, renewable energy powered desalination

    SciTech Connect (OSTI)

    Thomas, K.E.

    1997-04-01

    An overview of desalination technologies is presented, focusing on those technologies appropriate for use in remote villages, and how they can be powered using renewable energy. Technologies are compared on the basis of capital cost, lifecycle cost, operations and maintenance complexity, and energy requirements. Conclusions on the appropriateness of different technologies are drawn, and recommendations for future research are given.

  5. Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study on Leadership: Roaring Fork Transportation Authority (Presentation); NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Schroeder, A.

    2015-03-01

    The Roaring Fork Transportation Authority (RFTA) represents a series of unique successes in alternative fuel deployment by pushing the envelope with innovative solutions. In the last year, RFTA demonstrated the ability to utilize compressed natural gas buses at a range of altitudes, across long distances, in extreme weather conditions and in a modern indoor fueling and maintenance facility - allwhile saving money and providing high-quality customer service. This case study will highlight how the leadership of organizations and communities that are implementing advances in natural gas vehicle technology is paving the way for broader participation.

  6. Idaho Power Develops Renewable Integration Tool for More Cost Effective Use

    Energy Savers [EERE]

    of Wind Power | Department of Energy Idaho Power Develops Renewable Integration Tool for More Cost Effective Use of Wind Power Idaho Power Develops Renewable Integration Tool for More Cost Effective Use of Wind Power September 22, 2014 - 3:47pm Addthis Idaho Power Company (IPC) has developed a Renewables Integration Tool (RIT) that enables grid operators to use wind energy more cost-effectively to serve electricity customers in Idaho and Oregon. The tool was developed under a Smart Grid

  7. Bimode uninterruptible power supply compatibility in renewable hybrid energy systems

    SciTech Connect (OSTI)

    Bower, W. ); O'Sullivan, G. )

    1990-08-01

    Inverters installed in renewable hybrid energy systems are typically used in a stand-alone mode to supply ac power to loads from battery storage when the engine-generator is not being used. Similarities in topology and in the performance requirements of the standby uninterruptible power supply (UPS) system and the hybrid system suggest the UPS could be used in hybrid energy systems. Another alternative to inverters with add-on charging circuits or standby UPS hardware is the Bimode UPS. The bimode UPS uses common circuitry and power components for dc to ac inversion and battery charging. It also provides an automatic and nearly instantaneous ac power transfer function when the engine-generator is started or stopped. The measured operating and transfer characteristics of a bimode UPS in a utility system and in a hybrid system are presented. The applicability of the bimode UPS to hybrid systems and its compatibility in a PV/engine-generator hybrid system are given.

  8. Efficient electrochemical CO2 conversion powered by renewable energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R.; Zeng, Chenjie; Jin, Rongchao

    2015-06-29

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond tomore » conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.« less

  9. About Federal On-Site Renewable Power Purchase Agreements | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Power Purchase Agreements » About Federal On-Site Renewable Power Purchase Agreements About Federal On-Site Renewable Power Purchase Agreements A PPA funded the photovoltaic system installed on the Research Support Facility at the National Renewable Energy Laboratory in Golden, Colorado. A PPA funded the photovoltaic system installed on the Research Support Facility at the National Renewable Energy Laboratory in Golden, Colorado. The Federal Energy Management Program (FEMP) provides

  10. Green Power Partner On-site Renewable Commitments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partner On-site Renewable Commitments Green Power Partner On-site Renewable Commitments As a component of the EPA Green Power Partnership's On-site Renewables Challenge, EPA is highlighting the tangible commitments made by partners to increase the deployment of on-site renewable energy systems by 2020. This webpage features a comprehensive list of EPA's Green Power Partners that have made specific commitments. Partner Agency: U.S. Environmental Protection Agency Resource Type: Webpage

  11. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Final Report

    SciTech Connect (OSTI)

    Key, Thomas S; Hadley, Stanton W; Deb, Rajat

    2010-02-01

    Electricity consumption in the Southeastern US, including Florida, is approximately 32% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. We found that significant wind energy transfers, at the level of 30-60 GW, are expected to be economic in case of federal RPC or CO2 policy. Development of wind resources will depend not only on the available transmission capacity and required balancing resources, but also on electricity supply and demand factors.

  12. America's Power Plan: Siting - Finding a Home for Renewable Energy...

    Open Energy Info (EERE)

    sites or wildlife. On the contrary, taking action today will provide long lasting benefits. The National Renewable Energy Laboratory's Renewable Electricity Futures Study...

  13. Sample Documents for Federal On-Site Renewable Power Purchase Agreements |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Power Purchase Agreements » Sample Documents for Federal On-Site Renewable Power Purchase Agreements Sample Documents for Federal On-Site Renewable Power Purchase Agreements To help streamline the federal on-site renewable power purchase agreement (PPA) process, the Federal Energy Management Program works with agencies and partners to assemble sample documents from completed PPA projects. See these sample documents for examples of requests for proposals (RFPs), land use

  14. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect (OSTI)

    Shane, Rodney

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  15. Renewable Electricity Futures Study Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Broader source: Energy.gov [DOE]

    This volume focuses on the role of variable renewable generation in creating challenges to the planning and operations of power systems and the expansion of transmission to deliver electricity from remote resources to load centers. The technical and institutional changes to power systems that respond to these challenges are, in many cases, underway, driven by the economic benefits of adopting more modern communication, information, and computation technologies that offer significant operational cost savings and improved asset utilization. While this volume provides background information and numerous references, the reader is referred to the literature for more complete tutorials.

  16. Green Power Partnership On-site Renewables Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership On-site Renewables Challenge Green Power Partnership On-site Renewables Challenge The Green Power Partnership launched the On-site Renewables Challenge, with a goal to double the use of on-site green power generated by partners by the end of the decade. The partnership tracks partners' annual combined on-site renewable energy use and is updated quarterly. As part of the challenge, EPA invites partners to increase the amount of energy they produce and use from on-site renewables by

  17. FEMP Offers Training on Federal On-Site Renewable Power Purchase Agreements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Training on Federal On-Site Renewable Power Purchase Agreements FEMP Offers Training on Federal On-Site Renewable Power Purchase Agreements March 30, 2015 - 2:16pm Addthis The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) recently revised and updated Federal On-Site Renewable Power Purchase Agreements, an e-Training core course. This refreshed eTraining core course provides federal energy and facility managers and contracting officers with

  18. PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power

    Office of Scientific and Technical Information (OSTI)

    Projects in the United States (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power Projects in the United States Citation Details In-Document Search Title: PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power Projects in the United States Renewable power technologies are inherently capital-intensive, often (but not always) with relatively high construction costs and

  19. The Treatment of Renewable Energy Certificates, EmissionsAllowances, and Green Power Programs in State Renewables PortfolioStandards

    SciTech Connect (OSTI)

    Holt, Edward A.; Wiser, Ryan H.

    2007-04-17

    Twenty-one states and the District of Columbia have adopted mandatory renewables portfolio standards (RPS) over the last ten years. Renewable energy attributes-such as the energy source, conversion technology, plant location and vintage, and emissions-are usually required to verify compliance with these policies, sometimes through attributes bundled with electricity, and sometimes with the attributes unbundled from electricity and traded separately as renewable energy certificates (RECs). This report summarizes the treatment of renewable energy attributes in state RPS rules. Its purpose is to provide a source of information for states considering RPS policies, and also to draw attention to certain policy issues that arise when renewable attributes and RECs are used for RPS compliance. Three specific issues are addressed: (1) the degree to which unbundled RECs are allowed under existing state RPS programs and the status of systems to track RECs and renewable energy attributes; (2) definitions of the renewable energy attributes that must be included in order to meet state RPS obligations, including the treatment of available emissions allowances; and (3) state policies on whether renewable energy or RECs sold through voluntary green power transactions may count towards RPS obligations.

  20. Modelling renewable electric resources: A case study of wind

    SciTech Connect (OSTI)

    Bernow, S.; Biewald, B.; Hall, J.; Singh, D.

    1994-07-01

    The central issue facing renewables in the integrated resource planning process is the appropriate assessment of the value of renewables to utility systems. This includes their impact on both energy and capacity costs (avoided costs), and on emissions and environmental impacts, taking account of the reliability, system characteristics, interactions (in dispatch), seasonality, and other characteristics and costs of the technologies. These are system-specific considerations whose relationships may have some generic implications. In this report, we focus on the reliability contribution of wind electric generating systems, measured as the amount of fossil capacity they can displace while meeting the system reliability criterion. We examine this issue for a case study system at different wind characteristics and penetration, for different years, with different system characteristics, and with different modelling techniques. In an accompanying analysis we also examine the economics of wind electric generation, as well as its emissions and social costs, for the case study system. This report was undertaken for the {open_quotes}Innovative IRP{close_quotes} program of the U.S. Department of Energy, and is based on work by both Union of Concerned Scientists (UCS) and Tellus Institute, including America`s Energy Choices and the UCS Midwest Renewables Project.

  1. Linkages from DOE's Wind Energy Program to Commercial Renewable Power Generation

    Broader source: Energy.gov [DOE]

    This report discusses linkages from the U.S. Department of Energy's Wind Energy Program research and development to commercial renewable power generation.

  2. Argonne OutLoud: Renewing Our Grid - Power for the 21st Century (Sept. 19,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013) | Argonne National Laboratory Renewing Our Grid - Power for the 21st Century (Sept. 19, 2013) Share Guenter Conzelmann

  3. Impacts of Federal Tax Credit Extensions on Renewable Deployment and Power Sector Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impacts of Federal Tax Credit Extensions on Renewable Deployment and Power Sector Emissions Trieu Mai, Wesley Cole, Eric Lantz, Cara Marcy, and Benjamin Sigrin National Renewable Energy Laboratory Technical Report NREL/TP-6A20-65571 February 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory

  4. District of Columbia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Primary Renewable Energy Capacity Source - Primary Renewable Energy Generation Source - Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 790 100.0 Total Net Summer Renewable Capacity - - Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 200 100.0 Total Renewable Net Generation - - Geothermal - - Hydro

  5. Tribal Renewable Energy To'Hajiilee Navajo Case Study

    Energy Savers [EERE]

    Navajo Case Study Delores Apache, President To'Hajiilee Economic Development Corporation, Inc. "TEDI" Douglas C. MacCourt, Project Counsel Ater Wynne LLP Tribal Energy Program Review May 4-7, 2015 Overview of Presentation * Goals and objectives of the tribe in developing the project * History, background and project milestones * Essentials for tribal renewable energy projects New Mexico annual insolation ave 6.58 sun hours Output peak 7.28 kWh/m 2 /day) Distance from Albuquerque 19

  6. Tribal Renewable Energy: To'Hajiilee Navajo Case Study

    Energy Savers [EERE]

    Navajo Case Study Delores Apache, President To'Hajiilee Economic Development Corporation, Inc. "TEDI" Douglas C. MacCourt, Project Counsel Ater Wynne LLP Tribal Energy Program Review March 24-27, 2014 Overview of Presentation * Goals and objectives of the tribe in developing the project * History, background and project milestones * Essentials for tribal renewable energy projects New Mexico annual insolation ave 6.58 sun hours Output peak 7.28 kWh/m 2 /day) Distance from Albuquerque 19

  7. Power Flow Controller for Renewables: Transformer-less Unified Power Flow Controller for Wind and Solar Power Transmission

    SciTech Connect (OSTI)

    2012-02-08

    GENI Project: MSU is developing a power flow controller to improve the routing of electricity from renewable sources through existing power lines. The fast, innovative, and lightweight circuitry that MSU is incorporating into its controller will eliminate the need for a separate heavy and expensive transformer, as well as the construction of new transmission lines. MSU’s controller is better suited to control power flows from distributed and intermittent wind and solar power systems than traditional transformer-based controllers are, so it will help to integrate more renewable energy into the grid. MSU‘s power flow controller can be installed anywhere in the existing grid to optimize energy transmission and help reduce transmission congestion.

  8. New Report: Renewable Power Economic Potential Has More Than Tripled

    Broader source: Energy.gov [DOE]

    The promise and appeal of renewable energy has long been clear: clean, inexhaustible, domestically sourced electricity could lead to enormous environmental, economic and resiliency benefits. For many years, the narrative included the caveat “…but it’s too expensive.” That story is changing fast, however, thanks to falling renewable energy technology costs, which should help renewable energy continue to grow across the United States.

  9. State & Local Renewable Power Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The DOE Office of Energy Efficiency and Renewable Energy provides tools, resources, and more on solar, ... National Geothermal Data System houses a collection of nationwide ...

  10. District of Columbia Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    District of Columbia Primary Renewable Energy Capacity ... - - Hydro Conventional - - Solar - - Wind - - WoodWood ...Landfill Gas - - Other Biomass - - - No data reported. ...

  11. Renewable Energy Price-Stability Benefits in Utility Green Power...

    Office of Scientific and Technical Information (OSTI)

    National Renewable Energy Lab. (NREL), Golden, CO (United States) Applied Materials, Santa Clara, CA (United States) Publication Date: 2008-08-01 OSTI Identifier: 1219254 Report ...

  12. Microsoft PowerPoint - Quinault Indian Nation Biomass Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Renewable Energy Opportunities and Strategies Presented By: Quinault Indian ... both demand-side that reduce energy consumption, and supply-side that generate heat ...

  13. District of Columbia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Primary Renewable Energy Capacity Source","-" "Primary Renewable Energy Generation Source","-" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",790,100 "Total Net Summer Renewable Capacity","-","-" " Geothermal","-","-" " Hydro Conventional","-","-"

  14. "Case in Point" Community-Scale Renewable Energy at Blue Lake...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "%&'(&)'*+,&)-'.**"0123 "Case in Point" Community-Scale Renewable Energy at Blue Lake Rancheria " "%"&'()"*' ""%&'()*+&,*-.,&)01 2-++3,4*15(6&7&,&8(96&...

  15. Renewable Energy and Inter-Island Power Transmission (Presentation)

    SciTech Connect (OSTI)

    Gevorgian, V.

    2011-05-01

    This presentation summarizes recent findings pertaining to inter-island connection of renewable and other energy sources, in particular, as these findings relate cable options, routing, specifications, and pros and cons.

  16. Potential Role of Concentrating Solar Power in Enabling High Renewables Scenarios in the United States

    SciTech Connect (OSTI)

    Denholm, P.; Hand, M.; Mai, T.; Margolis, R.; Brinkman, G.; Drury, E.; Mowers, M.; Turchi, C.

    2012-10-01

    This work describes the analysis of concentrating solar power (CSP) in two studies -- The SunShot Vision Study and the Renewable Electricity Futures Study -- and the potential role of CSP in a future energy mix.

  17. Renewable Energy Price-Stability Benefits in Utility Green Power Programs.

    Office of Scientific and Technical Information (OSTI)

    36 pp (Technical Report) | SciTech Connect Price-Stability Benefits in Utility Green Power Programs. 36 pp Citation Details In-Document Search Title: Renewable Energy Price-Stability Benefits in Utility Green Power Programs. 36 pp This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states

  18. Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation from Solar Energy | Department of Energy Solar Photovoltaic R&D to Commercial Renewable Power Generation from Solar Energy Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power Generation from Solar Energy The U.S. Department of Energy's (DOE) Solar Photovoltaic R&D Subprogram promotes the development of cost-effective systems for directly converting solar energy into electricity for residential, commercial, and industrial applications. This study

  19. RTP Green Fuel: A Proven Path to Renewable Heat and Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy RTP Green Fuel: A Proven Path to Renewable Heat and Power RTP Green Fuel: A Proven Path to Renewable Heat and Power Steve Lupton presentation at the May 9, 2012, Pyrolysis Oil Worskshop on RTP green fuel. PDF icon pyrolysis_lupton.pdf More Documents & Publications Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings Cellulosic Liquid Fuels Commercial Production Today Technical Information

  20. Renewables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this video on www.youtube.com, or enable JavaScript if it is disabled in your browser. Read the full transcript of the video Learn More: Wind Projects Map U.S. Wind Power Animation...

  1. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    Many countries--reflecting very different geographies, markets, and power systems--are successfully managing high levels of variable renewable energy (RE) on the grid. Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Colorado and Texas), for example, have effectively integrated variable RE utilizing diverse approaches. Analysis of the results from these case studies reveals a wide range of mechanisms that can be used to accommodate high penetrations of variable RE (e.g., from new market designs to centralized planning). Nevertheless, the myriad approaches collectively suggest that governments can best enable variable RE grid integration by implementing best practices in five areas of intervention: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations.

  2. Hydrogen Fuel-Cell Unit to Provide Renewable Power to Honolulu Port

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unit to Provide Renewable Power to Honolulu Port - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  3. Energy Secretary Chu Applauds World's First All-Renewable Power Plant in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada | Department of Energy Secretary Chu Applauds World's First All-Renewable Power Plant in Nevada Energy Secretary Chu Applauds World's First All-Renewable Power Plant in Nevada May 3, 2012 - 3:00pm Addthis As part of the Obama Administration's all-out, all-of-the-above approach to American energy, the Energy Department today recognized the dedication of the world's first geothermal-solar power plant in Fallon, Nevada. The Stillwater geothermal project, which received $40 million in tax

  4. Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling

    SciTech Connect (OSTI)

    Burman, K.; Keller, J.; Kroposki, B.; Lilienthal, P.; Slaughter, R.; Glassmire, J.

    2011-11-01

    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid.

  5. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Interim Report 2

    SciTech Connect (OSTI)

    Hadley, Stanton W; Key, Thomas S; Deb, Rajat

    2009-05-01

    Electricity consumption in the Southeastern US, not including Florida, is approximately 24% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient long distant transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. It shows that development of wind resources will depend not only on available transmission capacity but also on electricity supply and demand factors.

  6. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer A. Meintz, T. Markel, E. Burton, L. Wang, J. Gonder, A. Brooker, and A. Konan Work sponsored by United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicles Technologies Office, Vehicle Systems Program The information contained in this poster is subject to a government license. 2015 IEEE PELS Workshop on

  7. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect (OSTI)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  8. Boulder Valley School District (Colorado) Power Purchase Agreement Case Study

    Broader source: Energy.gov [DOE]

    Boulder Valley School District completed a power purchase agreement to install 1.4 MW of solar PV that are expected to reduce electricity bills in 14 schools by about 10% over the 20 year life of the agreement. Case study is excerpted from Financing Energy Upgrades for K-12 School Districts: A Guide to Tapping into Funding for Energy Efficiency and Renewable Energy Improvements. Author: Merrian Borgeson and Mark Zimring

  9. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Eichman, Joshua

    2015-07-30

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is compared to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.

  10. Resource Planning for Power Systems: Integrating Renewables and New Technologies

    Broader source: Energy.gov [DOE]

    Become Kinetic is hosting a course to review resource planning issues and how they are being addressed to provide reliable and economic operation of the bulk power system.

  11. Turner Hunt Ocean Renewable (TRL 4 System) - THOR's Power Method...

    Energy Savers [EERE]

    More Documents & Publications CX-004722: Categorical Exclusion Determination Vortex Hydro Energy (TRL 5 6 System) - Advanced Integration of Power Take-Off in VIVACE Ocean...

  12. Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

  13. Biofuels and Renewable Energy Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Conventional Renewable Energy Wind Power Hydro Power Power System INL Home Biofuels and Renewable Energy Renewable energy resources are expected to play major role in...

  14. Tribal Renewable Energy Webinar: EPA Clean Power Plan: What Tribes...

    Broader source: Energy.gov (indexed) [DOE]

    November 18, 2015 11:00AM to 12:30PM MST The U.S. Environmental Protection Agency (EPA) will present on the final rule for the Clean Power Plan and the proposed Federal Plan and...

  15. Environmental Standard Review Plan for the review of license renewal applications for nuclear power plants

    SciTech Connect (OSTI)

    O'Brien, J.; Kim, T.J.; Reynolds, S.

    1991-08-01

    The Environmental Standard Review Plan for the Review of License Applications for Nuclear Power Plants (ESRP-LR) is to be used by the NRC staff when performing environmental reviews of applications for the renewal of power reactor licenses. The use of the ESRP-LR provides a framework for the staff to determine whether or not environmental issues important to license renewal have been identified and the impacts evaluated and provides acceptance standards to help the reviewers comply with the National Environmental Policy Act.

  16. Session 5: Renewable Energy in the Transportation and Power SectorsŽ

    U.S. Energy Information Administration (EIA) Indexed Site

    5: "Renewable Energy in the Transportation and Power Sectors" Mr. Michael Schaal: Well, let's get started and we'll have people come in as we move along. Welcome to the session which addresses the topic of renewable energy and the transportation and power sectors, a topic that is very much on the minds of the public at large, policymakers who are pondering the cost benefits and preferred outcomes of a variety of current and potential future laws and regulations, and also researchers

  17. Power Rate Cases (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Choices (2003-06) Power Function Review (PFR) Firstgov Power Rate Cases BPA's wholesale power rates are set to recover its costs and repay the U.S. Treasury for the Federal...

  18. PPC Renewables | Open Energy Information

    Open Energy Info (EERE)

    PPC Renewables Jump to: navigation, search Name: PPC Renewables Place: Greece Sector: Renewable Energy Product: The renewables division of Public Power Corp. of Greece (PPC)....

  19. Live Webinar on EERE’s FY15 Budget for Renewable Power

    Broader source: Energy.gov [DOE]

    On April 1, 2014, the Office of Energy Efficiency & Renewable Energy’s (EERE) Wind and Water Power Technologies Office will present its FY15 budget. Deputy Assistant Secretary Steve Chalk will present the EERE overview and Program Director Jose Zayas will discuss details of the Program’s FY15 budget request.

  20. Live Webinar on EEREs FY15 Budget for Renewable Power

    Broader source: Energy.gov [DOE]

    On April 1, 2014, the Office of Energy Efficiency & Renewable Energys (EERE) Wind and Water Power Technologies Office will present its FY15 budget. Deputy Assistant Secretary Steve Chalk will present the EERE overview and Program Director Jose Zayas will discuss details of the Programs FY15 budget request.

  1. Profiles in Renewable Energy: Case Studies of Successful Utility...

    Office of Scientific and Technical Information (OSTI)

    New England Electric System Solar Thermal Solar ... (PURPA), which created a class of non-utility power ... However, a recent change in state regulations now requires ...

  2. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience

    SciTech Connect (OSTI)

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.

  3. Case Studies on the Effectiveness of State Financial Incentives for Renewable Energy

    SciTech Connect (OSTI)

    2002-09-01

    September 2002 · NREL/SR-620-32819 Case Studies on the Effectiveness of State Financial Incentives for Renewable Energy S. Gouchoe, V. Everette, and R. Haynes North Carolina State University Raleigh, North Carolina National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute · Battelle · Bechtel Contract No. DE-AC36-99-GO10337 September 2002 · NREL/SR-620-32819Case Studies on the Effecti

  4. Volunteers Leading Technology, A Case Study: Chewonki Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    l j l l i j Volunteers Leading Technology A Case Study: Chewonk Renewab e Hydrogen Pro ect Pau Fau st ch, Pro ect Manager j i li i l l Agenda Pro ect Overv ...

  5. Integrating Variable Renewable Energy in Electric Power Markers: Best Practices from International Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience Jaquelin Cochran, Lori Bird, Jenny Heeter, and Douglas J. Arent NREL/TP-6A00-53732 April 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the

  6. Renewable Energy in China: Xiao Qing Dao Village Power Wind/Diesel Hybrid Pilot Project

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    In 2000, DOE/NREL and the State Power Corporation of China (SPCC) developed a pilot project to electrify Xiao Qing Dao, a small island located in China's Yellow Sea. The project demonstrates the practicality of renewable energy systems for medium-scale, off-grid applications. It consists of four 10 k-W wind turbines connected to a 30-kW diesel generator, a 40-kW inverter and a battery bank.

  7. Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Developing a Natural Gas- Powered Bus Rapid Transit Service: A Case Study George Mitchell National Renewable Energy Laboratory Technical Report NREL/TP-5400-64756 November 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308

  8. Integrating Variable Renewable Energy in Electric Power Markets. Best Practices from International Experience

    SciTech Connect (OSTI)

    Cochran, Jaquelin; Bird, Lori; Heeter, Jenny; Arent, Douglas J.

    2012-04-30

    Many countries—reflecting very different geographies, markets, and power systems—are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  9. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers

    SciTech Connect (OSTI)

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  10. Integrating Variable Renewable Energy in Electric Power Markets. Best Practices from International Experience, Summary for Policymakers

    SciTech Connect (OSTI)

    Cochran, Jaquelin; Bird, Lori; Heeter, Jenny; Arent, Douglas J.

    2012-04-30

    Many countries - reflecting very different geographies, markets, and power systems - are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  11. An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) Paul Denholm, Yih-Huei Wan, Marissa Hummon, Mark Mehos March 2013 NREL/PR-6A20-58470 2 Motivation * Implement concentrating solar power (CSP) with thermal energy storage (TES) in a commercial production cost model o Develop approaches that can be used by utilities and system planners to incorporate CSP in standard planning tools * Evaluate the optimal dispatch of CSP with

  12. Efficient electrochemical CO2 conversion powered by renewable energy

    SciTech Connect (OSTI)

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R.; Zeng, Chenjie; Jin, Rongchao

    2015-06-29

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.

  13. Fuel Cell Power Plants Biofuel Case Study - Tulare, CA | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Plants Biofuel Case Study - Tulare, CA Fuel Cell Power Plants Biofuel Case Study - Tulare, CA Success story about fuel cell power plants using wastewater treatment gas in Tulare, California. Presented by Frank Wolak, Fuel Cell Energy, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado. PDF icon june2012_biogas_workshop_wolak.pdf More Documents & Publications Fuel Cell Power Plants Renewable and Waste Fuels Fuel Cell Power Plant Experience

  14. United States Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",14568,14637,14840,15009,15219 "Hydro Conventional",289246,247510,254831,273445,260203 "Solar",508,612,864,891,1212 "Wind",26589,34450,55363,73886,94652 "Wood/Wood Waste",38762,39014,37300,36050,37172 "MSW Biogenic/Landfill

  15. United States Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",2274,2214,2229,2382,2405 "Hydro Conventional",77821,77885,77930,78518,78825 "Solar",411,502,536,619,941 "Wind",11329,16515,24651,34296,39135 "Wood/Wood Waste",6372,6704,6864,6939,7037 "MSW/Landfill Gas",3166,3536,3644,3645,3690

  16. Linkages for DOE's Solar Photovoltaic R&D to Commercial Renewable Power from Solar Energy

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy‘s (DOE) Solar Photovoltaic R&D Subprogram promotes the development of cost-effective systems for directly converting solar energy into electricity for residential, commercial, and industrial applications. This study was commissioned to assess the extent to which the knowledge outputs of R&D funded by the DOE Solar PV Subprogram are linked to downstream developments in commercial renewable power. A second purpose was to identify spillovers of the resulting knowledge to other areas of application. A third purpose was to lend support to a parallel benefit-cost study by contributing evidence of attribution of benefits to DOE.

  17. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Virginia Renewable Electricity Profile 2010 Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro ...

  18. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Dakota Renewable Electricity Profile 2010 North Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind ...

  19. Renewable Hawaii Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Renewable Hawaii Inc Place: Hawaii Sector: Renewable Energy Product: Renewables subsidiary of Hawaii Power Company. References: Renewable...

  20. RTP Green Fuel: A Proven Path to Renewable Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuel Oil - A Commercial Perspective Steve Lupton Technical Information Exchange on Pyrolysis Oil: Potential for a Renewable Heating Oil Substitution Fuel in New ...

  1. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  2. Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario

    SciTech Connect (OSTI)

    Denholm, P.; Wan, Y. H.; Hummon, M.; Mehos, M.

    2013-03-01

    This analysis evaluates CSP with TES in a scenario where California derives 33% of its electricity from renewable energy sources. It uses a commercial grid simulation tool to examine the avoided operational and capacity costs associated with CSP and compares this value to PV and a baseload generation with constant output. Overall, the analysis demonstrates several properties of dispatchable CSP, including the flexibility to generate during periods of high value and avoid generation during periods of lower value. Of note in this analysis is the fact that significant amount of operational value is derived from the provision of reserves in the case where CSP is allowed to provide these services. This analysis also indicates that the 'optimal' configuration of CSP could vary as a function of renewable penetration, and each configuration will need to be evaluated in terms of its ability to provide dispatchable energy, reserves, and firm capacity. The model can be used to investigate additional scenarios involving alternative technology options and generation mixes, applying these scenarios within California or in other regions of interest.

  3. "Case in Point" Community-Scale Renewable Energy at Blue Lake Rancheria

    Energy Savers [EERE]

    !!"#$%&$'(&)'*+,&)-'.*/*"0123 "Case in Point"! Community-Scale Renewable Energy ! at ! Blue Lake Rancheria " !"#$%"#&'()"*' !"#"$%&'()*+&,*$-.$/,&)01$$ 2-++3,4*1$#5(6&$7&,&8(96&$/,&)01$:-);<=-'$ >(6+$#')4,0<?$2@$ +#,"-%"./'0123' !!!"#$%&$'(&)'*+,&)-'.*/*"0123 Overview" ! " 4*5)16%+71*/33 *"

  4. The Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Solar Forecasts on Bulk Power System Operations in ISO-NE 4 th Solar Integration Workshop Carlo Brancucci Martinez-Anido, Anthony Florita, and Bri-Mathias Hodge Berlin, Germany November 10, 2014 NREL/PR-5000-63082 2 Motivation and Scope * The economic benefits from renewable energy forecasting are largely unquantified in the power community o Current renewable energy penetration levels in the United States are often too low to appreciably quantify the value of improving renewable energy

  5. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  6. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, Michael; Ela, Erik; Hein, Jeff; Schneider, Thomas; Brinkman, Gregory; Denholm, Paul

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  7. DOE Webinar: EERE's Fiscal Year 2016 Budget Proposal- Renewable Power Sector

    Broader source: Energy.gov [DOE]

    The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) is hosting a webinar series featuring its Deputy Assistant Secretaries and the Technology Office Directors as they...

  8. DOE Webinar: EERE'S Fiscal Year 2016 Budget Proposal- Renewable Power Sector

    Broader source: Energy.gov [DOE]

    The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) is hosting a webinar series featuring its Deputy Assistant Secretaries and the Technology Office Directors as they...

  9. The Business Case for Fuel Cells 2015: Powering Corporate Sustainabili...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Powering Corporate Sustainability The Business Case for Fuel Cells 2015: Powering Corporate Sustainability This report, written and compiled by the Fuel Cell and Hydrogen Energy ...

  10. Renewable Power Options for Electricity Generation on Kaua’i: Economics and Performance Modeling

    Broader source: Energy.gov [DOE]

    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii.

  11. 2014 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Beiter, Philipp

    2015-11-15

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  12. 2014 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Beiter, Philipp

    2015-11-01

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  13. 2014 Renewable Energy Data Book

    Broader source: Energy.gov [DOE]

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  14. Comparison of Methods for Estimating the NOx Emission Impacts of Energy Efficiency and Renewable Energy Projects: Shreveport, Louisiana Case Study (Revised)

    SciTech Connect (OSTI)

    Chambers, A.; Kline, D. M.; Vimmerstedt, L.; Diem, A.; Dismukes, D.; Mesyanzhinov, D.

    2005-07-01

    This is a case study comparing methods of estimating the NOx emission impacts of energy efficiency and renewable energy projects in Shreveport, Louisiana.

  15. Islands and Our Renewable Energy Future (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

    2012-05-01

    Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

  16. Fuel Cell Power (FCPower) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power (FCPower) Model (National Renewable Energy Laboratory) ... Easy to use interface in Microsoft Excel environment ... Users may also access the model's case study data to ...

  17. NREL's Water Power Software Makes a Splash (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open-source software provides essential modeling and simulation help in water power research and development. Researchers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center are continuing their work on the Wave Energy Converter SIMulator (WEC-Sim), a free, open-source software modeling tool being jointly developed by NREL and Sandia National Laboratories. WEC-Sim promises to help level the playing field in the wave energy converter (WEC) industry. WEC-Sim allows

  18. 2008 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  19. 2011 Renewable Energy Data Book

    SciTech Connect (OSTI)

    R. Gelman

    2013-02-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  20. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    SciTech Connect (OSTI)

    Wiser, Ryan; Barbose, Galen; Holt, Edward

    2010-10-01

    Among the available options for encouraging the increased deployment of renewable electricity, renewables portfolio standards (RPS) have become increasingly popular. The RPS is a relatively new policy mechanism, however, and experience with its use is only beginning to emerge. One key concern that has been voiced is whether RPS policies will offer adequate support to a wide range of renewable energy technologies and applications or whether, alternatively, RPS programs will favor a small number of the currently least-cost forms of renewable energy. This report documents the design of and early experience with state-level RPS programs in the United States that have been specifically tailored to encourage a wider diversity of renewable energy technologies, and solar energy in particular. As shown here, state-level RPS programs specifically designed to support solar have already proven to be an important, albeit somewhat modest, driver for solar energy deployment, and those impacts are projected to continue to build in the coming years. State experience in supporting solar energy with RPS programs is mixed, however, and full compliance with existing requirements has not been achieved. The comparative experiences described herein highlight the opportunities and challenges of applying an RPS to specifically support solar energy, as well as the importance of policy design details to ensuring that program goals are achieved.

  1. Case Study - Minnesota Power - Accelerating Grid Modernization...

    Office of Environmental Management (EM)

    Study-Minnesota Power November 2012 1 SGIG Accelerates Grid Modernization in Minnesota Headquartered in Duluth, Minnesota Power (MP) serves approximately 144,000 customers and ...

  2. Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines Task 2 Final Report T.L. Alleman and R.L. McCormick Milestone Report NREL/MP-540-38643 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Analysis of Coconut-

  3. Microsoft PowerPoint - Quinault Indian Nation Biomass Renewable Energy Opportunities and Strategies [Read-Only]

    Energy Savers [EERE]

    Biomass Renewable Energy Opportunities and Strategies Presented By: Quinault Indian Nation in Partnership with American Community Enrichment, 501c3 Helping Rural Communities Thrive! Quinault Indian Nation 2014 Comprehensive Biomass for Heat Project Strategy Development Project Overview * Identify and confirm Tribal energy needs * Comprehensive review of QIN biomass availability* * Develop a biomass energy vision statement, goals and objectives * Identify and assess viable biomass energy

  4. Renewable Energy Price-Stability Benefits in Utility Green Power Programs

    SciTech Connect (OSTI)

    Bird, L. A.; Cory, K. S.; Swezey, B. G.

    2008-08-01

    This paper examines utility experiences when offering the fixed-price benefits of renewable energy in green pricing programs, including the methods utilized and the impact on program participation. It focuses primarily on utility green pricing programs in states that have not undergone electric industry restructuring.

  5. Illinois Renewable Energy Conference 2015

    Broader source: Energy.gov [DOE]

    The Illinois Renewable Energy Conference will feature plenary speakers and breakout sessions in tracks on policy, technical information, and case studies for wind and other renewable technologies....

  6. WP-02 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-02 Power Rate Case (Updated on May 7, 2004) In May of 2000, the BPA Administrator signed a Record of Decision (ROD) on the 2002 Final Power Rate Proposal for the October 2001...

  7. NREL and Sandia National Laboratories (SNL) Support of Ocean Renewable Power Company's TidGen™ Power System Technology Readiness Advancement Initiative Project

    SciTech Connect (OSTI)

    LiVecchi, Al

    2015-05-07

    This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In funding provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.

  8. Profiles in renewable energy: Case studies of successful utility-sector projects

    SciTech Connect (OSTI)

    Anson, S.; Sinclair, K.; Swezey, B.

    1993-10-01

    As considerations of fuel diversity, environmental concerns, and market uncertainties are increasingly factored into electric utility resource planning, renewable energy technologies are beginning to find their place in the utility resource portfolio. This document profiles 10 renewable energy projects, utilizing six different renewable resources, that were built in the US throughout the 1980s. The resources include: biomass, geothermal, hydropower, photovoltaics, solar thermal, and wind. For each project, the factors that were key to its success and the development issues that it faced are discussed, as are the project`s cost, performance, and environmental impacts and benefits.

  9. Case Study - Glendale Water and Power

    Energy Savers [EERE]

    Glendale Water and Power March 19, 2012 1 A digital photo frame is part of Glendale Water and Power's (GWP's) in-home display pilot that is enabling customers to track their usage ...

  10. Preliminary Evaluation of the Section 1603 Treasury Grant Program for Renewable Power Projects in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Darghouth, Naim

    2010-05-05

    This article evaluates the first year of the Section 1603 Treasury cash grant program, which enables renewable power projects in the U.S. to elect cash grants in lieu of the federal tax credits that are otherwise available. To date, the program has been heavily subscribed, particularly by wind power projects, which had received 86% of the nearly $2.6 billion in grants that had been disbursed as of March 1, 2010. As of that date, 6.2 GW of the 10 GW of new wind capacity installed in the U.S. in 2009 had applied for grants in lieu of production tax credits. Roughly 2.4 GW of this wind capacity may not have otherwise been built in 2009 absent the grant program; this 2.4 GW may have supported approximately 51,600 short-term full-time-equivalent (FTE) gross job-years in the U.S. during the construction phase of these wind projects, and 3,860 longterm FTE gross jobs during the operational phase. The program’s popularity stems from the significant economic value that it provides to renewable power projects, relative to the otherwise available tax credits. Although grants reward investment rather than efficient performance, this evaluation finds no evidence at this time of either widespread “gold-plating” or performance problems.

  11. 2008 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Gelman, Rachel

    2009-07-01

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  12. 2010 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Gelman, Rachel

    2011-10-01

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  13. 2009 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Gelman, Rachel

    2010-08-01

    This Renewable Energy Data Book for 2009 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  14. Case Study - Glendale Water and Power

    Energy Savers [EERE]

    Glendale Water and Power March 19, 2012 1 A digital photo frame is part of Glendale Water and Power's (GWP's) in-home display pilot that is enabling customers to track their usage without having to go online to access the data. Glendale, California Municipal Invests in Smart Grid to Enhance Customer Services and Improve Operational Efficiencies City-owned Glendale Water and Power (GWP) has completed its smart meter installation and is implementing a suite of new offerings to improve operational

  15. Quantifiably secure power grid operation, management, and evolution : a study of uncertainties affecting the grid integration of renewables.

    SciTech Connect (OSTI)

    Gray, Genetha Anne; Watson, Jean-Paul; Silva Monroy, Cesar Augusto; Gramacy, Robert B.

    2013-09-01

    This report summarizes findings and results of the Quantifiably Secure Power Grid Operation, Management, and Evolution LDRD. The focus of the LDRD was to develop decisionsupport technologies to enable rational and quantifiable risk management for two key grid operational timescales: scheduling (day-ahead) and planning (month-to-year-ahead). Risk or resiliency metrics are foundational in this effort. The 2003 Northeast Blackout investigative report stressed the criticality of enforceable metrics for system resiliency - the grid's ability to satisfy demands subject to perturbation. However, we neither have well-defined risk metrics for addressing the pervasive uncertainties in a renewable energy era, nor decision-support tools for their enforcement, which severely impacts efforts to rationally improve grid security. For day-ahead unit commitment, decision-support tools must account for topological security constraints, loss-of-load (economic) costs, and supply and demand variability - especially given high renewables penetration. For long-term planning, transmission and generation expansion must ensure realized demand is satisfied for various projected technological, climate, and growth scenarios. The decision-support tools investigated in this project paid particular attention to tailoriented risk metrics for explicitly addressing high-consequence events. Historically, decisionsupport tools for the grid consider expected cost minimization, largely ignoring risk and instead penalizing loss-of-load through artificial parameters. The technical focus of this work was the development of scalable solvers for enforcing risk metrics. Advanced stochastic programming solvers were developed to address generation and transmission expansion and unit commitment, minimizing cost subject to pre-specified risk thresholds. Particular attention was paid to renewables where security critically depends on production and demand prediction accuracy. To address this concern, powerful filtering techniques for spatio-temporal measurement assimilation were used to develop short-term predictive stochastic models. To achieve uncertaintytolerant solutions, very large numbers of scenarios must be simultaneously considered. One focus of this work was investigating ways of reasonably reducing this number.

  16. Model-Predictive Cascade Mitigation in Electric Power Systems With Storage and Renewables-Part I: Theory and Implementation

    SciTech Connect (OSTI)

    Almassalkhi, MR; Hiskens, IA

    2015-01-01

    A novel model predictive control (MPC) scheme is developed for mitigating the effects of severe line-overload disturbances in electrical power systems. A piece-wise linear convex approximation of line losses is employed to model the effect of transmission line power flow on conductor temperatures. Control is achieved through a receding-horizon model predictive control (MPC) strategy which alleviates line temperature overloads and thereby prevents the propagation of outages. The MPC strategy adjusts line flows by rescheduling generation, energy storage and controllable load, while taking into account ramp-rate limits and network limitations. In Part II of this paper, the MPC strategy is illustrated through simulation of the IEEE RTS-96 network, augmented to incorporate energy storage and renewable generation.

  17. FEMP Renewable Energy Overview

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    This four-page overview describes how Federal agencies can contact the Department of Energy's Federal Energy Management Program (FEMP) to obtain assistance in acquiring renewable energy systems, renewable fuels, and renewable ("green") power for use in their facilities and vehicles. Renewable resources, technologies, and fuels are described, as well as Federal goals for using clean, sustainable renewable energy; the current goal is to supply 2.5% of the Federal Government's energy with renewable sources by 2005. Also included is a description of the resources and technologies themselves and associated benefits.

  18. Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces. The demonstration was one of eight

  19. Innovation, renewable energy, and state investment: Case studies of leading clean energy funds

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark; Milford, Lewis; Porter, Kevin; Clark, Roger

    2002-09-01

    Over the last several years, many U.S. states have established clean energy funds to help support the growth of renewable energy markets. Most often funded by system-benefits charges (SBC), the 15 states that have established such funds are slated to collect nearly $3.5 billion from 1998 to 2012 for renewable energy investments. These clean energy funds are expected to have a sizable impact on the energy future of the states in which the funds are being collected and used. For many of the organizations tapped to administer these funds, however, this is a relatively new role that presents the challenge of using public funds in the most effective and innovative fashion possible. Fortunately, each state is not alone in its efforts; many other U.S. states and a number of countries are undertaking similar efforts. Early lessons are beginning to be learned by clean energy funds about how to effectively target public funds towards creating and building renewable energy markets. A number of innovative programs have already been developed that show significant leadership by U.S. states in supporting renewable energy. It is important that clean energy fund administrators learn from this emerging experience.

  20. Energy Storage for Variable Renewable Energy Resource Integration - A Regional Assessment for the Northwest Power Pool (NWPP)

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Jin, Chunlian; Balducci, Patrick J.; Elizondo, Marcelo A.; Guo, Xinxin; Nguyen, Tony B.; Tuffner, Francis K.; Viswanathan, Vilayanur V.

    2011-03-20

    This paper addresses the following key questions in the discussion on the integration of renewable energy resources in the Pacific Northwest power grid: a) what will be the future balancing requirement to accommodate a simulated expansion of wind energy resources from 3.3 GW in 2008 to 14.4 GW in 2019 in the Northwest Power Pool (NWPP), and b) what are the most cost effective technological solutions for meeting the balancing requirements in the Northwest Power Pool (NWPP). A life-cycle analysis was performed to assess the least-cost technology option for meeting the new balancing requirement. The technologies considered in this study include conventional turbines (CT), sodium sulfur (NaS) batteries, lithium ion (Li-ion) batteries, pumped hydro energy storage (PH), and demand response (DR). Hybrid concepts that combine 2 or more of the technologies above are also evaluated. This analysis was performed with collaboration by the Bonneville Power Administration and funded by the Energy Storage Systems Program of the U.S. Department of Energy.

  1. Financing Home Energy and Renewable Energy Improvements with FHA PowerSaver Loans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01

    This fact sheet is a revision to the PowerSaver Loan Benefits fact sheet from April 2014. It describes how the U.S. Department of Housing and Urban Development (HUD) PowerSaver Loan Program offers borrowers low-cost FHA-insured loans to make energy-saving improvements to their homes.

  2. Power Electronics Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Waye, Scot

    2015-06-10

    Presentation containing an update for the Power Electronics Thermal Management project in the Electric Drive Train task funded by the Vehicle Technology Office of DOE. This presentation outlines the purpose, plan, and results of research thus far for cooling and material selection strategies to manage heat in power electronic assemblies such as inverters, converters, and chargers.

  3. 2012 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2013-10-01

    This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  4. 2013 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Esterly, S.

    2014-12-01

    This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  5. Tribal Renewable Energy Webinar: EPA Clean Power Plan: What Tribes Need to Know

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) will present on the final rule for the Clean Power Plan and the proposed Federal Plan and Model Rules with a focus on what tribes need to know.

  6. An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Wan, Y. H.; Hummon, M.; Mehos, M.

    2013-04-01

    This analysis evaluates CSP with TES in a scenario where California derives 33% of its electricity from renewable energy sources. It uses a commercial grid simulation tool to examine the avoided operational and capacity costs associated with CSP and compares this value to PV and a baseload generation with constant output. Overall, the analysis demonstrates several properties of dispatchable CSP, including the flexibility to generate during periods of high value and avoid generation during periods of lower value. Of note in this analysis is the fact that significant amount of operational value is derived from the provision of reserves in the case where CSP is allowed to provide these services. This analysis also indicates that the 'optimal' configuration of CSP could vary as a function of renewable penetration, and each configuration will need to be evaluated in terms of its ability to provide dispatchable energy, reserves, and firm capacity. The model can be used to investigate additional scenarios involving alternative technology options and generation mixes, applying these scenarios within California or in other regions of interest.

  7. Exploring the Potential Business Case for Synergies Between Natural Gas and Renewable Energy

    SciTech Connect (OSTI)

    Cochran, J.; Zinaman, O.; Logan, J.; Arent, D.

    2014-02-01

    Natural gas and renewable energy each contribute to economic growth, energy independence, and carbon mitigation, sometimes independently and sometimes collectively. Often, natural gas and renewables are considered competitors in markets, such as those for bulk electricity. This paper attempts to address the question, 'Given near- and long-term needs for abundant, cleaner energy sources and decarbonization, how can more compelling business models be created so that these two domestic forms of energy work in greater concert?' This paper explores revenue opportunities that emerge from systems-level perspectives in 'bulk energy' (large-scale electricity and natural gas production, transmission, and trade) and four 'distribution edge' subsectors: industrial, residential, commercial, and transportation end uses.

  8. Chile-NREL Renewable Energy Center and CSP Activities | Open...

    Open Energy Info (EERE)

    Renewable Energy Center and CSP Activities Jump to: navigation, search Logo: Chile's Renewable Energy Center and Concentrating Solar Power Name Chile's Renewable Energy Center and...

  9. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  10. Wind Power Siting: Public Acceptance and Land Use; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Tegen, Suzanne

    2015-06-17

    Suzanne Tegen presented this information as part of the June 17, 2015 WINDExchange webinar: Overcoming Wind Siting Challenges III: Public Acceptance and Land Use. This presentation provides an overview of current NREL research related to wind energy deployment considerations, the DOE Wind Vision as it relates to public acceptance and land use, why public acceptance of wind power matters, where the U.S. wind resource is best, and how those rich resource areas overlay with population centers.

  11. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Meintz, A.; Markel, T.; Burton, E.; Wang, L.; Gonder, J.; Brooker, A.

    2015-06-05

    Analysis has been performed on the Transportation Secure Data Center (TSDC) warehouse of collected GPS second-by-second driving profile data of vehicles in the Atlanta, Chicago, Fresno, Kansas City, Los Angeles, Sacramento, and San Francisco Consolidated Statistical Areas (CSAs) to understand in-motion wireless power transfer introduction scenarios. In this work it has been shown that electrification of 1% of road miles could reduce fuel use by 25% for Hybrid Electric Vehicles (HEVs) in these CSAs. This analysis of strategically located infrastructure offers a promising approach to reduced fuel consumption; however, even the most promising 1% of road miles determined by these seven analysis scenarios still represent an impressive 2,700 miles of roadway to electrify. Therefore to mitigate the infrastructure capital costs, integration of the grid-tied power electronics in the Wireless Power Transfer (WPT) system at the DC-link to photovoltaic and/or battery storage is suggested. The integration of these resources would allow for the hardware to provide additional revenue through grid services at times of low traffic volumes and conversely at time of high traffic volumes these resources could reduce the peak demand that the WPT system would otherwise add to the grid.

  12. Biomass Renewable Energy Opportunities and Strategies | Department...

    Office of Environmental Management (EM)

    Biomass Renewable Energy Opportunities and Strategies Biomass Renewable Energy Opportunities and Strategies May 30, 2014 - 1:39pm Addthis July 9, 2014 Bonneville Power ...

  13. American Renewables LLC | Open Energy Information

    Open Energy Info (EERE)

    Renewables LLC Jump to: navigation, search Name: American Renewables LLC Place: Boston, Massachusetts Sector: Biomass Product: US developer of biomass-fueled power generating...

  14. Renewable Energy Technologies for Federal Projects | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable energy technologies (from left to right): geothermal, hydropower, wind, concentrating solar power, and biomass. Renewable energy technologies (from left to right): ...

  15. Community Renewable Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community renewable programs provide community members with a renewable alternative to conventional energy sources in the form of power andor financial benefit generated by ...

  16. Liberty Green Renewables LLC | Open Energy Information

    Open Energy Info (EERE)

    Green Renewables LLC Jump to: navigation, search Name: Liberty Green Renewables, LLC Place: Georgetown, Indiana Zip: 47122 Sector: Biomass Product: Biomass power plant developer...

  17. Many Pathways to Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R.

    2008-02-01

    Presentation on the paths to renewable hydrogen presented by Robert Remick at the 2008 PowerGen: Renewable Energy and Fuels 2008 conference.

  18. 2011 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2012-10-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  19. 2009 Renewable Energy Data Book, August 2010

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This Renewable Energy Data Book for 2009 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  20. 2010 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2011-10-01

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  1. Solar Powering Your Community: A Guide for Local Governments (Book), Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    DOE designed this guide—Solar Powering Your Community: A Guide for Local Governments—to assist local government officials and stakeholders in designing and implementing strategic local solar plans. The 2011 edition contains the most recent lessons and successes from the 25 Solar America Cities and other communities promoting solar energy. Because DOE recognizes that there is no one path to solar market development, this guide introduces a range of policy and program options that can help a community build a local solar infrastructure.

  2. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Renewable Electricity Profile 2010 North Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,674 100.0 Total Net Summer Renewable Capacity 2,499 9.0 Geothermal - - Hydro Conventional 1,956 7.1 Solar 35 0.1 Wind - - Wood/Wood Waste 481 1.7

  3. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Pennsylvania Renewable Electricity Profile 2010 Pennsylvania profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 45,575 100.0 Total Net Summer Renewable Capacity 1,984 4.4 Geothermal - - Hydro Conventional 747 1.6 Solar 9 * Wind 696 1.5 Wood/Wood Waste 108 0.2

  4. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Rhode Island Renewable Electricity Profile 2010 Rhode Island profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,782 100.0 Total Net Summer Renewable Capacity 28 1.6 Geothermal - - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1

  5. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Renewable Electricity Profile 2010 South Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 23,982 100.0 Total Net Summer Renewable Capacity 1,623 6.8 Geothermal - - Hydro Conventional 1,340 5.6 Solar - - Wind - - Wood/Wood Waste 255 1.1

  6. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Dakota Renewable Electricity Profile 2010 South Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - -

  7. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Tennessee Renewable Electricity Profile 2010 Tennessee profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,417 100.0 Total Net Summer Renewable Capacity 2,847 13.3 Geothermal - - Hydro Conventional 2,624 12.3 Solar - - Wind 29 0.1 Wood/Wood Waste 185 0.9

  8. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Vermont Renewable Electricity Profile 2010 Vermont profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,128 100.0 Total Net Summer Renewable Capacity 408 36.2 Geothermal - - Hydro Conventional 324 28.7 Solar - - Wind 5 0.5 Wood/Wood Waste 76 6.7 MSW/Landfill Gas 3

  9. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wisconsin Renewable Electricity Profile 2010 Wisconsin profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 17,836 100.0 Total Net Summer Renewable Capacity 1,267 7.1 Geothermal - - Hydro Conventional 492 2.8 Solar - - Wind 449 2.5 Wood/Wood Waste 239 1.3

  10. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming Renewable Electricity Profile 2010 Wyoming profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,986 100.0 Total Net Summer Renewable Capacity 1,722 21.6 Geothermal - - Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  11. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Renewable Electricity Profile 2010 Alabama profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill

  12. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Renewable Electricity Profile 2010 Alaska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,067 100.0 Total Net Summer Renewable Capacity 422 20.4 Geothermal - - Hydro Conventional 414 20.1 Solar - - Wind 7 0.4 Wood/Wood Waste - - MSW/Landfill Gas - -

  13. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Renewable Electricity Profile 2010 Arizona profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,392 100.0 Total Net Summer Renewable Capacity 2,901 11.9 Geothermal - - Hydro Conventional 2,720 10.1 Solar 20 - Wind 128 - Wood/Wood Waste 583 1.8

  14. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Renewable Electricity Profile 2010 Connecticut profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,284 100.0 Total Net Summer Renewable Capacity 281 3.4 Geothermal - - Hydro Conventional 122 1.5 Solar - - Wind - -

  15. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Renewable Electricity Profile 2010 Delaware profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,389 100.0 Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - Wind 2 0.1 Wood/Wood

  16. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Renewable Electricity Profile 2010 District of Columbia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source - Primary Renewable Energy Generation Source - Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 790 100.0 Total Net Summer Renewable Capacity - - Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  17. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Renewable Electricity Profile 2010 Georgia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 36,636 100.0 Total Net Summer Renewable Capacity 2,689 7.3 Geothermal - - Hydro Conventional 2,052 5.6 Solar - - Wind - - Wood/Wood Waste 617 1.7 MSW/Landfill Gas

  18. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Renewable Electricity Profile 2010 Kansas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,543 100.0 Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar - - Wind 1,072 8.5 Wood/Wood Waste - - MSW/Landfill Gas 7 0.1 Other Biomass - -

  19. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Renewable Electricity Profile 2010 Louisiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,744 100.0 Total Net Summer Renewable Capacity 517 1.9 Geothermal - - Hydro Conventional 192 0.7 Solar - - Wind - - Wood/Wood Waste 311 1.2 MSW/Landfill Gas - -

  20. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Renewable Electricity Profile 2010 Maryland profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,516 100.0 Total Net Summer Renewable Capacity 799 6.4 Geothermal - - Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 Wood/Wood Waste 3 * MSW/Landfill Gas

  1. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Renewable Electricity Profile 2010 Massachusetts profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,697 100.0 Total Net Summer Renewable Capacity 566 4.1 Geothermal - - Hydro Conventional 262 1.9 Solar 4 * Wind 10 0.1 Wood/Wood

  2. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Renewable Electricity Profile 2010 Mississippi profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 15,691 100.0 Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste 235 1.5 MSW/Landfill Gas - -

  3. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Renewable Electricity Profile 2010 Missouri profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,739 100.0 Total Net Summer Renewable Capacity 1,030 4.7 Geothermal - - Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 Wood/Wood Waste - - MSW/Landfill Gas

  4. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Renewable Electricity Profile 2010 Montana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 5,866 100.0 Total Net Summer Renewable Capacity 3,085 52.6 Geothermal - - Hydro Conventional 2,705 46.1 Solar - - Wind 379 6.5 Wood/Wood Waste - - MSW/Landfill

  5. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Renewable Electricity Profile 2010 Nebraska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,857 100.0 Total Net Summer Renewable Capacity 443 5.6 Geothermal - - Hydro Conventional 278 3.5 Solar - - Wind 154 2.0 Wood/Wood Waste - - MSW/Landfill Gas 6

  6. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Renewable Electricity Profile 2010 New Hampshire profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 4,180 100.0 Total Net Summer Renewable Capacity 671 16.1 Geothermal - - Hydro Conventional 489 11.7 Solar - - Wind 24 0.6 Wood/Wood Waste 129 3.1

  7. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Renewable Electricity Profile 2010 New Jersey profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 18,424 100.0 Total Net Summer Renewable Capacity 230 1.2 Geothermal - - Hydro Conventional 4 * Solar 28 0.2 Wind 8 * Wood/Wood

  8. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Renewable Electricity Profile 2010 North Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,674 100.0 Total Net Summer Renewable Capacity 2,499 9.0 Geothermal - - Hydro Conventional 1,956 7.1 Solar 35 0.1 Wind - - Wood/Wood Waste 481 1.7

  9. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Renewable Electricity Profile 2010 Pennsylvania profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 45,575 100.0 Total Net Summer Renewable Capacity 1,984 4.4 Geothermal - - Hydro Conventional 747 1.6 Solar 9 * Wind 696 1.5 Wood/Wood Waste 108 0.2

  10. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Renewable Electricity Profile 2010 Rhode Island profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,782 100.0 Total Net Summer Renewable Capacity 28 1.6 Geothermal - - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1

  11. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Renewable Electricity Profile 2010 South Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 23,982 100.0 Total Net Summer Renewable Capacity 1,623 6.8 Geothermal - - Hydro Conventional 1,340 5.6 Solar - - Wind - - Wood/Wood Waste 255 1.1

  12. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Renewable Electricity Profile 2010 South Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - -

  13. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Renewable Electricity Profile 2010 Tennessee profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,417 100.0 Total Net Summer Renewable Capacity 2,847 13.3 Geothermal - - Hydro Conventional 2,624 12.3 Solar - - Wind 29 0.1 Wood/Wood Waste 185 0.9

  14. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Renewable Electricity Profile 2010 Vermont profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,128 100.0 Total Net Summer Renewable Capacity 408 36.2 Geothermal - - Hydro Conventional 324 28.7 Solar - - Wind 5 0.5 Wood/Wood Waste 76 6.7 MSW/Landfill Gas 3

  15. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Renewable Electricity Profile 2010 Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 24,109 100.0 Total Net Summer Renewable Capacity 1,487 6.2 Geothermal - - Hydro Conventional 866 3.6 Solar - - Wind - - Wood/Wood Waste 331 1.4 MSW/Landfill Gas

  16. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Renewable Electricity Profile 2010 West Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 16,495 100.0 Total Net Summer Renewable Capacity 715 4.3 Geothermal - - Hydro Conventional 285 1.7 Solar - - Wind 431 2.6 Wood/Wood Waste - - MSW/Landfill Gas - -

  17. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Renewable Electricity Profile 2010 Wisconsin profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 17,836 100.0 Total Net Summer Renewable Capacity 1,267 7.1 Geothermal - - Hydro Conventional 492 2.8 Solar - - Wind 449 2.5 Wood/Wood Waste 239 1.3

  18. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Renewable Electricity Profile 2010 Wyoming profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,986 100.0 Total Net Summer Renewable Capacity 1,722 21.6 Geothermal - - Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  19. New Clean Renewable Energy Bonds

    Broader source: Energy.gov [DOE]

    New clean renewable energy bonds (CREBs) are tax credit bonds, the proceeds of which are used for capital expenditures incurred by governmental bodies (including states and municipalities), public power providers, or cooperative electric companies for a "qualified renewable energy facility."

  20. NREL's Water Power Software Makes a Splash; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    WEC-Sim is a DOE-funded software tool being jointly developed by NREL and SNL. WEC-Sim computationally models wave energy converters (WEC), devices that generate electricity using movement of water systems such as oceans, rivers, etc. There is great potential for WECs to generate electricity, but as of yet, the industry has yet to establish a commercially viable concept. Modeling, design, and simulations tools are essential to the successful development of WECs. Commercial WEC modeling software tools can't be modified by the user. In contrast, WEC-Sim is a free, open-source, and flexible enough to be modified to meet the rapidly evolving needs of the WEC industry. By modeling the power generation performance and dynamic loads of WEC designs, WEC-Sim can help support the development of new WEC devices by optimizing designs for cost of energy and competitiveness. By being easily accessible, WEC-Sim promises to help level the playing field in the WEC industry. Importantly, WEC-Sim is also excellent at its job! In 2014, WEC-Sim was used in conjunction with NREL’s FAST modeling software to win a hydrodynamic modeling competition. WEC-Sim and FAST performed very well at predicting the motion of a test device in comparison to other modeling tools. The most recent version of WEC-Sim (v1.1) was released in April 2015.

  1. The Business Case for Fuel Cells 2015: Powering Corporate Sustainability |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: Powering Corporate Sustainability The Business Case for Fuel Cells 2015: Powering Corporate Sustainability This report, written and compiled by the Fuel Cell and Hydrogen Energy Association (FCHEA) with support from the Fuel Cell Technologies Office, provides an overview of private sector fuel cell installations at U.S. businesses, as well as highlights of international deployments up through October 1, 2015. FCHEA estimates, over the past few decades, hundreds of

  2. An Integrated Risk Framework for Gigawatt-scale Deployments of Renewable Energy: The U.S. Wind Energy Case

    SciTech Connect (OSTI)

    Ram, B.

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable wind energy requires a new way of evaluating potential environmental and human impacts. This paper explores an integrated risk framework for renewable wind energy siting decisionmaking.

  3. Exploration Case Studies on OpenEI; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Young, K. R.

    2015-05-11

    This poster details the goal of developing a database of geothermal case studies for future exploration efforts in new areas. The goal of this effort is to develop a template for geothermal case studies in a crowd-sourced platform to allow contributions from the entire geothermal community, and this should be broken down into queriable properties in order to be more helpful.

  4. Feasibility Study of Biopower in East Helena, Montana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Moriarty, K.

    2013-02-01

    The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former American Smelting and Refining Company (Asarco) smelter in East Helena, Montana, was selected for a feasibility study under the initiative. Biomass was chosen as the renewable energy resource based on the wood products industry in the area. Biopower was selected as the technology based on Montana's renewable portfolio standard (RPS) requiring utilities to purchase renewable power.

  5. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy The WIPP Site Holds Promise as an Ideal Source of Renewable Energy Encompassing 16 square miles of open Chihuahuan desert with abundant sunshine and minimal ...

  6. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  7. Renewable energy projects approved

    Broader source: Energy.gov [DOE]

    Two renewable energy projects representing a $100 million-plus investment by Las Vegas-based Nevada Power Co.—a cost likely to be covered over time by the utility's customers—were approved Wednesday by state regulators.

  8. Renewable Energy Finance Workshop

    Open Energy Info (EERE)

    Agenda - December 10 th , 2012 Renewable Energy Finance Workshop 12:00 - 12:15 WELCOME AND INTRODUCTIONS- Richard Kauffman 12:15 - 12:25 PRESIDENTIAL PRIORITIES - Jon Powers & Rick...

  9. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewal Individual Permit Renewal Application The Permit expires March 31, 2014 and existing permit conditions will be in effect until a new permit is issued. The Permittees submitted a renewal application to EPA on March 27, 2014. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Individual Permit Renewal Application February 10, 2015 NPDES Permit No. NM0030759, Supplemental Information for Permit Renewal Application

  10. Solar is Saving Energy for the Alfred A. Arraj U.S. Courthouse: Achieving Results with Renewable Energy in the Federal Government Case Study

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    Solar is Saving Energy for the Alfred A. Arraj U.S. Courthouse is a case study that describes how building-integrated photovoltaic systems can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

  11. Catalyst Renewables | Open Energy Information

    Open Energy Info (EERE)

    Renewables Place: Dallas, Texas Zip: 75204 Product: Pursue projects with low technical risk, stable fuel supply and prices, and long-term power purchase agreements References:...

  12. Tips: Renewable Energy | Department of Energy

    Office of Environmental Management (EM)

    Tips: Renewable Energy Tips: Renewable Energy Use solar power to heat water and more Today's solar power is highly efficient. You can buy systems to heat your water, provide...

  13. Power/energy use cases for high performance computing.

    SciTech Connect (OSTI)

    Laros, James H.,; Kelly, Suzanne M; Hammond, Steven; Elmore, Ryan; Munch, Kristin

    2013-12-01

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  14. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    Notes: In July 2015, the Tenth Circuit Court of Appeals upheld the constitutionality Colorado's renewable energy standard (Energy & Environment Legal, et al v. Epel, et al, case number 14-1216). 

  15. Integrated Risk Framework for Gigawatt-Scale Deployments of Renewable Energy: The U.S. Wind Energy Case; October 2009

    SciTech Connect (OSTI)

    Ram, B.

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable energy on private and public lands, along our coasts, on the Outer Continental Shelf (OCS), and in the Great Lakes requires a new way of evaluating potential environmental and human impacts. The author argues that deployment of renewables requires a framework risk paradigm that underpins effective future siting decisions and public policies.

  16. Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation

    SciTech Connect (OSTI)

    Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

    2013-05-01

    This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

  17. Case Studies

    Broader source: Energy.gov [DOE]

    The following case studies are examples of integrating renewable energy into Federal new construction and major renovation projects. Additional renewable energy case studies are also available.

  18. Energy Efficiency, Renewables, Advanced Transmission and Distribution

    Energy Savers [EERE]

    Technologies (2008) | Department of Energy Renewables, Advanced Transmission and Distribution Technologies (2008) Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008) PDF icon Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008) More Documents & Publications Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Nuclear Power Facilities (2008)

  19. Solectria Renewables LLC | Open Energy Information

    Open Energy Info (EERE)

    Massachusetts Zip: 01843 Region: Greater Boston Area Sector: Solar Product: Power electronics and system for renewable energy power generation Website: www.solren.com...

  20. Renewable Energy Innovations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovations We are applying our expertise in chemical and materials science to provide innovations in renewable energy generation, storage, and use. 4 08 FACT SHEET Renewable Energy Innovations 4 08 Meeting future energy needs in an environmentally responsible way requires scientific breakthroughs to efficiently generate, store, transmit, and use large amounts of power. We need cost-effective methods for capturing and converting energy from the sun, and because of the intermittent nature of

  1. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study ...

  2. Chu in Ireland: A Case Study in Wind Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ireland: A Case Study in Wind Power Chu in Ireland: A Case Study in Wind Power November 5, ... Secretary Chu is currently in Ireland, a country which shares many of the same energy ...

  3. Navajo Nation Navajo-Hopi Land Commission Feasibility Study for 4,000 MW of Renewable Power at the Paragon-Bisti Ranch

    Energy Savers [EERE]

    4,000 MW of Renewable Power at the Paragon-Bisti Ranch DOE TEP Review, Golden, CO March 25, 2014   THE NAVAJO-HOPI LAND SETTLEMENT ACT  Navajo-Hopi Land Settlement Act passed 1974.  Required relocation of Navajo and Hopi families living on land partitioned to other tribe.  Set aside certain lands for the benefit of relocatees. HISTORY  HISTORY   Paragon-Bisti Ranch is one of the selected lands :  Located in northwestern New Mexico.  22,000 acres of land  Benefits

  4. Biomass Support for the China Renewable Energy Law: Feasibility Report -- Agricultural and Forestry Solid Wastes Power Generation Demonstration, December 2005

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    Subcontractor report on feasibility of using agricultural and forestry wastes for power generation in China

  5. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    California Renewable Electricity Profile 2010 California full profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 67,328 100.0 Total Net Summer Renewable Capacity 16,460 24.4 Geothermal 2,004 3.0 Hydro Conventional 10,141 15.1 Solar 475 0.7 Wind 2,812 4.2 Wood/Wood

  6. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    York Renewable Electricity Profile 2010 New York profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 39,357 100.0 Total Net Summer Renewable Capacity 6,033 15.3 Geothermal - - Hydro Conventional 4,314 11.0 Solar - - Wind 1,274 3.2 Wood/Wood Waste 86 0.2

  7. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Ohio Renewable Electricity Profile 2010 Ohio profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 33,071 100.0 Total Net Summer Renewable Capacity 231 0.7 Geothermal - - Hydro Conventional 101 0.3 Solar 13 * Wind 7 * Wood/Wood Waste 60 0.2 MSW/Landfill Gas 48 0.1

  8. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Oklahoma Renewable Electricity Profile 2010 Oklahoma profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass

  9. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Oregon Renewable Electricity Profile 2010 Oregon profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,261 100.0 Total Net Summer Renewable Capacity 10,684 74.9 Geothermal - - Hydro Conventional 8,425 59.1 Solar - - Wind 2,004 14.1 Wood/Wood Waste 221 1.6

  10. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Texas Renewable Electricity Profile 2010 Texas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 108,258 100.0 Total Net Summer Renewable Capacity 10,985 10.1 Geothermal - - Hydro Conventional 689 0.6 Solar 14 * Wind 9,952 9.2 Wood/Wood Waste 215 0.2 MSW/Landfill Gas 88 0.1 Other Biomass 28

  11. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    United States Renewable Electricity Profile 2010 United States profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,039,137 100.0 Total Net Summer Renewable Capacity 132,711 12.8 Geothermal 2,405 0.2 Hydro Conventional 78,825 7.6 Solar 941 0.1 Wind 39,135 3.8

  12. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Washington Renewable Electricity Profile 2010 Washington profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 30,478 100.0 Total Net Summer Renewable Capacity 23,884 78.4 Geothermal - - Hydro Conventional 21,181 69.5 Solar 1 * Wind 2,296 7.5 Wood/Wood Waste 368 1.2

  13. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Renewable Electricity Profile 2010 California full profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 67,328 100.0 Total Net Summer Renewable Capacity 16,460 24.4 Geothermal 2,004 3.0 Hydro Conventional 10,141 15.1 Solar 475 0.7 Wind 2,812 4.2 Wood/Wood

  14. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Renewable Electricity Profile 2010 Colorado profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,777 100.0 Total Net Summer Renewable Capacity 2,010 14.6 Geothermal - - Hydro Conventional 662 4.8 Solar 41 0.3 Wind 1,294 9.4 Wood/Wood Waste - - MSW/Landfill Gas 3 * Other Biomass 10

  15. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Renewable Electricity Profile 2010 Florida profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 59,222 100.0 Total Net Summer Renewable Capacity 1,182 2.0 Geothermal - - Hydro Conventional 55 0.1 Solar 123 0.2 Wind - - Wood/Wood Waste 344 0.6

  16. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Renewable Electricity Profile 2010 Hawaii profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Other Biomass Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,536 100.0 Total Net Summer Renewable Capacity 340 13.4 Geothermal 31 1.2 Hydro Conventional 24 0.9 Solar 2 0.1 Wind 62 2.4 Wood/Wood Waste - - MSW/Landfill Gas 60 2.4 Other Biomass

  17. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho Renewable Electricity Profile 2010 Idaho profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,990 100.0 Total Net Summer Renewable Capacity 3,140 78.7 Geothermal 10 0.3 Hydro Conventional 2,704 67.8 Solar - - Wind 352 8.8 Wood/Wood Waste 68 1.7 MSW/Landfill

  18. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Renewable Electricity Profile 2010 Illinois profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 44,127 100.0 Total Net Summer Renewable Capacity 2,112 4.8 Geothermal - - Hydro Conventional 34 0.1 Solar 9 * Wind 1,946 4.4 Wood/Wood Waste - - MSW/Landfill Gas 123 0.3 Other Biomass - -

  19. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana Renewable Electricity Profile 2010 Indiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,638 100.0 Total Net Summer Renewable Capacity 1,452 5.3 Geothermal - - Hydro Conventional 60 0.2 Solar - - Wind 1,340 4.8 Wood/Wood Waste - - MSW/Landfill Gas 53 0.2 Other Biomass s *

  20. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Renewable Electricity Profile 2010 Iowa profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,592 100.0 Total Net Summer Renewable Capacity 3,728 25.5 Geothermal - - Hydro Conventional 144 1.0 Solar - - Wind 3,569 24.5 Wood/Wood Waste - - MSW/Landfill Gas 11 0.1 Other Biomass 3 *

  1. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Renewable Electricity Profile 2010 Maine profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 4,430 100.0 Total Net Summer Renewable Capacity 1,692 38.2 Geothermal - - Hydro Conventional 738 16.6 Solar - - Wind 263 5.9 Wood/Wood Waste 600 13.6 MSW/Landfill Gas

  2. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Renewable Electricity Profile 2010 Michigan profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 29,831 100.0 Total Net Summer Renewable Capacity 807 2.7 Geothermal - - Hydro Conventional 237 0.8 Solar - - Wind 163 0.5 Wood/Wood Waste 232 0.8 MSW/Landfill Gas

  3. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Renewable Electricity Profile 2010 Minnesota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,715 100.0 Total Net Summer Renewable Capacity 2,588 17.6 Geothermal - - Hydro Conventional 193 1.3 Solar - - Wind 2,009 13.7 Wood/Wood Waste 177 1.2 MSW/Landfill Gas 134 0.9 Other

  4. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Renewable Electricity Profile 2010 Nevada profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 11,421 100.0 Total Net Summer Renewable Capacity 1,507 13.2 Geothermal 319 2.8 Hydro Conventional 1,051 9.2 Solar 137 1.2 Wind - - Wood/Wood Waste - - MSW/Landfill

  5. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Renewable Electricity Profile 2010 New Mexico profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,130 100.0 Total Net Summer Renewable Capacity 818 10.1 Geothermal - - Hydro Conventional 82 1.0 Solar 30 0.4 Wind 700 8.6 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 6 0.1

  6. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Renewable Electricity Profile 2010 New York profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 39,357 100.0 Total Net Summer Renewable Capacity 6,033 15.3 Geothermal - - Hydro Conventional 4,314 11.0 Solar - - Wind 1,274 3.2 Wood/Wood Waste 86 0.2

  7. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Renewable Electricity Profile 2010 North Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 6,188 100.0 Total Net Summer Renewable Capacity 1,941 31.4 Geothermal - - Hydro Conventional 508 8.2 Solar - - Wind 1,423 23.0 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 10

  8. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Renewable Electricity Profile 2010 Ohio profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 33,071 100.0 Total Net Summer Renewable Capacity 231 0.7 Geothermal - - Hydro Conventional 101 0.3 Solar 13 * Wind 7 * Wood/Wood Waste 60 0.2 MSW/Landfill Gas 48 0.1

  9. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Renewable Electricity Profile 2010 Oklahoma profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass

  10. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon Renewable Electricity Profile 2010 Oregon profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,261 100.0 Total Net Summer Renewable Capacity 10,684 74.9 Geothermal - - Hydro Conventional 8,425 59.1 Solar - - Wind 2,004 14.1 Wood/Wood Waste 221 1.6

  11. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Renewable Electricity Profile 2010 Texas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 108,258 100.0 Total Net Summer Renewable Capacity 10,985 10.1 Geothermal - - Hydro Conventional 689 0.6 Solar 14 * Wind 9,952 9.2 Wood/Wood Waste 215 0.2 MSW/Landfill Gas 88 0.1 Other Biomass 28

  12. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Renewable Electricity Profile 2010 Utah profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,497 100.0 Total Net Summer Renewable Capacity 528 7.0 Geothermal 42 0.6 Hydro Conventional 255 3.4 Solar - - Wind 222 3.0 Wood/Wood Waste - - MSW/Landfill Gas 9 0.1

  13. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington Renewable Electricity Profile 2010 Washington profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 30,478 100.0 Total Net Summer Renewable Capacity 23,884 78.4 Geothermal - - Hydro Conventional 21,181 69.5 Solar 1 * Wind 2,296 7.5 Wood/Wood Waste 368 1.2

  14. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    United States Renewable Electricity Profile 2010 United States profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,039,137 100.0 Total Net Summer Renewable Capacity 132,711 12.8 Geothermal 2,405 0.2 Hydro Conventional 78,825 7.6 Solar 941 0.1 Wind 39,135 3.8

  15. PowerOptions RFP

    Broader source: Energy.gov [DOE]

    PowerOptions seeks proposals from qualified and experienced renewable energy project developers interested in providing renewable energy and Renewable Energy Credit (RECs) generated from renewable energy projects located in or deliverable to the ISO-NE.

  16. Office of Energy Efficiency & Renewable Energy Video Gallery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Energy Efficiency & Renewable Energy Video Gallery Office of Energy Efficiency & Renewable Energy Video Gallery Energy 101: Concentrating Solar Power Energy 101: Wind...

  17. Renewable Electricity Futures: Operational Analysis of the Western...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of integrating large amounts of renewable electricity generation into the U.S. power system (Mai et al. 2012). RE Futures examined renewable energy resources, technical issues...

  18. Colorado Boosts its Renewable Energy Requirement to 30% by 2020

    Broader source: Energy.gov [DOE]

    Colorado has increased its renewable energy standard to require large utilities to obtain 30% of their power from renewable sources by 2020.

  19. Renewable Energy

    Broader source: Energy.gov [DOE]

    The team facilitates the use of renewable energy sources, as deemed appropriate for LM operations and approved by LM, as defined in:

  20. Renewable Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Fuels 5 th Annual Green Technologies Conference IEEE IEEE Ch IEEE IEEE H l Helena L L. Chum April 5 April 5 th 2013 , 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Outline * Renewable Fuels Renewable Fuels * Biomass and Bioenergy Today C di i i i i /d l i * Commoditization existing/developing * Sustainability y Considerations to Imp prove Agriculture and

  1. Modeling Photovoltaic Module-Level Power Electronics in the System Advisor Model; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such as DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.

  2. Renew Services Ltd | Open Energy Information

    Open Energy Info (EERE)

    in Fife, Renew is now exploring projects across Scotland, mostly in community combined heat and power (CHP) and wind. References: Renew Services Ltd1 This article is a stub. You...

  3. WP-07 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings & Workshops Rate Case Parties Web Site WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  4. Green Power Purchase Plan

    Broader source: Energy.gov [DOE]

    Class I renewable energy resources include solar, wind, new sustainable biomass, landfill gas, fuel cells (using renewable or non-renewable fuels), ocean thermal power, wave or tidal power, low...

  5. Hawkeye Renewables formerly Midwest Renewables | Open Energy...

    Open Energy Info (EERE)

    (formerly Midwest Renewables) Place: Iowa Falls, Iowa Zip: 50126 Product: Midwest bioethanol producer References: Hawkeye Renewables (formerly Midwest Renewables)1 This...

  6. Renewables Portfolio Standards: What Are We Learning? | Department of

    Energy Savers [EERE]

    Energy Renewables Portfolio Standards: What Are We Learning? Renewables Portfolio Standards: What Are We Learning? Renewables Portfolio Standards: 13 states have enacted RPS policies, which obligate suppliers to deliver a certain amount of renewable energy. Renewable Energy Funds: 15 states have set-aside funds to financially support renewable energy sources. Green Power Markets: Utility green pricing programs, competitive green power markets, and REC marketers have all emerged. Tax

  7. Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaic R&D to Commercial Renewable Power Generation from Solar Energy Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power Generation from Solar ...

  8. PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable...

    Office of Scientific and Technical Information (OSTI)

    An Analysis of the Choice Facing Renewable Power Projects in the United States Renewable power technologies are inherently capital-intensive, often (but not always) with relatively ...

  9. 2007 Wholesale Power Rate Case Initial Proposal : Revenue Requirement Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01

    The purpose of this Study is to establish the level of revenues from wholesale power rates necessary to recover, in accordance with sound business principles, the Federal Columbia River Power System (FCRPS) costs associated with the production, acquisition, marketing, and conservation of electric power. The generation revenue requirement includes: recovery of the Federal investment in hydro generation, fish and wildlife and conservation costs; Federal agencies' operations and maintenance (O&M) expenses allocated to power; capitalized contract expenses associated with non-Federal power suppliers such as Energy Northwest (EN); other power purchase expenses, such as short-term power purchases; power marketing expenses; cost of transmission services necessary for the sale and delivery of FCRPS power; and all other generation-related costs incurred by the Administrator pursuant to law.

  10. Feasibility Study of Economics and Performance of Biomass Power Generation at the Former Farmland Industries Site in Lawrence, Kansas. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Tomberlin, G.; Mosey, G.

    2013-03-01

    Under the RE-Powering America's Land initiative, the U.S. Environmental Protection Agency (EPA) provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of biomass renewable energy generation at the former Farmland Industries site in Lawrence, Kansas. Feasibility assessment team members conducted a site assessment to gather information integral to this feasibility study. Information such as biomass resources, transmission availability, on-site uses for heat and power, community acceptance, and ground conditions were considered.

  11. LCOEs and Renewables

    Gasoline and Diesel Fuel Update (EIA)

    Victor Niemeyer Program Manager, Energy and Environmental Policy Analysis and Company Strategy Program EIA LCOE/LACE Workshop July 25, 2013 LCOEs and Renewables 2 © 2013 Electric Power Research Institute, Inc. All rights reserved. EPRI Generation Options Report Provides Excellent Example of LCOE Use By Robin Bedillion of EPRI's Strategic Energy Analysis Group Reference: EPRI Report 1026656 (free from EPRI.com, search for "1026656") 3 © 2013 Electric Power Research Institute, Inc. All

  12. Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus - Case Study

    SciTech Connect (OSTI)

    2013-03-29

    Case study of Thermal Energy Corporation (TECO) demonstrating a high-efficiency combined heat and power (CHP) system at Texas Medical Center in Houston, Texas

  13. Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus- Case Study, 2013

    Broader source: Energy.gov [DOE]

    Case study of Thermal Energy Corporation (TECO) demonstrating a high-efficiency combined heat and power (CHP) system at Texas Medical Center in Houston, Texas

  14. The Impact of Distributed Wind on Bulk Power System Operations in ISO-NE (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Wind on Bulk Power System Operations in ISO-NE 13 th Wind Integration Workshop Carlo Brancucci Martinez-Anido, Bri-Mathias Hodge, and David Palchak (NREL); and Jari Miettinen (VTT) Berlin, Germany November 11, 2014 NREL/PR-5D00-63083 2 Motivation and Scope * Wind integration is hindered in the U.S. power system o The best wind resources are far from the main load centers o There are difficult regulatory and legal hurdles and substantial investments are required to develop new

  15. Drivers for the Value of Demand Response under Increased Levels of Wind and Solar Power; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Hale, Elaine

    2015-07-30

    Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, like storage, can easily saturate ancillary service markets.

  16. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT) (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savings Potential from Future In-motion Wireless Power Transfer (WPT) E. Burton, L. Wang, J. Gonder, A. Brooker, and A. Konan Conference on Electric Roads & Vehicles February 10, 2015 Park City, Utah NREL/PR-5400-63758 2 Regional Road Usage * 1% of roads are used for 25% of the vehicle miles traveled * Extensive overlap in road usage apparent across regional vehicle population * Overlap occurs on high capacity roads Transportation Secure Data Center Vehicle GPS samples 3 In-Motion Power

  17. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  18. Regrid Power | Open Energy Information

    Open Energy Info (EERE)

    Power Place: Campbell, California Zip: 95008 Sector: Renewable Energy, Services, Solar Product: REgrid Power is a renewable energy design, installation, and services company...

  19. Bolivia renewable energy development

    SciTech Connect (OSTI)

    Smith, P.

    1997-12-01

    The author summarizes changes which have occurred in Bolivia in the past year which have had an impact on renewable energy source development. Political changes have included the privatization of power generation and power distribution, and resulted in a new role for state level government and participation by the individual. A National Rural Electrification Plan was adopted in 1996, which stresses the use of GIS analysis and emphasizes factors such as off grid, economic index, population density, maintenance risk, and local organizational structure. The USAID program has chosen to stress economic development, environmental programs, and health over village power programs. The national renewables program has adopted a new development direction, with state projects, geothermal projects, and private sector involvement stressed.

  20. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Power-to-Gas Economic Analysis CHBC Summer Summit Josh Eichman, PhD Downey, California 7/30/2015 NREL/PR-5400-64833 2 Outline * Opportunity for HES / P2G * Markets considered * Market valuation results * Future market expectations * Additional projects 3 Complementary Hydrogen Systems Electric Grid Hydrogen Pipeline Injection Water Water Electrolyzer Reformer Fuel Cell or Turbine Chemical and Industrial Processes Hydrogen Storage Natural Gas Grid Source: (from top left by row), Warren Gretz,

  1. The Value of Improved Wind Power Forecasting in the Western Interconnection (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    outcome of this research will facilitate a better functional understanding of wind forecasting accuracy and power system operations at various spatial and temporal scales.* Of particular interest are: 1. Correlated behavior among variables (e.g., changes in dispatch stacks, production costs, or generation by type as a function of forecasting accuracy); 2. The relative reduction in wind curtailment with improved forecasting accuracy; and 3. The value of information (e.g., which subset of

  2. Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal resources-the steam and water that lie below the earth's surface-have the potential to supply vast amounts of clean energy. But continuing to produce geothermal power efficiently and inexpensively can require innovative adjustments to the technology used to process it. Located in the Mayacamas Mountains of northern California, The Geysers is the world's larg- est geothermal complex. Encompassing 45 square miles along the Sonoma and Lake County border, the complex harnesses natural

  3. Dale Renewables Consulting | Open Energy Information

    Open Energy Info (EERE)

    search Name: Dale Renewables Consulting Place: California Sector: Solar Product: PV marketing and installation firm, merged with Solar Power Inc in January 2007. References: Dale...

  4. renewable energy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    renewable energy | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  5. Centro Renewables Holding Limited | Open Energy Information

    Open Energy Info (EERE)

    Kong Sector: Solar, Wind energy Product: Hong Kong-based developer of wind, solar and water power facilities in China, Taiwan and South Korea. References: Centro Renewables...

  6. Campo's Renewable Energy: Security, Independence, and Economic...

    Office of Environmental Management (EM)

    ... for renewable energy Transmission availability 10 November 2008 execute MOU & NDA SDG&E - power company Invenergy - developer 160MW farm to serve San Diego ...

  7. Mulk Renewable Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Mulk Renewable Energy Inc Place: Sharjah, United Arab Emirates Sector: Solar Product: UAE-based developer of solar thermal power plants....

  8. Renewable Energy RFPs | OpenEI Community

    Open Energy Info (EERE)

    2014 - 09:38 Blog entry Solar Power Request for Information Renewable Energy GenerationProduction Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2...

  9. Energy Efficiency & Renewable Energy Bond Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Heat Solar Photovoltaics Wind (All) Biomass Combined Heat & Power Fuel Cells using Non-Renewable Fuels Daylighting Lighting Energy Mgmt. SystemsBuilding Controls Caulking...

  10. Renewable Portfolio Standard | Open Energy Information

    Open Energy Info (EERE)

    electricity providers to obtain a certain percentage of their power from renewable energy sources by a specified date. U.S. State Programs The following table summarizes RPS...

  11. The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD |

    Energy Savers [EERE]

    Department of Energy The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD The broader goal of the RPS is to achieve various benefits associated with renewable energy. These benefits relate to the environment, resource diversity, technology advancement, and in-state economic development. PDF icon THE THE RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD More Documents & Publications Reference Manual and

  12. Solar power tower

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  13. Sandia Energy - Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Partnership, Renewable Energy, Systems Analysis, Systems Engineering, Water Power WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory...

  14. Wind and Water Power Modeling and Simulation at the NWTC (Fact Sheet), NREL(National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Vision: New Report Highlights a Robust Wind Energy Future Wind Vision: New Report Highlights a Robust Wind Energy Future March 12, 2015 - 11:40am Addthis The <a href="/node/778491">Wind Vision Report</a> describes potential wind industry scenarios for 2020, 2030, and 2050. The Wind Vision Report describes potential wind industry scenarios for 2020, 2030, and 2050. Jose Zayas Jose Zayas Office Director, Wind and Water Power Technologies Office MORE ON WIND

  15. EERE FY 2016 Budget Overview -- Renewable Electricity Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Renewable Electricity Generation EERE FY 2016 Budget Overview -- Renewable Electricity Generation Office of Energy Efficiency and Renewable Energy FY 2016 Budget Overview -- Renewable Electricity Generation, a presentation with Doug Hollett, Deputy Assistant Secretary, March 2015. PDF icon FY 2016 Budget Overview Webinar Presentation -- Renewables More Documents & Publications EERE FY 2015 Budget Request Webinar -- Renewable Power Office of Energy Efficiency and

  16. Federal Energy Management Program Renewable Energy Project Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and utility-scale project planning assistance Acquisition ... Contract assistance Design review assistance ... Power at Federal Facilities Renewable Energy ...

  17. A Renewable Boost for Natural Gas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Renewable Boost for Natural Gas A Renewable Boost for Natural Gas April 24, 2013 - 3:45pm Addthis The new hybrid solar-natural gas system from Pacific Northwest National Laboratory (PNNL) works through concentrating solar power, which uses a reflecting surface to concentrate the sun's rays like a magnifying glass. In the case of the new system from PNNL, a mirrored parabolic dish directs sunbeams to a central point, where a device absorbs the solar heat to make syngas.| Photo courtesy of PNNL.

  18. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT); NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Burton, E.; Wang, L.; Gonder, J.; Brooker, A.; Konan, A.

    2015-02-10

    This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuel savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.

  19. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    Note: H.B. 40, enacted in June 2015, created Vermont's Renewable Energy Standard and repeals the Sustainably Priced Energy Enterprise Development program's renewable energy goals. The Renewable...

  20. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    Renewable Energy Laboratory Innovation for Our Energy Future Renewable Resource Options Geothermal Biomass Solar Hydro Wind National Renewable Energy Laboratory Innovation ...