Powered by Deep Web Technologies
Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Enhanced Renewable Methane Production System | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates...

2

Renewable Syngas Production via Dry Reforming of Methane  

Science Journals Connector (OSTI)

Biogas produced by the anaerobic digestion of biomass can be exploited directly as a fuel for small-to-medium-scale combined heat and power production, or as a renewable carbon source for the production of synthe...

R. Navarro; B. Pawelec; M. C. Alvarez-Galván…

2013-01-01T23:59:59.000Z

3

Coalbed Methane Production  

U.S. Energy Information Administration (EIA) Indexed Site

NA Not Available; W Withheld to avoid disclosure of individual company data. Notes: Coalbed Methane production data collected in conjunction with proved reserves data on Form...

4

Renewable Energy 32 (2007) 12431257 Methane generation in landfills  

E-Print Network (OSTI)

. Some of the modern regulated landfills attempt to capture and utilize landfill biogas, a renewable collecting landfill biogas worldwide. The landfills that capture biogas in the US collect about 2.6 million. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

Columbia University

5

Ohio Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Ohio Coalbed Methane Proved Reserves, Reserves...

6

Florida Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Florida Coalbed Methane Proved Reserves, Reserves...

7

Michigan Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Michigan Coalbed Methane Proved Reserves, Reserves...

8

Method of coalbed methane production  

SciTech Connect

This patent describes a method for producing coalbed methane from a coal seam containing coalbed methane and penetrated by at least one injection well and at least one producing well. It comprises: injecting an inert gas through the injection well and into the coal seam. The inert gas being a gas that does not react with the coal under conditions of use and that does not significantly adsorb to the coal; and producing a gas from the production well which consists essentially of the inert gas, coalbed methane, or mixtures thereof.

Puri, R.; Stein, M.H.

1989-11-28T23:59:59.000Z

9

Renewable Energy Production By State | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewable Energy Production By State Renewable Energy Production By State Renewable Energy Production By...

10

Texas--State Offshore Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Texas State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane...

11

Louisiana--State Offshore Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production LA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane...

12

Kamal Kapadia DRAFT Productive Uses of Renewables  

E-Print Network (OSTI)

Kamal Kapadia DRAFT Productive Uses of Renewables January, 2004 Page 1 Productive uses of renewable Productive Uses of Renewables January, 2004 Page 2 INTRODUCTION ........................................................................................................................ 3 PROMOTING PRODUCTIVE USES OF RENEWABLES: DEFINITION AND RATIONALE........................ 3 What

Kammen, Daniel M.

13

Renewable Energy Products LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Products, LLC Place: Santa Fe Springs, California Zip: 90670 Product: Own and operate a biodiesel production facility in California. References: Renewable Energy...

14

Methane Hydrate Production Feasibility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Feasibility Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. Methane, the predominant component of natural gas, forms hydrate in the presence of water, low temperatures and high pressures. Alternatively, when the temperature is increased or the pressure decreased so that hydrates are outside their stability field, they dissociate into methane and water.

15

Other States Natural Gas Coalbed Methane, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet)...

16

Montana Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Montana Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 12 13...

17

Virginia Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 81...

18

Colorado Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Colorado Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12...

19

Alabama Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Alabama Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23...

20

Wyoming Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Kansas Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Kansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 25 38...

22

Oklahoma Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Oklahoma Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 58 68...

23

Arkansas Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Arkansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 3 3 3...

24

Utah Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Utah Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 74 83 103...

25

Pennsylvania Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Pennsylvania Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 5...

26

Processes for Methane Production from Gas Hydrates  

Science Journals Connector (OSTI)

The main cost here is only that of the pipeline used to transport the gas to the production platform. For subsea systems that do not ... group of wells. Transporting methane from the production site to the shore ...

2010-01-01T23:59:59.000Z

27

Texas--RRC District 9 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 9 Coalbed Methane Proved Reserves,...

28

Texas--RRC District 6 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 6 Coalbed Methane Proved Reserves,...

29

Alaska (with Total Offshore) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Alaska Coalbed Methane Proved Reserves, Reserves...

30

Texas--RRC District 1 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 1 Coalbed Methane Proved Reserves,...

31

California (with State off) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production California Coalbed Methane Proved Reserves, Reserves...

32

New York Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production New York Coalbed Methane Proved Reserves, Reserves...

33

North Dakota Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production North Dakota Coalbed Methane Proved Reserves,...

34

Mississippi (with State off) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves...

35

Louisiana--South Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production LA, South Onshore Coalbed Methane Proved Reserves,...

36

Lower 48 Federal Offshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Federal Offshore U.S. Coalbed Methane Proved...

37

Texas--RRC District 8 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8 Coalbed Methane Proved Reserves,...

38

Development of gas production type curves for coalbed methane reservoirs.  

E-Print Network (OSTI)

??Coalbed methane is an unconventional gas resource that consists on methane production from the coal seams. The unique coal characteristic results in a dual-porosity system.… (more)

Garcia Arenas, Anangela.

2004-01-01T23:59:59.000Z

39

Bio-hydrogen production from renewable organic wastes  

SciTech Connect

Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

Shihwu Sung

2004-04-30T23:59:59.000Z

40

Methane production by attached film  

DOE Patents (OSTI)

A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

Complexity of Renewable Energy Production in the Countrysidea shift to renewable energy production. Even if politicaldifficulties. Renewable energy production as a new economic

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

42

Eastern States Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Production (Billion Cubic Feet) Eastern States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

43

Western States Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Western States Coalbed Methane Production (Billion Cubic Feet) Western States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

44

Tool to predict the production performance of vertical wells in a coalbed methane reservoir.  

E-Print Network (OSTI)

??Coalbed Methane (CBM) is an unconventional gas resource that consists of methane production from coal seams. Coalbed Methane gas production is controlled be interactions of… (more)

Enoh, Michael E.

2007-01-01T23:59:59.000Z

45

Detection and Production of Methane Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

July-September 2007 July-September 2007 Detection and Production of Methane Hydrate Submitted by: Rice University University of Houston George J. Hirasaki Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu Prepared for: United States Department of Energy National Energy Technology Laboratory December, 2007 Office of Fossil Energy Table of Contents DOE Methane Hydrate Program Peer Review.................................................. 3 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ........................... 3 Task 6: Numerical Models for Quantification of Hydrate and Free Gas Accumulations....................................................................................................

46

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

Renewable Energy Production .Benefits and Renewable Energy Production One source ofauspicious source of renewable energy production from such

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

47

Measurements of Methane Emissions at Natural Gas Production Sites  

E-Print Network (OSTI)

Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why = 21 #12;Need for Study · Estimates of methane emissions from natural gas production , from academic in assumptions in estimating emissions · Measured data for some sources of methane emissions during natural gas

Lightsey, Glenn

48

Detection and Production of Methane Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-06NT42960 Quarterly Progress Report Reporting Period: April-June 2007 Detection and Production of Methane Hydrate Submitted by: Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Prepared for: United States Department of Energy National Energy Technology Laboratory August, 2007 Office of Fossil Energy Detection and Production of Methane Hydrate Quarterly Progress Report Reporting Period: April-June 2007 Prepared by: George Hirasaki Rice University August 2007 CONTRACT NO. DE-FC26-06NT42960 Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; Fax: 713-348-5478; Email: gjh@rice.edu

49

Enzymatic Hydrogen Production:? Conversion of Renewable Resources for Energy Production  

Science Journals Connector (OSTI)

Enzymatic Hydrogen Production:? Conversion of Renewable Resources for Energy Production ... Steam-exploded aspen wood containing 60% cellulose was a gift from Michael Himmel of the National Renewable Energy Laboratory, Golden, Colorado. ... The previous data demonstrate that the two primary components of renewable sources of energy such as biomassglucose and xyloseare capable of oxidiation by GDH, resulting in hydrogen production if hydrogenase is present. ...

Jonathan Woodward; Kimberley A. Cordray; Robert J. Edmonston; Maria Blanco-Rivera; Susan M. Mattingly; Barbara R. Evans

1999-11-20T23:59:59.000Z

50

Development of water production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network (OSTI)

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. The key parameters for the evaluation of coalbed methane… (more)

Burka Narayana, Praveen Kumar.

2007-01-01T23:59:59.000Z

51

Methane in lakes and wetlands Microbiological production, ecosystem  

E-Print Network (OSTI)

Methane in lakes and wetlands Microbiological production, ecosystem uptake, climatological significance LAKES AND WETLANDS ­ A RELEVANT METHANE SOURCE Lakes and other wetlands are an important source methane from wetlands will respond to future climatic change. Dr. Paul Bodelier (Netherlands Institute

MĂĽhlemann, Oliver

52

Water production in enhanced coalbed methane operations  

Science Journals Connector (OSTI)

Coalbed methane (CBM) formations provides a considerable amount of the US natural gas production and have the potential of storing significant amounts of carbon dioxide (CO2) through enhanced gas recovery operations. Enhanced coalbed methane (ECBM) recovery by injection of CO2 or a mixture of CO2 and nitrogen (N2) has been proven to recover additional natural gas resources. However, since coalbeds are normally saturated with water and can be in communication with an aquifer, a large amount of water is often co-produced during the natural gas extraction. The conventional approach for CBM production relies on the reduction of the gas partial pressure in the coal seam. This can be accomplished by either pumping the formation water to the surface and/or by injecting gases such as N2 and CO2. Disposal of the produced water is an environmental challenge as harmful impurities must be removed by appropriate purification techniques. Consequently, a reduction of water production in CBM operations is desirable. In this paper we present a numerical investigation of the potential reduction in water production during ECBM operations that are commonly used to increase methane (CH4) recovery. We use a three-dimensional coalbed model with an aquifer located at the bottom to investigate the amounts of gas and water produced in ECBM operations per volume of coal seam as a function of aquifer strength and sorption characteristics including sorption induced strain. The amount of gas/water that is produced varies significantly depending on the aquifer strength and injection gas composition. We demonstrate that injection of CO2 and/or N2 in some settings reduces the water handling problem substantially. CBM is an important worldwide energy source with a large number of formations being excellent candidates for ECBM recovery processes. Our analysis of the interplay between coal characteristics, aquifer support and the resultant behavior in terms of gas/water production provides valuable input for optimization of future planning and operations.

M. Jamshidi; K. Jessen

2012-01-01T23:59:59.000Z

53

,"U.S. Coalbed Methane Production (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Production (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

54

Renewable Hydrogen Production from Biological Systems  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Matthew Posewitz, Colorado School of Mines, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

55

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

Energy Production . C.Benefits and Renewable Energy Production One source ofsource of renewable energy production from such facilities.

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

56

Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water  

SciTech Connect

Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

Song Jin

2007-05-31T23:59:59.000Z

57

Methane Hydrate Production Technologies to be Tested on Alaska's North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Production Technologies to be Tested on Alaska's Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will take place under the auspices of a Statement of Intent for Cooperation in Methane Hydrates signed in 2008 and extended in 2011 by DOE and Japan's Ministry of Economy, Trade, and Industry. The production tests are the next step in both U.S. and Japanese national efforts to evaluate the response of gas hydrate reservoirs to alternative

58

Lower 48 States Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Lower 48 States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

59

U.S. Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 91 1990's...

60

Texas (with State Offshore) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

West Virginia Coalbed Methane Production (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) West Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30...

62

Louisiana (with State Offshore) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

63

Texas--RRC District 3 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Texas--RRC District 3 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

64

Texas--RRC District 10 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Texas--RRC District 10 Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

65

Louisiana--North Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Louisiana--North Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

66

CO2 Sequestration Enhances Coalbed Methane Production.  

E-Print Network (OSTI)

??Since 1980s, petroleum engineers and geologists have conducted researches on Enhanced Coalbed Methane Recovery (ECBM). During this period, many methods are introduced to enhance the… (more)

Pang, Yu

2013-01-01T23:59:59.000Z

67

Alternative Fuels Data Center: Renewable Fuel Production Facility Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Production Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Production Facility Tax Credit

68

A Compact and Efficient Steam Methane Reformer for Hydrogen Production.  

E-Print Network (OSTI)

??A small-scale steam-methane reforming system for localized, distributed production of hydrogen offers improved performance and lower cost by integrating the following technologies developed at the… (more)

Quon, Willard

2012-01-01T23:59:59.000Z

69

Hydrogen Production from Methane Using Oxygen-permeable Ceramic Membranes  

E-Print Network (OSTI)

Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest as membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like ...

Faraji, Sedigheh

2010-06-08T23:59:59.000Z

70

Texas--RRC District 8A Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8A Coalbed Methane Proved Reserves,...

71

Texas--RRC District 7C Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 7C Coalbed Methane Proved Reserves,...

72

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network (OSTI)

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is… (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

73

Texas--RRC District 7B Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 7B Coalbed Methane Proved Reserves,...

74

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-06-01T23:59:59.000Z

75

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-07-01T23:59:59.000Z

76

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

Thomas E. Williams; Keith Millheim; Bill Liddell

2005-03-01T23:59:59.000Z

77

Renewable Energy Production Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Incentive Production Incentive Renewable Energy Production Incentive < Back Eligibility Agricultural Commercial Industrial Nonprofit Residential Savings Category Bioenergy Maximum Rebate None Program Info State Minnesota Program Type Performance-Based Incentive Rebate Amount 1.0¢-1.5¢/kWh Other undetermined incentive for on farm biogas ''not'' used to produce electricity Provider Minnesota Department of Commerce Supported by the state's Renewable Development Fund, Minnesota offers a payment of 1.5¢ per kilowatt-hour (kWh) for on-farm biogas facilities. Previously, this incentive also offered payments to wind and hydroelectric facilities, but no new incentives are being offered for these technologies. Hydro Facility Eligibility Generally, the incentive is available to hydro facilities located at the

78

Coalbed methane production potential in U. S. basins  

SciTech Connect

The major emphasis of the U.S. DOE's coalbed methane research has been on estimating the magnitude of the resource and developing systems for recovery. Methane resource estimates for 16 basins show that the greatest potential is in the Piceance, Northern Appalachian, Central Appalachian, Powder River, and Greater Green River coal basins. Small, high-potential target areas have been selected for in-depth analysis of the resource. Industry interest is greatest in the Warrior, San Juan, Piceance, Raton Mesa, and Northern and Central Appalachian basins. Production curves for several coalbed methane wells in these basins are included.

Byer, C.W.; Mroz, T.H.; Covatch, G.L.

1987-07-01T23:59:59.000Z

79

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists planning hydrate exploration and development projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this and other project reports. This Topical Report contains details describing logging operations.

Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

2005-02-01T23:59:59.000Z

80

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation. In addition to the Final Report, several companion Topical Reports are being published.

Thomas E. Williams; Keith Millheim; Bill Liddell

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

2005-02-01T23:59:59.000Z

82

Hydrogen production in Multi-Channel Membrane Reactor via Steam Methane Reforming and Methane Catalytic Combustion  

Science Journals Connector (OSTI)

Abstract A novel Multi-Channel Membrane Reactor (MCMR) was designed and built for the small-scale production of hydrogen via Steam Methane Reforming (SMR). The prototype alternates an SMR gas channel to produce hydrogen catalytically, with a Methane Catalytic Combustion (MCC) gas channel to provide the heat of reaction needed by the endothermic reforming. A palladium–silver membrane inside the reforming gas channel shifts the reaction equilibrium, allowing lower operating temperatures, and producing pure hydrogen in a single vessel. Using an innovative air-spray coating technique, channels were coated with Ru–MgO–La2O3/?-Al2O3 and Pd/?-Al2O3 catalyst particles for the SMR and MCC reactions, respectively. Results for the proof-of-concept MCMR showed that methane conversion in the reformer of 91% and a hydrogen purity in excess of 99.99% were possible with the reformer operating at 570 °C and 15 bar.

Alexandre Vigneault; John R. Grace

2014-01-01T23:59:59.000Z

83

Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis  

E-Print Network (OSTI)

a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production the electrodes.1,2 Combined biological and electrochemical methods for methane production show great promise

84

Texas--RRC District 5 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

5 Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 - No Data Reported;...

85

Texas--RRC District 2 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

2 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 - No Data...

86

Texas--RRC District 4 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

4 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 - No Data...

87

Methane Production in Shallow-Water, Tropical Marine Sediments  

Science Journals Connector (OSTI)

...influences methane production rates. APPLIED MICROBIOLOGY...University ofMiami, Miami, Florida 33149 Received for publication...located in Caesar Creek (Florida Keys) exhibited the...methanogenic activity (initial rates = 1.81 to 1.86 gmol...useful in the design of fuel-producing systems...

Ronald S. Oremland

1975-10-01T23:59:59.000Z

88

US COALBED METHANE The Past: Production The Present: Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Panel 2 of 2 Panel 2 of 2 US COALBED METHANE The Past: Production The Present: Reserves The Future: Resources Annual coalbed methane gas production data through 12/31/2006 was obtained from 17 state oil & gas regulatory entities or geological surv eys and one producing company. Data for 2006 were not yet av ailable for West Virginia and Pennsy lvania so the 2005 v olumes were assumed to repeat in 2006. Produced CBM gas v olumes from each state were clas sified by basin. The cumulative production pie chart to the left shows the sum of all reported CBM gas volumes by basin through 2006. The San Juan Bas in dominates the chart. The only other bas in to ex ceed 10% is the Pow der River Basin (12%). Relative cumulative production volumes by basin are spatially depicted in the c

89

Methanation  

Science Journals Connector (OSTI)

Methanation describes the heterogeneous, gas-catalytic or biological synthesis of CH4 from H2 and CO/CO2...or in case of the biological path, alternatively from other carbon sources. It is the second substantial,...

Markus Lehner; Robert Tichler…

2014-01-01T23:59:59.000Z

90

Physiology and Genetics of Biogenic Methane-Production from Acetate  

SciTech Connect

Biomass conversion catalyzed by methanogenic consortia is a widely available, renewable resource for both energy production and waste treatment. The efficiency of this process is directly dependent upon the interaction of three metabolically distinct groups of microorganisms; the fermentative and acetogenic Bacteria and the methanogenic Archaea. One of the rate limiting steps in the degradation of soluble organic matter is the dismutation of acetate, a predominant intermediate in the process, which accounts for 70 % or more of the methane produced by the methanogens. Acetate utilization is controlled by regulation of expression of carbon monoxide dehydrogensase (COdh), which catalyzes the dismutation of acetate. However, physiological and molecular factors that control differential substrate utilization have not been identified in these Archaea. Our laboratory has identified sequence elements near the promoter of the gene (cdh) encoding for COdh and we have confirmed that these sequences have a role in the in vivo expression of cdh. The current proposal focuses on identifying the regulatory components that interact with DNA and RNA elements, and identifying the mechanisms used to control cdh expression. We will determine whether expression is controlled at the level of transcription or if it is mediated by coordinate interaction of transcription initiation with other processes such as transcription elongation rate and differential mRNA stability. Utilizing recently sequenced methanosarcinal genomes and a DNA microarray currently under development genes that encode regulatory proteins and transcription factors will be identified and function confirmed by gene disruption and subsequent screening on different substrates. Functional interactions will be determined in vivo by assaying the effects of gene dosage and site-directed mutagenesis of the regulatory gene on the expression of a cdhAÂ?::lacZ operon fusion. Results of this study will reveal whether this critical catabolic pathway is controlled by mechanisms similar to those employed by the Bacteria and Eukarya, or by a regulatory paradigm that is unique to the Archaea. The mechanism(s) revealed by this investigation will provide insight into the regulatory strategies employed by the aceticlastic methanogenic Archaea to efficiently direct carbon and electron flow in anaerobic consortia during fermentative processes.

Sowers, Kevin R

2013-04-04T23:59:59.000Z

91

Coalbed methane production enhancement by underground coal gasification  

SciTech Connect

The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

1997-12-31T23:59:59.000Z

92

General Renewable Energy-Productive Uses and Development Impact | Open  

Open Energy Info (EERE)

General Renewable Energy-Productive Uses and Development Impact General Renewable Energy-Productive Uses and Development Impact Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy-Productive Uses and Development Impact Agency/Company /Organization: World Bank Sector: Energy Topics: Implementation, Co-benefits assessment, - Energy Access Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: General Renewable Energy-Productive Uses and Development Impact[1] Resources Productive Uses Productive Uses of Energy for Rural Development, R. Anil Cabraal, Douglas F. Barnes, and Sachin G. Agarwal, Annual Rev. Environ. Resour. 2005. 30:117-44. Millennium Development Goals: Status 2004, United Nations Energy and Gender Bioenergy-Based Productive Use Platforms for Rural Economic

93

Diffusion Characterization of Coal for Enhanced Coalbed Methane Production.  

E-Print Network (OSTI)

??This thesis explores the concept of displacement of sorbed methane and enhancement of methane recovery by injection of CO2 into coal, while sequestering CO2. The… (more)

Chhajed, Pawan

2011-01-01T23:59:59.000Z

94

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

Thomas E. Williams; Keith Millheim; Buddy King

2004-03-01T23:59:59.000Z

95

Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?  

SciTech Connect

Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

Paull, C.K.; Ussler, W. III; Borowski, W.S.

1993-09-01T23:59:59.000Z

96

14 - Biodiesel and renewable diesel production methods  

Science Journals Connector (OSTI)

Abstract: Vegetable oils and animal fats have come to be recognized as important sources of renewable fuels. Fatty acid methyl esters are known as biodiesel, and are the leading source for non-petroleum diesel fuel. With hydrogenation and isomerization, oils and fats can be converted to renewable diesel and jet fuel that are drop-in replacements for petroleum diesel fuel and jet fuel. This chapter reviews the processes used to produce these fuels and the feedstocks that will provide the supplies of oils and fats needed to meet a growing world demand.

J.H. Van Gerpen; B.B. He

2014-01-01T23:59:59.000Z

97

Renewable Energy Production Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Production Tax Credit (Personal) Renewable Energy Production Tax Credit (Personal) Renewable Energy Production Tax Credit (Personal) < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Wind and biomass: First 400,000 MWh annually for 10 years (i.e. 4,000,000/year) Solar electric: First 200,000 MWh annually for 10 years (annual amount varies) Statewide cap: 2,000,000 MWh plus an additional 500,000 MWh for solar electric Program Info Start Date 1/1/2008 State New Mexico Program Type Personal Tax Credit Rebate Amount 0.01/kWh for wind and biomass 0.027/kWh (average) for solar (see below) Provider New Mexico Energy, Minerals and Natural Resources Department Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit

98

Renewable Hydrogen Production Using Sugars and Sugar Alcohols (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Group Meeting Working Group Meeting 11/06/2007 Renewable Hydrogen Production Using Renewable Hydrogen Production Using Sugars and Sugar Alcohols Sugars and Sugar Alcohols * * Problem: Problem: Need Need to develop renewable to develop renewable hydrogen production technologies using hydrogen production technologies using diverse diverse feedstocks feedstocks 10 15 20 CH 4 : C 6 H 14 ln(P) * * Description: Description: The BioForming The BioForming TM TM process uses process uses aqueous phase reforming to cost effectively aqueous phase reforming to cost effectively produce hydrogen from a range of feedstocks, produce hydrogen from a range of feedstocks, including glycerol and sugars. The key including glycerol and sugars. The key breakthrough is a proprietary catalyst that breakthrough is a proprietary catalyst that

99

Renewable Energy Production Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Production Tax Credit (Corporate) Renewable Energy Production Tax Credit (Corporate) Renewable Energy Production Tax Credit (Corporate) < Back Eligibility Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Wind and biomass: First 400,000 MWh annually for 10 years (i.e. 4,000,000/year) Solar electric: First 200,000 MWh annually for 10 years (annual amount varies) Statewide cap: 2,000,000 MWh plus an additional 500,000 MWh for solar electric Program Info Start Date 7/1/2002 State New Mexico Program Type Corporate Tax Credit Rebate Amount 0.01/kWh for wind and biomass 0.027/kWh (average) for solar (see below) Provider New Mexico Energy, Minerals and Natural Resources Department Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit

100

Energy Department Policy on Acquiring Tribal Renewable Energy Products  

Energy.gov (U.S. Department of Energy (DOE))

As part of the Department of Energy’s efforts to support tribal renewable energy production, Secretary Steven Chu has issued a policy statement and guidance to give preference to Indian Tribes when...

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

SciTech Connect

To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

2005-09-01T23:59:59.000Z

102

Table 17. Coalbed methane proved reserves, reserves changes, and production, 201  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed methane proved reserves, reserves changes, and production, 2011" Coalbed methane proved reserves, reserves changes, and production, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

103

Request for Information Renewable Energy Generation/Production Shreveport  

Open Energy Info (EERE)

Request for Information Renewable Energy Generation/Production Shreveport Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Home > Groups > Renewable Energy RFPs Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 pv land use Solar solar land use Solar Power The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. The Authority is particularly interested in solar photovoltaic generation but other technically and economically feasible technologies may also be included. A study by NREL estimates the annual capacity factor of fixed tilt covered parking at 15.3% and for one-axis tracking at 19.4%. Specifically, the

104

Renewables  

NLE Websites -- All DOE Office Websites (Extended Search)

Grants NW Energy XP Event Calendar Lands & Community Public Comments Renewables: Wind Power Generation Wind power is the fastest-growing renewable power source in the Pacific...

105

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network (OSTI)

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K 73019 Received October 11, 2002 In this study, synthesis gas production in an AC electric gas discharge of methane and air mixtures at room temperature and ambient pressure was investigated. The objective

Mallinson, Richard

106

Renewable Energy Production Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Energy Production Tax Credit Renewable Energy Production Tax Credit < Back Eligibility Commercial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Wind Maximum Rebate No maximum specified for individual projects. Maximum of $1 million per corporation. Maximum of $5 million for state FY 2012-13 and $10 million for state for FY 2013-14 until FY 2016-2017. Program Info Start Date 7/1/2012 Expiration Date 6/30/2016 State Florida Program Type Corporate Tax Credit Rebate Amount $0.01/kWh Provider Florida Department of Revenue In June 2006, [http://archive.flsenate.gov/cgi-bin/View_Page.pl?File=sb0888er.html&Dire... S.B. 888] established a renewable energy production tax credit to encourage

107

Renewable Electricity Production Tax Credit (PTC) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Electricity Production Tax Credit (PTC) Renewable Electricity Production Tax Credit (PTC) < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Water Home Weatherization Wind Program Info Program Type Corporate Tax Credit Rebate Amount 2.3¢/kWh for wind, geothermal, closed-loop biomass; 1.1¢/kWh for other eligible technologies. Generally applies to first 10 years of operation. Provider U.S. Internal Revenue Service '''''Note: The American Recovery and Reinvestment Act of 2009 allows taxpayers eligible for the federal renewable electricity production tax credit (PTC) to take the federal business energy investment tax credit (ITC) instead of taking the PTC for new installations.'''''

108

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network (OSTI)

production from landfills if organic waste is composted prior to. The quantities and rates of methane production were measured from simulated landfill cells containing composted and raw simulated refuse. The refuse was composted in an open pile...

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

109

Improving the Methane Production in the Co-Digestion of Microalgae and Cattle Manure  

E-Print Network (OSTI)

that biogas production increased when algae was added to the digester. The highest methane production in the control groups, containing only manure, digestion sludge, and newsprint was 48120 L, while the highest in the mixtures containing algae and pretreated...

Cantu, Matthew Scott

2014-04-28T23:59:59.000Z

110

Materials for Production and Storage of Renewable Energy  

Science Journals Connector (OSTI)

Materials for Production and Storage of Renewable Energy ... The ?INJ value was low and strongly wavelength-dependent, which was attributed to a poor energetic matching between dye excited states and TiO2 acceptor states due to unfavorable electrolyte compn. ...

Juan Bisquert

2011-02-03T23:59:59.000Z

111

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6/30/1989" ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","ng_enr_coalbed_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_enr_coalbed_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

112

Renewable Energy Production Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Renewable Energy Production Tax Credit (Corporate) < Back Eligibility Commercial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate 2 million per year Program Info Start Date 12/31/2010 Expiration Date 12/31/2020 State Arizona Program Type Corporate Tax Credit Rebate Amount Wind and Biomass: 0.01/kWh, paid for 10 years Solar: Varies by year (see below), paid for 10 years Provider Arizona Department of Revenue '''''Note: this tax credit is only available for systems installed on or after December 31, 2010, and before January 1, 2021.''''' [http://www.azleg.gov/FormatDocument.asp?inDoc=/legtext/49leg/2r/bills/sb... Senate Bill 1254] of 2010 created a tax credit for electricity produced by certain renewable resources. Qualified renewable energy systems installed

113

Methane Production from Acetate and Associated Methane Fluxes from Anoxic Coastal Sediments  

Science Journals Connector (OSTI)

...ORGANIC-RICH COASTAL MARINE BASIN .1. METHANE SEDIMENT-WATER...IRRIGATION IN CAPE LOOKOUT BIGHT, NORTH-CAROLINA, SCIENCE...sediments ofa small coastal basin on the Outer Banks ofNorth...site was Cape Lookout Bight, North Carolina, an organic-rich marine basin of approximately 2 km2...

FRANCIS J. SANSONE; CHRISTOPHER S. MARTENS

1981-02-13T23:59:59.000Z

114

Production of Renewable Fuels from Biomass by FCC Co-processing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production of Renewable Fuels from Biomass by FCC Co-processing Production of Renewable Fuels from Biomass by FCC Co-processing Breakout Session 2A-Conversion Technologies II:...

115

Emerging Risks in the Biodiesel Production by Transesterification of Virgin and Renewable Oils  

Science Journals Connector (OSTI)

Emerging Risks in the Biodiesel Production by Transesterification of Virgin and Renewable Oils ... Energy Fuels, 2010, 24 (11), ... Cuiaba, Brazil ...

E. Salzano; M. Di Serio; E. Santacesaria

2010-10-21T23:59:59.000Z

116

Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis: Milestone Completion Report  

Energy.gov (U.S. Department of Energy (DOE))

This report summarizes the results of a lifecycle assessment of a renewable hydrogen production process employing wind/electrolysis.

117

Renewable Energy Production Tax Credits (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Credits (Corporate) Credits (Corporate) Renewable Energy Production Tax Credits (Corporate) < Back Eligibility Agricultural Commercial Industrial Institutional Rural Electric Cooperative Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Maximum Rebate 1.5¢/kWh (IA Code § 476C) Program Info Start Date 06/15/2005 State Iowa Program Type Corporate Tax Credit Rebate Amount 1.5¢/kWh (IA Code § 476C) or 1.0¢/kWh (IA Code § 476B) for 10 years after facility begins producing energy Provider Iowa Utilities Board In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify for only one of the two

118

Renewable Energy Production Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Credit (Personal) Credit (Personal) Renewable Energy Production Tax Credit (Personal) < Back Eligibility Agricultural Commercial Industrial Institutional Residential Rural Electric Cooperative Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Maximum Rebate 1.5¢/kWh (IA Code § 476C) Program Info Start Date 06/15/2005 State Iowa Program Type Personal Tax Credit Rebate Amount 1.5¢/kWh (IA Code § 476C) or 1.0¢/kWh (IA Code § 476B) for 10 years after facility begins producing energy Provider Iowa Utilities Board In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify for only one of the two

119

Comparative assessment of hydrogen production methods from renewable and non-renewable sources  

Science Journals Connector (OSTI)

Abstract In this study, we present a comparative environmental impact assessment of possible hydrogen production methods from renewable and non-renewable sources with a special emphasis on their application in Turkey. It is aimed to study and compare the performances of hydrogen production methods and assess their economic, social and environmental impacts, The methods considered in this study are natural gas steam reforming, coal gasification, water electrolysis via wind and solar energies, biomass gasification, thermochemical water splitting with a Cu–Cl and S–I cycles, and high temperature electrolysis. Environmental impacts (global warming potential, GWP and acidification potential, AP), production costs, energy and exergy efficiencies of these eight methods are compared. Furthermore, the relationship between plant capacity and hydrogen production capital cost is studied. The social cost of carbon concept is used to present the relations between environmental impacts and economic factors. The results indicate that thermochemical water splitting with the Cu–Cl and S–I cycles become more environmentally benign than the other traditional methods in terms of emissions. The options with wind, solar and high temperature electrolysis also provide environmentally attractive results. Electrolysis methods are found to be least attractive when production costs are considered. Therefore, increasing the efficiencies and hence decreasing the costs of hydrogen production from solar and wind electrolysis bring them forefront as potential options. The energy and exergy efficiency comparison study indicates the advantages of biomass gasification over other methods. Overall rankings show that thermochemical Cu–Cl and S–I cycles are primarily promising candidates to produce hydrogen in an environmentally benign and cost-effective way.

Canan Acar; Ibrahim Dincer

2014-01-01T23:59:59.000Z

120

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

An Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of Hydrogen An Analysis of Hydrogen Production from Renewable Electricity Sources Preprint J.I. Levene, M.K. Mann, R. Margolis, and A. Milbrandt National Renewable Energy Laboratory Prepared for ISES 2005 Solar World Congress Orlando, Florida August 6-12, 2005 Conference Paper NREL/CP-560-37612 September 2005 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

122

Comparative Environmental Impact Evaluation of Hydrogen Production Methods from Renewable and Nonrenewable Sources  

Science Journals Connector (OSTI)

In this chapter, a comparative environmental impact study of possible hydrogen production methods from renewable and nonrenewable sources is undertaken ... potential, GWP and acidification potential, AP), production

Canan Acar; Ibrahim Dincer

2013-01-01T23:59:59.000Z

123

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

new buildings equipped with renewable energy feeding intoand consensus building. Renewable energy is therefore not abuilding with electricity from a small-scale wind turbine 21 German law on renewable energy

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

124

Solar utility and renewability evaluation for biodiesel production process  

Science Journals Connector (OSTI)

A new design concept using solar utility to supply steam and electricity for biodiesel production was proposed. A new indicator, called the renewability index, was then defined and quantified by exergy to evaluate the benefits of substituting fossil fuel utility facilities with solar utility facilities. To reduce the unfavorable environmental impacts of the biodiesel production process, a novel process on an 8000 t a?1 scale with solar utility facilities was designed and simulated using Aspen Plus. The results show that the amount of fossil fuel consumption saved per year amounts to 1275 t of standard coal and 4676 t of CO2 release is also eliminated every year. The renewability index of the biodiesel production process with solar utility facilities is 99.9%, 10.5% higher than that with fossil fuel utility facilities. The results reported in this paper indicate that the unfavorable environmental impacts of the biodiesel production process also deserve attention and the impacts can be eliminated by using solar utility facilities.

Zhi Hou; Danxing Zheng

2009-01-01T23:59:59.000Z

125

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

Municipal Solid Waste-Sewage Sludge. b 4.15 SCF CH 4 / cu ftUP I j methane 31.5 scf sludge 18.61b water 161b Btu/scfsewer 65.3 lb ( 7.9 gal) sludge ash 1.74 lb stack emissions

Haven, Kendall F.

2011-01-01T23:59:59.000Z

126

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

which restrict the renewable resource path of development.renewable sources. 3 Amongst Swiss, Germans, and Austrians those best practice Fossil resources

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

127

Hydrogen production from methane and solar energy – Process evaluations and comparison studies  

Science Journals Connector (OSTI)

Abstract Three conventional and novel hydrogen and liquid fuel production schemes, i.e. steam methane reforming (SMR), solar SMR, and hybrid solar-redox processes are investigated in the current study. H2 (and liquid fuel) productivity, energy conversion efficiency, and associated CO2 emissions are evaluated based on a consistent set of process conditions and assumptions. The conventional SMR is estimated to be 68.7% efficient (HHV) with 90% CO2 capture. Integration of solar energy with methane in solar SMR and hybrid solar-redox processes is estimated to result in up to 85% reduction in life-cycle CO2 emission for hydrogen production as well as 99–122% methane to fuel conversion efficiency. Compared to the reforming-based schemes, the hybrid solar-redox process offers flexibility and 6.5–8% higher equivalent efficiency for liquid fuel and hydrogen co-production. While a number of operational parameters such as solar absorption efficiency, steam to methane ratio, operating pressure, and steam conversion can affect the process performances, solar energy integrated methane conversion processes have the potential to be efficient and environmentally friendly for hydrogen (and liquid fuel) production.

Feng He; Fanxing Li

2014-01-01T23:59:59.000Z

128

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable  

E-Print Network (OSTI)

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels studies. Current research focuses on impacts of feeding by-prod- ucts of the bioenergy industry on Animal

129

Electrolysed palladium has the potential to increase methane production by a mixed rumen population in vitro  

E-Print Network (OSTI)

Electrolysed palladium has the potential to increase methane production by a mixed rumen population the proportion of protozoa with attached methanogens decreased, however no estimate of CH4 production under were re-filled with H2:CO2, sealed with butyl rubber stoppers and incubated at 39�C with shaking

Paris-Sud XI, Université de

130

Quantitative Influences of Butyrate or Propionate on Thermophilic Production of Methane from Biomass  

Science Journals Connector (OSTI)

...Propionate on Thermophilic Production of Methane from Biomass...Microbiology and Cell Science, University...Present address: Solar Energy Research Institute...new stable external organic acid pool sizes and new stable gas production rates were observed...Microbiology and Cell Science, University...

J. Michael Henson; F. M. Bordeaux; Christopher J. Rivard; P. H. Smith

1986-02-01T23:59:59.000Z

131

Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge  

Science Journals Connector (OSTI)

Abstract The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 ?mol g?1 dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production.

Minh Tuan Nguyen; Nazlina Haiza Mohd Yasin; Toshiki Miyazaki; Toshinari Maeda

2014-01-01T23:59:59.000Z

132

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents (OSTI)

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

1996-11-12T23:59:59.000Z

133

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents (OSTI)

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

Balachandran, Uthamalingam (Hinsdale, IL); Dusek, Joseph T. (Lombard, IL); Kleefisch, Mark S. (Napersville, IL); Kobylinski, Thadeus P. (Lisle, IL)

1996-01-01T23:59:59.000Z

134

A Framework to Report the Production of Renewable Diesel from Algae  

E-Print Network (OSTI)

, growth conditions, and product composition. Keywords Renewable diesel . Biodiesel . Algae . ReportingA Framework to Report the Production of Renewable Diesel from Algae Colin M. Beal & Colin H. Smith(s) 2010. This article is published with open access at Springerlink.com Abstract Recently, algae have

135

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

be victim to nuisance. Energy from biomass is for justifiedproduced renewable energy (wind, sun, water, biomass/gas).heat energy is usually produced in biomass or biogas

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

136

Renewable and Appropriate Energy Laboratory Report Review of Technologies for the Production and Use of Charcoal  

E-Print Network (OSTI)

Renewable and Appropriate Energy Laboratory Report Review of Technologies for the Production of Charcoal Production __________________________________5 The Petroleum Link developing nations. In this paper, we review the current status of biomass harvesting and transport

Kammen, Daniel M.

137

Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production  

SciTech Connect

Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith [EG& amp; G Technical Services, Morgantown, WV (United States). National Energy Technology Laboratory

2005-12-01T23:59:59.000Z

138

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

139

Single-well Modeling of Coalbed Methane Production  

E-Print Network (OSTI)

curves. Further solution of a specific CBM single-well problem and parametric study for evaluation impact of separate parameters were conducted. Focus of the studies was on well production forecasting, effect of mechanical properties of coal...

Martynova, Elena

2014-01-14T23:59:59.000Z

140

Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Seam Well Completion Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production U.S. Department of Energy Office of Fossil Energy and National Energy Technology Laboratory Strategic Center for Natural Gas September 2003 DOE/NETL-2003/1193 Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production U.S. Department of Energy National Energy Technology Laboratory (NETL) (Strategic Center for Natural Gas) DOE/NETL-2003/1193 September 2003 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

besides minor energy shares from solar panels and a biogasof renewable energy, from simple solar panels to sociallyenergy sources, for example by making the roof completely from solar panels,

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

142

Beginning of Construction for Purposes of the Renewable Electricity Production Tax Credit and Energy Investment Tax Credit  

Energy.gov (U.S. Department of Energy (DOE))

Beginning of Construction for Purposes of the Renewable Electricity Production Tax Credit and Energy Investment Tax Credit

143

Evaluation of the economic impact of hydrogen production by methane decomposition with steam reforming of methane process  

Science Journals Connector (OSTI)

Abstract There has been considerable interest in the development of more efficient processes to generate hydrogen. Currently, steam methane reforming (SMR) is the most widely applied route for producing hydrogen from natural gas. Researchers worldwide have been working to invent more efficient routes to produce hydrogen. One of the routes is thermocatalytic decomposition of methane (TCDM) - a process that decomposes methane thermally to produce hydrogen from natural gas. TCDM has not yet been commercialized. However, the aim of this work was to conduct an economic and environmental analysis to determine whether the TCDM process is competitive with the more popular SMR process. The results indicate that the TCDM process has a lower carbon footprint. Further research on TCDM catalysts could make this process economically competitive with steam methane reforming.

Kartick C. Mondal; S. Ramesh Chandran

2014-01-01T23:59:59.000Z

144

Enhanced methane production from wool textile residues by thermal and enzymatic pretreatment  

Science Journals Connector (OSTI)

Abstract Methane production from two types of wool textile wastes (TW1 and TW2) was investigated. To improve the digestibility of these textiles, different pretreatments were applied, and comprised thermal treatment (at 120 °C for 10 min), enzymatic hydrolysis (using an alkaline endopeptidase at different levels of enzymatic loading, at 55 °C for 0, 2, and 8 h), and a combination of these two treatments. Soluble protein concentration and sCOD (soluble chemical oxygen demand) were measured to evaluate the effectivity of the different pretreatment conditions to degrade wool keratin. The sCOD as well as the soluble protein content had increased in both textile samples in comparison to untreated samples, as a response to the different pretreatments indicating breakdown of the wool keratin structure. The combined treatments and the thermal treatments were further evaluated by anaerobic batch digestion assays at 55 °C. Combined thermal and enzymatic treatment of TW1 and TW2 resulted in methane productions of 0.43 N m3/kg VS and 0.27 N m3/kg VS, i.e., 20 and 10 times higher yields, respectively, than that gained from untreated samples. The application of thermal treatment by itself was less effective and resulted in increasing the methane production by 10-fold for TW1 and showing no significant improvement for TW2.

Maryam M. Kabir; Gergely Forgács; Ilona Sárvári Horváth

2013-01-01T23:59:59.000Z

145

Methane Decomposition: Production of Hydrogen and Carbon Filaments  

E-Print Network (OSTI)

for hydrogen is to power fuel cells. Major automobile manufac- turers are currently working towards developing ppm in the preferential oxidation reactor (PROX). The hydrogen can be introduced in the fuel cell only for the performance of PEM fuel cells.6 Other conventional process of hydrogen production such as partial oxidation

Goodman, Wayne

146

The analysis of the factors effect on coalbed methane pool concentration and high-production -- The North China coalbed methane districts as an example  

SciTech Connect

The factors which affect coalbed methane (CBM) pool concentration and high-production based upon the exploration and research of the North China CBM districts are coal facies, coal rank and metamorphic types, structural features, the surrounding rocks and their thickness, and hydrogeological conditions. Coal facies, coal rank and their metamorphic types mainly affect the CBM forming characteristic, while the other factors effect the trap of CBM pool. The interaction of the above factors determines the petrophysics of coal reservoirs and extractability of CBM. The high-production areas where CBM pools develop well in North China CBM districts are sites which have a favorable coordination of the five factors. The poor-production areas where CBM pools are undeveloped in North China are caused by action of one or more unfavorable factors. Therefore the favorable factors coordination is the prerequisite in selecting sites for coalbed methane recovery.

Wang Shengwei; Zhang Ming; Zhuang Xiaoli

1997-12-31T23:59:59.000Z

147

Methane Steam Reforming in Hydrogen-permeable Membrane Reactor for Pure Hydrogen Production  

Science Journals Connector (OSTI)

Steam reforming of methane over a ruthenium catalyst has been carried ... hydrogen separation from the reaction mixture, the methane conversion significantly exceeds the equilibrium value, which ... an important ...

Yasuyuki Matsumura; Jianhua Tong

2008-12-01T23:59:59.000Z

148

Made with Renewable Energy: How and Why Companies are Labeling Consumer Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Made with Renewable Energy: Made with Renewable Energy: How and Why Companies are Labeling Consumer Products Deborah Baker Brannan, Jenny Heeter, and Lori Bird Technical Report NREL/TP-6A20-53764 March 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Made with Renewable Energy: How and Why Companies are Labeling Consumer Products Deborah Baker Brannan, Jenny Heeter, and Lori Bird Prepared under Task No. SAO9.3110 Technical Report NREL/TP-6A20-53764

149

Proposals Due for New California Renewable Energy Products on Behalf of the Navy  

Energy.gov (U.S. Department of Energy (DOE))

Western Area Power Administration (Western) has issued a request for proposal (RFP) for new California renewable energy products on behalf of the U.S. Department of the Navy to supply various loads...

150

Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996  

SciTech Connect

The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

NONE

1998-12-31T23:59:59.000Z

151

Potential for Hydrogen Production from Key Renewable Resources in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential for Hydrogen Production Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Technical Report NREL/TP-640-41134 February 2007 NREL is operated by Midwest Research Institute â—Ź Battelle Contract No. DE-AC36-99-GO10337 Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Prepared under Task No. H278.2100 Technical Report NREL/TP-640-41134 February 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

152

First Renewables | Open Energy Information  

Open Energy Info (EERE)

First Renewables Place: United Kingdom Sector: Biomass, Renewable Energy, Wind energy Product: First Renewables owns and operates a portfolio of renewable energy development...

153

Methane/CO{sub 2} sorption modeling for coalbed methane production and CO{sub 2} sequestration  

SciTech Connect

A thorough study of the sorption behavior of coals to methane and carbon dioxide (CO{sub 2}) is critical for carbon sequestration in coal seams and enhanced coalbed methane recovery. This paper discusses the results of an ad/de-sorption study of methane and CO{sub 2}, in single gas environment, on a set of coal samples taken from the San Juan and Illinois Basins. The results indicate that, under similar temperature and pressure conditions, coals exhibit higher affinity to CO{sub 2} as compared to methane and that the preferential sorption ratio varies between 2:1 and 4:1. Furthermore, the experimental data were modeled using Langmuir, BET, and Dubinin-Polanyi equations. The accuracy of the models in quantifying coal-gas sorption was compared using an error analysis technique. The Dubinin-Radushkevich equation failed to model the coal-gas sorption behavior satisfactorily. For methane, Langmuir, BET, and Dubinin-Astakhov (D-A) equations all performed satisfactorily within comparable accuracy. However, for CO{sub 2}, the performance of the D-A equation was found to be significantly better than the other two. Overall, the D-A equation fitted the experimental sorption data the best, followed by the Langmuir and BET equations. Since the D-A equation is capable of deriving isotherms for any temperature using a single isotherm, thus providing added flexibility to model the temperature variation due to injection/depletion, this is the recommended model to use. 49 refs., 9 figs., 5 tabs.

Satya Harpalani; Basanta K. Prusty; Pratik Dutta [Southern Illinois University-Carbondale, Carbondale, IL (United States). Department of Mining and Mineral Resources Engineering

2006-08-15T23:59:59.000Z

154

Estimating the Carbon Sequestration Capacity of Shale Formations Using Methane Production Rates  

Science Journals Connector (OSTI)

Estimating the Carbon Sequestration Capacity of Shale Formations Using Methane Production Rates ... Even though both of these strategies have some potential to sequester CO2, the magnitude is much smaller than current or projected CO2 emissions. ... This distribution is combined with stochastic estimates for (4) the ratio of CH4 volume to CO2 volume that can sorb to the fracture surface and (5) the ratio of the gas diffusivities at the fracture surface to estimate the volume of CO2 that could be sequestered in these wells. ...

Zhiyuan Tao; Andres Clarens

2013-08-29T23:59:59.000Z

155

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

of these tariffs. 19 Combined heat and power production tooperated combined heat and power plant (Blockheizkraftwerk,from solar and combined heat and power production units is

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

156

Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin  

SciTech Connect

The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production tends to decline hyperbolically. Hyperbolic decline indicates that water volume is of greatest concern early in the life of a coalbed methane project. Regional mapping indicates that gas production is controlled primarily by the ability to depressurize permeable coal seams that are natively within the steep part of the adsorption isotherm. Water production is greatest within the freshwater intrusion and below thick Cretaceous cover strata and is least in areas of underpressure. Water management strategies include instream disposal, which can be applied effectively in most parts of the basin. Deep disposal may be applicable locally, particularly where high salinity limits the ability to dispose into streams. Artificial wetlands show promise for the management of saline water, especially where the reservoir yield is limited. Beneficial use options include municipal water supply, agricultural use, and industrial use. The water may be of use to an inland shrimp farming industry, which is active around the southwestern coalbed methane fields. The best opportunities for beneficial use are reuse of water by the coalbed methane industry for drilling and hydraulic fracturing. This research has further highlighted opportunities for additional research on treatment efficiency, the origin of nitrogen compounds, organic geochemistry, biogenic gas generation, flow modeling, and computer simulation. Results of this study are being disseminated through a vigorous technology transfer program that includes web resources, numerous presentations to stakeholders, and a variety of technical publications.

Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

2013-10-31T23:59:59.000Z

157

Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells  

Science Journals Connector (OSTI)

Abstract Cobalt was successfully recovered with simultaneous methane and acetate production in biocathode microbial electrolysis cells (MECs). At an applied voltage of 0.2 V, 88.1% of Co(II) was reduced with concomitantly achieving yields of 0.266 ± 0.001 mol Co/mol COD, 0.113 ± 0.000 mol CH4/mol COD, and 0.103 ± 0.003 mol acetate/mol COD. Energy efficiencies relative to the electrical input were 21.2 ± 0.05% (Co), 100.9 ± 3.2% (CH4), and 1.0 ± 0.01% (acetate), and overall energy efficiencies relative to both electrical input and energy of anodic substrate averaged 3.7 ± 0.05% (Co), 17.5 ± 1.4% (CH4) and 0.5 ± 0.001% (acetate). Applied voltage, initial Co(II) concentration, and temperature affected system performance. The apparent activation energy (Ea) obtained in \\{MECs\\} was 26.7 kJ/mol compared to 40.5 kJ/mol in the abiotic controls, highlighting the importance of cathodic microbial catalysis to Co(II) reduction. Dominant microorganisms most similar to Geobacter psychrophilus, Acidovorax ebreus, Diaphorobacter oryzae, Pedobacter duraquae, and Prolixibacter bellariivorans were observed on the biocathodes. This study provides a new process for cobalt recovery and recycle of spent lithium ion batteries with simultaneous methane and acetate production in the biocathode MECs.

Liping Huang; Linjie Jiang; Qiang Wang; Xie Quan; Jinhui Yang; Lijie Chen

2014-01-01T23:59:59.000Z

158

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

threaten the energy monopolists’ dominant market position ifat times of energy “over production”, leaving the market for

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

159

Diagram of the Biofuel Production Process (SPORL -Alcohol Production):Introduction: The Northwest Advanced Renewables Alliance (NARA) is an organization  

E-Print Network (OSTI)

Diagram of the Biofuel Production Process (SPORL - Alcohol Production):Introduction: The Northwest Advanced Renewables Alliance (NARA) is an organization that aims to create a sustainable aviation biofuels to determine the atmospheric emissions and emission sources that may be released from proposed NARA biofuels

Collins, Gary S.

160

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind to Hydrogen Project: Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Hydrogen Technologies and Systems Center Todd Ramsden, Kevin Harrison, Darlene Steward November 16, 2009 NREL/PR-560-47432 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL Wind2H2 RD&D Project * The National Renewable Energy Laboratory in partnership with Xcel Energy and DOE has designed, operates, and continues to perform testing on the wind-to-hydrogen (Wind2H2) project at the National Wind Technology Center in Boulder * The Wind2H2 project integrates wind turbines, PV arrays and electrolyzers to produce from renewable energy

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Methane Power Inc | Open Energy Information  

Open Energy Info (EERE)

Methane Power Inc Methane Power Inc Jump to: navigation, search Logo: Methane Power Inc. Name Methane Power Inc. Address 121 Edinburgh South Drive Place Cary, NC Zip 27511 Sector Renewable Energy Product Methane Power is a renewable energy project developer that focuses on landfill gas-to-energy projects. Currently, they are a supplier of landfill gas generated energy to Duke Energy in North Carolina. Phone number 919-297-7206 Website http://www.methanepower.net Coordinates 35.7395875°, -78.8029226° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.7395875,"lon":-78.8029226,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Resource Assessment & Production Testing for Coal Bed Methane in the Illinois Basin  

SciTech Connect

In order to assess the economic coal bed methane potential of the Illinois Basin, the geological surveys of Illinois, Indiana and Kentucky performed a geological assessment of their respective parts of the Illinois Basin. A considerable effort went into generating cumulative coal thickness and bed structure maps to identify target areas for exploratory drilling. Following this, the first project well was drilled in White County, Illinois in October 2003. Eight additional wells were subsequently drilled in Indiana (3) and Kentucky (5) during 2004 and 2005. In addition, a five spot pilot completion program was started with three wells being completed. Gas contents were found to be variable, but generally higher than indicated by historical data. Gas contents of more than 300 scf/ton were recovered from one of the bore holes in Kentucky. Collectively, our findings indicate that the Illinois Basin represents a potentially large source of economic coal bed methane. Additional exploration will be required to refine gas contents and the economics of potential production.

Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

2005-11-01T23:59:59.000Z

163

Ethanol and Methane Production from Oil Palm Frond by Two Stage SSF  

Science Journals Connector (OSTI)

Abstract A two step, included process producing ethanol from oil palm fronts (OPF) by two-stage simultaneous saccharification and Saccharomyces cerevisiae fermentation followed by anaerobic digestion of its effluent to produce methane was investigated. OPF was soaked in dilute sulfuric acid, hydrogen peroxide and water consequently pretreated by microwave for preparing of cellulose and followed by simultaneous saccharification and fermentation. The result indicated OPF soaking in water gave a maximal ethanol yield was 0.32 g-ethanol/g-glucose which was 62.75% of the ethanol theoretical yield (0.51g-ethanol/g-glucose). The effluent from the ethanol production process was used to produce methane with the yield of 514 ml CH4/g VS added. Therefore, soaking in water and microwave co-pretreatment could helpful due to its low toxicity and low corrosion compare to sulfuric acid and hydrogen peroxide which improves the efficiency of enzymatic hydrolysis. The maximum energy output of the process (745 kWh/ ton of OPF) was about 72% of the energy contributed by cellulose fraction, contained in the oil palm frond.

Tussanee Srimachai; Veerasak Thonglimp; Sompong O-Thong

2014-01-01T23:59:59.000Z

164

Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming  

Science Journals Connector (OSTI)

Abstract A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3 mm and total catalyst length of 9.53 × 10?2 m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 1023 K, and pressure of 11 bar confirm catalyst power densities upwards of 1380 W per cm3 of catalyst at hydrogen yields >98% of thermodynamic equilibrium. A two-dimensional steady-state computational fluid dynamic model of the AMR prototype was validated using experimental data and subsequently employed to identify suitable operating conditions for an envisioned mass-production AMR design with 0.3 mm annular channel width and a single catalyst length of 254 mm. Thermal efficiencies, defined based upon methane and product hydrogen higher heating values (HHVs), of 72.7–57.7% were obtained from simulations for methane capacities of 0.5–2S LPM (space velocities of 195,000–782,000 h?1) at hydrogen yields corresponding to 99%–75% of equilibrium values. Under these conditions, analysis of local composition, temperature and pressure indicated that catalyst deactivation via coke formation or Nickel oxidation is not thermodynamically favorable. Lastly, initial analysis of an envisioned 10 kW autothermal reformer combining 19 parallel \\{AMRs\\} within a single methane-air combustion chamber, based upon existing manufacturing capabilities within Power & Energy, Inc., is presented.

Holly Butcher; Casey J.E. Quenzel; Luis Breziner; Jacques Mettes; Benjamin A. Wilhite; Peter Bossard

2014-01-01T23:59:59.000Z

165

Table 17. Coalbed methane proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed methane proved reserves, reserves changes, and production, 2011 Coalbed methane proved reserves, reserves changes, and production, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 17,508 -15 2,071 1,668 1,775 1,710 736 0 13 1,763 16,817 Alabama 1,298 -45 23 86 104 219 3 0 0 98 1,210 Arkansas 28 0 0 3 0 0 0 0 0 4 21 California 0 0 0 0 0 0 0 0 0 0 0 Colorado 6,485 73 698 367 1,034 1,021 220 0 0 516 6,580 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 258 -6 24 14 0 0 3 0 0 37 228 Kentucky 0 0 0 0 0 0 0 0 0 0 0 Louisiana 0 0 0 0 0 0 0 0 0 0 0 North Onshore 0 0 0 0 0 0 0 0 0 0 0 South Onshore 0 0 0 0 0 0 0 0 0 0 0 State Offshore 0 0 0 0 0 0 0 0 0 0 0 Michigan 0 0 0 0 0 0 0 0 0 0 0 Mississippi 0 0 0 0 0 0 0 0 0

166

CO2 conversion for syngas production in methane catalytic partial oxidation  

Science Journals Connector (OSTI)

Abstract The catalytic partial oxidation of methane (CPOM) involves the interaction among methane combustion (MC), steam reforming (SR), and dry reforming (DR), and CO2 generated from MC is utilized for syngas production in DR. To evaluate the potential of CO2 utilization in CPOM for syngas production, a numerical study is carried out where CO2 is added into the feed gas and CPOM is triggered in a rhodium-based catalyst bed. Two important parameters of CO2/O2 ratio and O2/CH4 ratio (or O/C ratio) in the feed gas are taken into account. The predictions suggest that CO2 addition plays no part in MC, but it retards SR and intensifies DR. The CO2 consumption increases with CO2/O2 ratio; however, the CO2 conversion goes down. As a whole, increasing CO2 addition enhances CO formation but reduces H2 formation. The maximum syngas production is exhibited at CO2/O2 = 0.2 when the O/C ratio is 1. At a fixed CO2/O2 ratio, the maximum H2 yield and CO2 consumption are located at O/C = 1.8 and 1.0, respectively. However, the CO2 conversion monotonically decreases with increasing O/C ratio. Within the investigated range of CO2/O2 and O/C ratios, the H2 yield and CO2 conversion in CPOM are in the ranges of approximately 0.42–1.34 mol(mol CH4)?1 and 10–41%, respectively.

Wei-Hsin Chen

2014-01-01T23:59:59.000Z

167

Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production  

SciTech Connect

Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330oC when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted MgO-based sorbent. Under model feed conditions both the sorbent and catalyst exhibited favorable stability after multiple test cycles. The cleanup for warm gas cleanup of inorganics was broken down into three major steps: chloride removal, sulfur removal, and the removal for a multitude of trace metal contaminants. Na2CO3 was found to optimally remove chlorides at an operating temperature of 450şC. For sulfur removal two regenerable ZnO beds are used for bulk H2S removal at 450şC (<5 ppm S) and a non-regenerable ZnO bed for H2S polishing at 300şC (<40 ppb S). It was also found that sulfur from COS could be adsorbed (to levels below our detection limit of 40 ppb) in the presence of water that leads to no detectable slip of H2S. Finally, a sorbent material comprising of Cu and Ni was found to be effective in removing trace metal impurities such as AsH3 and PH3 when operating at 300şC. Proof-of-concept of the integrated cleanup process was demonstrated with gasifier-generated syngas produced at the Western Research Institute using Wyoming Decker Coal. When operating with a ~1 SLPM feed, multiple inorganic contaminant removal sorbents and a tar-reforming bed was able to remove the vast majority of contaminants from the raw syngas. A tar-reforming catalyst was employed due to the production of tars generated from the gasifier used in this particular study. It is envisioned that in a real application a commercial scale gasifier operating at a higher temperature would produce lesser amount of tar. Continuous operation of a poison-sensitive copper-based WGS catalyst located downstream from the cleanup steps resulted in successful demonstration. ?

Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

2014-10-31T23:59:59.000Z

168

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

in one case. Biomass or Biogas plants for electricityand heat production 24 Biogas plants use manure and energythat they do not run on biogas but biological waste or wood.

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

169

Powder River Basin coalbed methane: The USGS role in investigating this ultimate clean coal by-product  

SciTech Connect

For the past few decades, the Fort Union Formation in the Powder River Basin has supplied the Nation with comparatively clean low ash and low sulfur coal. However, within the past few years, coalbed methane from the same Fort Union coal has become an important energy by-product. The recently completed US Geological Survey coal resource assessment of the Fort Union coal beds and zones in the northern Rocky Mountains and Great Plains (Fort Union Coal Assessment Team, 1999) has added useful information to coalbed methane exploration and development in the Powder River Basin in Wyoming and Montana. Coalbed methane exploration and development in the Powder River Basin has rapidly accelerated in the past three years. During this time more than 800 wells have been drilled and recent operator forecasts projected more than 5,000 additional wells to be drilled over the next few years. Development of shallow (less than 1,000 ft. deep) Fort Union coal-bed methane is confined to Campbell and Sheridan Counties, Wyoming, and Big Horn County, Montana. The purpose of this paper is to report on the US Geological Survey's role on a cooperative coalbed methane project with the US Bureau of Land Management (BLM), Wyoming Reservoir Management Group and several gas operators. This paper will also discuss the methodology that the USGS and the BLM will be utilizing for analysis and evaluation of coalbed methane reservoirs in the Powder River Basin. The USGS and BLM need additional information of coalbed methane reservoirs to accomplish their respective resource evaluation and management missions.

Stricker, G.D.; Flores, R.M.; Ochs, A.M.; Stanton, R.W.

2000-07-01T23:59:59.000Z

170

Thermodynamic Analysis of Syngas Production via the Solar Thermochemical Cerium Oxide Redox Cycle with Methane-Driven Reduction  

Science Journals Connector (OSTI)

Thermodynamic Analysis of Syngas Production via the Solar Thermochemical Cerium Oxide Redox Cycle with Methane-Driven Reduction ... Of particular interest is the storage of solar energy in chemical bonds via the splitting of water and carbon dioxide to produce hydrogen and carbon monoxide, referred to collectively as syngas. ... The coupled cycle produces high-quality syngas by the partial oxidation of methane in the ceria reduction step in addition to the carbon monoxide and hydrogen produced by splitting carbon dioxide and water in the oxidation step. ...

Peter T. Krenzke; Jane H. Davidson

2014-05-16T23:59:59.000Z

171

Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic  

E-Print Network (OSTI)

, carbohydrate hydrolysis and dehydration, and catalytic upgrading of platform chemicals. The technology centersProduction of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic and subsequently upgrading these two platforms into a mixture of branched, linear, and cyclic alkanes of molecular

California at Riverside, University of

172

Energy Department Announces $11 Million to Advance Renewable Carbon Fiber Production from Biomass  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department announced today up to $11.3 million for two projects that aim to advance the production of cost-competitive, high-performance carbon fiber material from renewable, non-food-based feedstocks, such as agricultural residues and woody biomass.

173

Renewable hydrogen production becomes reality at winery Tuesday, September 29, 2009  

E-Print Network (OSTI)

already has on-site wastewater treatment and recycling and the partially treated water from the microbial. -- The first demonstration of a renewable method for hydrogen production from wastewater using a microbial will take winery wastewater, and using bacteria and a small amount of electrical energy, convert the organic

174

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities  

E-Print Network (OSTI)

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

175

ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT  

E-Print Network (OSTI)

ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT SHELLS, and academic organizations is developing a steam reforming process to be demonstrated on the gaseous byproducts of this engineering demonstration project. After an initial problem with the heaters that required modification

176

Renewable Resources for the Production of Fuels and Chemicals  

Science Journals Connector (OSTI)

...this is a rather small figure, but it ex-ceeds that for nuclear energy (0.7 quad in 1974). The total volume of wood products...sulfonates have found gradually increasing applications as dispersants, particularly as oil well drilling additives, as emulsifiers...

Kyosti V. Sarkanen

1976-02-20T23:59:59.000Z

177

Mechanistic studies of electron transfer, complex formation, C-H bond activation, and product binding in soluble methane monooxygenase  

E-Print Network (OSTI)

Chapter 1. Soluble Methane Monooxygenase: Activation of Dioxygen and Methane The mechanisms by which soluble methane monooxygenase uses dioxygen to convert methane selectively to methanol have come into sharp focus. Diverse ...

Kopp, Daniel Arthur

2003-01-01T23:59:59.000Z

178

Effect of Sulfur Compounds and Higher Homologues of Methane on Hydrogen Cyanide Production by the Andrussow Method  

Science Journals Connector (OSTI)

The influence of sulfur compounds, higher homologues of methane on the parameters ofoxidative ammonolysis of methane was studied.

N. V. Trusov

2001-10-01T23:59:59.000Z

179

Production of Hydrogen from Peanut Shells The goal of this project is the production of renewable hydrogen from agricultural  

E-Print Network (OSTI)

developed the technology for bio- oil to hydrogen via catalytic steam reforming and shift conversion-Tech, the National Renewable Energy Laboratory has demonstrated the production of hydrogen from biomass at a flow ratio of 1.5:1 was used as a carrier gas and also as a reactant in the reformer. The test

180

The impact of future energy demand on renewable energy production – Case of Norway  

Science Journals Connector (OSTI)

Abstract Projections of energy demand are an important part of analyses of policies to promote conservation, efficiency, technology implementation and renewable energy production. The development of energy demand is a key driver of the future energy system. This paper presents long-term projections of the Norwegian energy demand as a two-step methodology of first using activities and intensities to calculate a demand of energy services, and secondly use this as input to the energy system model TIMES-Norway to optimize the Norwegian energy system. Long-term energy demand projections are uncertain and the purpose of this paper is to illustrate the impact of different projections on the energy system. The results of the analyses show that decreased energy demand results in a higher renewable fraction compared to an increased demand, and the renewable energy production increases with increased energy demand. The most profitable solution to cover increased demand is to increase the use of bio energy and to implement energy efficiency measures. To increase the wind power production, an increased renewable target or higher electricity export prices have to be fulfilled, in combination with more electricity export.

Eva Rosenberg; Arne Lind; Kari Aamodt Espegren

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Methane Production Quantification and Energy Estimation for Bangalore Municipal Solid Waste  

Science Journals Connector (OSTI)

Landfills are considered as cornerstone of solid waste management. Landfill gas (LFG) and leachate are principal outputs ... from landfills. Methane, occupying significant volume of landfill gas, has considerable...

A. Kumar; R. Dand; P. Lakshmikanthan…

2014-01-01T23:59:59.000Z

182

Evaluation of factors that influence microbial communities and methane production in coal microcosms.  

E-Print Network (OSTI)

??Vast reserves of coal represent a largely untapped resource that can be used to produce methane gas, a cleaner energy alternative compared to burning oil… (more)

Gallagher, Lisa K.

2014-01-01T23:59:59.000Z

183

U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Methane Hydrates May Exceed the Energy Content of All Other Fossil Fuels Combined; Could Ensure Decades of Affordable Natural Gas and Cut America’s Foreign Oil Dependence

184

A dynamic prediction model for gas–water effective permeability based on coalbed methane production data  

Science Journals Connector (OSTI)

Abstract An understanding of the relative permeability of gas and water in coal reservoirs is vital for coalbed methane (CBM) development. In this work, a prediction model for gas–water effective permeability is established to describe the permeability variation within coal reservoirs during production. The effective stress and matrix shrinkage effects are taken into account by introducing the Palmer and Mansoori (PM) absolute permeability model. The endpoint relative permeability is calibrated through experimentation instead of through the conventional Corey relative permeability model, which is traditionally employed for the simulation of petroleum reservoirs. In this framework, the absolute permeability model and the relative permeability model are comprehensively coupled under the same reservoir pressure and water saturation conditions through the material balance equation. Using the Qinshui Basin as an example, the differences between the actual curve that is measured with the steady-state method and the simulation curve are compared. The model indicates that the effective permeability is expressed as a function of reservoir pressure and that the curve shape is controlled by the production data. The results illustrate that the PM–Corey dynamic prediction model can accurately reflect the positive and negative effects of coal reservoirs. In particular, the model predicts the matrix shrinkage effect, which is important because it can improve the effective permeability of gas production and render the process more economically feasible.

H. Xu; D.Z. Tang; S.H. Tang; J.L. Zhao; Y.J. Meng; S. Tao

2014-01-01T23:59:59.000Z

185

Modeling of coal bed methane (CBM) production and CO2 sequestration in coal seams  

Science Journals Connector (OSTI)

A mathematical model was developed to predict the coal bed methane (CBM) production and carbon dioxide (CO2) sequestration in a coal seam accounting for the coal seam properties. The model predictions showed that, for a CBM production and dewatering process, the pressure could be reduced from 15.17 MPa to 1.56 MPa and the gas saturation increased up to 50% in 30 years for a 5.4 × 105 m2 of coal formation. For the CO2 sequestration process, the model prediction showed that the CO2 injection rate was first reduced and then slightly recovered over 3 to 13 years of injection, which was also evidenced by the actual in seam data. The model predictions indicated that the sweeping of the water in front of the CO2 flood in the cleat porosity could be important on the loss of injectivity. Further model predictions suggested that the injection rate of CO2 could be about 11 × 103 m3 per day; the injected CO2 would reach the production well, which was separated from the injection well by 826 m, in about 30 years. During this period, about 160 × 106 m3 of CO2 could be stored within a 21.4 × 105 m2 of coal seam with a thickness of 3 m.

Ekrem Ozdemir

2009-01-01T23:59:59.000Z

186

Production of methane-rich syngas from hydrocarbon fuels using multi-functional catalyst/capture agent  

DOE Patents (OSTI)

The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 700.degree. C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 700.degree. C. by enabling a series of reactions which generate H.sub.2 and CH.sub.4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH.sub.4 at temperatures above 700.degree. C., and may effectively operate within an IGFC cycle at reactor temperatures between 700-900.degree. C. and pressures in excess of 10 atmospheres.

Siefert, Nicholas S; Shekhawat, Dushyant; Berry, David A; Surdoval, Wayne A

2014-12-30T23:59:59.000Z

187

Methane Main  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 Report of the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 i CONTENTS What is Methane Hydrate? ............................................................................................. 1 Why Methane Hydrate Matters for the United States? ..................................................... 4 Resource Potential of Methane Hydrate .......................................................................... 5 Implications of Methane Hydrate on Safety and Seafloor Stability

188

Cost of non-renewable energy in production of wood pellets in China  

Science Journals Connector (OSTI)

Assessing the extent to which all bio-fuels that are claimed to be renewable are in fact renewable is essential because producing such renewable fuels itself requires some amount of non-renewable energy (NE) and ...

Changbo Wang; Lixiao Zhang; Jie Liu

2013-06-01T23:59:59.000Z

189

PPL Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Sector: Renewable Energy Product: PPL Renewable Energy develops, owns, operates and maintains renewable energy projects in the northeastern United States. References: PPL Renewable...

190

Renewables Marketplace | Open Energy Information  

Open Energy Info (EERE)

Marketplace Jump to: navigation, search Name: Renewables Marketplace Place: Palm Desert, California Zip: 92211 Sector: Renewable Energy Product: The Renewables Marketplace is a...

191

Fuel cells development and hydrogen production from renewable resources in Brazil  

Science Journals Connector (OSTI)

In this work we review the Brazilian energy supply matrix, in particular focusing on environmentally friendly pathways to hydrogen production and fuel cell utilisation. Brazil is currently building capacity in these areas, evident in the spectrum of technological research carried out by several universities in the fields of hydrogen production processes, catalysts and electrolyte materials. Although the fuel cell installed capacity in Brazil is limited, there are several government-funded research activities – mainly on PEM, DMFC, DEFC and SOFC, in addition to reforming and catalysis of ethanol as cell fuel. Brazil has a robust energy matrix, and 45% of its energy supply is derived from renewable resources. The future hydrogen economy in Brazil will probably rely on renewable resources, mainly from hydroelectric power and biofuels, which are plentifully available.

D. Hotza; J.C. Diniz da Costa

2008-01-01T23:59:59.000Z

192

Geologic evaluation of critical production parameters for coalbed methane resources. Part 1. San Juan Basin. Annual report, August 1988-July 1989  

SciTech Connect

In the San Juan Basin, Fruitland Formation coal seams contain an estimated 43 to 49 Tcf of methane. With more than 500 producing coalbed methane wells and approximately 1,000 wells scheduled for drilling in 1990, the basin is one of the most active areas of coalbed methane exploration and production in the United States. Among the most important geologic factors affecting the occurrence and producibility of coalbed methane are depositional setting, structural attitude and fracturing of the coal, and regional hydraulic setting. In the second year of the study, the Bureau of Economic Geology evaluated the depositional setting and structure of Fruitland coal seams, which are both source rocks and reservoirs for coalbed methane, throughout the basin. The report summarizes the regional tectonic setting of the San Juan Basin; describes the Cretaceous stratigraphy, structure, and basin evolution; relates these factors to Fruitland coal and coalbed methane occurrence; describes studies of lineaments, fractures, and cleats; presents hydrodynamic controls on the producibility of coalbed methane from the Fruitland Formation; summarizes production from the Fruitland Formation; and evaluates geologic and hydrologic controls on coalbed methane producibility.

Ayers, W.B.; Kaiser, W.R.; Ambrose, W.A.; Swartz, T.E.; Laubach, S.E.

1990-01-01T23:59:59.000Z

193

Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production  

Science Journals Connector (OSTI)

Abstract Steam methane reforming (SMR) is currently the main hydrogen production process in industry, but it has high emissions of CO2, at almost 7 kg CO2/kg H2 on average, and is responsible for about 3% of global industrial sector CO2 emissions. Here, the results are reported of an investigation of the effect of steam-to-carbon ratio (S/C) on CO2 capture criteria from various locations in the process, i.e. synthesis gas stream (location 1), pressure swing adsorber (PSA) tail gas (location 2), and furnace flue gases (location 3). The CO2 capture criteria considered in this study are CO2 partial pressure, CO2 concentration, and CO2 mass ratio compared to the final exhaust stream, which is furnace flue gases. The CO2 capture number (Ncc) is proposed as measure of capture favourability, defined as the product of the three above capture criteria. A weighting of unity is used for each criterion. The best S/C ratio, in terms of providing better capture option, is determined. CO2 removal from synthesis gas after the shift unit is found to be the best location for CO2 capture due to its high partial pressure of CO2. However, furnace flue gases, containing almost 50% of the CO2 in produced in the process, are of great significance environmentally. Consequently, the effects of oxygen enrichment of the furnace feed are investigated, and it is found that this measure improves the CO2 capture conditions for lower S/C ratios. Consequently, for an S/C ratio of 2.5, CO2 capture from a flue gas stream is competitive with two other locations provided higher weighting factors are considered for the full presence of CO2 in the flue gases stream. Considering carbon removal from flue gases, the ratio of hydrogen production rate and Ncc increases with rising reformer temperature.

R. Soltani; M.A. Rosen; I. Dincer

2014-01-01T23:59:59.000Z

194

Simulation study of the effect of well spacing, effect of permeability anisotropy, and effect of Palmer and Mansoori model on coalbed methane production.  

E-Print Network (OSTI)

??Interference for adjacent wells may be beneficial to Coalbed-Methane production. The effect is the acceleration of de-watering which should lead to earlier and higher gas… (more)

Zulkarnain, Ismail

2006-01-01T23:59:59.000Z

195

The Interaction Between SrFeCo0.5O x Ceramic Membranes and Pt/CeZrO2 During Syngas Production from Methane  

Science Journals Connector (OSTI)

Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest as membrane reactor systems for the conversion of methane to higher value products. In this work, th...

Sedigheh Faraji; Karen J. Nordheden; Susan M. Stagg-Williams

2009-08-01T23:59:59.000Z

196

Syngas production from burner-stabilized methane/air flames: The effect of preheated reactants  

Science Journals Connector (OSTI)

The effect of preheated reactants on syngas production from a methane/air flame was investigated over a range of inlet temperatures up to 630 K. In addition to experimental measurements, the results from a burner-stabilized flame and freely-propagating flame models are presented. A comparison of the modeling and experimental results in terms of flame standoff distance, stability limit conditions and species yields show excellent agreement across a broad range of equivalence ratios and preheat temperatures. Preheating of reactants increased the rich limit for stable operation from 1.26 to 1.75 for a given inlet velocity, and syngas yields were shown to increase with equivalence ratio. The preheat temperature of the reactants was shown to have little impact on syngas yields beyond extending the limits of stable operation. The results of this study are useful for the design and analysis of heat recirculating reactors and other reactors that are designed for producing syngas through the combustion of rich mixtures.

Colin H. Smith; Daniel I. Pineda; Janet L. Ellzey

2013-01-01T23:59:59.000Z

197

Hydrogen production through CO2 sorption-enhanced methane steam reforming: Comparison between different adsorbents  

Science Journals Connector (OSTI)

A two-dimensional transient model has been developed to describe the catalytic methane reforming (MSR) coupled with simultaneous CO2...removal by different absorbents under non-isothermal, non-isobaric and non-ad...

YuMing Chen; YongChun Zhao; JunYing Zhang…

2011-11-01T23:59:59.000Z

198

Use of Pd membranes in catalytic reactors for steam methane reforming for pure hydrogen production  

Science Journals Connector (OSTI)

This review analyzes publications on experimental studies and mathematical modeling in the field of development of a catalytic reformer (mainly, steam methane conversion) with a fixed catalytic bed. The specif...

A. B. Shigarov; V. D. Meshcheryakov…

2011-10-01T23:59:59.000Z

199

Green Power Renewable Electricity, Renewable  

E-Print Network (OSTI)

of Air (6202J) EPA430-K-04-015 www.epa.gov/greenpower March 2010 ISBN: 1-56973-577-8 #12;Guide................................................................................................9 Renewable Electricity Products ..................................................18 Developing Criteria for Screening Suppliers and Products

200

Financing Renewable Energy - No Pain, No Gain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

newresourcebank.com newresourcebank.com Financing Renewable Energy "No Pain, No Gain" New Resource Bank: A Radical Idea Our mission is to promote sustainable living in our community with everything we do. Where Does Your Money Spend The Night? 9/4/2012 2 Renewable Energy Projects Anaerobic Manure Digester This anaerobic manure digester improves manure management and sustainability for partner dairies while generating renewable electricity for sale to a local public utility. Anaerobic digestion is a natural process that converts a portion of the organic carbon in manure (and other waste streams) into methane and carbon dioxide. o Production of renewable energy (Biogas) o Carbon offsets o Reduction of greenhouse gas emissions o Potential pathogen reduction in manure

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Coal-bed methane production in eastern Kansas: Its potential and restraints  

SciTech Connect

In 1921 and again in 1988, workers demonstrated that the high volatile A and B coals of the Pennsylvanian Cherokee Group can be produced economically from vertically drilled holes, and that some of these coals have a gas content as high as 200 ft{sup 3}/ton. Detailed subsurface mapping on a county-by-county basis using geophysical logs shows the Weir coal seam to be the thickest (up to 6 ft thick) and to exist in numerous amoeba-shaped pockets covering several thousand acres. Lateral pinch-out into deltaic sands offers a conventional gas source. New attention to geophysical logging shows most coals have a negative SP response, high resistivities, and densities of 1.6 g/cm{sup 3}. Highly permeable coals cause lost circulation during drilling and thief zones during cementing, and they are the source of abundant unwanted salt water. Low-permeability coals can be recognized by their high fracture gradients, which are difficult to explain but are documented to exceed 2.2. Current successful completions use both limited-entry, small-volume nitrogen stimulations or an open hole below production casing. Subsurface coals are at normal Mid-Continent pressures and may be free of water. Initially, some wells flow naturally without pumping. Saltwater disposal is often helped by the need for water in nearby waterflood projects and the easy availability of state-approved saltwater disposal wells in Mississippi and Arbuckle carbonates. Recent attempts to recomplete coal zones in slim-hole completions are having mixed results. The major restraints to coal-bed methane production are restricted to low permeability of the coals and engineering problems, not to the availability or gas content of the coals.

Stoeckinger, B.T.

1989-08-01T23:59:59.000Z

202

The basics of coalbed methane  

SciTech Connect

The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

NONE

2006-12-15T23:59:59.000Z

203

Hydrogen production from methane steam reforming: parametric and gradient based optimization of a Pd-based membrane reactor  

Science Journals Connector (OSTI)

In this work three mathematical models for methane steam reforming in membrane reactors were developed. The first ... , the influence of five important parameters on methane conversion (X ...

Leandro C. Silva; Valéria V. Murata; Carla E. Hori…

2010-09-01T23:59:59.000Z

204

Matrix Shrinkage and Swelling Effects on Economics of Enhanced Coalbed Methane Production and CO2 Sequestration in Coal  

SciTech Connect

Increases in CO2 levels in the atmosphere and their contributions to global climate change have been a major concern. It has been shown that CO2 injection can enhance the methane recovery from coal. Accordingly, sequestration costs can be partially offset by the value added product. Indeed, coal seam sequestration may be profitable, particularly with the introduction of incentives for CO2 sequestration. Hence, carbon dioxide sequestration in unmineable coals is a very attractive option, not only for environmental reasons, but also for possible economic benefits. Darcy flow through cleats is an important transport mechanism in coal. Cleat compression and permeability changes due to gas sorption desorption, changes of effective stress, and matrix swelling and shrinkage introduce a high level of complexity into the feasibility of a coal sequestration project. The economic effects of carbon dioxide-induced swelling on permeabilities and injectivities has received little (if any) detailed attention. Carbon dioxide and methane have different swelling effects on coal. In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was re-written to also account for coal swelling caused by carbon dioxide sorption. The generalized model was added to PSU-COALCOMP, a dual porosity reservoir simulator for primary and enhanced coalbed methane production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals were used.[1] Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young’s modulus, Poisson’s ratio, the cleat porosity, and the injection pressure. The economic variables included CH4 price, CO2 cost, CO2 credit, water disposal cost, and interest rate. Net present value analyses of the simulation results included profits due to methane production, and potential incentives for CO2 sequestered. This work shows that for some coal-property values, the compressibility and cleat porosity of coal may be more important than more purely economic criteria.

Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

2005-09-01T23:59:59.000Z

205

Bio-methane via fast pyrolysis of biomass  

Science Journals Connector (OSTI)

Bio-methane, a renewable vehicle fuel, is today produced by anaerobic digestion and a 2nd generation production route via gasification is under development. This paper proposes a poly-generation plant that produces bio-methane, bio-char and heat via fast pyrolysis of biomass. The energy and material flows for the fuel synthesis are calculated by process simulation in Aspen Plus®. The production of bio-methane and bio-char amounts to 15.5 MW and 3.7 MW, when the total inputs are 23 MW raw biomass and 1.39 MW electricity respectively (HHV basis). The results indicate an overall efficiency of 84% including high-temperature heat and the biomass to bio-methane yield amounts to 83% after allocation of the biomass input to the final products (HHV basis). The overall energy efficiency is higher for the suggested plant than for the gasification production route and is therefore a competitive route for bio-methane production.

Martin Görling; Mĺrten Larsson; Per Alvfors

2013-01-01T23:59:59.000Z

206

Production of Renewable Fuels from Biomass by FCC Co-processing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewable Fuels from Biomass by FCC Co-processing Raymond Wissinger, Manager, Renewable Energy & Chemicals, Research & Development, UOP wissingerbiomass2014.pdf More Documents...

207

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

of locational renewable energy production in each renewableto total renewable energy production, although accountingproduction data from the 2006 data set of the National Renewable Energy

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

208

Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin  

SciTech Connect

Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative polymerase chain reaction (QPCR) directed at the methyl coenzyme M reductase subunit A (mcrA) gene indicated that 75% of the HR sediments analyzed contained <1000 methanogens/g. The highest methanogen numbers were mostly from sediments <10 meters below seafloor. By combining methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported from such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.

F. S. Colwell; S. Boyd; M. E. Delwiche; D. W. Reed; T. J. Phelps; D. T. Newby

2008-06-01T23:59:59.000Z

209

Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production  

Science Journals Connector (OSTI)

Abstract Experimental results from the open literature have been employed for the design and techno-economic evaluation of four process flowsheets for the production of microbial oil or biodiesel. The fermentation of glucose-based media using the yeast strain Rhodosporidium toruloides has been considered. Biodiesel production was based on the exploitation of either direct transesterification (without extraction of lipids from microbial biomass) or indirect transesterifaction of extracted microbial oil. When glucose-based renewable resources are used as carbon source for an annual production capacity of 10,000 t microbial oil and zero cost of glucose (assuming development of integrated biorefineries in existing industries utilising waste or by-product streams) the estimated unitary cost of purified microbial oil is $3.4/kg. Biodiesel production via indirect transesterification of extracted microbial oil proved more cost-competitive process compared to the direct conversion of dried yeast cells. For a price of glucose of $400/t  oil production cost and biodiesel production cost are estimated to be $5.5/kg oil and $5.9/kg biodiesel, correspondingly. Industrial implementation of microbial oil production from oleaginous yeast is strongly dependent on the feedstock used and on the fermentation stage where significantly higher productivities and final microbial oil concentrations should be achieved.

Apostolis A. Koutinas; Afroditi Chatzifragkou; Nikolaos Kopsahelis; Seraphim Papanikolaou; Ioannis K. Kookos

2014-01-01T23:59:59.000Z

210

Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin  

Science Journals Connector (OSTI)

...fluids associated with a large gas hydrate reservoir...USA. Proc. Ocean Drilling Progr. Sci. Results...initial reports. Ocean Drilling Program, College Station...p. 18-22. Ocean Drilling Program, College Station...material turnover and large methane plumes at the...

F. S. Colwell; S. Boyd; M. E. Delwiche; D. W. Reed; T. J. Phelps; D. T. Newby

2008-03-14T23:59:59.000Z

211

Kinetic evaluation of the tri-reforming process of methane for syngas production  

Science Journals Connector (OSTI)

The conversion of natural gas was carried out via tri-reforming of methane in a fixed bed reactor employing a Ni/?-Al2O3 catalyst. The kinetic evaluations were performed in a temperature range from 923 to 1,123 K...

Leonardo J. L. Maciel…

2010-12-01T23:59:59.000Z

212

Comparison of energy potentials from combined ethanol and methane production using steam-pretreated corn stover impregnated with acetic acid  

Science Journals Connector (OSTI)

Abstract Acetic acid was investigated as a catalyst in steam pretreatment of corn stover. The purpose was to study ethanol production using either baker's yeast or a genetically modified pentose-fermenting version of Saccharomyces cerevisiae, KE6-12. Biogas production was investigated as an alternative for utilization of xylose. The high levels of acetic acid was found to be toxic using KE6-12. Some pentose fermentation was achieved, but the ethanol end concentration was almost the same as using baker's yeast (28 g L?1 compared to 27 g L?1). Using xylose for biogas production resulted in a high total energy recovery. The highest total energy recovery in the products, i.e. ethanol, methane and solids, obtained was 88% compared with the energy in ingoing raw material. This result was achieved when the solids and the liquid was separated after pretreatment.

Pia-Maria Bondesson; Mats Galbe; Guido Zacchi

2014-01-01T23:59:59.000Z

213

Coalbed methane gains viability  

SciTech Connect

In recent government studies, the Department of Energy (DOE) states that coal bed methane can be produced economically by using recovery systems that maximize return on investment rather than a system to produce a single coal seam just prior to mining. DOE suggests that the cost of recovering coal bed methane can be substantially reduced by increasing well spacing and employing multizone production if possible. Created as a by-product during the formation of coal, methane frequently is trapped in coal beds and associated strata. Estimates of total US methane contained in coal beds range from 260 to 860 TCF. The Pittsburgh seam in the N. Appalachia basin has estimates of 0.6 to 4 TCF alone. With current technology, DOE thinks that approximately 300 TCF of coal bed methane can be extracted from coal beds.

Not Available

1981-08-01T23:59:59.000Z

214

Optimizing Ethanol and Methane Production from Steam-pretreated, Phosphoric Acid-impregnated Corn Stover  

Science Journals Connector (OSTI)

The composition of raw corn stover and the WIS after pretreatment was...27] from the National Renewable Energy Laboratory (NREL). All measurements were performed in duplicate. The starch content of corn stover an...

Pia-Maria Bondesson; Aurélie Dupuy; Mats Galbe…

2014-11-01T23:59:59.000Z

215

Development of Vanadium Phosphaate Catalysts for Methanol Production by Selective Oxidation of Methane.  

SciTech Connect

This DOE sponsored study of methane partial oxidation was initiated at Amax Research and Development in Golden, CO in October of 1993. Shortly thereafter the management of Amax closed this R&D facility and the PI moved to the Colorado School of Mines. The project was begun again after contract transfer via a novation agreement. Experimental work began with testing of vandyl pyrophosphate (VPO), a well known alkane selective oxidation catalyst. It was found that VPO was not a selective catalyst for methane conversion yielding primarily CO. However, promotion of VPO with Fe, Cr, and other first row transition metals led to measurable yields for formaldehyde, as noted in the summary table. Catalyst characterization studies indicated that the role of promoters was to stabilize some of the vanadium in the V{sup 5+} oxidation state rather than the V{sup 4+} state formally expected for (VO){sub 2}P{sub 2}O{sub 7}.

McCormick, R.L.

1997-10-01T23:59:59.000Z

216

Hydrogen production by sorption-enhanced steam methane reforming process using CaO-Zr/Ni bifunctional sorbent–catalyst  

Science Journals Connector (OSTI)

Abstract A bifunctional CaO-Zr/Ni (13, 18, and 20.5 wt% NiO) sorbent–catalyst was developed using the wet-mixing/sonication technique and applied for hydrogen production by sorption-enhanced steam methane reforming (SESMR), an intensified process that integrates hydrogen production with CO2 capture. The material was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and N2 physisorption (BET). CO2 sorption efficiency of the developed materials was evaluated during 25 CO2 sorption/regeneration cycles. The prepared sorbent–catalysts were then applied in the SESMR during 10 reaction cycles. The results showed that the bifunctional sorbent–catalyst with 20.5 wt% NiO loading presented the most suitable activity. The H2 yield of ?91% at the end of the 10th SESMR cycle is considerably higher than equilibrium H2 yield that could be obtained by traditional steam methane reforming.

Hamid R. Radfarnia; Maria C. Iliuta

2014-01-01T23:59:59.000Z

217

Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams  

SciTech Connect

For deep coal seams, significant reservoir pressure drawdown is required to promote gas desorption because of the Langmuir-type isotherm that typifies coals. Hence, a large permeability decline may occur because of pressure drawdown and the resulting increase in effective stress, depending on coal properties and the stress field during production. However, the permeability decline can potentially be offset by the permeability enhancement caused by the matrix shrinkage associated with methane desorption. The predictability of varying permeability is critical for coalbed gas exploration and production-well management. We have investigated quantitatively the effects of reservoir pressure and sorption-induced volumetric strain on coal-seam permeability with constraints from the adsorption isotherm and associated volumetric strain measured on a Cretaceous Mesaverde Group coal (Piceance basin) and derived a stress-dependent permeability model. Our results suggest that the favorable coal properties that can result in less permeability reduction during earlier production and an earlier strong permeability rebound (increase in permeability caused by coal shrinkage) with methane desorption include (1) large bulk or Young's modulus; (2) large adsorption or Langmuir volume; (3) high Langmuir pressure; (4) high initial permeability and dense cleat spacing; and (5) low initial reservoir pressure and high in-situ gas content. Permeability variation with gas production is further dependent on the orientation of the coal seam, the reservoir stress field, and the cleat structure. Well completion with injection of N2 and displacement of CH{sub 4} only results in short-term enhancement of permeability and does not promote the overall gas production for the coal studied.

Cui, X.J.; Bustin, R.M. [University of British Columbia, Vancouver, BC (Canada). Dept. of Earth & Ocean Science

2005-09-01T23:59:59.000Z

218

Thermodynamic analysis of hydrogen production via chemical looping steam methane reforming coupled with in situ CO2 capture  

Science Journals Connector (OSTI)

Abstract In this study, a detailed thermodynamic analysis of the sorption enhanced chemical looping reforming of methane (SE-CL-SMR), using CaO and NiO as CO2 sorbent and oxygen transfer material respectively, was conducted. The effect of different parameters, such as reactor temperature, pressure, H2O/CH4 ratio, CaO/CH4 ratio and CaO/NiO ratio was investigated. Moreover, the use of different sweep gases and oxidants for the re-oxidation/calcination cycle, like pure oxygen, air, steam and CO2, was specifically addressed. Conventional steam reforming (SMR) and sorption enhanced steam reforming (SE-SMR) were also investigated for comparison reasons. The results of thermodynamic analysis show that there are significant advantages of both sorption enhanced processes compared to conventional steam reforming. Presence of CaO sorbent in the reformer leads to higher methane conversion, hydrogen purity and yield at low temperatures (?650 °C). Addition of the oxygen carrier, in the chemical looping reforming concept, minimizes thermal requirements of the process, and results in superior performance compared to SE-SMR and SMR processes. A negative effect from NiO addition is reduction in hydrogen production (due to the reaction of part of methane with NiO to form CO/CO2). Hydrogen yield is up to 11% lower compared to SE-SMR for a NiO/CaO ratio of 0.7. It was found that only pure O2 can be used for re-oxidation/regeneration in order to reduce the energy requirements of the SE-CL-SMR process up to 26% compared to SE-SMR and up to 55% compared to conventional SMR.

A. Antzara; E. Heracleous; D.B. Bukur; A.A. Lemonidou

2015-01-01T23:59:59.000Z

219

Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore Texas Coalbed Methane Proved Reserves, Reserves Changes, and Production...

220

California--State Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production...

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Prediction of coalbed methane reservoir performance with type curves.  

E-Print Network (OSTI)

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. CBM reservoirs are dual-porosity systems that are characterized by… (more)

Bhavsar, Amol Bhaskar.

2005-01-01T23:59:59.000Z

222

Martifer Renewables Formerly Eviva | Open Energy Information  

Open Energy Info (EERE)

Renewables Formerly Eviva Jump to: navigation, search Name: Martifer Renewables (Formerly Eviva) Place: Lisbon, Portugal Zip: 1998-026 Sector: Renewable Energy Product:...

223

Pioneer Global Renewables | Open Energy Information  

Open Energy Info (EERE)

Global Renewables Place: San Rafael, California Zip: 94901 Sector: Renewable Energy Product: Pioneer develops, finances and manages renewable energy projects in Latin America and...

224

Modeling of fixed bed methanation reactor for syngas production: Operating window and performance characteristics  

Science Journals Connector (OSTI)

Abstract The present work focuses on the development of phenomenological model for the bio-syngas to methane conversion process. One dimensional heterogeneous and pseudo-homogeneous model were simulated for a typical pilot plant scale fixed bed methanator processing 55 mol/h of CO (total molar flow rate of 310 mol/h) with inlet composition of H2/CO = 3, CO2/CO = 1, CH4/CO = 0.5 at 550 K and 1 atm. Performance of the fixed bed reactor at different operating conditions like CO2/CO ratio, H2/CO ratio, effect of H2O in the feed was studied. It was found that for feeds that were not pre-enriched with hydrogen, presence of water and water gas shift activity was found to decrease the catalyst inventory substantially. CO2 in the inlet feed stream would help to decrease the temperature due to dilution effect and more importantly, can be chosen to maximize methane yield per mole of CO converted. Further, the model was simulated to predict the performance characteristics of reactor with a mixture containing two types of catalyst, one of them being specifically added to increase H2/CO ratio in feed through water gas shift reaction. The work also laid the importance of incorporating pore diffusion and external mass transfer locally in the computation of actual catalyst inventory and reactor volume. The work was useful in selection of operating window and assessing the various viable options for an industrial reactor. The model developed will serve in selection of operability window for commercialization of substitute natural gas synthesis (SNG) process.

Naren Rajan Parlikkad; Stéphane Chambrey; Pascal Fongarland; Nouria Fatah; Andrei Khodakov; Sandra Capela; Olivier Guerrini

2013-01-01T23:59:59.000Z

225

The Treatment of Renewable Energy Certificates, Emissions Allowances, and Green Power Programs in State Renewables Portfolio Standards  

E-Print Network (OSTI)

benefits from renewable energy production accrue to thefinance the production of renewable energy to meet portfolioUnit of Production definition: “One Renewable Energy Credit

Holt, Edward A.; Wiser, Ryan H.

2007-01-01T23:59:59.000Z

226

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network (OSTI)

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16.............................................................................................21 Coal and Methane Production

Maxwell, Bruce D.

227

Schoeller Renewables | Open Energy Information  

Open Energy Info (EERE)

Schoeller Renewables Jump to: navigation, search Name: Schoeller Renewables Place: Germany Sector: Solar, Wind energy Product: Germany-based subsidiary of Schoeller Industries that...

228

Catalyst Renewables | Open Energy Information  

Open Energy Info (EERE)

Catalyst Renewables Jump to: navigation, search Name: Catalyst Renewables Place: Dallas, Texas Zip: 75204 Product: Pursue projects with low technical risk, stable fuel supply and...

229

Redwood Renewables | Open Energy Information  

Open Energy Info (EERE)

Solar Product: Developing integrated solar roofing projects References: Redwood Renewables1 This article is a stub. You can help OpenEI by expanding it. Redwood Renewables...

230

Sunrise Renewables | Open Energy Information  

Open Energy Info (EERE)

Biomass Product: Cumbria-based biomass project developer. References: Sunrise Renewables1 This article is a stub. You can help OpenEI by expanding it. Sunrise Renewables...

231

Simulation study of the effect of well spacing, effect of permeability anisotropy, and effect of Palmer and Mansoori model on coalbed methane production  

E-Print Network (OSTI)

Interference for adjacent wells may be beneficial to Coalbed-Methane production. The effect is the acceleration of de-watering which should lead to earlier and higher gas rate peaks. It is inherent that permeability anisotropy exists in the coalbed...

Zulkarnain, Ismail

2006-04-12T23:59:59.000Z

232

Wind Energy and Production of Hydrogen and Electricity -- Opportunities for Renewable Hydrogen: Preprint  

SciTech Connect

An assessment of options for wind/hydrogen/electricity systems at both central and distributed scales provides insight into opportunities for renewable hydrogen.

Levene, J.; Kroposki, B.; Sverdrup, G.

2006-03-01T23:59:59.000Z

233

Impacts of renewable fuel regulation and production on agriculture, energy, and welfare.  

E-Print Network (OSTI)

??The purpose of this dissertation is to study the impact of U.S. federal renewable fuel regulations on energy and agriculture commodity markets and welfare. We… (more)

Mcphail, Lihong Lu

2010-01-01T23:59:59.000Z

234

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)  

SciTech Connect

Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

Ramsden, T.; Harrison, K.; Steward, D.

2009-11-16T23:59:59.000Z

235

Human dimensions perspectives on the impacts of coastal zone marine renewable energy  

E-Print Network (OSTI)

marine renewable energy development and production varied.marine renewable energy (MRE) development and production.

Pomeroy, Caroline; Conway, Flaxen; Hall-Arber, Madeleine

2013-01-01T23:59:59.000Z

236

RESOURCE ASSESSMENT & PRODUCTION TESTING FOR COAL BED METHANE IN THE ILLINOIS BASIN  

SciTech Connect

The geological surveys of Illinois, Indiana and Kentucky have completed the initial geologic assessment of their respective parts of the Illinois Basin. Cumulative thickness maps have been generated and target areas for drilling have been selected. The first well in the Illinois area of the Illinois Basin coal bed methane project was drilled in White County, Illinois in October 2003. This well was cored in the major coal interval from the Danville to the Davis Coals and provided a broad spectrum of samples for further analyses. Sixteen coal samples and three black shale samples were taken from these cores for canister desorption tests and were the subject of analyses that were completed over the following months, including desorbed gas volume, gas chemical and isotope composition, coal proximate, calorific content and sulfur analyses. Drilling programs in Indiana and Kentucky are expected to begin shortly.

Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

2004-06-01T23:59:59.000Z

237

Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products  

E-Print Network (OSTI)

A. Piette, Integrating Renewable Resources in California andEnable Integration of Renewable Resources,” February 2012.ntegration of Renewable Resources at 20% RPS,” CAISO, August

Kiliccote, Sila

2013-01-01T23:59:59.000Z

238

What product might a renewal of Heavy IonFusion development offerthat competes with methane microbes and hydrogen HTGRs  

SciTech Connect

In 1994 a Fusion Technology journal publication by Logan, Moir and Hoffman described how exploiting unusually-strong economy-of-scale for large (8 GWe-scale) multi-unit HIF plants sharing a driver and target factory among several low cost molten salt fusion chambers {at} < $40M per 2.4 GW fusion each (Fig. 1), could produce electricity below 3 cts/kWehr, even lower than similar multi-unit fission plants. The fusion electric plant could cost $12.5 B for 7.5 GWe and produce hydrogen fuel by electrolysis at prices competitive with gasoline-powered hybrids getting fuel from oil at $20$/bbl. At $60/bbl oil, the fusion plant can cost $35B and compete {at} 10% APR financing. Given massive and still-increasing world demand for transportation fuel even with oil climbing above $60/bbl, large HIF plants producing both low cost electricity and hydrogen could be more relevant to motivate new R&D funding for HIF development in the next few years. Three major challenges to get there: (1) NIF ignition in indirect drive geometry for liquid chambers, (2) a modular accelerator to enable a one-module IRE < $100 M, (3) compatible HIF target, driver and chamber allowing a small driver {at}< $500 M cost for a >100MWe net power DEMO. This scoping study, at a very preliminary conceptual level, attempts to identify how we might meet the last two great challenges taking advantage of several recent ideas and advances which motivate reconsideration of modular HIF drivers: >60X longitudinal compression of neutralized ion beams using a variable waveform induction module in NDCX down to 2 nanosecond bunches, the proof-of-principle demonstration of fast optical-gated solid state SiC switches by George Caporaso's group at LLNL (see George's RPIA06 paper), and recent work by Ed Lee, John Barnard and Hong Qin on methods for time-dependent correction of chromatic focusing errors in neutralized beams with up to 10 % {Delta}v/v velocity tilt, allowing 5 or more bunches, and shorter bunches, and possibly < 1 mm radius focal spot targets. We seek multi-pulsing with neutralized compression and focusing to enable higher peak power capability and the ability to create nearly arbitrary composite ''picket fence'' pulse shapes can be used to innovate HIF target designs for lower driver energy, and at the same time, reduce unit driver cost per joule for given driver energy, and reduce development time. For example, Debbie Callahan has explored close-coupled HIF targets with adequate gains > 40 that would need higher peak beam intensities in order to reduce total driver energy below 1 MJ. In principle, both PLIA and induction accelerators might benefit from multiple short bunches (see June 24, 2005 talk by Logan on multi-pulsing in PLIA accelerators for IFE), although the PLIA approach, because of fixed circuit wave velocities at any z, requires imaginative work-arounds to handle the different bunch velocities required. George's RPIA06 paper also describes a different type of radial line induction linac that might be considered, but its unclear how the required pulse-to-pulse variable waveforms can be obtained with such pulselines. This initial MathCad analysis explores multi-pulsing in modular solenoid induction linacs (concept shown in Figure 1) considering high-q ECR sources, basic induction acceleration limits assuming affordable agile waveforms, transverse and longitudinal bunch confinement constraints, models to optimize bunch lengths, solenoid fields, core radial builds and switching. Figure 2 below illustrates one linac module for a driver example (not yet optimized) consisting of 40 linacs (20 at each end). Necessarily, this first look invokes many new ideas, but could they potentially meet the above challenges?

Logan, Grant; Lee, Ed; Yu, Simon; Briggs, Dick; Barnard, John; Friedman, Alex; Qin, Hong; Waldron, Will; Leitner, Mattaheus; Kwan, Joe; Henestroza, Enrique; Caporaso, George; Meier, Wayne; Tabak, Max; Callahan, Debbie; Moir, Ralph; Peterson, Per

2006-04-19T23:59:59.000Z

239

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

SciTech Connect

The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling beh

Kalyan Annamalai, John M. Sweeten,

2012-05-03T23:59:59.000Z

240

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

SciTech Connect

The Texas Panhandle is regarded as the �Cattle Feeding Capital of the World�, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO�s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco�the primary source of potable water for Waco�s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 � Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 � Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys a

John M. Sweeten, Kalyan Annamalai

2012-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae  

Science Journals Connector (OSTI)

The energy balance and CO2 mitigating effect of a liquid fuel production process from microalgae using thermochemical liquefaction were studied. Thermochemical liquefaction has the advantage of treating wet materials compared with direct combustion, gasification and pyrolysis, because it does not require a drying process. The yield of liquid fuel produced from Botryococcus braunii and its lower heating value were high compared with those of Dunaliella tertiolecta; therefore, the energy inputs for cultivation and separation of B. braunii were calculated to be smaller than those of D. tertiolecta. The energy input for fertilizers of B. braunii was also smaller than that of D. tertiolecta. Based on these differences, the liquefaction process using B. braunii was suggested to produce net renewable energy, but not that with D. tertiolecta. If a 100 MW thermal plant using coal would be replaced by liquid fuel produced from B. braunii, the quantity of CO2 mitigation could be 1.5×105 t year?1 and 8.4×103 ha of microalgal cultivation area could be necessary.

S Sawayama; T Minowa; S-Y Yokoyama

1999-01-01T23:59:59.000Z

242

Das Methan  

Science Journals Connector (OSTI)

Bei Einwirkung von Salzsäure auf Aluminiumkarbid entwickelt sich ein farbloses Gas, welches, angezündet, mit schwach leuchtender Flamme brennt: Es ist Methan.

A. Lipp

1928-01-01T23:59:59.000Z

243

Hydrogen production from methane dry reforming over nickel-based nanocatalysts using surfactant-assisted or polyol method  

Science Journals Connector (OSTI)

Abstract In this study, two series of Ni-based nanocatalysts were synthesized successfully by the polyol and surfactant-assisted methods and subsequently tested for hydrogen production from CO2–CH4 reforming. Surfactant-assisted catalysts were prepared by using cetyl trimethyl ammonium bromide (CTAB) as a surfactant, whereas polyol catalysts were prepared in ethylene glycol (EG) medium with polyvinylpyrrolidone (PVP) as a nucleation-protective agent. The catalytic performance of each catalyst, in terms of H2 yield and selectivity, was evaluated at different temperatures (500–800 °C). In order to clarify and explain the differences in catalytic activities of catalysts, the prepared samples were characterized by various techniques, such as BET, H2-TPR, CO2-TPD, XRD, TGA, SEM, HRTEM and CO pulse chemisorption. The results demonstrated that the method of preparation had a significant effect on the catalytic performance of tested catalysts. Overall, polyol catalysts showed high activity and selectivity for hydrogen production, while surfactant-assisted catalysts exhibited a fairly high resistance towards carbon deposition under similar reaction conditions of dry reforming of methane. Moreover, due to the reverse water gas shift reaction (RWGS), surfactant-assisted catalysts always produced smaller values of H2/CO product ratio than their corresponding polyol catalysts.

Muhammad Awais Naeem; Ahmed Sadeq Al-Fatesh; Anis Hamza Fakeeha; Ahmed Elhag Abasaeed

2014-01-01T23:59:59.000Z

244

Stable isotope and water quality analysis of coal bed methane production waters and gases from the Bowen Basin, Australia  

Science Journals Connector (OSTI)

Coal bed methane (CBM) is a significant growing industry in Queensland's energy sector. It is, however, a relatively new industry with little local water quality data and stable isotope compositions of production waters and gases available in the public domain. This study aims to determine whether water quality and stable isotope data can be correlated with gas and groundwater production and flow pathways, and identify zones of recharge and water mixing. Stable isotope analysis and accessory water quality tests were conducted on CBM production gas and water samples collected from two CBM producing bituminous coal seams within a single field in the Bowen Basin. In the production field, the reservoir seams are gently folded with eastwardly dipping fold axes, and compartmentalised by an ENE normal fault on the flank of a broad central anticline that contains minor faults. For one seam, splitting and a change in coal quality parallels the fault and fold axes. Although virgin reservoir conditions were similar, differing production performance north and south of the main fault suggests it acts as a barrier to water and gas flow along strike. The stable isotope analysis on the production water showed that waters with more positive ?D and ?18O compositions were associated with areas of higher water production and shallower depths, whereas more negative ?D and ?18O compositions were associated with lower water production and high gas production. The gas isotope analysis showed that production gases had both biogenic and thermogenic origins and that secondary biogenic gas generated through CO2 reduction comprises a significant portion of the CBM produced from this field. More negative CH4 ?13C values characterize the zones of meteoric recharge in shallow, up-dip areas. Gas production data and CO2 ?13C values suggest that this may result from 13CH4 stripping by the recharge waters and/or increased biogenic activity in this area. Smaller CO2–CH4 carbon isotopic fractionation values characterized zones of meteoric recharge, whereas higher isotopic fractionation values characterized the high gas production domain.

E.C.P. Kinnon; S.D. Golding; C.J. Boreham; K.A. Baublys; J.S. Esterle

2010-01-01T23:59:59.000Z

245

Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture  

SciTech Connect

Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600?C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700şC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600oC. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent became saturated with CO2. By contrast, without the use of sorbent, equilibrium yield to methane is only 22%. Cyclic stability of the methanation catalyst and durability of the sorbent were also studied in the multiple carbonation-decarbonation cycle studies proving the potential of this integrated process in a practical application.

Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

2014-01-01T23:59:59.000Z

246

Managing R&D Risk in Renewable Energy  

E-Print Network (OSTI)

estimated costs of renewable energy production of potentialreduction. Production cost reductions in renewable energyproduction (DOE (2008)). Table 3: Federal Renewable Energy

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

247

Coalbed Methane Production Analysis and Filter Simulation for Quantifying Gas Drainage from Coal Seams  

Science Journals Connector (OSTI)

Gas and water production rate analysis of CBM wells help determining dynamic reservoir properties of ... for estimating GIP and its change between particular production periods. Moreover, geostatistics can be use...

C. Özgen Karacan; Ricardo A. Olea

2014-01-01T23:59:59.000Z

248

Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water  

SciTech Connect

The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ?ť or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?ť). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

David Kirchman

2011-12-31T23:59:59.000Z

249

Use of novel compounds to reduce methane production and in pre-harvest strategies to decrease foodborne pathogens  

E-Print Network (OSTI)

.90, 1.36 and 1.38 ± 0.50 ?mol/g h-1) methane-producing activity for treatments 0, 80 and 160 mg nitroethane/kg body weight per day, respectively. Whole animal methane emissions, expressed as L/d or as a proportion of gross energy intake (%GEI) were...

Gutierrez Banuelos, Hector

2009-05-15T23:59:59.000Z

250

Biochar – synergies between carbon storage, environmental functions and renewable energy production   

E-Print Network (OSTI)

Growing concerns about climate change and the inevitable depletion of fossil fuel resources have led to an increased focus on renewable energy technologies and reducing GHG emissions. Limiting the atmospheric level of ...

Crombie, Kyle

2014-11-27T23:59:59.000Z

251

Low-Cost Alternative Renewable Energy Bioethanol Production from Palm Oil in Malaysian Context  

Science Journals Connector (OSTI)

Many are looking to renewable energy and in particular biofuels as at least ... and has been the case with sugarcane in Brazil for more than three decades, developing countries ... , with its booming economy and ...

Ravindra Pogaku; Tapan Kumar Biswas; Rahmath Abdulla

2013-01-01T23:59:59.000Z

252

Ridgewood Renewable Power LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Power LLC Renewable Power LLC Jump to: navigation, search Name Ridgewood Renewable Power LLC Place Ridgewood, New Jersey Zip NJ 07450 Sector Biomass, Hydro, Renewable Energy Product An international owner and operator of renewable electric power and infrastructure projects in the United States, United Kingdom, and Egypt. Projects developed include hydro, biomass, natural gas and landfill methane gas power plants. Coordinates 40.700725°, -73.895329° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.700725,"lon":-73.895329,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

A dynamic prediction model for gas-water effective permeability in unsaturated coalbed methane reservoirs based on production data  

Science Journals Connector (OSTI)

Abstract Effective permeability of gas and water in coalbed methane (CBM) reservoirs is vital during CBM development. However, few studies have investigated it for unsaturated CBM reservoirs rather than saturated CBM reservoirs. In this work, the dynamic prediction model (PM-Corey model) for average gas-water effective permeability in two-phase flow in saturated CBM reservoirs was improved to describe unsaturated CBM reservoirs. In the improved effective permeability model, Palmer et al. absolute permeability model segmented based on critical desorption pressure and Chen et al. relative permeability model segmented based on critical water saturation were introduced and coupled comprehensively under conditions with the identical reservoir pressures and the identical water saturations through production data and the material balance equations (MBEs) in unsaturated CBM reservoirs. Taking the Hancheng CBM field as an example, the differences between the saturated and unsaturated effective permeability curves were compared. The results illustrate that the new dynamic prediction model could characterize not only the stage of two-phase flow but also the stage of single-phase water drainage. Also, the new model can accurately reflect the comprehensive effects of the positive and negative effects (the matrix shrinking effect and the effective stress effect) and the gas Klinkenberg effect of coal reservoirs, especially for the matrix shrinkage effect and the gas Klinkenberg effect, which can improve the effective permeability of gas production and render the process more economically. The new improved model is more realistic and practical than previous models.

Junlong Zhao; Dazhen Tang; Hao Xu; Yanjun Meng; Yumin Lv; Shu Tao

2014-01-01T23:59:59.000Z

254

Influence of coal quality factors on seam permeability associated with coalbed methane production.  

E-Print Network (OSTI)

??Cleats are natural fractures in coal that serve as permeability avenues for darcy flow of gas and water to the well bore during production. Theoretically,… (more)

Wang, Xingjin

2007-01-01T23:59:59.000Z

255

Bison Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy LLC Place: Minneapolis, Minnesota Zip: 55401 Product: Developing biogas production facilities. References: Bison Renewable Energy LLC1 This article is a stub....

256

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect

The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Emissions of carbon dioxide (CO{sub 2}) into the atmosphere are an inherent part of electricity generation, transportation, and industrial processes that rely on fossil fuels. These energy-related activities are responsible for more than 80 percent of the U.S. greenhouse gas emissions, and most of these emissions are CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coalbed methane (CBM) provides a value-added stream, potentially reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy Inc., Research & Development (CONSOL), with support from the US DOE, has embarked on a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through two overlying coal seams. Once completed, all of the wells will be used initially to drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and recovered CBM, the program includes additional monitoring wells to further examine horizontal and vertical migration of CO{sub 2}. This is the fifth Technical Progress report for the project. Progress this period was focused on reclamation of the north access road and north well site, and development of revised drilling methods. This report provides a concise overview of project activities this period and plans for future work.

William A. Williams

2004-03-01T23:59:59.000Z

257

Investigation of Bio-hydrogen and Bio-methane Production From Thin Stillage.  

E-Print Network (OSTI)

??An evaluation of single-stage and two-stage anaerobic digestion processes for biomethane and biohydrogen production using thin stillage was performed to assess the viability of biohydrogen… (more)

Nasr, Noha El-Sayed

2012-01-01T23:59:59.000Z

258

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect

The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Carbon dioxide (CO{sub 2}) emissions to the atmosphere are an inherent part of energy-related activities, such as electricity generation, transportation, and building systems. These energy-related activities are responsible for roughly 85% of the U.S. greenhouse gas emissions, and 95% of these emissions are dominated by CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Many scientists believe greenhouse gases, particularly CO{sub 2}, trap heat in the earth's atmosphere. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils, and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coal bed methane (CBM) provides a value-added stream, reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy, with support from the U.S. DOE, is conducting a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through overlying coal seams in the subsurface. Once completed, the wells will be used to initially drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and CBM produced, the program includes a plan to monitor horizontal migration of CO{sub 2} within the lower seam. This is the second Technical Progress report for the project. Progress to date has been focused on pre-construction activities; in particular, attaining site approvals and securing property rights for the project. This report provides a concise overview of project activity this period and plans for future work. This is the second semi-annual Technical Progress report under the subject agreement. During this report period, progress was made in completing the environmental assessment report, securing land and coal rights, and evaluating drilling strategies. These aspects of the project are discussed in detail in this report.

Gary L. Cairns

2002-10-01T23:59:59.000Z

259

Production-data analysis of single-phase (gas) coalbed-methane wells  

SciTech Connect

The current work illustrates how single-well production-data-analysis (PDA) techniques, such as type curve, flowing material balance (FMB), and pressure-transient (PT) analysis, may be altered to analyze single-phase CBM wells. Examples of how reservoir inputs to the PDA techniques and subsequent calculations are modified to account for CBM-reservoir behavior are given. This paper demonstrates, by simulated and field examples, that reasonable reservoir and stimulation estimates can be obtained from PDA of CBM reservoirs only if appropriate reservoir inputs (i.e., desorption compressibility, fracture porosity) are used in the analysis. As the field examples demonstrate, type-curve, FMB, and PT analysis methods for PDA are not used in isolation for reservoir-property estimation, but rather as a starting point for single-well and multiwell reservoir simulation, which is then used to history match and forecast CBM-well production (e.g., for reserves assignment). To study the effects of permeability anisotropy upon production, a 2D, single-phase, numerical CBM-reservoir simulator was constructed to simulate single-well production assuming various permeability-anisotropy ratios. Only large permeability ratios ({lt} 16:1) appear to have a significant effect upon single-well production characteristics. Multilayer reservoir characteristics may also be observed with CBM reservoirs because of vertical heterogeneity, or in cases where the coals are commingled with conventional (sandstone) reservoirs. In these cases, the type-curve, FMB, and PT analysis techniques are difficult to apply with confidence. Methods and tools for analyzing multilayer CBM (plus sand) reservoirs are presented. Using simulated and field examples, it is demonstrated that unique reservoir properties may be assigned to individual layers from commingled (multilayer) production in the simple two-layer case.

Clarkson, C.R.; Bustin, R.M.; Seidle, J.P. [ConocoPhillips Canada, Calgary, AB (Canada)

2007-06-15T23:59:59.000Z

260

Production characteristics and drainage optimization of coalbed methane wells: A case study from low-permeability anthracite hosted reservoirs in southern Qinshui Basin, China  

Science Journals Connector (OSTI)

Abstract Monitoring the production from 94 coalbed methane (CBM) wells in the southern part of the Qinshui Basin of China this study demonstrates production characteristics of CBM wells, and how the incorrect production system, including improper water drainage rates and wellhead pressures, can lead to diminished gas production. Using data from these wells our results suggest that high-production rate wells, medium-production rate wells, low-production rate wells, and drainage wells, are controlled by drainage conditions in addition to the well location and structural geology. The analysis of drainage parameters shows that the maximum wellhead pressure should be maintained around 1.5 MPa before stable production, and between 0.10 MPa and 0.30 MPa after stable production. The most efficient average water production rate is approximately 4 m3/day before gas production and should be maintained near 1 m3/day during gas production. Initial daily average water production rate should be maintained around 1.5 m3/day. Maximum water production rate should be regulated between 4 and 17 m3/day. The rate of water level reduction should be within 4 m/d and drainage time should be maintained for 50–200 days prior to gas production. Implementation of these optimal drainage parameters will promote and sustain peak gas production for several years. In addition, reservoirs with adequate permeability, > 0.1 mD, are ideal for electric submersible pump systems while sucker-rod pumps are better suited for reservoirs with poor permeability. The combination of these operating conditions and the appropriate pumps optimizes the extraction efficiency and recovery of coalbed methane from the anthracitic coals in the Qinshui Basin.

Huihu Liu; Shuxun Sang; Michael Formolo; Mengxi Li; Shiqi Liu; Hongjie Xu; Shikai An; Junjun Li; Xingzhen Wang

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Mathematical Modeling and Numerical Simulation of Methane Production in a Hydrate Reservoir  

Science Journals Connector (OSTI)

Contrary to more traditional reservoir simulations, the set of model unknowns or primary variables in HydrateResSim changes throughout the simulation as a result of the formation or dissociation of ice and hydrate phases during the simulation. ... For example, in the petroleum industry, CFD models have been developed since the 1970s to help optimize oil production by steam flooding. ... (2) Since the 1980s, an increasing number of problems in environmental engineering, such as the contamination of groundwater due to subsurface leakage of petroleum products, has been a concern for governments and industries that has led to the development of multiphase multicomponent models to simulate the transport of contaminants in the subsurface. ...

Isaac K. Gamwo; Yong Liu

2010-03-10T23:59:59.000Z

262

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect

This is the sixth semi-annual Technical Progress report under the subject agreement. During this report period, progress was made on drilling the north, center, and south well sites. Water production commenced at the center and south well sites. New drilling plans were formulated for the last remaining well, which is in the Upper Freeport Seam at the north site. Core samples were submitted to laboratories for analytical testing. These aspects of the project are discussed in detail in this report.

William A. Williams

2004-10-01T23:59:59.000Z

263

Why Sequence a Methane-Oxidizing Archaean?  

NLE Websites -- All DOE Office Websites (Extended Search)

a Methane-Oxidizing Archaeon? a Methane-Oxidizing Archaeon? Methane is a potent greenhouse gas whose atmospheric concentration has increased significantly because of anthropogenic activities and fluctuated naturally over glacial and interglacial cycles. While the importance of methane in Earth's climate dynamics has been well established, the global processes regulating its oceanic cycling remain poorly understood. Although there are high rates of methane production in many marine sedimentary environments (including a number that have been targeted as petroleum reserves), net methane sources from the ocean to the atmosphere appear to be small. This is due in large part to a biogeochemical process known as the anaerobic oxidation of methane (AOM). Microbially mediated AOM reduces methane flux from ocean to atmosphere, stimulates subsurface microbial

264

Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy The WIPP Site Holds Promise as an Ideal Source of Renewable Energy Encompassing 16 square miles of open Chihuahuan desert with abundant sunshine and minimal surface roughness, the WIPP site is ideal for either solar- or wind-generated electricity production, demonstration or testing. In fact, WIPP is striving to take advantage of its abundance of sunshine and wind. The Department of Energy's Office of Environmental Management has created what is being called the Energy Park Initiative (EPI). This initiative's goal is to convert DOE facilities into assets by focusing on providing solutions for renewable energy technologies. WIPP, which has always been a DOE leader in terms of safety, has set the additional goal of trying to become the first DOE site operating with 100 percent clean energy. A team, consisting of representatives from CBFO, WTS, Sandia National Laboratories, Los Alamos National Laboratory, New Mexico State University, Texas Tech, the Carlsbad community and area utilities, have come up with several potential solutions. Members of the team are continuing to look into these solutions.

265

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 10, July 1, 1995--September 31, 1995  

SciTech Connect

This document is the tenth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes}. Activities focused on testing of additional modified and promoted catalysts and characterization of these materials. Attempts at improving the sensitivity of our GC based analytical systems were also made with some success. Methanol oxidation studies were initiated. These results are reported. Specific accomplishments include: (1) Methane oxidation testing of a suite of catalysts promoted with most of the first row transition metals was completed. Several of these materials produced low, difficult to quantify yields of formaldehyde. (2) Characterization of these materials by XRD and FTIR was performed with the goal of correlating activity and selectivity with catalyst properties. (3) We began to characterize catalysts prepared via modified synthesis methods designed to enhance acidity using TGA measurements of acetonitrile chemisorption and methanol dehydration to dimethyl ether as a test reaction. (4) A catalyst prepared in the presence of naphthalene methanol as a structural disrupter was tested for activity in methane oxidation. It was found that this material produced low yields of formaldehyde which were difficult to quantify. (5) Preparation of catalysts with no Bronsted acid sites. This was accomplished by replacement of exchangeable protons with potassium, and (6) Methanol oxidation studies were initiated to provide an indication of catalyst activity for decomposition of this desired product and as a method of characterizing the catalyst surface.

McCormick, R.L.

1995-12-07T23:59:59.000Z

266

Methane for Power Generation in Muaro Jambi: A Green Prosperity Model Project  

SciTech Connect

NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates electricity generation from the organic content of wastewater at a palm oil mill in Muaro Jambi, Sumatra. Palm mills use vast amounts of water in the production process resulting in problematic waste water called palm oil mill effluent (POME). The POME releases methane to the atmosphere in open ponds which could be covered to capture the methane to produce renewable electricity for rural villages. The study uses average Indonesia data to determine the economic viability of methane capture at a palm oil mill and also evaluates technology as well as social and environmental impacts of the project.

Moriarty, K.; Elchinger, M.; Hill, G.; Katz, J.; Barnett, J.

2014-07-01T23:59:59.000Z

267

,"Colorado Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

268

,"Arkansas Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

269

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

270

,"Montana Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

271

,"Oklahoma Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

272

,"Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

273

,"Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

274

,"Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

275

,"Alabama Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

276

Federal Energy Management Program: Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy to someone by E-mail Share Federal Energy Management Program: Renewable Energy on Facebook Tweet about Federal Energy Management Program: Renewable Energy on Twitter Bookmark Federal Energy Management Program: Renewable Energy on Google Bookmark Federal Energy Management Program: Renewable Energy on Delicious Rank Federal Energy Management Program: Renewable Energy on Digg Find More places to share Federal Energy Management Program: Renewable Energy on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Project Planning & Implementation Project Assistance Resource Maps & Screening Tools Purchasing Renewable Power Case Studies Training Working Group Contacts

277

Coal mine methane global review  

SciTech Connect

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

278

Recharging U.S. Energy Policy: Advocating for a National Renewable Portfolio Standard  

E-Print Network (OSTI)

to fa- cilitate renewable energy production growth in theat pro- moting renewable energy production in the memberof significant renewable energy production in the U.S. also

Lunt, Robin J.

2007-01-01T23:59:59.000Z

279

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

which provides a renewable energy production incentive toonly renewable energy small power production facilities haveor a renewable-energy-fired small power production facility.

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

280

Recharging U.S. Energy Policy: Advocating for a National Renewable Portfolio Standard  

E-Print Network (OSTI)

for sup- porting renewable energy growth. 106 The Europeanfa- cilitate renewable energy production growth in the E.U.renewable energy and support renewable electricity's growth.

Lunt, Robin J.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Renewable Energy Across the 50 United States and Related Factors.  

E-Print Network (OSTI)

??Renewable energy production replaces diminishing non-renewable energy sources including fossil fuels. Major sources of renewable energy include biofuels, geothermal, hydroelectric, solar thermal and photovoltaic, wind,… (more)

Christenson, Cynthia Brit

2013-01-01T23:59:59.000Z

282

Conergy Renewable Services GmbH | Open Energy Information  

Open Energy Info (EERE)

Conergy Renewable Services GmbH Place: Hamburg, Germany Zip: 20537 Sector: Renewable Energy, Services Product: Provides operational management services for renewable energy...

283

BP Gas Power and Renewables | Open Energy Information  

Open Energy Info (EERE)

Renewables Jump to: navigation, search Name: BP Gas, Power and Renewables Place: Central Milton Keynes, United Kingdom Zip: MK9 1ES Sector: Renewable Energy Product: Subsidiary of...

284

Direct Aromaization of Methane  

SciTech Connect

The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

George Marcelin

1997-01-15T23:59:59.000Z

285

A guide to coalbed methane operations  

SciTech Connect

A guide to coalbed methane production is presented. The guide provides practical information on siting, drilling, completing, and producing coalbed methane wells. Information is presented for experienced coalbed methane producers and coalbed methane operations. The information will assist in making informed decisions about producing this resource. The information is presented in nine chapters on selecting and preparing of field site, drilling and casing the wellbore, wireline logging, completing the well, fracturing coal seams, selecting production equipment and facilities, operating wells and production equipment, treating and disposing of produced water, and testing the well.

Hollub, V.A.; Schafer, P.S.

1992-01-01T23:59:59.000Z

286

Production Tax Credit for Renewable Electricity Generation (released in AEO2005)  

Reports and Publications (EIA)

In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

2005-01-01T23:59:59.000Z

287

Applied reaction dynamics: Efficient synthesis gas production via single collision partial oxidation of methane to CO on Rh,,111...  

E-Print Network (OSTI)

of the incident beam's translational energy, and approaches unity for energies greater than 1.3 eV. Comparison for methanol synthesis. One method is the direct partial oxidation of methane, CH4 + 1/2 O2 CO + 2H2. 1 This process has been extensively studied using high surface area supported Rh catalysts in flow reactors

Sibener, Steven

288

Dale Renewables Consulting | Open Energy Information  

Open Energy Info (EERE)

Dale Renewables Consulting Jump to: navigation, search Name: Dale Renewables Consulting Place: California Sector: Solar Product: PV marketing and installation firm, merged with...

289

BD Agro Renewables | Open Energy Information  

Open Energy Info (EERE)

BD Agro Renewables Jump to: navigation, search Name: BD Agro Renewables Place: 49360 Vechta, Germany Sector: Services Product: BD Agro covers all services connected to planning,...

290

LightSource Renewables | Open Energy Information  

Open Energy Info (EERE)

LightSource Renewables Jump to: navigation, search Name: LightSource Renewables Place: San Diego, California Zip: 92121 Sector: Wind energy Product: Wind project developer...

291

Tersus Asian Renewables | Open Energy Information  

Open Energy Info (EERE)

Product: Tersus Asian Renewables is focusing on investments in wind, biomass and clean coal, principally in China and India. References: Tersus Asian Renewables1 This article...

292

Punj Lloyd Delta Renewables | Open Energy Information  

Open Energy Info (EERE)

Delta Renewables Place: India Sector: Solar Product: India-based JV will develop engineer and execute PV and solar thermal projects References: Punj Lloyd Delta Renewables1...

293

Coalbed Methane Production  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 0 2005-2012 Arkansas 3 3 3 3 4 2 2005-2012 California 0 0 0 0 0 0 2005-2012 Colorado 519 497 498 533 516 486 1989-2012 Florida 0 0 0 0 0 0 2005-2012 Kansas 38 47 43...

294

Coalbed Methane Estimated Production  

Gasoline and Diesel Fuel Update (EIA)

1,966 1,914 1,886 1,763 1,655 1,466 1989-2013 Federal Offshore U.S. 0 0 0 0 0 0 2005-2013 Pacific (California) 0 0 0 0 0 0 2005-2013 Gulf of Mexico (Louisiana & Alabama) 0 0 0 0 0...

295

Effects of matrix shrinkage and swelling on the economics of enhanced-coalbed-methane production and CO{sub 2} sequestration in coal  

SciTech Connect

In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was rewritten to also account for coal swelling caused by CO{sub 2} sorption. The generalized model was added to a compositional, dual porosity coalbed-methane reservoir simulator for primary (CBM) and ECBM production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals was used. Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young's modulus, Poisson's ratio, cleat porosity, and injection pressure. The economic variables included CH{sub 4}, price, Col Cost, CO{sub 2} credit, water disposal cost, and interest rate. Net-present value (NPV) analyses of the simulation results included profits resulting from CH{sub 4}, production and potential incentives for sequestered CO{sub 2}, This work shows that for some coal seams, the combination of compressibility, cleat porosity, and shrinkage/swelling of the coal may have a significant impact on project economics.

Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H. [Penn State University, University Park, PA (United States)

2007-08-15T23:59:59.000Z

296

The 1991 coalbed methane symposium proceedings  

SciTech Connect

The proceedings of the 1991 coalbed methane symposium are presented. The proceedings contains 50 papers on environmental aspects of recovering methane from coal seams, reservoir characterization and testing mine safety and productivity, coalbed stimulation, geology and resource assessment, well completion and production technologies, reservoir modeling and case histories, and resources and technology.

Not Available

1991-01-01T23:59:59.000Z

297

Kun Renewables | Open Energy Information  

Open Energy Info (EERE)

Kun Renewables Jump to: navigation, search Name: Kun Renewables Place: Kazakhstan Product: Plans to build a 2,500 tonne polysilicon plant in Kazakhstan, with the backing of the...

298

Renewable Hydrogen Potential from Biogas in the United States  

SciTech Connect

This analysis updates and expands upon previous biogas studies to include total potential and net availability of methane in raw biogas with respect to competing demands and includes a resource assessment of four sources of biogas: (1) wastewater treatment plants, including domestic and a new assessment of industrial sources; (2) landfills; (3) animal manure; and (4) a new assessment of industrial, institutional, and commercial sources. The results of the biogas resource assessment are used to estimate the potential production of renewable hydrogen from biogas as well as the fuel cell electric vehicles that the produced hydrogen might support.

Saur, G.; Milbrandt, A.

2014-07-01T23:59:59.000Z

299

Hydrogen production by methane steam reforming over Ru supported on Ni–Mg–Al mixed oxides prepared via hydrotalcite route  

Science Journals Connector (OSTI)

Abstract Catalytic performance of Ru/NixMg6?xAl2 800 800 mixed oxides, with x = 2, 4 and 6, x being the molar ratio, towards Methane Steam Reforming, was studied. NixMg6?xAl2 800 oxide, used as support, was prepared via hydrotalcite route. It was thermally stabilized at 800 °C, impregnated with 0.5 wt.% ruthenium using ruthenium (III) nitrosyl nitrate Ru(NO) (NO3)3 precursor and then calcined again at 800 °C under an air flow. Ruthenium impregnation significantly enhanced the reactivity of the oxides in Methane Steam Reforming. In fact, it was found, that even with a low ruthenium content (0.5 wt.%), ruthenium oxide particles are formed but are well dispersed over the surface of the oxide NixMg6?xAl2 800. Ru/Ni6Al2 800 800 showed better catalytic performances, towards Methane Steam Reforming, than ruthenium impregnated on the two other supports. Indeed, nickel content is higher in Ni6Al2 800 than in the other studied supports and therefore the probability of Ni–Ru interaction should be greater and consequently catalytic performances could be improved.

Mira Nawfal; Cédric Gennequin; Madona Labaki; Bilal Nsouli; Antoine Aboukaďs; Edmond Abi-Aad

2014-01-01T23:59:59.000Z

300

Renewable energy in Armenia  

Science Journals Connector (OSTI)

Armenia does not have any fossil fuel or coal reserves; therefore, it is entirely dependent on the imported fuel for transportation, electricity generation, and heat production. Armenian Government has plans to develop renewable energy resources. Renewable energy may not be the major source of energy development in Armenia but it should be an important component of it. A renewable energy road map for Armenia was prepared to evaluate feasible and reasonable renewable energy resources and plan a course of action for utilising them. This paper is a summary of the findings and conclusions of the studies and the roadmap.

Tamara Babayan; Areg Gharabegian; Artak Hambarian; Morten Sondergaard; Kenell Touryan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Numerical analysis of hydrogen production via methane steam reforming in porous media solar thermochemical reactor using concentrated solar irradiation as heat source  

Science Journals Connector (OSTI)

Abstract The calorific value of syngas can be greatly upgraded during the methane steam reforming process by using concentrated solar energy as heat source. In this study, the Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is developed to investigate the hydrogen production performance via methane steam reforming in porous media solar thermochemical reactor which includes the mass, momentum, energy and irradiative transfer equations as well as chemical reaction kinetics. The local thermal non-equilibrium (LTNE) model is used to provide more temperature information. The modified P1 approximation is adopted for solving the irradiative heat transfer equation. The MCRT method is used to calculate the sunlight concentration and transmission problems. The fluid phase energy equation and transport equations are solved by Fluent software. The solid phase energy equation, irradiative transfer equation and chemical reaction kinetics are programmed by user defined functions (UDFs). The numerical results indicate that concentrated solar irradiation on the fluid entrance surface of solar chemical reactor is highly uneven, and temperature distribution has significant influence on hydrogen production.

Fuqiang Wang; Jianyu Tan; Yong Shuai; Liang Gong; Heping Tan

2014-01-01T23:59:59.000Z

302

Methane Credit | Open Energy Information  

Open Energy Info (EERE)

Methane Credit Methane Credit Jump to: navigation, search Name Methane Credit Place Charlotte, North Carolina Zip 28273 Product Specialises in utilising methane produced on municipal landfill sites. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

ARM - Methane Background Information  

NLE Websites -- All DOE Office Websites (Extended Search)

our atmosphere's methane levels have more than doubled in the last 200 years. These methane levels contribute to the greenhouse effect, which contributes to overall climate change....

304

Federal Energy Management Program: Renewable Energy Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Contacts to someone by E-mail Share Federal Energy Management Program: Renewable Energy Contacts on Facebook Tweet about Federal Energy Management Program: Renewable Energy Contacts on Twitter Bookmark Federal Energy Management Program: Renewable Energy Contacts on Google Bookmark Federal Energy Management Program: Renewable Energy Contacts on Delicious Rank Federal Energy Management Program: Renewable Energy Contacts on Digg Find More places to share Federal Energy Management Program: Renewable Energy Contacts on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Project Planning & Implementation Project Assistance Resource Maps & Screening Tools Purchasing Renewable Power

305

Renewable Portfolio Standards Resources  

Energy.gov (U.S. Department of Energy (DOE))

An RPS is a regulatory method mandating utility companies operating within a certain jurisdiction  to increase production of energy from renewable sources such as wind, solar, biomass and other...

306

Coal Bed Methane Primer  

SciTech Connect

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

307

Chapter 18 - Worldwide Coal Mine Methane and Coalbed Methane Activities  

Science Journals Connector (OSTI)

Abstract The chapter provides an overview of coal bed methane production in all countries (except USA; covered in Chapter 17) around the world where there is a viable coal deposit. Coal deposits are shown in a map and coal bed methane reserves are estimated. All countries can follow the lead provided by USA in CBM production where 10% of total gas consumption (2 TCF/year) comes from coal seams. Exploitation of thick and deep coal seams using the latest technology can create a vast source of domestic energy for many countries around the world.

Charlee Boger; James S. Marshall; Raymond C. Pilcher

2014-01-01T23:59:59.000Z

308

Energy Department Announces $11 Million to Advance Renewable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Million to Advance Renewable Carbon Fiber Production from Biomass Energy Department Announces 11 Million to Advance Renewable Carbon Fiber Production from Biomass July 30, 2014...

309

Energy Department Policy on Acquiring Tribal Renewable Energy...  

Energy Savers (EERE)

Energy Department Policy on Acquiring Tribal Renewable Energy Products Energy Department Policy on Acquiring Tribal Renewable Energy Products As part of the Department of Energy's...

310

Community Renewable Energy Success Stories Webinar: Renewable...  

Office of Environmental Management (EM)

Community Renewable Energy Success Stories Webinar: Renewable Energy Parks (text version) Community Renewable Energy Success Stories Webinar: Renewable Energy Parks (text version)...

311

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 DE-FC26-06NT42963 Goal The goal of this project is to develop observational and experimental data that can provide a better understanding of the basic mechanisms at work in a methane hydrate reservoir that is under production. To this end, a thorough physical understanding of underlying phenomena associated with methane hydrate production will be acquired through unique, multi-scale experiments and associated analyses. In addition, one or more mathematical models that account for the observed phenomena and provide insights that may help to optimize methane hydrate production methods will be developed. Performers Georgia Tech Research Corporation, Atlanta, Georgia 30332 Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee 37831

312

Renewable energy  

Science Journals Connector (OSTI)

Report on International Congress on Renewable Energy Sources, Consejo Superior de Investigaciones Cientificas, 18-23 May 1986, Madrid, Spain.

M Alonso

1986-01-01T23:59:59.000Z

313

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

314

Boosting Autofermentation Rates and Product Yields with Sodium Stress Cycling: Application to Production of Renewable Fuels by Cyanobacteria  

Science Journals Connector (OSTI)

...much greater energy return...cyanobacteria, algae, and diatoms...feedstocks for energy production...advantageous alternative to growing...crops for biofuels (9, 11...Hydrogen Energy 33: 2014-2022...efficient alternatives to land-based crops for biofuels. Curr...eukaryotic marine algae. Annu...

Damian Carrieri; Dariya Momot; Ian A. Brasg; Gennady Ananyev; Oliver Lenz; Donald A. Bryant; G. Charles Dismukes

2010-08-06T23:59:59.000Z

315

Factors affecting the origin and distribution of methane in the Sparta Aquifer, Brazos and Burleson Counties, Texas  

E-Print Network (OSTI)

is interpreted as being biogenically derived. High concentrations of methane were found in wells having the 'lowest sulfate concen- trations. The absence of sulfate is necessary for the biogenic production of methane, Unlike thermogenic methane, carbon dioxide...

Hahn, Robert Warren

1985-01-01T23:59:59.000Z

316

METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

METHANE HYDRATE ADVISORY COMMITTEE METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy Advisory Committee Charter - - - - ---- ---- ------~ 1. Committee's Official Designation. Methane Hydrate Advisory Committee (MHAC) 2. Authority:. This charter establishes the Methane Hydrate Advisory Committee (Committee) pursuant to Title IX, Subtitle F, Section 968, Methane Hydrate Research of the Energy Policy Act of 2005 (EPACT), Public Law 109-58. This charter establishes the MHAC under the authority of the Department of Energy (DOE). The MHAC is being renewed in accordance with the provisions of the Federal Advisory Committee Act (FACA), as amended, 5 U.S.C., App.2. 3. Objectives and Scope of Activities. The Committee provides advice to the Secretary of Energy by developing recommendations and broad programmatic priorities for the methane

317

A highly reactive and stable Ru/Co6?xMgxAl2 catalyst for hydrogen production via methane steam reforming  

Science Journals Connector (OSTI)

Abstract Hydrogen production by methane steam reforming is an important yet challenging process. A performing catalyst will favor the thermodynamic equilibrium while ensuring good hydrogen selectivity. We hereby report the synthesis of a ruthenium based catalyst on a cobalt, magnesium, and aluminum mixed oxides supports. An interaction between cobalt and ruthenium favors the formation of smaller, well dispersed cobalt/ruthenium oxide species. The Ru/Co6Al2 catalyst outmatches the widely used industrial Ru/Al2O3 catalyst. The catalyst is stable for 100 h on stream. After test characterization shows the formation of carbon and coke deposits at trace levels. However, this does not affect the catalytic performance of the catalysts making it good candidates for industrial applications.

Doris Homsi; Samer Aouad; Cédric Gennequin; Antoine Aboukaďs; Edmond Abi-Aad

2014-01-01T23:59:59.000Z

318

A novel clean and effective syngas production system based on partial oxidation of methane assisted solid oxide co-electrolysis process  

Science Journals Connector (OSTI)

Abstract Development of the syngas production from solid oxide H2O/CO2 co-electrolysis is limited by the intensive energy input and low efficiency. Here, we present a new concept to efficiently generate syngas in both sides of the solid oxide electrolyzer by synergistically combining co-electrolysis with partial oxidation of methane (POM). Thermodynamic calculation and electrochemical measurements for the POM assisted solid oxide co-electrolysis processes on the SFM-SDC/LSGM/SFM-SDC cells exhibited an reduced electric input, increased energy conversion efficiency and decreased cathodic co-electrolysis polarization resistance in comparison with the conventional co-electrolysis. This method will be crucial to establish a clean and effective energy conversion system to meet global sustainable energy needs.

Yao Wang; Tong Liu; Shumin Fang; Guoliang Xiao; Huanting Wang; Fanglin Chen

2015-01-01T23:59:59.000Z

319

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

Review of Hydrogen Production Methods Renewable HydrogenResearch on Hydrogen Production Methods Hydrogen ProductionRenewable Hydrogen Production Methods The most common

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

320

Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?  

Science Journals Connector (OSTI)

Abstract A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil & solar/heat & power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio.

Gian Paolo Beretta; Paolo Iora; Ahmed F. Ghoniem

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Monthly/Annual Energy Review - renewable section  

Reports and Publications (EIA)

Monthly and latest annual statistics on renewable energy production and consumption and overviews of fuel ethanol and biodiesel.

2015-01-01T23:59:59.000Z

322

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate informed decision-making regarding the potential development of gas hydrate resources between the scientific community and other stakeholders/decision makers. The Assessment will provide science-based information on the role of gas hydrates in natural climate change and the carbon cycle, their sensitivity to climate change, and the potential environmental and socio-economic impacts of hydrate production. Performers Stiftelsen GRID-Arendal, Arendal, Norway Funding Institutions United Nations Environment Programme (UNEP) Statoil Schlumberger United States Department of Energy (USDOE)

323

Renewable RFI (Generic)  

Open Energy Info (EERE)

for Information for Information Renewable Energy Generation/Production Shreveport Airport Authority SHV AND DTN Shreveport, LA The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. The Authority is particularly interested in solar photovoltaic generation but other technically and economically feasible technologies may also be included. The Airport Authority will provide airport land, at both Shreveport Regional (SHV) and Shreveport Downtown Airports (DTN), for a renewable energy generation system, or systems, to be developed, constructed, owned, operated and maintained by a private entity under a lease agreement for fair market value of the land (currently appraised at

324

Hydraulic fracturing accelerates coalbed methane recovery  

SciTech Connect

Methane production from deep coal seams that never will be mined requires hydraulic fracturing for faster, optimal recovery. Since this can be a complex process, proper formation evaluation beforehand is essential, according to this paper.

Holditch, S.A. (Texas A and M Univ. (US)); Ely, J.W.; Semmelbeck, M.E.; Carter, R.H. (S.A. Holditch and Associates (US)); Hinkel, J.J.; Jeffrey, R.G. Jr. (Dowell Schlumberger (US))

1990-11-01T23:59:59.000Z

325

Renewable Diesel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Diesel Paraffinic (C 13 -C 18 ) No Oxygen No Double Bonds In Heart of Diesel Fuel (C 10 -C 22 ) High Cetane Feedstock Independent Cold Flow...

326

Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE))

Learn how the Energy Department's investments in clean, renewable energy technologies -- including wind, solar and geothermal sources -- are helping strengthen the American economy.

327

Chapter 8 - Methane Hydrates  

Science Journals Connector (OSTI)

Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be produced through exploratory drilling programs; (2) the tools for gas hydrate detection and characterisation from remote sensing data; (3) the details of gas hydrate reservoir production behaviour through additional, well-monitored and longer duration field tests and (4) the understanding of the potential environmental impacts of gas hydrate resource development. The results of future production tests, in the context of varying market and energy supply conditions around the globe, will be the key to determine the ultimate timing and scale of the commercial production of natural gas from gas hydrates.

Ray Boswell; Koji Yamamoto; Sung-Rock Lee; Timothy Collett; Pushpendra Kumar; Scott Dallimore

2014-01-01T23:59:59.000Z

328

Carbon dioxide, the feedstock for using renewable energy  

Science Journals Connector (OSTI)

Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

K Hashimoto; N Kumagai; K Izumiya; Z Kato

2011-01-01T23:59:59.000Z

329

,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2012,"6...

330

Biomass Gasification and Methane Digester Property Tax Exemption  

Energy.gov (U.S. Department of Energy (DOE))

Michigan exempts certain energy production related farm facilities from real and personal property taxes. Among exempted property are certain methane digesters, biomass gasification equipment,...

331

,"North Louisiana Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

332

,"Ohio Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"630...

333

,"Kansas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

334

,"NM, West Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

335

,"West Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

336

,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

337

,"TX, RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

338

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

339

,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

340

,"TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"TX, RRC District 4 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

342

,"NM, East Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

343

,"TX, RRC District 3 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

344

,"Texas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

345

Promotion of Renewable Energies for Water Production through Desalination 56th Annual NM Water Conf., New Water New Energy: A Conference Linking Desalination and Renewable Energy  

E-Print Network (OSTI)

ENERGY ALAMOGORDO, NEW MEXICO 13-DEC-2011 PLATAFORMA SOLAR (PSA) PSA is one of the biggest and most Energies for Water Production through Desalination Guillermo Zaragoza, Plataforma Solar de Almeria Dr and a reference in solar energy for the last 30 years. PSA is a division of the Center for Energy, Environment

Johnson, Eric E.

346

Green Power Network: Renewable Energy Certificates (RECs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Retail Products Table of Retail Products Table of Commercial Certificate Marketers List of REC Marketers REC Prices National Renewable Energy Certificate Tracking Systems Map Carbon Offsets State Policies Renewable Energy Certificates (RECs) Renewable energy certificates (RECs), also known as renewable energy credits, green certificates, green tags, or tradable renewable certificates, represent the environmental attributes of the power produced from renewable energy projects and are sold separate from commodity electricity. Customers can buy green certificates whether or not they have access to green power through their local utility or a competitive electricity marketer. And they can purchase green certificates without having to switch electricity suppliers. Table of Retail Products

347

Renewable Energy Systems Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Exemption Systems Exemption Renewable Energy Systems Exemption < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating & Cooling Commercial Heating & Cooling Solar Heating Swimming Pool Heaters Water Heating Wind Program Info State Oregon Program Type Property Tax Incentive Rebate Amount 100% Provider Oregon Department of Energy Oregon law states that any change in real market value to property due to the installation of a qualifying renewable energy system is exempt from assessment of the property's value for property tax purposes. Qualifying renewables include solar, geothermal, wind, water, fuel cell or methane gas systems used to heat, cool or generate electricity. This exemption is

348

Source of methane and methods to control its formation in single chamber microbial electrolysis cells  

E-Print Network (OSTI)

Exoelectrogenic a b s t r a c t Methane production occurs during hydrogen gas generation in microbial electrolysis consumption of hydrogen gas in the headspace (applied voltage of 0.7 V) with methane production. High applied, there was a greater production of methane than hydrogen gas due to low current densities and long cycle times

349

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

E-Print Network (OSTI)

3. Renewable Energy Production Required for Alternative RPS33 percent RPS by 2020, energy production from renewable such as their daily energy production profiles).  

Budhraja, Vikram

2008-01-01T23:59:59.000Z

350

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

Hydrogen Production, National Renewable Energy Laboratory,Production Using Concentrated Solar Energy, National Renewablethe production of hydrogen from renewable energy sources. In

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

351

Sai Renewable Power Pvt Ltd SRPPL | Open Energy Information  

Open Energy Info (EERE)

Renewable Power Pvt Ltd SRPPL Jump to: navigation, search Name: Sai Renewable Power Pvt. Ltd. (SRPPL) Place: Hyderabad, Andhra Pradesh, India Zip: 500 020 Sector: Biomass Product:...

352

Midwest Renewable Energy Projects LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name: Midwest Renewable Energy Projects LLC Place: Florida Zip: FL 33408 Sector: Renewable Energy, Wind energy Product: MRE Projects LLC is a...

353

American Council on Renewable Energy ACORE | Open Energy Information  

Open Energy Info (EERE)

ACORE Jump to: navigation, search Name: American Council on Renewable Energy (ACORE) Place: Washington, Washington, DC Zip: 20006 Sector: Renewable Energy Product: Non-profit group...

354

Methane-steam reforming  

SciTech Connect

A discussion covers steam reforming developments to the 1950's; the kinetics of methane-steam reforming, of the water-gas shift during methane-steam reforming, and of the carbon formation during methane-steam reforming, as approached by Akers and Camp.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

355

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Reference Shelf The Methane Hydrate Reference Shelf was created to provide a repository for information collected from projects funded as part of the National Methane Hydrate R&D Program. As output from the projects is received, it will be reviewed and then placed onto the reference shelf to be available to other methane hydrate researchers. Projects: DOE/NETL Projects : These pages contain detailed information on methane hydrate projects funded through the National Energy Technology Laboratory. Publications: Newsletter | Bibliography | Software | Reports | Program Publications | Photo Gallery Newsletter: Fire in the Ice: A publication highlighting the National Methane Hydrate R&D Program Bibliography: "Project Reports Bibliography"[PDF]: The bibliography lists publications resulting from DOE/NETL-sponsored

356

Solar-Thermal Processing of Methane to Produce Hydrogen and Syngas  

Science Journals Connector (OSTI)

A solar-thermal aerosol flow reactor has been constructed, installed, and tested with the High-Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL). Experiments were successfully carried out for the dissociation of methane to ...

Jaimee K. Dahl; Joseph Tamburini; Alan W. Weimer; Allan Lewandowski; Roland Pitts; Carl Bingham

2001-07-27T23:59:59.000Z

357

Renewable Energy Network of Entrepreneurs in Western New York RENEW NY |  

Open Energy Info (EERE)

Network of Entrepreneurs in Western New York RENEW NY Network of Entrepreneurs in Western New York RENEW NY Jump to: navigation, search Name Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY) Place Rochester, New York Zip 14623 Sector Renewable Energy Product US-based incubator fund, Renewable Energy Network of Entrepreneurs in Western New York, helps early stage renewable energy companies to start and grow in Western New York. References Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY) is a company located in Rochester, New York . References ↑ "Renewable Energy Network of Entrepreneurs in Western New York

358

Renewable Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas JOHN DAVIS: The use of clean, domestic natural gas as highway fuel in place of imported oil is growing in popularity with fleets and trucking companies. While natural gas from underground deposits is arguably a limited resource, there is a renewable, eco-friendly resource that we have right here in the U.S.A. And we're here now to give you the straight poop! Every family, farm animal and food processing plant in America produces organic waste that creates a mix of methane, CO2 and other elements called bio gas when it decomposes. Rotten vegetables, moldy bread, last night's leftovers --- they all break down when our garbage gets to the land fill. Incredibly, for

359

Product Selectivity Control and Organic Oxygenate Pathways from Partial Oxidation of Methane in a Silent Electric Discharge Reactor  

E-Print Network (OSTI)

distribution from organic oxygenate products to ethane, ethylene, and acetylene. This is because the energy, are located in remote areas, so that it is economically infeasible to transport the gas via pipeline. One

Mallinson, Richard

360

Federal Energy Management Program: Renewable Energy Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy Working Group to someone by E-mail Share Federal Energy Management Program: Renewable Energy Working Group on Facebook Tweet about Federal Energy Management Program: Renewable Energy Working Group on Twitter Bookmark Federal Energy Management Program: Renewable Energy Working Group on Google Bookmark Federal Energy Management Program: Renewable Energy Working Group on Delicious Rank Federal Energy Management Program: Renewable Energy Working Group on Digg Find More places to share Federal Energy Management Program: Renewable Energy Working Group on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Project Planning & Implementation Project Assistance Resource Maps & Screening Tools

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Federal Energy Management Program: Renewable Energy Project Assistance  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy Project Assistance to someone by E-mail Share Federal Energy Management Program: Renewable Energy Project Assistance on Facebook Tweet about Federal Energy Management Program: Renewable Energy Project Assistance on Twitter Bookmark Federal Energy Management Program: Renewable Energy Project Assistance on Google Bookmark Federal Energy Management Program: Renewable Energy Project Assistance on Delicious Rank Federal Energy Management Program: Renewable Energy Project Assistance on Digg Find More places to share Federal Energy Management Program: Renewable Energy Project Assistance on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Project Planning & Implementation

362

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

for Hydrogen Production Using Concentrated Solar Energy,Solar Reactor for Hydrogen Production, National Renewable Energy

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

363

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed DE-NT0006553 Goal The goal of this project is to define, plan, conduct and evaluate the results of a field trial of a methane hydrate production methodology whereby carbon dioxide (CO2) molecules are exchanged in situ for methane (CH4) molecules within a hydrate structure, releasing the methane for production. The objective is to evaluate the viability of this hydrate production technique and to understand the implications of the process at a field scale. image showing Conceptual rendering of proposed CO2 - CH4 exchange methodology for the production of natural gas from hydrates Conceptual rendering of proposed CO2 - CH4 exchange methodology for the

364

Renewable Mongolia  

E-Print Network (OSTI)

Broadcast Transcript: As China's economy booms, its demand for energy grows. With oil prices up and coal-fired power plants choking Chinese cities and people, the government is aggressively developing renewable energy sources, particularly wind...

Hacker, Randi; Tsutsui, William

2005-12-07T23:59:59.000Z

365

Renew Power Inc | Open Energy Information  

Open Energy Info (EERE)

Place: Champaign, Illinois Product: Developing a direct formic acid fuel cell. References: Renew Power Inc1 This article is a stub. You can help OpenEI by expanding it. Renew...

366

Strategic Renewal  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewal Renewal of the Advanced Photon Source Proposal for Approval to Proceed with Conceptual Design (CD-0) Submitted to the US Department of Energy Office of Basic Energy Sciences May 31, 2009 Advanced Photon Source A BS t R AC t This document proposes a coordinated upgrade of the accelerator, beamlines, and enabling technical infrastructure that will equip future users of the Advanced Photon Source (APS) to address key

367

Renewable Energy Certificates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Certificates Renewable Energy Certificates Renewable Energy Certificates October 16, 2013 - 5:15pm Addthis Image of a red balloon reading 'Electricity' plus a green balloon reading 'REC' equals a purple balloon reading 'Renewable Power' Components of a Renewable Energy Certificate Two separate products exist from electricity produced by renewable energy projects that can be sold together or treated separately. One is the actual electrons produced, which can either be transferred through the power grid to provide power to utility customers or used off-grid or at a customer site. Although they are not common in the market, Federal renewable energy policy recognizes renewable energy certificates (RECs) from thermal renewable energy projects. For thermal RECs the energy product is British

368

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

369

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

370

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

E-Print Network (OSTI)

12 Table 3. Renewable Energy Production Required forTable  Table 3. Renewable Energy Production Required forEnergy Consumption Renewable Energy Production B kWH Year In

Budhraja, Vikram

2008-01-01T23:59:59.000Z

371

Production of methane gas from organic fraction municipal solid waste (OFMSW) via anaerobic process: application methodology for the Malaysian condition  

Science Journals Connector (OSTI)

Solid waste management in Malaysia is confronted with many problems, including low collection coverage, irregular collection services, inadequate equipment used for waste collection, crude open dumping and burning without air and water pollution control systems, inadequate legal provisions and resource constraints. These problems have various effects on the development of the solid waste management system in Malaysia. Anaerobic digestion has been suggested as an alternative method for removing high concentrations of organic waste. In this study, two types of anaerobic digesters which are Simulated Landfill Bioreactor (SLBR) and Anaerobic Solid-Liquid (ASL) reactor were proposed. The reactors were operated at a temperature 60°C, analysed for biogas production and volatile fatty acid.

Irnis Azura Zakarya; Ismail Abustan; Norli Ismail; Mohd Suffian Yusoff

2013-01-01T23:59:59.000Z

372

E-Print Network 3.0 - air methane vam Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Reagents Methane (99.99 v.%, Air Products and Chemicals, Inc.) and propane (99.0 v.%, Praxair) were used... of carbon catalyst activation on the rate of methane decomposition...

373

Department of Mechanical & Nuclear Engineering Spring 2011 Converting Methane into Ethylene  

E-Print Network (OSTI)

PENNSTATE Department of Mechanical & Nuclear Engineering Spring 2011 Converting Methane catalyst production labs, reactor testing lab, and testing equipment. Team Methane Fuzion was responsible. Temperature of the catalyst was closely monitored in order to prevent catalyst sintering. Testing

Demirel, Melik C.

374

Renewable energy in commercial buildings  

E-Print Network (OSTI)

Dynamic life cycle assessment (LCA) of renewable energytechnologies, Renewable energy. [6] REN21 Renewable Energy Policy Network. 2005. “Renewables

Scarpa, Massimiliano; Schiavon, Stefano; Zecchin, Roberto

2008-01-01T23:59:59.000Z

375

Methane Hydrate Field Program  

SciTech Connect

This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

None

2013-12-31T23:59:59.000Z

376

Federal Energy Management Program: Federal Requirements for Renewable  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Federal Requirements for Renewable Energy to someone by E-mail Share Federal Energy Management Program: Federal Requirements for Renewable Energy on Facebook Tweet about Federal Energy Management Program: Federal Requirements for Renewable Energy on Twitter Bookmark Federal Energy Management Program: Federal Requirements for Renewable Energy on Google Bookmark Federal Energy Management Program: Federal Requirements for Renewable Energy on Delicious Rank Federal Energy Management Program: Federal Requirements for Renewable Energy on Digg Find More places to share Federal Energy Management Program: Federal Requirements for Renewable Energy on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

377

Methane Digester Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Digester Loan Program Methane Digester Loan Program Methane Digester Loan Program < Back Eligibility Agricultural Savings Category Bioenergy Maximum Rebate RFA can provide up to $250,000 of loan principal Program Info Funding Source Minnesota Rural Finance Authority (RFA) State Minnesota Program Type State Loan Program Rebate Amount RFA participation limited to 45% of loan principal Provider Minnesota Department of Agriculture Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by providing zero-interest loans to eligible borrowers. The loan program is part of the Rural Finance Authority (RFA) revolving loan fund, through which farmers can receive financial aid

378

Coalbed Methane | Department of Energy  

Energy Savers (EERE)

Coalbed Methane Coalbed Methane Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable...

379

Renewal Credit Matrix CERTIFICATE RENEWAL PLAN  

E-Print Network (OSTI)

Renewal Credit Matrix CERTIFICATE RENEWAL PLAN PROFESSIONAL DEVELOPMENT OPTIONS FOR SOUTH CAROLINA are restricted to Options 1 and 2 in the matrix. CERTIFICATE RENEWAL OPTION ELIGIBILITY CRITERIA RENEWAL CREDITS to 120 renewal credits may be earned via this option during the five-year validity period

Kunkle, Tom

380

Natural Innovative Renewable Energy formerly Northwest Iowa Renewable  

Open Energy Info (EERE)

Innovative Renewable Energy formerly Northwest Iowa Renewable Innovative Renewable Energy formerly Northwest Iowa Renewable Energy Jump to: navigation, search Name Natural Innovative Renewable Energy (formerly Northwest Iowa Renewable Energy) Place Akron, Iowa Zip 51001 Sector Renewable Energy Product Natural Innovative Renewable Energy, formerly Northwest Iowa Renewable Energy, is a development stage limited liability company that plans to construct a 60m gallon (227m litre) per year beef tallow biodiesel plant in South Sioux City, Nebraska. Coordinates 40.15731°, -76.204844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15731,"lon":-76.204844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Renewable Energy Sales Tax Exemption  

Energy.gov (U.S. Department of Energy (DOE))

Certain renewable energy systems and equipment sold in Rhode Island are exempt from the state's sales and use tax. Eligible products include solar electric systems, DC-to-AC inverters that...

382

Guide to Purchasing Green Power: Renewable Electricity, Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, Renewable...

383

Renewable Power and Light | Open Energy Information  

Open Energy Info (EERE)

and Light and Light Jump to: navigation, search Name Renewable Power and Light Place London, Greater London, United Kingdom Zip W1 J5P2 Sector Biofuels, Renewable Energy Product Renewable Power and Light intend to become a power producer generating from renewable sources with renewable technologies, in particluar with regard to biofuels. References Renewable Power and Light[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Power and Light is a company located in London, Greater London, United Kingdom . References ↑ "Renewable Power and Light" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Power_and_Light&oldid=350347"

384

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

385

Alyra Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Alyra Renewable Energy Alyra Renewable Energy Jump to: navigation, search Name Alyra Renewable Energy Place Northampton, Massachusetts Zip 10600 Sector Renewable Energy, Services Product Massachusetts-based provider of financial advisory services exclusively to the renewable energy sector. The firm specializes in M&A/cross-border joint venture advisory and structured tax equity/project finance advisory. References Alyra Renewable Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alyra Renewable Energy is a company located in Northampton, Massachusetts . References ↑ "Alyra Renewable Energy" Retrieved from "http://en.openei.org/w/index.php?title=Alyra_Renewable_Energy&oldid=342082

386

Renewable Energy Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Resources, Inc. Renewable Energy Resources, Inc. Place Las Vegas, Nevada Sector Hydro, Renewable Energy, Solar, Wind energy Product Renewable Energy is a privately-held consultancy with proprietary technology in the solar, wind and hydro fields. References Renewable Energy Resources, Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Resources, Inc. is a company located in Las Vegas, Nevada . References ↑ "Renewable Energy Resources, Inc." rated format, with renewable energy as its base, insuring a successful project throughout construction and commissioning. |Number of employees= |Coordinates= |References=Renewable Energy Resources, Inc.[1] }}

387

Community Renewable Resources  

Energy.gov (U.S. Department of Energy (DOE))

Community renewable programs provide community members with a renewable alternative to conventional energy sources in the form of power and/or financial benefit generated by renewable energy...

388

Plasma catalytic reforming of methane  

Science Journals Connector (OSTI)

Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This article describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius), and a high degree of dissociation and a substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (40% H2, 17% CO2 and 33% N2, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2–3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H2 with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content (?1.5%) with power densities of ?30 kW (H2 HHV)/l of reactor, or ?10 m3/h H2 per liter of reactor. Power density should further increase with increased power and improved design.

L Bromberg; D.R Cohn; A Rabinovich; N Alexeev

1999-01-01T23:59:59.000Z

389

Renew Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wisconsin Zip: 53549 Product: Sister company of Utica Energy, operates a 130m gallon ethanol plant in Jefferson, Wisconsin. References: Renew Energy LLC1 This article is a...

390

RENEWABLE ENERGY Research Experiences for Undergraduates (REU)  

E-Print Network (OSTI)

for Oil Shale Technology and Research, the Colorado Energy Research Institute, and the National Renewable Systems for Oil Shale Production Microstructural Design of Composite Membranes for Energy Storage

391

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable Energy Office Valerie Hall Deputy Director Efficiency, Renewables, and Demand Analysis Division #12;These

392

Steam reforming of methane using double-walled reformer tubes containing high-temperature thermal storage Na2CO3/MgO composites for solar fuel production  

Science Journals Connector (OSTI)

Abstract Double-walled reactor tubes containing thermal storage materials based on the molten carbonate salts—100 wt% Na2CO3 molten salt, 90 wt% Na2CO3/10 wt% MgO and 80 wt% Na2CO3/20 wt% MgO composite materials—were studied for the performances of the reactor during the heat charging mode, while those of methane reforming with steam during heat discharging mode for solar steam reforming. The variations in the temperatures of the catalyst and storage material, methane conversion, duration of reforming for obtaining high levels of methane conversion (>90%), higher heating value (HHV) power of reformed gas and efficiency of the reactor tubes were evaluated for the double-walled reactor tubes and a single-wall reactor tube without the thermal storage. The results for the heat charging mode indicated that the composite thermal storage could successfully store the heat transferred from the exterior wall of the reactor in comparison to the pure molten-salt. The double-walled reactor tubes with the 90 wt% Na2CO3/10 wt% MgO composite material was the most desirable for steam reforming of methane to realize large HHV amounts of reformed gas and higher efficiencies during heat-discharging mode.

Nobuyuki Gokon; Shohei Nakamura; Tsuyoshi Hatamachi; Tatsuya Kodama

2014-01-01T23:59:59.000Z

393

Production of High-Quality Particulate Methane Monooxygenase in High Yields from Methylococcus capsulatus (Bath) with a Hollow-Fiber Membrane Bioreactor  

Science Journals Connector (OSTI)

...monooxygenase from Methylococcus capsulatus (Bath). Cu(I) ions and their implications. J. Am. Chem. Soc. 118: 12766-12776. 17 Nguyen, H.-H. T., S. J. Elliott, J. H. Yip, and S. I. Chan. 1998. The particulate methane monooxygenase...

Steve S.-F. Yu; Kelvin H.-C. Chen; Mandy Y.-H. Tseng; Yane-Shih Wang; Chiu-Feng Tseng; Yu-Ju Chen; Ded-Shih Huang; Sunney I. Chan

2003-10-01T23:59:59.000Z

394

RETRACTED ARTICLE: Effect of Gd2O3 over Ni/SiO2 on syngas production via methane autothermal reforming  

Science Journals Connector (OSTI)

Gd2O3-promoted Ni/SiO2 catalysts exhibited higher activity and selectivity than Ni/SiO2 in methane autothermal reforming. The results of the temperature-programmed surface reaction of CH4 indicated that Gd2O3 mig...

Jian-Zhong Guo; Zhao-Yin Hou…

2010-10-01T23:59:59.000Z

395

Rivertop Renewables | Open Energy Information  

Open Energy Info (EERE)

Rivertop Renewables Rivertop Renewables Jump to: navigation, search Name Rivertop Renewables Place Missoula, Montana Zip P.O. Box 8165 Sector Renewable Energy Product Montana based startup focused on creating bioproducts from renewable plant sugars. Coordinates 46.87278°, -113.996234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.87278,"lon":-113.996234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Alteris Renewables | Open Energy Information  

Open Energy Info (EERE)

Alteris Renewables Alteris Renewables Jump to: navigation, search Logo: Alteris Renewables Name Alteris Renewables Address 523 Danbury Rd Place Wilton, Connecticut Zip 06897 Sector Solar Product Renewable energy systems integrator Number of employees 51-200 Website http://www.alterisinc.com/inde Coordinates 41.227489°, -73.425272° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.227489,"lon":-73.425272,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Whirlwind Renewables | Open Energy Information  

Open Energy Info (EERE)

Whirlwind Renewables Whirlwind Renewables Jump to: navigation, search Name Whirlwind Renewables Place Huddersfield, England, United Kingdom Sector Renewable Energy, Wind energy Product Whirlwind Renewables Limited is a Yorkshire based independent wind energy business that specialises in the development of small onshore wind farms in the UK. Coordinates 53.646955°, -1.782684° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.646955,"lon":-1.782684,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Methane production from marine biomass  

SciTech Connect

The overall concept of the giant brown kelp farm and conversion system, the integrated research program engaged in its study, and IGT's work on biogasification process development are discussed. A summary of results to date on anaerobic digestion will be emphasized. (MHR)

Chynoweth, D.P.; Srivastava, V.J.

1980-01-01T23:59:59.000Z

399

A Mercury-Catalyzed, High-Yield System for the Oxidation of Methane to Methanol  

Science Journals Connector (OSTI)

...con-version of methane to methanol with...for commercial economics. See N. D. Parkyns...How-ever, most methane (CH4) is in locations...desirable to convert methane into liquid products...process termed steam reforming (l): CH4 + H2O-C...

Roy A. Periana; Douglas J. Taube; Eric R. Evitt; Daniel G. Löffler; Paul R. Wentrcek; George Voss; Toshihiko Masuda

1993-01-15T23:59:59.000Z

400

The Irreversible Formation of Methane in the System Ethane-Ethylene-Hydrogen  

Science Journals Connector (OSTI)

...System Ethane-Ethylene-Hydrogen C. J. Danby B. C. Spall...mass-spectrometric analysis and by kinetic methods. The methane is formed directly...concluded that the major mode of production of methane from ethane is...circumstances. From the ethylene-hydrogen side the methane arises by...

1953-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Application of Microhole Technology to the Development of Coalbed Methane Resources at Remote Locations  

E-Print Network (OSTI)

The Application of Microhole Technology to the Development of Coalbed Methane Resources at Remote technology to the development of coalbed methane (CBM) resources in remote, environmentally sensitive areas, or are immediately adjacent to, coal deposits that may be capable of methane production. These same communities pay

402

Methane Hydrates - Methane Hydrate Graduate Fellowship  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Supply and Emerging Resources Future Supply and Emerging Resources The National Methane Hydrates R&D Program - Graduate Fellowship Program Methane Hydrate Graduate Fellowship Program Jeffrey James Marlow, a graduate student in Geobiology at the California Institute of Technology, was recently selected as the 2012 recipient of the NETL-National Academy of Sciences (NAS) Methane Hydrate Research Fellowship. Please see page 15 of the March 2013 issue (Vol. 13, Issue 1) of Fire in the Ice for more information on the recipient. The Department of Energy has a long history of building synergistic relationships with research universities. Funding academic research is a "win-win-win" situation. The U.S. government is able to tap into some of the best minds available for solving national energy problems, the universities get the support they need to maintain cutting edge faculty and laboratories, and the students involved are provided with opportunities that help them along their chosen path of study, strengthening the national pool of scientists and engineers. According to Samuel Bodman, speaking about graduate research in methane hydrates, "Students are the foundation of our energy future, bringing new ideas and fresh perspectives to the energy industry. What better way to assure technology innovation than to encourage students working on the development of a resource that has the potential to tip our energy balance toward clean-burning, domestic fuels."

403

Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis  

Science Journals Connector (OSTI)

Abstract Power-to-Substitute Natural Gas processes are investigated to offer solutions for renewable energy storing or transportation. In the present study, an original Power-to-SNG process combining high-temperature steam electrolysis and CO2 methanation is implemented and simulated. A reference process is firstly defined, including a specific modelling approach of the electrolysis and a methanation modelling including a kinetic law. The process also integrates a unit to clean the gas from residual CO2, H2 and H2O for gas network injection. Having set all the units, simulations are performed with ProsimPlus 3™ software for a reference case where the electrolyser and the methanation reactors are designed. The reference case allows to produce 67.5 Nm3/h of SNG with an electrical energy consumption of 14.4 kW h/Nm3. The produced SNG satisfies specifications required for network injection. From this reference process, two sensitivity analyses on electrolysis and methanation working points and on external parameters and constraints are considered. As a main result, we observe that the reference case maximises both process efficiency and SNG production when compared with other studied cases.

Myriam De Saint Jean; Pierre Baurens; Chakib Bouallou

2014-01-01T23:59:59.000Z

404

KP Renewables Plc | Open Energy Information  

Open Energy Info (EERE)

Plc Plc Jump to: navigation, search Name KP Renewables Plc Place Brentford, Middlesex, Greater London, United Kingdom Zip TW8 9JJ Sector Renewable Energy, Wind energy Product KP is a renewable energy project developer. KP raises funding for small renewable generating projects, especially using wind and waste as fuel and then acts as PPA arranger and power producer. References KP Renewables Plc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. KP Renewables Plc is a company located in Brentford, Middlesex, Greater London, United Kingdom . References ↑ "KP Renewables Plc" Retrieved from "http://en.openei.org/w/index.php?title=KP_Renewables_Plc&oldid=348173

405

RenewableS 2011 GLOBAL STATUS REPORT  

E-Print Network (OSTI)

__20112011 RenewableS 2011 GLOBAL STATUS REPORT Full Report at: http://www.ren21.net/Portals/97/documents/GSR/REN21_GSR2011.pdf #12;11 Changes in renewable energy markets, investments, industries, and policies have been so rapid in recent years that perceptions of the status of renewable energy can lag

Kostic, Milivoje M.

406

Federal Energy Management Program: Renewable Energy Project Planning and  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy Project Planning and Implementation to someone by E-mail Share Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Facebook Tweet about Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Twitter Bookmark Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Google Bookmark Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Delicious Rank Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Digg Find More places to share Federal Energy Management Program: Renewable Energy Project Planning and Implementation on AddThis.com... Energy-Efficient Products

407

Managing R&D Risk in Renewable Energy  

E-Print Network (OSTI)

renewable energy sector can create a double benefit by contributing to a nation’s productivity growth

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

408

1. To develop and transform abundant and renewable bioresources through  

E-Print Network (OSTI)

(glucose) Fermentation (xylose) Biogas production SOLID FUEL Enzymes METHANE ETHANOL HYDROGEN Biomass Pretreatment Fermentation (glucose) Fermentation (xylose) Biogas production SOLID FUEL Enzymes METHANE ETHANOL;Biomass to Ethanol Straw 100 % Lignin Ethanol H2 26 % 39 % 1 % 12 % Maxifuel Energy Balance =0.69 Biogas

409

Type: Renewal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 INCITE Awards 1 INCITE Awards Type: Renewal Title: -Ab Initio Dynamical Simulations for the Prediction of Bulk Properties‖ Principal Investigator: Theresa Windus, Iowa State University Co-Investigators: Brett Bode, Iowa State University Graham Fletcher, Argonne National Laboratory Mark Gordon, Iowa State University Monica Lamm, Iowa State University Michael Schmidt, Iowa State University Scientific Discipline: Chemistry: Physical INCITE Allocation: 10,000,000 processor hours Site: Argonne National Laboratory Machine (Allocation): IBM Blue Gene/P (10,000,000 processor hours) Research Summary: This project uses high-quality electronic structure theory, statistical mechanical methods, and

410

Renewable Fuels Consulting | Open Energy Information  

Open Energy Info (EERE)

Consulting Consulting Jump to: navigation, search Name Renewable Fuels Consulting Place Mason City, Iowa Sector Renewable Energy Product RFC specializes in providing technical solutions to renewable energy production plants. References Renewable Fuels Consulting[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Fuels Consulting is a company located in Mason City, Iowa . References ↑ "Renewable Fuels Consulting" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Fuels_Consulting&oldid=350341" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

411

Renewable Energy Group Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Renewable Energy Group Inc Place Ames, Iowa Zip 50010 Sector Renewable Energy Product Iowa-based holding company operated under the auspices of biodiesel production company Renewable Energy Group. References Renewable Energy Group Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Group Inc is a company located in Ames, Iowa . References ↑ "Renewable Energy Group Inc" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Group_Inc&oldid=350324" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

412

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

temporally-dependent renewable energy production profiles,renewable energy offsets natural gas-fired electricity production.renewable energy to be more labor-intensive than conventional forms of electricity production (

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

413

Renewable Project Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Overview Project Overview Federal Utility Partnership Working Group 5/6/09 Chandra Shah, NREL 303-384-7557, chandra.shah@nrel.gov National Renewable Energy Laboratory Innovation for Our Energy Future Presentation Overview Federal and utility renewable requirements Power Purchase Agreements (PPA) Western Area Power Administration Federal Renewable Program UESC and renewables * Participating in utility renewable programs - Opportunity Announcement process Renewable projects implemented using appropriations National Renewable Energy Laboratory Innovation for Our Energy Future Biomass Resource

414

Syngas production in a novel methane dry reformer by utilizing of tri-reforming process for energy supplying: Modeling and simulation  

Science Journals Connector (OSTI)

Abstract In this study, tri-reforming process has been utilized as an energy source for driving highly endothermic process of methane dry reforming process in a multi-tubular recuperative thermally coupled reactor (TCTDR). 184 two-concentric-tubes have been proposed for this configuration. Outer tube sides of the two-concentric-tubes have been considered for the tri-reforming reactions while dry reforming process takes place in inner tube sides. Simulation results of co-current mode have been compared with corresponding predictions of thermally coupled tri- and steam reformer (TCTSR); in which the tri-reforming process has been coupled with steam reforming of methane in same conditions. A mathematical heterogeneous model has been applied to simulate both dry and tri-reforming sides of the TCTDR. Results showed that methane conversion at the output of dry and tri-reforming sides reached to 63% and 93%, respectively. Also, molar flow rate of syngas at the output of DR side of TCTDR reached to 7464 kmol h?1 in comparison to 3912 kmol h?1 for SR side of TCTSR.

Mehdi Farniaei; Mohsen Abbasi; Hamid Rahnama; Mohammad Reza Rahimpour; Alireza Shariati

2014-01-01T23:59:59.000Z

415

Methane Hydrate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2011 FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of research. Pursuant to statutory requirements, this report is being provided to the following

416

Atmosphärisches Methan als Treibhausgas  

Science Journals Connector (OSTI)

Methan (CH4) gehört neben Wasser(dampf), Kohlendioxid (CO2), Distickstoffmonoxid (Lachgas, N2O), Ozon (O3) und den Fluorchlorkohlenwasserstoffen (FCKW) zu den sog.Treibhausgasen, von denen man mit großer Sicherhe...

W. Klöpffer

1990-09-01T23:59:59.000Z

417

Ionisierungsspannung von Methan  

Science Journals Connector (OSTI)

In einer näher skizzierten Versuchsanordnung wird die Ionisierungsspannung von Methan zu 14,58±0,05 Volt, die...4?Molekel erforderliche Energie zu 15,40±0,05 Volt in guter Übereinstimmung mit der für den homogene...

Erich Pietsch; Gertrud Wilcke

1927-01-01T23:59:59.000Z

418

Methane Hydrate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fiscal Year 2012 Fiscal Year 2012 Methane Hydrate Program Report to Congress August 2013 United States Department of Energy Washington, DC 20585 Department of Energy | August 2013 Fiscal Year 2012 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the actions taken to carry out methane hydrate research. I am pleased to submit the enclosed report, entitled U.S. Department of Energy Fiscal Year 2012 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area

419

Federal Renewable Energy Guidance to EPACT 2005  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Renewable Energy Guidance to EPACT 2005 David McAndrew FUPWG Sandestin Requirement Guidance Overview The guidance outlines the following: - Authority - Requirement - Definition of the renewable energy technologies & products - Requirements for qualifying renewable energy projects or purchases - How agencies renewable energy purchase toward energy reduction requirements will gradually phase out Authority The authority for this guidance is based on Section 203, FEDERAL PURCHASE REQUIREMENT of the Energy Policy Act of 2005 (42 U.S.C. 15852) and Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management (72 FR 3919; January 24, 2007), and the instructions and guidance distributed by the Chairman of the Council for Environmental

420

Electrochemical methane sensor  

DOE Patents (OSTI)

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

TRENDS: METHANE EMISSIONS - INTRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

Of the total direct radiative forcing of long-lived greenhouse gases (2.45 Of the total direct radiative forcing of long-lived greenhouse gases (2.45 Wm-2), almost 20% is attributable to methane (CH4), according to the 1995 report of the Intergovernmental Panel on Climate Change (IPCC 1995). Since the mid-1700s, the atmospheric concentration of methane has increased by about 145% (IPCC 1995). Thus, an understanding of the various sources of methane is important. Atmospheric methane is produced both from natural sources (e.g., wetlands) and from human activities (see global methane cycle, from Professor W.S. Reeburgh at the University of California Irvine). Total sources of methane to the atmosphere for the period 1980-1990 were about 535 (range of 410-660) Tg (1 Teragram = 1 million metric tons) CH4 per year, of which 160 (110-210) Tg CH4/yr were from natural sources and 375 (300-450) Tg CH4/yr

422

Hydroelectric Reservoirs -the Carbon Dioxide and Methane  

E-Print Network (OSTI)

Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

Fischlin, Andreas

423

Methane Hydrate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and generally occur in two types of settings: under Arctic permafrost, and beneath the ocean floor. Methane that forms hydrate can be both biogenic, created by biological activity in sediments, and thermogenic, created by geological processes deeper within the earth.

424

Renewable Electricity Futures Study  

E-Print Network (OSTI)

Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

425

Plasma catalytic reforming of methane  

SciTech Connect

Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.

Bromberg, L.; Cohn, D.R.; Rabinovich, A. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Science and Fusion Center; Alexeev, N. [Russian Academy of Sciences, Moscow (Russian Federation). Baikov Inst. of Metallurgy

1998-08-01T23:59:59.000Z

426

Photocoupling of Methane in Water Vapor to Saturated Hydrocarbons  

Science Journals Connector (OSTI)

Methane can be converted into alkanes (from C2 to C6) continuously by ultraviolet (185 nm) irradiation in the presence of water vapor. The products from this reaction are alkanes, which is different from the comp...

JunePyo Oh; Taketoshi Matsumoto; Junji Nakamura

2008-08-01T23:59:59.000Z

427

Coalbed methane produced water in China: status and environmental issues  

Science Journals Connector (OSTI)

As one of the unconventional natural gas family members, coalbed methane (CBM) receives great attention throughout the world. The major associated problem of CBM production is the management of produced water. In...

Yanjun Meng; Dazhen Tang; Hao Xu; Yong Li…

2014-06-01T23:59:59.000Z

428

Land-Use Analysis of Croplands for Sustainable Food and Energy Production in the United States  

E-Print Network (OSTI)

quality of renewable energy production and then assessingmagnitude of the renewable energy production (wind and/ora renewable energy portfolio to increase production capacity

Zumkehr, Andrew Lee

2013-01-01T23:59:59.000Z

429

REN21 Renewables Interactive Map | Open Energy Information  

Open Energy Info (EERE)

REN21 Renewables Interactive Map REN21 Renewables Interactive Map (Redirected from REN21's Renewables Interactive Map) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: REN21's Renewables Interactive Map Agency/Company /Organization: Renewable Energy Policy Network for the 21st Century (REN21) Sector: Energy Focus Area: Renewable Energy Topics: Market analysis, Policies/deployment programs, Resource assessment Resource Type: Dataset, Maps Website: www.map.ren21.net/ References: Renewables Interactive Map[1] The REN21 Renewables Interactive Map provides information on renewable energy policies, expansion targets, current shares, installed capacity, current production, future scenarios, and policy pledges. References ↑ "Renewables Interactive Map" Retrieved from "http://en.openei.org/w/index.php?title=REN21_Renewables_Interactive_Map&oldid=383282"

430

Sandia National Laboratories: Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Systems On November 4, 2010, in Renewable Systems Renewable Energy Transportation Nuclear Fossil Energy Efficiency Publications Events News Renewable Systems The...

431

Modeling of membrane reactor for steam methane reforming: From granular to structured catalysts  

Science Journals Connector (OSTI)

Different types and operating modes of a tubular membrane reactor for steam methane reforming with a production rate of 0.6...

A. B. Shigarov; V. A. Kirillov

2012-04-01T23:59:59.000Z

432

Parametric and predictive analysis of horizontal well configurations for coalbed methane reservoirs in Appalachian Basin.  

E-Print Network (OSTI)

??It has been a well-established fact that the Appalachian Basin represents a high potential region for the Coalbed Methane (CBM) production. The thin coal beds… (more)

Maricic, Nikola.

2004-01-01T23:59:59.000Z

433

Impact of relative permeability on type curves for coalbed methane reservoirs.  

E-Print Network (OSTI)

??Coalbed methane (CBM) is considered an unconventional gas resource produced from coal seams usually with low permeability at shallow depths. Analyzing the production performance in… (more)

Lakshminarayanan, Sunil.

2006-01-01T23:59:59.000Z

434

Impact of Langmuir isotherm on production behavior of CBM reservoirs.  

E-Print Network (OSTI)

??Coalbed Methane is an unconventional gas resource that consists of methane production from the coal seams. CBM reservoir performance is also influenced by the interrelationship… (more)

Arrey, Efundem Ndipanquang.

2004-01-01T23:59:59.000Z

435

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION Jeffrey D. Byron B.B. Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE Mark

436

Alpha Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Renewable Energy Jump to: navigation, search Name Alpha Renewable Energy Place Atlanta, Georgia Sector Biomass Product Manufacturer of biomass wood gas stoves and standalone power generators for rural areas. References Alpha Renewable Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alpha Renewable Energy is a company located in Atlanta, Georgia . References ↑ "Alpha Renewable Energy" Retrieved from "http://en.openei.org/w/index.php?title=Alpha_Renewable_Energy&oldid=342033" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

437

Solterra Renewable Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Solterra Renewable Technologies Inc Solterra Renewable Technologies Inc Jump to: navigation, search Name Solterra Renewable Technologies Inc. Place Tempe, Arizona Sector Solar Product Solterra is a technology development firm focused on thin-film quantum dot solar cells. References Solterra Renewable Technologies Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solterra Renewable Technologies Inc. is a company located in Tempe, Arizona . References ↑ "Solterra Renewable Technologies Inc." Retrieved from "http://en.openei.org/w/index.php?title=Solterra_Renewable_Technologies_Inc&oldid=351521" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

438

Renewable Resource Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Resource Standard Renewable Resource Standard Renewable Resource Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Montana Program Type Renewables Portfolio Standard Provider Montana Public Service Commission Montana's renewable portfolio standard (RPS), enacted in April 2005 as part of the Montana Renewable Power Production and Rural Economic Development Act, requires public utilities and competitive electricity suppliers to obtain a percentage of their retail electricity sales from eligible renewable resources according to the following schedule: * 5% for compliance years 2008-2009 (1/1/2008 - 12/31/2009) * 10% for compliance years 2010-2014 (1/1/2010 - 12/31/2014)

439

PI Renewables Ltd | Open Energy Information  

Open Energy Info (EERE)

PI Renewables Ltd PI Renewables Ltd Jump to: navigation, search Name PI Renewables Ltd Place Livingston, United Kingdom Zip EH55 8QL Sector Hydro, Wind energy Product Builds, owns and operates wind, LFG and small hydro assets in the UK market. Mistral LP invested USD 0.9m in the company in August 2004. References PI Renewables Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. PI Renewables Ltd is a company located in Livingston, United Kingdom . References ↑ "PI Renewables Ltd" Retrieved from "http://en.openei.org/w/index.php?title=PI_Renewables_Ltd&oldid=349739" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

440

Colorado Renewable Resource Cooperative | Open Energy Information  

Open Energy Info (EERE)

Colorado Renewable Resource Cooperative Colorado Renewable Resource Cooperative Jump to: navigation, search Name Colorado Renewable Resource Cooperative Place Colorado Sector Biomass Product Colorado-based cooperative and forestry producer, that targets the use of woody biomass to generate heat or electricity. References Colorado Renewable Resource Cooperative[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Colorado Renewable Resource Cooperative is a company located in Colorado . References ↑ "Colorado Renewable Resource Cooperative" Retrieved from "http://en.openei.org/w/index.php?title=Colorado_Renewable_Resource_Cooperative&oldid=343780" Categories: Clean Energy Organizations

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Exploiting coalbed methane and protecting the global environment  

SciTech Connect

The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

Yuheng, Gao

1996-12-31T23:59:59.000Z

442

COMMISSION GUIDEBOOK RENEWABLES PORTFOLIO  

E-Print Network (OSTI)

, certificates, certification, conduit hydroelectric, digester gas, electrolysis, eligibility, fuel cell, renewable energy credits, Renewables Portfolio Standard, repowered, retail sales, small hydroelectric, Self

443

NREL: News - NREL to Help Convert Methane to Liquid Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

113 113 NREL to Help Convert Methane to Liquid Diesel Advanced research project could lead to lower greenhouse emissions, new life for spent gas and oil wells January 3, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) will help develop microbes that convert methane found in natural gas into liquid diesel fuel, a novel approach that if successful could reduce greenhouse gas emissions and lower dependence on foreign oil. The amount of natural gas simply flared or vented from oil wells globally is enormous - equal to one-third of the amount of petroleum used in the United States each year. And every molecule of methane vented to the atmosphere in that process has the global-warming capacity of 12 molecules of carbon dioxide.

444

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term > Renewable Energy RFPs Content Group Activity By term Q & A Feeds Term: solar land use Type Term Title Author Replies Last Post sort icon Blog entry solar land use Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2 Dec 2013 - 11:06 Groups Menu You must login in order to post into this group. Recent content Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST WAPA REC RFP - Deadline: August 9, 2013 - 4:30 p.m. PT

445

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term > Renewable Energy RFPs Content Group Activity By term Q & A Feeds Term: Solar Type Term Title Author Replies Last Post sort icon Blog entry Solar Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2 Dec 2013 - 11:06 Groups Menu You must login in order to post into this group. Recent content Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST WAPA REC RFP - Deadline: August 9, 2013 - 4:30 p.m. PT

446

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term > Renewable Energy RFPs Content Group Activity By term Q & A Feeds Term: pv land use Type Term Title Author Replies Last Post sort icon Blog entry pv land use Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2 Dec 2013 - 11:06 Groups Menu You must login in order to post into this group. Recent content Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST WAPA REC RFP - Deadline: August 9, 2013 - 4:30 p.m. PT

447

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term > Renewable Energy RFPs Content Group Activity By term Q & A Feeds Term: Solar Power Type Term Title Author Replies Last Post sort icon Blog entry Solar Power Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2 Dec 2013 - 11:06 Groups Menu You must login in order to post into this group. Recent content Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST WAPA REC RFP - Deadline: August 9, 2013 - 4:30 p.m. PT

448

Enhanced coalbed methane recovery  

SciTech Connect

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

449

renewables | OpenEI  

Open Energy Info (EERE)

renewables renewables Dataset Summary Description No description given. Source World Bank Date Released Unknown Date Updated Unknown Keywords coal energy imports energy production energy use fossil fuels Fuel global Hydroelectric international nuclear oil renewables statistical statistics world bank Data application/zip icon Data in XML Format (zip, 1 MiB) application/zip icon Data in Excel Format (zip, 1.3 MiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1970 - 2007 License License Other or unspecified, see optional comment below Comment Summary of Usage Terms ---------------------- You are free to copy, distribute, adapt, display or include the data in other products for commercial and noncommercial purposes at no cost subject to certain limitations summarized below. You must include attribution for the data you use in the manner indicated in the metadata included with the data. You must not claim or imply that The World Bank endorses your use of the data by or use The World Bank's logo(s) or trademark(s) in conjunction with such use. Other parties may have ownership interests in some of the materials contained on The World Bank Web site. For example, we maintain a list of some specific data within the Datasets that you may not redistribute or reuse without first contacting the original content provider, as well as information regarding how to contact the original content provider. Before incorporating any data in other products, please check the list: Terms of use: Restricted Data. The World Bank makes no warranties with respect to the data and you agree The World Bank shall not be liable to you in connection with your use of the data. Links ----- Summary of Terms: http://data.worldbank.org/summary-terms-of-use Detailed Usage Terms: http://www.worldbank.org/terms-datasets

450

Quarterly Review of Methane from Coal-Seams Technology. Volume 8, Number 4, July 1991. Report for October-December 1990  

SciTech Connect

Contents include reports on: Powder River Basin, Wyoming and Montana; Piceance Basin, Colorado; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; Coalbed Methane Development in the Appalachian Basin; Geologic Evaluation of Critical Production Parameters for Coalbed Methane Resources; Reservoir Engineering and Analysis; Coordinated Laboratory Studies in Support of Hydraulic Fracturing of Coalbed Methane; Physical Sciences Coalbed Methane Research; Coalbed Methane Opportunities in Alberta.

McBane, R.A.; Schwochow, S.D.; Stevens, S.H.

1991-01-01T23:59:59.000Z

451

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

SciTech Connect

To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. (National Renewable Energy Lab., Golden, CO (United States)); Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States))

1992-07-01T23:59:59.000Z

452

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services  

SciTech Connect

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we determined that by grinding the soil samples to a finer particle size of less than 250 ?m (sieve No. 60), the effect of mine soil coal particle size on the extent to which these particles will be oxidized during the thermal treatment of the carbon partitioning procedure will be eliminated, thus making the procedure more accurate and precise. In the second phase of the carbon sequestration project, we focused our attention on determining the sample size required for carbon accounting on grassland mined fields in order to achieve a desired accuracy and precision of the final soil organic carbon (SOC) estimate. A mine land site quality classification scheme was developed and some field-testing of the methods of implementation was completed. The classification model has been validated for softwoods (white pine) on several reclaimed mine sites in the southern Appalachian coal region. The classification model is a viable method for classifying post-SMCRA abandoned mined lands into productivity classes for white pine. A thinning study was established as a random complete block design to evaluate the response to thinning of a 26-year-old white pine stand growing on a reclaimed surface mine in southwest Virginia. Stand parameters were projected to age 30 using a stand table projection. Site index of the stand was found to be 32.3 m at base age 50 years. Thinning rapidly increased the diameter growth of the residual trees to 0.84 cm yr{sup -1} compared to 0.58 cm yr{sup -1} for the unthinned treatment; however, at age 26, there was no difference in volume or value per hectare. At age 30, the unthinned treatment had a volume of 457.1 m{sup 3} ha{sup -1} but was only worth $8807 ha{sup -1}, while the thinned treatment was projected to have 465.8 m{sup 3} ha{sup -1}, which was worth $11265 ha{sup -1} due to a larger percentage of the volume being in sawtimber size classes.

James A. Burger

2005-07-20T23:59:59.000Z

453

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystems Services  

SciTech Connect

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During this quarter we worked on methodologies for analyzing carbon in mine soils. A unique property of mine soils is the presence of coal and carboniferous rock particles that are present in mine soils in various sizes, quantities, and qualities. There is no existing method in the literature that may be of use for quantitative estimation of soil organic carbon (SOC) in mine soils that can successfully differentiate between pedogenic and geogenic carbon forms. In this report we present a detailed description of a 16-step method for measuring SOC in mine soils designed for and tested on a total of 30 different mine soil mixtures representing a wide spectrum of mine soils in the hard-rock region of the Appalachian coalfield. The proposed method is a combination of chemical procedure for carbonates removal, a thermal procedure for pedogenic C removal, and elemental C analysis procedure at 900 C. Our methodology provides a means to correct for the carbon loss from the more volatile constituents of coal fragments in the mine soil samples and another correction factor for the protected organic matter that can also remain unoxidized following thermal pretreatment. The correction factors for coal and soil material-specific SOM were based on carbon content loss from coal and SOM determined by a parallel thermal oxidation analysis of pure ground coal fragments retrieved from the same mined site as the soil samples and of coal-free soil rock fragments of sandstone and siltstone origin.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2006-04-30T23:59:59.000Z

454

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

SciTech Connect

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration potential of forests growing on 14 mined sites in a seven-state region in the Midwestern and Eastern Coalfields. Carbon contents of these forests were compared to adjacent forests on non-mined land. The study was installed as a 3 x 3 factorial in a random complete block design with three replications at each location. The treatments include three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Soil samples were collected from each plot to characterize the sites prior to treatment. Analysis of soil samples was completed and these data are being used to prepare fertilizer prescriptions. Fertilizer prescripts will be developed for each site. Fertilizer will be applied during the second quarter 2004. Data are included as appendices in this report. As part of our economic analysis of mined land reforestation, we focused on the implications of a shift in reforestation burden from the landowner to the mine operator. Results suggest that the reforestation of mined lands as part of the mining operation creates a viable and profitable forest enterprise for landowners with greater potential for carbon sequestration.

J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2004-06-04T23:59:59.000Z

455

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

SciTech Connect

To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. [National Renewable Energy Lab., Golden, CO (United States); Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States)

1992-07-01T23:59:59.000Z

456

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Product, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services  

SciTech Connect

Concentrations of CO{sub 2} in the Earth’s atmosphere have increased dramatically in the past 100 years due to deforestation, land use change, and fossil fuel combustion. These humancaused, higher levels of CO{sub 2} may enhance the atmospheric greenhouse effect and may contribute to climate change. Many reclaimed coal-surface mine areas in the eastern U.S. are not in productive use. Reforestation of these lands could provide societal benefits, including sequestration of atmospheric carbon. The goal of this project was to determine the biological and economic feasibility of restoring high-quality forests on the tens of thousands of hectares of mined land and to measure carbon sequestration and wood production benefits that would be achieved from large-scale application of forest restoration procedures. We developed a mine soil quality model that can be used to estimate the suitability of selected mined sites for carbon sequestration projects. Across the mine soil quality gradient, we tested survival and growth performance of three species assemblages under three levels of silvicultural. Hardwood species survived well in WV and VA, and survived better than the other species used in OH, while white pine had the poorest survival of all species at all sites. Survival was particularly good for the site-specific hardwoods planted at each site. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Grassland to forest conversion costs may be a major contributor to the lack of reforestation of previously reclaimed mine lands in the Appalachian coal-mining region. Otherwise profitable forestry opportunities may be precluded by these conversion costs, which for many combinations of factors (site class, forest type, timber prices, regeneration intensity, and interest rate) result in negative land expectation values. Improved technology and/or knowledge of reforestation practices in these situations may provide opportunities to reduce the costs of converting many of these sites as research continues into these practices. It also appears that in many cases substantial payments, non-revenue values, or carbon values are required to reach “profitability” under the present circumstances. It is unclear when, or in what form, markets will develop to support any of these add-on values to supplement commercial forestry revenues. However, as these markets do develop, they will only enhance the viability of forestry on reclaimed mined lands, although as we demonstrate in our analysis of carbon payments, the form of the revenue source may itself influence management, potentially mitigating some of the benefits of reforestation. For a representative mined-land resource base, reforestation of mined lands with mixed pine-hardwood species would result in an average estimated C accumulation in forms that can be harvested for use as wood products or are likely to remain in the soil C pool at ~250 Mg C ha{sup -1} over a 60 year period following reforestation. The “additionality” of this potential C sequestration was estimated considering data in scientific literature that defines C accumulation in mined-land grasslands over the long term. Given assumptions detailed in the text, these lands have the potential to sequester ~180 Mg C ha{sup -1}, a total of 53.5 x 10{sup 6} Mg C, over 60 years, an average of ~900,000 Mg C / yr, an amount equivalent to about 0.04% of projected US C emissions at the midpoint of a 60-year period (circa 2040) following assumed reforestation. Although potential sequestration quantities are not great relative to potential national needs should an energy-related C emissions offset requirement be developed at some future date, these lands are available and unused for other economically valued purposes and many possess soil and site properties that are well-suited to reforestation. Should such reforestation occur, it would also produce ancillary benefits by providing env

James A. Burger

2006-09-30T23:59:59.000Z

457

REN21 Renewables Interactive Map | Open Energy Information  

Open Energy Info (EERE)

REN21 Renewables Interactive Map REN21 Renewables Interactive Map Jump to: navigation, search Tool Summary LAUNCH TOOL Name: REN21's Renewables Interactive Map Agency/Company /Organization: Renewable Energy Policy Network for the 21st Century (REN21) Sector: Energy Focus Area: Renewable Energy Topics: Market analysis, Policies/deployment programs, Resource assessment Resource Type: Dataset, Maps Website: www.map.ren21.net/ References: Renewables Interactive Map[1] The REN21 Renewables Interactive Map provides information on renewable energy policies, expansion targets, current shares, installed capacity, current production, future scenarios, and policy pledges. References ↑ "Renewables Interactive Map" Retrieved from "http://en.openei.org/w/index.php?title=REN21_Renewables_Interactive_Map&oldid=383282"

458

Renewable Energy Evaluation Tools  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RENEWABLE ENERGY RENEWABLE ENERGY EVALUATION TOOLS Andy Walker, PhD PE Principal Engineer, NREL Renewable Energy Round Table May 2, 2012 2 TECHNICAL ASSESSMENT AND SCREENING TOOLS WE USE IN OUR PROJECTS Campus/Base Assessments INFRASTRUCTURE BUILDINGS ASSESSMENT RENEWABLE SUPPLY SIDE VEHICLES & TOOLS Campus/Base Assessments INFRASTRUCTURE BUILDINGS ASSESSMENT RENEWABLE SUPPLY SIDE VEHICLES & TOOLS 9 9 Renewable Energy Technologies Photovoltaics Daylighting Biomass Heat/Power Concentrating Solar Heat/Power Solar Vent Air Preheat Solar Water Heating Wind Power Ground Source Heat Pump Landfill Gas 10 10 Renewable Energy Resources Geographical Information System (GIS) Datasets * NREL Datasets (http://www.nrel.gov/gis/) - solar radiation 10x10 km grid

459

Can Algae utilize Methane?  

Science Journals Connector (OSTI)

... in connexion with oil prospecting, corrosion problems and formation of a microbial sludge in jet fuel tanks?. The scope of hydrocarbon microbiology has expanded rapidly in the meantime and currently ... the growth of photosynthetic sulphur bacteria in different gaseous environments Dr Enebo isolated the green alga Chlorella from highly reducing enrichment media in which carbonate and methane provided the carbon sources ...

Our Correspondent in Microbiology

1967-07-01T23:59:59.000Z

460

Methane from Anaerobic Fermentation  

Science Journals Connector (OSTI)

...removal rate; and recycling. Many studies have...di-gestion is utilized for wastewater stabili-zation...processes are used in some wastewater treatment plants...sludge is separated for recycling from the digester effluent...percent meth-ane. Many wastewater treatment plants in...

Donald L. Klass

1984-03-09T23:59:59.000Z

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Methane and Coal  

Science Journals Connector (OSTI)

... stored source of the energy supplies of the world ; every twenty years the world burns a volume of coal equivalent to the volume of Snowdon (a cone of base ... hole method being most in favour. This method is being applied in about twelve British pits. The amount of methane drawn off appears to depend on the movement of the ...

ALFRED EGERTON

1952-07-19T23:59:59.000Z

462

NETL: Oil & Natural Gas Technologies Reference Shelf - Coalbed Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Author: John Wheaton, Montana Tech of the University of Montana, Butte, MT. Venue: The tour will be conducted starting in Gillette, WY, and extend along the northern Powder River Basin, on June 3, 2007, under the auspices of the American Society for Mining and Reclamation (http://ces.ca.uky.edu/asmr/ [external site]). Abstract: This field tour will emphasize successful reclamation in an alternative type of coal industry in the Powder River Basin: coalbed methane. The tour will leave Gillette, WY, at 7:30 a.m., Sunday, June 3, 2007, and travel to Sheridan, WY, and back, touring coalbed methane production areas. Stops will include active drilling and producing areas to learn about the footprint and approach to development of coalbed methane. Reclamation includes drilling pads and linear trenching for water and gas pipelines. Produced-water management is a major expense and concern. Among the water management options we plan to see are stock-watering facilities, infiltration ponds, irrigation sites, and water treatment facilities. A landowner will join us and be able to answer questions from the ranching perspective for part of the tour. Lunches are included in the price of the tour.

463

Fueling America Through Renewable Resources Purdue extension  

E-Print Network (OSTI)

Fueling America Through Renewable Resources BioEnergy Purdue extension u.s. ethanol Policy of U.S. ethanol policy, explains the economics of ethanol production in today's market environment. Table 1. History of Ethanol Subsidy Legislation #12; Fueling America Through Renewable Crops BioEnergy U

464

Renewable energy 1998: Issues and trends  

SciTech Connect

This report presents the following five papers: Renewable electricity purchases: History and recent developments; Transmission pricing issues for electricity generation from renewable resources; Analysis of geothermal heat pump manufacturers survey data; A view of the forest products industry from a wood energy perspective; and Wind energy developments: Incentives in selected countries. A glossary is included. 19 figs., 27 tabs.

NONE

1999-03-01T23:59:59.000Z

465

The Energy Efficiency and Renewable Energy Program  

E-Print Network (OSTI)

The Energy Efficiency and Renewable Energy Program develops sustainable energy technologies is committed to expanding energy resource options and to improving efficiency in every element of energy production and use Energy Efficiency and Renewable Energy Program Research Focus Areas Nickel aluminide

466

Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity  

E-Print Network (OSTI)

H. T. Black, " U . S. Coalbed Methane Production," NaturalBlack, "Update on U.S. Coalbed Methane Production," NaturalC. F. Brandenburg, "Coalbed Methane Sparks a New Industry,"

Delucchi, Mark

1997-01-01T23:59:59.000Z

467

Renew Services Ltd | Open Energy Information  

Open Energy Info (EERE)

Services Ltd Services Ltd Jump to: navigation, search Name Renew Services Ltd Place Fife, Scotland, United Kingdom Sector Wind energy Product A new co-operative formed to develop and fund sustainable energy solutions for the benefit of the community. Having started out in Fife, Renew is now exploring projects across Scotland, mostly in community combined heat and power (CHP) and wind. References Renew Services Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renew Services Ltd is a company located in Fife, Scotland, United Kingdom . References ↑ "Renew Services Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Renew_Services_Ltd&oldid=350299

468

NorthWinds Renewables | Open Energy Information  

Open Energy Info (EERE)

NorthWinds Renewables NorthWinds Renewables Jump to: navigation, search Name NorthWinds Renewables Place Harrison, New York Zip 10528 Sector Renewable Energy, Wind energy Product NorthWinds Renewables is an independent merchant banking firm focused exclusively on serving the renewable energy industry. Coordinates 35.10917°, -85.143009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.10917,"lon":-85.143009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Proceedings of the international coalbed methane symposium. Volume 2  

SciTech Connect

Volume 2 contains 36 papers divided among the following sessions: Resources/development potential; Mine safety and productivity issues; Reservoir characterization, modeling, and well testing; and a Poster session whose papers discuss coal geology, well completion methods, origin of coalbed methane, rock mechanics of coal seams, geologic fractures in coal seams, and the use of coalbed methane for mitigation of greenhouse gases. All papers have been processed for inclusion on the data base.

NONE

1993-09-01T23:59:59.000Z

470

Property:RenewableFuelStandard/RenewableBiofuel | Open Energy Information  

Open Energy Info (EERE)

RenewableBiofuel RenewableBiofuel Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/RenewableBiofuel" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 12.6 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 13.2 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 13.8 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 14.4 + Renewable Fuel Standard Schedule + 9 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 10.5 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 12 +

471

Coalbed methane resource potential of the Piceance Basin, northwestern Colorado  

SciTech Connect

As predicted, from an evolving coalbed methane producibility model, prolific coalbed methane production is precluded in the Piceance Basin by the absence of coal bed reservoir continuity and dynamic ground-water flow. The best potential for production may lie at the transition zone from hydropressure to hydrocarbon overpressure and/or in conventional traps basinward of where outcrop and subsurface coals are in good reservoir and hydraulic communication. Geologic and hydrologic synergy among tectonic and structural setting, depositional systems and coal distribution, coal rank, gas content, permeability and hydrodynamics are the controls that determine the coalbed methane resource potential of the Piceance Basin. Within the coal-bearing Upper Cretaceous Williams Fork Formation, the prime coalbed methane target, reservoir heterogeneity and thrust faults cause coal beds along the Grand Hogback and in the subsurface to be in modest to poor reservoir and hydraulic communication, restricting meteoric ground water recharge and basinward flow. Total subsurface coalbed methane resources are still estimated to be approximately 99 Tcf (3.09 Tm{sup 3}), although coalbed methane resource estimates range between 80 (2.49 Tm{sup 3}) and 136 Tcf (4.24 Tm{sup 3}), depending on the calculation method used. To explore for high gas contents or fully gas-saturated coals and consequent high productivity in the Piceance Basin, improved geologic and completion technologies including exploration and development for migrated conventionally and hydrodynamically trapped gases, in-situ generated secondary biogenic gases, and solution gases will be required.

Tyler, R.; Scott, A.R.; Kaiser, W.R. [Univ. of Texas, Austin, TX (United States)

1996-06-01T23:59:59.000Z

472

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 DE-FC26-06NT42960 Goal The goal of this project is to improve the understanding of regional and local differences in gas hydrate systems from three perspectives: as an energy resource, as a geohazard, and as a long-term influence on global climate. Performers Rice University, Houston, TX University of Texas, Austin, TX Oklahoma State University, Stillwater, OK Background Heterogeneity in the distribution of gas hydrate accumulations impacts all aspects of research into gas hydrate natural systems. The challenge is to delineate, understand, and appreciate these differences at the regional and local scales, where differences in in situ concentrations are relevant to the importance of gas hydrate as a resource, a geohazard, and a factor in

473

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 DE-FC26-01NT41331 photo of new Anadarko drilling rig in place at Hot Ice No.1 on Alaska's North Slope Hot Ice No. 1 Drilling Platform courtesy Anadarko Petroleum Corp. Goal The goal of the project was to develop technologies for drilling and recovering hydrates in arctic areas. The specific objectives were to drill, core, and test a well through the hydrate stability zone in northern Alaska Performers Maurer Technology, Inc.* - Project coordination with DOE Anadarko Petroleum Corporation - Overall project management for the design, construction, and operation of the Arctic Drilling Platform and mobile core lab, and field coring operations Noble Engineering and Development* - Real time data collection and

474

Exergy: Production, Cost and Renewability  

Science Journals Connector (OSTI)

Bridging the gap between concepts derived from Second Law of Thermodynamics and their application to Engineering practice, the property exergy and the exergy balance can be a tool for analyzing and improving the performance of energy conversion processes. ...

Silvio de Oliveira

2012-11-01T23:59:59.000Z

475

Renewable Alternatives LLC | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Renewable Alternatives LLC Jump to: navigation, search Name Renewable Alternatives LLC Place Columbia, Missouri Zip 65211 Product Focused on the research, development and commercialization of products that are an alternative to petroleum-based feedstock materials. References Renewable Alternatives LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Alternatives LLC is a company located in Columbia, Missouri . References ↑ "Renewable Alternatives LLC"

476

American Renewable Fuels | Open Energy Information  

Open Energy Info (EERE)

American Renewable Fuels American Renewable Fuels Place Dallas, Texas Zip TX 75201 Sector Renewable Energy Product Developer of commercial scale renewable fuels production plants and subsidiary of Australian Renewable Fuels Pty Ltd (ARF). Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Crimson Renewable Energy LP | Open Energy Information  

Open Energy Info (EERE)

Crimson Renewable Energy LP Crimson Renewable Energy LP Jump to: navigation, search Name Crimson Renewable Energy LP Place Denver, Colorado Zip 80202 Sector Biomass, Renewable Energy Product Focused on biodiesel production and conversion of waste biomass into renewable bio-gas. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

Algasol Renewables SL | Open Energy Information  

Open Energy Info (EERE)

Algasol Renewables SL Algasol Renewables SL Jump to: navigation, search Name Algasol Renewables SL Place Baleares, Spain Zip E-07121 Sector Renewable Energy Product Newly started technology firm that will seek to use the photosynthetic capabilities of algae to generate renewable energy and other products. Coordinates 39.613529°, 2.91156° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.613529,"lon":2.91156,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Renewable energy annual 1996  

SciTech Connect

This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

NONE

1997-03-01T23:59:59.000Z

480

Imperium Renewables | Open Energy Information  

Open Energy Info (EERE)

Imperium Renewables Imperium Renewables Jump to: navigation, search Name Imperium Renewables Place Seattle, Washington Zip 98101 Product Seattle-based biodiesel producer. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "renewable methane production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Iberdrola Renewables | Open Energy Information  

Open Energy Info (EERE)

Renewables Renewables Address 1125 NW Couch Street Place Portland, Oregon Zip 97209 Sector Wind energy Product Renewable energy generation Website http://www.iberdrolarenewables Coordinates 45.524005°, -122.683679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.524005,"lon":-122.683679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

TCI Renewables | Open Energy Information  

Open Energy Info (EERE)

TCI Renewables TCI Renewables Jump to: navigation, search Name TCI Renewables Place Belfast, United Kingdom Zip BT5 6QR Sector Biomass, Wind energy Product The company has been formed to focus on wind farm development, construction and ownership but is also interested in biomass developments. Coordinates 54.595295°, -5.934524° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.595295,"lon":-5.934524,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

Distribution of thermogenic methane in Carboniferous coal seams of the Donets Basin (Ukraine): “Applications to exploitation of methane and forecast of mining hazards”  

Science Journals Connector (OSTI)

The main purpose of this contribution is to estimate methane production and to define its migration paths and storage in the Donets Basin formations for exploitation of methane and forecast of mining hazards. In order to study methane migration and storage, maps of production calculated by 2D modelling, adsorption capacity of methane in coal, and present-day methane contents were constructed for an altitude of ? 300 m (close to 500 m depth) in this basin. The results show that three principal factors influenced the methane migration and accumulation in Donets Basin: 1) faults that acted as migration pathways, 2) a replacement of thermogenic methane by endogenic CO2 in the central and SE parts, and 3) the occurrence of magmatic events in some areas in this basin. Finally, in Donbas, the areas with the highest methane potential and the maximum risk of outburst are not the areas with anthracite that produce the highest volume of methane, but areas with volatile bituminous coals where an impermeable cover preserved the accumulated gas until the Cenozoic and where dextral shear belts facilitated its migration.

D. Alsaab; M. Elie; A. Izart; R.F. Sachsenhofer; V.A. Privalov; I. Suarez-Ruiz; L. Martinez; E.A. Panova

2009-01-01T23:59:59.000Z

484

Bro Dyfi Community Renewables Ltd | Open Energy Information  

Open Energy Info (EERE)

Bro Dyfi Community Renewables Ltd Bro Dyfi Community Renewables Ltd Jump to: navigation, search Name Bro Dyfi Community Renewables Ltd Place Bro Dyfi, Wales, United Kingdom Sector Renewable Energy, Wind energy Product Bro Dyfi Community Renewables Ltd was formed in 2001 to create opportunities for the local community to benefit more from the use of the wind and clean sources of power. References Bro Dyfi Community Renewables Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Bro Dyfi Community Renewables Ltd is a company located in Bro Dyfi, Wales, United Kingdom . References ↑ "Bro Dyfi Community Renewables Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Bro_Dyfi_Community_Renewables_Ltd&oldid=343053

485

Missouri Valley Renewable Energy MOVRE | Open Energy Information  

Open Energy Info (EERE)

Valley Renewable Energy MOVRE Valley Renewable Energy MOVRE Jump to: navigation, search Name Missouri Valley Renewable Energy (MOVRE) Place Saint Louis, Missouri Zip 63105 Sector Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product An energy efficiency solutions company focused on renewable DP for farms, including wind, solar and hydro power. The company was absorbed by Farmergy Inc. in January 2007. References Missouri Valley Renewable Energy (MOVRE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Missouri Valley Renewable Energy (MOVRE) is a company located in Saint Louis, Missouri . References ↑ "Missouri Valley Renewable Energy (MOVRE)" Retrieved from "http://en.openei.org/w/index.php?title=Missouri_Valley_Renewable_Energy_MOVRE&oldid=348873"

486

FRV USA formerly Fotowatio Renewable Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

FRV USA formerly Fotowatio Renewable Ventures LLC FRV USA formerly Fotowatio Renewable Ventures LLC Jump to: navigation, search Name FRV USA (formerly Fotowatio Renewable Ventures LLC) Place San Francisco, California Zip 94104 Sector Renewable Energy Product A wholly-owned subsidiary of FRV which manages and operates renewable energy assets in the US. References FRV USA (formerly Fotowatio Renewable Ventures LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. FRV USA (formerly Fotowatio Renewable Ventures LLC) is a company located in San Francisco, California . References ↑ "FRV USA (formerly Fotowatio Renewable Ventures LLC)" Retrieved from "http://en.openei.org/w/index.php?title=FRV_USA_formerly_Fotowatio_Renewable_Ventures_LLC&oldid=345517"

487

US National Renewable Energy Laboratory NREL | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Laboratory NREL Renewable Energy Laboratory NREL Jump to: navigation, search Name US National Renewable Energy Laboratory (NREL) Place Golden, Colorado Zip 80401-3393 Sector Renewable Energy Product Colorado-based research institute funded by the Department of Energy and focused on renewable energy. References US National Renewable Energy Laboratory (NREL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US National Renewable Energy Laboratory (NREL) is a company located in Golden, Colorado . References ↑ "US National Renewable Energy Laboratory (NREL)" Retrieved from "http://en.openei.org/w/index.php?title=US_National_Renewable_Energy_Laboratory_NREL&oldid=352618

488

CEZ Obnovitelne zdroje sro Renewable Resources | Open Energy Information  

Open Energy Info (EERE)

CEZ Obnovitelne zdroje sro Renewable Resources CEZ Obnovitelne zdroje sro Renewable Resources Jump to: navigation, search Name CEZ Obnovitelne zdroje sro (Renewable Resources) Place Prague 4, Czech Republic Zip 140 53 Sector Biomass, Renewable Energy Product Subsidiary of CEZ Group that is focused on energy generation from renewable resources, except for combustion of biomass with coal. References CEZ Obnovitelne zdroje sro (Renewable Resources)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CEZ Obnovitelne zdroje sro (Renewable Resources) is a company located in Prague 4, Czech Republic . References ↑ "[ CEZ Obnovitelne zdroje sro (Renewable Resources)]" Retrieved from "http://en.openei.org/w/index.php?title=CEZ_Obnovitelne_zdroje_sro_Renewable_Resources&oldid=343432"

489

Methane-steam reforming  

SciTech Connect

The literature relating to the kinetics of methane-steam reforming involving integral and differential reactor data, porous nickel catalysts and nickel foil, and data over large ranges of temperature (500 to 1700/sup 0/F), pressure (0.01 to 50 atm), and intrinsic catalyst activities (200,000-fold) was reviewed. A simple reversible first-order kinetic expression for the steam-methane reaction appears to be applicable throughout the operable region of steam-to-carbon ratios. Internal pore diffusion limitation on the conversion rate, due to catalyst size and/or intrinsic catalyst activity and total operating pressure was underlined. S-shaped Arrhenium plots (changing activation energy) are obtained when steam reforming is conducted over a temperature range sufficient to produce intrinsic kinetics (low temperature, inactive catalyst, or small catalyst size), pore diffusional limitations, and reaction on the outside surface. Homogeneous gas-phase kinetics appear to contribute only at relatively high temperature (1400/sup 0/F). In steam reforming, the water-gas shift reaction departs from its equilibrium position, especially at low methane conversion level. A general correlation of approach to water-gas shift equilibration as a function of conversion level only was indicated. (DP) 18 figures, 6 tables.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

490

Photon Science for Renewable Energy  

E-Print Network (OSTI)

Photon Science for renewable Energy at Light-Sourceour planet. The quest for renewable, nonpolluting sources ofa global revolution in renewable and carbon- neutral energy

Hussain, Zahid

2010-01-01T23:59:59.000Z

491

Who Owns Renewable Energy Certificates?  

E-Print Network (OSTI)

construction of new renewable resources, and not to pay morefurther investment in renewable resources. Because the risksfor RECs from existing renewable resources that already sell

Holt, Edward; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

492

Renewable Energy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Research Topics Renewable Energy Renewable Energy he Office of Energy Efficiency and Renewable Energy (EERE) 2014 Postdoctoral Research Awards are sponsored by: Solar Energy...

493

Review of State and National Renewable Energy Policies  

Science Journals Connector (OSTI)

There is a growing importance for improving renewable energy policies especially in the United States to achieve a goal of 20% or more of nation's electricity from wind energy by 2030. Governments at various local, state and federal levels often revise ... Keywords: Wind Energy, Renewable Energy Policy, Renewable portfolio standards, Production Tax credits, Feed-in tariffs, Net-metering

Venkatesh Yadav Singarao, Ravi Pratap Singh

2014-04-01T23:59:59.000Z

494

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 DE-FC26-06NT42962 Goal The goal of this project is to evaluate, design, drill, log, core and production test methane hydrate resources in the Barrow Gas Fields near Barrow, Alaska to determine its impact on future free gas production and its viability as an energy source. Photo of Barrow welcome sign Performers North Slope Borough, Barrow, Alaska 99723 Petrotechnical Resources Alaska (PRA), Fairbanks, AK 99775 University of Alaska Fairbanks, Fairbanks, AK 99775 Background Phase 1 of the Barrow Gas Fields Hydrate Study provided very strong evidence for the existence of hydrates updip of the East Barrow and Walakpa Gas Fields. Full-field history matched reservoir modeling supported the

495

Dewatering of coalbed methane wells with hydraulic gas pump  

SciTech Connect

The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

Amani, M.; Juvkam-Wold, H.C. [Texas A& M Univ., College Station, TX (United States)

1995-12-31T23:59:59.000Z

496

Estimating Renewable Energy Costs  

Energy.gov (U.S. Department of Energy (DOE))

Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

497

Phasing Renewable Energy Implementation  

Energy.gov (U.S. Department of Energy (DOE))

If conventional or other renewable energy funding cannot be procured, or if an agency is working towards a higher goal for renewable energy usage that cannot be met with the current budget,...

498

Renewables and Sector Partnerships  

Office of Energy Efficiency and Renewable Energy (EERE)

U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Community Renewable Energy Success Stories Webinar series presentation by Susanna Sutherland, City of Knoxville, Tennessee, on financing solar energy systems.

499

Renewable Hydrogen Economy  

Science Journals Connector (OSTI)

Renewable energies usually claim to be the alternative to oil. Renewable energies provide us with electricity, heat and fuels from biomass. Thus, these latter appear first as an energy alternative to oil. In f...

Roberto Bermejo

2014-01-01T23:59:59.000Z

500

The Renewable Energy Footprint  

E-Print Network (OSTI)

With the shift toward renewable energy comes the potential for staggering land impacts – many millions of acres may be consumed to meet demand for electricity and fuel over the next 20 years. To conservationists’ dismay, the more renewable energy we...

Outka, Uma

2011-01-01T23:59:59.000Z