Sample records for renewable methane production

  1. Enhanced Renewable Methane Production System | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates...

  2. Coalbed methane production case histories

    SciTech Connect (OSTI)

    Not Available

    1981-02-01T23:59:59.000Z

    The production of methane gas from coal and coal-bearing rocks is one of the prime objectives of the Department of Energy's Methane Recovery from Coalbeds Project. This report contains brief description of wells that are presently producing gas from coal or coal-bearing rocks. Data from three gob gas production areas in Illinois, an in-mine horizontal borehole degasification, and eleven vertical boreholes are presented. Production charts and electric logs of the producing zones are included for some of the wells. Additional information on dry gas production from the San Juan Basin, Colorado/New Mexico and the Greater Green River Coal Region, Colorado/Wyoming is also included.

  3. Predicting Methane Production in Dairy Mohammad Ramin

    E-Print Network [OSTI]

    Predicting Methane Production in Dairy Cows Mohammad Ramin Faculty of Natural Resources and Agricultural Sciences Department of Agricultural Research for Northern Sweden Umeĺ Doctoral Thesis Swedish (Karoline) #12;Predicting Methane Production in Dairy cows Abstract Methane is a potent greenhouse gas

  4. Methane productivity and nutrient recovery from manure Henrik B. Mller

    E-Print Network [OSTI]

    Methane productivity and nutrient recovery from manure Henrik B. Mřller Danish Institute This thesis, entitled "Methane productivity and nutrient recovery from manure" is presented in partial of digested and separated products.................... 13 3. Methane productivity and greenhouse gas emissions

  5. Renewable Energy Production Tax Credit

    Broader source: Energy.gov [DOE]

    In June 2006, [http://archive.flsenate.gov/cgi-bin/View_Page.pl?File=sb0888er.html&Dire... S.B. 888] established a renewable energy production tax credit to encourage the development and...

  6. Methane production by attached film

    DOE Patents [OSTI]

    Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

    1981-01-01T23:59:59.000Z

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  7. Methane production from ozonated pulp mill effluent

    SciTech Connect (OSTI)

    Bremmon, C.E.; Jurgensen, M.F.; Patton, J.T.

    1980-07-01T23:59:59.000Z

    A study was made of the production of methane from desugared spent sulfite liquor (SSL) reacted with ozone. The ozonated SSL was fed continuously to three anaerobic fermenters for three months as the sole source of carbon and energy. The fermenters were inoculated with anaerobic bacteria obtained from sewage sludge and acclimated for 1 month in ozonated SSL prior to continuous fermentation. Chemical and biological parameters such as COD, BOD, total sulfur content, redox potential, pH, fatty acid composition, and methane bacteria populations were monitored to determine changes in the SSL during fermentation. Methane production from ozone-treated SSL averaged 1.7 liters/ liter or 17 ml of CH/sub 4/ produced/gram of volatile solids fed. Fatty acis analysis of fermenter effluent indicated a net production of 58 mM/ liter of acetate during ozonated SSL fermentation. This acetic acid production shows future potential for further fermentation by protein-producing yeast. Although the rate of conversion of volatile solids to CH/sub 4/ in this process was not competitive with domestic or agricultural waste digesters, this study did indicate the potential benefits of ozonating organic wastes for increased methane fermentation yields.

  8. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    Complexity of Renewable Energy Production in the Countrysidea shift to renewable energy production. Even if politicaldifficulties. Renewable energy production as a new economic

  9. The Production of Non-Methane Hydrocarbons by Marine Plankton

    E-Print Network [OSTI]

    The Production of Non-Methane Hydrocarbons by Marine Plankton Stephanie Lyn Shaw Center for Global://web.mit.edu/cgcs/ Printed on recycled paper #12;1 The Production of Non-Methane Hydrocarbons by Marine Plankton by Stephanie of Non-Methane Hydrocarbons by Marine Plankton by Stephanie Lyn Shaw Submitted to the Department of Earth

  10. Measurements of Methane Emissions at Natural Gas Production Sites

    E-Print Network [OSTI]

    Lightsey, Glenn

    Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why = 21 #12;Need for Study · Estimates of methane emissions from natural gas production , from academic in assumptions in estimating emissions · Measured data for some sources of methane emissions during natural gas

  11. CFD Modeling of Methane Production from Hydrate-Bearing Reservoir

    SciTech Connect (OSTI)

    Gamwo, I.K.; Myshakin, E.M.; Warzinski, R.P.

    2007-04-01T23:59:59.000Z

    Methane hydrate is being examined as a next-generation energy resource to replace oil and natural gas. The U.S. Geological Survey estimates that methane hydrate may contain more organic carbon the the world's coal, oil, and natural gas combined. To assist in developing this unfamiliar resource, the National Energy Technology Laboratory has undertaken intensive research in understanding the fate of methane hydrate in geological reservoirs. This presentation reports preliminary computational fluid dynamics predictions of methane production from a subsurface reservoir.

  12. Renewable Energy Production Tax Credits (Corporate)

    Broader source: Energy.gov [DOE]

    In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify...

  13. Renewable Electricity Production Tax Credit (PTC)

    Broader source: Energy.gov [DOE]

    '''''Note: The American Recovery and Reinvestment Act of 2009 allows taxpayers eligible for the federal renewable electricity production tax credit (PTC) to take the federal business energy...

  14. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify...

  15. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    development of local renewable energy strategies: The casesin Germany to support renewable energies. Published masterThe Social Complexity of Renewable Energy Production in the

  16. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-15T23:59:59.000Z

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  17. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect (OSTI)

    Song Jin

    2007-05-31T23:59:59.000Z

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  18. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Energy Production . C.Benefits and Renewable Energy Production One source ofsource of renewable energy production from such facilities.

  19. ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT

    E-Print Network [OSTI]

    ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT SHELLS, and academic organizations is developing a steam reforming process to be demonstrated on the gaseous byproducts, catalytic, steam-reforming reactor was then successfully operated on methane and peanut shell pyrolysis

  20. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life Cycle Assessment of Renewable Hydrogen Production via WindElectrolysis: Milestone Completion...

  1. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

  2. Renewable Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit provides a tax credit against the corporate income tax of one cent per kilowatt-hour for companies that generate electricity...

  3. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit provides a tax credit against the personal income tax of one cent per kilowatt-hour for companies that generate electricity...

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a drilling hazard by the oil and gas industry for years. Drilling engineers working in Russia, Canada and the USA have documented numerous problems, including drilling kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates as a potential energy source agree that the resource potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained from physical samples taken from actual hydrate-bearing rocks. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The project team drilled and continuously cored the Hot Ice No. 1 well on Anadarko-leased acreage beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and used for determining physical characteristics of hydrates and surrounding rock. After the well was logged, a 3D vertical seismic profile (VSP) was recorded to calibrate the shallow geologic section with seismic data and to investigate techniques to better resolve lateral subsurface variations of potential hydrate-bearing strata. Paulsson Geophysical Services, Inc. deployed their 80 level 3C clamped borehole seismic receiver array in the wellbore to record samples every 25 ft. Seismic vibrators were successively positioned at 1185 different surface positions in a circular pattern around the wellbore. This technique generated a 3D image of the subsurface. Correlations were generated of these seismic data with cores, logging, and other well data. Unfortunately, the Hot Ice No. 1 well did not encounter hydrates in the reservoir sands, although brine-saturated sands containing minor amounts of methane were encountered within the hydrate stability zone (HSZ). Synthetic seismograms created from well log data were in agreement with reflectivity data measured by the 3D VSP survey. Modeled synthetic seismograms indicated a detectable seismic response would be expected in the presence of hydrate-bearing sands. Such a response was detected in the 3D VSP data at locations up-dip to the west of the Hot Ice No. 1 wellbore. Results of this project suggest that the presence of hydrate-bearing strata may not be related as simply to HSZ thickness as previously thought. Geological complications of reservoir facies distribution within fluvial-deltaic environments will require sophisticated detection technologies to assess the locations of recoverable volumes of methane contained in hydrates. High-resolution surface seismic data and more rigorous well log data analysis offer the best near-term potential. The hydrate resource potential is huge, but better tools are needed to accurately assess their location, distribution and economic recoverability.

  5. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

  6. Request for Information Renewable Energy Generation/Production...

    Open Energy Info (EERE)

    Request for Information Renewable Energy GenerationProduction Shreveport Airport Authority - Response Deadline 2 January 2014 Home > Groups > Renewable Energy RFPs Rosborne318's...

  7. Kamal Kapadia DRAFT Productive Uses of Renewables

    E-Print Network [OSTI]

    Kammen, Daniel M.

    ) ................................................. 13 China: Passive Solar Heating for Rural Health Clinics (China PSHRHC)......................... 13?............................................................................... 4 DESIGNING AND IMPLEMENTING RENEWABLE ENERGY PROJECTS WITH PRODUCTIVE USE COMPONENTS: ANALYSIS the productive uses of energy is an important aspect in the design and implementation of rural energy projects

  8. Detection and Production of Methane Hydrate

    SciTech Connect (OSTI)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31T23:59:59.000Z

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes that control production potential of hydrates in marine settings, Mallik was included because of the extensive data collected in a producible hydrate accumulation. To date, such a location had not been studied in the oceanic environment. The project worked closely with ongoing projects (e.g. GOM JIP and offshore India) that are actively investigating potentially economic hydrate accumulations in marine settings. The overall approach was fivefold: (1) collect key data concerning hydrocarbon fluxes which is currently missing at all locations to be included in the study, (2) use this and existing data to build numerical models that can explain gas hydrate variance at all four locations, (3) simulate how natural gas could be produced from each location with different production strategies, (4) collect new sediment property data at these locations that are required for constraining fluxes, production simulations and assessing sediment stability, and (5) develop a method for remotely quantifying heterogeneities in gas hydrate and free gas distributions. While we generally restricted our efforts to the locations where key parameters can be measured or constrained, our ultimate aim was to make our efforts universally applicable to any hydrate accumulation.

  9. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

  10. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models and to research teams for developing future gas-hydrate projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and has been documented by the project team. This Topical Report documents drilling and coring operations and other daily activities.

  11. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists planning hydrate exploration and development projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this and other project reports. This Topical Report contains details describing logging operations.

  12. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation.

  13. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

  14. Methane hydrate research at NETL: Research to make methane production from hydrates a reality

    SciTech Connect (OSTI)

    Taylor, C.E.; Link, D.D.; English, N.

    2007-03-01T23:59:59.000Z

    Research is underway at NETL to understand the physical properties of methane hydrates. Five key areas of research that need further investigation have been identified. These five areas, i.e. thermal properties of hydrates in sediments, kinetics of natural hydrate dissociation, hysteresis effects, permeability of sediments to gas flow and capillary pressures within sediments, and hydrate distribution at porous scale, are important to the production models that will be used for producing methane from hydrate deposits. NETL is using both laboratory experiments and computational modeling to address these five key areas. The laboratory and computational research reinforce each other by providing feedback. The laboratory results are used in the computational models and the results from the computational modeling is used to help direct future laboratory research. The data generated at NETL will be used to help fulfill The National Methane Hydrate R&D Program of a “long-term supply of natural gas by developing the knowledge and technology base to allow commercial production of methane from domestic hydrate deposits by the year 2015” as outlined on the NETL Website [NETL Website, 2005. http://www.netl.doe.gov/scngo/Natural%20Gas/hydrates/index.html]. Laboratory research is accomplished in one of the numerous high-pressure hydrate cells available ranging in size from 0.15 mL to 15 L in volume. A dedicated high-pressure view cell within the Raman spectrometer allows for monitoring the formation and dissociation of hydrates. Thermal conductivity of hydrates (synthetic and natural) at a certain temperature and pressure is performed in a NETL-designed cell. Computational modeling studies are investigating the kinetics of hydrate formation and dissociation, modeling methane hydrate reservoirs, molecular dynamics simulations of hydrate formation, dissociation, and thermal properties, and Monte Carlo simulations of hydrate formation and dissociation.

  15. Water storage key factor in coalbed methane production

    SciTech Connect (OSTI)

    Luckianow, B.J. (Taurus Exploration Inc., Birmingham, AL (US)); Hall, W.L. (Dames and Moore, Atlanta, GA (US))

    1991-03-11T23:59:59.000Z

    Storage ponds provide a cost-effective means to temporarily retain water produced with coalbed methane and permit gas production during times when stream flow rates drop. Normally, water produced with the gas is run into nearby streams, with the dilution rate closely monitored and controlled by environmental agencies. During low stream flow in the Black Warrior basin, Ala., large volumes of produced water must be stored to prevent shut-in of coalbed methane fields. The authors discuss how they constructed such production water facilities for the Cedar Cove field to eliminate periodic field shut-ins as a result of excess water production. The effectiveness of such a storage approach is governed by receiving stream flow variability, production water flow characteristics, and the economics of storage pond construction.

  16. Coalbed methane production enhancement by underground coal gasification

    SciTech Connect (OSTI)

    Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

    1997-12-31T23:59:59.000Z

    The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

  17. Renewable Hydrogen Production Using Sugars and Sugar Alcohols...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Sugars and Sugar Alcohols (Presentation) Renewable Hydrogen Production Using Sugars and Sugar Alcohols (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen...

  18. Colorado Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c. RealProduction

  19. Florida Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)SecondProduction (Billion Cubic

  20. Michigan Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubic Feet) Year3:Production

  1. Montana Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off)ThousandProduction (Billion Cubic

  2. Utah Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan FebFeet) GasPotential8.Production

  3. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    University, School of Engineering, Ocean .. Engineel'ing-and nutrition, ocean engineering and methane generation. In

  4. Enhanced Renewable Methane Production System Benefits Wastewater Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovation Portal Industrial

  5. Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint

    SciTech Connect (OSTI)

    Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

    2005-09-01T23:59:59.000Z

    To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

  6. Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge Reactor

    E-Print Network [OSTI]

    Mallinson, Richard

    Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge help reduce the problem of global warming. There are vast reserves of natural gas around the world.1, Room T 335, Norman, Oklahoma 73019 This study on the partial oxidation of methane in a silent electric

  7. The commercial production of coalbed methane: A review of 53 wells in the Black Warrior Basin

    SciTech Connect (OSTI)

    Dunn, B.W.

    1984-09-01T23:59:59.000Z

    This paper reviews the actual performance of 53 conventionally drilled vertical coalbed methane wells developed by a joint coal industry/gas industry effort. The unique characteristics of the coalbed reservoir are briefly described. Actual gas production and computer model predictions are compared and the costs and revenues are discussed with specific emphasis on the economic results. This paper differs from previous technically oriented discussions of coalbed methane production in that economic viability, initially established in February of 1982, continues to be demonstrated.

  8. Renewable Hydrogen Production from Biological Systems

    Broader source: Energy.gov (indexed) [DOE]

    Workshop September 24 th , 2013 H 2 production PSIIPSI pathway PSInonphotochemical PQ Dark fermentation H 2 uptake oxyhydrogen reaction photoreduction Photosynthetic H 2 pathways...

  9. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

  10. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    Municipal Solid Waste-Sewage Sludge. b 4.15 SCF CH 4 / cu ftUP I j methane 31.5 scf sludge 18.61b water 161b Btu/scfsewer 65.3 lb ( 7.9 gal) sludge ash 1.74 lb stack emissions

  11. Simulation of methane production in a laboratory-scale reactor containing hydrate-bearing porous medium

    SciTech Connect (OSTI)

    Gamwo, I.K.; Myshakin, E.M.; Zhang, Wu; Warzinski, R.P.

    2008-01-01T23:59:59.000Z

    Production of methane, induced by depressurization of hydrate sediment in a reactor, was investigated by numerical simulations using a computational fluid dynamics code TOUGH+/Hydrate. The methane production rates were computed at well-pressure drops of 4.2, 14.7, and 29.5 MPa and at a reactor temperature of 21 0C. The predicted behavior of methane production from the reactor is consistent with field-scale simulations and observations. The production rate increases with pressure drop at the well. Evolution patterns of gas and hydrate distributions are similar to those obtained in field-scale simulations. These preliminary results clearly indicate that numerical simulators can be applied to laboratory-scale reactors to anticipate scenarios observed in field experiments.

  12. Electrolysed palladium has the potential to increase methane production by a mixed rumen population in vitro

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Electrolysed palladium has the potential to increase methane production by a mixed rumen population the proportion of protozoa with attached methanogens decreased, however no estimate of CH4 production under were re-filled with H2:CO2, sealed with butyl rubber stoppers and incubated at 39°C with shaking

  13. Purchasing Renewable Power | Department of Energy

    Energy Savers [EERE]

    Products & Technologies Renewable Energy Purchasing Renewable Power Purchasing Renewable Power Federal agencies can purchase renewable power or renewable energy certificates...

  14. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    on renewable energy in Europe emphasizes the potential topotential for conflict than most other forms of renewable energy,of renewable energy. As shown, they hold the potential to

  15. Anaerobic digestion for methane generation and ammonia reforming for hydrogen production

    E-Print Network [OSTI]

    ,000,000 digesters, 2000 [14]), among other places [15,16]. These digesters operate to generate biogas, comprisingAnaerobic digestion for methane generation and ammonia reforming for hydrogen production Accepted 24 May 2013 Available online Keywords: Anaerobic digestion Ammonia Bioenergy Bioammonia Hydrogen

  16. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    which restrict the renewable resource path of development.renewable sources. 3 Amongst Swiss, Germans, and Austrians those best practice Fossil resources

  17. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    produced renewable energy (wind, sun, water, biomass/gas).park. Renewable heat energy is usually produced in biomassrenewable local producers (wind-turbines, solar panels, water- turbines, biomass,

  18. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    the development of local renewable energy strategies: Theobstacles in the development towards local energy autarky?on. The development towards a renewable local energy regime

  19. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    sustainability” (not identical with “renewability”) and “participation”. A region, village, or city is called “energy

  20. Improving the Methane Production in the Co-Digestion of Microalgae and Cattle Manure

    E-Print Network [OSTI]

    Cantu, Matthew Scott

    2014-04-28T23:59:59.000Z

    such as ethanol and biodiesel are obtained through fermentation reactions and esterification. Many of these fuels are comparable to the established fossil fuels in the modern market, and with the proper equipment, can be used as a replacement. A useful.... Primarily, algae is grown as a resource in the production of biodiesel due to high lipid counts. As an anaerobic digestion feedstock, however, research can still be done to optimize methane production. Algae can provide high amounts of nutrients...

  1. The problem of non-renewable energy resources in the production of physical capital

    E-Print Network [OSTI]

    Nesterov, Yurii

    2007/8 The problem of non-renewable energy resources in the production of physical capital Agustin PĂ©rez-Barahona #12;CORE DISCUSSION PAPER 2007/8 The problem of non-renewable energy resources-run growth, although energy is produced by means of non-renewable energy resources. The mechanism behind

  2. The effect of natural gas supply on US renewable energy and CO2emissions

    E-Print Network [OSTI]

    Shearer, C; Shearer, C; Bistline, J; Inman, M; Davis, SJ; Davis, SJ

    2014-01-01T23:59:59.000Z

    leaks from North American natural gas systems Science 343of methane emissions at natural gas production sites in theThe effect of natural gas supply on US renewable energy and

  3. Renewable and Appropriate Energy Laboratory Report Review of Technologies for the Production and Use of Charcoal

    E-Print Network [OSTI]

    Kammen, Daniel M.

    of Charcoal Production __________________________________5 The Petroleum LinkRenewable and Appropriate Energy Laboratory Report Review of Technologies for the Production areas. The production, transport and combustion of charcoal constitutes a critical energy and economic

  4. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

  5. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    C0 2 Water/ Nutrients Production System Harvesting Systemwater and grinding) could be accomplished on the harvestingdiesel-powered harvesting vessels. The waste water generated

  6. Community Based Renewable Energy Production Incentive (Pilot Program)

    Broader source: Energy.gov [DOE]

    In June 2009, Maine established the Community-based Renewable Energy Pilot Program. As the name suggests, this program is intended to encourage the development of locally owned, in-state renewable...

  7. Use of novel compounds to reduce methane production and in pre-harvest strategies to decrease foodborne pathogens 

    E-Print Network [OSTI]

    Gutierrez Banuelos, Hector

    2009-05-15T23:59:59.000Z

    Committee Members, Robin C. Anderson Luis O. Tedeschi William E. Pinchak Head of Department, Gary Acuff May 2008 Major Subject: Animal Science iii ABSTRACT Use of Novel Compounds to Reduce Methane Production and in Pre-Harvest Strategies...

  8. Texas--State Offshore Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (BillionProved(MillionShale ProductionProduction

  9. Methane hydrate gas production: evaluating and exploiting the solid gas resource

    SciTech Connect (OSTI)

    McGuire, P.L.

    1981-01-01T23:59:59.000Z

    Methane hydrate gas could be a tremendous energy resource if methods can be devised to produce this gas economically. This paper examines two methods of producing gas from hydrate deposits by the injection of hot water or steam, and also examines the feasibility of hydraulic fracturing and pressure reduction as a hydrate gas production technique. A hydraulic fracturing technique suitable for hydrate reservoirs and a system for coring hydrate reservoirs are also described.

  10. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    that the use of sewage as a kelp nutrient source can, in theused to enrich the kelp with nutrient rich deep ocean water.Supplements Marine Kelp C0 2 Water/ Nutrients Production

  11. Single-well Modeling of Coalbed Methane Production

    E-Print Network [OSTI]

    Martynova, Elena

    2014-01-14T23:59:59.000Z

    curves. Further solution of a specific CBM single-well problem and parametric study for evaluation impact of separate parameters were conducted. Focus of the studies was on well production forecasting, effect of mechanical properties of coal...

  12. Hydrogen Production from Methane Using Oxygen-permeable Ceramic Membranes

    E-Print Network [OSTI]

    Faraji, Sedigheh

    2010-06-08T23:59:59.000Z

    in the production of both fuel-cell quality hydrogen and ultra-clean liquid fuels (Fischer-Tropsch Synthesis), which are easier to transport and store than natural gas [6, 7]. The Fischer-Tropsch process has received significant attention in the quest to produce...:1 ratio of H2:CO which is beneficial to Fischer–Tropsch process and methanol synthesis [4]. Also, this reaction is exothermic which can reduce the overall hydrogen production plant cost [5]. CH4 + ˝ O2 ? CO + 2 H2...

  13. Lower 48 Federal Offshore Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear JanProduction (MillionProduction (Billion Cubic

  14. Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells

    E-Print Network [OSTI]

    West, Margrit Evelyn

    1995-01-01T23:59:59.000Z

    Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane...

  15. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    DIGESTERS AND BIOGAS RECOVERY Digesters Do Not Address theMethane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE

  16. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THEA. Digesters Have Received Attention for Their Potential to

  17. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Potential for Environmental Benefits and Renewable EnergyPotential for Environmental Benefits and Renewable Energy

  18. Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

  19. New Mexico Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet) Gas, Wet AfterProduction

  20. New Mexico--West Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion CubicProduction (Billion Cubic Feet) New

  1. New York Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion CubicProduction (BillionProved

  2. Louisiana--North Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECSInputTexasProduction (Billion Cubic

  3. Louisiana--State Offshore Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next(MillionProduction

  4. Lower 48 States Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear JanProductionSeparation, Proved Reserves

  5. Texas (with State Offshore) Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)ThousandNumberWellhead Price (Dollars perProduction

  6. Beginning of Construction for Purposes of the Renewable Electricity Production Tax Credit and Energy Investment Tax Credit

    Broader source: Energy.gov [DOE]

    Beginning of Construction for Purposes of the Renewable Electricity Production Tax Credit and Energy Investment Tax Credit

  7. A Framework to Report the Production of Renewable Diesel from Algae

    E-Print Network [OSTI]

    A Framework to Report the Production of Renewable Diesel from Algae Colin M. Beal & Colin H. Smith(s) 2010. This article is published with open access at Springerlink.com Abstract Recently, algae have algae are a viable source for renewable diesel, three questions that must be answered are (1) how much

  8. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    produced renewable energy (wind, sun, water, biomass/gas).locally produced energy from wind, sun, or water poweredsource. “Wind and Sun won´t send an energy bill” as a

  9. Nuclear-renewables energy system for hydrogen and electricity production

    E-Print Network [OSTI]

    Haratyk, Geoffrey

    2011-01-01T23:59:59.000Z

    Climate change concerns and expensive oil call for a different mix of energy technologies. Nuclear and renewables attract attention because of their ability to produce electricity while cutting carbon emissions. However ...

  10. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    SciTech Connect (OSTI)

    Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

    2013-10-31T23:59:59.000Z

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production tends to decline hyperbolically. Hyperbolic decline indicates that water volume is of greatest concern early in the life of a coalbed methane project. Regional mapping indicates that gas production is controlled primarily by the ability to depressurize permeable coal seams that are natively within the steep part of the adsorption isotherm. Water production is greatest within the freshwater intrusion and below thick Cretaceous cover strata and is least in areas of underpressure. Water management strategies include instream disposal, which can be applied effectively in most parts of the basin. Deep disposal may be applicable locally, particularly where high salinity limits the ability to dispose into streams. Artificial wetlands show promise for the management of saline water, especially where the reservoir yield is limited. Beneficial use options include municipal water supply, agricultural use, and industrial use. The water may be of use to an inland shrimp farming industry, which is active around the southwestern coalbed methane fields. The best opportunities for beneficial use are reuse of water by the coalbed methane industry for drilling and hydraulic fracturing. This research has further highlighted opportunities for additional research on treatment efficiency, the origin of nitrogen compounds, organic geochemistry, biogenic gas generation, flow modeling, and computer simulation. Results of this study are being disseminated through a vigorous technology transfer program that includes web resources, numerous presentations to stakeholders, and a variety of technical publications.

  11. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T.

    2008-03-30T23:59:59.000Z

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  12. Production of natural gas from methane hydrate by a constant downhole pressure well

    SciTech Connect (OSTI)

    Ahmadi, G. (Clarkson Univ., Potsdam, NY); Ji, C. (Clarkson Univ., Potsdam, NY); Smith, D.H.

    2007-07-01T23:59:59.000Z

    Natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing downhole well was studied. The case that the well pressure was kept constant was treated, and two different linearization schemes in an axisymmetric configuration were used in the analysis. For different fixed well pressures and reservoir temperatures, approximate self similar solutions were obtained. Distributions of temperature, pressure and gas velocity field across the reservoir were evaluated. The distance of the decomposition front from the well and the natural gas production rate as functions of time were also computed. Time evolutions of the resulting profiles were presented in graphical forms, and their differences with the constant well output results were studied. It was shown that the gas production rate was a sensitive function of well pressure and reservoir temperature. The sensitivity of the results to the linearization scheme used was also studied.

  13. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation

    SciTech Connect (OSTI)

    Ali, Muhammad Aslam [Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202 (Bangladesh); Lee, Chang Hoon [Functional Cereal Crop Research Division, National Institute of Crop Science, RDA, 1085, Naey-dong, Milyang (Korea, Republic of); Kim, Sang Yoon [Division of Applied Life Science, Graduate School (Brain Korea 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kim, Pil Joo [Division of Applied Life Science, Graduate School (Brain Korea 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)], E-mail: pjkim@gnu.ac.kr

    2009-10-15T23:59:59.000Z

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH{sub 4}) emission resulting from rice cultivation. In laboratory incubations, CH{sub 4} production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt{sup -1}), while observed CO{sub 2} production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH{sub 4} emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha{sup -1}) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha{sup -1} application level of the amendments, total seasonal CH{sub 4} emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH{sub 4} production rates as well as total seasonal CH{sub 4} flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH{sub 4} emissions as well as sustaining rice productivity.

  14. Simulation study of the effect of well spacing, effect of permeability anisotropy, and effect of Palmer and Mansoori model on coalbed methane production

    E-Print Network [OSTI]

    Zulkarnain, Ismail

    2006-04-12T23:59:59.000Z

    . This permeability anisotropy tends to create a preferential flow. In facts, the permeability has impacts on the coal bed methane production. One of the well known impacts is the drainage pattern shape. 1.4 Cleats Compression and Matrix Shrinkage Effect (Palmer.... This theory, in facts, has impacts on coal bed methane production. Because the matrix shrinkage phenomenon tends to develop permeability rebound at lower pressure. It might also have implications for enhanced coal bed methane recovery such as CO2...

  15. Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities

    E-Print Network [OSTI]

    Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

  16. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    SciTech Connect (OSTI)

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30T23:59:59.000Z

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  17. Drunkard`s wash project: Coalbed methane production from Ferron coals in east-central Utah

    SciTech Connect (OSTI)

    Lemarre, R.A. [Texaco Exploration and Production, Inc., Denver, CO (United States); Burns, T.D. [River Gas Corporation, Northport, AL (United States)

    1996-12-31T23:59:59.000Z

    The Drunkard`s Wash Project produces dry, coalbed methane gas from coals within the Ferron Sandstone Member of the Mancos Shale. The project covers 120,000 acres on the western flank of the San Rafael Uplift in east-central Utah. Gas was first produced into the sales line in January 1993. The field is being developed on 160 acre spacing with 73 wells currently producing 32.2 MMCFD for an average of 437 MCFD/well. Thirty three of those wells have been producing for 32 months and now average 637 MCFD/well. Most of the wells show a classic coalbed methane negative decline curve with increasing gas rates as the reservoir pressure declines due to production of water. Daily water production is 14,500 BPD, for an average of 199 BWPD/well. Total coal thickness ranges from 7 ft. to 48 ft., with an average of 24 ft. The coals occur in 3 to 6 seams at depths of 1350 to 2450 ft. The coal rank is high volatile A&B bituminous. We can not yet see a correlation between total coal thickness and current production. All wells are cased and hydraulically stimulated and most require pumping units to handle the large volumes of water. However, 22 wells do not require pumps and flow unassisted to the surface. The structure consists of monoclinal westward dip. A thin tonstein layer in the bottom coal seam serves as an excellent datum for mapping. Enhanced production is encountered along a southwest-plunging nose that probably formed additional fracture permeability within the coals. Northeast-trending reverse faults with small displacement appear to compartmentalize the reservoir. The Ferron coals were deposited in a river-dominated deltaic system that prograded to the east and southeast during Turonian-Coniacian (Upper Cretaceous) time. The Ferron Sandstone Member represents an eastward-thinning elastic wedge that was deposited during regression of the Western Interior Cretaceous seaway.

  18. Resource Assessment & Production Testing for Coal Bed Methane in the Illinois Basin

    SciTech Connect (OSTI)

    Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

    2005-11-01T23:59:59.000Z

    In order to assess the economic coal bed methane potential of the Illinois Basin, the geological surveys of Illinois, Indiana and Kentucky performed a geological assessment of their respective parts of the Illinois Basin. A considerable effort went into generating cumulative coal thickness and bed structure maps to identify target areas for exploratory drilling. Following this, the first project well was drilled in White County, Illinois in October 2003. Eight additional wells were subsequently drilled in Indiana (3) and Kentucky (5) during 2004 and 2005. In addition, a five spot pilot completion program was started with three wells being completed. Gas contents were found to be variable, but generally higher than indicated by historical data. Gas contents of more than 300 scf/ton were recovered from one of the bore holes in Kentucky. Collectively, our findings indicate that the Illinois Basin represents a potentially large source of economic coal bed methane. Additional exploration will be required to refine gas contents and the economics of potential production.

  19. Made with Renewable Energy: How and Why Companies are Labeling Consumer Products

    SciTech Connect (OSTI)

    Baker Brannan, D.; Heeter, J.; Bird, L.

    2012-03-01T23:59:59.000Z

    Green marketing--a marketing strategy highlighting the environmental attributes of a product, often through the use of labels or logos--dates back to the 1970s. It did not proliferate until the 1990s, however, when extensive market research identified a rapidly growing group of consumers with a heightened concern for the environment. This group expressed not only a preference for green products but also a willingness to pay a premium for such products. The response was a surge in green marketing that lasted through the early 1990s. This report discusses the experience of companies that communicate to consumers that their products are 'made with renewable energy.' For this report, representatives from 20 companies were interviewed and asked to discuss their experiences marketing products produced using renewable energy. The first half of this report provides an overview of the type of companies that have labeled products or advertised them as being made with renewable energy. It also highlights the avenues companies use to describe their use of renewable energy. The second half of the report focuses on the motivations for making on-product claims about the use of renewable energy and the challenges in doing so.

  20. Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production

    SciTech Connect (OSTI)

    Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

    2014-10-31T23:59:59.000Z

    Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330oC when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted MgO-based sorbent. Under model feed conditions both the sorbent and catalyst exhibited favorable stability after multiple test cycles. The cleanup for warm gas cleanup of inorganics was broken down into three major steps: chloride removal, sulfur removal, and the removal for a multitude of trace metal contaminants. Na2CO3 was found to optimally remove chlorides at an operating temperature of 450şC. For sulfur removal two regenerable ZnO beds are used for bulk H2S removal at 450şC (<5 ppm S) and a non-regenerable ZnO bed for H2S polishing at 300şC (<40 ppb S). It was also found that sulfur from COS could be adsorbed (to levels below our detection limit of 40 ppb) in the presence of water that leads to no detectable slip of H2S. Finally, a sorbent material comprising of Cu and Ni was found to be effective in removing trace metal impurities such as AsH3 and PH3 when operating at 300şC. Proof-of-concept of the integrated cleanup process was demonstrated with gasifier-generated syngas produced at the Western Research Institute using Wyoming Decker Coal. When operating with a ~1 SLPM feed, multiple inorganic contaminant removal sorbents and a tar-reforming bed was able to remove the vast majority of contaminants from the raw syngas. A tar-reforming catalyst was employed due to the production of tars generated from the gasifier used in this particular study. It is envisioned that in a real application a commercial scale gasifier operating at a higher temperature would produce lesser amount of tar. Continuous operation of a poison-sensitive copper-based WGS catalyst located downstream from the cleanup steps resulted in successful demonstration. ?

  1. Methane Digester Loan Program

    Broader source: Energy.gov [DOE]

    Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by...

  2. Powder River Basin coalbed methane: The USGS role in investigating this ultimate clean coal by-product

    SciTech Connect (OSTI)

    Stricker, G.D.; Flores, R.M.; Ochs, A.M.; Stanton, R.W.

    2000-07-01T23:59:59.000Z

    For the past few decades, the Fort Union Formation in the Powder River Basin has supplied the Nation with comparatively clean low ash and low sulfur coal. However, within the past few years, coalbed methane from the same Fort Union coal has become an important energy by-product. The recently completed US Geological Survey coal resource assessment of the Fort Union coal beds and zones in the northern Rocky Mountains and Great Plains (Fort Union Coal Assessment Team, 1999) has added useful information to coalbed methane exploration and development in the Powder River Basin in Wyoming and Montana. Coalbed methane exploration and development in the Powder River Basin has rapidly accelerated in the past three years. During this time more than 800 wells have been drilled and recent operator forecasts projected more than 5,000 additional wells to be drilled over the next few years. Development of shallow (less than 1,000 ft. deep) Fort Union coal-bed methane is confined to Campbell and Sheridan Counties, Wyoming, and Big Horn County, Montana. The purpose of this paper is to report on the US Geological Survey's role on a cooperative coalbed methane project with the US Bureau of Land Management (BLM), Wyoming Reservoir Management Group and several gas operators. This paper will also discuss the methodology that the USGS and the BLM will be utilizing for analysis and evaluation of coalbed methane reservoirs in the Powder River Basin. The USGS and BLM need additional information of coalbed methane reservoirs to accomplish their respective resource evaluation and management missions.

  3. Mechanistic studies of electron transfer, complex formation, C-H bond activation, and product binding in soluble methane monooxygenase

    E-Print Network [OSTI]

    Kopp, Daniel Arthur

    2003-01-01T23:59:59.000Z

    Chapter 1. Soluble Methane Monooxygenase: Activation of Dioxygen and Methane The mechanisms by which soluble methane monooxygenase uses dioxygen to convert methane selectively to methanol have come into sharp focus. Diverse ...

  4. Renewable Energy and Environmental Sustainability Using Biomass from Dairy and Beef Animal Production Facilities

    E-Print Network [OSTI]

    Mukhtar, Saqib

    Production Facilities The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producingRenewable Energy and Environmental Sustainability Using Biomass from Dairy and Beef Animal basis. Heretofore, it has been used extensively for irrigated and dry land crop production, and in some

  5. Renewable Energy Production By State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.JuneAsPipelineof EnergyRenewable

  6. Production and Ebullition of Methane in a Shallow Eutrophic Lake (Lake Elsinore, CA)

    E-Print Network [OSTI]

    Martinez, Denise Nicole

    2012-01-01T23:59:59.000Z

    Methane release through resuspension of littoral sediment.its susceptibility to resuspension as well as its particleet al. , 2011). Sediment resuspension brought about through

  7. Diagram of the Biofuel Production Process (SPORL -Alcohol Production):Introduction: The Northwest Advanced Renewables Alliance (NARA) is an organization

    E-Print Network [OSTI]

    Collins, Gary S.

    Diagram of the Biofuel Production Process (SPORL - Alcohol Production):Introduction: The Northwest Advanced Renewables Alliance (NARA) is an organization that aims to create a sustainable aviation biofuels to determine the atmospheric emissions and emission sources that may be released from proposed NARA biofuels

  8. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect (OSTI)

    James Bauder

    2008-09-30T23:59:59.000Z

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

  9. Production of methane-rich syngas from hydrocarbon fuels using multi-functional catalyst/capture agent

    DOE Patents [OSTI]

    Siefert, Nicholas S; Shekhawat, Dushyant; Berry, David A; Surdoval, Wayne A

    2014-12-30T23:59:59.000Z

    The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 700.degree. C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 700.degree. C. by enabling a series of reactions which generate H.sub.2 and CH.sub.4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH.sub.4 at temperatures above 700.degree. C., and may effectively operate within an IGFC cycle at reactor temperatures between 700-900.degree. C. and pressures in excess of 10 atmospheres.

  10. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    in one case. Biomass or Biogas plants for electricityand heat production 24 Biogas plants use manure and energythat they do not run on biogas but biological waste or wood.

  11. Simulation study of the effect of well spacing, effect of permeability anisotropy, and effect of Palmer and Mansoori model on coalbed methane production 

    E-Print Network [OSTI]

    Zulkarnain, Ismail

    2006-04-12T23:59:59.000Z

    Interference for adjacent wells may be beneficial to Coalbed-Methane production. The effect is the acceleration of de-watering which should lead to earlier and higher gas rate peaks. It is inherent that permeability ...

  12. Coal-bed methane production in eastern Kansas: Its potential and restraints

    SciTech Connect (OSTI)

    Stoeckinger, B.T.

    1989-08-01T23:59:59.000Z

    In 1921 and again in 1988, workers demonstrated that the high volatile A and B coals of the Pennsylvanian Cherokee Group can be produced economically from vertically drilled holes, and that some of these coals have a gas content as high as 200 ft{sup 3}/ton. Detailed subsurface mapping on a county-by-county basis using geophysical logs shows the Weir coal seam to be the thickest (up to 6 ft thick) and to exist in numerous amoeba-shaped pockets covering several thousand acres. Lateral pinch-out into deltaic sands offers a conventional gas source. New attention to geophysical logging shows most coals have a negative SP response, high resistivities, and densities of 1.6 g/cm{sup 3}. Highly permeable coals cause lost circulation during drilling and thief zones during cementing, and they are the source of abundant unwanted salt water. Low-permeability coals can be recognized by their high fracture gradients, which are difficult to explain but are documented to exceed 2.2. Current successful completions use both limited-entry, small-volume nitrogen stimulations or an open hole below production casing. Subsurface coals are at normal Mid-Continent pressures and may be free of water. Initially, some wells flow naturally without pumping. Saltwater disposal is often helped by the need for water in nearby waterflood projects and the easy availability of state-approved saltwater disposal wells in Mississippi and Arbuckle carbonates. Recent attempts to recomplete coal zones in slim-hole completions are having mixed results. The major restraints to coal-bed methane production are restricted to low permeability of the coals and engineering problems, not to the availability or gas content of the coals.

  13. Coalbed methane production improvement/recompletion project in the Warrior basin. Final report, October 1993-November 1994

    SciTech Connect (OSTI)

    Lambert, S.W.; Reeves, S.R.; Saulsberry, J.L.

    1995-10-01T23:59:59.000Z

    The production performance of many Black Warrior Basin coalbed methane wells has been economically attractive, but there are also approximately 2,000 poorly producing wells in the Basin. To help operators determine why these wells are producing poorly and what to do about it, the Gas Research Institute formed the Productivity Improvement Project (PIP). Three different study areas were selected to investigate why some wells are producing poorly, to develop effective remediation strategies, and to test various diagnostic tools and methods to identify remediation candidates.

  14. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22T23:59:59.000Z

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

  15. Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin

    SciTech Connect (OSTI)

    F. S. Colwell; S. Boyd; M. E. Delwiche; D. W. Reed; T. J. Phelps; D. T. Newby

    2008-06-01T23:59:59.000Z

    Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative polymerase chain reaction (QPCR) directed at the methyl coenzyme M reductase subunit A (mcrA) gene indicated that 75% of the HR sediments analyzed contained <1000 methanogens/g. The highest methanogen numbers were mostly from sediments <10 meters below seafloor. By combining methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported from such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.

  16. FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    governments are considering a diverse energy mix that includes a growing proportion of renewable energy sources and natural gas. Proponents of this approach suggest that methane...

  17. Area Solar energy production BACKGROUND -All renewable energies, except for geothermal and tidal, derive their energy from the sun. By harnessing the power of

    E-Print Network [OSTI]

    Keinan, Alon

    Area Solar energy production ­ BACKGROUND - All renewable energies installations. Advantages: · A renewable form of energy - "Locks up" carbon, except for geothermal and tidal, derive their energy from the sun

  18. Time-series analysis for the episodic production and transport of methane from the Glacial Lake Agassiz peatlands, northern Minnesota. Final report

    SciTech Connect (OSTI)

    Siegel, D.I.

    1998-01-01T23:59:59.000Z

    The large peat basins of North America are an important reservoir in the global carbon cycle and a significant source of atmospheric methane. The authors investigated carbon cycling in the Glacial Lake Agassiz peatlands (GLAP) of Minnesota. Initially in 1990, they identified a dramatic change in the concentration of methane in the pore-waters of the raised bogs in the GLAP during an extreme drought. This methane dissipated when the drought broke in 1991 and the occurrence of deep methane is related to changes in the direction of groundwater flow in the peat column. The production of methane and its diffusive loss to the atmosphere was modeled and was about 10 times less than that measured directly in chambers at the land surface. It is clear from the reversals in hydraulic heat, changes in pore-water chemical composition over time, and paleostratigraphic markers, that regional ground water flow systems that are controlled by climate change are unexpectedly a major control over methanogenesis and carbon cycling in GLAP. Seismic profiles made showed that buried bedrock ridges particularly deflect regional groundwater flow upwards towards the land surface and towards raised bog landforms. In addition, high-resolution GPS measurements from data stations funded by this DOE project have shown this year that the peakland land surface elevation changes daily on a scale of cms, and seasonally on a scale of 10s of cm. This most recent observation is exciting because it may reflect episodic degassing of free phase methane from the peat column to the atmosphere, a source for methane previously unaccounted for by methane researchers.

  19. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    SciTech Connect (OSTI)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01T23:59:59.000Z

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  20. Geologic evaluation of critical production parameters for coalbed methane resources. Part 2. Black Warrior basin. Annual report, August 1988-July 1989

    SciTech Connect (OSTI)

    Pashin, J.C.; Ward, W.E.; Winston, R.B.; Chandler, R.V.; Bolin, D.E.

    1990-02-01T23:59:59.000Z

    Geologic evaluation of critical production parameters for coalbed-methane resources in the Black Warrior basin of Alabama employed an interdisciplinary approach that utilized structural, coal-quality, sedimentologic, hydrologic, and engineering data. Results indicate that geologic factors are a major control on the producibility of coalbed methane and that completion techniques may be used to increase recovery if tailored to specific geologic settings. Sedimentologic and coal-quality parameters may be used to locate regions for coalbed-methane development by characterizing the occurrence, rank, and grade of coal resources. However, high-productivity trends within those regions are localized, and geologic data suggest that productivity trends may be predictable. Several highly productive trends occur along northeast-oriented lineaments. These lineaments are the inferred surface expression of zones of enhanced permeability which are related to fractures. Productive trends also are associated with areas of low reservoir pressure, and salinity maps indicate that fresh water has migrated toward areas with low reservoir pressure. The available data indicate that structure and hydrology are critical production parameters that may be used to identify favorable well sites within regions containing significant coalbed-methane resources.

  1. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15T23:59:59.000Z

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  2. Synthesis gas production with an adjustable H{sub 2}/CO ratio through the coal gasification process: effects of coal ranks and methane addition

    SciTech Connect (OSTI)

    Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan [Western Kentucky University (WKU), Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

    2008-05-15T23:59:59.000Z

    Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H{sub 2}/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H{sub 2}/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gasification reactivity than bituminous coals. The coal gasification reactivity is correlated to its synthesis-gas yield and the total percentage of H{sub 2} and CO in the synthesis gas, but not to the H{sub 2}/CO ratio. The H{sub 2}/CO ratio of coal gasification was found to be correlated to the rank of coals, especially the H/C ratio of coals. Methane addition into the dense phase of the pyrolysis and gasification zone of the cogasification reactor could make the best use of methane in adjusting the H{sub 2}/CO ratio of the generated synthesis gas. The maximum methane conversion efficiency, which was likely correlated to its gasification reactivity, could be achieved by 70% on average for all tested coals. The actual catalytic effect of generated coal chars on methane conversion seemed coal-dependent. The coal-gasification process benefits from methane addition and subsequent conversion on the adjustment of the H{sub 2}/CO ratio of synthesis gas. The methane conversion process benefits from the use of coal chars due to their catalytic effects. This implies that there were likely synergistic effects on both. 25 refs., 3 figs., 3

  3. Effects of stress-dependent permeability on methane production from deep coal seams

    SciTech Connect (OSTI)

    McKee, C.R.; Bell, G.J.; Bumb, A.C.

    1984-05-01T23:59:59.000Z

    Methane resources are frequently associated with deeply buried coal seams which are also saturated with water; therefore, knowledge of their hydrologic properties is essential. As the formation pressure is lowered during dewatering, permeability may decline by one to two orders of magnitude. Theoretical relationships have been developed which fit laboratory data well for porosity and permeability as a function of effective stress. It was discovered that for practical purposes permeability is a function only of effective stress and the ratio of initial fracture porosity to matrix compressibility (fracture closure pressure). An approximate analytical solution for well testing has been obtained using the model developed. A new method for pump test analysis is then proposed.

  4. RESOURCE ASSESSMENT & PRODUCTION TESTING FOR COAL BED METHANE IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

    2004-06-01T23:59:59.000Z

    The geological surveys of Illinois, Indiana and Kentucky have completed the initial geologic assessment of their respective parts of the Illinois Basin. Cumulative thickness maps have been generated and target areas for drilling have been selected. The first well in the Illinois area of the Illinois Basin coal bed methane project was drilled in White County, Illinois in October 2003. This well was cored in the major coal interval from the Danville to the Davis Coals and provided a broad spectrum of samples for further analyses. Sixteen coal samples and three black shale samples were taken from these cores for canister desorption tests and were the subject of analyses that were completed over the following months, including desorbed gas volume, gas chemical and isotope composition, coal proximate, calorific content and sulfur analyses. Drilling programs in Indiana and Kentucky are expected to begin shortly.

  5. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    for and receive production incentives, referred to as supplemental energy payments (SEPs), from the New RenewableCALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable

  6. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    David Kirchman

    2011-12-31T23:59:59.000Z

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ?ť or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?ť). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

  7. U.S. and Japan Complete Successful Field Trial of Methane Hydrate...

    Office of Environmental Management (EM)

    Japan Complete Successful Field Trial of Methane Hydrate Production Technologies U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies May 2,...

  8. Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture

    SciTech Connect (OSTI)

    Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

    2014-01-01T23:59:59.000Z

    Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600?C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700şC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600oC. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent became saturated with CO2. By contrast, without the use of sorbent, equilibrium yield to methane is only 22%. Cyclic stability of the methanation catalyst and durability of the sorbent were also studied in the multiple carbonation-decarbonation cycle studies proving the potential of this integrated process in a practical application.

  9. Simulations of Autoignition and Laminar Premixed Flames in Methane/Air Mixtures Diluted with Hot Products

    E-Print Network [OSTI]

    Sidey, J.; Mastorakos, E.; Gordon, R. L.

    2014-04-23T23:59:59.000Z

    may be performed simultaneously by mixing reactants with hot combustion products, often in a closed combustor or furnace environment, which implies that the degree of preheating and the degree of dilution are intimately connected. One of the key... to the mixing of the injected reactants with the recirculated products in a typical MILD combustor. Defining the unburnt state as a mixture of cold reactants and equilibrium hot products is an idealisation of the hypothesis that, in MILD combustion, mixing...

  10. Improving the Methane Production in the Co-Digestion of Microalgae and Cattle Manure 

    E-Print Network [OSTI]

    Cantu, Matthew Scott

    2014-04-28T23:59:59.000Z

    algae were 71170 L and 87715 L, respectively. Based on volatile solids, the highest production in the control groups was0.36 (L CH_(4))/(g VS), while the production rates in the algae and pretreated algae mixtures were 0.22 (L CH_(4))/(g VS) and 0.44 (L...

  11. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16T23:59:59.000Z

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  12. ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS

    SciTech Connect (OSTI)

    William A. Williams

    2004-03-01T23:59:59.000Z

    The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Emissions of carbon dioxide (CO{sub 2}) into the atmosphere are an inherent part of electricity generation, transportation, and industrial processes that rely on fossil fuels. These energy-related activities are responsible for more than 80 percent of the U.S. greenhouse gas emissions, and most of these emissions are CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coalbed methane (CBM) provides a value-added stream, potentially reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy Inc., Research & Development (CONSOL), with support from the US DOE, has embarked on a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through two overlying coal seams. Once completed, all of the wells will be used initially to drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and recovered CBM, the program includes additional monitoring wells to further examine horizontal and vertical migration of CO{sub 2}. This is the fifth Technical Progress report for the project. Progress this period was focused on reclamation of the north access road and north well site, and development of revised drilling methods. This report provides a concise overview of project activities this period and plans for future work.

  13. Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01T23:59:59.000Z

    M. A. Piette, Integrating Renewable Resources in CaliforniaEnable Integration of Renewable Resources,” February 2012.P. Worhach, ”|ntegration of Renewable Resources at 20% RPS,”

  14. Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01T23:59:59.000Z

    A. Piette, Integrating Renewable Resources in California andEnable Integration of Renewable Resources,” February 2012.ntegration of Renewable Resources at 20% RPS,” CAISO, August

  15. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis

    E-Print Network [OSTI]

    contributed to electromethanogenic gas production. KEYWORDS: Biocathode, Carbon capturing and sequestration generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals

  16. ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS

    SciTech Connect (OSTI)

    Gary L. Cairns

    2002-10-01T23:59:59.000Z

    The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Carbon dioxide (CO{sub 2}) emissions to the atmosphere are an inherent part of energy-related activities, such as electricity generation, transportation, and building systems. These energy-related activities are responsible for roughly 85% of the U.S. greenhouse gas emissions, and 95% of these emissions are dominated by CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Many scientists believe greenhouse gases, particularly CO{sub 2}, trap heat in the earth's atmosphere. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils, and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coal bed methane (CBM) provides a value-added stream, reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy, with support from the U.S. DOE, is conducting a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through overlying coal seams in the subsurface. Once completed, the wells will be used to initially drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and CBM produced, the program includes a plan to monitor horizontal migration of CO{sub 2} within the lower seam. This is the second Technical Progress report for the project. Progress to date has been focused on pre-construction activities; in particular, attaining site approvals and securing property rights for the project. This report provides a concise overview of project activity this period and plans for future work. This is the second semi-annual Technical Progress report under the subject agreement. During this report period, progress was made in completing the environmental assessment report, securing land and coal rights, and evaluating drilling strategies. These aspects of the project are discussed in detail in this report.

  17. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    John M. Sweeten, Kalyan Annamalai

    2012-05-03T23:59:59.000Z

    ABSTRACT The Texas Panhandle is regarded as the â??Cattle Feeding Capital of the Worldâ?ť, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFOâ??s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Wacoâ??the primary source of potable water for Wacoâ??s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 â?? Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 â?? Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and Califor

  18. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Kalyan Annamalai, John M. Sweeten,

    2012-05-03T23:59:59.000Z

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling beh

  19. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    John M. Sweeten, Kalyan Annamalai

    2012-05-02T23:59:59.000Z

    The Texas Panhandle is regarded as the �Cattle Feeding Capital of the World�, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO�s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco�the primary source of potable water for Waco�s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 � Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 � Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys a

  20. Texas--RRC District 8 Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion CubicProvedProduction (Billion Cubic

  1. Texas--RRC District 9 Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (BillionProved Reserves(MillionProduction

  2. Methane for Power Generation in Muaro Jambi: A Green Prosperity Model Project

    SciTech Connect (OSTI)

    Moriarty, K.; Elchinger, M.; Hill, G.; Katz, J.; Barnett, J.

    2014-07-01T23:59:59.000Z

    NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates electricity generation from the organic content of wastewater at a palm oil mill in Muaro Jambi, Sumatra. Palm mills use vast amounts of water in the production process resulting in problematic waste water called palm oil mill effluent (POME). The POME releases methane to the atmosphere in open ponds which could be covered to capture the methane to produce renewable electricity for rural villages. The study uses average Indonesia data to determine the economic viability of methane capture at a palm oil mill and also evaluates technology as well as social and environmental impacts of the project.

  3. Webinar: "Upgrading Renewable and Sustainable Carbohydrates for...

    Office of Environmental Management (EM)

    "Upgrading Renewable and Sustainable Carbohydrates for the Production of High Energy Density Fuels" Webinar: "Upgrading Renewable and Sustainable Carbohydrates for the Production...

  4. ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS

    SciTech Connect (OSTI)

    William A. Williams

    2004-10-01T23:59:59.000Z

    This is the sixth semi-annual Technical Progress report under the subject agreement. During this report period, progress was made on drilling the north, center, and south well sites. Water production commenced at the center and south well sites. New drilling plans were formulated for the last remaining well, which is in the Upper Freeport Seam at the north site. Core samples were submitted to laboratories for analytical testing. These aspects of the project are discussed in detail in this report.

  5. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 10, July 1, 1995--September 31, 1995

    SciTech Connect (OSTI)

    McCormick, R.L.

    1995-12-07T23:59:59.000Z

    This document is the tenth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes}. Activities focused on testing of additional modified and promoted catalysts and characterization of these materials. Attempts at improving the sensitivity of our GC based analytical systems were also made with some success. Methanol oxidation studies were initiated. These results are reported. Specific accomplishments include: (1) Methane oxidation testing of a suite of catalysts promoted with most of the first row transition metals was completed. Several of these materials produced low, difficult to quantify yields of formaldehyde. (2) Characterization of these materials by XRD and FTIR was performed with the goal of correlating activity and selectivity with catalyst properties. (3) We began to characterize catalysts prepared via modified synthesis methods designed to enhance acidity using TGA measurements of acetonitrile chemisorption and methanol dehydration to dimethyl ether as a test reaction. (4) A catalyst prepared in the presence of naphthalene methanol as a structural disrupter was tested for activity in methane oxidation. It was found that this material produced low yields of formaldehyde which were difficult to quantify. (5) Preparation of catalysts with no Bronsted acid sites. This was accomplished by replacement of exchangeable protons with potassium, and (6) Methanol oxidation studies were initiated to provide an indication of catalyst activity for decomposition of this desired product and as a method of characterizing the catalyst surface.

  6. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01T23:59:59.000Z

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  7. ARM - Evaluation Product - NSA-Barrow AmeriFlux and Methane VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m Documentation DataDatastreamsxsaprhsrhi1-minProductsMicroPulse LIDAR Cloud

  8. Texas--RRC District 10 Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessed (MillionProduction (Billion Cubic Feet)

  9. Texas--RRC District 2 Onshore Coalbed Methane Production (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessed (MillionProduction(MillionProved

  10. Texas--RRC District 4 Onshore Coalbed Methane Production (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessedReserves BasedCubicProduction3 onsh

  11. Texas--RRC District 5 Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessedReservesProduction (MillionProved Reserves5

  12. Texas--RRC District 6 Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2

  13. Texas--RRC District 7B Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion Cubic Feet)

  14. Texas--RRC District 7C Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (Billion Cubic

  15. Texas--RRC District 8A Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation,Production (BillionProved Reserves (Billion Cubic

  16. Biochar – synergies between carbon storage, environmental functions and renewable energy production 

    E-Print Network [OSTI]

    Crombie, Kyle

    2014-11-27T23:59:59.000Z

    Growing concerns about climate change and the inevitable depletion of fossil fuel resources have led to an increased focus on renewable energy technologies and reducing GHG emissions. Limiting the atmospheric level of ...

  17. Quantitative influences of butyrate or propionate on thermophilic production of methane from biomass

    SciTech Connect (OSTI)

    Henson, J.M.; Bordeaux, F.M.; Rivards, C.J.; Smith, P.H.

    1986-02-01T23:59:59.000Z

    Sodium butyrate and sodium propionate were continuously infused into separate 4-liter thermophilic digesters. These digesters were operated at 55/sup 0/C, had a retention time of 20 days, and had a pH of 7.8. Infusion rates were started at 10 mM day/sup -1/ and were increased incrementally when new stable external organic acid pool sizes and new stable gas production rates were observed. Stable conditions were obtained in both digesters at an infusion rate of 15 mM day/sup -1/, with methanogenesis elevated over that of control digesters. Calculations based on expected CH/sub 4/ at this infusion rate and measured CH/sub 4/ production in the treated and control digesters, however, showed an approximately 25% inhibition of methanogenesis in both digesters. A digester infused with sodium chloride showed little or no inhibition at this infusion rate, but was totally inhibited when its infusion rate was increased to 20 mM day/sup -1/, and cumulative added NaCl reached 0.38 M. The butyrate and propionate-amended digesters tolerated addition rates of 20 mM day/sup -1/, but both failed when they were increased to 25 mM day/sup -1/. These results indicate that the thermophilic digesters could function stably at higher external pool sizes of butyrate or propionate than routinely observed.

  18. Geologic evaluation of critical production parameters for coalbed methane resources. Part 2. Black Warrior Basin. Annual report, August 1987-July 1988

    SciTech Connect (OSTI)

    Epsman, M.L.; Wilson, G.V.; Pashin, J.C.; Tolson, J.S.; Ward, W.E.

    1988-12-01T23:59:59.000Z

    Coal in the Brookwood and Oak Grove fields in Alabama generally ranges from low- to medium-volatile bituminous rank. Lithologic and stratigraphic evidence indicates that the coal was deposited in structurally influenced alluvial environments. Coal beds are thickest and easily mined on structurally stable, uplifted fault block and the coal beds thin and split in the more heavily faulted downdropped areas, which are amenable to coalbed degasification. In Brookwood field, mine dewatering and deep degasification zones may act in concert, causing upward movement of saline water along faults. In Oak Grove field, mine dewatering evidently creates areas of low fluid pressure and promotes downward movement of fresh water along faults. Production of methane is greatest in wells producing the most water. The method of well stimulation is of minor importance in Brookwood field, however, in Oak Grove field the water-sand-fracture method gives the highest initial-production rate. High-yield wells are located close to faults and lineaments. Lower productivity in Brookwood field may be related to venting of methane in nearby underground mines.

  19. Coalbed Methane Estimated Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan Feb Mar‹

  20. Coalbed Methane Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O J I E X UMethane

  1. Coal as a conventional source of methane: A review and analysis of 50 wells in two production areas in the Black Warrior Basin of Alabama

    SciTech Connect (OSTI)

    Dunn, B.W.

    1984-05-01T23:59:59.000Z

    This paper presents a review of the actual production, sales, and economic data from two production areas with 52 wells developed by a joint coal industry'gas industry effort owned equally by Jim Walter Resources, Inc. (JWR), a subsidiary of Jim Walter Corporation of Tampa, Florida and Enhanced Energy Resources, Inc. (EER), a subsidiary of Kaneb Services, Inc. of Houston, Texas. The unique reservoir characteristics of the coal environment are described in brief, a comparison of actual methane production from coal with computer model predictions is presented, and the capital and operating costs are discussed with specific emphasis on the economic results. This information differs from similar previous work in that economic vitality is now apparent whereas previous inquiries were essentially restricted to the technical reservoir engineering characteristics and the physical capability of coal to desorb (produce) methane. There are a number of published papers on this important technical aspect several of which are references for this presentation. Production Area I (31 well production area) has been generating an operating profit for the past 21 months. Profits have increased substantially in the past year as a result of the completion of an 8'' transmission line and reduced operating costs. Initial production commenced in late 1979. A five well pilot project was evaluated for approximately two years before commercial development commenced in late 1981. A total of 31 wells were drilled by mid-1982. First sales commenced in February of 1982. Production Area II drilling commenced in January of 1983 with initial sales in March of 1983. The economic viability is demonstrated based on actual operating profits over the past twentyone months and current experience with respect to improvements in operational techniques and costs. These data are a

  2. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15T23:59:59.000Z

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.

  3. Direct production of hydrogen and aromatics from methane or natural gas: Review of recent U.S. patents

    SciTech Connect (OSTI)

    Lucia M. Petkovic; Daniel M. Ginosar

    2012-03-01T23:59:59.000Z

    Since the year 2000, the United States Patent and Trademark Office (USPTO) has granted a dozen patents for inventions related to methane dehydroaromatization processes. One of them was granted to UOP LLC (Des Plaines). It relates to a catalyst composition and preparation method. Two patents were granted to Conoco Phillips Company (Houston, TX). One was aimed at securing a process and operating conditions for methane aromatization. The other was aimed at securing a process that may be integrated with separation of wellhead fluids and blending of the aromatics produced from the gas with the crude. Nine patents were granted to ExxonMobil Chemical Patents Inc. (Houston, TX). Most of these were aimed at securing a dehydroaromatization process where methane-containing feedstock moves counter currently to a particulate catalyst. The coked catalyst is heated or regenerated either in the reactor, by cyclic operation, or in annex equipment, and returned to the reactor. The reactor effluent stream may be separated in its main components and used or recycled as needed. A brief summary of those inventions is presented in this review.

  4. Direct Biological Conversion of Electrical Current into Methane by

    E-Print Network [OSTI]

    produced from renewable energy sources (such as wind, solar, or biomass) into a biofuel (methane) as well. Revised manuscript received March 5, 2009. Accepted March 6, 2009. New sustainable methods are needed to produce renewable energy carriers that can be stored and used for transportation, heating, or chemical

  5. Renewable Hydrogen Potential from Biogas in the United States

    SciTech Connect (OSTI)

    Saur, G.; Milbrandt, A.

    2014-07-01T23:59:59.000Z

    This analysis updates and expands upon previous biogas studies to include total potential and net availability of methane in raw biogas with respect to competing demands and includes a resource assessment of four sources of biogas: (1) wastewater treatment plants, including domestic and a new assessment of industrial sources; (2) landfills; (3) animal manure; and (4) a new assessment of industrial, institutional, and commercial sources. The results of the biogas resource assessment are used to estimate the potential production of renewable hydrogen from biogas as well as the fuel cell electric vehicles that the produced hydrogen might support.

  6. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25T23:59:59.000Z

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

  7. 1. To develop and transform abundant and renewable bioresources through

    E-Print Network [OSTI]

    · Anaerobic digestion · Pretreatment · Ethanol fermentationBiomass Biogas Lignin Chemicals ...to support (glucose) Fermentation (xylose) Biogas production SOLID FUEL Enzymes METHANE ETHANOL HYDROGEN Biomass Pretreatment Fermentation (glucose) Fermentation (xylose) Biogas production SOLID FUEL Enzymes METHANE ETHANOL

  8. Renewable energy: Renewing the environment

    SciTech Connect (OSTI)

    Noun, R.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31T23:59:59.000Z

    During the past 20 years, the United States has enacted some of the world`s most comprehensive legislation to protect and preserve its environmental heritage. These regulations have spawned a $115-billion-per-year industry for {open_quotes}green{close_quotes} products and services, with more than 35,000 companies providing jobs for American workers. On the other hand, environmental regulations have placed heavy cost burdens on many U.S. businesses as they struggle to remain competitive in both domestic and foreign markets. How, then, can one reconcile the growing need for environmental protection with the desire for a stronger, healthier economy? Even as Congress debates the value of existing environmental legislation, new threats are appearing on the horizon. For example, extensive storm damage from Hurricane Andrew and other natural disasters has prompted members of the $650-billion insurance industry to begin studying the effects that global warming may have on future property damage claims. More and more people are realizing that the most efficient and economical way to control pollution is to avoid creating it in the first place. And that`s where renewable energy comes in. Technologies based on nonpolluting renewable energy sources such as sunlight and wind can help preserve our environmental heritage without a tangled web of regulations to burden industry. Renewable energy technologies can also help the United States become a world leader in a potential $400-billion-a-year global market for environmentally friendly products.

  9. Production Tax Credit for Renewable Electricity Generation (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

  10. Four Critical Needs to Change the Hydrate Energy Paradigm from Assessment to Production: The 2007 Report to Congress by the U.S. Federal methane Hydrate Advisory Committee

    SciTech Connect (OSTI)

    Mahajan,D.; Sloan, D.; Brewer, P.; Dutta, N.; Johnson, A.; Jones, E.; Juenger, K.; Kastner, M.; Masutani, S.; Swenson, R.; Whelan, J.; Wilson, s.; Woolsey, R.

    2009-03-11T23:59:59.000Z

    This work summarizes a two-year study by the U.S. Federal Methane Hydrate Advisory Committee recommending the future needs for federally-supported hydrate research. The Report was submitted to the US Congress on August 14, 2007 and includes four recommendations regarding (a) permafrost hydrate production testing, (b) marine hydrate viability assessment (c) climate effect of hydrates, and (d) international cooperation. A secure supply of natural gas is a vital goal of the U.S. national energy policy because natural gas is the cleanest and most widely used of all fossil fuels. The inherent cleanliness of natural gas, with the lowest CO2 emission per unit of heat energy of any fossil fuel, means substituting gas for coal and fuel oil will reduce emissions that can exacerbate the greenhouse effect. Both a fuel and a feedstock, a secure and reasonably priced supply of natural gas is important to industry, electric power generators, large and small commercial enterprises, and homeowners. Because each volume of solid gas hydrate contains as much as 164 standard volumes of methane, hydrates can be viewed as a concentrated form of natural gas equivalent to compressed gas but less concentrated than liquefied natural gas (LNG). Natural hydrate accumulations worldwide are estimated to contain 700,000 TCF of natural gas, of which 200,000 TCF are located within the United States. Compared with the current national annual consumption of 22 TCF, this estimate of in-place gas in enormous. Clearly, if only a fraction of the hydrated methane is recoverable, hydrates could constitute a substantial component of the future energy portfolio of the Nation (Figure 1). However, recovery poses a major technical and commercial challenge. Such numbers have sparked interest in natural gas hydrates as a potential, long-term source of energy, as well as concerns about any potential impact the release of methane from hydrates might have on the environment. Energy-hungry countries such as India and Japan are outspending the United States on hydrate science and engineering R&D by a factor of 10, and may bring this resource to market as much as a decade before the United States.

  11. New Renewable 1 Emerging Renewables

    E-Print Network [OSTI]

    Renewable Facilities disbursements include $6 million for the Agriculture Biomass-to-Energy Program. 5New Renewable Facilities 1 Emerging Renewables 2,3 Existing Renewable Facilities 4 Consumer,000,000)$ Appropriations Appropriation for PACE Reserve program per SB 77 (2010) 11 (50,000,000)$ RENEWABLE ENERGY PROGRAM

  12. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewal Individual Permit Renewal Application The Permit expires March 31, 2014 and existing permit conditions will be in effect until a new permit is issued. The Permittees...

  13. Tax Credits for Home Energy Improvements: If You Buy an Energy-Efficient Product or Renewable Energy System for Your Home, You May be Eligible for a Federal Tax Credit (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    This two-page fact sheet provides an overview of 2010 federal tax credits for energy efficient products or renewable energy systems in the home.

  14. Energy Department Announces $11 Million to Advance Renewable...

    Office of Environmental Management (EM)

    1 Million to Advance Renewable Carbon Fiber Production from Biomass Energy Department Announces 11 Million to Advance Renewable Carbon Fiber Production from Biomass July 30, 2014...

  15. Renewable Energy Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    Nebraska offers a production-based tax credit to any producer of electricity generated by wind, solar, geothermal, hydropower, fuel cells or methane gas. To qualify, a system must be placed into...

  16. Renewable Energy Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    Nebraska offers a production-based tax credit to any producer of electricity generated by wind, solar, geothermal, hydropower, fuel cells or methane gas. To qualify, a system must be placed into...

  17. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution...

  18. The Production of High Levels of Renewable Natural Gas from Biomass Using Steam Hydrogasification

    E-Print Network [OSTI]

    Thanmongkhon, Yoothana

    2014-01-01T23:59:59.000Z

    2012. 14. Pless, J. , Natural Gas Development and HydraulicProduction of Substituted Natural Gas from the Wet OrganicU.S.E.I.A), California Natural Gas Consumption. 2012. 116.

  19. The production and utilization of a clean, abundant, and renewable energy source is widely accepted as one of the key challenges facing mankind today. Population

    E-Print Network [OSTI]

    Bruck, Jehoshua (Shuki)

    The production and utilization of a clean, abundant, and renewable energy source is widely accepted-splitter and may one day be used as a source of clean energy.The components include (a) Membrane assembly of underdeveloped nations will increase our current demand for energy. Although fossil fuels may power the planet

  20. Community Renewable Energy Success Stories Webinar: Renewable...

    Office of Environmental Management (EM)

    Community Renewable Energy Success Stories Webinar: Renewable Energy Parks (text version) Community Renewable Energy Success Stories Webinar: Renewable Energy Parks (text version)...

  1. Renewable Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Diesel Process Co-feed Renewable Oils to Diesel Hydrotreater 150-2400 psi Hydrogen, 600-800F Normal reaction is sulfur removal (HDS) At HDS Conditions Fat...

  2. Production of Hydrogen from Peanut Shells The goal of this project is the production of renewable hydrogen from agricultural

    E-Print Network [OSTI]

    a bus in Albany, GA. Our strategy is to produce hydrogen from biomass pyrolysis oils in conjunction: (1) slow pyrolysis of biomass to produce charcoal, and (2) high temperature processing to form rate of 4.4 million Nm3 , the selling price of hydrogen is estimated to be $9.50/GJ. The production

  3. Strategies for Facilities Renewal

    E-Print Network [OSTI]

    Good, R. L.

    psig * Plant or Service Air 90 psig * Starting Air for gas engines 220 psig * Instrument Air 80 psig * 02 - process * N2 high purity 4. Water production systems and distribution * Potable water (remote rural site) * Fire water (not treated) * Cooling... sewers 6. Fuel systems * Mixed fuel (both by-product and purchased methane) * Pipeline natural gas * Fuel oil 7. Maintenance and office facilities * Various maintenance/construction shops, stores, offices * Office facilities for technical...

  4. Monthly/Annual Energy Review - renewable section

    Reports and Publications (EIA)

    2015-01-01T23:59:59.000Z

    Monthly and latest annual statistics on renewable energy production and consumption and overviews of fuel ethanol and biodiesel.

  5. Production of Renewable Fuels from Biomass by FCC Co-processing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S. by6 (AprilProduction andDepartment

  6. Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice

    E-Print Network [OSTI]

    Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    which provides a renewable energy production incentive toprovide financial incentives to renewable energy projects. Aprovide financial incentives to renewable energy projects. A

  7. Production of Hydrogen for Clean and Renewable Source of Energy for Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Deng, Xunming; Ingler, William B, Jr.; Abraham, Martin; Castellano, Felix; Coleman, Maria; Collins, Robert; Compaan, Alvin; Giolando, Dean; Jayatissa, Ahalapitiya. H.; Stuart, Thomas; Vonderembse, Mark

    2008-10-31T23:59:59.000Z

    This was a two-year project that had two major components: 1) the demonstration of a PV-electrolysis system that has separate PV system and electrolysis unit and the hydrogen generated is to be used to power a fuel cell based vehicle; 2) the development of technologies for generation of hydrogen through photoelectrochemical process and bio-mass derived resources. Development under this project could lead to the achievement of DOE technical target related to PEC hydrogen production at low cost. The PEC part of the project is focused on the development of photoelectrochemical hydrogen generation devices and systems using thin-film silicon based solar cells. Two approaches are taken for the development of efficient and durable photoelectrochemical cells; 1) An immersion-type photoelectrochemical cells (Task 3) where the photoelectrode is immersed in electrolyte, and 2) A substrate-type photoelectrochemical cell (Task 2) where the photoelectrode is not in direct contact with electrolyte. Four tasks are being carried out: Task 1: Design and analysis of DC voltage regulation system for direct PV-to-electrolyzer power feed Task 2: Development of advanced materials for substrate-type PEC cells Task 3: Development of advanced materials for immersion-type PEC cells Task 4: Hydrogen production through conversion of biomass-derived wastes

  8. Factors influencing methane distribution in Texas ground water

    SciTech Connect (OSTI)

    Zhang, C.; Grossman, E.L.; Ammerman, J.W. [Texas A and M Univ., College Station, TX (United States)

    1998-01-01T23:59:59.000Z

    To determine the factors that influence the distribution of methane in Texas ground water, water samples were collected from 40 wells in east-central and central Texas aquifers. Among the chemical parameters examined, sulfate is most important in controlling methane distribution. Methane occurs in high concentration in east-central Texas only where sulfate concentration is low, supporting the hypothesis that abundant microbial methane production does not begin until sulfate is depleted. Because water samples from central Texas are high in either oxygen or sulfate, methane concentrations are low in these waters. A positive correlation between methane and sulfate in these waters indicates a different, perhaps thermogenic, origin for the trace methane. The {sup 13}C/{sup 12}C ratios of dissolved methane ranged from {minus}80{per_thousand} to {minus}21{per_thousand} in east-central Texas and {minus}41.2{per_thousand} to {minus}8.5{per_thousand} in central Texas. Low values of < {minus}50{per_thousand} in the east-central Texas ground water indicate a microbial origin for methane and are consistent with the observed sulfate-methane relationship; high {sup 13}C/{sup 12}C ratios of > {minus}31{per_thousand} likely result from bacterial methane oxidation. Similarly, methane with high {sup 13}C/{sup 12}C ratios in central Texas may reflect partial oxidation of the methane pool. Overall, water samples from both regions show a positive correlation between sulfate concentration and the {sup 13}C/{sup 12}C ratio of methane, suggesting that methane oxidation may be associated with sulfate reduction in Texas ground water.

  9. Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama

    E-Print Network [OSTI]

    He, Ting

    2011-02-22T23:59:59.000Z

    basin, Alabama. It considered the injection and production rate, the components of injected gas, coal dewatering, permeability anisotropy, various CO2 soak times, completion of multiple reservoir layers and pressure constraints at the injector...

  10. Community Renewables: Model Program Rules

    Broader source: Energy.gov [DOE]

    The Interstate Renewable Energy Council (IREC) has worked closely with The Vote Solar Initiative to develop model program rules for community-scale renewables that consider many of the basic issues facing community renewables programs. IREC’s model program rules address such issues as renewable system size, interconnection, eligibility for participation, allocation of the benefits flowing from participation, net metering of system production, and other essential features of a community renewables program. The goal of this effort is to provide stakeholders with program rules they can tailor to the individual circumstances and policy preferences of their state without having to reinvent the wheel at each turn.

  11. ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL

    E-Print Network [OSTI]

    ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL recovered. Carbon sequestration, therefore, allows the utilization of unexploited mineral resources while potential of coalbed methane production using carbon dioxide sequestration in the Central Appalachian Basin

  12. Microbiological aspects of methane production during pig manure storage DABERT Patrick, VEDRENNE Fabien, BRARD Camille and BELINE Fabrice

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to analyse the microbiological aspects of manure anaerobic digestion. In this work the bacterial and archaeal of methanogenic anaerobic digester sludge. Storage of the slurries was simulated in 250-1000 mL glass bottles during 120-150 days at 30°C. During the simulated storage, biogas production was monitored by pressure

  13. Local Option- Property Tax Exemption for Renewable Energy Systems

    Broader source: Energy.gov [DOE]

    Eligible renewable energy property is defined as "any fixture, product, system, device or interacting group of devices that produce electricity from renewable resources, including, but not limited...

  14. Renewable Energy ] (

    E-Print Network [OSTI]

    Firestone, Jeremy

    pro or con, and others may wish to evaluate for themselves the size and market value of a wind regimeRenewable Energy ] (

  15. Methane Hydrate Field Program

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  16. Methane Hydrate Program

    Office of Environmental Management (EM)

    Biofilms in Fracture-Dominated Sediment that Anaerobically Oxidize Methane. Applied and Environmental Microbiology, 77, 7 pp. Brunner, C., Ingram, W., Meyers, S.,...

  17. RMOTC - News - Methane Test 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy (DOE), Los Alamos National Laboratory (LANL) and Chevron Corporation. The test was a methane controlled-release experiment and was designed to measure methane...

  18. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24T23:59:59.000Z

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  19. The Clean Renewable Energy and Conservation Tax Act of 2007

    E-Print Network [OSTI]

    Kammen, Daniel M.

    -loop biomass; geothermal; small irrigation; hydropower; landfill gas; marine renewable; and trash combustionThe Clean Renewable Energy and Conservation Tax Act of 2007 December 5, 2007 I. CLEAN RENEWABLE ENERGY INCENTIVES RENEWABLE ENERGY Long-term extension and modification of renewable energy production

  20. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable

  1. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable!

  2. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    In the United States: > 200 fuel cell vehicles > 20 fuel cell buses ~ 60 fueling stations Production & Delivery biomass & solar). · Potential U.S. employment from fuel cell and hydrogen industries of up to 925,000 jobsEnergy Efficiency & Renewable Energy DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program

  3. Renewable Energy Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    Certain renewable energy systems and equipment sold in Rhode Island are exempt from the state's sales and use tax. Eligible products include solar electric systems, DC-to-AC inverters that...

  4. Renewable Energy Business Tax Incentives

    Broader source: Energy.gov [DOE]

    [http://www.azleg.gov/legtext/49leg/1r/bills/sb1403s.pdf SB 1403], signed in July of 2009, created tax incentives intended to draw renewable energy product manufacturers to Arizona. Specifically,...

  5. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliability TechnologyRenewal Individual Permit Renewal

  6. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable! Activities

  7. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    In 2007, Minnesota legislation modified the state's existing non-mandated renewable energy objective, creating a mandatory renewable portfolio standard (RPS) called the Renewable Energy Standard ...

  8. Increasing Biofuel Deployment through Renewable Super Premium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by 2022 (EISA 2007) RENEWABLE FUEL STANDARD * BETO Office Goal: "Enable nation-wide production of biofuels compatible with today's transportation infrastructure, reduce...

  9. Austin - Renewables Portfolio Standard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste products, including landfill gas. Funding to achieve the 5% increase in renewable energy resources was authorized to be provided by Austin Energy's green pricing program --...

  10. RENEWABLE ENERGY Research Experiences for Undergraduates (REU)

    E-Print Network [OSTI]

    for Oil Shale Technology and Research, the Colorado Energy Research Institute, and the National Renewable Systems for Oil Shale Production Microstructural Design of Composite Membranes for Energy Storage

  11. acid natural products: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Escherichia coli with Amplified 23 Measurements of Methane Emissions at Natural Gas Production Sites Engineering Websites Summary: Measurements of Methane Emissions at...

  12. Renewable Energy 101 (Presentation)

    SciTech Connect (OSTI)

    Walker, A.

    2012-03-01T23:59:59.000Z

    Presentation given at the 2012 Department of Homeland Security Renewable Energy Roundtable as an introduction to renewable technologies and applications.

  13. Mechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase

    E-Print Network [OSTI]

    Baik, Mu-Hyun

    a relatively small transition metal- based active site28,29 to achieve a difficult chemical transformationMechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase Mu-Hyun Baik, Martin 2393 3.1. KIE in Methane Oxidations 2394 3.2. Primary and Secondary KIEs 2396 3.3. Other KIEs 2396 3

  14. Biofuels: Microbially Generated Methane and

    E-Print Network [OSTI]

    Wood, Thomas K.

    Biofuels: Microbially Generated Methane and Hydrogen Michael J McAnulty, Pennsylvania State, Thomas K; and Ferry, James G (March 2013) Biofuels: Microbially Generated Methane and Hydrogen. In: e

  15. Co-Solvent Enhanced Production of Platform Fuel Precursors From Lignocellulosic Biomass

    E-Print Network [OSTI]

    Cai, Charles Miao-Zi

    2014-01-01T23:59:59.000Z

    W. Huber. "Production of Renewable Petroleum Refinery DieselW. Huber. "Production of Renewable Petroleum Refinery DieselW. Huber. "Production of Renewable Petroleum Refinery Diesel

  16. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Exploration of High-Penetration Renewable Electricity Futures PDF Volume 4 PDF #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory. (2012

  17. Quarterly Review of Methane from Coal-Seams Technology. Volume 8, Number 4, July 1991. Report for October-December 1990

    SciTech Connect (OSTI)

    McBane, R.A.; Schwochow, S.D.; Stevens, S.H.

    1991-01-01T23:59:59.000Z

    Contents include reports on: Powder River Basin, Wyoming and Montana; Piceance Basin, Colorado; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; Coalbed Methane Development in the Appalachian Basin; Geologic Evaluation of Critical Production Parameters for Coalbed Methane Resources; Reservoir Engineering and Analysis; Coordinated Laboratory Studies in Support of Hydraulic Fracturing of Coalbed Methane; Physical Sciences Coalbed Methane Research; Coalbed Methane Opportunities in Alberta.

  18. Methane oxidation over dual redox catalysts

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Sojka, Z.; DiCosimo, J.I.; DeTavernier, S.

    1992-06-01T23:59:59.000Z

    Catalytic oxidation of methane to partial oxidation products, primarily formaldehyde and C[sub 2] hydrocarbons, was found to be directed by the catalyst used. In this project, it was discovered that a moderate oxidative coupling catalyst for C[sub 2] hydrocarbons, zinc oxide, is modified by addition of small amounts of Cu and Fe dopants to yield fair yields of formaldehyde. A similar effect was observed with Cu/Sn/ZnO catalysts, and the presence of a redox Lewis acid, Fe[sup III] or Sn[sup IV], was found to be essential for the selectivity switch from C[sub 2] coupling products to formaldehyde. The principle of double doping with an oxygen activator (Cu) and the redox Lewis acid (Fe, Sn) was pursued further by synthesizing and testing the CuFe-ZSM-5 zeolite catalyst. The Cu[sup II](ion exchanged) Fe[sup III](framework)-ZSM-5 also displayed activity for formaldehyde synthesis, with space time yields exceeding 100 g/h-kg catalyst. However, the selectivity was low and earlier claims in the literature of selective oxidation of methane to methanol over CuFe-ZSM-5 were not reproduced. A new active and selective catalytic system (M=Sb,Bi,Sn)/SrO/La[sub 2]O[sub 3] has been discovered for potentially commercially attractive process for the conversion of methane to C[sub 2] hydrocarbons, (ii) a new principle has been demonstrated for selectivity switching from C[sub 2] hydrocarbon products to formaldehyde in methane oxidations over Cu,Fe-doped zinc oxide and ZSM-5, and (iii) a new approach has been initiated for using ultrafine metal dispersions for low temperature activation of methane for selective conversions. Item (iii) continues being supported by AMOCO while further developments related to items (i) and (ii) are the objective of our continued effort under the METC-AMOCO proposed joint program.

  19. Conversion of methane and acetylene into gasoline range hydrocarbons

    E-Print Network [OSTI]

    Alkhawaldeh, Ammar

    2000-01-01T23:59:59.000Z

    Conversion Apparatus. . . 20 22 Temperature Profile Inside the Reactor. . 30 Methane and Acetylene Conversion over Time on Stream, T = 412 C, Molar Feed Ratio = 6/I (CH4/CqHr). . 36 Mass Flow Rate (g/s) of the Effluent Gas (Unreacted Methane... and Acetylene, Isobutane, Ethylene, and Nitrogen) from the Reactor Integrated over Time on Stream. 40 Mass Flow Rate (g/s) of the Gas Products (Isobutane and Ethylene) Integrated over Time on Stream. 41 Methane and Acetylene Conversion over Time on Stream...

  20. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Energy Savers [EERE]

    Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity,...

  1. Novera Renewable Energy formerly Novera Macquarie Renewable Energy...

    Open Energy Info (EERE)

    Novera Renewable Energy formerly Novera Macquarie Renewable Energy Limited NMRE Jump to: navigation, search Name: Novera Renewable Energy (formerly Novera Macquarie Renewable...

  2. DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable Natural Gas for Vehicles, and More DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable...

  3. Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge

    E-Print Network [OSTI]

    Mallinson, Richard

    Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical production from simultaneous steam reforming and partial oxidation of methane using an ac corona discharge production has been steam reforming, shown in reaction 4. It is very useful to use low-cost materials

  4. Acetic Acid from the Carbonylation of Chloride Methane Over Rhodium Based Catalysts

    E-Print Network [OSTI]

    Bao, Xinhe

    on an indirect route via synthesis gas (syngas), i.e., methane is first con- verted to syngas before it is further transformed into other useful products [6]. However, the production of syngas from methane) 130:286­290 DOI 10.1007/s10562-009-0017-9 #12;[12], which is produced from syngas feedstock with Cu

  5. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

  6. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26T23:59:59.000Z

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  7. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Systems On November 4, 2010, in Renewable Systems Renewable Energy Transportation Nuclear Fossil Energy Efficiency Publications Events News Renewable Systems The...

  8. Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)

    E-Print Network [OSTI]

    Suo, Zhigang

    Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the annual potential and actual annual production of electrical energy from renewable energy resources. Only

  9. Marine renewable energy: potential benefits to biodiversity? An urgent call for research

    E-Print Network [OSTI]

    Exeter, University of

    Marine renewable energy: potential benefits to biodiversity? An urgent call for research Richard 1 Centre for Ecology and Conservation and Peninsula Research Institute for Marine Renewable Energy driver. In response, many governments have initiated programmes of energy production from renewable

  10. Helping New Hampshire Achieve Its 25 x 25 Goal Renewable Energy Incentives, Energy Metering, and

    E-Print Network [OSTI]

    Lotko, William

    Helping New Hampshire Achieve Its 25 x 25 Goal Renewable Energy Incentives, Energy Metering................................................................................................................. 7 2. RENEWABLE ENERGY: FINANCING INCENTIVES......................................... 8 2.1 LOANS............................................................ 12 3. RENEWABLE ENERGY: PRODUCTION INCENTIVES................................... 14 3.1 NET METERING

  11. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    's electricity from renewable resources by 2010. The Guidebook outlines eligibility and legal requirementsCALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION

  12. Running in place : renewal portfolio standards and climate change

    E-Print Network [OSTI]

    Hogan, Michael T. (Michael Thomas)

    2008-01-01T23:59:59.000Z

    Renewable portfolio standards ("RPS") have spread widely as states have made an effort to promote electricity production from renewable energy sources, granting privileged market access to eligible technologies and resources. ...

  13. Renewable Energy 32 (2007) 12431257 Methane generation in landfills

    E-Print Network [OSTI]

    Columbia University

    2007-01-01T23:59:59.000Z

    dioxide. In his 2003 review of energy recovery from landfill gas, Willumsen [2,3] reported that as of 2001 followed by Germany and United Kingdom (Table 1). The capacity of most landfill gas-fuelled generators, close to Los Angeles California; the biogas is combusted in a steam boiler that powers a 50-MW turbine

  14. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    Jonathan Aggett

    2003-12-15T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this segment of work, our goal was to review methods for estimating tree survival, growth, yield and value of forests growing on surface mined land in the eastern coalfields of the USA, and to determine the extent to which carbon sequestration is influenced by these factors. Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mandates that mined land be reclaimed in a fashion that renders the land at least as productive after mining as it was before mining. In the central Appalachian region, where prime farmland and economic development opportunities for mined land are scarce, the most practical land use choices are hayland/pasture, wildlife habitat, or forest land. Since 1977, the majority of mined land has been reclaimed as hayland/pasture or wildlife habitat, which is less expensive to reclaim than forest land, since there are no tree planting costs. As a result, there are now hundreds of thousands of hectares of grasslands and scrublands in various stages of natural succession located throughout otherwise forested mountains in the U.S. A literature review was done to develop the basis for an economic feasibility study of a range of land-use conversion scenarios. Procedures were developed for both mixed hardwoods and white pine under a set of low product prices and under a set of high product prices. Economic feasibility is based on land expectation values. Further, our review shows that three types of incentive schemes might be important: (1) lump sum payment at planting (and equivalent series of annual payments); (2) revenue incentive at harvest; and (3) benefit based on carbon volume.

  15. renewable energy | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    renewable energy renewable energy Leads No leads are available at this time. Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F+ Ions. Abstract:...

  16. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23T23:59:59.000Z

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  17. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

    1997-01-01T23:59:59.000Z

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  18. Coal Bed Methane Protection Act (Montana)

    Broader source: Energy.gov [DOE]

    The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and...

  19. RP-5 Renewable Energy Efficiency Project

    SciTech Connect (OSTI)

    Neil Clifton; Dave Wall; Jamal Zughbi

    2007-06-30T23:59:59.000Z

    This is the final technical report for the RP-5 Renewable Energy Efficiency Project (REEP). The report summarizes, in a comprehensive manner, all the work performed during the award period extending between July 12, 2002 and June 30, 2007. This report has been prepared in accordance with the Department of Energy (DOE) Guidelines and summarizes all of the activities that occurred during the award period. The RP-5 Renewable Energy Efficiency Project, under development by the Inland Empire Utilities Agency (IEUA), is comprised of a series of full-scale demonstration projects that will showcase innovative combinations of primary and secondary generation systems using methane gas derived from local processing of biosolids, dairy manure and other organic material. The goal of the project is to create renewable energy-based generation systems with energy efficiencies 65% or more. The project was constructed at the 15 MGD Regional Wastewater Treatment Plant No. 5 located in the City of Chino in California where the Agency has constructed its new energy-efficient (platinum-LEED rating) headquarters building. Technologies that were featured in the project include internal combustion engines (ICE), absorption chillers, treatment plant secondary effluent cooling systems, heat recovery systems, thermal energy storage (TES), Organic Rankine Cycle (ORC) secondary power generation system, the integration of a future fuel cell system, gas cleaning requirements, and other state-of-the-art design combinations. The RP-5 REEP biogas source is coming from three manure digesters which are located within the RP-5 Complex and are joined with the RP-5 REEP through gas conveyance pipelines. Food waste is being injected into the manure digesters for digester gas production enhancement. The RP-5 REEP clearly demonstrates the biogas production and power generation viability, specifically when dealing with renewable and variable heating value (Btu) fuel. The RP-5 REEP was challenged with meeting stringent utility, gas, power, and air quality rules and regulations. Coordination with the Southern California Gas Company (SCGC), Southern California Edison (SCE), and South Coast Air Quality Management District (SCAQMD) was continuous and extensive. The interconnecting agreement and the permit to construct and operate were major obstacles despite the early start and coordination with the utility companies and regulatory agencies. The RP-5 REEP is part of a unique RP-5 Complex approach where several facilities are tied and connected with each other; where energy and gas can be transferred from one facility to another (see attached RP-5 Complex Ultimate Energy Balance Diagram). The REEP also incorporated new technologies, such as TES and ORC, along with using heat recovery for the platinum-LEED headquarter buildings heating and cooling via efficient absorption chillers. Through the conceptual design phase, numerous innovative technologies were researched and evaluated, with the most proven and efficient selected to be part of the RP-5 REEP.

  20. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    Dr. James A. Burger

    2002-02-04T23:59:59.000Z

    This is the first quarterly Technical Report for the period October-December, 2003. A kick-off meeting was held with NETL administrators and scientists at Morgantown, WV, on December 2, 2002. The purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During this first quarterly reporting period, five Graduate Research Assistants were recruited, an MOA was drafted between Virginia Tech and three industry cooperators, preliminary field locations for controlled studies were located, and a preliminary analysis of a carbon inventory of forest sites on mined land was made.

  1. IMPROVEMENT OF METHANE STORAGE IN ACTIVATED CARBON USING METHANE HYDRATE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    it to a gas hydrate formation. In fact, the gas hydrate formation in the remaining free porosity after manuscript, published in "Fifth International Conference on Gas Hydrates (ICGH 5),, Tromdheim : Norway (2005IMPROVEMENT OF METHANE STORAGE IN ACTIVATED CARBON USING METHANE HYDRATE M.L. Zanota(1) , L. Perier

  2. Alternative technologies to steam-methane reforming

    SciTech Connect (OSTI)

    Tindall, B.M.; Crews, M.A. [Howe-Baker Engineers, Inc., Tyler, TX (United States)

    1995-11-01T23:59:59.000Z

    Steam-methane reforming (SMR) has been the conventional route for hydrogen and carbon monoxide production from natural gas feedstocks. However, several alternative technologies are currently finding favor for an increasing number of applications. The competing technologies include: steam-methane reforming combined with oxygen secondary reforming (SMR/O2R); autothermal reforming (ATR); thermal partial oxidation (POX). Each of these alternative technologies uses oxygen as a feedstock. Accordingly, if low-cost oxygen is available, they can be an attractive alternate to SMR with natural gas feedstocks. These technologies are composed technically and economically. The following conclusions can be drawn: (1) the SMR/O2R, ATR and POX technologies can be attractive if low-cost oxygen is available; (2) for competing technologies, the H{sub 2}/CO product ratio is typically the most important process parameter; (3) for low methane slip, the SMR/O2R, ATR and POX technologies are favored; (4) for full CO{sub 2} recycle, POX is usually better than ATR; (5) relative to POX, the ATR is a nonlicensed technology that avoids third-party involvement; (6) economics of each technology are dependent on the conditions and requirements for each project and must be evaluated on a case-by-case basis.

  3. Renewable energy 1998: Issues and trends

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    This report presents the following five papers: Renewable electricity purchases: History and recent developments; Transmission pricing issues for electricity generation from renewable resources; Analysis of geothermal heat pump manufacturers survey data; A view of the forest products industry from a wood energy perspective; and Wind energy developments: Incentives in selected countries. A glossary is included. 19 figs., 27 tabs.

  4. The Energy Efficiency and Renewable Energy Program

    E-Print Network [OSTI]

    The Energy Efficiency and Renewable Energy Program develops sustainable energy technologies is committed to expanding energy resource options and to improving efficiency in every element of energy production and use Energy Efficiency and Renewable Energy Program Research Focus Areas Nickel aluminide

  5. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-02-15T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During the reporting period (October-December 2004) we completed the validation of a forest productivity classification model for mined land. A coefficient of determination (R{sup 2}) of 0.68 confirms the model's ability to predict SI based on a selection of mine soil properties. To determine carbon sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio (Figure 1), West Virginia (Figure 2), and Virginia (Figure 3). The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). For hybrid poplar, total plant biomass differences increased significantly with the intensity of silvicultural input. Root, stem, and foliage biomass also increased with the level of silvicultural intensity. Financial feasibility analyses of reforestation on mined lands previously reclaimed to grassland have been completed for conversion to white pine and mixed hardwood species. Examination of potential policy instruments for promoting financial feasibility also have been completed, including lump sum payments at time of conversion, annual payments through the life of the stand, and payments based on carbon sequestration that provide both minimal profitability and fully offset initial reforestation outlays. We have compiled a database containing mine permit information obtained from permitting agencies in Virginia, West Virginia, Pennsylvania, Ohio, and Kentucky. Due to differences and irregularities in permitting procedures between states, we found it necessary to utilize an alternative method to determine mined land acreages in the Appalachian region. We have initiated a proof of concept study, focused in the State of Ohio, to determine the feasibility of using images from the Landsat Thematic Mapper (TM) and/or Enhanced Thematic Mapper Plus (ETM+) to accurately identify mined lands.

  6. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01T23:59:59.000Z

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  7. Quarterly review of methane from coal-seams technology. Volume 7, Number 3, July-September 1989

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The report contains: sources of coal well information; Powder River Basin, Wyoming; greater Green River coal region, Wyoming and Colorado; Piceance Basin, Colorado; San Juan Basin, Colorado and New Mexico; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; the United States coalbed methane resource; western cretaceous coal seams project; multiple coal seams project; spalling and the development of a hydraulic fracturing strategy for coal; geologic evaluation of critical production parameters for coalbed methane resources; coalbed methane opportunities in Alberta; the coalbed methane forum; eastern coalbed methane forum.

  8. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P. (National Renewable Energy Lab., Golden, CO (United States)); Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States))

    1992-07-01T23:59:59.000Z

    To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

  9. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Executive Summary NREL is a national laboratory of the U for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF #12;Renewable Electricity Futures. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report

  10. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Bulk Electric Power Systems: Operations and Transmission by the Alliance for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  11. Purchasing Renewable Power

    Broader source: Energy.gov [DOE]

    Federal agencies can purchase renewable power or renewable energy certificates (RECs) from a utility or other organization to meet Federal renewable energy requirements. Renewable power and RECs are good choices for facilities where on-site projects may be difficult or capital budgets are limited.

  12. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  13. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2005-07-20T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we determined that by grinding the soil samples to a finer particle size of less than 250 ?m (sieve No. 60), the effect of mine soil coal particle size on the extent to which these particles will be oxidized during the thermal treatment of the carbon partitioning procedure will be eliminated, thus making the procedure more accurate and precise. In the second phase of the carbon sequestration project, we focused our attention on determining the sample size required for carbon accounting on grassland mined fields in order to achieve a desired accuracy and precision of the final soil organic carbon (SOC) estimate. A mine land site quality classification scheme was developed and some field-testing of the methods of implementation was completed. The classification model has been validated for softwoods (white pine) on several reclaimed mine sites in the southern Appalachian coal region. The classification model is a viable method for classifying post-SMCRA abandoned mined lands into productivity classes for white pine. A thinning study was established as a random complete block design to evaluate the response to thinning of a 26-year-old white pine stand growing on a reclaimed surface mine in southwest Virginia. Stand parameters were projected to age 30 using a stand table projection. Site index of the stand was found to be 32.3 m at base age 50 years. Thinning rapidly increased the diameter growth of the residual trees to 0.84 cm yr{sup -1} compared to 0.58 cm yr{sup -1} for the unthinned treatment; however, at age 26, there was no difference in volume or value per hectare. At age 30, the unthinned treatment had a volume of 457.1 m{sup 3} ha{sup -1} but was only worth $8807 ha{sup -1}, while the thinned treatment was projected to have 465.8 m{sup 3} ha{sup -1}, which was worth $11265 ha{sup -1} due to a larger percentage of the volume being in sawtimber size classes.

  14. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P. [National Renewable Energy Lab., Golden, CO (United States); Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States)

    1992-07-01T23:59:59.000Z

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

  15. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2004-06-04T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration potential of forests growing on 14 mined sites in a seven-state region in the Midwestern and Eastern Coalfields. Carbon contents of these forests were compared to adjacent forests on non-mined land. The study was installed as a 3 x 3 factorial in a random complete block design with three replications at each location. The treatments include three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Soil samples were collected from each plot to characterize the sites prior to treatment. Analysis of soil samples was completed and these data are being used to prepare fertilizer prescriptions. Fertilizer prescripts will be developed for each site. Fertilizer will be applied during the second quarter 2004. Data are included as appendices in this report. As part of our economic analysis of mined land reforestation, we focused on the implications of a shift in reforestation burden from the landowner to the mine operator. Results suggest that the reforestation of mined lands as part of the mining operation creates a viable and profitable forest enterprise for landowners with greater potential for carbon sequestration.

  16. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  17. Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01T23:59:59.000Z

    To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

  18. Quarterly review of methane from coal seams Technology. Volume 7, Numbers 1 and 2. October 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    Contents include: basin activities--(western Washington, Powder River Basin, Wyoming, Greater Green River Basin, Wyoming and Colorado, Piceance Basin, Colorado, San Juan Basin, Colorado and New Mexico, Raton Basin, Colorado and New Mexico, Black Warrior Basin, Alabama); features--(research in small-scale gas processing, GRI publications on coalbed methane, coalbed methane information sources); methane from coal seams research--(multiple coal seams project, hydrologic characterization of coal seams, spalling and the development of a hydraulic-fracturing strategy for coal, geologic evaluation of critical production parameters for coalbed methane resources, permeability changes resulting from gas desorption); technical events; departments.

  19. ARM - Methane Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat flux ARMMeasurementsMethane Gas Outreach Home Room

  20. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Product, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2006-09-30T23:59:59.000Z

    Concentrations of CO{sub 2} in the Earth’s atmosphere have increased dramatically in the past 100 years due to deforestation, land use change, and fossil fuel combustion. These humancaused, higher levels of CO{sub 2} may enhance the atmospheric greenhouse effect and may contribute to climate change. Many reclaimed coal-surface mine areas in the eastern U.S. are not in productive use. Reforestation of these lands could provide societal benefits, including sequestration of atmospheric carbon. The goal of this project was to determine the biological and economic feasibility of restoring high-quality forests on the tens of thousands of hectares of mined land and to measure carbon sequestration and wood production benefits that would be achieved from large-scale application of forest restoration procedures. We developed a mine soil quality model that can be used to estimate the suitability of selected mined sites for carbon sequestration projects. Across the mine soil quality gradient, we tested survival and growth performance of three species assemblages under three levels of silvicultural. Hardwood species survived well in WV and VA, and survived better than the other species used in OH, while white pine had the poorest survival of all species at all sites. Survival was particularly good for the site-specific hardwoods planted at each site. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Grassland to forest conversion costs may be a major contributor to the lack of reforestation of previously reclaimed mine lands in the Appalachian coal-mining region. Otherwise profitable forestry opportunities may be precluded by these conversion costs, which for many combinations of factors (site class, forest type, timber prices, regeneration intensity, and interest rate) result in negative land expectation values. Improved technology and/or knowledge of reforestation practices in these situations may provide opportunities to reduce the costs of converting many of these sites as research continues into these practices. It also appears that in many cases substantial payments, non-revenue values, or carbon values are required to reach “profitability” under the present circumstances. It is unclear when, or in what form, markets will develop to support any of these add-on values to supplement commercial forestry revenues. However, as these markets do develop, they will only enhance the viability of forestry on reclaimed mined lands, although as we demonstrate in our analysis of carbon payments, the form of the revenue source may itself influence management, potentially mitigating some of the benefits of reforestation. For a representative mined-land resource base, reforestation of mined lands with mixed pine-hardwood species would result in an average estimated C accumulation in forms that can be harvested for use as wood products or are likely to remain in the soil C pool at ~250 Mg C ha{sup -1} over a 60 year period following reforestation. The “additionality” of this potential C sequestration was estimated considering data in scientific literature that defines C accumulation in mined-land grasslands over the long term. Given assumptions detailed in the text, these lands have the potential to sequester ~180 Mg C ha{sup -1}, a total of 53.5 x 10{sup 6} Mg C, over 60 years, an average of ~900,000 Mg C / yr, an amount equivalent to about 0.04% of projected US C emissions at the midpoint of a 60-year period (circa 2040) following assumed reforestation. Although potential sequestration quantities are not great relative to potential national needs should an energy-related C emissions offset requirement be developed at some future date, these lands are available and unused for other economically valued purposes and many possess soil and site properties that are well-suited to reforestation. Should such reforestation occur, it would also produce ancillary benefits by providing env

  1. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-06-08T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on these sites, we developed a cost-effective method for partitioning total soil carbon to pedogenic carbon and geogenic carbon in mine soils. We are in the process of evaluating the accuracy and precision of the proposed carbon partitioning technique for which we are designing an experiment with carefully constructed mine soil samples. In a second effort, as part of a mined land reforestation project for carbon sequestration in southwestern Virginia we implemented the first phase of the carbon monitoring protocol that was recently delivered to DOE.

  2. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-12-01T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. Regression models of chemical and physical soil properties were created in order to estimate the SOC content down the soil profile. Soil organic carbon concentration and volumetric percent of the fines decreased exponentially down the soil profile. The results indicated that one-third of the total SOC content on mined lands was found in the surface 0-13 cm soil layer, and more than two-thirds of it was located in the 0-53 cm soil profile. A relative estimate of soil density may be best in broad-scale mine soil mapping since actual D{sub b} values are often inaccurate and difficult to obtain in rocky mine soils. Carbon sequestration potential is also a function of silvicultural practices used for reforestation success. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Relative to carbon value, our analysis this quarter shows that although short-rotation hardwood management on reclaimed surface mined lands may have higher LEVs than traditional long-rotation hardwood management, it is only profitable in a limited set of circumstances.

  3. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2004-11-29T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Tree survival, height and diameter were measured after the first growing season. There were significant treatment and treatment x site interactions. A STELLA{reg_sign}-based model helped us develop insight as to whether it is possible to differentiate the permanent SOC from the C contained in the labile forms of SOM. The model can be used for predicting the amount of C sequestered on mine lands, and the amount of C that is expected to reside in the mine soil for more than 1,000 years. Based on our work, it appears that substantial carbon payments to landowners would be required to reach ''profitability'' under present circumstances. However, even though the payments that we examine could generate non-negative LEVs, there is no guarantee that the payments will actually cause landowners to reforest in practice. It is landowner utility associated with forestland profitability that will be the determining factor in actual conversion--utility that likely would include cash flow timing, amenities, and even the credit position of the landowner.

  4. Central-northern Appalachian coalbed methane flow grows

    SciTech Connect (OSTI)

    Lyons, P.C. [Geological Survey, Reston, VA (United States)

    1997-07-07T23:59:59.000Z

    Over the past decade in the US, coalbed methane (CBM) has become an increasingly important source of unconventional natural gas. The most significant CBM production occurs in the San Juan basin of Colorado and new Mexico and the Black Warrior basin of Alabama, which collective in 1995 accounted for about 94% of US CBM production. The paper discusses early CBM production, recent production, gas composition, undiscovered potential, and new exploration areas.

  5. Catalytic performance of vanadium incorporated MCM-41 catalysts for the partial oxidation of methane to formaldehyde

    E-Print Network [OSTI]

    Haller, Gary L.

    that of oil. Methane, as the principle component of the natural gas and by product of oil refining and chemical processing, has been considered as an important sustainable feedstock for the chemical industry­4]. Industrially, formaldehyde is produced from methane by a three-step process including: (i) high temperature

  6. MOLECULAR SIMULATION OF PHASE EQUILIBRIA FOR WATER -METHANE AND WATER -ETHANE MIXTURES

    E-Print Network [OSTI]

    1 MOLECULAR SIMULATION OF PHASE EQUILIBRIA FOR WATER - METHANE AND WATER - ETHANE MIXTURES Jeffrey were used to calculate water - methane and water - ethane phase equilibria over a wide range and petrochemical industry, natural and petroleum gas production, and environmental control. For many

  7. NOTICE OF PUBLIC HEARING City of Industry Renewable Energy Resources

    E-Print Network [OSTI]

    NOTICE OF PUBLIC HEARING City of Industry Renewable Energy Resources Procurement Plan & Enforcement a public hearing to consider the adoption of the City of Industry Renewable Energy Resources Procurement to procure a minimum quantity of electricity products from eligible renewable energy resources, including

  8. Applied Catalysis A: General 192 (2000) 227234 Hydrogen production via the direct cracking of methane over Ni/SiO2

    E-Print Network [OSTI]

    zur Loye, Hans-Conrad

    2000-01-01T23:59:59.000Z

    Applied Catalysis A: General 192 (2000) 227­234 Hydrogen production via the direct cracking al. / Applied Catalysis A: General 192 (2000) 227­234 to be the diffusion of carbon through the metal

  9. Natural Innovative Renewable Energy formerly Northwest Iowa Renewable...

    Open Energy Info (EERE)

    Natural Innovative Renewable Energy formerly Northwest Iowa Renewable Energy Jump to: navigation, search Name: Natural Innovative Renewable Energy (formerly Northwest Iowa...

  10. Renewable energy annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

  11. FEMP Renewable Energy Overview

    SciTech Connect (OSTI)

    Not Available

    2003-06-01T23:59:59.000Z

    This four-page overview describes how Federal agencies can contact the Department of Energy's Federal Energy Management Program (FEMP) to obtain assistance in acquiring renewable energy systems, renewable fuels, and renewable ("green") power for use in their facilities and vehicles. Renewable resources, technologies, and fuels are described, as well as Federal goals for using clean, sustainable renewable energy; the current goal is to supply 2.5% of the Federal Government's energy with renewable sources by 2005. Also included is a description of the resources and technologies themselves and associated benefits.

  12. Conversion of methane to higher hydrocarbons (Biomimetic catalysis of the conversion of methane to methanol). Final report

    SciTech Connect (OSTI)

    Watkins, B.E.; Taylor, R.T.; Satcher, J.H. [and others

    1993-09-01T23:59:59.000Z

    In addition to inorganic catalysts that react with methane, it is well-known that a select group of aerobic soil/water bacteria called methanotrophs can efficiently and selectively utilize methane as the sole source of their energy and carbon for cellular growth. The first reaction in this metabolic pathway is catalyzed by the enzyme methane monooxygenase (MMO) forming methanol. Methanol is a technology important product from this partial oxidation of methane since it can be easily converted to liquid hydrocarbon transportation fuels (gasoline), used directly as a liquid fuel or fuel additive itself, or serve as a feedstock for chemicals production. This naturally occurring biocatalyst (MMO) is accomplishing a technologically important transformation (methane directly to methanol) for which there is currently no analogous chemical (non-biological) process. The authors approach has been to use the biocatalyst, MMO, as the initial focus in the development of discrete chemical catalysts (biomimetic complexes) for methane conversion. The advantage of this approach is that it exploits a biocatalytic system already performing a desired transformation of methane. In addition, this approach generated needed new experimental information on catalyst structure and function in order to develop new catalysts rationally and systematically. The first task is a comparative mechanistic, biochemical, and spectroscopic investigation of MMO enzyme systems. This work was directed at developing a description of the structure and function of the catalytically active sites in sufficient detail to generate a biomimetic material. The second task involves the synthesis, characterization, and chemical reactions of discrete complexes that mimic the enzymatic active site. These complexes were synthesized based on their best current understanding of the MMO active site structure.

  13. Indian Ministry of New and Renewable Energy formerly Ministry...

    Open Energy Info (EERE)

    Renewable Energy (formerly Ministry of Non-Conventional Energy Sources) Place: New Delhi, India Zip: 110 003 Product: Involved in policy making, planning, programme formulation and...

  14. Energy Department Policy on Acquiring Tribal Renewable Energy...

    Broader source: Energy.gov (indexed) [DOE]

    As part of the Department of Energy's efforts to support tribal renewable energy production, Secretary Steven Chu has issued a policy statement and guidance to give preference to...

  15. Integrating High Levels of Renewables into the Lanai Electric...

    Broader source: Energy.gov (indexed) [DOE]

    production and use on Lanai. Phase 1 of this report evaluated renewable energy potential to meet the existing load. The initial analysis used solar and wind resource...

  16. Renewable Energy Trust Fund

    Broader source: Energy.gov [DOE]

    The renewable energy fund, known as the Massachusetts Renewable Energy Trust Fund, is supported by a non-bypassable surcharge of $0.0005 per kilowatt-hour (0.5 mill/kWh), imposed on customers of...

  17. Assessing Renewable Energy Options

    Broader source: Energy.gov [DOE]

    Federal agencies should assess renewable energy options for each specific project when integrating renewable energy in new building construction or major renovations. This section covers the preliminary screening, screening, feasibility study, and sizing and designing systems phases.

  18. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-09-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  19. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-10-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  20. Estimating Renewable Energy Costs

    Broader source: Energy.gov [DOE]

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  1. Phasing Renewable Energy Implementation

    Broader source: Energy.gov [DOE]

    If conventional or other renewable energy funding cannot be procured, or if an agency is working towards a higher goal for renewable energy usage that cannot be met with the current budget,...

  2. Renewable Energy Growth Program

    Broader source: Energy.gov [DOE]

    In 2014, Act H 7727 created the Renewable Energy Growth (REG) program with the goal to promote installation of grid connected renewable energy within the load zones of electric distribution...

  3. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-11-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  4. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2013-04-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  5. The Renewable Energy Footprint

    E-Print Network [OSTI]

    Outka, Uma

    2011-01-01T23:59:59.000Z

    With the shift toward renewable energy comes the potential for staggering land impacts – many millions of acres may be consumed to meet demand for electricity and fuel over the next 20 years. To conservationists’ dismay, the more renewable energy we...

  6. Renewables and Sector Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Community Renewable Energy Success Stories Webinar series presentation by Susanna Sutherland, City of Knoxville, Tennessee, on financing solar energy systems.

  7. INFORMATION FOR RENEWABLE ENERGY

    E-Print Network [OSTI]

    ENHANCING INFORMATION FOR RENEWABLE ENERGY TECHNOLOGY DEPLOYMENT IN BRAZIL, CHINA, AND SOUTH AFRICA UNITEDNATIONSENERGYPROGRAMME #12;#12;Enhancing Information for Renewable Energy Technology Deployment in Brazil, China Palmer, JL Van Niekerk, Center for Renewable and Sustainable Energy Studies (CRSES) in South Africa E

  8. Renewable energy and telecommunications

    E-Print Network [OSTI]

    Renewable energy and telecommunications Case study: Energy Systems Week When AK Erlang first used fossil fuels and switch to renewable energy sources. But the unlikely convergence of the two fields lay to be able to deal with. "If we integrate renewable energies, such as wind power, in the electricity grid

  9. COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM

    E-Print Network [OSTI]

    COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK Fourth Edition Manager Renewable Energy Office G. William Pennington Acting Deputy Director Efficiency and Renewable of how the Energy Commission's Renewable Energy Program is administered and outlines terms

  10. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Groups, Organizations, and Associations Australian Clean Energy Council Marine Renewable Energy (BWEA) California Energy Commission Energy Efficiency and Renewable...

  11. Sensitivity analysis of modeling parameters that affect the dual peaking behaviour in coalbed methane reservoirs

    E-Print Network [OSTI]

    Okeke, Amarachukwu Ngozi

    2006-10-30T23:59:59.000Z

    of the various modeling parameters on its reservoir performance. A dual porosity coalbed methane simulator is used to model primary production from a single well coal seam, for a variety of coal properties for this work. Varying different coal properties...

  12. Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors

    SciTech Connect (OSTI)

    Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

    2014-02-01T23:59:59.000Z

    Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

  13. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    for renewable hydrogen, which can be used in stationary fuel cells and fuel cell electric vehicles. The methane to conventional natural gas, and thus can be injected into the pipeline grid or used as a transportation fuel in a compressed or liquefied form. Renewable natural gas is considered a "drop-in" fuel for the natural gas

  14. Renewable energy annual 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  15. Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data

    E-Print Network [OSTI]

    Gupta, A.

    2010-01-01T23:59:59.000Z

    From The Mallik 2002 Gas Hydrate Production Research Wellrate constant of methane gas hydrate decomposition. CanadianJNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie

  16. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Not Available

    2006-11-01T23:59:59.000Z

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  17. Power marketing and renewable energy

    SciTech Connect (OSTI)

    Fang, J.M.

    1997-09-01T23:59:59.000Z

    Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

  18. Creative renewable energy purchasing options for businesses

    SciTech Connect (OSTI)

    Lokey, Elizabeth

    2007-01-15T23:59:59.000Z

    Green energy providers are creating novel ways for large commercial clients to get involved in the long-term development of renewable energy generation. Some plans are designed to allow the purchase of energy to provide long-term off-take stability and other financial benefits to companies developing renewable energy projects. Two new insurance products could help absorb some of the financial risk taken on by the clients. (author)

  19. Renewable Energy Can Help Reduce Oil Dependency

    SciTech Connect (OSTI)

    Arvizu, Dan

    2010-01-01T23:59:59.000Z

    In a speech to the Economic Club of Kansas City on June 23, 2010, NREL Director Dan Arvizu takes a realistic look at how renewable energy can help reduce America's dependence on oil, pointing out that the country gets as much energy from renewable sources now as it does from offshore oil production. For a transcript, visit http://www.nrel.gov/director/pdfs/energy_overview_06_10.pdf

  20. Renewable Energy Can Help Reduce Oil Dependency

    ScienceCinema (OSTI)

    Arvizu, Dan

    2013-05-29T23:59:59.000Z

    In a speech to the Economic Club of Kansas City on June 23, 2010, NREL Director Dan Arvizu takes a realistic look at how renewable energy can help reduce America's dependence on oil, pointing out that the country gets as much energy from renewable sources now as it does from offshore oil production. For a transcript, visit http://www.nrel.gov/director/pdfs/energy_overview_06_10.pdf

  1. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect (OSTI)

    Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany); Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany)

    2011-05-15T23:59:59.000Z

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

  2. Nonequilibrium clumped isotope signals in microbial methane

    E-Print Network [OSTI]

    Wang, David T.

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its ...

  3. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

    1998-02-24T23:59:59.000Z

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

  4. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, Richard P. (Pittsburgh, PA); Taylor, Charles E. (Pittsburgh, PA); D'Este, Joseph R. (Pittsburgh, PA)

    1998-01-01T23:59:59.000Z

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

  5. Methane Activation Structural and Mechanistic Requirements for

    E-Print Network [OSTI]

    Iglesia, Enrique

    Methane Activation Structural and Mechanistic Requirements for Methane Activation and Chemical and petrochemical processes and in fuel cells. The strong bonds in CH4 (439 kJmolŔ1 [1] ) and the endothermic nature by BP as part of the Methane Conversion Cooperative Research Program at the University of California

  6. Differentiation Self-renewal

    E-Print Network [OSTI]

    Glyde, Henry R.

    Off state Ras Ras­GAP PI3K ERK1 ERK2 Differentiation SC1 SC1 Self-renewal Ras On state GDP GTP N NN, which promotes stem-cell self-renewal. Activated Ras also switches on the enzymes ERK1 and ERK2, which-cell renewal via the PI3K pathway. SC1 also inhibits ERK1 and ERK2, thus blocking stem-cell differentiation. PI

  7. Methane adsorption on Devonian shales 

    E-Print Network [OSTI]

    Li, Fan-Chang

    1992-01-01T23:59:59.000Z

    METHANE ADSORPTION ON DEVONIAN SHALES A Thesis by FAN-CHANG LI Submitted to thc Office of Graclua4e Sturiics of texas AgiM Ulllvel'sliy in pari, ial fulfilhuent of t, hc requirements I'or t, hc degree of ii IAS'I'Elf OF SCIL'NCE December... 1992 Major Subject, : Chemical Engineering METHANE ADSORPTION ON DEVONIAN SHALES A Thesis l&y I'AN-CHANC LI Approved as to style and contcut by: A. T. 'vtratson (Chair of Commitl. ee) John C. Slattery (Member) Bruce . Hcrhcrt (Memhcr...

  8. Methane adsorption on Devonian shales

    E-Print Network [OSTI]

    Li, Fan-Chang

    1992-01-01T23:59:59.000Z

    METHANE ADSORPTION ON DEVONIAN SHALES A Thesis by FAN-CHANG LI Submitted to thc Office of Graclua4e Sturiics of texas AgiM Ulllvel'sliy in pari, ial fulfilhuent of t, hc requirements I'or t, hc degree of ii IAS'I'Elf OF SCIL'NCE December... 1992 Major Subject, : Chemical Engineering METHANE ADSORPTION ON DEVONIAN SHALES A Thesis l&y I'AN-CHANC LI Approved as to style and contcut by: A. T. 'vtratson (Chair of Commitl. ee) John C. Slattery (Member) Bruce . Hcrhcrt (Memhcr...

  9. Renewable Energy Renaissance Zones

    Broader source: Energy.gov [DOE]

    For the purposes of renaissance zone designation, “renewable energy facility” means a facility that creates energy, fuels, or chemicals directly from the wind, the sun, trees, grasses, biosolids,...

  10. Renewable Energy System Exemption

    Broader source: Energy.gov [DOE]

    In March 2010, South Dakota established a new property tax incentive that replaced two existing property tax incentives for renewable energy. Facilities that generate electricity using wind, solar,...

  11. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    Rhode Island's Renewable Energy Standard (RES), established in June 2004, requires the state's retail electricity providers -- including non-regulated power producers and distribution companies --...

  12. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    In October 2008, Michigan enacted the Clean, Renewable, and Efficient Energy Act, Public Act 295, requiring the state's investor-owned utilities, alternative retail suppliers, electric cooperativ...

  13. EMSL - renewable energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    renewable-energy en Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F+ Ions. http:www.emsl.pnl.govemslwebpublicationsmicrostructure-and-cs...

  14. Renewable energy generation sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-4078P. Renewable Systems & Energy Infrastructure | Solar Programs Sandia mechanical technologist...

  15. COMMISSION REPORT DEVELOPING RENEWABLE

    E-Print Network [OSTI]

    , state properties, photovoltaic, wind, biomass, geothermal, small hydro, storage, distributed renewable distributed generation ­ onsite or small energy systems located close to where

  16. COMMISSION GUIDEBOOK RENEWABLES PORTFOLIO

    E-Print Network [OSTI]

    for tracking and verifying compliance with the RPS. Keywords: Biodiesel, biogas, biomass, biomethane, pipeline biomethane, power purchase agreement, Qualified Reporting Entity, RECs, renewable energy

  17. Renewable Energy Goal

    Broader source: Energy.gov [DOE]

    The Oklahoma Corporation Commission reported that 18.42% (4,056 MW) of installed capacity came from eligible renewable energy resources in 2013.

  18. Columbia- Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    In November 2004, voters in Columbia, Missouri approved a proposal to adopt a local renewables portfolio standard (RPS).* The initiative requires the city's municipal utility, Columbia Water and...

  19. Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    In February 2009, the District Department of the Environment (DDOE) introduced the Renewable Energy Incentive Program (REIP), a rebate for solar photovoltaic (PV) systems. In April 2012, solar...

  20. Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    Maine's original Renewable Resource Portfolio Requirement was passed as part of the state's 1997 electric-utility restructuring law. In 1999, Maine's Public Utility Commission (PUC) adopted rules...

  1. Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas

    E-Print Network [OSTI]

    Saugier, Luke Duncan

    2004-09-30T23:59:59.000Z

    such as power plants. CO2 emissions can be offset by sequestration of produced CO2 in natural reservoirs such as coal seams, which may initially contain methane. Production of coalbed methane can be enhanced through CO2 injection, providing an opportunity...

  2. Full Text HTML Methane can be a problem or a solution, depending on one's viewpoint or circumstance. For

    E-Print Network [OSTI]

    accept electrons," says Logan. "Efficient methane production fueled by electrons directly from is significant about this publication is the reported efficiency of energy transformation; 80% efficiency from wind or solar power sources; the methane could then be stored as fuel for later use, says Logan

  3. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    Scale Renewable Energy Integration . . . . . . . . . . .Impacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

  4. Renewable Energy Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Renewable Energy Technologies Renewable Energy Technologies State, local, and tribal governments can harness renewable energy technologies from natural sources-...

  5. Methane oxidation over dual redox catalysts. Final report

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Sojka, Z.; DiCosimo, J.I.; DeTavernier, S.

    1992-06-01T23:59:59.000Z

    Catalytic oxidation of methane to partial oxidation products, primarily formaldehyde and C{sub 2} hydrocarbons, was found to be directed by the catalyst used. In this project, it was discovered that a moderate oxidative coupling catalyst for C{sub 2} hydrocarbons, zinc oxide, is modified by addition of small amounts of Cu and Fe dopants to yield fair yields of formaldehyde. A similar effect was observed with Cu/Sn/ZnO catalysts, and the presence of a redox Lewis acid, Fe{sup III} or Sn{sup IV}, was found to be essential for the selectivity switch from C{sub 2} coupling products to formaldehyde. The principle of double doping with an oxygen activator (Cu) and the redox Lewis acid (Fe, Sn) was pursued further by synthesizing and testing the CuFe-ZSM-5 zeolite catalyst. The Cu{sup II}(ion exchanged) Fe{sup III}(framework)-ZSM-5 also displayed activity for formaldehyde synthesis, with space time yields exceeding 100 g/h-kg catalyst. However, the selectivity was low and earlier claims in the literature of selective oxidation of methane to methanol over CuFe-ZSM-5 were not reproduced. A new active and selective catalytic system (M=Sb,Bi,Sn)/SrO/La{sub 2}O{sub 3} has been discovered for potentially commercially attractive process for the conversion of methane to C{sub 2} hydrocarbons, (ii) a new principle has been demonstrated for selectivity switching from C{sub 2} hydrocarbon products to formaldehyde in methane oxidations over Cu,Fe-doped zinc oxide and ZSM-5, and (iii) a new approach has been initiated for using ultrafine metal dispersions for low temperature activation of methane for selective conversions. Item (iii) continues being supported by AMOCO while further developments related to items (i) and (ii) are the objective of our continued effort under the METC-AMOCO proposed joint program.

  6. Renewable Energy Act (Prince Edward Island, Canada)

    Broader source: Energy.gov [DOE]

    The Renewable Energy Act outlines the renewable portfolio goals, permitting for renewable projects, regulatory authority, net metering system regulations, purchase price regulations, and renewable...

  7. 6, 68416852, 2006 Methane emission

    E-Print Network [OSTI]

    Boyer, Edmond

    is an important greenhouse gas, whose radiative forcing (1750­1998) has been estimated to be 0.48 Wm -2 , 20). The methane bud-15 get (sources and sinks) was believed to be relatively well known, however, recently confusing results were obtained in studies of CH4 soil fluxes in the Venezuelan savanna region (Hao et al

  8. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23T23:59:59.000Z

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  9. Methane production using resin-wafer electrodeionization

    DOE Patents [OSTI]

    Snyder, Seth W; Lin, YuPo; Urgun-Demirtas, Meltem

    2014-03-25T23:59:59.000Z

    The present invention provides an efficient method for creating natural gas including the anaerobic digestion of biomass to form biogas, and the electrodeionization of biogas to form natural gas and carbon dioxide using a resin-wafer deionization (RW-EDI) system. The method may be further modified to include a wastewater treatment system and can include a chemical conditioning/dewatering system after the anaerobic digestion system. The RW-EDI system, which includes a cathode and an anode, can either comprise at least one pair of wafers, each a basic and acidic wafer, or at least one wafer comprising of a basic portion and an acidic portion. A final embodiment of the RW-EDI system can include only one basic wafer for creating natural gas.

  10. Kansas Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015YearYear Jan

  11. Kentucky Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks

  12. Ohio Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb(BillionDecade Year-0 Year-1Coalbed

  13. Oklahoma Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear Jan Feb

  14. Pennsylvania Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYearYear Jan8,859

  15. Alabama Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N

  16. Arkansas Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year JanDecade Year-0Proved

  17. Wyoming Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan FebOECD/IEA -

  18. Methane Hydrate Production Feasibility | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstitute Regarding ProposedOnU.SformentorsTheThe red

  19. Virginia Coalbed Methane Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year JanThousand Cubic Feet)%per

  20. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect (OSTI)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30T23:59:59.000Z

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

  1. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01T23:59:59.000Z

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  2. State Renewable Electricity Profiles

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Presents a summary of current and recent historical data for the renewable electric power industry. The data focuses on net summer capacity and net generation for each type of renewable generator, as well as fossil-fired and nuclear power plant types, for the period 2006 through 2010.

  3. Renewable Energy in Alaska

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  4. Offshore Renewable Energy Solutions

    E-Print Network [OSTI]

    and sustainable energy supply. The UK is uniquely placed to harness its natural resources ­ wind, wave and tidal power ­ to meet its target of achieving 15% of energy consumption from renewable sources by 2020. CefasOffshore Renewable Energy Solutions #12;Cefas: meeting complex requirements The Centre

  5. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  6. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  7. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  8. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Energy Laboratory; pp. 6-1 ­ 6-58. Chapter 7. Geothermal Energy Technologies Augustine, C.; Denholm, P.; Heath, G.; Mai, T.; Tegen, S.; Young. K. (2012). "Geothermal Energy Technologies," Chapter 7.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance

  9. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2012-10-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  10. Renewable Energy Annual

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Presents five chapters covering various aspects of the renewable energy marketplace, along with detailed data tables and graphics. Particular focus is given to renewable energy trends in consumption and electricity; manufacturing activities of solar thermal collectors, solar photovoltaic cells/modules, and geothermal heat pumps; and green pricing and net metering programs. The Department of Energy provides detailed offshore

  11. Energy Conservation Renewable Energy

    E-Print Network [OSTI]

    Delgado, Mauricio

    Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

  12. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  13. The relationship between policy choice and the size of the policy region: Why small jurisdictions may prefer renewable energy policies to reduce CO2 emissions

    E-Print Network [OSTI]

    Accordino, Megan H.; Rajagopal, Deepak

    2012-01-01T23:59:59.000Z

    be generated by quali?ed renewable resources. In the U.S. ,production from renewable resources, the cost of reducing COrenewable and non-renewable resources. Burtraw et al. (2012)

  14. Renewable and Non-Renewable Resources Tariff RNR-7 (Georgia)

    Broader source: Energy.gov [DOE]

    The Renewable and Non-Renewable Resource tariff is authorized by the Georgia Public Service Commission (PSC), which requires that the investor owned utility, Georgia Power Company, purchase...

  15. Renewable Energy Projections as Published in the National Renewable...

    Open Energy Info (EERE)

    Projections as Published in the National Renewable Energy Action Plans of the European Member States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy...

  16. COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM

    E-Print Network [OSTI]

    COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK Fifth Edition Gonçalves Office Manager Renewable Energy Office Dave Ashuckian, P.E. Deputy Director Efficiency and Renewable Energy Division Robert P. Oglesby Executive Director The California Energy Commission formally

  17. COMMISSION REPORT RENEWABLE ENERGY PROGRAM

    E-Print Network [OSTI]

    COMMISSION REPORT RENEWABLE ENERGY PROGRAM 2011 ANNUAL REPORT Authors Lorraine Gonzalez Madeleine Meade Project Manager Tony Gonçalves Office Manager Renewable Energy Office Panama Bartholomy Deputy Director Energy Efficiency and Renewables Division Robert Oglesby

  18. COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM

    E-Print Network [OSTI]

    COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK Sixth Edition Gonçalves Office Manager Renewable Energy Office Dave Ashuckian, P.E. Deputy Director Efficiency and Renewable Energy Division Robert P. Oglesby Executive Director The California Energy Commission formally

  19. Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy,

    E-Print Network [OSTI]

    of Energy Efficiency, Renewable Energy, and Small-Scale Cogeneration from electricity generation. Renewable energy, energy efficiency, and energy, where performance is measured relative to three objectives: energy production

  20. RenewableS 2011 GLOBAL STATUS REPORT

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    energy worldwide as of early 2011. The report covers both current status and key trends; by design, it does not provide analysis or forecast the future. Global energy consumption rebounded in 2010 after energy consumption. Renewable energy accounted for approximately half of the estimated 194 gigawatts (GW

  1. Reduction of ruminant methane emissions - a win-win-win opportunity for business, development, and the environment

    SciTech Connect (OSTI)

    Livingston, R. [Appropriate Technology International, Washington, DC (United States)

    1997-12-31T23:59:59.000Z

    This paper describes research efforts of The Global Livestock Producers Program (GLPP) in establishing self-sustaining enterprises for cost-effective technologies (i.e., animal nutrition and genetic improvement) and global methane emissions reductions in developing world nations. The US Environmental Protection Agency has funded several studies to examine the possibilities of reducing ruminant methane emissions in India, Tanzania, Bangladesh, and Brazil. The results of the studies showed that: (1) many developing countries` production systems are inefficient, and (2) great potential exists for decreasing global methane emissions through increasing animal productivity. From this effort, the GLPP established livestock development projects in India, Zimbabwe, and Tanzania, and is developing projects for Bangladesh, Nepal, and Brazil. The GLPP has developed a proven methodology for assessing ruminant methane and incorporating methane emissions monitoring into viable projects.

  2. Sandia Energy - Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    need to integrate renewable energy, improve energy efficiency, and allow consumers more control over their energy consumption. One of the challenges of renewable power generation...

  3. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  4. Renewable Energy Catalog of Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Catalog of Services U.S. Department of Energy Federal Energy Management Program November 2014 Renewable Energy Catalog of Services Contacts Contacts Jesse Gary...

  5. Renewable Energy | Department of Energy

    Office of Environmental Management (EM)

    Science & Innovation Energy Sources Renewable Energy Renewable Energy Watch as these fourth grade students go from learning about electricity to making their own electricity...

  6. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014, in Computational Modeling & Simulation, Energy, News, News & Events, Partnership, Renewable Energy, Water Power Sandia and the National Renewable Energy Laboratory (NREL)...

  7. Solar Renewable Energy Certificates (SRECs)

    Broader source: Energy.gov [DOE]

    Maryland's Renewable Energy Portfolio Standard, enacted in May 2004 and revised in 2007 and 2008, requires electricity suppliers (all utilities and competitive retail suppliers) to use renewable...

  8. Western Renewable Energy Zones (Presentation)

    SciTech Connect (OSTI)

    Hein, J.

    2011-06-01T23:59:59.000Z

    This presentation summarizes recent developments and trends pertaining to competitive renewable energy zones, transmission planning and the integration of renewable generation resources.

  9. Renewable Natural Gas- Developer Perspective

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsRenewable Natural Gas - Developer PerspectiveDavid Ross, Managing Director, MultiGen International, LLC

  10. The Methane to Markets Coal Mine Methane Subcommittee meeting

    SciTech Connect (OSTI)

    NONE

    2008-07-01T23:59:59.000Z

    The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

  11. Programs in Renewable Energy

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    Our nation faces significant challenges as we enter the 1990s: securing a reliable supply of competitively priced energy, improving the quality of our environment, and increasing our share of foreign markets for goods and services. The US Department of Energy's (DOE) Programs in Renewable Energy are working toward meeting these challenges by developing the technologies that make use of our nation's largest energy resource: renewable energy. The sunlight, wind biomass, flowing water, ocean energy, and geothermal energy that make up the renewable energy resource can be found throughout our nation. These resources can provide all the forms of energy our nation needs: liquid fuels, electricity, and heating and cooling. Renewable energy meets about 10% of our need for these forms of energy today, yet the potential contribution is many times greater. DOE's Programs in Renewable Energy are working side-by-side with American industry to develop the technologies that convert renewable energy resources into practical, cost-competitive energy. After a decade of progress in research, several of these technologies are poised to make large contributions during the 1990s and beyond. This booklet provides an overview of the renewable energy programs and their plans for FY 1990. Sources of additional information are listed at the back of the booklet. 48 figs., 4 tabs.

  12. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect (OSTI)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01T23:59:59.000Z

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  13. Renewable Energy Research Planning for Renewable-based

    E-Print Network [OSTI]

    Renewable Energy Research Planning for Renewable-based Energy Security and Prosperity in Humboldt County www.energy.ca.gov/research/renewable May 2011 The Issue Currently, the tools and models needed of the county, however, offers much potential. Many indigenous renewable energy resources, such as biomass

  14. US STATE POLICIES FOR RENEWABLE ENERGY: CONTEXT AND EFFECTIVENESS

    E-Print Network [OSTI]

    Delmas, Magali

    emissions come primarily from the combustion of fossil fuels in energy use. Energy-related carbon dioxide to sell green products, disclosure policies, and subsidies. Analyzing the effectiveness of state renewable://www.eia.doe.gov/bookshelf/brochures/greenhouse/Chapter1.htm This is without hydroelectricity. Biomass (71%) was the predominant non-hydro renewable fuel

  15. Biomass IBR Fact Sheet: Renewable Energy Institute International

    Broader source: Energy.gov [DOE]

    The Renewable Energy Institute International, in collaboration with Red Lion Bio-Energy and Pacific Renewable Fuels, is demonstrating a pilot, pre-commercial-scale integrated biorefinery for the production of high-quality, synthetic diesel fuels from agriculture and forest residues using advanced thermochemical and catalytic conversion technologies.

  16. Eastern Renewable Generation Integration Study Solar Dataset (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01T23:59:59.000Z

    The National Renewable Energy Laboratory produced solar power production data for the Eastern Renewable Generation Integration Study (ERGIS) including "real time" 5-minute interval data, "four hour ahead forecast" 60-minute interval data, and "day-ahead forecast" 60-minute interval data for the year 2006. This presentation provides a brief overview of the three solar power datasets.

  17. DRAFT COMMITTEE REPORT RENEWABLE ENERGY PROGRAM

    E-Print Network [OSTI]

    of Renewable Resource Trust Fund dollars, information on cash flow, program activities and results, and projects and funding awards. Keywords: Renewable Energy Program, Renewable Resource Trust Fund Facilities Program, New Renewable Resources Account, Existing Renewable Facilities Program, Emerging

  18. Renewable Portfolio Standard

    E-Print Network [OSTI]

    Hydroelectric Project as its original baseline eligible renewable energy resource project, and MID also hydroelectric unit, the Stone Drop Electric Generation Station (the Stone Drop Station). The Stone Drop

  19. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    With the passage of [http://www.secstate.wa.gov/elections/initiatives/text/I937.pdf Initiative 937] in 2006, Washington became the second state after Colorado to pass a renewable energy standard by...

  20. Renewable Energy Grant Program

    Broader source: Energy.gov [DOE]

    In May 2008, Alaska enacted legislation authorizing the creation of a renewable energy grant fund. The legislation recommended that the program be administered by the Alaska Energy Authority (AEA)....

  1. Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    New Hampshire enacted legislation (H.B. 1628) in July 2008 requiring the state's Public Utilities Commission (PUC) to establish and administer a rebate program for certain renewable-energy systems....

  2. COMMISSION GUIDEBOOK RENEWABLES PORTFOLIO

    E-Print Network [OSTI]

    pipeline, conduit hydroelectric, digester gas, electrolysis, eligibility, energy storage, fuel cell thermal, supplemental energy payments, tidal current, tradable renewable energy credits, TRECs, water Guidebook APRIL 2013 CEC3002013005ED7CMF CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor

  3. COMMISSION GUIDEBOOK RENEWABLES PORTFOLIO

    E-Print Network [OSTI]

    pipeline, conduit hydroelectric, digester gas, electrolysis, eligibility, energy storage, fuel cell thermal, supplemental energy payments, tidal current, tradable renewable energy credits, TRECs, water Guidebook APRIL 2013 CEC3002013005ED7CMFREV CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor

  4. Renewable Power Procurement Policy

    Broader source: Energy.gov [DOE]

    New York Governor George Pataki signed Executive Order No. 111 to promote "Green and Clean" State Buildings and Vehicles on June 10, 2001. The renewable-power procurement component of this order...

  5. Renewable Auction Mechanism (RAM)

    Broader source: Energy.gov [DOE]

    The Renewable Auction Mechanism (RAM), approved by the California Public Utilities Commission (CPUC) in December 2010, is expected to result in 1,299 megawatts (MW) of new distributed generation ...

  6. Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    In January 2005, the District of Columbia Council enacted a renewable portfolio standard (RPS) that applies to all retail electricity sales in the District. In October 2008 the RPS was amended by...

  7. Alaska Renewable Energy Fair

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

  8. Solar Renewable Energy Certificates

    Broader source: Energy.gov [DOE]

    In January 2005, the District of Columbia (D.C.) Council enacted a renewable portfolio standard (RPS) with a solar carve-out that applies to all retail electricity sales in the District. In October...

  9. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: methane from coal seams

    SciTech Connect (OSTI)

    Ethridge, L.J.; Cowan, C.E.; Riedel, E.F.

    1980-07-01T23:59:59.000Z

    Potential public health and safety problems and the potential environmental impacts from the recovery of gas from coalbeds are identified and examined. The technology of methane recovery is described and economic and legal barriers to production are discussed. (ACR)

  10. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  11. National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar EnergyKambaraorRENEWABLE ENERGY AND ENERGY EFFICIENCY

  12. Renewable energy generation sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewableIndustrialenergy

  13. 2008 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  14. RENEWABLES 2007 GLOBAL STATUS REPORT

    E-Print Network [OSTI]

    Kammen, Daniel M.

    RENEWABLES 2007 GLOBAL STATUS REPORT www.ren21.net #12;Renewable Energy Policy Network for the 21st renewable energy. It provides a forum for leadership and exchange in international policy processes. It bolsters appropriate policies that increase the wise use of renewable energies in developing

  15. Renewable Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    Explore the following renewable energy technology areas for resources and information focusing on Federal application opportunities.

  16. Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions

    E-Print Network [OSTI]

    Zhang, Youxue

    Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions are suitable for gas hydrate stability [Lunine and Stevenson, 1985]. Enor- mous amounts of methane are stored as gas hydrate and free gas in the pore space of marine sediment [Kvenvolden, 1988; Buffet, 2000

  17. Anaerobic Methane Oxidation in a Landfill-Leachate Plume

    E-Print Network [OSTI]

    Grossman, E. L.; Cifuentes, L. A.; Cozzarelli, I. M.

    2002-01-01T23:59:59.000Z

    , and (2) negligible oxygen, nitrate, and sulfate concentrations. Methane concentrations and stable carbon isotope (?13C) values suggest anaerobic methane oxidation was occurring within the plume and at its margins. Methane ?13C values increased from about...

  18. Fueling America Through Renewable Resources Purdue extension

    E-Print Network [OSTI]

    Fueling America Through Renewable Resources BioEnergy Purdue extension The effect of ethanol The rapid growth of ethanol production in Indiana is leading to drastic changes in grain marketing movements of ethanol and byproducts. With no end in sight for the expansion of ethanol plants in the state

  19. Key Renewable Energy Opportunities for Oklahoma Tribes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » MethaneJohnson ControlsJoyceEnergy Key Renewable

  20. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    conversion methods (landfill gas?to?methane production, from the Minnesota Methane landfill gas facilities.   In conversion of sewer gas, landfill gas, or other renewable 

  1. Scientists detect methane levels three times larger than expected...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methane that actually preceded recent concerns about potential emissions from fracking," Dubey said. Scientists detect methane levels three times larger than expected over...

  2. Direct Observation of the Active Center for Methane Dehydroaromatizati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Dehydroaromatization Using an Ultrahigh Field 95Mo NMR Spectroscopy. Abstract: Direct conversion of methane to value-added chemicals remains a challenge from both...

  3. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Energy Savers [EERE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office...

  4. Atmospheric methane flux from coals - preliminary investigation of coal mines and geologic structures in the Black Warrior Basin, Alabama

    SciTech Connect (OSTI)

    Clayton, J.L.; Leventhal, J.S.; Rice, D.D. (Geological Survey, Denver, CO (United States)); Pashin, J.C. (Geological Survey of Alabama, Tuscaloosa, AL (United States)); Mosher, B.; Czepiel, P. (Univ. of New Hampshire, Durham, NH (United States))

    1993-01-01T23:59:59.000Z

    Methane is an important greenhouse gas whose concentration in the atmosphere is increasing. Although this increase in atmospheric methane is correlative with growth in human population and activities, the exact causes for the increase are not fully understood. Because of increasing energy demand, particularly in developing countries where population is increasing, coal production is likely to increase over the next few decades and this could further increase the flux of atmospheric methane. In addition, no data are currently available on methane flux from coalbeds as a result of natural processes such as leakage at outcrops, or along faults and fractures that could provide avenues for methane migration upward from coal at depth. To better understand the global methane cycle and the role of fossil fuels in methane emissions, field measurements of methane emissions are needed from coalbeds, from areas of active mining, from coalbed gas production, and from undisturbed coals. In this paper, we report results of field measurements of CH[sub 4] emissions from surface and underground mines, fault zones, and coreholes in the Black Warrior Basin, Alabama. Ventilation of underground mines in Mary Lee group coals (of economic usage) gave the highest methane emissions rates - about 71,480,000 m[sup 3]/yr (2.5 Bcf or billion cubic feet) from one ventilation shaft. In contrast, very low emissions occurred from active or abandoned coreholes and from Brookwood group coals (of economic usage) exposed by surface mining (about 81 m[sup 3]/yr (2.9 Mcf or thousand cubic feet)). Methane flux of as much as about 500 m[sup 3]/yr occurs from a small section of a normal fault and associated joints exposed at Bankhead Lock and Dam. The carbon isotopic composition of CH[sub 4] collected at the Bankhead Fault ([delta][sup 13]C -49.3 permil) indicates a coalbed origin. 50 refs., 15 figs., 4 tabs.

  5. Sales and Use Tax Exemption for Renewable Energy Equipment

    Broader source: Energy.gov [DOE]

    Colorado exempts from the state's sales and use tax all sales, storage, and use of components used in the production of alternating current electricity from a renewable energy source. Effective...

  6. Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    "Exploration of new markets and new uses for bioproducts, alternative renewable fuels and their co-products will contribute to the long term sustainability of Ontario's agri-food, energy and rural...

  7. Coalbed Methane | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents CleanSeattle,Coalbed Methane Coalbed

  8. Methane Hydrate | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your Next Road TripMentor-ProtegeEnergy »Methane

  9. Methane Credit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,II JumpMepsolarMesilla,Methane Credit Jump

  10. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  11. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    DeMeo, E.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  12. Renewable Northwest Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewable EnergyForecast

  13. Phasing Renewable Energy Implementation | Department of Energy

    Office of Environmental Management (EM)

    Phasing Renewable Energy Implementation Phasing Renewable Energy Implementation If conventional or other renewable energy funding cannot be procured, or if an agency is working...

  14. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    the impacts of renewable resource integration, as we demon-Integration of renewable resources: Transmission andfor integrating renewable resources on the California ISO-

  15. Harvesting a renewable resource under uncertainty

    E-Print Network [OSTI]

    Saphores, Jean-Daniel M

    2003-01-01T23:59:59.000Z

    Consider a valuable renewable resource whose biomass X2003. “Harvesting a renewable resource under uncertainty,”Harvesting a Renewable Resource under Uncertainty 1 (with

  16. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

  17. Community Renewable Energy Deployment Webinars | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment Webinars Watch these previously recorded webinars to learn about successful community renewable...

  18. Renewable energy projects approved | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable energy projects approved Renewable energy projects approved July 30, 2008 - 3:13pm Addthis CARSON CITY, Nev.-Two renewable energy projects representing a 100...

  19. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska

    SciTech Connect (OSTI)

    Glenn, R.K.; Allen, W.W.

    1992-12-01T23:59:59.000Z

    The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  20. Biomimetic methane oxidation. Final report, October 1, 1989--June 1, 1995

    SciTech Connect (OSTI)

    Watkins, B.E.; Satcher, J.H. Jr.; Droege, M.W.; Taylor, R.T.

    1995-07-01T23:59:59.000Z

    Transportation fuels are a critical energy commodity and they impact nearly every sector of this country. The need for transportation fuels is projected well into the next century. Consequently, there is a strong emphasis on the economical conversion of other domestic fossil energy resources to liquid hydrocarbons that can be used as transportation fuels. Natural gas is currently a readily available resource that has a positive future outlook considering its known and anticipated reserves. There is intense government and industrial interest in developing economic technologies to convert natural gas to liquid fuels. Methane, CH{sub 4}, is the primary hydrocarbon (85-95%) in natural gas. This document covers the following: production soluable of methane monooxygenase; production of particulate methane monooxygenase; production of methane monooxygenase in continuous culture; subunit resolution for active site identification of methylosinus trichosporium OB3b soluble methane monooxygenase; the synthesis and characterization of new copper coordination complexes contairing the asymmetric coordinating chelate ligand application to enzyme active site modeling; the synthesis and characterization of new iron coordination complexes utilizing an asymmetric coordinating chelate ligand; further characterization of new bionuclear iron complexes.

  1. Cyclic process for producing methane in a tubular reactor with effective heat removal

    DOE Patents [OSTI]

    Frost, Albert C. (Congers, NY); Yang, Chang-Lee (Spring Valley, NY)

    1986-01-01T23:59:59.000Z

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  2. Cyclic process for producing methane from carbon monoxide with heat removal

    DOE Patents [OSTI]

    Frost, Albert C. (Congers, NY); Yang, Chang-lee (Spring Valley, NY)

    1982-01-01T23:59:59.000Z

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  3. author research productivity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2007 -Forest industry production Authorities Renewable Energy Websites Summary: FINLAND SOURCES 2007 - Forest industry production Print Home Finland Government Authorities...

  4. Alaska Renewable Energy Fund Grants for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    The Alaska Energy Authority is offering grants for renewable energy projects funded by the Alaska State Legislature.

  5. DEVELOPMENT OF COAL BED METHANE UTILIZING GIS TECHNOLOGIES

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2003-04-01T23:59:59.000Z

    During the second half of the 1990's, Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period were the advancements in Geographical Information Systems (GIS) technologies generating terra-bytes of new data for the oil and gas industry. Coupled to these accelerating initiatives are many environmental concerns relating to production wastes and water table depletion of fresh water resources. It is these concerns that prompted a vital need within the industry for the development of Best Management Practices (BMPs) and mitigation strategies utilizing GIS technologies for efficient environmental protection in conjunction with effective production of CBM. This was accomplished by developing a framework to take advantage of a combination of investigative field research joined with leading edge GIS technologies for the creation of environmentally characterized regions of study. Once evaluated these regions had BMP's developed to address their unique situations for Coal Bed Methane production and environmental protection. Results of the project will be used to support the MBOGC's Programmatic Environmental Impact Statement as required by the Montana Environmental Policy Act (MEPA) and by the BLM for NEPA related issues for acreage having federally owned minerals.

  6. Renewing University Base Funding

    E-Print Network [OSTI]

    Renewing University Base Funding The Priority Issues 29 February 2012 e conor funding to universities as an immediate goal. It has already put in place increases worth 3.5%. 2 undergraduate or postgraduate, be funded at the same rate. #12;3 Charles Darwin University Flinders University

  7. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030 PotentialEnergy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA #12;2 1. Overview

  8. c " .RENEWABLE <:...:r ENERGY

    E-Print Network [OSTI]

    . Therkelsen, Executive Director Marwan Masri, Deputy Director Technology Systems Division James H. Hoffsis, Manager Technology Market Development Office Timothy N. Tutt, Technical Director Renewable Energy Program-Specific Eligibility Requirements 8 - Biodiesel 8 - Biomass 8 - Geothermal 9 - Incremental Geothermal 10 - Municipal

  9. Renewable Energy Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    Utah exempts the purchase or lease of equipment used to generate electricity from renewable resources from the state sales tax. Eligible purchases or leases must be made for or by a renewable...

  10. Renewable Systems Interconnection: Executive Summary

    SciTech Connect (OSTI)

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01T23:59:59.000Z

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  11. Renewable Energy Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The purposes of the Renewable Energy Act are to prescribe the amounts of renewable energy resources that public utilities shall include in their electric energy supply portfolios for sales to...

  12. Guam- Renewable Energy Portfolio Goal

    Broader source: Energy.gov [DOE]

    Guam Bill 166, enacted in March 2008, established a renewable energy portfolio goal of 25% renewable energy by 2035.* Under this law, each utility that sells electricity for consumption on Guam...

  13. Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems?

    SciTech Connect (OSTI)

    Spokas, K. [University of Minnesota, Department of Soil, Water, and Climate, St. Paul, MN (United States)]. E-mail: spokas@morris.ars.usda.gov; Bogner, J. [Landfills Inc., Wheaton, Illinois and University of Illinois, Chicago, IL (United States); Chanton, J.P. [Florida State University, Department of Oceanography, Tallahassee, FL (United States); Morcet, M. [Centre de Recherches pour l'Environnement l'Energie et le Dechet (CReeD), Veolia Environnement, Limay (France); Aran, C. [Centre de Recherches pour l'Environnement l'Energie et le Dechet (CReeD), Veolia Environnement, Limay (France); Graff, C. [University of Minnesota, Department of Soil, Water, and Climate, St. Paul, MN (United States); Golvan, Y. Moreau-Le [COLLEX Pty Ltd., CReeD, Veolia Environnement, Pyrmont NSW (Australia); Hebe, I. [Agence de l'Environnement et de la Maitrise de l'Energie (ADEME), French Agency for the Environment and Energy Management, Angers (France)

    2006-07-01T23:59:59.000Z

    Many developed countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings and the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. This paper presents the results of extensive field campaigns at three landfill sites to elucidate the total methane balance and provide field measurements to quantify these pathways. We assessed the overall methane mass balance in field cells with a variety of designs, cover materials, and gas management strategies. Sites included different cell configurations, including temporary clay cover, final clay cover, geosynthetic clay liners, and geomembrane composite covers, and cells with and without gas collection systems. Methane emission rates ranged from -2.2 to >10,000 mg CH{sub 4} m{sup -2} d{sup -1}. Total methane oxidation rates ranged from 4% to 50% of the methane flux through the cover at sites with positive emissions. Oxidation of atmospheric methane was occurring in vegetated soils above a geomembrane. The results of these studies were used as the basis for guidelines by the French environment agency (ADEME) for default values for percent recovery: 35% for an operating cell with an active landfill gas (LFG) recovery system, 65% for a temporary covered cell with an active LFG recovery system, 85% for a cell with clay final cover and active LFG recovery, and 90% for a cell with a geomembrane final cover and active LFG recovery.

  14. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  15. RENEWABLES 2005 GLOBAL STATUS REPORT

    E-Print Network [OSTI]

    Kammen, Daniel M.

    to renewable energy. The establishment of a global policy network was embraced in the Political Declaration Research Institute Chinese Renewable Energy Industries Association China Susan McDade Energy Environment Institute Lead Author: Eric Martinotwww.ren21.net #12;Renewable Energy Policy Network for the 21st Century

  16. Photon Science for renewable energy

    E-Print Network [OSTI]

    Knowles, David William

    Photon Science for renewable energy at Light-Source Facilities of Today andTomorrow Lawrence revolution in renewable and carbon- neutral energy technologies. in these pages, we outline and illustrate is causing potentially catastrophic changes to our planet.The quest for renewable, nonpolluting sources

  17. Integration of Renewable Resources November 2007

    E-Print Network [OSTI]

    Integration of Renewable Resources November 2007 Transmission and operating issues and recommendations for integrating renewable resources on the California ISO-controlled Grid California Independent System Operator #12;CAISO Integration of Renewable Resources Members of the Renewables Workgroup

  18. Property Tax Abatement for Production and Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    In May 2007, Montana enacted legislation (H.B. 3) that allows a property tax abatement for new renewable energy production facilities, new renewable energy manufacturing facilities, and renewable...

  19. Thermodynamic evaluation of hydrogen production via bioethanol steam reforming

    SciTech Connect (OSTI)

    Tasnadi-Asztalos, Zsolt; Cormos, Ana-Maria; Imre-Lucaci, Árpád; Cormos, C?lin C. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, RO-400028, Cluj-Napoca (Romania)] [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, RO-400028, Cluj-Napoca (Romania)

    2013-11-13T23:59:59.000Z

    In this article, a thermodynamic analysis for bioethanol steam reforming for hydrogen production is presented. Bioethanol is a newly proposed renewable energy carrier mainly produced from biomass fermentation. Reforming of bioethanol provides a promising method for hydrogen production from renewable resources. Steam reforming of ethanol (SRE) takes place under the action of a metal catalyst capable of breaking C-C bonds into smaller molecules. A large domain for the water/bioethanol molar ratio as well as the temperature and average pressure has been used in the present work. The interval of investigated temperature was 100-800°C, the pressure was in the range of 1-10 bar and the molar ratio was between 3-25. The variations of gaseous species concentration e.g. H{sub 2}, CO, CO{sub 2}, CH{sub 4} were analyzed. The concentrations of the main products (H{sub 2} and CO) at lower temperature are smaller than the ones at higher temperature due to by-products formation (methane, carbon dioxide, acetylene etc.). The concentration of H2 obtained in the process using high molar ratio (>20) is higher than the one at small molar ratio (near stoichiometric). When the pressure is increased the hydrogen concentration decreases. The results were compared with literature data for validation purposes.

  20. Renewable Surface Fluorescence Sandwich Immunoassay Biosensor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Surface Fluorescence Sandwich Immunoassay Biosensor for Rapid Sensitive Botulinum Toxin Detection in an Automated Renewable Surface Fluorescence Sandwich Immunoassay...

  1. Energy Efficiency and Renewable Energy Postdoctoral Research...

    Office of Environmental Management (EM)

    Postdoctoral Research Awards Energy Efficiency and Renewable Energy Postdoctoral Research Awards Contacts Energy Efficiency and Renewable Energy Postdoctoral Research Awards...

  2. Renewable Energy: Distributed Generation Policies and Programs...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Policies & Programs Renewable Energy: Distributed Generation Policies and Programs Renewable Energy: Distributed Generation Policies and Programs Distributed generation...

  3. National Renewable Energy Laboratory's Energy Systems Integration...

    Energy Savers [EERE]

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

  4. Renewable Energy & Energy Efficiency Projects: Loan Guarantee...

    Energy Savers [EERE]

    Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Plenary III: Project Finance...

  5. Islands and Our Renewable Energy Future (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

    2012-05-01T23:59:59.000Z

    Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

  6. Growing Significance of Renewable Energy (Presentation)

    SciTech Connect (OSTI)

    Arvizu, D. E.

    2007-02-05T23:59:59.000Z

    Presentation on renewable energy innovations and policies by Dr. Dan Arvizu of the National Renewable Energy Laboratory.

  7. Ninth Annual Ocean Renewable Energy Conference

    Broader source: Energy.gov [DOE]

    The future of clean, renewable ocean wave energy will be discussed in depth at the 2014 Ocean Renewable Energy Conference.

  8. DRI Renewable Energy Center (REC) (NV)

    SciTech Connect (OSTI)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31T23:59:59.000Z

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.

  9. Methane conversion for application in fuel cells

    SciTech Connect (OSTI)

    Mulder, A. [Gastec N.V., Apeldoorn (Netherlands); Looy, F. van [Utrecht Univ. (Netherlands). Dept. of Inorganic Chemistry; Waveren, A. van; Wingerden, A.J.M. van

    1996-12-31T23:59:59.000Z

    Conventional steam reformers are large and expensive for small scale fuel cell installations. But also the high endothermicity of the reforming reaction for the production of synthesis gas is a drawback. An alternative to conventional steam reforming is the partial oxidation of methane to synthesis gas. This process is slightly exothermic. The flexibility of the process makes small scale application possible. However, the partial oxidation process seems especially attractive for application within a high temperature fuel cell, because of relatively high CO/H{sub 2}-ratio for the output gases. In this paper the results of the study on the mechanism of the partial oxidation to synthesis gas on silica-supported nickel catalysts are discussed. Moreover, a process for the partial oxidation is proposed in which air instead of oxygen can be used. Based on the results of the mechanistic study two processes for the catalytic partial oxidation are proposed and simulated using the Aspen Plus flowsheeting program with which the mass and heat balances were optimized.

  10. EMBARGOED 00h00 -6 March 2007 Brussels, 5 March 2007 European Energy Policy puts industries using renewable raw materials at risk

    E-Print Network [OSTI]

    of renewable energy as well as the mobilisation of biomass resources. Conflicts between different uses production should be a priority and should be monitored in order to optimise the use of renewable resources renewable raw materials at risk The European industries using renewable raw materials from agriculture

  11. Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane

    E-Print Network [OSTI]

    Green, Michael A.

    2005-01-01T23:59:59.000Z

    Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

  12. Dispersed power and renewables

    SciTech Connect (OSTI)

    O`Sullivan, J.B.

    1995-12-31T23:59:59.000Z

    Distributed power generation and renewable energy sources are discussed: The following topics are discussed: distributed resources, distributed generation, commercialization requirements, biomass power, location of existing biomass feedstocks, biomass business plan components, North Carolina BGCC partnership, New York biomass co-firing project, alfalfa for power and feed, Hawaii Pioneer Mill LOI project, next steps for biomass, wind power activity, photovoltaic modules and arrays, lead-acid batteries, superconducting magnetic energy storage, fuel cells, and electric power industry trends.

  13. National Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar EnergyKambaraor

  14. Renewable Energy Innovations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy

  15. MethaneHydrateRD_FC.indd

    Office of Environmental Management (EM)

    source of natural gas in 1983. The Methane Hydrate Research and Development Act of 2000 established DOE as the lead U.S. agency for R&D in this fi eld. Early phases of...

  16. High Temperature Solar Splitting of Methane

    E-Print Network [OSTI]

    of Methane to Hydrogen and Carbon Allan Lewandowski (NREL) Alan Weimer (University of Colorado, Boulder) Team Members: CU: Jaimee Dahl, Karen Buechler, Chris Perkins NREL: Carl Bingham, Judy Netter Allan Lewandowski

  17. The role of methane in tropospheric chemistry

    E-Print Network [OSTI]

    Golomb, D.

    1989-01-01T23:59:59.000Z

    While methane is chemically quite inert to reactions with atmospheric molecular species, it does react with atomic species and molecular radicals. Because of its relatively large abundance in the global troposphere and ...

  18. Transient Supersonic Methane-Air Flames

    E-Print Network [OSTI]

    Richards, John L.

    2012-07-16T23:59:59.000Z

    The purpose of this study was to investigate the thermochemical properties of a transient supersonic flame. Creation of the transient flame was controlled by pulsing air in 200 millisecond intervals into a combustor filled with flowing methane...

  19. Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory. Volume 2, Appendices

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01T23:59:59.000Z

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

  20. Gas-lift technology applied to dewatering of coalbed methane wells in the black warrior basin

    SciTech Connect (OSTI)

    Johnson, K.J.; Coats, A. (Otis Engineering Corp., Dallas, TX (United States)); Marinello, S.A. (Colorado School of Mines, Golden, CO (United States))

    1992-11-01T23:59:59.000Z

    Coalbed methane (CBM) wells are usually dewatered with sucker rod or progressive cavity pumps to reduce wellbore water levels, although not without problems. This paper describes high-volume artificial-lift technology that incorporates specifically designed gas-lift methods to dewater Black Warrior CBM wells. Gas lift provides improved well maintenance and production optimization by the use of conventional wireline service methods.

  1. SUPPORTING INFORMATION Comparison of non-precious metal cathode materials for methane

    E-Print Network [OSTI]

    S1 SUPPORTING INFORMATION Comparison of non-precious metal cathode materials for methane production H2SO4, and again in de-ionized water. Butyl rubber stoppers were used to prevent loss of gas from thick and 43 mm diameter) were cut from large butyl rubber sheets (McMaster-Carr, Cleveland, OH, USA

  2. Earth'sFuture Remote sensing of fugitive methane emissions from oil and

    E-Print Network [OSTI]

    Dickerson, Russell R.

    Earth'sFuture Remote sensing of fugitive methane emissions from oil and gas production in North and tight oil reservoirs to exploit formerly inaccessible or unprofitable energy resources in rock and oil provide an opportunity to achieve energy self-sufficiency and to reduce greenhouse gas emissions

  3. Value of storage with increased renewable penetration.

    SciTech Connect (OSTI)

    Brainard, James Robert; Roach, Jesse Dillon

    2010-10-01T23:59:59.000Z

    The problem statement for this project is: (1) Renewable energy portfolio standards - (a) high penetration of intermittent and variable renewable generation on the grid, (b) utilities constrained by NERC Control Performance Standards, (c) requires additional resources to match generation with load; and (2) mitigation of impacts with energy storage - at what level of renewable penetration does energy storage become an attractive value proposition. Use a simplified, yet robust dispatch model that: (a) incorporates New Mexico Balance Area load and wind generation data, (b) distributes the load among a suite of generators, (c) quantifies increased generation costs with increased penetration of intermittent and variable renewable generation - fuel, startup, shut down, ramping, standby, etc., (d) tracks and quantifies NERC pentalties and violations, and (e) quantifies storage costs. Dispatch model has been constructed and it: (a) accurately distributes a load among a suite of generators, (b) quantifies duty cycle metrics for each of the generators - cumulative energy production, ramping and non ramping duration, spinning reserves, number of start-ups, and shut down durations, etc., (c) quantifies energy exchanges - cumulative exchanges, duration, and number of exchanges, (d) tracks ACE violations.

  4. Sorption-Enhanced Synthetic Natural Gas (SNG) Production from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, Sorption-Enhanced Synthetic Natural Gas (SNG)...

  5. Techno-Economic Analysis of Bioconversion of Methane into Biofuel and Biochemical (Poster)

    SciTech Connect (OSTI)

    Fei, Q.; Tao, L.; Pienkos, P .T.; Guarnieri, M.; Palou-Rivera, I.

    2014-10-01T23:59:59.000Z

    In light of the relatively low price of natural gas and increasing demands of liquid transportation fuels and high-value chemicals, attention has begun to turn to novel biocatalyst for conversion of methane (CH4) into biofuels and biochemicals [1]. A techno-economic analysis (TEA) was performed for an integrated biorefinery process using biological conversion of methane, such as carbon yield, process efficiency, productivity (both lipid and acid), natural gas and other raw material prices, etc. This analysis is aimed to identify research challenges as well provide guidance for technology development.

  6. I read with interest the report entitled, "Carbon Dioxide Footprint of the Northwest Power System." Unfortunately your analysis does not take into consideration renewable power production using a Solena Group gasification process

    E-Print Network [OSTI]

    . In these tanks, we will sequester the carbon by growing algae that we would harvest and use as a biomass feedstock for the renewable power plant. This service would cost $50 per ton of carbon sequestered. Do you

  7. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01T23:59:59.000Z

    tower plant in China. ” Renewable and Sustainable Energyby plant in Guangxi. ” Renewable and Sustainable EnergyChina’s Thirst for Renewable Power: Water Implications of

  8. Appalachian basin coal-bed methane: Elephant or flea

    SciTech Connect (OSTI)

    Hunt, A.M. (Dames and Moore, Cincinnati, OH (United States))

    1991-08-01T23:59:59.000Z

    Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

  9. Methane emission by termites: Impacts on the self-cleansing mechanisms of the atmosphere

    SciTech Connect (OSTI)

    Mugedo, J.Z.A. [Maseno Univ. College (Kenya)

    1996-12-31T23:59:59.000Z

    Termites are reported to emit large quantities of methane, carbon dioxide, carbon monoxide, hydrogen and dimethyl sulfide. The emission of other trace gases, namely C{sub 2} to C{sub 10} hydrocarbons, is also documented. We have carried out, both in the field and in the laboratory, measurements of methane emissions by Macrotermes subhyalinus (Macrotermitinae), Trinervitermes bettonianus (Termitinae), and unidentified Cubitermes and Microcerotermes species. Measured CH{sub 4} field flux rates ranged from 3.66 to 98.25g per m{sup 2} of termite mound per year. Laboratory measurements gave emission rates that ranged from 14.61 to 165.05 mg CH{sub 4} per termite per year. Gaseous production in all species sampled varied both within species and from species to species. Recalculated global emission of methane from termites was found to be 14.0 x 10{sup 12} g CH{sub 4}, per year. From our study, termites contribution to atmospheric methane content is between 1.11% and 4.25% per year. This study discusses the greenhouse effects as well as photochemical disposal of methane in the lower atmosphere in the tropics and the impacts on the chemistry of HO{sub x} systems and CL{sub x} cycles.

  10. Biomass power and state renewable energy policies under electric industry restructuring

    SciTech Connect (OSTI)

    Porter, K.; Wiser, R.

    2000-08-01T23:59:59.000Z

    Several states are pursuing policies to foster renewable energy as part of efforts to restructure state electric power markets. The primary policies that states are pursuing for renewables are system benefits charges (SBCs) and renewable portfolio standards (RPSs). However, the eligibility of biomass under state RPS and SBC policies is in question in some states. Eligibility restrictions may make it difficult for biomass power companies to access these policies. Moreover, legislative language governing the eligibility of biomass power is sometimes vague and difficult to interpret. This paper provides an overview of state RPS and SBC policies and focuses on the eligibility of biomass power. For this paper, the authors define biomass power as using wood and agricultural residues and landfill methane, but not waste-to-energy, to produce energy.

  11. Renewable Energy Opportunity Assessment

    SciTech Connect (OSTI)

    Hancock, E.; Mas, C.

    1998-11-13T23:59:59.000Z

    Presently, the US EPA is constructing a new complex at Research Triangle Park, North Carolina to consolidate its research operations in the Raleigh-Durham area. The National Computer Center (NCC) is currently in the design process and is planned for construction as partof this complex. Implementation of the new technologies can be planned as part of the normal construction process, and full credit for elimination of the conventional technologies can be taken. Several renewable technologies are specified in the current plans for the buildings. The objective of this study is to identify measures that are likely to be both technically and economically feasible.

  12. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home Stationary Power EnergyRenewable Energy

  13. Renewable RFI (Generic)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesysRenewable Hawaii Inc Jump

  14. Renewable Energy Laboratory

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap JumpReliance IndustriesRenewable Energysuccess of

  15. Hawaii Renewable Hydrogen Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson YearHarvesting theRenewable

  16. Renewables and Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues Cells Webinar, July 13,Energy Renewables

  17. Renewable Energy Markets and Policies

    E-Print Network [OSTI]

    Renewable Energy Markets and Policies Romeo Pacudan, PhD Risoe National Laboratory, Denmark HAPUA Working Group No. 4 Meeting Renewable Energy and Environment in ASEAN Melia Hotel, Hanoi, Vietnam 23-24 June 2005 #12;1. Renewables in Energy Supply Share in Primary Energy Supply 5,9 5,7 4,8 5,8 0 1 2 3 4 5

  18. A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Production Cost Modeling-99-GO10337 #12;National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303

  19. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    and pipeline delivery. Clean Energy Group Other Renewable HydrogenHydrogen Cost Estimates (continued) Production Method Petroleum Coke Gasification kg/day $5.35/kg ($37.68/GJ) Central production Pipeline

  20. Renewable Energy Community: Key Elements

    SciTech Connect (OSTI)

    Carlisle, N.; Elling, J.; Penney, T.

    2008-01-01T23:59:59.000Z

    Designing new communities using a renewable energy systems approach--with sustainable planning, zero-energy homes, advanced vehicles, and innovative utility interconnections--can reduce energy use.

  1. Renewable Energy Approvals (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Renewable Energy Approvals (REA) regulation creates an approval and review process for all biomass, wind energy, and solar facilities. The Ministry of the Environment inspects, investigates...

  2. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National Laboratories and toured the National...

  3. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Beam Profiling On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar On Thursday, June 7, we began beam profiling the NSTTF field heliostat...

  4. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Facilities, National Solar Thermal Test Facility, News, Partnership, Renewable Energy, Solar, Videos This test is part of a series in support of NASA's In-Space...

  5. Renewable Energy Resources Trust Fund

    Broader source: Energy.gov [DOE]

    Illinois's 1997 electric-industry restructuring legislation created separate public benefits funds that support renewable energy and residential [http://www.dsireusa.org/library/includes/incentive2...

  6. Renewable Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Accelerating the transition to alternative energy sources requires significant improvement in materials, chemicals, processes, and devices. To produce more...

  7. Community Renewable Energy Deployment Webinars

    Office of Energy Efficiency and Renewable Energy (EERE)

    Watch these previously recorded webinars to learn about successful community renewable energy projects, including how challenges and barriers faced during development were addressed. Accompanying...

  8. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program On November 27, 2013, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis, Systems Engineering On October 22, the...

  9. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On December 3, 2014, in Computational Modeling & Simulation, Energy, News, News & Events, Renewable Energy, Wind Energy Sandia and partners from the University of Maine, Technical...

  10. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot Sandia's Kenneth Armijo (in the...

  11. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Livermore Valley Open Campus (LVOC), News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Solar Newsletter In a public-private partnership that takes full...

  12. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News &...

  13. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glitter On March 21, 2013, in Capabilities, Energy, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, SunShot Sandia scientists have developed...

  14. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sales On February 25, 2015, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis A Lawrence Berkeley National Laboratory (LBNL)...

  15. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    private-sector interest in renewable energy (RE) power generation (on both the residential and commercial scale) and state mandates that utilities generate defined...

  16. Staff Draft GUIDEBOOK RENEWABLES PORTFOLIO

    E-Print Network [OSTI]

    and verifying compliance with the RPS. Keywords: Biodiesel, biogas, biomass, biomethane, certificates, pipeline biomethane, power purchase agreement, Qualified Reporting Entity, RECs, renewable energy

  17. STAFF DRAFT GUIDEBOOK RENEWABLES PORTFOLIO

    E-Print Network [OSTI]

    compliance with the RPS. Keywords: awardee, battery, biodiesel, biogas, biomass, biomethane, pipeline biomethane, power purchase agreement, Qualified Reporting Entity (QRE), RECs, renewable energy

  18. Renewable Energy in the Southeast

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses drivers, considerations, and opportunities for renewable energy in the southeastern United States.

  19. State Policies Provide Critical Support for Renewable Electricity

    E-Print Network [OSTI]

    Barbose, Galen

    2009-01-01T23:59:59.000Z

    against other renewable resource options. Acknowledgementsgeneration supply from renewable resources. RPS purchaseprocuring new renewable resources prior to enactment of

  20. California Renewable Energy Center Integrated Assessment

    E-Print Network [OSTI]

    California at Davis, University of

    in which different renewable resources are co-located. How best to take advantage of this opportunityCalifornia Renewable Energy Center Integrated Assessment of Renewable Energy Technology Options #12;California Renewable Energy Center California has a long history of aggressively pursuing renewable energy