National Library of Energy BETA

Sample records for renewable methane production

  1. Enhanced Renewable Methane Production System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates biological methane production rates at least fivefold. Low cost Delivers near-pipeline-quality gas and eliminates carbon dioxide emissions PDF icon methane_production_system

  2. Enhanced Renewable Methane Production System Benefits Wastewater Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plants, Farms, and Landfills - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Enhanced Renewable Methane Production System Benefits Wastewater Treatment Plants, Farms, and Landfills Argonne National Laboratory Contact ANL About This Technology <p> Argonne&rsquo;s Enhanced Renewable Methane Production System &mdash; Process Schematic.</p> Argonne's Enhanced Renewable Methane Production System - Process Schematic.

  3. Coalbed Methane Production

    Gasoline and Diesel Fuel Update (EIA)

    Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 1,914 1,886 1,763 1,655 1,466 1,404 1989-2014 Alabama 105 102 98 91 62 78 1989-2014 Alaska 0 0 0 0 0 0 2005-2014 Arkansas 3 3 4 2 2 2 2005-2014 California 0 0 0 0 0 0 2005-2014 Colorado 498 533 516 486 444 412 1989-2014 Florida 0 0 0 0 0 0 2005-2014 Kansas 43 41 37 34 30 27

  4. Rapid Production of Methane Hydrates | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rapid Production of Methane Hydrates NETL Develops a Method for Rapidly Producing Methane Hydrates Natural gas, which is predominantly methane, is recognized as clean burning and an important bridge fuel to a future where renewable energy sources are more common. Natural gas currently accounts for nearly a quarter of the U.S. energy supply, and that share is expected to remain roughly constant over the next several decades. Energy demand during this time period is expected to continue growing,

  5. New Mexico Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) New Mexico Coalbed Methane Production (Billion Cubic Feet) ... Referring Pages: Coalbed Methane Estimated Production New Mexico Coalbed Methane Proved ...

  6. Methane Hydrate Production Feasibility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the

  7. NREL Advancements in Methane Conversion Lead to Cleaner Air, Useful Products (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers at NREL leveraged the recent on-site development of gas fermentation capabilities and novel genetic tools to directly convert methane to lactic acid using an engineered methanotrophic bacterium. Key Result The results provide proof-of-concept data for a gas-to-liquids bioprocess that concurrently produces fuels and chemicals from methane. NREL researchers developed genetic tools to express heterologous genes in methanotrophic organisms, which have historically been difficult to

  8. U.S. Coalbed Methane Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  9. Renewable Energy Products LLC | Open Energy Information

    Open Energy Info (EERE)

    Products, LLC Place: Santa Fe Springs, California Zip: 90670 Product: Own and operate a biodiesel production facility in California. References: Renewable Energy Products, LLC1...

  10. New York Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane Estimated Production New York Coalbed Methane Proved Reserves, Reserves Changes, and ...

  11. Methane production by attached film

    DOE Patents [OSTI]

    Jewell, William J.

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  12. Renewable Energy Production By State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Production By State Renewable Energy Production By State Renewable Energy Production By State Click on a state for more information...

  13. Table 15. Coalbed methane proved reserves and production, 2010...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed methane proved reserves and production, 2010-14" "billion cubic feet" ,,"Reserves",,,,,,"Production" "State and Subdivision",,2010,2011,2012,2013,2014,,2010,2011,2012,2013,...

  14. Renewable Hydrogen Production from Biological Systems

    Broader source: Energy.gov [DOE]

    Presentation by Matthew Posewitz, Colorado School of Mines, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  15. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Office of Environmental Management (EM)

    Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - ...

  16. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life Cycle Assessment of Renewable Hydrogen Production via WindElectrolysis: Milestone Completion ...

  17. Methane Hydrate Production Technologies to be Tested on Alaska's North

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slope | Department of Energy Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will

  18. Hydrogen production from fossil and renewable sources using an...

    Office of Scientific and Technical Information (OSTI)

    from fossil and renewable sources using an oxygen transport membrane. Citation Details In-Document Search Title: Hydrogen production from fossil and renewable sources using an ...

  19. Renewable Motor Fuel Production Capacity Under H.R.4

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes renewable motor fuel production capacity with the assumption that ethanol will be used to meet the renewable fuels standard.

  20. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  1. New Mexico--West Coalbed Methane Production (Billion Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) New Mexico--West Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's ...

  2. New Mexico--East Coalbed Methane Production (Billion Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) New Mexico--East Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's ...

  3. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect (OSTI)

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  4. California (with State off) Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production California Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  5. Mississippi (with State off) Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  6. Methane production from grape skins. Final technical report

    SciTech Connect (OSTI)

    Yunghans, W.N.

    1981-10-09

    Methane production from grape pomace was measured for a 50-day digestion period. Gas production was calculated to be 2400 ft/sup 3//10 d/ton at 53% methane content. Microorganisms particularly a fungus which grows on grape pomace and lignin was isolated. Lignin content of pomace was measured at approximately 60%. Lignin is slowly digested and may represent a residue which requires long term digestion. Research is continuing on isolation of anaerobic methane bacteria and codigestion of pomace with enzymes as cellulase and pectinase. The sewage sludge functioned adequately as a mixed source of organisms capable of digesting grape pomace. A sediment from stored grape juice produced significant amounts of methane and represents a nutrient substrate for additional studies on continuous flow methane production. 3 figs.

  7. Texas (with State Offshore) Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 11 8 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Texas Coalbed Methane Proved Reserves, Reserves

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is

  9. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  10. Renewable Hydrogen Production Using Sugars and Sugar Alcohols (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Meeting 11/06/2007 Renewable Hydrogen Production Using Renewable Hydrogen Production Using Sugars and Sugar Alcohols Sugars and Sugar Alcohols * * Problem: Problem: Need Need to develop renewable to develop renewable hydrogen production technologies using hydrogen production technologies using diverse diverse feedstocks feedstocks 10 15 20 CH 4 : C 6 H 14 ln(P) * * Description: Description: The BioForming The BioForming TM TM process uses process uses aqueous phase reforming to

  11. Detection and Production of Methane Hydrate

    SciTech Connect (OSTI)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes

  12. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  13. Renewable energy for productive uses in Mexico

    SciTech Connect (OSTI)

    Hanley, C.

    1997-12-01

    This paper describes a USAID/USDOE sponsored program to implement renewable energy in Mexico for productive uses. The objectives are to expand markets for US and Mexican industries, and to combat global climate change - primarily greenhouse gas emissions. The focus is on off-grid applications, with an emphasis on developing the institution structure to support the development of these industries within the country. Agricultural development is an example of the type of industry approached, where photovoltaic and wind power can be used for water pumping. There are hundreds of projects under review, and this interest has put renewables as a line item in Mexico`s rural development budget. Village power projects are being considered in the form of utility partnerships.

  14. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  15. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  16. NREL Research Helps Convert Overabundant Methane into Useful Products |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy | NREL Research Helps Convert Overabundant Methane into Useful Products March 18, 2016 Photo of a fermentation vessel cultivating our bacteria to produce lactic acid. Using fermentation vessels such as the one pictured here, NREL researchers have discovered how to cultivate genetically engineered methanotrophic bacteria to produce lactic acid, a high-value precursor to bioplastics. Photo by Holly Smith, NREL Methane is Earth's second most abundant greenhouse gas (GHG) after carbon

  17. NREL Research Helps Convert Overabundant Methane into Useful Products -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Research Helps Convert Overabundant Methane into Useful Products March 18, 2016 Photo of a fermentation vessel cultivating our bacteria to produce lactic acid. Using fermentation vessels such as the one pictured here, NREL researchers have discovered how to cultivate genetically engineered methanotrophic bacteria to produce lactic acid, a high-value precursor to bioplastics. Photo by Holly Smith, NREL Methane is Earth's second most abundant greenhouse gas (GHG) after

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new

  19. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage & Transportation | Department of Energy Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_ramsden.pdf (1.5 MB) More Documents & Publications Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis

  20. General Renewable Energy-Productive Uses and Development Impact...

    Open Energy Info (EERE)

    Impact Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy-Productive Uses and Development Impact AgencyCompany Organization: World Bank...

  1. Bioenergy Demonstration Project: Value-Added Products from Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Demonstration Project: Value-Added Products from Renewable Fuels May 23, 2013 Technology Area Review: Biochemical Conversion Paul Blum University of Nebraska 2 Goal ...

  2. STEAB Renewable Energy Production Incentive (REPI) Action

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    available to the private sector for renewable energy generation investors and developers. ... is increasing demand being placed on private and public utilities to generate ...

  3. BETO Project Improves Production of Renewable Chemical from Cellulosic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstocks | Department of Energy Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - 1:43pm Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's Bioenergy Technologies Office (BETO).

  4. Benefits and hurdles for biological methane upgrading; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Fei, Qiang

    2015-09-01

    The presentation will focus on the technical hurdles for bioconversion of methane into chemical and liquid fuel.

  5. Production of Chemical Derivatives from Renewables

    SciTech Connect (OSTI)

    Davison, Brian; Nghiem, John; Donnelly, Mark; Tsai, Shih-Perng; Frye, John; Landucci, Ron; Griffin, Michael

    1996-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corp., (LMER), Argonne National Laboratory (ANL), National Renewable Energy Laboratory (NREL), and Battelle Memorial Institute, operator of Pacific Northwest National Laboratory (PNNL), (collectively referred to as the 'Contractor'), and Applied Carbochemicals, Inc. (Participant) was to scale-up from bench results an economically promising and competitive process for the production of chemical derivatives from biologically produced succinic acid. The products that were under consideration for production from the succinic acid platform included 1,4-butanediol, {gamma}y-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Preliminary economic analyses indicated that this platform was competitive with the most recent petrochemical routes. The Contractors and participant are hereinafter jointly referred to as the 'Parties.' Research to date in succinic acid fermentation, separation and genetic engineering resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on preliminary laboratory findings and predicted catalytic parameters. At the time, the current need was to provide the necessary laboratory follow-up information to properly optimize, design and operate a pilot scale process. The purpose of the pilot work was to validate the integrated process, assure 'robustness' of the process, define operating conditions, and provide samples for potential customer evaluation. The data from the pilot scale process was used in design and development of a full scale production facility. A new strain, AFP111 (patented), discovered at ANL was tested and developed for process use at the Oak Ridge National Laboratory (ORNL

  6. Renewable Hydrogen Production at Hickam Air Force Base | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy at Hickam Air Force Base Renewable Hydrogen Production at Hickam Air Force Base Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_quinn.pdf (920.39 KB) More Documents & Publications Hickam Air Force Base Fuel Cell Vehicles: Early Implementation Experience Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Hawaii

  7. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  8. Energy Department Policy on Acquiring Tribal Renewable Energy Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of the Department of Energy’s efforts to support tribal renewable energy production, Secretary Steven Chu has issued a policy statement and guidance to give preference to Indian Tribes when...

  9. Potential for Hydrogen Production from Key Renewable Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Technical Report NRELTP-640-41134 February 2007 NREL is operated by...

  10. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    SciTech Connect (OSTI)

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  11. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Assessment for Hydrogen Production Hydrogen Production Potential from Fossil and Renewable Energy Resources M. Melaina, M. Penev, and D. Heimiller National Renewable Energy Laboratory Technical Report NREL/TP-5400-55626 September 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL)

  12. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... to 7 days to minimize the biogas production. Summary Renewable Methane Production We developed a novel process using biochar for producing biomethane at pipeline quality ...

  13. Renewable Hydrogen Production from Biological Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Hydrogen From Starch Using in vitro Pentose Phosphate Pathway or Acetate Microbial Fuel Cells Zhang et al., 2007 PLoSOne Prospecting for New Enzymes and Organisms H 2 production in ...

  14. Renewable

    Office of Scientific and Technical Information (OSTI)

    and Sustainable Energy V v y Jo ur na l Renewable Electronic structural and electroch em ... Duan Citation: J. Renewable Sustainable Energy 3, 013102 (2011); doi: 10.10631.3529427 ...

  15. Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis: Milestone Completion Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report summarizes the results of a lifecycle assessment of a renewable hydrogen production process employing wind/electrolysis.

  16. Microbial diversity and dynamics during methane production from municipal solid waste

    SciTech Connect (OSTI)

    Bareither, Christopher A.; Wolfe, Georgia L.; McMahon, Katherine D.; Benson, Craig H.

    2013-10-15

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  17. Production of methane by anaerobic fermentation of waste materials

    SciTech Connect (OSTI)

    Hitzman, D.O.

    1989-01-17

    This patent describes an apparatus for producing methane by anaerobic fermentation of waste material, comprising: cavity means in the earth for holding a quantity of the waste material; means for covering a quantity of the waste material in the cavity means and thereby separating the quantity of the waste material from the atmosphere; first conduit means communicating between the waste material in the cavity means and a location remote from the cavity means for conveying gas comprising carbon dioxide and methane from the cavity means to the location; gas separation means communicating with the first conduit means at the location for separating carbon dioxide from methane, the first conduit means including at least one pipe having a plurality of apertures therein and disposed in the cavity means extending into and in fluid flow communication with the waste material for receiving gas liberated by the anaerobic fermentation of the waste material and comprising carbon dioxide and methane, through the apertures therein for conveyance via the first conduit means to the gas separation means; second conduit means communicating between the gas separation means and the waste material in the cavity means for conveying carbon dioxide from the gas separation means to the waste material; and third conduit means communicating with the gas separation means for conveying methane from the gas separation means.

  18. Production of Renewable Fuels from Biomass by FCC Co-processing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Production of Renewable Fuels from Biomass by FCC Co-processing Production of Renewable Fuels from Biomass by FCC Co-processing Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Production of Renewable Fuels from Biomass by FCC Co-processing Raymond Wissinger, Manager, Renewable Energy & Chemicals, Research & Development, UOP wissinger_biomass_2014.pdf (735 KB) More Documents

  19. Methane Credit | Open Energy Information

    Open Energy Info (EERE)

    Methane Credit Jump to: navigation, search Name: Methane Credit Place: Charlotte, North Carolina Zip: 28273 Product: Specialises in utilising methane produced on municipal landfill...

  20. Seasonal Production and Emission of Methane from Rice Fields, Final Report

    SciTech Connect (OSTI)

    Khalil, M. Aslam K.; Rasmussen,Reinhold A.

    2002-12-03

    B 139 - Methane (CH4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning. The global emissions from these sources are still not well known. In the middle 1980s there were few available data on methane emissions from rice fields leading to estimates of a global source between 100-280 Tg/yr. Extensive worldwide research during the last decade has shown that the global emissions from rice fields are more likely to be in the range of 30-80Tg/yr. While this work has led to a substantial reduction in the estimated emissions, the uncertainty is still quite large, and seriously affects our ability to include methane in integrated assessments for future climate change and environmental management.China dominated estimates of methane emissions from rice fields because it was, and is, the largest producer of rice, and major increases in rice production had taken place in the country over the last several decades. This report summarizes the work in Sichuan Province, China, in each of the following areas: the design of the experiment; the main results on methane emissions from rice fields, delineating the factors controlling emissions; production of methane in the soil; a survey of water management practices in sample of counties in Sichuan province; and results of ambient measurements including data from the background continental site. B139

  1. Methane Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Power Inc Jump to: navigation, search Logo: Methane Power Inc. Name: Methane Power Inc. Address: 121 Edinburgh South Drive Place: Cary, NC Zip: 27511 Sector: Renewable Energy...

  2. NC GreenPower Renewable Energy Credit Production

    Broader source: Energy.gov [DOE]

    NC GreenPower is requesting proposals for renewable energy credits associated with renewable energy, such as solar, PV, wind, small hydro of 10 MW or less, generated in North Carolina and supplied to the North Carolina electric grid.

  3. Analysis of Modeling Assumptions used in Production Cost Models for Renewable Integration Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Modeling Assumptions used in Production Cost Models for Renewable Integration Studies Brady Stoll, Gregory Brinkman, Aaron Townsend, and Aaron Bloom National Renewable Energy Laboratory Technical Report NREL/TP-6A20-65383 January 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory

  4. Request for Information Renewable Energy Generation/Production...

    Open Energy Info (EERE)

    benefits of the opportunity - Maximize the land opportunity for the development of renewable generation on the specified installation. -Reduce the SHV carbon footprint....

  5. EERE Success Story-BETO Project Improves Production of Renewable Chemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Cellulosic Feedstocks | Department of Energy BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks EERE Success Story-BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 20, 2015 - 11:18am Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's

  6. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-16

    In spite of the massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Here we show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases, and we usemore » molecular simulations to demonstrate it. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Finally, our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.« less

  7. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOE Patents [OSTI]

    Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

    1996-11-12

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

  8. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Dusek, Joseph T.; Kleefisch, Mark S.; Kobylinski, Thadeus P.

    1996-01-01

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

  9. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    SciTech Connect (OSTI)

    Mann, M.K.; Spath, P.L.; Kadam, K.

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  10. Community-Based Renewable Energy Production Incentive (Pilot...

    Broader source: Energy.gov (indexed) [DOE]

    solar, wind, hydro projects; to be determined on a case by case basis for other eligible renewable energy projects. Large projects (>1 MW DC): Depends on the result of the bid...

  11. BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks

    Broader source: Energy.gov [DOE]

    Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project...

  12. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Hydrogen Technologies and Systems Center Todd Ramsden, Kevin Harrison, Darlene Steward November 16, 2009 NREL/PR-560-47432 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL Wind2H2 RD&D Project * The National Renewable Energy Laboratory in partnership with Xcel Energy and

  13. Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production

    SciTech Connect (OSTI)

    W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith

    2005-12-01

    Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

  14. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  15. Beginning of Construction for Purposes of the Renewable Electricity Production Tax Credit and Energy Investment Tax Credit

    Broader source: Energy.gov [DOE]

    Beginning of Construction for Purposes of the Renewable Electricity Production Tax Credit and Energy Investment Tax Credit

  16. Hawkeye Renewables formerly Midwest Renewables | Open Energy...

    Open Energy Info (EERE)

    (formerly Midwest Renewables) Place: Iowa Falls, Iowa Zip: 50126 Product: Midwest bioethanol producer References: Hawkeye Renewables (formerly Midwest Renewables)1 This...

  17. New York Coalbed Methane Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    Separation 0 10 8 6 6 5 1979-2014 Adjustments -29 0 2 4 0 3 1979-2014 Revision Increases 0 0 0 1 3 0 1979-2014 Revision Decreases 0 0 3 6 2 3 1979-2014 Sales 0 0 0 0 0 0 2000-2014 Acquisitions 0 11 0 0 0 0 2000-2014 Extensions 0 0 0 0 0 0 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 0 1 1 1 1 1 Commercial Consumers by Local Distribution and Market

    10.31 9.45 9.65 9.90 10.91 14.77 1989-2016

  18. Power production from renewable resources in a gasification power system

    SciTech Connect (OSTI)

    Paisley, M.A.; Farris, G.; Bain, R.

    1996-12-31

    The US Department of Energy (DOE) has been a leader in the promotion and development of alternative fuel supplies based on renewable energy crops. One promising power generation technology is biomass gasification coupled with either a gas turbine in a combined cycle system or a fuel cell. The gasification of biomass can efficiently and economically produce a renewable source of a clean gaseous fuel suitable for use in these high efficiency power systems or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development and commercialization of the Battelle high-throughput gasification process for gas turbine based power generation systems. Projected process economics for a gas turbine combined cycle plant are presented along with a description of integrated system operation coupling a 200kW gas turbine power generation system to a 10 ton per day gasifier, and current commercialization activities. 6 refs., 3 figs., 1 tab.

  19. ,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"06/30/1989" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  20. Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996

    SciTech Connect (OSTI)

    1998-12-31

    The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

  1. Made with Renewable Energy: How and Why Companies are Labeling Consumer Products

    SciTech Connect (OSTI)

    Baker Brannan, D.; Heeter, J.; Bird, L.

    2012-03-01

    Green marketing--a marketing strategy highlighting the environmental attributes of a product, often through the use of labels or logos--dates back to the 1970s. It did not proliferate until the 1990s, however, when extensive market research identified a rapidly growing group of consumers with a heightened concern for the environment. This group expressed not only a preference for green products but also a willingness to pay a premium for such products. The response was a surge in green marketing that lasted through the early 1990s. This report discusses the experience of companies that communicate to consumers that their products are 'made with renewable energy.' For this report, representatives from 20 companies were interviewed and asked to discuss their experiences marketing products produced using renewable energy. The first half of this report provides an overview of the type of companies that have labeled products or advertised them as being made with renewable energy. It also highlights the avenues companies use to describe their use of renewable energy. The second half of the report focuses on the motivations for making on-product claims about the use of renewable energy and the challenges in doing so.

  2. Process for the utilization of household rubbish or garbage and other organic waste products for the production of methane gas

    SciTech Connect (OSTI)

    Hunziker, M.; Schildknecht, A.

    1985-04-16

    Non-organic substances are separated from household garbage and the organic substances are fed in proportioned manner into a mixing tank and converted into slurry by adding liquid. The slurry is crushed for homogenization purposes in a crushing means and passed into a closed holding container. It is then fed over a heat exchanger and heated to 55/sup 0/ to 60/sup 0/ C. The slurry passes into a plurality of reaction vessels in which the methane gas and carbon dioxide are produced. In a separating plant, the mixture of gaseous products is broken down into its components and some of the methane gas is recycled by bubbling it through both the holding tank and the reaction tank, the remainder being stored in gasholders. The organic substances are degraded much more rapidly through increasing the degradation temperature and as a result constructional expenditure can be reduced.

  3. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Broader source: Energy.gov (indexed) [DOE]

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner ...

  4. PPC Renewables | Open Energy Information

    Open Energy Info (EERE)

    PPC Renewables Jump to: navigation, search Name: PPC Renewables Place: Greece Sector: Renewable Energy Product: The renewables division of Public Power Corp. of Greece (PPC)....

  5. First Renewables | Open Energy Information

    Open Energy Info (EERE)

    search Name: First Renewables Place: United Kingdom Sector: Biomass, Renewable Energy, Wind energy Product: First Renewables owns and operates a portfolio of renewable...

  6. Methane Hydrates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Hydrates 2016 Methane Hydrates Funding Opportunity Announcement The objective of this Funding Opportunity Announcement is to select projects in FY16 that will further ongoing programmatic efforts to characterize naturally occurring gas hydrate deposits as well as their role in the natural environment and that will: Support fundamental laboratory and numerical simulation studies of gas hydrate reservoir response to potential production activities Support fundamental field, laboratory and

  7. PPL Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Jump to: navigation, search Name: PPL Renewable Energy Sector: Renewable Energy Product: PPL Renewable Energy develops, owns, operates and maintains renewable...

  8. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    SciTech Connect (OSTI)

    Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production

  9. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Energy Savers [EERE]

    The process could also be applied to biofuel production to make a cellulosic ethanol facility more commercially viable. Learn more from the Genomatica press release....

  10. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation

    SciTech Connect (OSTI)

    Ali, Muhammad Aslam; Lee, Chang Hoon; Kim, Sang Yoon; Kim, Pil Joo

    2009-10-15

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH{sub 4}) emission resulting from rice cultivation. In laboratory incubations, CH{sub 4} production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt{sup -1}), while observed CO{sub 2} production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH{sub 4} emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha{sup -1}) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha{sup -1} application level of the amendments, total seasonal CH{sub 4} emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH{sub 4} production rates as well as total seasonal CH{sub 4} flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH{sub 4} emissions as well as sustaining rice productivity.

  11. Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria

    SciTech Connect (OSTI)

    Jiang, Q.Q.; Bakken, L.R.

    1999-06-01

    Ammonia-oxidizing bacteria (AOB) are thought to contribute significantly to N{sub 2}O production and methane oxidation in soils. Most knowledge derives from experiments with Nitrosomonas europaea, which appears to be of minor importance in most soils compared to Nitrosospira spp. The authors have conducted a comparative study of levels of aerobic N{sub 2}O production in six phylogenetically different Nitrosospira strains newly isolated from soils and in two N. europaea and Nitrosospira multiformis type strains. The fraction of oxidized ammonium released as N{sub 2}O during aerobic growth was remarkably constant for all the Nitrosospira strains, irrespective of the substrate supply (urea versus ammonium), the pH, or substrate limitation. N. europaea and Nitrosospira multiformis released similar fractions of N{sub 2}O when they were supplied with ample amounts of substrates, but the fractions rose sharply when they were restricted by a low pH or substrate limitation. Phosphate buffer doubled the N{sub 2}O release for all types of AOB. No detectable oxidation of atmospheric methane was detected. Calculations based on detection limits as well as data in the literature on CH{sub 4} oxidation by AOB bacteria prove that none of the tested strains contribute significantly to the oxidation of atmospheric CH{sub 4} in soils.

  12. Renewable Hydrogen Production at Hickam Air Force Base

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Production at Hickam Air Force Base November 2009 Hawaii Center for Advanced Transportation Technologies * Established by the High Technology Development Corporation (a Hawaii State Government Agency) in 1993 as Hawaii Electric Vehicle Demonstration Project. * Mission: develop and demonstrate technologies for future military and commercial transportation systems. * One of seven regional consortia that participated in the Defense Advanced Research Projects Agency (DARPA)

  13. China United Coalbed Methane Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Coalbed Methane Co Ltd Jump to: navigation, search Name: China United Coalbed Methane Co Ltd Place: Beijing Municipality, China Zip: 100011 Product: Coal bed methane developer in...

  14. U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies

    Broader source: Energy.gov [DOE]

    Methane Hydrates May Exceed the Energy Content of All Other Fossil Fuels Combined; Could Ensure Decades of Affordable Natural Gas and Cut America’s Foreign Oil Dependence

  15. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly report, July - September 1996

    SciTech Connect (OSTI)

    McCormick, R.L.; Alptekin, G.O.

    1996-12-01

    This document covers the period July-September, 1996. Activities included studies of the oxidation of dimethyl ether over vanadyl pyrophosphate and synthesis of all previously acquired kinetic data. This synthesis revealed the need for additional data on methane and methanol oxidation and these experiments were performed. A further series of methanol oxidation/dehydration experiments was conducted on samples with varying surface acidity that have been described in earlier reports. Oxidation of methane over Cr- promoted VPO was also reinvestigated. The kinetic studies performed to date allow us to determine optimum conditions for methanol and formaldehyde production from methane using VPO catalysts, and in particular determine the effect of lean conditions (excess oxygen), oxygen deficient conditions (used in most other methane oxidation studies), and the potential of using the catalyst as a stoichiometric oxidant or oxygen carrier. However, unpromoted VPO yields only CO as the primary oxidation product. Studies of promoters have shown improvements in the formaldehyde selectivity but no methanol has been observed. The best promoters tested have been Fe and Cr (results for Cr are described in this report). We have also examined the use of iron phosphate for the methane conversion reaction. FePO{sub 4}is a more selectivity catalyst than the promoted VPO materials. Support of this iron phosphate on silica results in further improvements in selectivity. Current work is directed at understanding the improved selectivity for promoted VPO and at obtaining a knowledge of the optimum conditions for methane conversion of iron phosphate. 15 refs., 2 figs., 1 tab.

  16. Production of methane-rich syngas from hydrocarbon fuels using multi-functional catalyst/capture agent

    DOE Patents [OSTI]

    Siefert, Nicholas S; Shekhawat, Dushyant; Berry, David A; Surdoval, Wayne A

    2014-12-30

    The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 700.degree. C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 700.degree. C. by enabling a series of reactions which generate H.sub.2 and CH.sub.4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH.sub.4 at temperatures above 700.degree. C., and may effectively operate within an IGFC cycle at reactor temperatures between 700-900.degree. C. and pressures in excess of 10 atmospheres.

  17. Methane Hydrate Field Studies

    Broader source: Energy.gov [DOE]

    Since 2001, DOE has conducted field trials of exploration and production technology in the Alaska North Slope. Although Alaska methane hydrate resources are smaller than marine deposits and...

  18. Renewable Hydrogen Production from Biomass Pyrolysis Aqueous Phase Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7, 2015 Thermochem Conversion Review PI: Abhijeet P. Borole, Ph.D. Oak Ridge National Laboratory Co:PI's & Collaborators: S. Pavlostathis, C. Tsouris, S. Yiacoumi, Georgia Tech; P. Ye, N. Labbe, University of Tennessee, Knoxville, R. Bhave, ORNL DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Renewable Hydrogen Production from Biomass Pyrolysis Aqueous Phase 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Goal Statement * Carbon, Hydrogen and

  19. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect (OSTI)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when

  20. Geothermal source potential and utilization for methane generation and alcohol production

    SciTech Connect (OSTI)

    Austin, J.C.

    1981-11-01

    A study was conducted to assess the technical and economic feasibility of integrating a geothermally heated anaerobic digester with a fuel alcohol plant and cattle feedlot. Thin stillage produced from the alcohol production process and manure collected from the cattle feedlot would be digested in anaerobic digesters to produce biogas, a mixture of methane and carbon dioxide, and residue. The energy requirements to maintain proper digester temperatures would be provided by geothermal water. The biogas produced in the digesters would be burned in a boiler to produce low-pressure steam which would be used in the alcohol production process. The alcohol plant would be sized so that the distiller's grains byproduct resulting from the alcohol production would be adequate to supply the daily cattle feed requirements. A portion of the digester residue would substitute for alfalfa hay in the cattle feedlot ration. The major design criterion for the integrated facilty was the production of adequate distiller's grain to supply the daily requirements of 1700 head of cattle. It was determined that, for a ration of 7 pounds of distiller's grain per head per day, a 1 million gpy alcohol facility would be required. An order-of-magnitude cost estimate was prepared for the proposed project, operating costs were calculated for a facility based on a corn feedstock, the economic feasibility of the proposed project was examined by calculating its simple payback, and an analysis was performed to examine the sensitivity of the project's economic viability to variations in feedstock costs and alcohol and distiller's grain prices.

  1. Scottish Renewables | Open Energy Information

    Open Energy Info (EERE)

    Scottish Renewables Place: Glasgow, Scotland, United Kingdom Zip: G2 6LD Sector: Renewable Energy Product: Scottish Renewables Forum is a Company Limited by Guarantee, registered...

  2. Whirlwind Renewables | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Whirlwind Renewables Place: Huddersfield, England, United Kingdom Sector: Renewable Energy, Wind energy Product: Whirlwind Renewables Limited...

  3. Renewables Marketplace | Open Energy Information

    Open Energy Info (EERE)

    Marketplace Jump to: navigation, search Name: Renewables Marketplace Place: Palm Desert, California Zip: 92211 Sector: Renewable Energy Product: The Renewables Marketplace is a...

  4. First Gen Renewables FGRI | Open Energy Information

    Open Energy Info (EERE)

    Gen Renewables FGRI Jump to: navigation, search Name: First Gen Renewables (FGRI) Place: Pasing City, Philippines Zip: 1600 Sector: Renewable Energy Product: The renewable arm of...

  5. Advanced Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Jump to: navigation, search Name: Advanced Renewable Energy Place: Italy Sector: Biomass, Renewable Energy, Wind energy Product: Advanced Renewable Energy Ltd...

  6. Rahimafrooz Renewable Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Ltd Jump to: navigation, search Name: Rahimafrooz Renewable Energy Ltd. Place: Dhaka, Bangladesh Zip: 1212 Sector: Renewable Energy Product: Renewable energy...

  7. Sinohydro Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Sinohydro Renewable Energy Jump to: navigation, search Name: Sinohydro Renewable Energy Place: Beijing Municipality, China Sector: Renewable Energy Product: Beijing-based renewable...

  8. Outland Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Outland Renewable Energy LLC Jump to: navigation, search Name: Outland Renewable Energy, LLC Place: Chaska, Minnesota Zip: 55318 Sector: Renewable Energy Product: Outland Renewable...

  9. Renewable Hawaii Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Renewable Hawaii Inc Place: Hawaii Sector: Renewable Energy Product: Renewables subsidiary of Hawaii Power Company. References: Renewable...

  10. Enhanced coal bed methane production and sequestration of CO2 in unmineable coal

    SciTech Connect (OSTI)

    Locke, James; Winschel, Richard

    2005-03-01

    The Marshall County Project was undertaken by CONSOL Energy Inc. (CONSOL) with partial funding from the U. S. Department of Energy’s (DOE) Carbon Storage Program (CSP). The project, initiated in October 2001, was conducted to evaluate opportunities for carbon dioxide CO2 sequestration in an unmineable coal seam in the Northern Appalachian Basin with simultaneous enhanced coal bed methane recovery. This report details the final results from the project that established a pilot test in Marshall County, West Virginia, USA, where a series of coal bed methane (CBM) production wells were developed in an unmineable coal seam (Upper Freeport (UF)) and the overlying mineable Pittsburgh (PIT) seam. The initial wells were drilled beginning in 2003, using slant-hole drilling procedures with a single production leg, in a down-dip orientation that provided limited success. Improved well design, implemented in the remaining wells, allowed for greater CBM production. The nearly-square-shaped project area was bounded by the perimeter production wells in the UF and PIT seams encompassing an area of 206 acres. Two CBM wells were drilled into the UF at the center of the project site, and these were later converted to serve as CO2 injection wells through which, 20,000 short tons of CO2 were planned to be injected at a maximum rate of 27 tons per day. A CO2 injection system comprised of a 50-ton liquid CO2 storage tank, a cryogenic pump, and vaporization system was installed in the center of the site and, after obtaining a Class II underground injection permit (UIC) permit from the West Virginia Department of Environmental Protection (WVDEP), CO2 injection, through the two center wells, into the UF was initiated in September 2009. Numerous complications limited CO2 injection continuity, but CO2 was injected until breakthrough was encountered in September 2013, at which point the project had achieved an injection total of 4,968 tons of CO2. During the injection and post

  11. Influence of H/sub 2/ stripping on methane production in conventional digesters

    SciTech Connect (OSTI)

    Poels, J.; Van Assche, P.; Verstraete, W.

    1985-12-01

    Hydrogen is a central metabolite in the methanization process. In this study the partial pressure of hydrogen in the gas phase of laboratory manure digesters was monitored over extensive periods of time and found to vary between 50 and 100.10/sup -6/ atm. By sparging the gas phase of the digester through an auxiliary reactor, hydrogenotrophic methanogens were allowed to develop at the expense of hydrogen and carbon dioxide present in the biogas, independently of the liquid or cell residence time in the main reactor. By scrubbing ca. 100 volumes of biogas per liter reactor per day through an auxiliary reactor, hydrogen concentration could be decreased maximally 25%. This resulted in an increase in the gas production rate of the main digester of ca. 10% and a concomitant improved removal of volatile fatty acids from the mixed liquor. The results obtained indicate that considerable stripping of hydrogen from the digester could be achieved at acceptable energy expenditure. However, the microbial removal of the hydrogen at these low concentrations is extremely slow and limits the applicability of this approach.

  12. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production

    SciTech Connect (OSTI)

    Solli, Linn Bergersen, Ove; Sørheim, Roald; Briseid, Tormod

    2014-08-15

    Highlights: • New results from continuous anaerobic co-digestion of fish waste silage (FWS) and cow manure (CM). • Co-digestion of FWS and CM has a high biogas potential. • Optimal mixing ratio of FWS/CM is 13–16/87–84 volume%. • High input of FWS leads to accumulation of NH4+ and VFAs and process failure. - Abstract: This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS{sup −1}, obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.

  13. Simulation of an integrated system for the production of methane and single cell protein from biomass

    SciTech Connect (OSTI)

    Thomas, M.V.

    1989-01-01

    A numerical model was developed to simulate the operation of an integrated system for the production of methane and single-cell algal protein from a variety of biomass energy crops or waste streams. Economic analysis was performed at the end of each simulation. The model was capable of assisting in the determination of design parameters by providing relative economic information for various strategies. Three configurations of anaerobic reactors were simulated. These included fed-bed reactors, conventional stirred tank reactors, and continuously expanding reactors. A generic anaerobic digestion process model, using lumped substrate parameters, was developed for use by type-specific reactor models. The generic anaerobic digestion model provided a tool for the testing of conversion efficiencies and kinetic parameters for a wide range of substrate types and reactor designs. Dynamic growth models were used to model the growth of algae and Eichornia crassipes was modeled as a function of daily incident radiation and temperature. The growth of Eichornia crassipes was modeled for the production of biomass as a substrate for digestion. Computer simulations with the system model indicated that tropical or subtropical locations offered the most promise for a viable system. The availability of large quantities of digestible waste and low land prices were found to be desirable in order to take advantage of the economies of scale. Other simulations indicated that poultry and swine manure produced larger biogas yields than cattle manure. The model was created in a modular fashion to allow for testing of a wide variety of unit operations. Coding was performed in the Pascal language for use on personal computers.

  14. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    SciTech Connect (OSTI)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  15. Matrix Shrinkage and Swelling Effects on Economics of Enhanced Coalbed Methane Production and CO2 Sequestration in Coal

    SciTech Connect (OSTI)

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

    2005-09-01

    Increases in CO2 levels in the atmosphere and their contributions to global climate change have been a major concern. It has been shown that CO2 injection can enhance the methane recovery from coal. Accordingly, sequestration costs can be partially offset by the value added product. Indeed, coal seam sequestration may be profitable, particularly with the introduction of incentives for CO2 sequestration. Hence, carbon dioxide sequestration in unmineable coals is a very attractive option, not only for environmental reasons, but also for possible economic benefits. Darcy flow through cleats is an important transport mechanism in coal. Cleat compression and permeability changes due to gas sorption desorption, changes of effective stress, and matrix swelling and shrinkage introduce a high level of complexity into the feasibility of a coal sequestration project. The economic effects of carbon dioxide-induced swelling on permeabilities and injectivities has received little (if any) detailed attention. Carbon dioxide and methane have different swelling effects on coal. In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was re-written to also account for coal swelling caused by carbon dioxide sorption. The generalized model was added to PSU-COALCOMP, a dual porosity reservoir simulator for primary and enhanced coalbed methane production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals were used.[1] Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Youngs modulus, Poissons ratio, the cleat porosity, and the injection pressure. The economic variables included CH4 price, CO2 cost, CO2 credit, water disposal cost, and interest rate. Net present value analyses of

  16. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  17. Renewable Energy Group Inc | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Product: Iowa-based holding company operated under the auspices of biodiesel production company Renewable Energy Group. References: Renewable Energy Group...

  18. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    SciTech Connect (OSTI)

    Fdez-Gueelfo, L.A.; Alvarez-Gallego, C.; Sales, D.; Romero Garcia, L.I.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

  19. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022

  20. Analysis of Modeling Assumptions used in Production Cost Models for Renewable Integration Studies

    SciTech Connect (OSTI)

    Stoll, Brady; Brinkman, Gregory; Townsend, Aaron; Bloom, Aaron

    2016-01-01

    Renewable energy integration studies have been published for many different regions exploring the question of how higher penetration of renewable energy will impact the electric grid. These studies each make assumptions about the systems they are analyzing; however the effect of many of these assumptions has not been yet been examined and published. In this paper we analyze the impact of modeling assumptions in renewable integration studies, including the optimization method used (linear or mixed-integer programming) and the temporal resolution of the dispatch stage (hourly or sub-hourly). We analyze each of these assumptions on a large and a small system and determine the impact of each assumption on key metrics including the total production cost, curtailment of renewables, CO2 emissions, and generator starts and ramps. Additionally, we identified the impact on these metrics if a four-hour ahead commitment step is included before the dispatch step and the impact of retiring generators to reduce the degree to which the system is overbuilt. We find that the largest effect of these assumptions is at the unit level on starts and ramps, particularly for the temporal resolution, and saw a smaller impact at the aggregate level on system costs and emissions. For each fossil fuel generator type we measured the average capacity started, average run-time per start, and average number of ramps. Linear programming results saw up to a 20% difference in number of starts and average run time of traditional generators, and up to a 4% difference in the number of ramps, when compared to mixed-integer programming. Utilizing hourly dispatch instead of sub-hourly dispatch saw no difference in coal or gas CC units for either start metric, while gas CT units had a 5% increase in the number of starts and 2% increase in the average on-time per start. The number of ramps decreased up to 44%. The smallest effect seen was on the CO2 emissions and total production cost, with a 0.8% and 0

  1. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    SciTech Connect (OSTI)

    Melaina, M.; Penev, M.; Heimiller, D.

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  2. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy The WIPP Site Holds Promise as an Ideal Source of Renewable Energy Encompassing 16 square miles of open Chihuahuan desert with abundant sunshine and minimal surface roughness, the WIPP site is ideal for either solar- or wind-generated electricity production, demonstration or testing. In fact, WIPP is striving to take advantage of its abundance of sunshine and wind. The Department of Energy's Office of Environmental Management has created what is being called the Energy Park

  3. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  4. NorthWinds Renewables | Open Energy Information

    Open Energy Info (EERE)

    NorthWinds Renewables Jump to: navigation, search Name: NorthWinds Renewables Place: Harrison, New York Zip: 10528 Sector: Renewable Energy, Wind energy Product: NorthWinds...

  5. China Renewable Energy College | Open Energy Information

    Open Energy Info (EERE)

    Name: China Renewable Energy College Place: Beijing Municipality, China Zip: 102206 Sector: Renewable Energy Product: China's first academic renewable energy College. References:...

  6. American Renewable Fuels | Open Energy Information

    Open Energy Info (EERE)

    Fuels Jump to: navigation, search Name: American Renewable Fuels Place: Dallas, Texas Zip: TX 75201 Sector: Renewable Energy Product: Developer of commercial scale renewable fuels...

  7. Prestige Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Product: Subsidiary of the Spanish Prestige hotel group, set up to invest in renewable technologies. References: Prestige Renewable Energy1 This article is a...

  8. Pioneer Global Renewables | Open Energy Information

    Open Energy Info (EERE)

    Renewables Jump to: navigation, search Name: Pioneer Global Renewables Place: San Rafael, California Zip: 94901 Sector: Renewable Energy Product: Pioneer develops, finances...

  9. Renewable Power Systems | Open Energy Information

    Open Energy Info (EERE)

    Renewable Power Systems Place: Bedford, England, United Kingdom Zip: MK42 9TW Sector: Renewable Energy Product: Bedford, UK based developer of renewable power systems. References:...

  10. Vital Renewable Energy VREC | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy VREC Jump to: navigation, search Name: Vital Renewable Energy (VREC) Place: Pinheiros, Sao Paulo, Brazil Zip: CEP 05421-010 Sector: Renewable Energy Product: VREC...

  11. Renewable Energy Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Renewable Energy Engineering, LLC Place: Newberg, Oregon Zip: 22700 Sector: Renewable Energy Product: Oregon-based renewable energy...

  12. Standard Renewable Energy SRE | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy SRE Jump to: navigation, search Name: Standard Renewable Energy (SRE) Place: Houston, Texas Zip: 77007 Sector: Renewable Energy, Services Product: Houston-based...

  13. Encore Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Encore Renewable Energy LLC Jump to: navigation, search Name: Encore Renewable Energy, LLC Place: Santa Barbara, California Zip: 93111 Sector: Renewable Energy Product: National...

  14. Renewable Choice Energy | Open Energy Information

    Open Energy Info (EERE)

    Choice Energy Jump to: navigation, search Name: Renewable Choice Energy Place: Boulder, Colorado Zip: 80301 Sector: Carbon, Renewable Energy Product: Renewable Choice Energy is a...

  15. Econic Renewable Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Econic Renewable Energy Solutions Jump to: navigation, search Name: Econic Renewable Energy Solutions Place: Norfolk, United Kingdom Zip: NR 105PQ Sector: Renewable Energy Product:...

  16. Superior Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy LLC Jump to: navigation, search Name: Superior Renewable Energy LLC Place: Houston, Texas Zip: 77002 Sector: Renewable Energy, Wind energy Product: An independent...

  17. Alyra Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Alyra Renewable Energy Jump to: navigation, search Name: Alyra Renewable Energy Place: Northampton, Massachusetts Zip: 10600 Sector: Renewable Energy, Services Product:...

  18. Whites Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Whites Renewable Energy Jump to: navigation, search Name: Whites Renewable Energy Place: United Kingdom Zip: YO8 8EF Sector: Biomass, Renewable Energy Product: UK based company...

  19. Grounded Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Grounded Renewable Energy Jump to: navigation, search Name: Grounded Renewable Energy Place: Carbondale, Colorado Zip: 81623 Sector: Renewable Energy, Solar Product: Grounded...

  20. Boreal Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Boreal Renewable Energy Place: Acton, Massachusetts Zip: 1720 Sector: Hydro, Renewable Energy, Solar, Wind energy Product: Renewable Energy...

  1. Renewable Energy Resources Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Renewable Energy Resources, Inc. Place: Las Vegas, Nevada Sector: Hydro, Renewable Energy, Solar, Wind energy Product: Renewable Energy is a...

  2. Renewable Energy World | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy World Place: United Kingdom Sector: Renewable Energy Product: Bimonthly magazine, which used to be published by James & James on the renewable energy industry. Now...

  3. Emerald Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Jump to: navigation, search Name: Emerald Renewable Energy Place: Minneapolis, Minnesota Zip: 55401-2374 Sector: Renewable Energy Product: A privately held limited...

  4. BEE Renewable Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    BEE Renewable Energy Ltd Jump to: navigation, search Name: BEE Renewable Energy Ltd Place: Freiburg, Baden-Wrttemberg, Germany Zip: 79110 Sector: Renewable Energy Product:...

  5. Connect Renewable Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Connect Renewable Energy Inc Jump to: navigation, search Name: Connect Renewable Energy Inc Place: Grass Valley, California Zip: 95945 Sector: Renewable Energy Product: Connect...

  6. Agency of Renewable Resources | Open Energy Information

    Open Energy Info (EERE)

    Renewable Resources Jump to: navigation, search Name: Agency of Renewable Resources Place: Gulzow, Germany Zip: 18276 Sector: Renewable Energy Product: In 1993 the FNR was...

  7. Advanced Renewables LLC | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Advanced Renewables LLC Place: Philadelphia, Pennsylvania Zip: PA 19118 Sector: Renewable Energy Product: A renewable energy company focused on building a...

  8. Daneco Renewables Spa | Open Energy Information

    Open Energy Info (EERE)

    Daneco Renewables Spa Jump to: navigation, search Name: Daneco Renewables Spa Place: Milano, Italy Zip: 20152 Sector: Renewable Energy Product: Subsidiary of Waste Italia Group...

  9. EPOD Renewable Utilities Inc | Open Energy Information

    Open Energy Info (EERE)

    EPOD Renewable Utilities Inc Jump to: navigation, search Name: EPOD Renewable Utilities Inc Place: Frankfurt, Germany Sector: Renewable Energy Product: Focused on operating...

  10. Renewable Powertech Inc | Open Energy Information

    Open Energy Info (EERE)

    Powertech Inc Jump to: navigation, search Name: Renewable Powertech Inc Place: Las Vegas, Nevada Sector: Efficiency, Renewable Energy Product: Las Vegas-based renewable energy...

  11. E ON Climate Renewables | Open Energy Information

    Open Energy Info (EERE)

    ON Climate Renewables Jump to: navigation, search Name: E.ON Climate & Renewables Place: Dusseldorf, North Rhine-Westphalia, Germany Sector: Renewable Energy Product:...

  12. Industrial landfill leachate characterization and treatment utilizing anaerobic digestion with methane production

    SciTech Connect (OSTI)

    Corbo, P.

    1985-01-01

    Anaerobic digestion of organic compounds found in an industrial landfill leachate originating from a Superfund site was assessed using mixed methanogenic cultures. Leachate was found to contain a dissolved organic content (DOC) of about 16,000 mg/liter, of which 40% was in the form of acetic, propionic and butyric acids. The overall reduction of DOC and the fates of individual volatile fatty acids were studied during batch experiments of 5, 10, and 20% leachate dilutions. Other leachate components were characterized. Two methanogenic cultures were selected. A leachate digesting culture was selected directly with the leachate. A volatile fatty acid digesting culture was selected using acetic, propionic and butyric acids in the ratio found in the leachate. An overall DOC reduction of 64.3% was observed for the leachate digesting culture. A reduction of 69.1% was observed for the volatile fatty acid digesting culture. Specific DOC utilization rates were 0.154 and 0.211 day/sup -1/, for the leachate digesting and volatile fatty acid digesting cultures, respectively. Methane was produced at levels of 0.95-0.99 liters per gram DOC removed. Cell growth could not be observed during batch experiments. Acetate appeared to be the rate-limiting step in the DOC removal. Batch experiments with 20% leachate dilutions did not produce much methane, possibly due to overloading systems with volatile fatty acids. Other leachate components did not appear to effect anaerobic digestion.

  13. International Research Centre for Renewable Energy IFEED | Open...

    Open Energy Info (EERE)

    Renewable Energy IFEED Jump to: navigation, search Name: International Research Centre for Renewable Energy (IFEED) Place: Germany Sector: Renewable Energy Product: Renewable...

  14. AO13. High energy, low methane syngas from low-rank coals for coal-to-liquids production

    SciTech Connect (OSTI)

    Lucero, Andrew; Goyal, Amit; McCabe, Kevin; Gangwal, Santosh

    2015-06-30

    An experimental program was undertaken to develop and demonstrate novel steam reforming catalysts for converting tars, C2+ hydrocarbons, and methane under high temperature and sulfur environments at lab scale. Several catalysts were developed and synthesized along with some catalysts based on recipes found in the literature. Of these, two had good resistance at 90 ppm H2S with one almost not affected at all. Higher concentrations of H2S did affect methane conversion across the catalyst, but performance was fairly stable for up to 200 hours. Based on the results of the experimental program, a techno-economic analysis was developed for IGCC and CTL applications and compared to DOE reference cases to examine the effects of the new technology. In the IGCC cases, the reformer/POX system produces nearly the same amount of electricity for nearly the same cost, however, the reformers/POX case sequesters a higher percentage of the carbon when compared to IGCC alone. For the CTL case the economics of the new process were nearly identical to the CTL case, but due to improved yields, the greenhouse gas emissions for a given production of fuels was approximately 50% less than the baseline case.

  15. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Sweeten, John M; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C.; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B.; Stewart, B. A.

    2012-05-03

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco -- the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1

  16. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Sweeten, John; Annamalai, Kalyan; Auvermann, Brent; Mukhtar, Saqib; Capareda, Sergio C; Engler, Cady; Harman, Wyatte; Reddy, J N; DeOtte, Robert; Parker, David B; Stewart, B A

    2012-05-02

    The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco—the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1

  17. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Kalyan Annamalai, John M. Sweeten, Brent W. Auvermann, Saqib Mukhtar, Sergio Caperada Cady R. Engler, Wyatte Harman Reddy JN Robert Deotte

    2012-05-03

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1

  18. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    John M. Sweeten, Kalyan Annamalai Brent Auvermann Saqib Mukhtar Sergio C. Capareda Cady Engler Wyatte Harman J.N. Reddy, Robert DeOtte David B. Parker Dr. B.A. Stewart

    2012-05-03

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1

  19. Schoeller Renewables | Open Energy Information

    Open Energy Info (EERE)

    Schoeller Renewables Jump to: navigation, search Name: Schoeller Renewables Place: Germany Sector: Solar, Wind energy Product: Germany-based subsidiary of Schoeller Industries that...

  20. Renewable Connections | Open Energy Information

    Open Energy Info (EERE)

    Connections Jump to: navigation, search Name: Renewable Connections Place: london, Greater London, United Kingdom Sector: Renewable Energy, Services Product: London-based...

  1. Rivertop Renewables | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Rivertop Renewables Place: Missoula, Montana Zip: P.O. Box 8165 Sector: Renewable Energy Product: Montana based startup focused on creating...

  2. Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas. A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture

    SciTech Connect (OSTI)

    Lebarbier, Vanessa M.C.; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

    2013-07-08

    Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600°C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700ºC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600°C. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent

  3. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  4. A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.; Phelps, Tommy J.; Carroll, Sue L.; Wullschleger, Stan D.; Thornton, Peter E.

    2015-07-23

    In this study, accurately estimating methane (CH4) flux is critically important for investigating and predicting the biogeochemistry-climate feedback. Better simulating CH4 flux requires explicit representations of microbial processes on CH4 dynamics because all processes for CH4 production and consumption are actually carried out by microbes. A microbial functional group based module was developed and tested against an incubation experiment. The module considers four key mechanisms for CH4 production and consumption: methanogenesis from acetate or single-carbon compounds and CH4 oxidation using molecular oxygen or other inorganic electron acceptors. These four processes were carried out by four microbial functional groups: acetoclastic methanogens, hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was then linked with the decomposition subroutine of the Community Land Model, and was further used to simulate dynamics of carbon dioxide (CO2) and CH4 concentrations from an incubation experiment with permafrost soils. The results show that the model could capture the dynamics of CO2 and CH4 concentrations in microcosms with top soils, mineral layer soils and permafrost soils under natural and saturated moisture conditions and a temperature gradient of -2C, 3C, and 5C. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO2 and CH4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting the behavior of the climate system.

  5. A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.; Phelps, Tommy J.; Carroll, Sue L.; Wullschleger, Stan D.; Thornton, Peter E.

    2015-07-23

    In this study, accurately estimating methane (CH4) flux is critically important for investigating and predicting the biogeochemistry-climate feedback. Better simulating CH4 flux requires explicit representations of microbial processes on CH4 dynamics because all processes for CH4 production and consumption are actually carried out by microbes. A microbial functional group based module was developed and tested against an incubation experiment. The module considers four key mechanisms for CH4 production and consumption: methanogenesis from acetate or single-carbon compounds and CH4 oxidation using molecular oxygen or other inorganic electron acceptors. These four processes were carried out by four microbial functional groups: acetoclastic methanogens, hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was then linked with the decomposition subroutine of the Community Land Model, and was further used to simulate dynamics of carbon dioxide (CO2) and CH4 concentrations from an incubation experiment with permafrost soils. The results show that the model could capture the dynamics of CO2 and CH4 concentrations in microcosms with top soils, mineral layer soils and permafrost soils under natural and saturated moisture conditions and a temperature gradient of -2°C, 3°C, and 5°C. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO2 and CH4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting the behavior of the climate system.

  6. A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.; Phelps, Tommy J.; Carroll, Sue L.; Wullschleger, Stan D.; Thornton, Peter E.

    2015-07-23

    In this study, accurately estimating methane (CH4) flux is critically important for investigating and predicting the biogeochemistry-climate feedback. Better simulating CH4 flux requires explicit representations of microbial processes on CH4 dynamics because all processes for CH4 production and consumption are actually carried out by microbes. A microbial functional group based module was developed and tested against an incubation experiment. The module considers four key mechanisms for CH4 production and consumption: methanogenesis from acetate or single-carbon compounds and CH4 oxidation using molecular oxygen or other inorganic electron acceptors. These four processes were carried out by four microbial functional groups: acetoclastic methanogens,more » hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was then linked with the decomposition subroutine of the Community Land Model, and was further used to simulate dynamics of carbon dioxide (CO2) and CH4 concentrations from an incubation experiment with permafrost soils. The results show that the model could capture the dynamics of CO2 and CH4 concentrations in microcosms with top soils, mineral layer soils and permafrost soils under natural and saturated moisture conditions and a temperature gradient of -2°C, 3°C, and 5°C. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO2 and CH4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting the behavior of the climate system.« less

  7. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect (OSTI)

    Lusk, P.

    1994-12-01

    One manure management system provides not only pollution prevention but also converts a manure management problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products including a cost-effective renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations. Finally, anaerobic digestion has considerable potential beyond agribusiness. Examples of digesters currently employed by other industries are provided.

  8. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    David Kirchman

    2011-12-31

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (??Methane in the Arctic Shelf? or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (??metagenomes?). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially

  9. Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production

    SciTech Connect (OSTI)

    Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

    2014-10-01

    Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330°C when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted Mg

  10. Bison Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy LLC Place: Minneapolis, Minnesota Zip: 55401 Product: Developing biogas production facilities. References: Bison Renewable Energy LLC1 This article is a...

  11. Webinar: "Upgrading Renewable and Sustainable Carbohydrates for...

    Energy Savers [EERE]

    "Upgrading Renewable and Sustainable Carbohydrates for the Production of High Energy Density Fuels" Webinar: "Upgrading Renewable and Sustainable Carbohydrates for the Production of ...

  12. Crimson Renewable Energy LP | Open Energy Information

    Open Energy Info (EERE)

    Crimson Renewable Energy LP Place: Denver, Colorado Zip: 80202 Sector: Biomass, Renewable Energy Product: Focused on biodiesel production and conversion of waste biomass into...

  13. Integrated Agent-Based and Production Cost Modeling Framework for Renewable Energy Studies: Preprint

    SciTech Connect (OSTI)

    Gallo, Giulia

    2015-10-07

    The agent-based framework for renewable energy studies (ARES) is an integrated approach that adds an agent-based model of industry actors to PLEXOS and combines the strengths of the two to overcome their individual shortcomings. It can examine existing and novel wholesale electricity markets under high penetrations of renewables. ARES is demonstrated by studying how increasing levels of wind will impact the operations and the exercise of market power of generation companies that exploit an economic withholding strategy. The analysis is carried out on a test system that represents the Electric Reliability Council of Texas energy-only market in the year 2020. The results more realistically reproduce the operations of an energy market under different and increasing penetrations of wind, and ARES can be extended to address pressing issues in current and future wholesale electricity markets.

  14. Davison Circulating Riser (DCR) Capabilities Postcard (Other Marketing Product), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vapor Phase Upgrading With NREL's Davison Circulating Riser (DCR) Advancing technologies in biomass conversion to fuels and fuel intermediates NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. DCR System With Custom Biomass Prolyzer Highlights * Custom biomass pyrolyzer provides vapors to the DCR for upgrading to hydrocarbon fuel intermediates * 2 mass balance runs per 8 hrs: 3-6

  15. ARM - Methane Background Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WarmingMethane Background Information Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Methane Background Information What is Methane? Why Do We Use Methane? How is Methane Made? Where Do We Find Methane? Can Methane Be Dangerous? Does Methane Contribute to Climate Change? What is Methane?

  16. Methane Recovery from Animal Manures The Current Opportunities Casebook

    SciTech Connect (OSTI)

    Lusk, P.

    1998-09-22

    Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only helps prevent pollution but can also convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially viable conversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel for livestock production operations. This casebook examines some of the current opportunities for recovering methane from anaerobic digestion animal manures.

  17. Production Tax Credit for Renewable Electricity Generation (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

  18. UK Centre for Marine Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Centre for Marine Renewable Energy Jump to: navigation, search Name: UK Centre for Marine Renewable Energy Place: United Kingdom Sector: Renewable Energy Product: UK Centre for...

  19. World Renewable Energy Network WREN | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Network WREN Jump to: navigation, search Name: World Renewable Energy Network (WREN) Place: Brighton, United Kingdom Zip: BN2 1YH Sector: Renewable Energy Product:...

  20. NUON Renewable Energy Business Unit | Open Energy Information

    Open Energy Info (EERE)

    NUON Renewable Energy Business Unit Jump to: navigation, search Name: NUON Renewable Energy Business Unit Place: Arnhem, Netherlands Zip: 6800 EZ Sector: Renewable Energy Product:...

  1. Mulilo Renewable Energy Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Mulilo Renewable Energy Pty Ltd Jump to: navigation, search Name: Mulilo Renewable Energy Pty (Ltd) Place: Cape Town, South Africa Zip: 7525 Sector: Renewable Energy Product: Cape...

  2. Interstate Renewable Energy Council IREC | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Council IREC Jump to: navigation, search Name: Interstate Renewable Energy Council (IREC) Place: Latham, New York Zip: 12110-1156 Sector: Renewable Energy Product:...

  3. Midwest Renewable Energy Credits LLC | Open Energy Information

    Open Energy Info (EERE)

    Credits LLC Jump to: navigation, search Name: Midwest Renewable Energy Credits LLC Place: Florida Sector: Renewable Energy Product: MRE Credits markets renewable energy credits to...

  4. NordEnergie Renewables A S | Open Energy Information

    Open Energy Info (EERE)

    Renewables AS Place: Copenhagen, Denmark Zip: DK 1265 Sector: Renewable Energy, Solar, Wind energy Product: Copenhagen-based renewable energy project developer focused on wind and...

  5. Peterborough Renewable Energy Ltd PREL | Open Energy Information

    Open Energy Info (EERE)

    Peterborough Renewable Energy Ltd PREL Jump to: navigation, search Name: Peterborough Renewable Energy Ltd. (PREL) Place: United Kingdom Sector: Renewable Energy Product:...

  6. RENERCO Renewable Energy Concepts AG | Open Energy Information

    Open Energy Info (EERE)

    RENERCO Renewable Energy Concepts AG Jump to: navigation, search Name: RENERCO Renewable Energy Concepts AG Place: Munich, Germany Zip: D-80336 Sector: Renewable Energy Product:...

  7. World Council for Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    for Renewable Energy Jump to: navigation, search Name: World Council for Renewable Energy Place: Bonn, North Rhine-Westphalia, Germany Zip: 53113 Sector: Renewable Energy Product:...

  8. RenewableEnergyStocks com | Open Energy Information

    Open Energy Info (EERE)

    Place: Washington State Sector: Renewable Energy Product: Investor and industry portal for the renewable energy sector. References: RenewableEnergyStocks.com1 This article...

  9. NextLight Renewable Power LLC | Open Energy Information

    Open Energy Info (EERE)

    NextLight Renewable Power LLC Jump to: navigation, search Name: NextLight Renewable Power LLC Place: San Francisco, California Zip: 94111 Sector: Renewable Energy Product:...

  10. TowPath Renewable Ventures | Open Energy Information

    Open Energy Info (EERE)

    TowPath Renewable Ventures Jump to: navigation, search Name: TowPath Renewable Ventures Place: Washington, Washington, DC Zip: 20007 Sector: Renewable Energy Product: TowPath...

  11. Conergy Renewable Services GmbH | Open Energy Information

    Open Energy Info (EERE)

    Renewable Services GmbH Jump to: navigation, search Name: Conergy Renewable Services GmbH Place: Hamburg, Germany Zip: 20537 Sector: Renewable Energy, Services Product: Provides...

  12. Bro Dyfi Community Renewables Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dyfi Community Renewables Ltd Place: Bro Dyfi, Wales, United Kingdom Sector: Renewable Energy, Wind energy Product: Bro Dyfi Community Renewables Ltd was formed in 2001 to create...

  13. Technical and Economic Evaluation of Macroalgae Cultivation for Fuel Production (Draft)

    SciTech Connect (OSTI)

    Feinberg, D. A.; Hock, S. M.

    1985-04-01

    The potential of macroalgae as sources of renewable liquid and gaseous fuels is evaluated. A series of options for production of macroalgae feedstock is considered. Because of their high carbohydrate content, the fuel products for which macroalgae are most suitable are methane and ethanol. Fuel product costs were compared with projected fuel costs in the year 1995.

  14. Methane for Power Generation in Muaro Jambi: A Green Prosperity Model Project

    SciTech Connect (OSTI)

    Moriarty, K.; Elchinger, M.; Hill, G.; Katz, J.; Barnett, J.

    2014-07-01

    NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates electricity generation from the organic content of wastewater at a palm oil mill in Muaro Jambi, Sumatra. Palm mills use vast amounts of water in the production process resulting in problematic waste water called palm oil mill effluent (POME). The POME releases methane to the atmosphere in open ponds which could be covered to capture the methane to produce renewable electricity for rural villages. The study uses average Indonesia data to determine the economic viability of methane capture at a palm oil mill and also evaluates technology as well as social and environmental impacts of the project.

  15. Methane generation from animal wastes

    SciTech Connect (OSTI)

    Fulton, E.L.

    1980-06-01

    The conversion of manure to biogas via anaerobic digestion is described. The effluent resulting from the conversion retains fertilizer value and is environmentally acceptable. Discussion is presented under the headings: methane formation in the digester; the Tarleton State Poultry Waste to Methane production system; operating experience at Tarleton State; economics of biogas production from poultry waste; construction cost and biogas value; energy uses; feed and waste processing; and advantages of anaerobic digestion. (DMC)

  16. Coal mine methane global review

    SciTech Connect (OSTI)

    2008-07-01

    This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

  17. Coalbed Methane Estimated Production

    Gasoline and Diesel Fuel Update (EIA)

    1,966 1,914 1,886 1,763 1,655 1,466 1989-2013 Federal Offshore U.S. 0 0 0 0 0 0 2005-2013 Pacific (California) 0 0 0 0 0 0 2005-2013 Gulf of Mexico (Louisiana & Alabama) 0 0 0 0 0...

  18. Coalbed Methane Estimated Production

    Gasoline and Diesel Fuel Update (EIA)

    Coal Market Module of the National Energy Modeling System Model Documentation 2013 June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Model Documentation: Coal Market Module 2013 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  19. Methane sources and emissions in Italy

    SciTech Connect (OSTI)

    Guidotti, G.R.; Castagnola, A.M.

    1994-12-31

    Methane emissions in Italy were assessed in the framework of the measures taken to follow out the commitments undertaken at the 1992 U.N. Conference for Environment and Development. Methane emissions of anthropic origin were estimated to be in the range of 1.6 to 2.3 million ton of methane per year. Some of these methane sources (natural gas production, transmission and distribution; rice paddies; managed livestock enteric fermentation and waste; solid waste landfills) are given here particular care as they mainly contribute to the total methane emission budget.

  20. American Renewables LLC | Open Energy Information

    Open Energy Info (EERE)

    Renewables LLC Jump to: navigation, search Name: American Renewables LLC Place: Boston, Massachusetts Sector: Biomass Product: US developer of biomass-fueled power generating...

  1. Tersus Asian Renewables | Open Energy Information

    Open Energy Info (EERE)

    energy Product: Tersus Asian Renewables is focusing on investments in wind, biomass and clean coal, principally in China and India. References: Tersus Asian Renewables1 This...

  2. Solar Renewable Energy Certificates Program (SRECs)

    Broader source: Energy.gov [DOE]

    Solar Renewable Energy Certificates (SRECs) represent the renewable attributes of solar generation, bundled in minimum denominations of one megawatt-hour (MWh) of production. The legislation...

  3. WIP Renewable Energies | Open Energy Information

    Open Energy Info (EERE)

    WIP Renewable Energies Jump to: navigation, search Name: WIP - Renewable Energies Place: Mnchen, Bavaria, Germany Zip: 81369 Product: Consultancy collaborating in R&D and...

  4. Liberty Green Renewables LLC | Open Energy Information

    Open Energy Info (EERE)

    Green Renewables LLC Jump to: navigation, search Name: Liberty Green Renewables, LLC Place: Georgetown, Indiana Zip: 47122 Sector: Biomass Product: Biomass power plant developer...

  5. Renewable Energy Partnerships Ltd | Open Energy Information

    Open Energy Info (EERE)

    Partnerships Ltd Jump to: navigation, search Name: Renewable Energy Partnerships Ltd Place: Wiltshire, England, United Kingdom Zip: SN13 9TZ Sector: Renewable Energy Product:...

  6. German Renewable Energy Federation | Open Energy Information

    Open Energy Info (EERE)

    Federation Jump to: navigation, search Name: German Renewable Energy Federation Place: Paderborn, Germany Zip: 33100 Sector: Renewable Energy Product: Paderborn-based pressure...

  7. Eolian Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Eolian Renewable Energy LLC Jump to: navigation, search Name: Eolian Renewable Energy LLC Place: Portsmouth, New Hampshire Zip: 3801 Sector: Solar, Wind energy Product: New...

  8. Gigha Renewable Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gigha Renewable Energy Ltd Jump to: navigation, search Name: Gigha Renewable Energy Ltd Place: Isle of Gigha, Scotland, United Kingdom Sector: Wind energy Product: Developer of the...

  9. Lincoln Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy LLC Jump to: navigation, search Name: Lincoln Renewable Energy LLC Place: Chicago, Illinois Zip: 60606 Sector: Solar, Wind energy Product: Chicago-based company...

  10. American Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: American Renewable Energy Place: Evanston, Illinois Zip: 60202 Sector: Geothermal energy, Renewable Energy, Solar Product: American...

  11. Jefferson Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Jump to: navigation, search Name: Jefferson Renewable Energy Place: Warwick, Rhode Island Zip: 2886 Product: Rhode Island-based waste-to-energy and biofuel project...

  12. Abundant Renewable Energy ARE | Open Energy Information

    Open Energy Info (EERE)

    Abundant Renewable Energy ARE Jump to: navigation, search Name: Abundant Renewable Energy (ARE) Place: Newberg, Oregon Zip: 97132 Sector: Solar, Wind energy Product: Oregon-based...

  13. Midwest Renewable Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Jump to: navigation, search Name: Midwest Renewable Energy Corporation Place: Joice, Iowa Zip: Iowa 50446 Sector: Renewable Energy, Wind energy Product: Midwest...

  14. Renewable Energy Holdings Plc | Open Energy Information

    Open Energy Info (EERE)

    Plc Jump to: navigation, search Name: Renewable Energy Holdings Plc Place: Greater London, United Kingdom Sector: Renewable Energy Product: Investment vehicle for proven and...

  15. Grasslands Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Grasslands Renewable Energy LLC Jump to: navigation, search Name: Grasslands Renewable Energy LLC Place: Bozeman, Montana Zip: 59715 Sector: Wind energy Product: Montana-based...

  16. Calgren Renewable Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Renewable Fuels LLC Place: Newport Beach, California Zip: 92660 Product: Developer of bio-ethanol plants in US, particularly California. References: Calgren Renewable Fuels...

  17. Renewed World Energies | Open Energy Information

    Open Energy Info (EERE)

    Renewed World Energies Jump to: navigation, search Name: Renewed World Energies Place: Georgetown, South Carolina Zip: 29440 Product: South Carolina-based closed loop...

  18. Crown Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy LLC Jump to: navigation, search Name: Crown Renewable Energy LLC Place: Union City, California Zip: 94587 Product: Buys monosilicon PV cells from JingAo....

  19. Countryside Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Countryside Renewable Energy Jump to: navigation, search Name: Countryside Renewable Energy Place: Iowa Product: Iowa-based company that plans to take a stake in a number of...

  20. Distomo Renewable Energy SA | Open Energy Information

    Open Energy Info (EERE)

    Distomo Renewable Energy SA Jump to: navigation, search Name: Distomo Renewable Energy SA Place: Greece Zip: 32005 Product: Aiming to develop PV projects in Greece. References:...

  1. Homeland Renewable Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Homeland Renewable Energy LLC Jump to: navigation, search Name: Homeland Renewable Energy LLC Place: Langhorne, Pennsylvania Zip: 19047 Product: Holding company for Fibrowatt LLC...

  2. Alderney Renewable Energy ARE | Open Energy Information

    Open Energy Info (EERE)

    Alderney Renewable Energy ARE Jump to: navigation, search Name: Alderney Renewable Energy (ARE) Place: Alderney, Channel Islands, United Kingdom Zip: GY9 3XY Product: AREl develops...

  3. Sphere Renewable Energy Corp | Open Energy Information

    Open Energy Info (EERE)

    Sphere Renewable Energy Corp Jump to: navigation, search Name: Sphere Renewable Energy Corp Place: California Product: California-based polysilicon technology company which has...

  4. Alpha Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Jump to: navigation, search Name: Alpha Renewable Energy Place: Atlanta, Georgia Sector: Biomass Product: Manufacturer of biomass wood gas stoves and standalone...

  5. Renewable Fuels Assocation | Open Energy Information

    Open Energy Info (EERE)

    DC Zip: 20001 Sector: Renewable Energy Product: US national trade association for the ethanol industry, the Renewable Fuels Association (RFA) has been working as the "Voice of the...

  6. Renewable NRG LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Renewable NRG LLC Place: Woodstock, New York Zip: 12498 Product: Small manufacturing company located in New York. References: Renewable NRG LLC1 This article is a...

  7. Clear Wind Renewable Power | Open Energy Information

    Open Energy Info (EERE)

    Wind Renewable Power Jump to: navigation, search Name: Clear Wind Renewable Power Place: Minneapolis, Minnesota Zip: 55416 Sector: Wind energy Product: Clear Wind focuses its...

  8. Neptune Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    search Name: Neptune Renewable Energy Place: United Kingdom Zip: HU14 3JP Product: Tidal project developer. References: Neptune Renewable Energy1 This article is a stub. You...

  9. US Renewables Group USRG | Open Energy Information

    Open Energy Info (EERE)

    Group USRG Jump to: navigation, search Name: US Renewables Group (USRG) Place: West Santa Monica, California Zip: 90404 Sector: Biofuels, Renewable Energy Product: Santa...

  10. PNE Renewable Solutions JV | Open Energy Information

    Open Energy Info (EERE)

    PNE Renewable Solutions JV Jump to: navigation, search Name: PNE & Renewable Solutions JV Place: Delaware Sector: Wind energy Product: Delaware-based limited liability company and...

  11. Pathfinder Renewable Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Pathfinder Renewable Wind Energy Jump to: navigation, search Name: Pathfinder Renewable Wind Energy Place: Casper, Wyoming Zip: 82601 Sector: Wind energy Product: Wyoming-based...

  12. RDC Falck Renewables JV | Open Energy Information

    Open Energy Info (EERE)

    JV Place: United Kingdom Sector: Renewable Energy, Wind energy Product: RDC created a joint venture with Falck Renewables Ltd (FRL) to develop a portfolio of wind energy...

  13. Renewable Fuels Consulting | Open Energy Information

    Open Energy Info (EERE)

    Consulting Jump to: navigation, search Name: Renewable Fuels Consulting Place: Mason City, Iowa Sector: Renewable Energy Product: RFC specializes in providing technical solutions...

  14. British Energy Renewables | Open Energy Information

    Open Energy Info (EERE)

    Energy, Wind energy Product: Renewables division of British Energy. Involved in the Lewis Wind Farm project. References: British Energy Renewables1 This article is a stub....

  15. Direct Aromaization of Methane

    SciTech Connect (OSTI)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  16. Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production

    SciTech Connect (OSTI)

    Bollinger, Benjamin

    2015-01-02

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components.The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  17. Kun Renewables | Open Energy Information

    Open Energy Info (EERE)

    Kun Renewables Jump to: navigation, search Name: Kun Renewables Place: Kazakhstan Product: Plans to build a 2,500 tonne polysilicon plant in Kazakhstan, with the backing of the...

  18. Effects of matrix shrinkage and swelling on the economics of enhanced-coalbed-methane production and CO{sub 2} sequestration in coal

    SciTech Connect (OSTI)

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

    2007-08-15

    In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was rewritten to also account for coal swelling caused by CO{sub 2} sorption. The generalized model was added to a compositional, dual porosity coalbed-methane reservoir simulator for primary (CBM) and ECBM production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals was used. Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young's modulus, Poisson's ratio, cleat porosity, and injection pressure. The economic variables included CH{sub 4}, price, Col Cost, CO{sub 2} credit, water disposal cost, and interest rate. Net-present value (NPV) analyses of the simulation results included profits resulting from CH{sub 4}, production and potential incentives for sequestered CO{sub 2}, This work shows that for some coal seams, the combination of compressibility, cleat porosity, and shrinkage/swelling of the coal may have a significant impact on project economics.

  19. Fred Olsen Renewables Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fred Olsen Renewables Ltd Jump to: navigation, search Name: Fred. Olsen Renewables Ltd Place: London, Greater London, United Kingdom Zip: SW1V 1AU Sector: Renewable Energy Product:...

  20. Bio Renewables Group | Open Energy Information

    Open Energy Info (EERE)

    Renewables Group Jump to: navigation, search Name: Bio-Renewables Group Place: United Kingdom Zip: CB6 2BA Sector: Biomass, Renewable Energy Product: Specialist in bio-energy...

  1. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewal Individual Permit Renewal Application The Permit expires March 31, 2014 and existing permit conditions will be in effect until a new permit is issued. The Permittees submitted a renewal application to EPA on March 27, 2014. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Individual Permit Renewal Application February 10, 2015 NPDES Permit No. NM0030759, Supplemental Information for Permit Renewal Application

  2. Tax Credits for Home Energy Improvements: If You Buy an Energy-Efficient Product or Renewable Energy System for Your Home, You May be Eligible for a Federal Tax Credit (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    This two-page fact sheet provides an overview of 2010 federal tax credits for energy efficient products or renewable energy systems in the home.

  3. Direct production of hydrogen and aromatics from methane or natural gas: Review of recent U.S. patents

    SciTech Connect (OSTI)

    Lucia M. Petkovic; Daniel M. Ginosar

    2012-03-01

    Since the year 2000, the United States Patent and Trademark Office (USPTO) has granted a dozen patents for inventions related to methane dehydroaromatization processes. One of them was granted to UOP LLC (Des Plaines). It relates to a catalyst composition and preparation method. Two patents were granted to Conoco Phillips Company (Houston, TX). One was aimed at securing a process and operating conditions for methane aromatization. The other was aimed at securing a process that may be integrated with separation of wellhead fluids and blending of the aromatics produced from the gas with the crude. Nine patents were granted to ExxonMobil Chemical Patents Inc. (Houston, TX). Most of these were aimed at securing a dehydroaromatization process where methane-containing feedstock moves counter currently to a particulate catalyst. The coked catalyst is heated or regenerated either in the reactor, by cyclic operation, or in annex equipment, and returned to the reactor. The reactor effluent stream may be separated in its main components and used or recycled as needed. A brief summary of those inventions is presented in this review.

  4. Renewable Hydrogen Potential from Biogas in the United States

    SciTech Connect (OSTI)

    Saur, G.; Milbrandt, A.

    2014-07-01

    This analysis updates and expands upon previous biogas studies to include total potential and net availability of methane in raw biogas with respect to competing demands and includes a resource assessment of four sources of biogas: (1) wastewater treatment plants, including domestic and a new assessment of industrial sources; (2) landfills; (3) animal manure; and (4) a new assessment of industrial, institutional, and commercial sources. The results of the biogas resource assessment are used to estimate the potential production of renewable hydrogen from biogas as well as the fuel cell electric vehicles that the produced hydrogen might support.

  5. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-06-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  6. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-01-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  7. 8KU Renewables GmbH | Open Energy Information

    Open Energy Info (EERE)

    KU Renewables GmbH Jump to: navigation, search Name: 8KU Renewables GmbH Place: Berlin, Germany Zip: 10117 Sector: Renewable Energy Product: Berlin-based start-up renewables...

  8. Production of Hydrogen for Clean and Renewable Source of Energy for Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Deng, Xunming; Ingler, William B, Jr.; Abraham, Martin; Castellano, Felix; Coleman, Maria; Collins, Robert; Compaan, Alvin; Giolando, Dean; Jayatissa, Ahalapitiya. H.; Stuart, Thomas; Vonderembse, Mark

    2008-10-31

    This was a two-year project that had two major components: 1) the demonstration of a PV-electrolysis system that has separate PV system and electrolysis unit and the hydrogen generated is to be used to power a fuel cell based vehicle; 2) the development of technologies for generation of hydrogen through photoelectrochemical process and bio-mass derived resources. Development under this project could lead to the achievement of DOE technical target related to PEC hydrogen production at low cost. The PEC part of the project is focused on the development of photoelectrochemical hydrogen generation devices and systems using thin-film silicon based solar cells. Two approaches are taken for the development of efficient and durable photoelectrochemical cells; 1) An immersion-type photoelectrochemical cells (Task 3) where the photoelectrode is immersed in electrolyte, and 2) A substrate-type photoelectrochemical cell (Task 2) where the photoelectrode is not in direct contact with electrolyte. Four tasks are being carried out: Task 1: Design and analysis of DC voltage regulation system for direct PV-to-electrolyzer power feed Task 2: Development of advanced materials for substrate-type PEC cells Task 3: Development of advanced materials for immersion-type PEC cells Task 4: Hydrogen production through conversion of biomass-derived wastes

  9. Determination of biogas generation potential as a renewable energy source from supermarket wastes

    SciTech Connect (OSTI)

    Alkanok, Gizem; Demirel, Burak Onay, Turgut T.

    2014-01-15

    Highlights: Disposal of supermarket wastes in landfills may contribute to environmental pollution. High methane yields can be obtained from supermarket wastes by anaerobic co-digestion. Fruit and vegetable wastes or dairy products wastes could individually be handled by a two-stage anaerobic process. Buffering capacity, trace metal and C/N ratio are essential for digestion of supermarket wastes. - Abstract: Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH{sub 4}/g VS{sub added} was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH{sub 4}) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH{sub 4}/g VS{sub added}, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH{sub 4}/g VS{sub added} was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.

  10. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD