Sample records for renewable generating capacity

  1. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  2. Renewable Energy: Distributed Generation Policies and Programs...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Policies & Programs Renewable Energy: Distributed Generation Policies and Programs Renewable Energy: Distributed Generation Policies and Programs Distributed generation...

  3. Renewable energy generation sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-4078P. Renewable Systems & Energy Infrastructure | Solar Programs Sandia mechanical technologist...

  4. Renewable energy generation sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewableIndustrialenergy

  5. Figure 1. Nonhydroelectric renewable generation

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Nonhydroelectric renewable generation" " (billion kilowatthours)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,...

  6. Managing nuclear predominant generating capacity

    SciTech Connect (OSTI)

    Bouget, Y.H.; Herbin, H.C.; Carbonnier, D.

    1998-07-01T23:59:59.000Z

    The most common belief, associated with nuclear power plant, leads to the conclusion that it can only operate, as a base load plant. This observation can be reversed, by just looking at large generating capacity, using an important nuclear generation mix. Nuclear plants may certainly load follow and contribute to the grid frequency control. The French example illustrates these possibilities. The reactor control of French units has been customized to accommodate the grid requests. Managing such a large nuclear plant fleet requires various actions be taken, ranging from a daily to a multi-annual perspective. The paper describes the various contributions leading to safe, reliable, well accepted and cost competitive nuclear plants in France. The combination of all aspects related to operations, maintenance scheduling, nuclear safety management, are presented. The use of PWR units carries considerable weight in economic terms, with several hundred million francs tied in with outage scheduling every year. This necessitates a global view of the entire generating system which can be mobilized to meet demand. There is considerable interaction between units as, on the one hand, they are competing to satisfy the same need, and, on the other hand, reducing maintenance costs means sharing the necessary resources, and thus a coordinated staggering of outages. In addition, nuclear fuel is an energy reserve which remains in the reactor for 3 or 4 years, with some of the fuel renewed each year. Due to the memory effect, the fuel retains a memory of past use, so that today's choices impact upon the future. A medium-term view of fuel management is also necessary.

  7. Eastern Renewable Generation Integration Study (Presentation)

    SciTech Connect (OSTI)

    Bloom, A.

    2014-05-01T23:59:59.000Z

    This presentation provides a high-level overview of the Eastern Renewable Generation Integration Study process, scenarios, tools, and goals.

  8. Renewable Electricity Generation in the United States

    E-Print Network [OSTI]

    Schmalensee, Richard

    This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

  9. Renewable Electricity Generation (Fact Sheet), Office of Energy...

    Energy Savers [EERE]

    Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet),...

  10. Eastern Renewable Generation Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    This one-page, two-sided fact sheet provides an overview of the Eastern Renewable Generation and Integration Study process.

  11. Smoothing the Eects of Renewable Generation on the Distribution Grid

    E-Print Network [OSTI]

    Naud, Paul S.

    2014-01-01T23:59:59.000Z

    to Grid by Paul Naud Renewable electrical power sourcessystem based on various renewable energy resources. InCRUZ Smoothing the Effects of Renewable Generation on the

  12. Renewable Power Options for Electricity Generation on Kaua'i...

    Office of Environmental Management (EM)

    Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

  13. Renewable Energy Generation Zone Property Tax Abatement

    Broader source: Energy.gov [DOE]

    Local areas in Mimssouri can be designated as Renewable Energy Generation Zones and receive property tax abatements as part of the Enhanced Enterprise Zone program. Legislation (H.B. 737) enacted...

  14. Edinburgh Research Explorer ERK2 Suppresses Self-Renewal Capacity of Embryonic Stem

    E-Print Network [OSTI]

    Koehn, Philipp

    Edinburgh Research Explorer ERK2 Suppresses Self-Renewal Capacity of Embryonic Stem Cells, T 2013, 'ERK2 Suppresses Self-Renewal Capacity of Embryonic Stem Cells, but Is Not Required for Multi date: 26. Jun. 2014 #12;ERK2 Suppresses Self-Renewal Capacity of Embryonic Stem Cells

  15. Request for Information Renewable Energy Generation/Production...

    Open Energy Info (EERE)

    Request for Information Renewable Energy GenerationProduction Shreveport Airport Authority - Response Deadline 2 January 2014 Home > Groups > Renewable Energy RFPs Rosborne318's...

  16. A California generation capacity market

    SciTech Connect (OSTI)

    Conkling, R.L.

    1998-10-01T23:59:59.000Z

    California, overconfident with its new Power Exchange spot market, seems unaware that it could be afflicted by the same turmoil that bludgeoned the Midwest in June. An electricity capacity market should be put in place before crisis strikes. This article outlines a framework for adding an electricity capacity market in California. The new market would not create a new bureaucracy but would function within the state`s now operational PX and independent system operator (ISO) mechanisms. It would be an open market, in which capacity would be traded transparently, with freedom of entree for all willing sellers and all willing buyers.

  17. Optimal transition from coal to gas and renewable power under capacity constraints and adjustment costs

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimal transition from coal to gas and renewable power under capacity constraints and adjustment existing coal power plants to gas and renewable power under a carbon budget. It solves a model of polluting, exhaustible resources with capacity constraints and adjustment costs (to build coal, gas, and renewable power

  18. Message passing for integrating and assessing renewable generation in a redundant power grid

    SciTech Connect (OSTI)

    Zdeborova, Lenka [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R {le} D of these consumers to other generators. The lines are switchable so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of 'firm' generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch sellings where no generator is overloaded.

  19. Optimal Integration of Renewable Energy Resources in Data Centers with Behind-the-Meter Renewable Generator

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    1 Optimal Integration of Renewable Energy Resources in Data Centers with Behind-the-Meter Renewable-- Renewable energy resources, such as wind and solar power, are rapidly becoming generation technologies-temporal variations, the integration of renewable energy resources is usually very challenging. Some of the previously

  20. Renewable Generation and Interconnection to the Electrical Grid...

    Broader source: Energy.gov (indexed) [DOE]

    Generation and Interconnection to the Electrical Grid in Southern California Renewable Generation and Interconnection to the Electrical Grid in Southern California Presentation...

  1. Renewable Electricity Generation and Delivery at the Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generation and Delivery at the Sacramento Municipal Utility District Renewable Electricity Generation and Delivery at the Sacramento Municipal Utility District Dairy...

  2. The State Energy Program: Building Energy Efficiency and Renewable Energy Capacity in the States

    Broader source: Energy.gov [DOE]

    This study documents the capacity-building effects that the federal State Energy Program (SEP) has had on the states' capacity to design, manage and implement energy efficiency and renewable energy programs.

  3. BATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION

    E-Print Network [OSTI]

    pro- duction to come from renewable resources. In the 2011 State of the Union Address, President ObamaBATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION By Shengyuan (Mike) Chen, Emilie-626-7370 URL: http://www.ima.umn.edu #12;Battery Storage Control for Steadying Renewable Power Generation

  4. Holy Cross Energy- WE CARE Renewable Energy Generation Rebate Program

    Broader source: Energy.gov [DOE]

    Holy Cross Energy's WE CARE (With Efficiency, Conservation And Renewable Energy) Program offers a $1.50-per-watt DC incentive for renewable energy generation using wind, hydroelectric, photovoltaic...

  5. Renewable Energy for Electricity Generation in Latin America...

    Open Energy Info (EERE)

    and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and...

  6. Quantifying avoided emissions from renewable generation

    E-Print Network [OSTI]

    Gomez, Gabriel R. (Gabriel Rodriguez)

    2009-01-01T23:59:59.000Z

    Quantifying the reduced emissions due to renewable power integration and providing increasingly accurate emissions analysis has become more important for policy makers in the age of renewable portfolio standards (RPS) and ...

  7. Sandia National Laboratories: renewable energy power generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security, Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System...

  8. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect (OSTI)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21T23:59:59.000Z

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  9. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    SciTech Connect (OSTI)

    A. David Lester

    2008-10-17T23:59:59.000Z

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  10. Eastern Renewable Generation Integration Study: Initial Results (Poster)

    SciTech Connect (OSTI)

    Bloom, A.; Townsend, A.; Hummon, M.; Weekley, A.; Clark, K.; King, J.

    2013-10-01T23:59:59.000Z

    This poster presents an overview of the Eastern Renewable Generation Integration Study, which aims to answer critical questions about the future of the Eastern Interconnection under high levels of solar and wind generation penetration.

  11. Table 16. Renewable energy generating capacity and generation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177

  12. Final Report: Human Capacity Building Grant for Renewable Energy Development

    SciTech Connect (OSTI)

    Wil Sando

    2010-01-03T23:59:59.000Z

    Warm Springs Power and Water Enterprise (WSPWE), a Corporate Entity of the Confederated Tribes of Warm Springs Oregon, developed and distributed written materials, held workshops and field trips to educate tribal members on renewable energy projects that are a possibility utilizing resources on reservation. In order to build stronger public and Tribal Council support for the development of renewable energy projects on the reservation, WSPWE conducted a 12 month public education and technical expertise development program. The objectives of this program were to: � To build a knowledge base within the tribal community regarding renewable energy development potential and opportunities on reservation lands. � To educate the tribal community regarding development process, impacts and benefits. � To increase the technical expertise of tribal government and Tribal Council.

  13. Figure 4: Case study network Maximising Renewable Capacity

    E-Print Network [OSTI]

    Harrison, Gareth

    . A variety of techniques have been used for distribution system optimisations. Here, Optimal Power Flow (OPF at several combinations of locations (DG at 0.9 lagging power factor). 3.5 MW of capacity is foundW is allocated at A. Without network reinforcement connection of the full 3.5 MW of mini-hydro capacity

  14. Bidding strategies for renewable energy generation with non stationary statistics

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    Bidding strategies for renewable energy generation with non stationary statistics A. Giannitrapani strategies to offer the maximum amount of energy while avoiding imbalance costs. Optimal bidding strategies to the integration of renewable energy sources into the electricity grid. This paper studies the problem

  15. Eastern Renewable Generation Integration Study Solar Dataset (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01T23:59:59.000Z

    The National Renewable Energy Laboratory produced solar power production data for the Eastern Renewable Generation Integration Study (ERGIS) including "real time" 5-minute interval data, "four hour ahead forecast" 60-minute interval data, and "day-ahead forecast" 60-minute interval data for the year 2006. This presentation provides a brief overview of the three solar power datasets.

  16. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  17. NASA/FPL Renewable Project Case Study: Space Coast Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NASAFPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center NASAFPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center...

  18. Evaluating Policies to Increase Electricity Generation from Renewable Energy

    E-Print Network [OSTI]

    Schmalensee, Richard

    Building on a review of experience in the United States and the European Union, this article advances four main propositions concerning policies aimed at increasing electricity generation from renewable energy. First, who ...

  19. Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)

    E-Print Network [OSTI]

    Suo, Zhigang

    Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the annual potential and actual annual production of electrical energy from renewable energy resources. Only

  20. Distributed Generation and Renewable Energy in

    E-Print Network [OSTI]

    (Propane) Chugach EA Anchorage, AK Flint Energies Reynolds, GA Delaware County EC Delhi, NY (Propane) TVA Chattanooga, TN P ? P P? H ? F Baldwin EMC Summerdale, AL ? DoD CERL-Logan Yosemite, CA (Propane) P DoD CERL-Logan Cherry Point, NC (Propane) P 1st Rochdale CG New York, NY First Energy, OH A P #12;Co-op Renewables

  1. NREL: Transmission Grid Integration - Eastern Renewable Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport Available forVoucherPossibleNewData

  2. Renewable Generation Requirement | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010InJanuaryGeothermalRenewable Energy andErinRetail

  3. Renewable Generation Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl.,RenGenAmes,RenewableRFL JumpInc

  4. Demonstration of Security Benefits of Renewable Generation at FE Warren Air Force Base

    SciTech Connect (OSTI)

    Warwick, William M.; Myers, Kurt; Seifert, Gary

    2010-12-31T23:59:59.000Z

    Report detailing field demonstration of security benefits of renewable generation at FE Warren Air Force Base.

  5. Tax Credits and Renewable Generation (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    Tax incentives have been an important factor in the growth of renewable generation over the past decade, and they could continue to be important in the future. The Energy Tax Act of 1978 (Public Law 95-618) established ITCs for wind, and EPACT92 established the Renewable Electricity Production Credit (more commonly called the PTC) as an incentive to promote certain kinds of renewable generation beyond wind on the basis of production levels. Specifically, the PTC provided an inflation-adjusted tax credit of 1.5 cents per kilowatthour for generation sold from qualifying facilities during the first 10 years of operation. The credit was available initially to wind plants and facilities that used closed-loop biomass fuels and were placed in service after passage of the Act and before June 1999.

  6. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    SciTech Connect (OSTI)

    Engel, R. A.' Zoellick, J J.

    2007-07-31T23:59:59.000Z

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribe’s own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energy’s Tribal Program under First Steps grant award #DE-FG36-05GO15166. The program’s centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  7. Modeling Operational Constraints imposed by Renewable Generation

    E-Print Network [OSTI]

    Daniels, Thomas E.

    4 #12;Operational effects into NETPLAN G LX L T R 5 #12;Effect of Wind on Load Following 10 min, that include: Regulation, Intra-hour and inter-hour load following, Contingency reserves, Generation cycling

  8. Renewable Electricity Generation Success Stories | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Read more water success stories Wind February 18, 2015 Mapping the Frontier of New Wind Power Potential June 17, 2014 Enhanced Efficiency of Wind-Diesel Power Generation in...

  9. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01T23:59:59.000Z

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  10. Sizing Storage and Wind Generation Capacities in Remote Power Systems

    E-Print Network [OSTI]

    Victoria, University of

    Sizing Storage and Wind Generation Capacities in Remote Power Systems by Andy Gassner B Capacities in Remote Power Systems by Andy Gassner B.Sc., University of Wisconsin ­ Madison, 2003 Supervisory and small power systems. However, the variability due to the stochastic nature of the wind resource

  11. Global Installed Capacity of Coal Fired Power Generation to Reach...

    Open Energy Info (EERE)

    Global Installed Capacity of Coal Fired Power Generation to Reach 2,057.6 GW by 2019 Home > Groups > Increase Natural Gas Energy Efficiency John55364's picture Submitted by...

  12. Renewable Energy 32 (2007) 12431257 Methane generation in landfills

    E-Print Network [OSTI]

    Columbia University

    2007-01-01T23:59:59.000Z

    dioxide. In his 2003 review of energy recovery from landfill gas, Willumsen [2,3] reported that as of 2001 followed by Germany and United Kingdom (Table 1). The capacity of most landfill gas-fuelled generators, close to Los Angeles California; the biogas is combusted in a steam boiler that powers a 50-MW turbine

  13. TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

  14. Generation and transmission expansion planning for renewable energy integration

    SciTech Connect (OSTI)

    Bent, Russell W [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Toole, G. Loren [Los Alamos National Laboratory

    2010-11-30T23:59:59.000Z

    In recent years the expansion planning problem has become increasingly complex. As expansion planning (sometimes called composite or integrated resource planning) is a non-linear and non-convex optimization problem, researchers have traditionally focused on approximate models of power flows to solve the problem. The problem has also been split into generation expansion planning (GEP) and transmission network expansion planning (TNEP) to improve computational tractability. Until recently these approximations have produced results that are straight-forward to combine and adapt to the more complex and complete problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (e.g. large amounts of limited control, renewable generation, comparable generation and transmission construction costs) and necessitates new approaches. Recent work on deterministic Discrepancy Bounded Local Search (DBLS) has shown it to be quite effective in addressing the TNEP. In this paper, we propose a generalization of DBLS to handle simultaneous generation and transmission planning.

  15. Renewable generation and storage project industry and laboratory recommendations

    SciTech Connect (OSTI)

    Clark, N.H.; Butler, P.C.; Cameron, C.P.

    1998-03-01T23:59:59.000Z

    The US Department of Energy Office of Utility Technologies is planning a series of related projects that will seek to improve the integration of renewable energy generation with energy storage in modular systems. The Energy Storage Systems Program and the Photovoltaics Program at Sandia National Laboratories conducted meetings to solicit industry guidance and to create a set of recommendations for the proposed projects. Five possible projects were identified and a three pronged approach was recommended. The recommended approach includes preparing a storage technology handbook, analyzing data from currently fielded systems, and defining future user needs and application requirements.

  16. Public Art Generates Renewable Energy Beautifully | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/OrganizationTechProbSolutionsPublic Art Generates Renewable Energy

  17. State Renewable Electricity Profiles

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Presents a summary of current and recent historical data for the renewable electric power industry. The data focuses on net summer capacity and net generation for each type of renewable generator, as well as fossil-fired and nuclear power plant types, for the period 2006 through 2010.

  18. NASA/FPL Renewable Project Case Study: Space Coast Next Generation...

    Broader source: Energy.gov (indexed) [DOE]

    NASAFPL Renewable Project: Space Coast Next Generation Solar Energy Center Biloxi, MS - FUPWG April 5-6. 2009 Gene Beck Corporate Manager, Governmental Accounts Mark Hillman...

  19. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    SciTech Connect (OSTI)

    Mosey, G.; Heimiller, D.; Dahle, D.; Vimmerstedt, L.; Brady-Sabeff, L.

    2007-10-01T23:59:59.000Z

    This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

  20. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    SciTech Connect (OSTI)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S. [Oak Ridge National Lab., TN (United States); Peretz, J.; Bohm, R.; Hendrucko, B. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-04-01T23:59:59.000Z

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.

  1. Risk implications of the deployment of renewables for investments in electricity generation

    E-Print Network [OSTI]

    Sisternes, Fernando J. de (Fernando José de Sisternes Jiménez)

    2014-01-01T23:59:59.000Z

    This thesis explores the potential risk implications that a large penetration of intermittent renewable electricity generation -such as wind and solar power- may have on the future electricity generation technology mix, ...

  2. Variable Renewable Generation Impact on Operating Reserves (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.

    2011-05-01T23:59:59.000Z

    This presentation describes some of NREL's latest research on grid integration of renewables, and also describes some of the tools used for these analyses.

  3. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    of Variable Renewable Generation The report is accompaniedit Relates to Wind-Powered Generation. LBNL-XXXX. Berkeley:with Increased Wind Generation. LBNL-XXXX. Berkeley:

  4. Long-term need for new generating capacity

    SciTech Connect (OSTI)

    Bloomster, C.H.; Merrill, E.T.

    1987-03-01T23:59:59.000Z

    Electricity demand should continue to grow at about the same rate as GNP, creating a need for large amounts of new generating capacity by the year 2000. Only coal and nuclear at this time have the abundant domestic resources and assured technology to meet this need. However, large increase in both coal and nuclear usage will not be acceptable to society without solutions to many of the problems that now deter their increased usage. For coal, the problems center around the safety and environmental impacts of increased coal mining and coal combustion. For nuclear the problems center around reactor safety, radioactive waste disposal, financial risk, and nuclear materials safeguards. The fuel requirements and waste generation for coal plants are orders of magnitude greater than for nuclear. Technology improvements and waste management practices must be pursued to mitigate environmental and safety impacts from electricity generation. 26 refs., 14 figs., 23 tabs.

  5. Renewable Power Options for Electricity Generation on Kauai...

    Energy Savers [EERE]

    this demand growth, however they are not modeled in HOMER. 2.6 Renewable Energy Model Development PV Size and Energy Storage Assumptions The cost of PV varies widely across the...

  6. ReRack: Power Simulation for Data Centers with Renewable Energy Generation

    E-Print Network [OSTI]

    Renau, Jose

    ReRack: Power Simulation for Data Centers with Renewable Energy Generation Michael Brown and Jose://masc.cse.ucsc.edu ABSTRACT Data centers operating cost are dominated by their power consump- tion. Renewable energy sources factors, but the model should be extensive to consider other factors like power gating support. This paper

  7. Renewable Generation and Interconnection to the Electrical Grid in Southern California

    Broader source: Energy.gov [DOE]

    Presentation covers the topic of "Renewable Generation and Interconnection to the Electrical Grid in Southern California," given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  8. Impact of unit commitment constraints on generation expansion planning with renewables

    E-Print Network [OSTI]

    Palmintier, Bryan Stephen

    Growing use of renewables pushes thermal generators against operating constraints - e.g. ramping, minimum output, and operating reserves - that are traditionally ignored in expansion planning models. We show how including ...

  9. NASA/FPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center

    Broader source: Energy.gov [DOE]

    Presentation covers the NASA/FPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting in...

  10. Renewable Power Generation JV Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesysRenewable Hawaii Inc Jump to:Renewable Power

  11. Utility Integrated Resource Planning: An Emerging Driver of NewRenewable Generation in the Western United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-09-25T23:59:59.000Z

    In the United States, markets for renewable generation--especially wind power--have grown substantially in recent years. This growth is typically attributed to technology improvements and resulting cost reductions, the availability of federal tax incentives, and aggressive state policy efforts. But another less widely recognized driver of new renewable generation is poised to play a major role in the coming years: utility integrated resource planning (IRP). Common in the late-1980s to mid-1990s, but relegated to lesser importance as many states took steps to restructure their electricity markets in the late-1990s, IRP has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions such as the western United States, where retail competition has failed to take root. As practiced in the United States, IRP is a formal process by which utilities analyze the costs, benefits, and risks of all resources available to them--both supply- and demand-side--with the ultimate goal of identifying a portfolio of resources that meets their future needs at lowest cost and/or risk. Though the content of any specific utility IRP is unique, all are built on a common basic framework: (1) development of peak demand and load forecasts; (2) assessment of how these forecasts compare to existing and committed generation resources; (3) identification and characterization of various resource portfolios as candidates to fill a projected resource deficiency; (4) analysis of these different ''candidate'' resource portfolios under base-case and alternative future scenarios; and finally, (5) selection of a preferred portfolio, and creation of a near-term action plan to begin to move towards that portfolio. Renewable resources were once rarely considered seriously in utility IRP. In the western United States, however, the most recent resource plans call for a significant amount of new wind power capacity. These planned additions appear to be motivated by the improved economics of wind power, an emerging understanding that wind integration costs are manageable, and a growing acceptance of wind by electric utilities. Equally important, utility IRPs are increasingly recognizing the inherent risks in fossil-based generation portfolios--especially natural gas price risk and the financial risk of future carbon regulation--and the benefits of renewable energy in mitigating those risks. This article, which is based on a longer report from Berkeley Lab,i examines how twelve investor-owned utilities (IOUs) in the western United States--Avista, Idaho Power, NorthWestern Energy (NWE), Portland General Electric (PGE), Puget Sound Energy (PSE), PacifiCorp, Public Service Company of Colorado (PSCo), Nevada Power, Sierra Pacific, Pacific Gas & Electric (PG&E), Southern California Edison (SCE), and San Diego Gas & Electric (SDG&E)--treat renewable energy in their most recent resource plans (as of July 2005). In aggregate, these twelve utilities supply approximately half of all electricity demand in the western United States. In reviewing these plans, our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable generation in the United States, and (2) to suggest possible improvements to the methods used to evaluate renewable generation as a resource option. As such, we begin by summarizing the amount and types of new renewable generation planned as a result of these twelve IRPs. We then offer observations about the IRP process, and how it might be improved to more objectively evaluate renewable resources.

  12. Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energyasto theand Renewable Energy, U.S.

  13. Renewable Electricity Generation Success Stories | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energyasto theand Renewable Energy,

  14. Renewable Energy for Electricity Generation in Latin America: Market,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewable Energy

  15. ReEDS Modeling of the President's 2020 U.S. Renewable Electricity Generation Goal (Presentation)

    SciTech Connect (OSTI)

    Zinaman, O.; Mai, T.; Lantz, E.; Gelman, R.; Porro, G.

    2014-05-01T23:59:59.000Z

    President Obama announced in 2012 an Administration Goal for the United States to double aggregate renewable electricity generation from wind, solar, and geothermal sources by 2020. This analysis, using the Regional Energy Deployment System (ReEDS) model, explores a full range of future renewable deployment scenarios out to 2020 to assess progress and outlook toward this goal. Under all modeled conditions, consisting of 21 scenarios, the Administration Goal is met before 2020, and as early as 2015.

  16. DISTRIBUTED GENERATION AND COGENERATION POLICY

    E-Print Network [OSTI]

    Director EFFICIENCY, RENEWABLES & DEMAND ANALYSIS DIVISION B.B. Blevins Executive Director DISCLAIMER capacity targets. KEYWORDS Distributed generation, cogeneration, photovoltaics, wind, biomass, combined

  17. Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries

    E-Print Network [OSTI]

    Zhu, Ting

    Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries S in controlling stress generation in high-capacity electrodes for lithium ion batteries. Ã? 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery; Lithiation

  18. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    SciTech Connect (OSTI)

    Ayers, Katherine [Proton OnSite] [Proton OnSite; Dalton, Luke [Proton OnSite] [Proton OnSite; Roemer, Andy [Proton OnSite] [Proton OnSite; Carter, Blake [Proton OnSite] [Proton OnSite; Niedzwiecki, Mike [Proton OnSite] [Proton OnSite; Manco, Judith [Proton OnSite] [Proton OnSite; Anderson, Everett [Proton OnSite] [Proton OnSite; Capuano, Chris [Proton OnSite] [Proton OnSite; Wang, Chao-Yang [Penn State University] [Penn State University; Zhao, Wei [Penn State University] [Penn State University

    2014-02-05T23:59:59.000Z

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  19. Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-03-01T23:59:59.000Z

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  20. Load-shedding probabilities with hybrid renewable power generation and energy storage

    E-Print Network [OSTI]

    Xu , Huan

    Load-shedding probabilities with hybrid renewable power generation and energy storage Huan Xu, Ufuk to the intermittency in the power output. These difficulties can be alleviated by effectively utilizing energy storage turbines, supplemented with energy storage. We use a simple storage model alongside a combination

  1. The significance of energy storage for renewable energy generation and the role of instrumentation and measurement.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 The significance of energy storage for renewable energy generation and the role and Alternative Energies Commission INES: National Institute For Solar Energy ENERGY STORAGE: FROM PRESENT TO EMERGING TECHNOLOGIES Energy storage is not a new concept but is currently getting increasing importance

  2. Evaluating Policies to Increase the Generation of Electricity from Renewable Energy

    E-Print Network [OSTI]

    Schmalensee, Richard

    Focusing on the U.S. and the E.U., this essay seeks to advance four main propositions. First, the incidence of the short-run costs of programs to subsidize the generation of electricity from renewable sources varies with ...

  3. Renewable Energy Requirements for Future Building Codes: Energy Generation and Economic Analysis

    SciTech Connect (OSTI)

    Russo, Bryan J.; Weimar, Mark R.; Dillon, Heather E.

    2011-09-30T23:59:59.000Z

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, installation of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including the building envelope, mechanical systems, and lighting, have been maximized at the most cost-effective limit.

  4. Operation and Control of Distribution Systems with high level integration of Renewable Generation units

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    models Probabilistic methodologies are being applied to power system analysis since 70' [9] becauseOperation and Control of Distribution Systems with high level integration of Renewable Generation. Diagonal 649 Pavelló A, 08028 Barcelona, Spain Summary Traditional power systems have a hierarchical

  5. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Energy Savers [EERE]

    Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity,...

  6. Program Plan for Renewable Energy generation of electricity. Response to Section 2111 of the Energy Policy Act of 1992

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    A 5-Year Program Plan for providing cost-effective options for generating electricity from renewable energy sources is presented by the US Department of Energy Office of Energy Efficiency and Renewable Energy. The document covers the Utility-Sector situation, scope of the program, specific generating technologies, and implementation of the program plan.

  7. Trends in Renewable Energy Consumption and Electricity

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Presents a summary of the nation’s renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and state. The report covers the period from 2006 through 2010.

  8. Production Tax Credit for Renewable Electricity Generation (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

  9. Temporal vs. Stochastic Granularity in Thermal Generation Capacity ...

    E-Print Network [OSTI]

    smryan

    2013-07-25T23:59:59.000Z

    [20] S. Jin, A. Botterud, S. Ryan, "Impact of demand response on thermal generation investment with high wind penetration,". Iowa State Univerity, Technical ...

  10. Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

  11. Competitive electricity markets and investment in new generating capacity

    E-Print Network [OSTI]

    Joskow, Paul L.

    2006-01-01T23:59:59.000Z

    Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating ...

  12. Dynamic modelling of generation capacity investment in electricity markets with high wind penetration 

    E-Print Network [OSTI]

    Eager, Daniel

    2012-06-25T23:59:59.000Z

    The ability of liberalised electricity markets to trigger investment in the generation capacity required to maintain an acceptable level of security of supply risk has been - and will continue to be - a topic of much ...

  13. Did English generators play cournot? : capacity withholding in the electricity pool

    E-Print Network [OSTI]

    Green, Richard

    2004-01-01T23:59:59.000Z

    Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which ...

  14. Long-term contracts for new investments in power generation capacity : pain or gain?

    E-Print Network [OSTI]

    Sakhrani, Vivek A. (Vivek Ashok)

    2010-01-01T23:59:59.000Z

    In recent years, a debate has ensued regarding the role of long-term power purchase agreements for securing investments in power generation capacity in organized wholesale markets. This thesis illuminates the issues ...

  15. Utility Integrated Resource Planning: An Emerging Driver of New Renewable Generation in the Western United States

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    towards that portfolio. Renewable resources were once rarelyobjectively evaluate renewable resources. Planned Renewableamount of planned renewable resource additions. In the case

  16. CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Culp, C.; Yazdani, B.; Chandrasekaran, V.

    In August 2008 the Texas State Legislature required adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also required the Public Utility Commission (PUC...

  17. CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Culp, C.; Yazdani, B.; Chandrasekaran, V.

    2008-01-01T23:59:59.000Z

    In August 2008 the Texas State Legislature required adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also required the Public Utility Commission (PUC...

  18. Energy and Capacity Valuation of Photovoltaic Power Generation in New York

    E-Print Network [OSTI]

    Perez, Richard R.

    Energy and Capacity Valuation of Photovoltaic Power Generation in New York Prepared by Richard of photovoltaic (PV) power generation for New York focuses on the value to utilities. Specifically, the report, will bridge the remaining 25% gap1 , making distributed PV a net benefit to New York utilities

  19. Renewable build-up pathways for the US: Generation costs are not system costs

    E-Print Network [OSTI]

    Becker, Sarah; Andresen, Gorm B; Jacobson, Mark Z; Schramm, Stefan; Greiner, Martin

    2014-01-01T23:59:59.000Z

    The transition to a future electricity system based primarily on wind and solar PV is examined for all regions in the contiguous US. We present optimized pathways for the build-up of wind and solar power for least backup energy needs as well as for least cost obtained with a simplified, lightweight model based on long-term high resolution weather-determined generation data. In the absence of storage, the pathway which achieves the best match of generation and load, thus resulting in the least backup energy requirements, generally favors a combination of both technologies, with a wind/solar PV energy mix of about 80/20 in a fully renewable scenario. The least cost development is seen to start with 100% of the technology with the lowest average generation costs first, but with increasing renewable installations, economically unfavorable excess generation pushes it toward the minimal backup pathway. Surplus generation and the entailed costs can be reduced significantly by combining wind and solar power, and/or a...

  20. Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues

    E-Print Network [OSTI]

    Budhraja, Vikram

    2008-01-01T23:59:59.000Z

    in 2020.   Table 4. Renewable Energy and Capacity—200612 Table 4. Renewable Energy and Capacity—2006 Recorded,In-State Renewable energy and capacity requirements for 20% 

  1. Developing and Implementing the Foundation for a Renewable Energy-Based "Distribution Generation Micro-grid": A California Energy Commission Public Interest Energy Research Co-Funded Program 

    E-Print Network [OSTI]

    Lilly, P.; Sebold, F. D.; Carpenter, M.; Kitto, W.

    2002-01-01T23:59:59.000Z

    The California Energy Commission has been implementing its Public Interest Energy Research (PIER) and Renewable Energy Programs since early 1998. In the last two years, the demand for renewable distributed generation systems has increased rapidly...

  2. A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and Its Application to the Wind Farms in the Texas ERCOT Region 

    E-Print Network [OSTI]

    Culp, C.; Haberl, J. S.; Liu, Z.; Subbarao, K.; Baltazar-Cervantes, J. C.; Yazdani, B.

    2007-01-01T23:59:59.000Z

    Recently Texas Legislature required adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also required the Public Utility Commission (PUC) to establish a target...

  3. Abstract--The integration of variable renewable generation sources continues to be a significant area of focus for power

    E-Print Network [OSTI]

    by this variability, wind generation often requires additional balancing resources to compensate for the variability of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required area of focus for power system planning. Renewable portfolio standards and initiatives to reduce

  4. Integrated High Speed Intelligent Utility Tie Unit for Disbursed/Renewable Generation Facilities Worakarn Wongsaichua, Wei-Jen Lee Soontorn Oraintara Chiman Kwan Frank Zhang

    E-Print Network [OSTI]

    Oraintara, Soontorn

    Integrated High Speed Intelligent Utility Tie Unit for Disbursed/Renewable Generation Facilities is to rejuvenate the idea of integrated resource planning and promote the distributed generation via traditional or renewable generation facilities for the deregulated utility systems. Fuel cell and photovoltaic are the most

  5. Decision-Support Software for Grid Operators: Transmission Topology Control for Infrastructure Resilience to the Integration of Renewable Generation

    SciTech Connect (OSTI)

    None

    2012-03-16T23:59:59.000Z

    GENI Project: The CRA team is developing control technology to help grid operators more actively manage power flows and integrate renewables by optimally turning on and off entire power lines in coordination with traditional control of generation and load resources. The control technology being developed would provide grid operators with tools to help manage transmission congestion by identifying the facilities whose on/off status must change to lower generation costs, increase utilization of renewable resources and improve system reliability. The technology is based on fast optimization algorithms for the near to real-time change in the on/off status of transmission facilities and their software implementation.

  6. Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Foundenhancer activity than FINAL ProgressEnergy,renewable energy

  7. OPF evaluation of distribution network capacity for the connection of distributed generation

    E-Print Network [OSTI]

    Harrison, Gareth

    threaten the achievement of renewable energy targets. One means of addressing this risk is to encourage the network. #12;3 1. Introduction The European Union Renewables Directive and national incentives such as the UK Renewables Obligations [1]-[2] are encouraging the development of renewable energy resources

  8. Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?

    E-Print Network [OSTI]

    Kammen, Daniel M.

    clean energy supply can provide greater energy independence and security, has notable environmentalPutting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US? Max Wei a,Ã, Shana Patadia b , Daniel M. Kammen a a Energy and Resources Group, 310

  9. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    E-Print Network [OSTI]

    Blair, N.

    2010-01-01T23:59:59.000Z

    Renewables 2025 Renewable Generation Wind Biomass (solidy sal es. • Renewable generation from biomass units appears20% RPS 2025 Renewable Generation Wind Biomass (solid fuel,

  10. Renewable Energy Goal

    Broader source: Energy.gov [DOE]

    The Oklahoma Corporation Commission reported that 18.42% (4,056 MW) of installed capacity came from eligible renewable energy resources in 2013.

  11. CARBON MANAGEMENT STRATEGIES FOR U.S. ELECTRICITY GENERATION CAPACITY: A VINTAGE-BASED APPROACH

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Dooley, James J.

    2004-06-01T23:59:59.000Z

    This paper examines the stock of fossil-fired power generation capacity in the United States within the context of climate change. At present, there are over 1,337 fossil-fired power generating units of at least 100 MW in capacity, that began operating between the early 1940s and today. Together these units provide some 453 GW of electric power. Launching a national program to accelerate the early retirement of this stock or tearing them down and undertaking near-term brownfield redevelopment with advanced power cycle technologies as a means of addressing their greenhouse gas emissions will not be a sensible option for all of these units. Considering a conservative 40-year operating life, there are over 667 existing fossil-fired power plants, representing a capacity of over 291 GW, that have at least a decades worth of productive life remaining. This paper draws upon specialized tools developed by Battelle to analyze the characteristics of this subset of U.S. power generation assets and explore the relationships between plant type, location, emissions, and vintage. It examines the use of retrofit carbon capture technologies, considering criteria such as the proximity of these power plants to geologic reservoirs, to assess the potential that geologic sequestration of CO2 offers these plants for managing their emissions. The average costs for retrofitting these plants and sequestering their CO2 into nearby geologic reservoirs are presented. A discussion of a set of planned U.S. fossil-fired power projects within this context is also included.

  12. Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-07-17T23:59:59.000Z

    Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

  13. Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables

    SciTech Connect (OSTI)

    Hurlbut, D. J.; Haase, S.; Turchi, C. S.; Burman, K.

    2012-06-01T23:59:59.000Z

    In January 2012, the National Renewable Energy Laboratory delivered to the Department of the Interior the first part of a study on Navajo Generating Station (Navajo GS) and the likely impacts of BART compliance options. That document establishes a comprehensive baseline for the analysis of clean energy alternatives, and their ability to achieve benefits similar to those that Navajo GS currently provides. This analysis is a supplement to NREL's January 2012 study. It provides a high level examination of several clean energy alternatives, based on the previous analysis. Each has particular characteristics affecting its relevance as an alternative to Navajo GS. It is assumed that the development of any alternative resource (or portfolio of resources) to replace all or a portion of Navajo GS would occur at the end of a staged transition plan designed to reduce economic disruption. We assume that replacing the federal government's 24.3% share of Navajo GS would be a cooperative responsibility of both the U.S. Bureau of Reclamation (USBR) and the Central Arizona Water Conservation District (CAWCD).

  14. Renewable Power Options for Electricity Generation on Kaua’i: Economics and Performance Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii.

  15. Effective Renewable Energy Policy: Leave It to the States?

    E-Print Network [OSTI]

    Weissman, Steven

    2011-01-01T23:59:59.000Z

    megawatts of installed renewable energy capacity in thePortfolio Standards,” Renewable Energy Law Blog (Apr. 30,as well as small renewable energy power facilities (no

  16. Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint

    SciTech Connect (OSTI)

    Urquhart, B.; Sengupta, M.; Keller, J.

    2012-09-01T23:59:59.000Z

    A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

  17. Abstract--The capacity of distributed generation (DG) is set to increase significantly with much of the plant connecting to

    E-Print Network [OSTI]

    Harrison, Gareth

    limiting network capability in absorbing new DG. Finally, it demonstrates the use of optimal power flow market. Index Terms-- distributed generation, optimal power flow, power distribution. I. INTRODUCTION O in England and Wales (18% in Scotland) is derived from renewable resources. With existing large hydro

  18. Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling

    SciTech Connect (OSTI)

    Burman, K.; Keller, J.; Kroposki, B.; Lilienthal, P.; Slaughter, R.; Glassmire, J.

    2011-11-01T23:59:59.000Z

    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid.

  19. Scotts Valley Energy Office and Human Capacity Building that will provide energy-efficiency services and develop sustainable renewable energy projects.

    SciTech Connect (OSTI)

    Anderson, Temashio [Scotts Valley Band of Pomo Indians

    2013-06-28T23:59:59.000Z

    The primary goal of this project is to develop a Scotts Valley Energy Development Office (SVEDO). This office will further support the mission of the Tribe's existing leadership position as the DOE Tribal Multi-County Weatherization Energy Program (TMCWEP) in creating jobs and providing tribal homes and buildings with weatherization assistance to increase energy efficiency, occupant comfort and improved indoor air quality. This office will also spearhead efforts to move the Tribe towards its further strategic energy goals of implementing renewable energy systems through specific training, resource evaluation, feasibility planning, and implementation. Human capacity building and continuing operations are two key elements of the SVEDO objectives. Therefore, the project will 1) train and employ additional Tribal members in energy efficiency, conservation and renewable resource analyses and implementation; 2) purchase materials and equipment required to implement the strategic priorities as developed by the Scotts Valley Tribe which specifically include implementing energy conservation measures and alternative energy strategies to reduce energy costs for the Tribe and its members; and 3) obtain a dedicated office and storage space for ongoing SVEDO operations.

  20. Investigation into the potential of energy storage to tackle intermittency in renewable energy generation 

    E-Print Network [OSTI]

    Barbour, Edward

    2013-11-28T23:59:59.000Z

    Renewable Energy is by nature intermittent and matching the supply of energy to specific time dependent demand poses huge challenges. Energy storage is a useful tool in handling this temporal disparity, although except ...

  1. Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the Carrying Capacity of the U.S. Grid

  2. Sandia Energy - Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    need to integrate renewable energy, improve energy efficiency, and allow consumers more control over their energy consumption. One of the challenges of renewable power generation...

  3. Western Renewable Energy Zones (Presentation)

    SciTech Connect (OSTI)

    Hein, J.

    2011-06-01T23:59:59.000Z

    This presentation summarizes recent developments and trends pertaining to competitive renewable energy zones, transmission planning and the integration of renewable generation resources.

  4. Reburning renewable biomass for emissions control and ash deposition effects in power generation

    E-Print Network [OSTI]

    Oh, Hyuk Jin

    2009-05-15T23:59:59.000Z

    Cattle biomass (CB) has been proposed as a renewable, supplementary fuel for co-firing and reburning. Reburning coal with CB has the potential to reduce NOx and Hg emissions from coal fired systems. The present research focuses on three areas...

  5. Office of Energy Efficiency and Renewable Energy Fiscal Year...

    Office of Environmental Management (EM)

    Renewable Electricity Generation Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Renewable Electricity Generation Office of Energy Efficiency and...

  6. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-09-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  7. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-10-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  8. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-11-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  9. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2013-04-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  10. Real-Time Deferrable Load Control: Handling the Uncertainties of Renewable Generation

    E-Print Network [OSTI]

    Low, Steven H.

    - ables are not only intermittent but also difficult to predict. For example, wind generation prediction

  11. Renewable Energy to be Half of Global Generation Increase to 2035: IEA |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010InJanuaryGeothermalRenewable Energy and

  12. Real-Time Deferrable Load Control: Handling the Uncertainties of Renewable Generation

    E-Print Network [OSTI]

    Low, Steven H.

    are difficult to predict. For example, wind generation pre- diction has a root-mean-square error of around 18

  13. WindTurbineGenerator Introduction of the Renewable Micro-Grid Test-Bed

    E-Print Network [OSTI]

    Johnson, Eric E.

    Simulator Wind Turbine: PMSM, 3kW, 8.3A Wind Generator: PMSM, 3kW, 8.3A 3 AC/DC Converter & DC/AC Inverter Wind Turbine: Torque or Speed Control Wind Generator: PQ Control Cubicle #4: Energy Storage Generator #1 3kW, 8.3A Wind Turbine #1 3kW, 8.3A Wind Turbine #2 3kW Wind Generator #2 3kW RS232

  14. Biomass power and state renewable energy policies under electric industry restructuring

    E-Print Network [OSTI]

    Porter, Kevin; Wiser, Ryan

    2000-01-01T23:59:59.000Z

    for existing renewable resources, mostly biomass, municipalII renewable applies to existing MSW and biomass facilitiessome renewable energy capacity, including biomass. State RPS

  15. Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues

    E-Print Network [OSTI]

    Budhraja, Vikram

    2008-01-01T23:59:59.000Z

    13 Table 6. 2006 Renewable Energy & Estimated Requirementsin 2020.   Table 4. Renewable Energy and Capacity—2006for transfer of renewable energy from the L.A.  Basin  Area 

  16. Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-08-01T23:59:59.000Z

    An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

  17. Statkraft is Europe's largest generator of renewable energy and is the leading power company in Norway. The company owns, produces and develops hydropower, wind power, gas-fired power and

    E-Print Network [OSTI]

    Morik, Katharina

    Statkraft is Europe's largest generator of renewable energy and is the leading power company countries. For our office in Düsseldorf we are currently looking to hire a System Manager Renewable Energy. Share our passion for renewable energy and be a part of tomorrow's energy world. Your department

  18. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    SciTech Connect (OSTI)

    Palchak, D.; Denholm, P.

    2014-07-01T23:59:59.000Z

    Flexibility of traditional generators plays an important role in accommodating the increased variability and uncertainty of wind and solar on the electric power system. Increased flexibility can be achieved with changes to operational practices or upgrades to existing generation. One challenge is in understanding the value of increasing flexibility, and how this value may change given higher levels of variable generation. This study uses a commercial production cost model to measure the impact of generator flexibility on the integration of wind and solar generators. We use a system that is based on two balancing areas in the Western United States with a range of wind and solar penetrations between 15% and 60%, where instantaneous penetration of wind and solar is limited to 80%.

  19. SWITCH Model Capability Overview Renewable and Appropriate Energy Laboratory http://rael.berkeley.edu/switch November 2012

    E-Print Network [OSTI]

    Kammen, Daniel M.

    margin in each load area in each hour Operations Cycle baseload coal and biomass generation on a daily analysis Technology options Operate the existing generation within operational lifetimes Retire existing generation infrastructure Install and operate conventional and renewable generation capacity using projected

  20. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect (OSTI)

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L. [Oak Ridge National Lab., TN (United States); Lawler, J.S. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-07-01T23:59:59.000Z

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  1. Renewable Energy System Exemption

    Broader source: Energy.gov [DOE]

    In March 2010, South Dakota established a new property tax incentive that replaced two existing property tax incentives for renewable energy. Facilities that generate electricity using wind, solar,...

  2. COMMISSION REPORT DEVELOPING RENEWABLE

    E-Print Network [OSTI]

    , state properties, photovoltaic, wind, biomass, geothermal, small hydro, storage, distributed renewable distributed generation ­ onsite or small energy systems located close to where

  3. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Interim Report 1

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL; Key, Thomas S [Electric Power Research Institute (EPRI)

    2009-03-01T23:59:59.000Z

    The power transfer potential for bringing renewable energy into the Southeast in response to a renewable portfolio standard (RPS) will depend not only on available transmission capacity but also on electricity supply and demand factors. This interim report examines how the commonly used EIA NEMS and EPRI NESSIE energy equilibrium models are considering such power transfers. Using regional estimates of capacity expansion and demand, a base case for 2008, 2020 and 2030 are compared relative to generation mix, renewable deployments, planned power transfers, and meeting RPS goals. The needed amounts of regional renewable energy to comply with possible RPS levels are compared to inter-regional transmission capacities to establish a baseline available for import into the Southeast and other regions. Gaps in the renewable generation available to meet RPS requirements are calculated. The initial finding is that the physical capability for transferring renewable energy into the SE is only about 10% of what would be required to meet a 20% RPS. Issues that need to be addressed in future tasks with respect to modeling are the current limitations for expanding renewable capacity and generation in one region to meet the demand in another and the details on transmission corridors required to deliver the power.

  4. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    ngcc nuclear coal ngcc nuclear other peaking renewable otherpeaking renewable Terawatt- hours Terawatt-hoursnuclear other peaking renewable Marginal Capacity Starting

  5. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.

    2014-09-01T23:59:59.000Z

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  6. Investment Model for Renewable Electricity Systems (IMRES): an

    E-Print Network [OSTI]

    McCalley, James D.

    commitment and energy dispatch are taken jointly. The purpose of this model is to determine the minimum cost-016 AJointCenteroftheDepartmentofEconomics,MITEnergyInitiativeandMITSloanSchoolofManagement. #12;Investment electricity generation capacity mix in systems with a high penetration of intermittent renewable energy

  7. Effect of real-time electricity pricing on renewable generators and system emissions

    E-Print Network [OSTI]

    Connolly, Jeremiah P. (Jeremiah Peter)

    2008-01-01T23:59:59.000Z

    Real-time retail pricing (RTP) of electricity, in which the retail price is allowed to vary with very little time delay in response to changes in the marginal cost of generation, offers expected short-run and long-run ...

  8. FORECASTING THE ROLE OF RENEWABLES IN HAWAII

    E-Print Network [OSTI]

    Sathaye, Jayant

    2013-01-01T23:59:59.000Z

    diesel fueL Several renewable technologies have the potential to contribute s to electricity generation.

  9. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpact of Generator Flexibility on

  10. State Renewable Energy Requirements and Goals: Update Through 2006 (Update) (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    Annual Energy Outlook 2006 provided a review of renewable energy programs that were in effect in 23 states at the end of 2005. Since then (as of September 1, 2006), no new state programs have been adopted; however, several states with renewable energy programs in place have made changes as they have gained experience and identified areas for improvement. Revisions made over the past year range from clarification or modification of program definitions, such as which resources qualify, to substantial increases in targets for renewable electricity generation or capacity. The following paragraphs provide an overview of substantive changes in the design or implementation of state renewable energy programs.

  11. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    private-sector interest in renewable energy (RE) power generation (on both the residential and commercial scale) and state mandates that utilities generate defined...

  12. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2012-10-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  13. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    SciTech Connect (OSTI)

    Eto, Joseph H.; Undrill, John; Mackin, Peter; Daschmans, Ron; Williams, Ben; Haney, Brian; Hunt, Randall; Ellis, Jeff; Illian, Howard; Martinez, Carlos; O'Malley, Mark; Coughlin, Katie; LaCommare, Kristina Hamachi

    2010-12-20T23:59:59.000Z

    An interconnected electric power system is a complex system that must be operated within a safe frequency range in order to reliably maintain the instantaneous balance between generation and load. This is accomplished by ensuring that adequate resources are available to respond to expected and unexpected imbalances and restoring frequency to its scheduled value in order to ensure uninterrupted electric service to customers. Electrical systems must be flexible enough to reliably operate under a variety of"change" scenarios. System planners and operators must understand how other parts of the system change in response to the initial change, and need tools to manage such changes to ensure reliable operation within the scheduled frequency range. This report presents a systematic approach to identifying metrics that are useful for operating and planning a reliable system with increased amounts of variable renewable generation which builds on existing industry practices for frequency control after unexpected loss of a large amount of generation. The report introduces a set of metrics or tools for measuring the adequacy of frequency response within an interconnection. Based on the concept of the frequency nadir, these metrics take advantage of new information gathering and processing capabilities that system operators are developing for wide-area situational awareness. Primary frequency response is the leading metric that will be used by this report to assess the adequacy of primary frequency control reserves necessary to ensure reliable operation. It measures what is needed to arrest frequency decline (i.e., to establish frequency nadir) at a frequency higher than the highest set point for under-frequency load shedding within an interconnection. These metrics can be used to guide the reliable operation of an interconnection under changing circumstances.

  14. North American Renewables Registry (Multiple States)

    Broader source: Energy.gov [DOE]

    The North American Renewables Registry (NAR) provides a Web-based platform trusted to create, track, and manage renewable energy certificate (REC) origination for clean generation facilities and...

  15. Midwest Renewable Energy Tracking System (Multiple States)

    Broader source: Energy.gov [DOE]

    The Midwest Renewable Energy Tracking System (M-RETS®) tracks renewable energy generation in participating States and Provinces and assists in verifying compliance with individual state/provincial...

  16. Renewable Energy Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    Utah exempts the purchase or lease of equipment used to generate electricity from renewable resources from the state sales tax. Eligible purchases or leases must be made for or by a renewable...

  17. Biomass Power Generation Market Capacity is Estimated to Reach 122,331.6 MW

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 | OpenEI Community Biomass Power Generation

  18. Comparing Resource Adequacy Metrics and Their Influence on Capacity Value: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2014-04-01T23:59:59.000Z

    Traditional probabilistic methods have been used to evaluate resource adequacy. The increasing presence of variable renewable generation in power systems presents a challenge to these methods because, unlike thermal units, variable renewable generation levels change over time because they are driven by meteorological events. Thus, capacity value calculations for these resources are often performed to simple rules of thumb. This paper follows the recommendations of the North American Electric Reliability Corporation?s Integration of Variable Generation Task Force to include variable generation in the calculation of resource adequacy and compares different reliability metrics. Examples are provided using the Western Interconnection footprint under different variable generation penetrations.

  19. Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-01-01T23:59:59.000Z

    Profiles of Renewable and Natural Gas Electricity Contracts:Price Risk: Using Forward Natural Gas Prices Instead of Gas2001). “Which way the natural gas price: an attempt to

  20. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Energy Savers [EERE]

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid...

  1. New Renewable 1 Emerging Renewables

    E-Print Network [OSTI]

    Renewable Facilities disbursements include $6 million for the Agriculture Biomass-to-Energy Program. 5New Renewable Facilities 1 Emerging Renewables 2,3 Existing Renewable Facilities 4 Consumer,000,000)$ Appropriations Appropriation for PACE Reserve program per SB 77 (2010) 11 (50,000,000)$ RENEWABLE ENERGY PROGRAM

  2. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  3. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  4. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  5. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  6. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewal Individual Permit Renewal Application The Permit expires March 31, 2014 and existing permit conditions will be in effect until a new permit is issued. The Permittees...

  7. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-03-01T23:59:59.000Z

    An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

  8. The impact of competitive bidding on the market prospects for renewable electric technologies

    SciTech Connect (OSTI)

    Swezey, B.G.

    1993-09-01T23:59:59.000Z

    This report examines issues regarding the ability of renewable-energy-based generation projects to compete fossil-fuel-based projects in competitive bidding solicitations. State and utility bidding results revealed that on a relative basis, utilities contract for less renewable-energy-based capacity under competitive bidding than under past methods of qualifying facility contracting. It was concluded that renewables are not being chosen more often under competitive bidding because it emphasizes price and operating considerations over other attributes of renewables, such as environmental considerations, fuel diversity, and fuel price stability. Examples are given of bidding approaches used by some states and utilities that have resulted in renewables-based projects winning generation bids. In addition, the appendix summarizes, by state, competitive bidding activities and results for supply-side solicitations that were open to all fuels and technologies.

  9. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    of the Impact of Wind Generation on System Frequency2008. Analysis of Wind Generation Impact on ERCOT Ancillarywith Increased Wind Generation. LBNL-XXXX. Berkeley:

  10. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    North America Dynamic Wind Generator Modeling Update, Basedperformed by the WECC Wind Generator Modeling Group and theand in particular, wind generators are the primary resources

  11. Renewable Portfolio Standard

    E-Print Network [OSTI]

    Hydroelectric Project as its original baseline eligible renewable energy resource project, and MID also hydroelectric unit, the Stone Drop Electric Generation Station (the Stone Drop Station). The Stone Drop

  12. Renewable Auction Mechanism (RAM)

    Broader source: Energy.gov [DOE]

    The Renewable Auction Mechanism (RAM), approved by the California Public Utilities Commission (CPUC) in December 2010, is expected to result in 1,299 megawatts (MW) of new distributed generation ...

  13. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13T23:59:59.000Z

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

  14. Dynamic Analysis of Hybrid Energy Systems under Flexible Operation and Variable Renewable Generation -- Part I: Dynamic Performance Analysis and Part II: Dynamic Cost

    SciTech Connect (OSTI)

    Humberto E. Garcia; Amit Mohanty; Wen-Chiao Lin; Robert S. Cherry

    2013-04-01T23:59:59.000Z

    Dynamic analysis of hybrid energy systems (HES) under flexible operation and variable renewable generation is considered in order to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Unique consequences are addressed by devising advanced HES solutions in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. Dynamic models of various unit operations are developed and integrated within two different HES options. One HES option, termed traditional, produces electricity only and consists of a primary heat generator (PHG) (e.g., a small modular reactor), a steam turbine generator, a wind farm, and a battery storage. The other HES option, termed advanced, includes not only the components present in the traditional option but also a chemical plant complex to repurpose excess energy for non-electricity services, such as for the production of chemical goods (e.g., transportation fuel). In either case, a given HES is connected to the power grid at a point of common coupling and requested to deliver a certain electricity generation profile as dictated by a regional power grid operator based on a predicted demand curve. Dynamic analysis of these highly-coupled HES are performed to identify their key dynamical properties and limitations and to prescribe solutions for best managing and mitigating the high variability introduced from incorporating renewable energy into the energy mix. A comparative dynamic cost analysis is also conducted to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance (O&M) and overnight capital costs, and also variable operational costs, such as cost of variability, variable O&M cost, and cost of environmental impact, together with revenues. Assuming different options for implementing PHG (e.g., natural gas, coal, nuclear), preliminary results identify the level of renewable penetration at which a given advanced HES option (e.g., a nuclear hybrid) becomes increasingly more economical than a traditional electricity-only generation solution. Conditions are also revealed under which carbon resources may be better utilized as carbon sources for chemical production rather than as combustion material for electricity generation.

  15. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01T23:59:59.000Z

    Approach for Generating Renewable Energy with SimultaneousCombining Recovery of Renewable Energy with Geologic Storage

  16. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAgeDieselDiesel prices up

  17. Transmission needs across a fully renewable European power system

    E-Print Network [OSTI]

    Rodriguez, Rolando A; Andresen, Gorm B; Heide, Dominik; Greiner, Martin

    2013-01-01T23:59:59.000Z

    The residual load and excess power generation of 27 European countries with a 100% penetration of variable renewable energy sources are explored in order to quantify the benefit of power transmission between countries. Estimates are based on extensive weather data, which allows for modelling of hourly mismatches between the demand and renewable generation from wind and solar photovoltaics. For separated countries, balancing is required to cover around 24% of the total annual energy consumption. This number can be reduced down to 15% once all countries are networked together with uncon- strained interconnectors. The reduction represents the maximum possible benefit of transmission for the countries. The total Net Transfer Capacity of the unconstrained interconnectors is roughly twelve times larger than current values. However, constrained interconnector capacities six times larger than the current values are found to provide 97% of the maximum possible benefit of cooperation. This motivates a detailed investig...

  18. Statewide Air Emissions Calculations from Wind and Other Renewables, Summary Report 

    E-Print Network [OSTI]

    Turner, W. D.; Haberl, J. S.; Yazdani, B.; Gilman, D.; Subbarao, K.; Baltazar-Cervantes, J. C.; Liu, Z.; Culp, C.

    2007-10-30T23:59:59.000Z

    The 79th Legislature, through Senate Bill 20, House Bill 2481 and House Bill 2129, amended Senate Bill 5 to enhance its effectiveness by adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind...

  19. U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis

    SciTech Connect (OSTI)

    Lopez, A.; Roberts, B.; Heimiller, D.; Blair, N.; Porro, G.

    2012-07-01T23:59:59.000Z

    This report presents the state-level results of a spatial analysis effort calculating energy technical potential, reported in square kilometers of available land, megawatts of capacity, and gigawatt-hours of generation, for six different renewable technologies. For this analysis, the system specific power density (or equivalent), efficiency (capacity factor), and land-use constraints were identified for each technology using independent research, published research, and professional contacts. This report also presents technical potential findings from previous reports.

  20. A SURVEY OF STATE-LEVEL COST ESTIMATES OF RENEWABLES PORTFOLIO STANDARDS

    E-Print Network [OSTI]

    Barbose, Galen

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Renewable Energy (Solar TechnologiesRPS costs, per unit of renewable energy generation, rangedFlores-Espino National Renewable Energy Laboratory 15013

  1. Human dimensions perspectives on the impacts of coastal zone marine renewable energy

    E-Print Network [OSTI]

    Pomeroy, Caroline; Conway, Flaxen; Hall-Arber, Madeleine

    2013-01-01T23:59:59.000Z

    between offshore renewable energy and existing uses on thecoastal zone marine renewable energy generation. REFERENCESOuter Continental Shelf Renewable Energy Space-Use Conflicts

  2. Human dimensions perspectives on the impacts of coastal zone marine renewable energy

    E-Print Network [OSTI]

    Pomeroy, Caroline; Conway, Flaxen; Hall-Arber, Madeleine

    2013-01-01T23:59:59.000Z

    coastal zone marine renewable energy generation. REFERENCESOuter Continental Shelf Renewable Energy Space-Use ConflictsOF COASTAL ZONE MARINE RENEWABLE ENERGY Caroline Pomeroy,

  3. Green energy: The implementation and utilization of renewable energy in the United States

    SciTech Connect (OSTI)

    Murry, N.L. [Coastal Contractors and Engineers, Inc., West Berlin, NJ (United States)

    1998-12-31T23:59:59.000Z

    Renewable energy has become a viable solution for the United States (US) increasing demand for energy. Often referred to as Green Energy, renewable energy uses the earth`s natural resources to create energy. The wind, sun, water, and the earth`s molten core each offer an attainable form of energy. Hydroelectricity uses running water, wind power uses high speed winds, solar panels collect solar energy as heat, and geothermal energy uses the earth`s molten core to heat water. The Department of Energy classifies Renewable Energy into the following sections: Geothermal Energy, Fuel from Biomass, and Solar Electric. Solar Electric is further subdivided into Solar Thermal Electric, Photovoltaics (Solar Cells), Wind/Windmills, Ocean Thermal Electric and Hydropower/Hydroelectric Dams. Currently, renewable energy provides only 12% of the US electricity supply. Approximately 10% of this is supplied by hydroelectric sources, 1% of this is supplied by hydroelectric sources, 1% is supplied by biomass, and less than 1% is supplied by geothermal, wind and solar combined. Nationally, the generating capacity of renewable energy has increased slightly during the 1990`s. Renewable energy generation contributes to approximately 94 thousand Megawatts of electricity compared to approximately 682 thousand Megawatts of electricity generated from nonrenewables in the year 1996. The continued implementation and utilization of renewable energy in the US are dependent upon several variables. These variables include: the support from Federal and State governments, utility purchase requirements if utility deregulation is passed, and consumer education on the environmental benefits of renewable energy.

  4. Community Renewable Energy Success Stories Webinar: Renewable...

    Office of Environmental Management (EM)

    Community Renewable Energy Success Stories Webinar: Renewable Energy Parks (text version) Community Renewable Energy Success Stories Webinar: Renewable Energy Parks (text version)...

  5. Multi-Year Analysis of Renewable Energy Impacts in California: Results from the Renewable Portfolio Standards Integration Cost Analysis; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Shiu, H.; Kirby, B.; Jackson, K.

    2006-08-01T23:59:59.000Z

    California's Renewable Portfolio Standard (RPS, Senate Bill 1078) requires the state's investor-owned utilities to obtain 20% of their energy mix from renewable generation sources. To facilitate the imminent increase in the penetration of renewables, the California Energy Commission (CEC), in support of the California Public Utility Commission (CPUC), initiated a study of integration costs in the context of RPS implementation. This effort estimated the impact of renewable generation in the regulation and load-following time scales and calculated the capacity value of renewable energy sources using a reliability model. The analysis team, consisting of researchers from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL) and the California Wind Energy Collaborative (CWEC), performed the study in cooperation with the California Independent System Operator (CaISO), the Pacific Gas and Electric Company (PG&E), and Southern California Edison (SCE). The study was conducted over three phases and was followed by an analysis of a multi-year period. This paper presents results from the multi-year analysis and the Phase III recommendations.

  6. Renewable Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Diesel Process Co-feed Renewable Oils to Diesel Hydrotreater 150-2400 psi Hydrogen, 600-800F Normal reaction is sulfur removal (HDS) At HDS Conditions Fat...

  7. Renewable Energy Sales and Use Tax Abatement

    Broader source: Energy.gov [DOE]

    The abatement applies to property used to generate electricity from renewable energy resources including solar, wind, biomass*, fuel cells, geothermal or hydro. Generation facilities must have a...

  8. Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts (Revised), Energy Analysis, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at 2:00 P.M. Next8,NatureNauruEnergy

  9. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01T23:59:59.000Z

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  10. STAFF REPORT RENEWABLE POWER IN

    E-Print Network [OSTI]

    , distributed generation, energy storage, environmental impacts, environmental justice, feedin tariff, solar photovoltaic, solar thermal, transmission, wind, workforce development. Please use Portfolio Standard requires utilities to increase the amount of renewable generation sold to customers

  11. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  12. State Renewable Energy Requirements and Goals: Update through 2009 (Update) (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    To the extent possible,Annual Energy Outlook 2010 (AEO) incorporates the impacts of state laws requiring the addition of renewable generation or capacity by utilities doing business in the states. Currently, 30 states and the District of Columbia have enforceable renewable portfolio standards (RPS) or similar laws). Under such standards, each state determines its own levels of generation, eligible technologies, and noncompliance penalties. AEO2010 includes the impacts of all laws in effect as of September 2009 (with the exception of Hawaii, because the National Energy Modeling System provides electricity market projections for the continental United States only).

  13. Distributional and Efficiency Impacts of Clean and Renewable Energy Standards

    E-Print Network [OSTI]

    supply and demand, including renewable energy resources and generating technologies, while representingDistributional and Efficiency Impacts of Clean and Renewable Energy Standards for Electricity on recycled paper #12;Distributional and Efficiency Impacts of Clean and Renewable Energy Standards

  14. US Renewable Futures in the GCAM

    SciTech Connect (OSTI)

    Smith, Steven J.; Mizrahi, Andrew H.; Karas, Joseph F.; Nathan, Mayda

    2011-10-06T23:59:59.000Z

    This project examines renewable energy deployment in the United States using a version of the GCAM integrated assessment model with detailed a representation of renewables, the GCAM-RE. Electricity generation was modeled in four generation segments and 12-subregions. This level of regional and sectoral detail allows a more explicit representation of renewable energy generation. Wind, solar thermal power, and central solar PV plants are implemented in explicit resource classes with new intermittency parameterizations appropriate for each technology. A scenario analysis examines a range of assumptions for technology characteristics, climate policy, and long-distance transmission. We find that renewable generation levels grow over the century in all scenarios. As expected, renewable generation increases with lower renewable technology costs, more stringent climate policy, and if alternative low-carbon technology are not available. The availability of long distance transmission lowers policy costs and changes the renewable generation mix.

  15. Renewable Energy Standard (Nova Scotia, Canada)

    Broader source: Energy.gov [DOE]

    On February 1, 2007, Nova Scotia's new Renewable Energy Standards took effect. By 2013, Nova Scotia will generate at least 18.5% of the Province's electricity through renewable energy -- wind,...

  16. Renewable Energy ] (

    E-Print Network [OSTI]

    Firestone, Jeremy

    pro or con, and others may wish to evaluate for themselves the size and market value of a wind regimeRenewable Energy ] (

  17. Recovery Act: Beneficial CO{sub 2} Capture in an Integrated Algal Biorefinery for Renewable Generation and Transportation Fuels

    SciTech Connect (OSTI)

    Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid; Kessler, Ben; Moats, Kenneth; Park, Jonathan; Schwenk, Jacob; White, Nicholas; Bakhit, Anis; Bargiel, Jeff; Allnutt, F.C.

    2014-03-31T23:59:59.000Z

    DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycal’s pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawai’i. Phycal’s algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal mass culturing, heterotrophic reactors for the Heteroboost™ process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.

  18. An Analysis of the Costs, Benefits, and Implications of Different Approaches to Capturing the Value of Renewable Energy Tax Incentives

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01T23:59:59.000Z

    Issue Brief: Reassessing Renewable Energy Subsidies. Marchupdate: PTC resurrection” Renewable Energy-Research Note,and Public Economics of Renewable Electricity Generation. ”

  19. Market Designs for High Levels of Variable Generation: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Holttinen, H.; Kiviluoma, J.; Orths, A.; Lynch, M.; Soder, L.

    2014-10-01T23:59:59.000Z

    Variable renewable generation is increasing in penetration in modern power systems, leading to higher variability in the supply and price of electricity as well as lower average spot prices. This raises new challenges, particularly in ensuring sufficient capacity and flexibility from conventional technologies. Because the fixed costs and lifetimes of electricity generation investments are significant, designing markets and regulations that ensure the efficient integration of renewable generation is a significant challenge. This papers reviews the state of play of market designs for high levels of variable generation in the United States and Europe and considers new developments in both regions.

  20. Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector

    SciTech Connect (OSTI)

    Bird, L.; Chapman, C.; Logan, J.; Sumner, J.; Short, W.

    2010-05-01T23:59:59.000Z

    This report examines the impact of various renewable portfolio standards (RPS) and cap-and-trade policy options on the U.S. electricity sector, focusing mainly on renewable energy generation. The analysis uses the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that simulates the least-cost expansion of electricity generation capacity and transmission in the United States to examine the impact of an emissions cap--similar to that proposed in the Waxman-Markey bill (H.R. 2454)--as well as lower and higher cap scenarios. It also examines the effects of combining various RPS targets with the emissions caps. The generation mix, carbon emissions, and electricity price are examined for various policy combinations to simulate the effect of implementing policies simultaneously.

  1. Renewable energy delivery systems and methods

    DOE Patents [OSTI]

    Walker, Howard Andrew

    2013-12-10T23:59:59.000Z

    A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.

  2. A bio-inspired molecular water oxidation catalyst for renewable hydrogen generation: An examination of salt effects

    E-Print Network [OSTI]

    Lawson, Catherine L.

    , purification, and/or burning processes. The generation of hydrogen using solar energy to split water, ideally. Swiegersc , Leone Spicciaa * a School of Chemistry, Monash University, Clayton, Victoria 3800, Australia b, University of Wollongong, Wollongong, NSW 2522, Australia ABSTRACT Most transport fuels are derived from

  3. Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues

    SciTech Connect (OSTI)

    Eto, Joseph; Budhraja, Vikram; Ballance, John; Dyer, Jim; Mobasheri, Fred; Eto, Joseph

    2008-07-01T23:59:59.000Z

    California is on a path to increase utilization of renewable resources. California will need to integrate approximately 30,000 megawatts (MW) of new renewable generation in the next 20 years. Renewable resources are typically located in remote locations, not near the load centers. Nearly two/thirds or 20,000 MW of new renewable resources needed are likely to be delivered to Los Angeles Basin transmission gateways. Integration of renewable resources requires interconnection to the power grid, expansion of the transmission system capability between the backbone power grid and transmission gateways, and increase in delivery capacity from transmission gateways to the local load centers. To scope the transmission, operations, and reliability issues for renewables integration, this research focused on the Los Angeles Basin Area transmission gateways where most of new renewables are likely. Necessary actions for successful renewables integration include: (1) Expand Los Angeles Basin Area transmission gateway and nomogram limits by 10,000 to 20,000 MW; (2) Upgrade local transmission network for deliverability to load centers; (3) Secure additional storage, demand management, automatic load control, dynamic pricing, and other resources that meet regulation and ramping needed in real time operations; (4) Enhance local voltage support; and (5) Expand deliverability from Los Angeles to San Diego and Northern California.

  4. A Stochastic Unit Commitment Model for Integrating Renewable Supply

    E-Print Network [OSTI]

    Oren, Shmuel S.

    -optimization of generation and demand by the system operator, demand bids and coupling renewable resources with deferrable-optimizes the dispatch of demand- side resources, renewable supplies and generators. This is unrealistic in practice is coupling the operations of renewable resources with deferrable demand. The motivation of coupling renewable

  5. Why Do States Adopt Renewable Portfolio Standards?: An Empirical Investigation

    E-Print Network [OSTI]

    Lyon, Thomas P.

    131 Why Do States Adopt Renewable Portfolio Standards?: An Empirical Investigation Thomas P. Lyon* and Haitao Yin** Renewable portfolio standards (RPSs) for electricity generation are politically popularU.S.stategovernments of Renewable Portfolio Standards (RPSs) as a policy tool for promoting renewable electricity generation. An RPS

  6. Dispersed power and renewables

    SciTech Connect (OSTI)

    O`Sullivan, J.B.

    1995-12-31T23:59:59.000Z

    Distributed power generation and renewable energy sources are discussed: The following topics are discussed: distributed resources, distributed generation, commercialization requirements, biomass power, location of existing biomass feedstocks, biomass business plan components, North Carolina BGCC partnership, New York biomass co-firing project, alfalfa for power and feed, Hawaii Pioneer Mill LOI project, next steps for biomass, wind power activity, photovoltaic modules and arrays, lead-acid batteries, superconducting magnetic energy storage, fuel cells, and electric power industry trends.

  7. Renewable Electricity Futures: Exploration of Up to 80% Renewable Electricity Penetration in the United States (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; DeMeo, E.; Hostick, D.; Mai, T.; Schlosser, C. A.

    2013-04-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  8. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Solar power and other sources of renewable energy can help combat global warming but they have a draw-back: they don't produce energy as predictably as generating...

  9. Renewable Auction Mechanism (RAM) (California)

    Broader source: Energy.gov [DOE]

    The Renewable Auction Mechanism (RAM), approved by the California Public Utilities Commission (CPUC) in December 2010, is expected to result in 1,299 megawatts (MW) of new distributed generation...

  10. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable

  11. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable!

  12. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect (OSTI)

    None

    2012-02-11T23:59:59.000Z

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframes—incentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales —making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  13. Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01T23:59:59.000Z

    and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.Renewable Energy, Office of Geothermal Technologies, of the

  14. Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01T23:59:59.000Z

    Brown, D. A Hot Dry Rock Geothermal Energy Concept Utilizingand Renewable Energy, Office of Geothermal Technologies, ofThe resource base for geothermal energy is enormous, but

  15. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  16. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    DeMeo, E.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  17. Renewable Energy Production Tax Credits (Corporate)

    Broader source: Energy.gov [DOE]

    In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify...

  18. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify...

  19. Commercial-Scale Renewable-Energy Grants

    Broader source: Energy.gov [DOE]

    The Rhode Island Commerce Corporation (Commerce RI) seeks to fund commercial scale renewable energy projects to generate electricity for onsite consumption. Commerce RI provides incentives for...

  20. Sandia National Laboratories: Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reciprocating engines normally operate. Unfortunately, much of emerging renewable-energy generation technologies run at lower speeds (e.g., wind turbines, oscillating wave-energy...

  1. The Political economy of environmental policy with overlapping generations

    E-Print Network [OSTI]

    Karp, Larry; Rezai, Amon

    2012-01-01T23:59:59.000Z

    Transfers with a Renewable Resource,” Land Economics,generations model with renewable resources,” Journal ofthe economics of renewable resources. Mourmouras (1993)

  2. A Review of Barriers to and Opportunities for the Integration of Renewable Energy in the Southeast

    SciTech Connect (OSTI)

    McConnell, Ben W [ORNL; Hadley, Stanton W [ORNL; Xu, Yan [ORNL

    2011-08-01T23:59:59.000Z

    The objectives of this study were to prepare a summary report that examines the opportunities for and obstacles to the integration of renewable energy resources in the Southeast between now and the year 2030. The report, which is based on a review of existing literature regarding renewable resources in the Southeast, includes the following renewable energy resources: wind, solar, hydro, geothermal, biomass, and tidal. The evaluation was conducted by the Oak Ridge National Laboratory for the Energy Foundation and is a subjective review with limited detailed analysis. However, the report offers a best estimate of the magnitude, time frame, and cost of deployment of renewable resources in the Southeast based upon the literature reviewed and reasonable engineering and economic estimates. For the purposes of this report, the Southeast is defined as the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia. In addition, some aspects of the report (wind and geothermal) also consider the extended Southeast, which includes Maryland, Missouri, Oklahoma, and Texas. A description of the existing base of renewable electricity installations in the region is given for each technology considered. Where available, the possible barriers and other considerations regarding renewable energy resources are listed in terms of availability, investment and maintenance costs, reliability, installation requirements, policies, and energy market. As stated above, the report is a comprehensive review of renewable energy resources in the southeastern region of United States based on a literature study that included information obtained from the Southern Bio-Power wiki, sources from the Energy Foundation, sources available to ORNL, and sources found during the review. The report consists of an executive summary, this introductory chapter describing report objectives, a chapter on analysis methods and the status of renewable resources, chapters devoted to each identified renewable resource, and a brief summary chapter. Chapter 2 on analysis methods and status summarizes the benefits of integrating renewable energy resources in the Southeast. The utilization of the existing fuels, both the fossil fuels and the renewable energy resources, is evaluated. The financial rewards of renewable resources are listed, which includes the amount of fuel imported from outside the Southeast to find the net benefit of local renewable generation, and both the typical and new green job opportunities that arise from renewable generation in the Southeast. With the load growth in the Southeast, the growth of transmission and fossil fuel generation may not meet the growing demands for energy. The load growth is estimated, and the benefits of renewable resources for solving local growing energy demands are evaluated. Chapters 3-7 discuss the key renewable energy resources in the Southeast. Six resources available in this region that are discussed are (1) wind, including both onshore and offshore; (2) solar, including passive, photovoltaic, and concentrating; (3) biomass energy, including switchgrass, biomass co-firing, wood, woody biomass, wood industry by-products (harvesting residues, mill waste, etc.), agricultural byproducts, landfill gas to energy and anaerobic digester gas; (4) hydro; and (5) geothermal. Because of limited development, ocean wave and tidal were not considered to be available in significant quantity before 2030 and are not presented in the final analysis. Estimates on the location of potential megawatt generation from these renewable resources in the Southeast are made. Each chapter will describe the existing base of the renewable electricity installations in the region now and, when available, the base of the existing manufacturing capacity in the region for renewable energy resources hardware and software. The possible barriers and considerations for renewable energy resources are presented.

  3. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliability TechnologyRenewal Individual Permit Renewal

  4. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable! Activities

  5. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    In 2007, Minnesota legislation modified the state's existing non-mandated renewable energy objective, creating a mandatory renewable portfolio standard (RPS) called the Renewable Energy Standard ...

  6. LRBOI Tribal Renewable Energy-Final Report

    SciTech Connect (OSTI)

    Hawley, David A.

    2013-12-17T23:59:59.000Z

    In 2011, a DOE Tribal energy Program first Steps Human Capacity was awarded to the Little River Band of Ottawa Indians (LRBOI). The main purpose of the grant was to increase human capacity of LRBOI, to understand the components of renewable energy and the importance of energy efficiency. This report summarizes the activities, the outcomes, and the lessons learned during this grant.

  7. Offshore Renewable Energy R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the offshore renewable energy R&D efforts at NREL's NWTC. As the United States increases its efforts to tap the domestic energy sources needed to diversify its energy portfolio and secure its energy supply, more attention is being focused on the rich renewable resources located offshore. Offshore renewable energy sources include offshore wind, waves, tidal currents, ocean and river currents, and ocean thermal gradients. According to a report published by the National Renewable Energy Laboratory (NREL) in 2010,1 U.S. offshore wind resources have a gross potential generating capacity four times greater than the nation's present electric capacity, and the Electric Power Research Institute estimates that the nation's ocean energy resources could ultimately supply at least 10% of its electric supply. For more than 30 years, NREL has advanced the science of renewable energy while building the capabilities to guide rapid deployment of commercial applications. Since 1993, NREL's National Wind Technology Center (NWTC) has been the nation's premier wind energy research facility, specializing in the advancement of wind technologies that range in size from a kilowatt to several megawatts. For more than 8 years, the NWTC has been an international leader in the field of offshore floating wind system analysis. Today, researchers at the NWTC are taking their decades of experience and extensive capabilities and applying them to help industry develop cost-effective hydrokinetic systems that convert the kinetic energy in water to provide power for our nation's heavily populated coastal regions. The center's capabilities and experience cover a wide spectrum of wind and water energy engineering disciplines, including atmospheric and ocean fluid mechanics, aerodynamics; aeroacoustics, hydrodynamics, structural dynamics, control systems, electrical systems, and testing.

  8. Proposed changes to generating capacity 1980-1989 for the contiguous United States: as projected by the Regional Electric Reliability Councils in their April 1, 1980 long-range coordinated planning reports to the Department of Energy

    SciTech Connect (OSTI)

    None

    1980-12-01T23:59:59.000Z

    The changes in generating capacity projected for 1980 to 1989 are summarized. Tabulated data provide summaries to the information on projected generating unit construction, retirements, and changes, in several different categories and groupings. The new generating units to be completed by the end of 1989 total 699, representing 259,490 megawatts. This total includes 10 wind power and one fuel cell installations totaling 48.5 MW to be completed by the end of 1989. There are 321 units totaling 13,222 MW to be retired. There are capacity changes due to upratings and deratings. Summary data are presented for: total requirement for electric energy generation for 1985; hydroelectric energy production for 1985; nuclear energy production for 1985; geothermal and other energy production for 1985; approximate non-fossil generation for 1985; range of fossil energy requirements for 1985; actual fossil energy sources 1974 to 1979; estimated range of fossil fuel requirements for 1985; coal capacity available in 1985; and computation of fuel use in 1985. Power plant capacity factors are presented. Extensive data on proposed generating capacity changes by individual units in the 9 Regional Electric Reliability Councils are presented.

  9. White Knights: Will wind and solar come to the rescue of a looming capacity gap from nuclear phase-out or

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    rapidly but faces grid integration problems; yet the cost of PV solar panels has plummeted thanks1 White Knights: Will wind and solar come to the rescue of a looming capacity gap from nuclear renewable power generation from wind and solar as a non- emitting alternative to replace a nuclear phase

  10. Renewable Energies program (6 credit hour) Option A: 11

    E-Print Network [OSTI]

    Simaan, Nabil

    Renewable Energies program (6 credit hour) Option A: 11 Option B: The program is organized by t Spanish Institute and the Asso program on renewable energy will provide students with advanced knowledge. opportunities: option A- two renewable energies; option B include on-site visits to renewable energy generation

  11. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    Renewable Energy Center 58 Wind: Development Potential ­ Geyserville · Potential to collocate wind Renewable Energy Center Assessment of Co-located Renewable Generation Potential #12;California Renewable (Task 2, L.A. Basin) and regions (Task 5) with co-located resources · Assess resource potential

  12. Informational and Causal Architecture of Discrete-Time Renewal Processes

    E-Print Network [OSTI]

    Sarah Marzen; James P. Crutchfield

    2014-11-09T23:59:59.000Z

    Renewal processes are broadly used to model stochastic behavior consisting of isolated events separated by periods of quiescence, whose durations are specified by a given probability law. Here, we identify the minimal sufficient statistic for their prediction (the set of causal states), calculate the historical memory capacity required to store those states (statistical complexity), delineate what information is predictable (excess entropy), and decompose the entropy of a single measurement into that shared with the past, future, or both. The causal state equivalence relation defines a new subclass of renewal processes with a finite number of causal states despite having an unbounded interevent count distribution. We use these formulae to analyze the output of the parametrized Simple Nonunifilar Source, generated by a simple two-state hidden Markov model, but with an infinite-state epsilon-machine presentation. All in all, the results lay the groundwork for analyzing processes with infinite statistical complexity and infinite excess entropy.

  13. Navajo-Hopi Land Commission Renewable Energy Development Project (NREP)

    SciTech Connect (OSTI)

    Thomas Benally, Deputy Director,

    2012-05-15T23:59:59.000Z

    The Navajo Hopi Land Commission Office (NHLCO), a Navajo Nation executive branch agency has conducted activities to determine capacity-building, institution-building, outreach and management activities to initiate the development of large-scale renewable energy - 100 megawatt (MW) or larger - generating projects on land in Northwestern New Mexico in the first year of a multi-year program. The Navajo Hopi Land Commission Renewable Energy Development Project (NREP) is a one year program that will develop and market a strategic business plan; form multi-agency and public-private project partnerships; compile site-specific solar, wind and infrastructure data; and develop and use project communication and marketing tools to support outreach efforts targeting the public, vendors, investors and government audiences.

  14. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-01-01T23:59:59.000Z

    Associates, citing NYMEX natural gas bid-offer spreadAnalysis of the Market for Natural Gas Futures. ” The EnergyProfiles of Renewable and Natural Gas Electricity Contracts:

  15. On-Site Renewable Power Purchase Agreements for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    An on-site renewable power purchase agreement (PPA) enables Federal agencies to fund a renewable energy project by contracting to purchase the power generated by the system. The renewable energy equipment is installed and owned by a developer but located on-site at the agency facility.

  16. Renewable energy generation sources have

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliability Technology earnsRememberingFeature energy

  17. Statewide Air Emissions Calculations from Wind and Other Renewables. Summary Report.

    E-Print Network [OSTI]

    Haberl, J.S.; Baltazar, J.C.; Yazdani, B.; Claridge, D.; Do, S.L.; Oh, S.

    , the capacity of installed wind turbine totals was 12,372 MW with another 7,582 MW announced for new projects by 2016. Figure 1-1 shows the growth pattern of the installed wind power capacity in Texas and their power generation in the ERCOT region from...ESL-TR-14-07-01 STATEWIDE AIR EMISSIONS CALCULATIONS FROM WIND AND OTHER RENEWABLES SUMMARY REPORT A Report to the Texas Commission on Environmental Quality For the Period January 2013 – December 2013 Jeff...

  18. DOE Office of Indian Energy Renewable Energy Project Development...

    Broader source: Energy.gov (indexed) [DOE]

    Utility Power Renewable Power Years * Currently, grid tie appears more expensive than diesel generators * Immediate savings from new solar generation, including infrastructure...

  19. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01T23:59:59.000Z

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

  20. Renewable Energy 101 (Presentation)

    SciTech Connect (OSTI)

    Walker, A.

    2012-03-01T23:59:59.000Z

    Presentation given at the 2012 Department of Homeland Security Renewable Energy Roundtable as an introduction to renewable technologies and applications.

  1. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Exploration of High-Penetration Renewable Electricity Futures PDF Volume 4 PDF #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory. (2012

  2. Renewable energy annual 1998, with data for 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    This is the fourth annual report published by the Energy Information Administration (EIA) which presents information on renewable energy consumption, capacity, and electricity generation data; US solar thermal and photovoltaic collector manufacturing activities; and US geothermal heat pump manufacturing activities. It updates and provides more detail on renewable energy information than what`s published in the Energy Information Administration`s (EIA) Annual Energy Review 1997. The renewable energy resources included in the report are: biomass (wood, wood waste, municipal solid waste, ethanol, and biodiesel); geothermal; wind; solar (solar thermal and photovoltaic); and hydropower. However, hydropower is also regarded as a conventional energy source because it has furnished a significant amount of electricity for more than a century. Therefore, the contribution of hydropower to total renewable energy consumption is discussed, although hydropower as an individual energy source is not addressed. Since EIA collects data only on terrestrial (land-based) systems, satellite and military applications are not included in this report. 13 figs., 44 tabs.

  3. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-06-01T23:59:59.000Z

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  4. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-05-01T23:59:59.000Z

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  5. Purchasing Renewable Power | Department of Energy

    Energy Savers [EERE]

    Products & Technologies Renewable Energy Purchasing Renewable Power Purchasing Renewable Power Federal agencies can purchase renewable power or renewable energy certificates...

  6. Renewable energy: Renewing the environment

    SciTech Connect (OSTI)

    Noun, R.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31T23:59:59.000Z

    During the past 20 years, the United States has enacted some of the world`s most comprehensive legislation to protect and preserve its environmental heritage. These regulations have spawned a $115-billion-per-year industry for {open_quotes}green{close_quotes} products and services, with more than 35,000 companies providing jobs for American workers. On the other hand, environmental regulations have placed heavy cost burdens on many U.S. businesses as they struggle to remain competitive in both domestic and foreign markets. How, then, can one reconcile the growing need for environmental protection with the desire for a stronger, healthier economy? Even as Congress debates the value of existing environmental legislation, new threats are appearing on the horizon. For example, extensive storm damage from Hurricane Andrew and other natural disasters has prompted members of the $650-billion insurance industry to begin studying the effects that global warming may have on future property damage claims. More and more people are realizing that the most efficient and economical way to control pollution is to avoid creating it in the first place. And that`s where renewable energy comes in. Technologies based on nonpolluting renewable energy sources such as sunlight and wind can help preserve our environmental heritage without a tangled web of regulations to burden industry. Renewable energy technologies can also help the United States become a world leader in a potential $400-billion-a-year global market for environmentally friendly products.

  7. RELATING TO LOCAL GOVERNMENT; ENACTING THE RENEWABLE ENERGY FINANCING DISTRICT ACT; AUTHORIZING MUNICIPALITIES AND

    E-Print Network [OSTI]

    Kammen, Daniel M.

    TO LOCAL GOVERNMENT; ENACTING THE RENEWABLE ENERGY FINANCING DISTRICT ACT; AUTHORIZING MUNICIPALITIES to encourage the development of distributed generation renewable energy sources and the installation. the creation and administration of renewable energy financing districts to facilitate the development

  8. Novera Renewable Energy formerly Novera Macquarie Renewable Energy...

    Open Energy Info (EERE)

    Novera Renewable Energy formerly Novera Macquarie Renewable Energy Limited NMRE Jump to: navigation, search Name: Novera Renewable Energy (formerly Novera Macquarie Renewable...

  9. DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable Natural Gas for Vehicles, and More DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable...

  10. Large Industrial Renewable Energy Purchase Program (New Brunswick)

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2012 the Large Industrial Renewable Energy Purchase Program allows NB Power to purchase renewable energy generated by its largest customers at a rate of $95/MWh. This...

  11. Renewable Energy Requirements for Future Building Codes: Options for Compliance

    SciTech Connect (OSTI)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

    2011-09-30T23:59:59.000Z

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy Credits (RECs). Each REC represents a specified amount of renewable electricity production and provides an offset of environmental externalities associated with non-renewable electricity production. The purpose of this paper is to explore the possible issues with RECs and comparable alternative compliance options. Existing codes have been examined to determine energy equivalence between the energy generation requirement and the RECs alternative over the life of the building. The price equivalence of the requirement and the alternative are determined to consider the economic drivers for a market decision. This research includes case studies that review how the few existing codes have incorporated RECs and some of the issues inherent with REC markets. Section 1 of the report reviews compliance options including RECs, green energy purchase programs, shared solar agreements and leases, and other options. Section 2 provides detailed case studies on codes that include RECs and community based alternative compliance methods. The methods the existing code requirements structure alternative compliance options like RECs are the focus of the case studies. Section 3 explores the possible structure of the renewable energy generation requirement in the context of energy and price equivalence. The price of RECs have shown high variation by market and over time which makes it critical to for code language to be updated frequently for a renewable energy generation requirement or the requirement will not remain price-equivalent over time. Section 4 of the report provides a maximum case estimate for impact to the PV market and the REC market based on the Kaufmann et al. proposed requirement levels. If all new buildings in the commercial sector complied with the requirement to install rooftop PV arrays, nearly 4,700 MW of solar would be installed in 2012, a major increase from EIA estimates of 640 MW of solar generation capacity installed in 2009. The residential sector could contribute roughly an additional 2,300 MW based on the same code requirement levels of 4 W/ft{sup 2} of r

  12. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

  13. Renewable Energy Opportunities at Fort Hood, Texas

    SciTech Connect (OSTI)

    Chvala, William D.; Warwick, William M.; Dixon, Douglas R.; Solana, Amy E.; Weimar, Mark R.; States, Jennifer C.; Reilly, Raymond W.

    2008-06-30T23:59:59.000Z

    The document provides an overview of renewable resource potential at Fort Hood based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewables Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps for heating and cooling buildings, as directed by IMCOM.

  14. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Systems On November 4, 2010, in Renewable Systems Renewable Energy Transportation Nuclear Fossil Energy Efficiency Publications Events News Renewable Systems The...

  15. Innovations in Voluntary Renewable Energy Procurement: Methods for Expanding Access and Lowering Cost for Communities, Governments, and Businesses (Technical Report)

    SciTech Connect (OSTI)

    Heeter, J.; McLaren, J.

    2012-09-01T23:59:59.000Z

    This guide explores five innovative options for voluntarily procuring renewable energy generation or systems.

  16. Renewable Electricity Futures for the United States

    SciTech Connect (OSTI)

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.; Wiser , Ryan; Brinkman, G.; Denholm, Paul; Arent, Doug; Porro, Gian; Sandor, Debra; Hostick, Donna J.; Milligan, Michael; DeMeo, Ed; Bazilian, Morgan

    2014-04-14T23:59:59.000Z

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.

  17. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    's electricity from renewable resources by 2010. The Guidebook outlines eligibility and legal requirementsCALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION

  18. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01T23:59:59.000Z

    model results in the PJM power market lead to capacity prices of $40–90/kW-yr, The ability of variable renewable

  19. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    E-Print Network [OSTI]

    Mills, Andrew D

    2011-01-01T23:59:59.000Z

    substation, and are derived from a simple levelized-cost-substation, the capacity factor of the renewable resource, and financing parameters—including the capital structure, cost

  20. Renewable energy 1998: Issues and trends

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    This report presents the following five papers: Renewable electricity purchases: History and recent developments; Transmission pricing issues for electricity generation from renewable resources; Analysis of geothermal heat pump manufacturers survey data; A view of the forest products industry from a wood energy perspective; and Wind energy developments: Incentives in selected countries. A glossary is included. 19 figs., 27 tabs.

  1. renewable energy | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    renewable energy renewable energy Leads No leads are available at this time. Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F+ Ions. Abstract:...

  2. Abstract--The aim of this paper is to present a new method for the allocation of new generation capacity, which takes into ac-

    E-Print Network [OSTI]

    Harrison, Gareth

    specifica- tions (e.g., thermal limits on transmission lines and transform- ers). Here, fault level capacity, which takes into ac- count fault level constraints imposed by protection equipment the estimation of fault currents. An iterative process allocates new capacity using Optimal Power Flow mechanisms

  3. The RenewElec Project: Variable Renewable Energy and the Power System

    SciTech Connect (OSTI)

    Apt, Jay

    2014-02-14T23:59:59.000Z

    Variable energy resources, such as wind power, now produce about 4% of U.S. electricity. They can play a significantly expanded role if the U.S. adopts a systems approach that considers affordability, security and reliability. Reaching a 20-30% renewable portfolio standard goal is possible, but not without changes in the management and regulation of the power system, including accurately assessing and preparing for the operational effects of renewable generation. The RenewElec project will help the nation make the transition to the use of significant amounts of electric generation from variable and intermittent sources of renewable power.

  4. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01T23:59:59.000Z

    The Surprising Value of Wind Farms as Generating Capacity. ”nameplate capacity of the wind farm. While this is an option

  5. Renewable Electricity Futures Study. Executive Summary

    SciTech Connect (OSTI)

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  6. Renewable Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit provides a tax credit against the corporate income tax of one cent per kilowatt-hour for companies that generate electricity...

  7. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit provides a tax credit against the personal income tax of one cent per kilowatt-hour for companies that generate electricity...

  8. Feasibility Study of Economics and Performance of Biomass Power Generation at the Former Farmland Industries Site in Lawrence, Kansas. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Tomberlin, G.; Mosey, G.

    2013-03-01T23:59:59.000Z

    Under the RE-Powering America's Land initiative, the U.S. Environmental Protection Agency (EPA) provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of biomass renewable energy generation at the former Farmland Industries site in Lawrence, Kansas. Feasibility assessment team members conducted a site assessment to gather information integral to this feasibility study. Information such as biomass resources, transmission availability, on-site uses for heat and power, community acceptance, and ground conditions were considered.

  9. Power Systems Engineering Research Center Renewable Electricity Futures

    E-Print Network [OSTI]

    Van Veen, Barry D.

    Power Systems Engineering Research Center Renewable Electricity Futures Trieu Mai Electricity of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity

  10. Renewable Energy Microgrid Testbed at NASA Ames Research

    E-Print Network [OSTI]

    Lee, Herbie

    Renewable Energy Microgrid Testbed at NASA Ames Research Center Joel Kubby, Dan O'Leary, Zachary #12;Goals · Set-up a unique microgrid test-bed for renewable energy generation, monitoring and storage · Use the facility for testing systems integration, optimization and control of new renewable energy

  11. 38 renewable energy focus July/August 2009 Feature article

    E-Print Network [OSTI]

    Hampshire, Damian

    38 renewable energy focus July/August 2009 Feature article Compact electrical generators.: Illustration shows magnified view of high temperature superconductor cable. #12;renewable energy focus July/August 2009 39 Renewable energy/infrastructure there has been excitement about superconductivity. The sting

  12. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Executive Summary NREL is a national laboratory of the U for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF #12;Renewable Electricity Futures. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report

  13. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Bulk Electric Power Systems: Operations and Transmission by the Alliance for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  14. Purchasing Renewable Power

    Broader source: Energy.gov [DOE]

    Federal agencies can purchase renewable power or renewable energy certificates (RECs) from a utility or other organization to meet Federal renewable energy requirements. Renewable power and RECs are good choices for facilities where on-site projects may be difficult or capital budgets are limited.

  15. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  16. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    for and receive production incentives, referred to as supplemental energy payments (SEPs), from the New RenewableCALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable

  17. Renewable Energy in India: Status and future Potential

    E-Print Network [OSTI]

    Banerjee, Rangan

    Thermal Solar Photovoltaic Tidal Wave Ocean Thermal #12;Power Generation Options Power Generation environmental impacts Unsustainable Need for transition to renewable energy systems, nuclear, efficiency #12 Side Management (Solar Water Heater, Passive Solar) #12;Renewables in Power Power generation 6500 PJ

  18. Communication Systems for Grid Integration of Renewable Energy Resources

    E-Print Network [OSTI]

    Yu, F Richard; Xiao, Weidong; Choudhury, Paul

    2011-01-01T23:59:59.000Z

    There is growing interest in renewable energy around the world. Since most renewable sources are intermittent in nature, it is a challenging task to integrate renewable energy resources into the power grid infrastructure. In this grid integration, communication systems are crucial technologies, which enable the accommodation of distributed renewable energy generation and play extremely important role in monitoring, operating, and protecting both renewable energy generators and power systems. In this paper, we review some communication technologies available for grid integration of renewable energy resources. Then, we present the communication systems used in a real renewable energy project, Bear Mountain Wind Farm (BMW) in British Columbia, Canada. In addition, we present the communication systems used in Photovoltaic Power Systems (PPS). Finally, we outline some research challenges and possible solutions about the communication systems for grid integration of renewable energy resources.

  19. Renewable Energy Co-Location of Distribution Facilities (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation applies to distribution facilities, which include poles and wires, cables, pipelines, or other underground conduits by which a renewable generator is able to (i) supply electricity...

  20. Photovoltaics at DOE's National Renewable Energy Laboratory License...

    Office of Environmental Management (EM)

    INSTALLATION AND OPERATION OF A SOLAR ROOF-TOP ELECTRIC GENERATING SYSTEM AT THE NATIONAL RENEWABLE ENERGY LABORATORY, RESEARCH SUPPORT FACILITY United States of America Department...

  1. Pathways to Decarbonization: Natural Gas and Renewable Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distributed generation from renewable resources and NG, energy efficiency, storage, and demand response contribute significant value to the power sector, and customers are at the...

  2. Renewable Energy World Conference and Expo North America

    Broader source: Energy.gov [DOE]

    Renewable Energy World Conference & Expo North America will be co-located with Power Generation Week, providing networking opportunities with 20,000+ professionals and key decision makers.

  3. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew D.

    2014-01-01T23:59:59.000Z

    and public economics of renewable electricity generation.CP-550-48247, National Renewable Energy Laboratory, Golden,decisions in the Western Renewable Energy Zone initiative.

  4. RENEWABLE ENERGY SOURCES Antonia V. Herzog

    E-Print Network [OSTI]

    Kammen, Daniel M.

    , Geothermal Energy, Hydropower, Wind Energy, Climate Change, Clean Energy Technologies, Learning Curve, Market Impacts 5.5. Conclusions 6. Geothermal Energy 6.1. Introduction 6.2. Capacity and Potential 61 RENEWABLE ENERGY SOURCES Antonia V. Herzog Timothy E. Lipman Daniel M. Kammen Energy

  5. Techno-economics of Renewables Rangan Banerjee

    E-Print Network [OSTI]

    Banerjee, Rangan

    Thermal Energy Solar Thermal Solar Photovoltaic Geothermal* #12;GHG Emissions (Fuel Cycle Analysis) Coal 3141 GW), 1998 WORLD RENEWABLE ELECTRICITY CAPACITY #12;Geothermal Energy #12;Geothermal Energy Energy Geothermal power 45TWh electricity and 40 TWh heat 1998 $800-3000/kW 4c/kWh ­ Cost effective #12;Tidal Energy

  6. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect (OSTI)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01T23:59:59.000Z

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

  7. Grid Integration and the Carrying Capacity of the U.S. Grid to...

    Energy Savers [EERE]

    Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate...

  8. Choosing the Right Technologies A Model for Cost Optimized Design of a Renewable

    E-Print Network [OSTI]

    Berning, Torsten

    -term generation scheduling for a renewable micro-grid using a hydrogen storage system. Mario Petrollese; Giorgio

  9. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-01-01T23:59:59.000Z

    vs. AEO 2001 Price Forecast Natural Gas Price (nominal $/if forwards forecasts) or natural gas-fired generation (ifs reference case forecast of natural gas prices delivered to

  10. Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario

    SciTech Connect (OSTI)

    Denholm, P.; Wan, Y. H.; Hummon, M.; Mehos, M.

    2013-03-01T23:59:59.000Z

    This analysis evaluates CSP with TES in a scenario where California derives 33% of its electricity from renewable energy sources. It uses a commercial grid simulation tool to examine the avoided operational and capacity costs associated with CSP and compares this value to PV and a baseload generation with constant output. Overall, the analysis demonstrates several properties of dispatchable CSP, including the flexibility to generate during periods of high value and avoid generation during periods of lower value. Of note in this analysis is the fact that significant amount of operational value is derived from the provision of reserves in the case where CSP is allowed to provide these services. This analysis also indicates that the 'optimal' configuration of CSP could vary as a function of renewable penetration, and each configuration will need to be evaluated in terms of its ability to provide dispatchable energy, reserves, and firm capacity. The model can be used to investigate additional scenarios involving alternative technology options and generation mixes, applying these scenarios within California or in other regions of interest.

  11. Natural Innovative Renewable Energy formerly Northwest Iowa Renewable...

    Open Energy Info (EERE)

    Natural Innovative Renewable Energy formerly Northwest Iowa Renewable Energy Jump to: navigation, search Name: Natural Innovative Renewable Energy (formerly Northwest Iowa...

  12. Offshore Wind Energy Market Installed Capacity is Anticipated...

    Open Energy Info (EERE)

    Offshore Wind Energy Market Installed Capacity is Anticipated to Reach 52,120.9 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  13. Renewable energy annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

  14. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01T23:59:59.000Z

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  15. FEMP Renewable Energy Overview

    SciTech Connect (OSTI)

    Not Available

    2003-06-01T23:59:59.000Z

    This four-page overview describes how Federal agencies can contact the Department of Energy's Federal Energy Management Program (FEMP) to obtain assistance in acquiring renewable energy systems, renewable fuels, and renewable ("green") power for use in their facilities and vehicles. Renewable resources, technologies, and fuels are described, as well as Federal goals for using clean, sustainable renewable energy; the current goal is to supply 2.5% of the Federal Government's energy with renewable sources by 2005. Also included is a description of the resources and technologies themselves and associated benefits.

  16. FORECASTING THE ROLE OF RENEWABLES IN HAWAII

    E-Print Network [OSTI]

    Sathaye, Jayant

    2013-01-01T23:59:59.000Z

    type of power plant and on the generating capacity of eachplant would therma.l storage system, This would permit extended use of solar thennal We energy for generating

  17. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  18. Exploring the Modeling Capacity of Two-stage Robust Optimization

    E-Print Network [OSTI]

    Yu An

    2013-06-13T23:59:59.000Z

    Jun 13, 2013 ... usf.edu). Abstract: To handle significant variability in loads, renewable energy generation, as well as various contingencies, two-stage robust ...

  19. State Renewable Energy Requirements and Goals: Update Through 2003 (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    As of the end of 2003, 15 states had legislated programs to encourage the development of renewable energy for electricity generation. Of the 17 programs (two states have multiple programs), 9 are renewable portfolio standards (RPS), 4 are renewable energy mandates, and 4 are renewable energy goals.

  20. Renewable Energy Trust Fund

    Broader source: Energy.gov [DOE]

    The renewable energy fund, known as the Massachusetts Renewable Energy Trust Fund, is supported by a non-bypassable surcharge of $0.0005 per kilowatt-hour (0.5 mill/kWh), imposed on customers of...

  1. Assessing Renewable Energy Options

    Broader source: Energy.gov [DOE]

    Federal agencies should assess renewable energy options for each specific project when integrating renewable energy in new building construction or major renovations. This section covers the preliminary screening, screening, feasibility study, and sizing and designing systems phases.

  2. Estimating Renewable Energy Costs

    Broader source: Energy.gov [DOE]

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  3. Phasing Renewable Energy Implementation

    Broader source: Energy.gov [DOE]

    If conventional or other renewable energy funding cannot be procured, or if an agency is working towards a higher goal for renewable energy usage that cannot be met with the current budget,...

  4. Renewable Energy Growth Program

    Broader source: Energy.gov [DOE]

    In 2014, Act H 7727 created the Renewable Energy Growth (REG) program with the goal to promote installation of grid connected renewable energy within the load zones of electric distribution...

  5. The Renewable Energy Footprint

    E-Print Network [OSTI]

    Outka, Uma

    2011-01-01T23:59:59.000Z

    With the shift toward renewable energy comes the potential for staggering land impacts – many millions of acres may be consumed to meet demand for electricity and fuel over the next 20 years. To conservationists’ dismay, the more renewable energy we...

  6. Renewables and Sector Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Community Renewable Energy Success Stories Webinar series presentation by Susanna Sutherland, City of Knoxville, Tennessee, on financing solar energy systems.

  7. Kampung Capacity Local Solutions for Sustainable

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Kampung Capacity Local Solutions for Sustainable Rural Energy in the Baram River Basin, Sarawak and social opportunities of up to 1.5 billion people worldwide. As a critical case in point, most rural of service provision based on large-scale regional electrification. A range of different renewable energy

  8. INFORMATION FOR RENEWABLE ENERGY

    E-Print Network [OSTI]

    ENHANCING INFORMATION FOR RENEWABLE ENERGY TECHNOLOGY DEPLOYMENT IN BRAZIL, CHINA, AND SOUTH AFRICA UNITEDNATIONSENERGYPROGRAMME #12;#12;Enhancing Information for Renewable Energy Technology Deployment in Brazil, China Palmer, JL Van Niekerk, Center for Renewable and Sustainable Energy Studies (CRSES) in South Africa E

  9. Renewable energy and telecommunications

    E-Print Network [OSTI]

    Renewable energy and telecommunications Case study: Energy Systems Week When AK Erlang first used fossil fuels and switch to renewable energy sources. But the unlikely convergence of the two fields lay to be able to deal with. "If we integrate renewable energies, such as wind power, in the electricity grid

  10. COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM

    E-Print Network [OSTI]

    COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK Fourth Edition Manager Renewable Energy Office G. William Pennington Acting Deputy Director Efficiency and Renewable of how the Energy Commission's Renewable Energy Program is administered and outlines terms

  11. Recharging U.S. Energy Policy: Advocating for a National Renewable Portfolio Standard

    E-Print Network [OSTI]

    Lunt, Robin J.

    2007-01-01T23:59:59.000Z

    Wind Energy Assoc. (1997), http:// www.awea.org/policy/ENERGY POLICY From the renewable generator's perspective, WindPolicy Act as *'electric energy generated from solar, wind,

  12. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Groups, Organizations, and Associations Australian Clean Energy Council Marine Renewable Energy (BWEA) California Energy Commission Energy Efficiency and Renewable...

  13. Renewable Energy Opportunities at Fort Sill, Oklahoma

    SciTech Connect (OSTI)

    Boyd, Brian K.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

    2011-03-31T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Sill, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Sill took place on June 10, 2010.

  14. Renewable Energy Opportunities at Fort Polk, Louisiana

    SciTech Connect (OSTI)

    Solana, Amy E.; Boyd, Brian K.; Horner, Jacob A.; Gorrissen, Willy J.; Orrell, Alice C.; Weimar, Mark R.; Hand, James R.; Russo, Bryan J.; Williamson, Jennifer L.

    2010-11-17T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Polk, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Polk took place on February 16, 2010.

  15. Creative renewable energy purchasing options for businesses

    SciTech Connect (OSTI)

    Lokey, Elizabeth

    2007-01-15T23:59:59.000Z

    Green energy providers are creating novel ways for large commercial clients to get involved in the long-term development of renewable energy generation. Some plans are designed to allow the purchase of energy to provide long-term off-take stability and other financial benefits to companies developing renewable energy projects. Two new insurance products could help absorb some of the financial risk taken on by the clients. (author)

  16. The renewable electric plant information system

    SciTech Connect (OSTI)

    Sinclair, K.

    1995-12-01T23:59:59.000Z

    This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

  17. Value of storage with increased renewable penetration.

    SciTech Connect (OSTI)

    Brainard, James Robert; Roach, Jesse Dillon

    2010-10-01T23:59:59.000Z

    The problem statement for this project is: (1) Renewable energy portfolio standards - (a) high penetration of intermittent and variable renewable generation on the grid, (b) utilities constrained by NERC Control Performance Standards, (c) requires additional resources to match generation with load; and (2) mitigation of impacts with energy storage - at what level of renewable penetration does energy storage become an attractive value proposition. Use a simplified, yet robust dispatch model that: (a) incorporates New Mexico Balance Area load and wind generation data, (b) distributes the load among a suite of generators, (c) quantifies increased generation costs with increased penetration of intermittent and variable renewable generation - fuel, startup, shut down, ramping, standby, etc., (d) tracks and quantifies NERC pentalties and violations, and (e) quantifies storage costs. Dispatch model has been constructed and it: (a) accurately distributes a load among a suite of generators, (b) quantifies duty cycle metrics for each of the generators - cumulative energy production, ramping and non ramping duration, spinning reserves, number of start-ups, and shut down durations, etc., (c) quantifies energy exchanges - cumulative exchanges, duration, and number of exchanges, (d) tracks ACE violations.

  18. Power marketing and renewable energy

    SciTech Connect (OSTI)

    Fang, J.M.

    1997-09-01T23:59:59.000Z

    Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

  19. Renewable energy annual 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  20. RP-5 RENEWABLE ENERGY PROJECT

    SciTech Connect (OSTI)

    Neil Clifton, P.E.; Eliza Jane Whitman; Jamal A. Zughbi, P.E.

    2002-10-30T23:59:59.000Z

    This report is the first quarterly technical report for the RP-5 Renewable Energy Project. The report summarizes the work progress, effort and activities that took place during the period of July 12, 2002 (project inception) to September 30, 2002. The report has been prepared in accordance with the Department of Energy (DOE) Guidelines. This technical report covers all meetings and discussions that were conducted to identify and analyze potential renewable energy technologies and verify its feasibility and suitability for the project. The report covers the two-day Energy Charrette that was held at the Inland Empire Utilities Agency (IEUA) Headquarters Building on May 8-9, 2002 to brainstorm, evaluate and present all available renewable energy options along with their implementations. Although the Energy Charrette was held prior to awarding of the DOE Grant, the outcome of the Charrette forms the basis of the activities that took place after July 12, 2002. Therefore, the Energy Charrette is frequently referenced and discussed in this report. The report also discusses the Energy Meeting that took place on September 24, 2002 between IEUA and CH2M Hill to follow up on the various presentations and recommendations resulting from the Energy Charrette. It should be noted that no final equipment data or capacities have been presented in the report, as the Conceptual Design has not started yet. This report covers continuing effort and work to complete the Request for Proposal (RFP) for this project. The Executive Summary Section covers more details on the scope of work, which consists of the conceptual, preliminary and final design, and what has been accomplished during the report period. Tools and methods utilized in this project to identify renewable energy technologies are included in the ''Experimental'' Section. Finally, Project achievements, implications and importance in improving this kind of technology are summarized in the ''Conclusion'' Section.

  1. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect (OSTI)

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C. [Zaininger Engineering Co., San Jose, CA (United States)

    1994-06-01T23:59:59.000Z

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  2. Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled Nameplate Capacity of

  3. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

  4. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  5. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  6. Illinois Nuclear Profile - Byron Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  7. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  8. Potential of Renewable Energy to Reduce the Dependence of the State of Hawaii on Oil

    SciTech Connect (OSTI)

    Arent, D.; Barnett, J.; Mosey, G.; Wise, A.

    2009-01-01T23:59:59.000Z

    Deriving nearly 90% of its primary energy resources from oil, the State of Hawaii is more dependent on oil than any other U.S. state. The price of electricity in Hawaii is also more than twice the U.S. average. The Energy Policy Act of 2005 directed assessment of the economic implications of Hawaii's oil dependence and the feasibility of using renewable energy to help meet the state's electrical generation and transportation fuel use. This paper is based on the assessments and report prepared in response to that directive.Current total installed electrical capacity for the State of Hawaii is 2,414 MWe, 83% of which is fuel-oil generated, but already including about 170 MWe of renewable capacity. The assessments identified about 2,133 MWe (plus another estimated 2,000 MWe of rooftop PV systems) of potential new renewable energy capacity. Most notable, in addition to the rooftop solar potential, is 750 MWe and 140 MWe of geothermal potential on Hawaii and Maui, respectively, 840 MWe of potential wind capacity, primarily on Lanai and Molokai, and one potential 285 MWe capacity specific solar project (PV or solar thermal) identified on Kauai. Important social, political, and electrical-grid infrastructure challenges would need to be overcome to realize this potential. Among multiple crop and acreage scenarios, biofuels assessment found 360,000 acres in Hawaii zoned for agriculture and appropriate for sugarcane, enough to produce 429 million gallons of ethanol-enough to meet about 64% of current 2005 Hawaiian gasoline use. Tropical oil seed crops-potentially grown on the same land-might meet a substantial portion of current diesel use, but there has been little experience growing such crops in Hawaii. The U.S. Department of Energy and the State of Hawaii initiated in January 2008 a program that seeks to reduce Hawaii's oil dependence and provide 70% of the state's primary energy from clean energy sources by 2030. The Hawaii Clean Energy Initiative (HCEI) activities will be concentrated in two areas: (1) HCEI Working Groups will be formed and made up of private, state, and U.S. government experts in the areas of Transportation and Fuels, Electricity Generation, Energy Delivery and Transmission, and End-Use Efficiency; and (2) Partnership Projects will be undertaken with local and mainland partners that demonstrate and commercialize new technologies and relieve technical barriers.

  9. What can transmission do for a fully renewable Europe?

    E-Print Network [OSTI]

    Becker, Sarah; Andresen, Gorm B; Greiner, Martin O W; Schramm, Stefan

    2014-01-01T23:59:59.000Z

    Our research is centred around the question how to best integrate the variable renewable energy sources (VRES), wind power and solar photovoltaics, into the European electricity grid. The future electricity supply will be based to a large extend on these fluctuating resources. We have conducted a study, extrapolating national historical and targeted wind and solar power penetrations in Europe up to 100% VRES (R.A. Rodriguez et al, Renewable Energy 63, p. 467, Mar 2014 and S. Becker et al, Energy 64, p. 404, Jan 2014). A high share of VRES means large fluctuations in the generation, causing overproduction and deficits. One way to reduce such mismatches is power transmission spatially smoothing out the fluctuations. This has the potential to reduce the remaining shortages by sharing the surplus production of others. We find that shortages can at maximum be reduced by 40% in the hypothetical case of unlimited transmission capacities across all of Europe. A more realistic extension of the transmission grid, rough...

  10. Renewable energy in Indian country

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    On June 25--27, 1995, at Mesa Verde National Park in southwestern Colorado, the Center for Resource Management (CRM), organized and sponsored a conference in conjunction with the Navajo Nation, EPA, and Bechtel Group, Inc., to deal with issues associated with developing renewable energy resources on Indian lands. Due to the remoteness of many reservation homes and the cost of traditional power line extensions, a large percentage of the Indian population is today without electricity or other energy services. In addition, while they continue to develop energy resources for export, seeing only minimal gain in their own economies, Indian people are also subject to the health and environmental consequences associated with proximity to traditional energy resource development. Renewable energy technologies, on the other hand, are often ideally suited to decentralized, low-density demand. These technologies--especially solar and wind power--have no adverse health impacts associated with generation, are relatively low cost, and can be used in applications as small as a single home, meeting power needs right at a site. Their minimal impact on the environment make them particularly compatible with American Indian philosophies and lifestyles. Unfortunately, the match between renewable energy and Indian tribes has been hampered by the lack of a comprehensive, coordinated effort to identify renewable energy resources located on Indian lands, to develop practical links between Indian people`s needs and energy producers, and to provide the necessary training for tribal leaders and members to plan, implement, and maintain renewable energy systems. Summaries of the presentations are presented.

  11. Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2013-11-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power system at the site.

  12. Statewide Air Emissions Calculations from Wind and Other Renewables, Summary Report: A Report to the Texas Commission on Environmental Quality for the Period September 2007 - August 2008

    E-Print Network [OSTI]

    Gilman, D.; Yazdani, B.; Haberl, J. S.; Baltazar-Cervantes, J. C.; Subbarao, K.; Culp, C.; Liu, Z.

    -wind renewables. This legislation also requires the Public Utilities Commission of Texas (PUCT) to establish a target of 10,000 megawatts of installed renewable capacity by 2025, and requires the Texas Commission on Environmental Quality (TCEQ) to develop...

  13. The relationship between policy choice and the size of the policy region: Why small jurisdictions may prefer renewable energy policies to reduce CO2 emissions

    E-Print Network [OSTI]

    Accordino, Megan H.; Rajagopal, Deepak

    2012-01-01T23:59:59.000Z

    be generated by quali?ed renewable resources. In the U.S. ,production from renewable resources, the cost of reducing COrenewable and non-renewable resources. Burtraw et al. (2012)

  14. Photon Science for Renewable Energy

    SciTech Connect (OSTI)

    Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

    2010-03-31T23:59:59.000Z

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

  15. Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy,

    E-Print Network [OSTI]

    of Energy Efficiency, Renewable Energy, and Small-Scale Cogeneration from electricity generation. Renewable energy, energy efficiency, and energy, where performance is measured relative to three objectives: energy production

  16. Renewables Intermittency: Operational Limits and Implications for Long-Term Energy System Models

    E-Print Network [OSTI]

    Delarue, E.

    In several regions of the world, the share of intermittent renewables (such as wind and solar PV) in electricity generation is rapidly increasing. The current share of these renewable energy sources (RES) can still more ...

  17. Differentiation Self-renewal

    E-Print Network [OSTI]

    Glyde, Henry R.

    Off state Ras Ras­GAP PI3K ERK1 ERK2 Differentiation SC1 SC1 Self-renewal Ras On state GDP GTP N NN, which promotes stem-cell self-renewal. Activated Ras also switches on the enzymes ERK1 and ERK2, which-cell renewal via the PI3K pathway. SC1 also inhibits ERK1 and ERK2, thus blocking stem-cell differentiation. PI

  18. How renewables can be undermined by intermittency

    SciTech Connect (OSTI)

    NONE

    2008-06-15T23:59:59.000Z

    Currently, renewable energy resources are in vogue. But each has its own problems. For instance, forecasting when wind blows and at what speed has become more critical as significant amounts of capacity are added. When the forecast is off, as sometime happens, it can create havoc and cause wholesale prices to spike erratically An example of when this happened in Texas is recounted. Approaches of several European countried to prevent this are given.

  19. An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Wan, Y. H.; Hummon, M.; Mehos, M.

    2013-04-01T23:59:59.000Z

    This analysis evaluates CSP with TES in a scenario where California derives 33% of its electricity from renewable energy sources. It uses a commercial grid simulation tool to examine the avoided operational and capacity costs associated with CSP and compares this value to PV and a baseload generation with constant output. Overall, the analysis demonstrates several properties of dispatchable CSP, including the flexibility to generate during periods of high value and avoid generation during periods of lower value. Of note in this analysis is the fact that significant amount of operational value is derived from the provision of reserves in the case where CSP is allowed to provide these services. This analysis also indicates that the 'optimal' configuration of CSP could vary as a function of renewable penetration, and each configuration will need to be evaluated in terms of its ability to provide dispatchable energy, reserves, and firm capacity. The model can be used to investigate additional scenarios involving alternative technology options and generation mixes, applying these scenarios within California or in other regions of interest.

  20. Renewable Energy Renaissance Zones

    Broader source: Energy.gov [DOE]

    For the purposes of renaissance zone designation, “renewable energy facility” means a facility that creates energy, fuels, or chemicals directly from the wind, the sun, trees, grasses, biosolids,...

  1. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    Rhode Island's Renewable Energy Standard (RES), established in June 2004, requires the state's retail electricity providers -- including non-regulated power producers and distribution companies --...

  2. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    In October 2008, Michigan enacted the Clean, Renewable, and Efficient Energy Act, Public Act 295, requiring the state's investor-owned utilities, alternative retail suppliers, electric cooperativ...

  3. EMSL - renewable energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    renewable-energy en Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F+ Ions. http:www.emsl.pnl.govemslwebpublicationsmicrostructure-and-cs...

  4. COMMISSION GUIDEBOOK RENEWABLES PORTFOLIO

    E-Print Network [OSTI]

    for tracking and verifying compliance with the RPS. Keywords: Biodiesel, biogas, biomass, biomethane, pipeline biomethane, power purchase agreement, Qualified Reporting Entity, RECs, renewable energy

  5. Columbia- Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    In November 2004, voters in Columbia, Missouri approved a proposal to adopt a local renewables portfolio standard (RPS).* The initiative requires the city's municipal utility, Columbia Water and...

  6. Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    In February 2009, the District Department of the Environment (DDOE) introduced the Renewable Energy Incentive Program (REIP), a rebate for solar photovoltaic (PV) systems. In April 2012, solar...

  7. Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    Maine's original Renewable Resource Portfolio Requirement was passed as part of the state's 1997 electric-utility restructuring law. In 1999, Maine's Public Utility Commission (PUC) adopted rules...

  8. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    Scale Renewable Energy Integration . . . . . . . . . . .Impacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

  9. Renewable Energy Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Renewable Energy Technologies Renewable Energy Technologies State, local, and tribal governments can harness renewable energy technologies from natural sources-...

  10. Procurement Options for New Renewable Electricity Supply

    SciTech Connect (OSTI)

    Kreycik, C. E.; Couture, T. D.; Cory, K. S.

    2011-12-01T23:59:59.000Z

    State renewable portfolio standard (RPS) policies require utilities and load-serving entities (LSEs) to procure renewable energy generation. Utility procurement options may be a function of state policy and regulatory preferences, and in some cases, may be dictated by legislative authority. Utilities and LSEs commonly use competitive solicitations or bilateral contracting to procure renewable energy supply to meet RPS mandates. However, policymakers and regulators in several states are beginning to explore the use of alternatives, namely feed-in tariffs (FITs) and auctions to procure renewable energy supply. This report evaluates four procurement strategies (competitive solicitations, bilateral contracting, FITs, and auctions) against four main criteria: (1) pricing; (2) complexity and efficiency of the procurement process; (3) impacts on developers access to markets; and (4) ability to complement utility decision-making processes. These criteria were chosen because they take into account the perspective of each group of stakeholders: ratepayers, regulators, utilities, investors, and developers.

  11. Integrating Variable Renewable Energy: Challenges and Solutions

    SciTech Connect (OSTI)

    Bird, L.; Milligan, M.; Lew, D.

    2013-09-01T23:59:59.000Z

    In the U.S., a number of utilities are adopting higher penetrations of renewables, driven in part by state policies. While power systems have been designed to handle the variable nature of loads, the additional supply-side variability and uncertainty can pose new challenges for utilities and system operators. However, a variety of operational and technical solutions exist to help integrate higher penetrations of wind and solar generation. This paper explores renewable energy integration challenges and mitigation strategies that have been implemented in the U.S. and internationally, including forecasting, demand response, flexible generation, larger balancing areas or balancing area cooperation, and operational practices such as fast scheduling and dispatch.

  12. Renewable Energy Opportunties at Dugway Proving Ground, Utah

    SciTech Connect (OSTI)

    Orrell, Alice C.; Kora, Angela R.; Russo, Bryan J.; Horner, Jacob A.; Williamson, Jennifer L.; Weimar, Mark R.; Gorrissen, Willy J.; Nesse, Ronald J.; Dixon, Douglas R.

    2010-05-31T23:59:59.000Z

    This document provides an overview of renewable resource potential at Dugway Proving Ground, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and ground source heat pumps (GSHPs). The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment.

  13. Renewable Energy Act (Prince Edward Island, Canada)

    Broader source: Energy.gov [DOE]

    The Renewable Energy Act outlines the renewable portfolio goals, permitting for renewable projects, regulatory authority, net metering system regulations, purchase price regulations, and renewable...

  14. Renewable Energy in Alaska

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  15. Offshore Renewable Energy Solutions

    E-Print Network [OSTI]

    and sustainable energy supply. The UK is uniquely placed to harness its natural resources ­ wind, wave and tidal power ­ to meet its target of achieving 15% of energy consumption from renewable sources by 2020. CefasOffshore Renewable Energy Solutions #12;Cefas: meeting complex requirements The Centre

  16. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Energy Laboratory; pp. 6-1 ­ 6-58. Chapter 7. Geothermal Energy Technologies Augustine, C.; Denholm, P.; Heath, G.; Mai, T.; Tegen, S.; Young. K. (2012). "Geothermal Energy Technologies," Chapter 7.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance

  17. Renewable Energy Annual

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Presents five chapters covering various aspects of the renewable energy marketplace, along with detailed data tables and graphics. Particular focus is given to renewable energy trends in consumption and electricity; manufacturing activities of solar thermal collectors, solar photovoltaic cells/modules, and geothermal heat pumps; and green pricing and net metering programs. The Department of Energy provides detailed offshore

  18. Energy Conservation Renewable Energy

    E-Print Network [OSTI]

    Delgado, Mauricio

    Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

  19. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures

    E-Print Network [OSTI]

    Mai, Ph.D. 5th International Conference on Integration of Renewable and Distributed Energy Resources characteristics are unique to each RE generation technology. Abundant Renewable Energy Resources Darker Colors and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Trieu

  20. Renewable and Non-Renewable Resources Tariff RNR-7 (Georgia)

    Broader source: Energy.gov [DOE]

    The Renewable and Non-Renewable Resource tariff is authorized by the Georgia Public Service Commission (PSC), which requires that the investor owned utility, Georgia Power Company, purchase...

  1. Renewable Energy Projections as Published in the National Renewable...

    Open Energy Info (EERE)

    Projections as Published in the National Renewable Energy Action Plans of the European Member States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy...

  2. Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector

    SciTech Connect (OSTI)

    None

    2009-12-31T23:59:59.000Z

    The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary, as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute electric power in the state from 10 Colorado generation development areas (GDAs) that have the capacity for more than 96,000 megawatts (MW) of wind generation and 26,000 MW of solar generation. The SB07-91 Report recognized that only a small fraction of these large capacity opportunities are destined to be developed. As a rough comparison, 13,964 MW of installed nameplate capacity was available in Colorado in 2008. The legislature did not direct the SB07-91 task force to examine several issues that are addressed in the REDI report. These issues include topics such as transmission, regulation, wildlife, land use, permitting, electricity demand, and the roles that different combinations of supply-side resources, demand-side resources, and transmission can play to meet a CO{sub 2} emissions reduction goal. This report, which expands upon research from a wide array of sources, serves as a sequel to the SB07-91 Report. Reports and research on renewable energy and transmission abound. This report builds on the work of many, including professionals who have dedicated their careers to these topics. A bibliography of information resources is provided, along with many citations to the work of others. The REDI Project was designed to present baseline information regarding the current status of Colorado's generation and transmission infrastructure. The report discusses proposals to expand the infrastructure, and identifies opportunities to make further improvements in the state's regulatory and policy environment. The report offers a variety of options for consideration as Colorado seeks pathways to meet the 20 x 20 goal. The primary goal of the report is to foster broader discussion regarding how the 20 x 20 goal interacts with electric resource portfolio choices, particularly the expansion of utility-scale renewable energy and the high-voltage transmission infrastructure. The report also is intended to serve as a resource when identifying opportunities stemming from the American Recovery and Reinvestment Act of 2009.

  3. COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM

    E-Print Network [OSTI]

    COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK Fifth Edition Gonçalves Office Manager Renewable Energy Office Dave Ashuckian, P.E. Deputy Director Efficiency and Renewable Energy Division Robert P. Oglesby Executive Director The California Energy Commission formally

  4. COMMISSION REPORT RENEWABLE ENERGY PROGRAM

    E-Print Network [OSTI]

    COMMISSION REPORT RENEWABLE ENERGY PROGRAM 2011 ANNUAL REPORT Authors Lorraine Gonzalez Madeleine Meade Project Manager Tony Gonçalves Office Manager Renewable Energy Office Panama Bartholomy Deputy Director Energy Efficiency and Renewables Division Robert Oglesby

  5. COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM

    E-Print Network [OSTI]

    COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK Sixth Edition Gonçalves Office Manager Renewable Energy Office Dave Ashuckian, P.E. Deputy Director Efficiency and Renewable Energy Division Robert P. Oglesby Executive Director The California Energy Commission formally

  6. RenewableS 2011 GLOBAL STATUS REPORT

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    energy worldwide as of early 2011. The report covers both current status and key trends; by design, it does not provide analysis or forecast the future. Global energy consumption rebounded in 2010 after energy consumption. Renewable energy accounted for approximately half of the estimated 194 gigawatts (GW

  7. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    SciTech Connect (OSTI)

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01T23:59:59.000Z

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  8. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    Renewable Energy Center Technical Assessment of Small Hydro Power Technologies #12;California Renewable Energy Center Technical Assessment of In-conduit Small Hydro Power Technologies The goal of this study is to investigate and assess available small hydro power generation technologies and associated operating

  9. Date: May 17, 2012 ENI Renewable Energy Prize 2012

    E-Print Network [OSTI]

    Date: May 17, 2012 ENI Renewable Energy Prize 2012 The prestigious ENI Renewable and Non-conventional) conventional solar cells do not convert all light from the sun into electricity, and 2) solar cells generations of researchers. The yearly ENI Award has four distinct prizes: New Frontiers of Hydrocarbons

  10. Renewable Energy Catalog of Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Catalog of Services U.S. Department of Energy Federal Energy Management Program November 2014 Renewable Energy Catalog of Services Contacts Contacts Jesse Gary...

  11. Renewable Energy | Department of Energy

    Office of Environmental Management (EM)

    Science & Innovation Energy Sources Renewable Energy Renewable Energy Watch as these fourth grade students go from learning about electricity to making their own electricity...

  12. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014, in Computational Modeling & Simulation, Energy, News, News & Events, Partnership, Renewable Energy, Water Power Sandia and the National Renewable Energy Laboratory (NREL)...

  13. Solar Renewable Energy Certificates (SRECs)

    Broader source: Energy.gov [DOE]

    Maryland's Renewable Energy Portfolio Standard, enacted in May 2004 and revised in 2007 and 2008, requires electricity suppliers (all utilities and competitive retail suppliers) to use renewable...

  14. Renewable Natural Gas- Developer Perspective

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsRenewable Natural Gas - Developer PerspectiveDavid Ross, Managing Director, MultiGen International, LLC

  15. The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners

    E-Print Network [OSTI]

    Vine, Edward

    2007-01-01T23:59:59.000Z

    distributed generation facilities that have received ratepayer incentives toward the utility’distributed generation system owners to retain 100% of their renewable energy credits (RECs), and that utilities

  16. Programs in Renewable Energy

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    Our nation faces significant challenges as we enter the 1990s: securing a reliable supply of competitively priced energy, improving the quality of our environment, and increasing our share of foreign markets for goods and services. The US Department of Energy's (DOE) Programs in Renewable Energy are working toward meeting these challenges by developing the technologies that make use of our nation's largest energy resource: renewable energy. The sunlight, wind biomass, flowing water, ocean energy, and geothermal energy that make up the renewable energy resource can be found throughout our nation. These resources can provide all the forms of energy our nation needs: liquid fuels, electricity, and heating and cooling. Renewable energy meets about 10% of our need for these forms of energy today, yet the potential contribution is many times greater. DOE's Programs in Renewable Energy are working side-by-side with American industry to develop the technologies that convert renewable energy resources into practical, cost-competitive energy. After a decade of progress in research, several of these technologies are poised to make large contributions during the 1990s and beyond. This booklet provides an overview of the renewable energy programs and their plans for FY 1990. Sources of additional information are listed at the back of the booklet. 48 figs., 4 tabs.

  17. Power Maximization of a Closed-orbit Kite Generator System Mariam Ahmed*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . The third option is to use power kites as renewable energy generators such as the "Kite Wind Generator

  18. Climate change and renewable energy portfolios 

    E-Print Network [OSTI]

    Burnett, Dougal James

    2012-06-25T23:59:59.000Z

    The UK has a commitment to reduce greenhouse gases by at least 80% from 1990 levels by 2050. This will see the proportion of energy generated in the UK from renewable resources such as wind, solar, marine and bio-fuels ...

  19. Renewable energy in Hawaii--Lessons learned

    SciTech Connect (OSTI)

    Hubbard, H.M.; Totto, L.; Harvison, D. [Pacific International Center for High Technology Research, Honolulu, HI (United States)

    1993-11-01T23:59:59.000Z

    Hawaii`s extensive renewable resources and limited access to conventional fuels has, in a sense, created a natural environment for the development and implementation of renewable energy processes, technologies, and materials. Aside from its traditional combustion of bagasse at sugar mills, Hawaii has invested in a wide range of renewable energy technologies, including municipal waste-to-energy incineration, hydropower, wind energy, solar photovoltaic (PV), small-scale solar, geothermal, and innovative hybrid wind/diesel and wind/pumped hydro systems. While regarded as a leader in the field of renewable energy, Hawaii`s pioneering approach has generally focused on research and development rather on implementation and commercialization. Despite being a front-runner in the utilization of a number of renewable energy resources, Hawaii`s dependence on petroleum continues to be among the highest in the United States. In 1990, petroleum constituted 92% of Hawaii`s energy supply in contrast to renewable energy`s contribution of 8%. The introduction of coal-fired electricity generation in 1992 has helped to diversify the energy base and decrease the share of oil. But, coal`s low fuel costs may also impact negatively on the prospects for renewable energy. The combination of the impending decline of sugarcane and the growing concerns for the islands` energy and environmental security is changing Hawaii`s energy landscape. While a number of traditional options may be phased out over the next few years, the emergence of new prospects holds considerable promise for an expanded role for renewable energy in the future.

  20. Renewable Energy Research Planning for Renewable-based

    E-Print Network [OSTI]

    Renewable Energy Research Planning for Renewable-based Energy Security and Prosperity in Humboldt County www.energy.ca.gov/research/renewable May 2011 The Issue Currently, the tools and models needed of the county, however, offers much potential. Many indigenous renewable energy resources, such as biomass

  1. Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables 

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Culp, C.

    2008-01-01T23:59:59.000Z

    AND RENEWABLES May 2008 Energy Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period... Energy Systems Laboratory p. 1 Jeff Haberl, Bahman Yazdani, Charles Culp Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System STATEWIDE AIR EMISSIONS CALCULATIONS FROM ENERGY EFFICIENCY, WIND...

  2. Renewable Energy Generation Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: Wind energy Product:AnatoliaRefexRDCRED Jump

  3. AEO Early Release 2013 - renewable generation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air1,

  4. Renewable Electricity Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdle ReductionOffices Offices AllFeeds RSS Feeds The Office

  5. DRAFT COMMITTEE REPORT RENEWABLE ENERGY PROGRAM

    E-Print Network [OSTI]

    of Renewable Resource Trust Fund dollars, information on cash flow, program activities and results, and projects and funding awards. Keywords: Renewable Energy Program, Renewable Resource Trust Fund Facilities Program, New Renewable Resources Account, Existing Renewable Facilities Program, Emerging

  6. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    With the passage of [http://www.secstate.wa.gov/elections/initiatives/text/I937.pdf Initiative 937] in 2006, Washington became the second state after Colorado to pass a renewable energy standard by...

  7. Renewable Energy Grant Program

    Broader source: Energy.gov [DOE]

    In May 2008, Alaska enacted legislation authorizing the creation of a renewable energy grant fund. The legislation recommended that the program be administered by the Alaska Energy Authority (AEA)....

  8. Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    New Hampshire enacted legislation (H.B. 1628) in July 2008 requiring the state's Public Utilities Commission (PUC) to establish and administer a rebate program for certain renewable-energy systems....

  9. COMMISSION GUIDEBOOK RENEWABLES PORTFOLIO

    E-Print Network [OSTI]

    pipeline, conduit hydroelectric, digester gas, electrolysis, eligibility, energy storage, fuel cell thermal, supplemental energy payments, tidal current, tradable renewable energy credits, TRECs, water Guidebook APRIL 2013 CEC3002013005ED7CMF CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor

  10. COMMISSION GUIDEBOOK RENEWABLES PORTFOLIO

    E-Print Network [OSTI]

    pipeline, conduit hydroelectric, digester gas, electrolysis, eligibility, energy storage, fuel cell thermal, supplemental energy payments, tidal current, tradable renewable energy credits, TRECs, water Guidebook APRIL 2013 CEC3002013005ED7CMFREV CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor

  11. Renewable Power Procurement Policy

    Broader source: Energy.gov [DOE]

    New York Governor George Pataki signed Executive Order No. 111 to promote "Green and Clean" State Buildings and Vehicles on June 10, 2001. The renewable-power procurement component of this order...

  12. Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    In January 2005, the District of Columbia Council enacted a renewable portfolio standard (RPS) that applies to all retail electricity sales in the District. In October 2008 the RPS was amended by...

  13. Alaska Renewable Energy Fair

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

  14. Solar Renewable Energy Certificates

    Broader source: Energy.gov [DOE]

    In January 2005, the District of Columbia (D.C.) Council enacted a renewable portfolio standard (RPS) with a solar carve-out that applies to all retail electricity sales in the District. In October...

  15. Effective Renewable Energy Policy: Leave It to the States?

    E-Print Network [OSTI]

    Weissman, Steven

    2011-01-01T23:59:59.000Z

    count large-scale hydroelectric power as renewable for theas large-scale hydroelectric, nuclear power, and natural gaspower is generated with solar heat, photovoltaics, wind, geothermal heat, small hydroelectric

  16. Routing Subsea Cables for Scottish Offshore Renewable Search Areas 

    E-Print Network [OSTI]

    Iredale, Ingrid

    2014-01-01T23:59:59.000Z

    The UK has been the leading nation in offshore renewable energy generation since 2010 (Kern et. al., 2014), due to its substantial resources, technical expertise and strong economic and political support (Jay, 2011). Many of the resources remain...

  17. Local Option- Renewable Energy Machinery and Tools Property Tax Exemption

    Broader source: Energy.gov [DOE]

    HB 1297 enacted in March 2015 provides option for local governing body of any county, city, or town to impose a different property tax on renewable energy generating machinery and tools than other...

  18. National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar EnergyKambaraorRENEWABLE ENERGY AND ENERGY EFFICIENCY

  19. 2010 International Conference on Power System Technology Renewable energy integration: mechanism for

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    capacity that can integrate the wind energy blocks. Both the new grids and upgrade grid must have a stepped2010 International Conference on Power System Technology Renewable energy integration: mechanism with high uncertainty, as it usually happens with renewable energies. This work faces this problem

  20. RESEARCH PAPER SERIES, 201314 14 MAY 2014 The Renewable Energy Target: a quick guide

    E-Print Network [OSTI]

    Green, Donna

    the development of a renewable energy industry in Australia. The `target' of the scheme is to generate, and the small-scale renewable energy scheme (the SRES) for small technology installations like rooftop solar and solar hot water heaters. Liable entities have obligations to purchase renewable energy from both schemes

  1. Fluid Queue Models of Renewable Energy Storage Gareth L. Jones and Peter G. Harrison

    E-Print Network [OSTI]

    Imperial College, London

    in a small example describing the delivery of renewable power to consumers. To model networks more accuratelyFluid Queue Models of Renewable Energy Storage Gareth L. Jones and Peter G. Harrison Department of networks of fluid queues. Such models can be used to describe the generation and storage of renewable

  2. 2008 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  3. RENEWABLES 2007 GLOBAL STATUS REPORT

    E-Print Network [OSTI]

    Kammen, Daniel M.

    RENEWABLES 2007 GLOBAL STATUS REPORT www.ren21.net #12;Renewable Energy Policy Network for the 21st renewable energy. It provides a forum for leadership and exchange in international policy processes. It bolsters appropriate policies that increase the wise use of renewable energies in developing

  4. Renewable Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    Explore the following renewable energy technology areas for resources and information focusing on Federal application opportunities.

  5. Dynamic equivalencing of distribution network with embedded generation 

    E-Print Network [OSTI]

    Feng, Xiaodan Selina

    2012-06-25T23:59:59.000Z

    Renewable energy generation will play an important role in solving the climate change problem. With renewable electricity generation increasing, there will be some significant changes in electric power systems, ...

  6. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Energy Storage for Use with Renewable Energy

    E-Print Network [OSTI]

    into Energy Storage for Use with Renewable Energy Generation in the New SUB Joel Beales, Jason Serwa, Andrea An Investigation into Energy Storage for Use with Renewable Energy Generation in the New SUB Team Members and Roles" (SUB Vision). The largest challenge in implementing successful renewable energy systems is the storage

  7. Optimal Capacity Conversion for Product Transitions Under High Service Requirements

    E-Print Network [OSTI]

    Li, Hongmin

    We consider the capacity planning problem during a product transition in which demand for a new-generation product gradually replaces that for the old product. Capacity for the new product can be acquired both by purchasing ...

  8. Puerto Rico- Property Tax Exemption for Solar and Renewable Energy Equipment

    Broader source: Energy.gov [DOE]

    Puerto Rico provides a property tax exemption for all "solar powered material, equipment or accessory and renewable energy collection, storage, generation, distribution, and application equipment."...

  9. Development of renewable energy Challenges for the electrical grids

    E-Print Network [OSTI]

    Canet, Léonie

    , Geothermal energy... · The Voice of the Renewable Energy sector for Government & public authorities, TSOs energy consumption · Electricity : new RES capacities ­ 19 000 MW onshore wind ­ 6 000 MW offshore wind #12;RES Development Objectives (Electricity) Objectif 2020 : RES in global energy consumption 2010

  10. Overview of Thermoelectric Power Generation Technologies in Japan

    Broader source: Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  11. Probabilistic Approach to Quantifying the Contribution of Variable Generation and Transmission to System Reliability: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2012-09-01T23:59:59.000Z

    The increasing electrical load served by variable generation (VG), such as wind and solar energy, in the United States and many other countries has stimulated an interesting line of research to better quantify the capacity value of these resources. Methods applied traditionally to thermal units based on their average outage rates do not apply to VG because of their uncertain and non-dispatchable nature. The North American Electric Reliability Corporation's Integration of Variable Generation Task Force recently released a report that highlighted the need to develop and benchmark underlying loss-of-load expectation and related metrics that reasonably and fairly calculate the contribution to planning reserves, or capacity value, of solar and wind power. As the fraction of generation coming from VG becomes more significant, their estimated capacity value will have a larger impact on system planning. In this paper, we provide a method to include VG in traditional probabilistic-based adequacy methods. This method has been implemented in the Renewable Energy Probabilistic Resource Assessment tool developed at the National Renewable Energy Laboratory. Through an example based on the U.S. Western Interconnection, this method is applied to assess the effect that transmission can have on resource adequacy. We also analyze the interactions between available transmission and capacity value for VG.

  12. California ISO Renewable Integration Study Mark Rothleder

    E-Print Network [OSTI]

    McCalley, James D.

    the needed flexibility capacity. Generation Storage Demand Response Regulation Fast Ramping Frequency to distributed generation and plug-in electric vehicles · Reduced energy revenue to support conventional:30 15:00 16:30 18:00 19:30 21:00 22:30 0:00 Load Net Load Wind Solar A typical day in winter/spring 2020

  13. New Jersey Nuclear Profile - PSEG Salem Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  14. California Nuclear Profile - San Onofre Nuclear Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  15. New Jersey Nuclear Profile - PSEG Hope Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  16. Illinois Nuclear Profile - LaSalle Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    LaSalle Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  17. DRI Renewable Energy Center (REC) (NV)

    SciTech Connect (OSTI)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31T23:59:59.000Z

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.

  18. Renewable Portfolio Standards in the United States - A Status Report with Data Through 2007

    SciTech Connect (OSTI)

    Wiser, Ryan; Wiser, Ryan; Barbose, Galen; Bird, Lori; Churchill, Susannah; Deyette, Jeff; Holt, Ed

    2008-04-09T23:59:59.000Z

    Renewables portfolio standards (RPS) have proliferated at the state level in the United States since the late 1990s. In combination with Federal tax incentives, state RPS requirements have emerged as one of the most important drivers of renewable energy capacity additions. The focus of most RPS activity in the U.S. has been within the states. Nonetheless, the U.S. House of Representatives and Senate have, at different times, each passed versions of a Federal RPS; a Federal RPS, however, has not yet been signed into law. The design of an RPS can and does vary, but at its heart an RPS simply requires retail electricity suppliers (also called load-serving entities, or LSEs) to procure a certain minimum quantity of eligible renewable energy. An RPS establishes numeric targets for renewable energy supply, applies those targets to retail electricity suppliers, and seeks to encourage competition among renewable developers to meet the targets in a least-cost fashion. RPS purchase obligations generally increase over time, and retail suppliers typically must demonstrate compliance on an annual basis. Mandatory RPS policies are backed by various types of compliance enforcement mechanisms, and many--but not all--such policies include the trading of renewable energy certificates (RECs). Renewables portfolio standards are a relatively recent addition to the renewable energy policy landscape, and these policies continue to evolve. Keeping up with the design, early experience, and projected impacts of these programs is a challenge. This report seeks to fill this need by providing basic, factual information on RPS policies in the United States. It focuses on state-level initiatives, though a later section briefly discusses Federal developments as well. The report does not cover municipal-level renewable energy goals, unless required by state law. Similarly, this report focuses on mandatory state RPS requirements, though it also touches on non-binding renewable energy goals, especially when those goals are developed by state law or regulation. This report is the first of what is envisioned to be an ongoing series; as such, it concentrates on key recent developments, while also providing basic information on historical RPS experience and design. The report begins with an overview of state RPS policies: where they have been developed, when, and with what design features. Though most RPS programs are still in their infancy, the report summarizes the early impacts of these policies on renewable energy development, and provides a forecast of possible future impacts. It then turns to the implications of the growing trend towards solar and/or distributed generation set-asides within state RPS programs. Next, the report highlights state RPS compliance levels, enforcement actions, and cost impacts, as well as key developments in REC markets. Finally, the report provides a brief overview of Federal RPS proposals.

  19. Factors relevant to utility integration of intermittent renewable technologies

    SciTech Connect (OSTI)

    Wan, Yih-huei; Parsons, B.K.

    1993-08-01T23:59:59.000Z

    This study assesses factors that utilities must address when they integrate intermittent renewable technologies into their power-supply systems; it also reviews the literature in this area and has a bibliography containing more than 350 listings. Three topics are covered: (1) interface (hardware and design-related interconnection), (2) operability/stability, and (3) planning. This study finds that several commonly held perceptions regarding integration of intermittent renewable energy technologies are not valid. Among findings of the study are the following: (1) hardware and system design advances have eliminated most concerns about interface; (2) cost penalties have not occurred at low to moderate penetration levels (and high levels are feasible); and (3) intermittent renewable energy technologies can have capacity values. Obstacles still interfering with intermittent renewable technologies are also identified.

  20. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    single cycle, oil or diesel generation, which would lead toTurbine/Diesel, and the other generation type include PumpedDiesel Nuclear Power Pumped Storage Fuel Cells Renewable Sources Distributed Generation

  1. Platts 2nd Annual Renewable Chemicals Conference

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity on the U.S. Natural GasSugars, Renewable

  2. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    diverse set of flexible traditional generation resourcessufficient flexible demand or generation capacity exists tosufficient flexible demand or generation capacity exists to

  3. Renewable Northwest Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewable EnergyForecast

  4. Phasing Renewable Energy Implementation | Department of Energy

    Office of Environmental Management (EM)

    Phasing Renewable Energy Implementation Phasing Renewable Energy Implementation If conventional or other renewable energy funding cannot be procured, or if an agency is working...

  5. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    the impacts of renewable resource integration, as we demon-Integration of renewable resources: Transmission andfor integrating renewable resources on the California ISO-

  6. Harvesting a renewable resource under uncertainty

    E-Print Network [OSTI]

    Saphores, Jean-Daniel M

    2003-01-01T23:59:59.000Z

    Consider a valuable renewable resource whose biomass X2003. “Harvesting a renewable resource under uncertainty,”Harvesting a Renewable Resource under Uncertainty 1 (with

  7. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

  8. Community Renewable Energy Deployment Webinars | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment Webinars Watch these previously recorded webinars to learn about successful community renewable...

  9. Renewable energy projects approved | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable energy projects approved Renewable energy projects approved July 30, 2008 - 3:13pm Addthis CARSON CITY, Nev.-Two renewable energy projects representing a 100...

  10. National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    David Kline of the National Renewable Energy Laboratory foralong with hydropower, renewable and nuclear capacityCapacity Accelerated Renewable Generation Power Sector CO2

  11. INVESTING IN NEW BASE LOAD GENERATING CAPACITY

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has Hydrocarbon, a 1

  12. Property:GeneratingCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number Jump to:GenDelToGrid Jump

  13. Guide to purchasing green power. Renewable electricity, renewable energy certificates and on-site renewable generation

    SciTech Connect (OSTI)

    None,

    2004-09-30T23:59:59.000Z

    The Guide to Purchasing Green Power is intended for organizations that are considering the merits of buying green power as well as those that have decided to buy it and want help doing so. The Guide was written for a broad audience, including businesses, government agencies, universities, and all organizations wanting to diversify their energy supply and to reduce the environmental impact of their electricity use.The Guide provides an overview of green power markets and describes the necessary steps to buying green power. This section summarizes the Guide to help readers find the information they need.

  14. Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration0-1 March 2013 Purchasing Green Power

  15. Alaska Renewable Energy Fund Grants for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    The Alaska Energy Authority is offering grants for renewable energy projects funded by the Alaska State Legislature.

  16. Open versus closed loop capacity equilibria in electricity markets ...

    E-Print Network [OSTI]

    S. Wogrin

    2012-05-07T23:59:59.000Z

    May 7, 2012 ... Abstract: We consider two game-theoretic models of the generation capacity expansion problem in liberalized electricity markets. The first is an ...

  17. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    In the United States: > 200 fuel cell vehicles > 20 fuel cell buses ~ 60 fueling stations Production & Delivery biomass & solar). · Potential U.S. employment from fuel cell and hydrogen industries of up to 925,000 jobsEnergy Efficiency & Renewable Energy DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program

  18. Renewing University Base Funding

    E-Print Network [OSTI]

    Renewing University Base Funding The Priority Issues 29 February 2012 e conor funding to universities as an immediate goal. It has already put in place increases worth 3.5%. 2 undergraduate or postgraduate, be funded at the same rate. #12;3 Charles Darwin University Flinders University

  19. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030 PotentialEnergy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA #12;2 1. Overview

  20. c " .RENEWABLE <:...:r ENERGY

    E-Print Network [OSTI]

    . Therkelsen, Executive Director Marwan Masri, Deputy Director Technology Systems Division James H. Hoffsis, Manager Technology Market Development Office Timothy N. Tutt, Technical Director Renewable Energy Program-Specific Eligibility Requirements 8 - Biodiesel 8 - Biomass 8 - Geothermal 9 - Incremental Geothermal 10 - Municipal

  1. Renewable Systems Interconnection: Executive Summary

    SciTech Connect (OSTI)

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01T23:59:59.000Z

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  2. Renewable Energy Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The purposes of the Renewable Energy Act are to prescribe the amounts of renewable energy resources that public utilities shall include in their electric energy supply portfolios for sales to...

  3. Guam- Renewable Energy Portfolio Goal

    Broader source: Energy.gov [DOE]

    Guam Bill 166, enacted in March 2008, established a renewable energy portfolio goal of 25% renewable energy by 2035.* Under this law, each utility that sells electricity for consumption on Guam...

  4. RENEWABLES 2005 GLOBAL STATUS REPORT

    E-Print Network [OSTI]

    Kammen, Daniel M.

    to renewable energy. The establishment of a global policy network was embraced in the Political Declaration Research Institute Chinese Renewable Energy Industries Association China Susan McDade Energy Environment Institute Lead Author: Eric Martinotwww.ren21.net #12;Renewable Energy Policy Network for the 21st Century

  5. Photon Science for renewable energy

    E-Print Network [OSTI]

    Knowles, David William

    Photon Science for renewable energy at Light-Source Facilities of Today andTomorrow Lawrence revolution in renewable and carbon- neutral energy technologies. in these pages, we outline and illustrate is causing potentially catastrophic changes to our planet.The quest for renewable, nonpolluting sources

  6. Integration of Renewable Resources November 2007

    E-Print Network [OSTI]

    Integration of Renewable Resources November 2007 Transmission and operating issues and recommendations for integrating renewable resources on the California ISO-controlled Grid California Independent System Operator #12;CAISO Integration of Renewable Resources Members of the Renewables Workgroup

  7. Renewable Surface Fluorescence Sandwich Immunoassay Biosensor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Surface Fluorescence Sandwich Immunoassay Biosensor for Rapid Sensitive Botulinum Toxin Detection in an Automated Renewable Surface Fluorescence Sandwich Immunoassay...

  8. Energy Efficiency and Renewable Energy Postdoctoral Research...

    Office of Environmental Management (EM)

    Postdoctoral Research Awards Energy Efficiency and Renewable Energy Postdoctoral Research Awards Contacts Energy Efficiency and Renewable Energy Postdoctoral Research Awards...

  9. National Renewable Energy Laboratory's Energy Systems Integration...

    Energy Savers [EERE]

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

  10. Renewable Energy & Energy Efficiency Projects: Loan Guarantee...

    Energy Savers [EERE]

    Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Plenary III: Project Finance...

  11. Islands and Our Renewable Energy Future (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

    2012-05-01T23:59:59.000Z

    Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

  12. Growing Significance of Renewable Energy (Presentation)

    SciTech Connect (OSTI)

    Arvizu, D. E.

    2007-02-05T23:59:59.000Z

    Presentation on renewable energy innovations and policies by Dr. Dan Arvizu of the National Renewable Energy Laboratory.

  13. Ninth Annual Ocean Renewable Energy Conference

    Broader source: Energy.gov [DOE]

    The future of clean, renewable ocean wave energy will be discussed in depth at the 2014 Ocean Renewable Energy Conference.

  14. Renewable Energy Opportunities for the Army

    SciTech Connect (OSTI)

    Solana, Amy E.; States, Jennifer C.; Chvala, William D.; Weimar, Mark R.; Dixon, Douglas R.

    2008-08-13T23:59:59.000Z

    The Department of Defense (DoD) has a goal of obtaining 25% of its domestic electricity from renewable sources by 2025, and also must meet federal renewable energy mandates and schedules. This report describes the analyses undertaken to study the renewable resource potential at 15 Army sites, focusing on grid-connected generation of electricity. The resources analyzed at each site include solar, wind, geothermal, biomass, waste-to-energy, and ground source heat pumps (GSHPs). For each renewable generation resource, an assessment was completed to determine the level of resource availability, and the price at which that resource would be available for electricity generation. Various design alternatives and available technologies were considered in order to determine the best way to utilize each resource and maximize cost-effective electricity generation. Economic analysis used multiple funding options, including investment by an independent power producer (IPP), Energy Savings Performance Contract (ESPC), and Energy Conservation Investment Program (ECIP), and considered tax incentives, renewable energy credits, and other economic factors to reveal the most realistic costs possible. Where resource options proved to be economically viable, implementation approaches were recommended. The intention was to focus each installation’s efforts on realistic projects, moving them from initial assessment through the design and financing to implementation. Many Army sites enjoy very low costs of electricity, limiting the number of cost-effective renewable energy options where resources are available. Waste-to-energy was often a viable option due to the additional revenue gathered from transferred tipping fees. GSHPs were also commonly cost-effective options for replacement in inefficient buildings. Geothermal, wind, and solar resources are found to be more available in certain parts of the country over others, reducing overall potential for use. Wind is variable and often most available in remote areas far from transmission lines, greatly increasing costs. Capital costs for solar energy are high, and the resource is also variable. Table 1 shows which resources are promising for each installation studied. Not all analyses are complete at this point, so some resource potential is still unknown.

  15. TOWARDS REACHING CONSENSUS IN THE DETERMINATION OF PHOTOVOLTAICS CAPACITY CREDIT

    E-Print Network [OSTI]

    Perez, Richard R.

    , 251 Fuller Rd Albany, NY, 12203 Perez@asrc.cestm.albany,edu Mike Taylor Solar Electric Power effort to reach consensus on the notion of capacity credit for solar power electrical generation capacity or capacity credit of a power plant quantifies the output of a power plant that effectively

  16. Renewable Energy Opportunities at Fort Campbell, Tennessee/Kentucky

    SciTech Connect (OSTI)

    Hand, James R.; Horner, Jacob A.; Kora, Angela R.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

    2011-03-31T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Campbell, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Campbell took place on June 10, 2010.

  17. Renewable Energy Opportunities at Fort Drum, New York

    SciTech Connect (OSTI)

    Brown, Scott A.; Orrell, Alice C.; Solana, Amy E.; Williamson, Jennifer L.; Hand, James R.; Russo, Bryan J.; Weimar, Mark R.; Rowley, Steven; Nesse, Ronald J.

    2010-10-20T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Drum, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Drum took place on May 4 and 5, 2010.

  18. Renewable Energy Opportunities at White Sands Missile Range, New Mexico

    SciTech Connect (OSTI)

    Chvala, William D.; Solana, Amy E.; States, Jennifer C.; Warwick, William M.; Weimar, Mark R.; Dixon, Douglas R.

    2008-09-01T23:59:59.000Z

    The document provides an overview of renewable resource potential at White Sands Missile Range (WSMR) based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewable Energy Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps (GSHPs) for heating and cooling buildings, as directed by IMCOM.

  19. Colorado's Prospects for Interstate Commerce in Renewable Power

    SciTech Connect (OSTI)

    Hurlbut, D. J.

    2009-12-01T23:59:59.000Z

    Colorado has more renewable energy potential than it is ever likely to need for its own in-state electricity consumption. Such abundance may suggest an opportunity for the state to sell renewable power elsewhere, but Colorado faces considerable competition from other western states that may have better resources and easier access to key markets on the West Coast. This report examines factors that will be important to the development of interstate commerce for electricity generated from renewable resources. It examines market fundamentals in a regional context, and then looks at the implications for Colorado.

  20. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    integration of energy efficiency, distributed generation, renewable energy resources and energy storage technologies, both locally and globally, to maximize the value of the...

  1. Sandia National Laboratories: next generation energy technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next generation energy technology SWiFT Commissioned to Study Wind Farm Optimization On July 29, 2013, in Energy, Facilities, News, News & Events, Partnership, Renewable Energy,...

  2. A Stochastic Power Network Calculus for Integrating Renewable Energy Sources into the

    E-Print Network [OSTI]

    Ciucu, Florin

    . Low, Fellow, IEEE Abstract--Renewable energy such as solar and wind generation will constitute sources to reduce the carbon footprint. A challenge, however, of solar and wind generation

  3. The Clean Air Act and Renewable Energy: Opportunities, Barriers, and Options

    SciTech Connect (OSTI)

    Wooley, D.R. (Young, Sommer, Ward, Ritzenberg, Wooley, Baker and Moore, LLC); Morss, E.M. (Young, Sommer, Ward, Ritzenberg, Wooley, Baker and Moore, LLC); Fang, J.M. (National Renewable Energy Laboratory)

    2001-03-01T23:59:59.000Z

    This paper examines the opportunities, obstacles, and potential options to promote renewable energy under the CAA and related programs. It deals, in sequence, with the regulation of SO2, NOx, regional haze/particulate matter, and CO2. For each pollutant, the paper discusses the opportunities, barriers, and options for boosting renewables under the CAA. It concludes by comparing the options discussed. The paper is based on a project on environmental regulation and renewable energy in electricity generation conducted by the National Renewable Energy Laboratory for the Office of Power Technologies, Office of Energy Efficiency and Renewable Energy, US Department of Energy.

  4. Community Renewables: Model Program Rules

    Broader source: Energy.gov [DOE]

    The Interstate Renewable Energy Council (IREC) has worked closely with The Vote Solar Initiative to develop model program rules for community-scale renewables that consider many of the basic issues facing community renewables programs. IREC’s model program rules address such issues as renewable system size, interconnection, eligibility for participation, allocation of the benefits flowing from participation, net metering of system production, and other essential features of a community renewables program. The goal of this effort is to provide stakeholders with program rules they can tailor to the individual circumstances and policy preferences of their state without having to reinvent the wheel at each turn.

  5. Managing Variable Energy Resources to Increase Renewable Electricity's

    E-Print Network [OSTI]

    Managing Variable Energy Resources to Increase Renewable Electricity's Contribution to the Grid P o Contribution of Renewable Energy to Total Electricity Generation? 15 ManaGInG VaRIablE EnERGy REsouRCEs 16 What l i c y m a k e r G u i d e #12;Variable energy resources, such as wind power, now produce about 3

  6. National Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar EnergyKambaraor

  7. Renewable Energy Innovations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy

  8. Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint

    SciTech Connect (OSTI)

    Cohen, S. M.; Macknick, J.; Averyt, K.; Meldrum, J.

    2014-05-01T23:59:59.000Z

    Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

  9. Capacity Markets for Electricity

    E-Print Network [OSTI]

    Creti, Anna; Fabra, Natalia

    2004-01-01T23:59:59.000Z

    Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity Market”, Power WorkingFelder (1996), “Should Electricity Markets Have a Capacity

  10. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

  11. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

    2010-11-01T23:59:59.000Z

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  12. Load controller and method to enhance effective capacity of a photovoltaic power supply using a dynamically determined expected peak loading

    DOE Patents [OSTI]

    Perez, Richard

    2005-05-03T23:59:59.000Z

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply.

  13. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01T23:59:59.000Z

    tower plant in China. ” Renewable and Sustainable Energyby plant in Guangxi. ” Renewable and Sustainable EnergyChina’s Thirst for Renewable Power: Water Implications of

  14. Western Region Renewable Energy Markets: Implications for the Bureau of Land Management

    SciTech Connect (OSTI)

    Haase, S.; Billman, L.; Gelman, R.

    2012-01-01T23:59:59.000Z

    The purpose of this analysis is to provide the U.S. Department of the Interior (DOI) and the Bureau of Land Management (BLM) with an overview of renewable energy (RE) generation markets, transmission planning efforts, and the ongoing role of the BLM RE projects in the electricity markets of the 11 states (Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming) that comprise the Western Electricity Coordinating Council (WECC) Region. This analysis focuses on the status of, and projections for, likely development of non-hydroelectric renewable electricity from solar (including photovoltaic [PV] and concentrating solar power [CSP]), wind, biomass and geothermal resources in these states. Absent new policy drivers and without the extension of the DOE loan guarantee program and Treasury's 1603 program, state RPS requirements are likely to remain a primary driver for new RE deployment in the western United States. Assuming no additional policy incentives are implemented, projected RE demand for the WECC states by 2020 is 134,000 GWh. Installed capacity to meet that demand will need to be within the range of 28,000-46,000 MW.

  15. Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Culp, C.

    AND RENEWABLES May 2008 Energy Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period... variations in measured power vs base year power production in the OSP. Energy Systems Laboratory p. 4 Next, looked at hourly electricity produced vs NOAA wind data. Issue: too much scatter. Hourly Turbine Power vs. Wind Speed (On-site) 0 10 20 30...

  16. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  17. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru, E-mail: babac@itu.edu.tr [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey)] [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey); Reese, Jason M. [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)] [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

    2014-05-15T23:59:59.000Z

    We present a “Knudsen heat capacity” as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  18. Renewable Energy Opportunity Assessment

    SciTech Connect (OSTI)

    Hancock, E.; Mas, C.

    1998-11-13T23:59:59.000Z

    Presently, the US EPA is constructing a new complex at Research Triangle Park, North Carolina to consolidate its research operations in the Raleigh-Durham area. The National Computer Center (NCC) is currently in the design process and is planned for construction as partof this complex. Implementation of the new technologies can be planned as part of the normal construction process, and full credit for elimination of the conventional technologies can be taken. Several renewable technologies are specified in the current plans for the buildings. The objective of this study is to identify measures that are likely to be both technically and economically feasible.

  19. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home Stationary Power EnergyRenewable Energy

  20. Renewable RFI (Generic)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesysRenewable Hawaii Inc Jump

  1. Renewable Energy Laboratory

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap JumpReliance IndustriesRenewable Energysuccess of

  2. Hawaii Renewable Hydrogen Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson YearHarvesting theRenewable

  3. Renewables and Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues Cells Webinar, July 13,Energy Renewables

  4. Renewable Energy Markets and Policies

    E-Print Network [OSTI]

    Renewable Energy Markets and Policies Romeo Pacudan, PhD Risoe National Laboratory, Denmark HAPUA Working Group No. 4 Meeting Renewable Energy and Environment in ASEAN Melia Hotel, Hanoi, Vietnam 23-24 June 2005 #12;1. Renewables in Energy Supply Share in Primary Energy Supply 5,9 5,7 4,8 5,8 0 1 2 3 4 5

  5. Renewable Energy Community: Key Elements

    SciTech Connect (OSTI)

    Carlisle, N.; Elling, J.; Penney, T.

    2008-01-01T23:59:59.000Z

    Designing new communities using a renewable energy systems approach--with sustainable planning, zero-energy homes, advanced vehicles, and innovative utility interconnections--can reduce energy use.

  6. Renewable Energy Approvals (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Renewable Energy Approvals (REA) regulation creates an approval and review process for all biomass, wind energy, and solar facilities. The Ministry of the Environment inspects, investigates...

  7. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National Laboratories and toured the National...

  8. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Beam Profiling On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar On Thursday, June 7, we began beam profiling the NSTTF field heliostat...

  9. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Facilities, National Solar Thermal Test Facility, News, Partnership, Renewable Energy, Solar, Videos This test is part of a series in support of NASA's In-Space...

  10. Renewable Energy Resources Trust Fund

    Broader source: Energy.gov [DOE]

    Illinois's 1997 electric-industry restructuring legislation created separate public benefits funds that support renewable energy and residential [http://www.dsireusa.org/library/includes/incentive2...

  11. Renewable Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Accelerating the transition to alternative energy sources requires significant improvement in materials, chemicals, processes, and devices. To produce more...

  12. Community Renewable Energy Deployment Webinars

    Office of Energy Efficiency and Renewable Energy (EERE)

    Watch these previously recorded webinars to learn about successful community renewable energy projects, including how challenges and barriers faced during development were addressed. Accompanying...

  13. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program On November 27, 2013, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis, Systems Engineering On October 22, the...

  14. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On December 3, 2014, in Computational Modeling & Simulation, Energy, News, News & Events, Renewable Energy, Wind Energy Sandia and partners from the University of Maine, Technical...

  15. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot Sandia's Kenneth Armijo (in the...

  16. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Livermore Valley Open Campus (LVOC), News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Solar Newsletter In a public-private partnership that takes full...

  17. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News &...

  18. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glitter On March 21, 2013, in Capabilities, Energy, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, SunShot Sandia scientists have developed...

  19. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sales On February 25, 2015, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis A Lawrence Berkeley National Laboratory (LBNL)...

  20. Staff Draft GUIDEBOOK RENEWABLES PORTFOLIO

    E-Print Network [OSTI]

    and verifying compliance with the RPS. Keywords: Biodiesel, biogas, biomass, biomethane, certificates, pipeline biomethane, power purchase agreement, Qualified Reporting Entity, RECs, renewable energy