National Library of Energy BETA

Sample records for renewable fuels geothermal

  1. List of Fuel Cells using Renewable Fuels Incentives | Open Energy...

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Conservation...

  2. Renewable Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Fuels 5 th Annual Green Technologies Conference IEEE IEEE Ch IEEE IEEE H l Helena L L. Chum April 5 April 5 th 2013 , 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Outline * Renewable Fuels Renewable Fuels * Biomass and Bioenergy Today C di i i i i /d l i * Commoditization existing/developing * Sustainability y Considerations to Imp prove Agriculture and

  3. List of Renewable Fuels Incentives | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Personal...

  4. Renewable Energy Technologies - Geothermal Energy

    Energy Savers [EERE]

    Technologies Geothermal Energy Geothermal Energy Bruce Green, 303-275-3621, bruce_green@nrel.gov Geothermal Energy is Heat Geothermal Energy is Heat from the Earth. from the Earth. How Geothermal Energy is Used: *Electricity Generation *Direct Thermal Use *Geothermal Heat Pumps, also called Geoexchange Units or Ground-Coupled Heat Pumps. Courtesy of Geothermal Education Association Tectonic Plate Boundaries Tectonic Plate Boundaries Hottest Known Geothermal Hottest Known Geothermal Regions

  5. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  6. Fuel Cells & Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells & Renewable Portfolio Standards Webinar - Jun 9 th , 2011 Ohio Fuel Cell Coalition Ohio Fuel Cell Coalition * Mission - The Ohio Fuel Cell Coalition is a united group ...

  7. Renewable & Alternative Fuels - U.S. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    (EIA) Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative transportation fuels All renewable & alternative fuels data reports Analysis & Projections Major Topics Most popular Alternative Fuels Capacity and generation Consumption Environment Industry Characteristics Prices Production Projections Recurring Renewable energy type All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues &

  8. NREL: Renewable Resource Data Center - Geothermal Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Data The following geothermal resource data collections can be found in the Renewable Resource Data Center (RReDC). Geothermal Resource Data The datasets on this page offer a qualitative assessment of geothermal potential for the U.S. using Enhanced Geothermal Systems (EGS) and based on the levelized cost of electricity, and the Texas Geopressured Geothermal Resource Estimate. Geothermal data sites Data related to geothermal technology and energy

  9. NREL: Renewable Resource Data Center - Geothermal Resource Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links Comprehensive geothermal resource information is also available from the following sources: U.S. Department of Energy Geothermal Technologies Office. National Geothermal Data System A portal to geothermal data. Southern Methodist University Geothermal Laboratory The Laboratory supplies vital information on the renewable energy source tapped from the Earth's internal heat. Printable Version RReDC Home Biomass Resource Information Geothermal Resource Information Geothermal Data

  10. American Renewable Fuels | Open Energy Information

    Open Energy Info (EERE)

    Fuels Jump to: navigation, search Name: American Renewable Fuels Place: Dallas, Texas Zip: TX 75201 Sector: Renewable Energy Product: Developer of commercial scale renewable fuels...

  11. NREL: Renewable Resource Data Center - Geothermal Resource Models and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models and Tools The Renewable Resource Data Center (RReDC) features the following geothermal models and tools. Geothermal Prospector The Geothermal Prospector tool provides the information needed to allow users to determine locations that are favorable to geothermal energy development. List of software and models from other National Laboratories and Centers

  12. EPA's Renewable Fuels Standard Web page

    SciTech Connect (OSTI)

    2011-12-30

    The Renewable Fuel Standard (RFS) program regulations were developed in collaboration with refiners, renewable fuel producers, and many other stakeholders.

  13. Renewable Fuels and Vehicles Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuels & Vehicles Overview Dale Gardner Associate Director, Renewable Fuels S&T 12 August 2008 State Energy Advisory Board to 2 National Renewable Energy Laboratory Innovation for Our Energy DOE Programs Supported 3 National Renewable Energy Laboratory Innovation for Our Energy Advanced Energy Initiative * Develop advanced battery technologies that allow plug-in hybrid electric vehicles to have a 40 mile range operating solely on battery charge. * Accelerate progress towards the

  14. Renewable Fuel Standards Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuel Standards Resources Renewable Fuel Standards Resources Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of ...

  15. Renewable Energy Systems Exemption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Wind (All) Hydroelectric Geothermal Heat Pumps Fuel Cells using Non-Renewable Fuels Landfill Gas Solar Pool Heating Wind (Small) Geothermal Direct-Use Fuel Cells...

  16. Geothermal, the 'undervalued' renewable resource, sees surging interest |

    Energy Savers [EERE]

    Department of Energy Geothermal, the 'undervalued' renewable resource, sees surging interest Geothermal, the 'undervalued' renewable resource, sees surging interest May 21, 2009 - 10:38am Addthis Nearly 200 million acres of public lands, mostly in the West, could become prime generators of emissions-free electricity by extracting steam heat from the earth's core to drive electric turbines. Yet despite a $400 million stimulus bill allocation to spur geothermal energy production in the United

  17. NREL: Renewable Resource Data Center - Geothermal Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Geothermal Resource Information Geothermal Prospector Start exploring U.S. geothermal resources with an easy-to-use map by selecting data layers that are NGDS compatible. Photo of the Hot Springs Lodge and Pool. The Hot Springs Lodge and Pool in Glenwood Springs, Colorado, uses a geothermal heat exchanger system with its hot surface spring to provide space heating, domestic hot water, and snow melting. The Renewable Resource Data Center (RReDC) offers a collection of data and

  18. Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Hydrocarbon Biofuels to someone by E-mail Share Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Facebook Tweet about Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Twitter Bookmark Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Google Bookmark Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Delicious Rank Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Digg Find More places to share Alternative Fuels

  19. Calgren Renewable Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Renewable Fuels LLC Place: Newport Beach, California Zip: 92660 Product: Developer of bio-ethanol plants in US, particularly California. References: Calgren Renewable Fuels...

  20. Baylor University - Renewable Aviation Fuels Development Center...

    Open Energy Info (EERE)

    University - Renewable Aviation Fuels Development Center Jump to: navigation, search Name: Baylor University - Renewable Aviation Fuels Development Center Address: One Bear Place...

  1. Tribal Renewable Energy Foundational Course: Geothermal | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Tribal Renewable Energy Curriculum Foundational Course: Biomass Tribal Renewable Energy Curriculum Foundational Course: Wind Tribal Renewable Energy ...

  2. Property:RenewableFuelStandard/RenewableBiofuel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardRenewableBiofuel Jump to: navigation, search This is a property of type Number. Pages...

  3. Renewable Fuels Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

  4. Fuel Cells and Renewable Gaseous Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells and Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Breakout Session 3-C: Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Sarah Studer, ORISE Fellow-Fuel Cell Technologies Office, U.S. Department of Energy PDF icon studer_bioenergy_2015.pdf More Documents & Publications Workshop on Gas Clean-Up for Fuel Cell Applications U.S Department of Energy Fuel Cell Technologies Office Overview: 2015 Smithsonian Science Education Academies for Teachers Novel

  5. Renewable Fuels Assocation | Open Energy Information

    Open Energy Info (EERE)

    DC Zip: 20001 Sector: Renewable Energy Product: US national trade association for the ethanol industry, the Renewable Fuels Association (RFA) has been working as the "Voice of the...

  6. Renewable Fuels Consulting | Open Energy Information

    Open Energy Info (EERE)

    Consulting Jump to: navigation, search Name: Renewable Fuels Consulting Place: Mason City, Iowa Sector: Renewable Energy Product: RFC specializes in providing technical solutions...

  7. Geothermal, the 'undervalued' renewable resource, sees surging...

    Energy Savers [EERE]

    electricity by extracting steam heat from the earth's core ... to spur geothermal energy production in the United ... production into the mainstream of U.S. energy supply. ...

  8. Renewable Transportation Fuels | Open Energy Information

    Open Energy Info (EERE)

    Transportation Fuels Jump to: navigation, search TODO: Add description List of Renewable Transportation Fuels Incentives Retrieved from "http:en.openei.orgw...

  9. Renewable Fuels Limited RFL | Open Energy Information

    Open Energy Info (EERE)

    Limited RFL Jump to: navigation, search Name: Renewable Fuels Limited (RFL) Place: York, United Kingdom Zip: YO19 6ET Sector: Biomass Product: Supplies various biomass fuels and...

  10. Department of Energy--Office of Energy Efficiency and Renewable Energy Geothermal Program: Geothermal Risk Mitigation Strategies Report

    SciTech Connect (OSTI)

    None, None

    2008-02-15

    An overview of general financial issues for renewable energy investments; geothermal energy investment barriers and risks; and recommendations for incentives and instruments to be considered to stimulate investment in geothermal energy development.

  11. Missouri Renewable Fuel Standard Brochure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The Missouri Renewable Fuel Standard requires ethanol in most gasoline beginning January 1, 2008. ARE YOU READY? TEN THINGS MISSOURI TANK OWNERS AND OPERATORS NEED TO KNOW ABOUT ETHANOL 1. Ethanol is a type of alcohol made usually from corn in Missouri and other states. 2. E10 is a blend of 10% ethanol and 90% unleaded gasoline. E85 is a blend of 75% to 85% fuel ethanol and 25% to 15% unleaded gasoline. Blends between E10 and E85 are not allowed to be sold at retail. 3. Any vehicle or small

  12. Renewable Fuels and Lubricants (ReFUEL) Laboratory

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    Fact sheet describing NREL's Renewable Fuels and Lubricants Laboratory (ReFUEL). ReFUEL is a world-class research and testing facility dedicated to future fuels and advanced heavy-duty vehicle research, located in Denver, Colorado.

  13. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program (VTP) (Fact Sheet) | Department of Energy Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are

  14. Renewable Fuel Standards Program Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Standards Program Update Renewable Fuel Standards Program Update Paul Argyropoulos, ... May 6, 2010 EISA 2007: Focus on Renewable Fuels Standard Program Market Drivers ...

  15. Renewable Fuel Standard Schedule | Open Energy Information

    Open Energy Info (EERE)

    National Geographic Scope United States Temporal Resolution Annual The United States Environmental Protection Agency, under the National Renewable Fuel Standard program and as...

  16. Renewable Electricity State Profiles - Energy Information Administrati...

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable & Alternative Fuels Glossary FAQS Overview Data Summary Biomass Geothermal Hydropower Solar ... Recurring Renewable energy type All reports Browse by Tag ...

  17. Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems

    Broader source: Energy.gov [DOE]

    Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  18. Assumption to the Annual Energy Outlook 2014 - Renewable Fuels...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind 1. Some renewables, such as landfill gas...

  19. Renewable Fuels and Lubricants Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  20. Safe Renewable Corporation formerly Safe Fuels | Open Energy...

    Open Energy Info (EERE)

    Renewable Corporation (formerly Safe Fuels) Place: Texas Zip: 77380 Product: Texas-based biodiesel producer. References: Safe Renewable Corporation (formerly Safe Fuels)1 This...

  1. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation ...

  2. Renewable Motor Fuel Production Capacity Under H.R.4

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes renewable motor fuel production capacity with the assumption that ethanol will be used to meet the renewable fuels standard.

  3. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

  4. State Clean Energy Practices: Renewable Fuel Standards

    SciTech Connect (OSTI)

    Mosey, G.; Kreycik, C.

    2008-07-01

    The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, renewable fuel standards (RFS) policies are a mechanism for developing a market for renewable fuels in the transportation sector. This flexible market-based policy, when properly executed, can correct for market failures and promote growth of the renewable fuels industry better than a more command-oriented approach. The policy attempts to correct market failures such as embedded fossil fuel infrastructure and culture, risk associated with developing renewable fuels, consumer information gaps, and lack of quantification of the non-economic costs and benefits of both renewable and fossil-based fuels. This report focuses on renewable fuel standards policies, which are being analyzed as part of this project.

  5. List of Renewable Fuel Vehicles Incentives | Open Energy Information

    Open Energy Info (EERE)

    Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Fuels Loan Program (Kansas) State Loan Program Kansas...

  6. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Not Available

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  7. Victory Renewable Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Victory Renewable Fuels LLC Place: Iowa Zip: 51242 Product: Plans to develop a 113.7m litre biodiesel and multiple feedstock facility in Iowa....

  8. Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable

  9. Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  10. Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository ...

  11. NREL: Renewable Resource Data Center - Geothermal Resource Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications For a list of Geothermal publications, go to Geothermal Technologies Publication page. For a list of legacy Geothermal publications, check out Geothermal Technologies Legacy Collection. NREL Publications Database For a comprehensive list of other NREL geothermal resource publications, explore NREL's Publications Database. When searching the database, search on "geothermal resources". Printable Version RReDC Home Biomass Resource Information Geothermal Resource Information

  12. Engineered fuel: Renewable fuel of the future?

    SciTech Connect (OSTI)

    Tomczyk, L.

    1997-01-01

    The power generation and municipal solid waste management industries share an interest in the use of process engineered fuel (PEF) comprised mainly of paper and plastics as a supplement to conventional fuels. PEF is often burned in existing boilers, making PEF an alternative to traditional refuse derived fuels (RDF). This paper describes PEF facilities and makes a comparison of PEF and RDF fuels.

  13. Alternative Fuels Data Center: Renewable Natural Gas (Biomethane)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production Renewable Natural Gas (Biomethane) Production to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas (Biomethane) Production on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas (Biomethane) Production on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas (Biomethane) Production on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas (Biomethane) Production on Delicious Rank Alternative Fuels Data

  14. National Renewable Energy Laboratory (NREL): Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory (NREL) Hydrogen and Fuel Cell Capabilities Overview 2014 Fuel Cell Seminar and Energy Exposition National Lab Showcase Keith Wipke, NREL Fuel ...

  15. Renewable Fuels and Lubricants Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Fuels and Lubricants Laboratory State-of-the-Art Fuel and Vehicle Testing The Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve efficiency of conventional gasoline-powered vehicles and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such

  16. Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN MAJOR U.S. SEDIMENTARY BASINS Colleen Porro and Chad Augustine April 24, 2012 National Renewable Energy Lab, Golden, CO NREL/PR-6A20-55017 NATIONAL RENEWABLE ENERGY LABORATORY Sedimentary Basin Geothermal WHAT IS SEDIMENTARY BASIN GEOTHERMAL? 2 Geothermal Energy from Sedimentary Rock - Using hot" geothermal fluids (>100 o C) produced from sedimentary basins to generate electricity - Advantages: * Reservoirs are porous, permeable, and well

  17. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    SciTech Connect (OSTI)

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power from the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.

  18. Integrating CO₂ storage with geothermal resources for dispatchable renewable electricity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Chen, Mingjie; Sun, Yunwei; Hao, Yue; Edmunds, Thomas A.; Saar, Martin O.; Randolph, Jimmy B.

    2014-12-31

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic CO₂ storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as energy from electrical grids. Captured CO₂ is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide an additional working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells are used to create a hydraulic divide to store pressure, CO₂, and thermal energy. Such storage can take excess power frommore » the grid and excess/waste thermal energy, and dispatch that energy when it is demanded, enabling increased penetration of variable renewables. Stored CO₂ functions as a cushion gas to provide enormous pressure-storage capacity and displaces large quantities of brine, which can be desalinated and/or treated for a variety of beneficial uses.« less

  19. The Promise of Renewable Gaseous Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Promise of Renewable Gaseous Fuels The Promise of Renewable Gaseous Fuels Breakout Session 3-C: Renewable Gaseous Fuels The Promise of Renewable Gaseous Fuels Jeffrey Reed, Director of Business Strategy and Development, Southern California Gas Company/San Diego Gas & Electric PDF icon reed_bioenergy_2015.pdf More Documents & Publications QER - Comment of American Gas Association 3 Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus Renewable Natural Gas

  20. Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Google Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on

  1. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From

  2. Renewable Jet Fuel Is Taking Flight | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Jet Fuel Is Taking Flight Renewable Jet Fuel Is Taking Flight August 26, 2015 - 3:58pm Addthis Zia Haq Senior Analyst and Defense Production Act Coordinator, Bioenergy ...

  3. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    SciTech Connect (OSTI)

    Wood, Thomas R.; Worthing, Wade; Cannon, Cody; Palmer, Carl; Neupane, Ghanashyam; McLing, Travis L; Mattson, Earl; Dobson, Patric; Conrad, Mark

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cache Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84 C. Traditional geothermometry models estimated reservoir temperatures of approximately 125 C in the 1970s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104 C (217 F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227 C (440 F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may need to be investigated using improved geothermal exploration methods.

  4. High Octane Fuels Can Make Better Use of Renewable Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mid-Blend Ethanol Fuels - Implementation Perspectives Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" The Impact of Low Octane Hydrocarbon ...

  5. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies held on August 19, 2014.

  6. List of Renewable Transportation Fuels Incentives | Open Energy...

    Open Energy Info (EERE)

    Wind Biomass Renewable Transportation Fuels Fuel Cells Ground Source Heat Pumps Ethanol Methanol Biodiesel No Community Energy Project Grants (Michigan) State Grant Program...

  7. Fuel Cells and Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Portfolio Standards Fuel Cells and Renewable Portfolio Standards Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells and Renewable Portfolio Standards, June 9, 2011. PDF icon infocalljun911_wolak.pdf More Documents & Publications Fuel Cell Power Plants Renewable and Waste Fuels Co-production of Hydrogen and Electricity (A Developer's Perspective) DFC Technology Status

  8. NREL: Transportation Research - Renewable Fuels and Lubricants Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Fuels and Lubricants Laboratory Photo of a heavy-duty truck being driven on a chassis dynamometer. The heavy-duty chassis dynamometer at the ReFUEL Laboratory simulates on-road driving in a controlled laboratory setting. Photo by Dennis Schroeder, NREL NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development focuses on overcoming barriers to the increased use of renewable

  9. Fuel Cells & Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Renewable Portfolio Standards Fuel Cells & Renewable Portfolio Standards Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells and Renewable Portfolio Standards, June 9, 2011. PDF icon infocalljun911_valente.pdf More Documents & Publications Ohio Fuel Cell Initiative Raising H2 and Fuel Cell Awareness in Ohio State of the States: Fuel Cells in America 2014

  10. Accelerating Geothermal Research (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating Geothermal Research Supporting a Cleaner Environment NREL is a strategic partner of the U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO). NREL teams are leading the research and deployment efforts through various projects. Summaries of a few key activities follow. Geothermal-Solar Hybrids: The objective is to examine the viability of using solar thermal heat combined with geother- mal energy to improve plant efficiency and reduce cost. This project, performed by

  11. Grid-Connected Renewable Energy Generation Toolkit-Geothermal...

    Open Energy Info (EERE)

    for International Development Sector: Energy Focus Area: Geothermal Resource Type: Training materials Website: www.energytoolbox.orggcremod3index.shtml Grid-Connected...

  12. Renewable Energy Sales and Use Tax Abatement

    Broader source: Energy.gov [DOE]

    The abatement applies to property used to generate electricity from renewable energy resources including solar, wind, biomass*, fuel cells, geothermal or hydro. Generation facilities must have a...

  13. Hydrogen Fuel-Cell Unit to Provide Renewable Power to Honolulu Port

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unit to Provide Renewable Power to Honolulu Port - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  14. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    SciTech Connect (OSTI)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  15. NREL: Technology Deployment - California's Alternative and Renewable Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Vehicle Technology Program California's Alternative and Renewable Fuel and Vehicle Technology Program NREL supports the California Energy Commission (CEC) in the planning, implementation, and evaluation of California's Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP), created by Assembly Bill 118 in 2007. Under this statute, CEC works to develop and deploy alternative and renewable transportation fuel and vehicle technologies-including electricity, natural gas,

  16. NREL Ignites New Renewable Fuels Heating Plant - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignites New Renewable Fuels Heating Plant Innovative DOE Contract Helps Lab Reduce Fuel Use, Carbon Emissions November 20, 2008 Golden, Colo. - With the spark from a high intensity road flare, engineers at the U.S. Department of Energy's National Renewable Energy Laboratory lit its new, smoke-free Renewable Fuels Heating Plant today. The $3.3 million project is the Laboratory's latest step toward operating as a net-zero energy facility. The RFHP will heat NREL's South Table Mountain Campus

  17. Iowa Renewable Fuels Association IRFA | Open Energy Information

    Open Energy Info (EERE)

    Product: Fosters the development and growth of renewable fuels industry through education, promotion and infrastructure development in Iowa. Coordinates: 33.831879,...

  18. Property:RenewableFuelStandard/AdvancedBiofuel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardAdvancedBiofuel Jump to: navigation, search This is a property of type Number. Pages...

  19. Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardUndifferentiatedAdvancedBiofuel Jump to: navigation, search This is a property of type...

  20. List of Geothermal Heat Pumps Incentives | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Hydrogen Landfill Gas Methanol Passive Solar Space Heat Photovoltaics Solar Space Heat...

  1. Renewable Energy: Solar Fuels GRC and GRS

    SciTech Connect (OSTI)

    Nathan Lewis Nancy Ryan Gray

    2010-02-26

    This Gordon Research Conference seeks to bring together chemists, physicists, materials scientists and biologists to address perhaps the outstanding technical problem of the 21st Century - the efficient, and ultimately economical, storage of energy from carbon-neutral sources. Such an advance would deliver a renewable, environmentally benign energy source for the future. A great technological challenge facing our global future is energy. The generation of energy, the security of its supply, and the environmental consequences of its use are among the world's foremost geopolitical concerns. Fossil fuels - coal, natural gas, and petroleum - supply approximately 90% of the energy consumed today by industrialized nations. An increase in energy supply is vitally needed to bring electric power to the 25% of the world's population that lacks it, to support the industrialization of developing nations, and to sustain economic growth in developed countries. On the geopolitical front, insuring an adequate energy supply is a major security issue for the world, and its importance will grow in proportion to the singular dependence on oil as a primary energy source. Yet, the current approach to energy supply, that of increased fossil fuel exploration coupled with energy conservation, is not scaleable to meet future demands. Rising living standards of a growing world population will cause global energy consumption to increase significantly. Estimates indicate that energy consumption will increase at least two-fold, from our current burn rate of 12.8 TW to 28 - 35 TW by 2050. - U.N. projections indicate that meeting global energy demand in a sustainable fashion by the year 2050 will require a significant fraction of the energy supply to come carbon free sources to stabilize atmospheric carbon dioxide levels at twice the pre-anthropogenic levels. External factors of economy, environment, and security dictate that this global energy need be met by renewable and sustainable sources from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The 'grand challenge' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source. Speakers will discuss recent advances in homoogeneous and heterogeneous catalysis of multi-electron transfer processes of importance to solar fuel production, such as water oxidation and reduction, and carbon dioxide reduction. Speakers will also discuss advances in scaleably manufacturable systems for the capture and conversion of sunlight into electrical charges that can be readily coupled into, and utilized for, fuel production in an integrated system.

  2. Model documentation: Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

  3. Research Institutions, Businesses Launch Renewable Fuels Venture - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Research Institutions, Businesses Launch Renewable Fuels Venture March 19, 2007 A joint venture among businesses and Colorado research institutions to further develop renewable fuels was announced today at the state capitol in Denver. The new Colorado Center for Biorefining and Biofuels (C2B2) is a research venture between large and small businesses and the newly formed Colorado Renewable Energy Collaboratory, the association of four of Colorado's premier research

  4. Office of Energy Efficiency and Renewable Energy Overview Appropriatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Third, EERE will achieve rapid growth in renewable energy supplies using biomass, wind, solar, geothermal, water power, fuel cells, and other energy resources to produce ...

  5. Residential Renewable Energy Tax Credit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Renewable Energy Tax Credit < Back Eligibility Residential Savings Category Solar Water Heat Solar Photovoltaics Wind (All) Geothermal Heat Pumps Fuel Cells using ...

  6. 2014 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Beiter, Philipp

    2015-11-15

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  7. 2014 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Beiter, Philipp

    2015-11-01

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  8. 2008 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Gelman, Rachel

    2009-07-01

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  9. 2008 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  10. 2010 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Gelman, Rachel

    2011-10-01

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  11. 2011 Renewable Energy Data Book

    SciTech Connect (OSTI)

    R. Gelman

    2013-02-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  12. 2009 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Gelman, Rachel

    2010-08-01

    This Renewable Energy Data Book for 2009 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  13. 2014 Renewable Energy Data Book

    Broader source: Energy.gov [DOE]

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  14. Renewable energy technologies for federal facilities: Geothermal heat pump

    SciTech Connect (OSTI)

    1996-05-01

    This sheet summarizes information on geothermal heat pumps (GHPs), which extracts heat from the ground in the winter and transfers heat to the ground in the summer. More than 200,000 GHPs are operating in US; they can reduce energy consumption and related emissions by 23 to 44% compared to air-source heat pumps. Opportunities for use of GHPs, requirements, and cost are described. Important terms are defined.

  15. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy...

  16. Making Better Use of Ethanol as a Transportation Fuel With "Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Breakout ...

  17. RTP Green Fuel: A Proven Path to Renewable Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuel Oil - A Commercial Perspective Steve Lupton Technical Information Exchange on Pyrolysis Oil: Potential for a Renewable Heating Oil Substitution Fuel in New ...

  18. High Octane Fuels Can Make Better Use of Renewable Transportation Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Brian West, Deputy Director, Engines and Emissions Research Center; Oak Ridge National Laboratory

  19. Fossil Fuel-fired Peak Heating for Geothermal Greenhouses | Open...

    Open Energy Info (EERE)

    18(1):1-4. Related Geothermal Exploration Activities Activities (1) Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997) Areas (1) Lightning Dock...

  20. EISA 2007: Focus on Renewable Fuels Standard Program

    Broader source: Energy.gov [DOE]

    At the November 6, 2008 joint Web conference of DOE's Biomass and Clean Cities programs, Paul Argyropoulos (U.S. Environmental Protection Agency, Office of Transportation and Air Quality) explained the EISA 2007, Renewable Fuel Standards.

  1. Renewable Fuel Supply Ltd RFSL | Open Energy Information

    Open Energy Info (EERE)

    Supply Ltd RFSL Jump to: navigation, search Name: Renewable Fuel Supply Ltd (RFSL) Place: United Kingdom Zip: W1J 5EN Sector: Biomass Product: UK(tm)s largest supplier of...

  2. Property:RenewableFuelStandard/Year | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardYear Jump to: navigation, search This is a property of type Date. Pages using the...

  3. Property:RenewableFuelStandard/Total | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardTotal Jump to: navigation, search This is a property of type Number. Pages using the...

  4. Property:RenewableFuelStandard/BiomassBasedDiesel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardBiomassBasedDiesel Jump to: navigation, search This is a property of type Number. Pages...

  5. Timing for Startup of the Renewable Fuel Standard

    Reports and Publications (EIA)

    2002-01-01

    This paper responds to whether or not moving the start date of the Renewable Fuel Standard (RFS) from its currently proposed January 2004 to October 2004 would improve the chances of a smooth transition.

  6. Fuel Cells and Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 9, 2011 * FuelCell Energy (FCE) * The Benefits of Fuel Cells * Considerations for a Comprehensive Clean Energy Portfolio * Q&A Agenda FuelCell Energy Worlds Leading ...

  7. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect (OSTI)

    2011-01-01

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  8. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  9. Renewable Energy Finance Tracking Initiative (REFTI): Snapshot of Recent Geothermal Financing Terms, Fourth Quarter 2009 - Second Half 2011

    SciTech Connect (OSTI)

    Lowder, T.; Hubbell, R.; Mendelsohn, M.; Cory, K.

    2012-09-01

    This report is a review of geothermal project financial terms as reported in the National Renewable Energy Laboratory's Renewable Energy Finance Tracking Initiative (REFTI). The data were collected over seven analysis periods from the fourth quarter (Q4) of 2009 to the second half (2H) of 2011.

  10. Renewable Energy: Solar Fuels - Gordon Research Conference (Lucca, IT) -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JCAP Renewable Energy: Solar Fuels - Gordon Research Conference (Lucca, IT) Renewable Energy: Solar Fuels - Gordon Research Conference (Lucca, IT) Sun, Feb 28, 2016 9:00am 09:00 Fri, Mar 4, 2016 5:00pm 17:00 Renaissance Tuscany Il Ciocco Lucca Italy Harry Atwater, "Artficial Photosynthesis Progress and Prospects" Giulia Galli, "Ab Initio Studies of Heterogeneous Interfaces for Water Photocatalysis" Clifford Kubiak, "If You Are Going to Make a Solar Fuel from CO2,

  11. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel ...

  12. Elastomer Compatibility Testing of Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Frame, E.; McCormick, R. L.

    2005-11-01

    In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

  13. 2012 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2013-10-01

    This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  14. 2011 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2012-10-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  15. 2013 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Esterly, S.

    2014-12-01

    This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  16. 2009 Renewable Energy Data Book, August 2010

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This Renewable Energy Data Book for 2009 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  17. 2010 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2011-10-01

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  18. Geothermal hydrothermal

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The geothermal hydrothermal section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  19. California: Agricultural Residues Produce Renewable Fuel | Department...

    Broader source: Energy.gov (indexed) [DOE]

    technology is expected to produce biofuel that reduces greenhouse gas emissions by 80% compared to fossil fuel and help make California a leader in advanced biofuel production. ...

  20. New Process Helps Overcome Obstacles to Produce Renewable Fuels and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemicals - News Releases | NREL New Process Helps Overcome Obstacles to Produce Renewable Fuels and Chemicals Lignin Valorization Study Published in Proceedings of the National Academy of Sciences August 20, 2014 There's an old saying in the biofuels industry: "You can make anything from lignin except money." But now, a new study may pave the way to challenging that adage. The study from the Energy Department's National Renewable Energy Laboratory (NREL) demonstrates a concept

  1. Fossil fuel-fired peak heating for geothermal greenhouses

    SciTech Connect (OSTI)

    Rafferty, K.

    1997-01-01

    Greenhouses are a major application of low-temperature geothermal resources. In virtually all operating systems, the geothermal fluid is used in a hot water heating system to meet 100% of both the peak and annual heating requirements of the structure. This strategy is a result of the relatively low costs associated with the development of most US geothermal direct-use resources and past tax credit programs which penalized systems using any conventional fuel sources. Increasingly, greenhouse operations will encounter limitations in available geothermal resource flow due either to production or disposal considerations. As a result, it will be necessary to operate additions at reduced water temperatures reflective of the effluent from the existing operations. Water temperature has a strong influence on heating system design. Greenhouse operators tend to have unequivocal preferences regarding heating system equipment. Many growers, particularly cut flower and bedding plant operators, prefer the {open_quotes}bare tube{close_quotes} type heating system. This system places small diameter plastic tubes under the benches or adjacent to the plants. Hot water is circulated through the tubes providing heat to the plants and the air in the greenhouse. Advantages include the ability to provide the heat directly to the plants, low cost, simple installation and the lack of a requirement for fans to circulate air. The major disadvantage of the system is poor performance at low (<140{degrees}F) water temperatures, particularly in cold climates. Under these conditions, the quantity of tubing required to meet the peak heating load is substantial. In fact, under some conditions, it is simply impractical to install sufficient tubing in the greenhouse to meet the peak heating load.

  2. Fuel Cell Power Plants Renewable and Waste Fuels

    Broader source: Energy.gov [DOE]

    Presentation by Frank Wolak, Fuel Cell Energy, at the Waste-to-Energy using Fuel Cells Workshop held Jan. 13, 2011

  3. The Promise of Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    drop-in fuel by 2025 16 Opportunity Areas Use of dedicated energy crops to produce methane Co-production of methane and hydrogen with other products Joint deployment...

  4. City of Tulare Renewable Biogas Fuel Cell Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City of Tulare Renewable Biogas Fuel Cell Project City of Tulare Renewable Biogas Fuel Cell Project Presented at the Technology Transition Corporation and U.S. Department of Energy Fuel Cell Technologies Program Webinar: Go Local: Maximizing Your Local Renewable Resources With Fuel Cells, August 16, 2011. PDF icon webinaraug16_nelson.pdf More Documents & Publications Synergy between Membranes and Microbial Fuel Cells High Temperature BOP and Fuel Processing Fuel Cell Power Plants Biofuel

  5. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Advanced Vehicles Data Center (AFDC) Web site at www.afdc.energy.gov. ... Fuel Converters on its Web site at www.epa.govotaqcertdearmfr cisd0602.pdf. ...

  6. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  7. Overview of An Analysis Project for Renewable Biogas / Fuel Cell Technologies (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.

    2009-11-19

    Presentation on renewable biogas: as an opportunity for commercialization of fuel cells presented as part of a panel discussion at the 2009 Fuel Cell Seminar, Palm Springs, CA.

  8. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  9. Allen, C.A. 15 GEOTHERMAL ENERGY; 20 FOSSIL-FUELED POWER PLANTS...

    Office of Scientific and Technical Information (OSTI)

    Liquid-fluidized-bed heat exchanger flow distribution models Cole, L.T.; Allen, C.A. 15 GEOTHERMAL ENERGY; 20 FOSSIL-FUELED POWER PLANTS; FLUIDIZED BED HEAT EXCHANGERS; DESIGN;...

  10. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice

    SciTech Connect (OSTI)

    Clean Cities

    2010-03-01

    Flexible fuel vehicles can operate on either gasoline or E85, a mixture of 85% ethanol and 15% gasoline. The fact sheet discusses the costs, benefits, and vehicle performance of using E85.

  11. SMU Geothermal Conference 2011 - Geothermal Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Quality Geothermal Data Sets * Technology Assessment of Logging Techniques Systems ... Heat Recovery FOA Energy Efficiency & Renewable Energy eere.energy.gov Geothermal ...

  12. Guidance. Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246

    SciTech Connect (OSTI)

    none,

    2011-04-01

    On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

  13. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  14. Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    in Hawaii Plug-In Vehicles to Harness Renewable Energy in Hawaii to someone by E-mail Share Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in Hawaii on Facebook Tweet about Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in Hawaii on Twitter Bookmark Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in Hawaii on Google Bookmark Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in

  15. Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines

    SciTech Connect (OSTI)

    Sullivan, Neal P

    2012-08-06

    The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.

  16. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search × Advanced Search All Fields: Title: Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Search Authors Subject: Identifier Numbers: Research Org: Sponsoring Org: Publication Date: to Update Date: to Sort: Relevance (highest to lowest) Publication Date (newest first) Publication Date (oldest first) Legacy/Non-Legacy: All Legacy Non-Legacy Close Clear All Find

  17. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search × Advanced Search All Fields: Title: Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Search Authors Subject: Identifier Numbers: Research Org: Sponsoring Org: Publication Date: to Update Date: to Sort: Relevance (highest to lowest) Publication Date (newest first) Publication Date (oldest first) Legacy/Non-Legacy: All Legacy Non-Legacy Close Clear All Find

  18. Geothermal Regulatory Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Regulatory Roadmap Katherine Young National Renewable Energy Laboratory Track: ... restricted information. 2 | US DOE Geothermal Office eere.energy.gov RelevanceImpact ...

  19. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    Renewable Energy Laboratory Innovation for Our Energy Future Renewable Resource Options Geothermal Biomass Solar Hydro Wind National Renewable Energy Laboratory Innovation ...

  20. Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Navigating the Intersection of Fuels and Combustion Cars and trucks in the United States burn through 3.2 billion barrels of gasoline each year. Putting more energy-efficient vehicles on the road-to displace oil consumption, decrease greenhouse gases (GHGs), and improve the nation's energy security-requires simultaneous advances in fuel formulation, combustion strategy, and engine design. Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100%

  1. Lightning Dock Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Review At Lightning Dock Geothermal Area (Rafferty, 1997) Geothermal Literature Review Fossil Fuel-fired Peak Heating for Geothermal Greenhouses Geothermal Literature Review At...

  2. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies," originally presented on August 19, 2014.

  3. Impact of Renewable Fuels Standard/MTBE Provisions of S. 517 Requested by Sens. Daschle & Murkowski

    Reports and Publications (EIA)

    2002-01-01

    Additional analysis of the impact of the Renewable Fuels Standard (RFS) and methyl tertiary butyl ether (MTBE) ban provisions of S. 517.

  4. Production of Renewable Fuels from Biomass by FCC Co-processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Renewable Fuels from Biomass by FCC Co-processing Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and ...

  5. NREL: Geothermal Technologies - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal News Below are news stories involving geothermal research. March 10, 2016 NREL's Geothermal Experts Present at the 41st Annual Stanford Geothermal Workshop NREL geothermal experts attend the 41st Annual Stanford Geothermal Workshop--one of the world's longest-running technical meetings on the topic of geothermal energy. March 2, 2016 U.S. Bureau of Land Management Looks to NREL for Geothermal Technical Support The National Renewable Energy Laboratory (NREL) has entered into an

  6. Geothermal FAQs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Geothermal Basics » Geothermal FAQs Geothermal FAQs Read our frequently asked questions and their answers to learn more about the use of geothermal energy. What are the benefits of using geothermal energy? Why is geothermal energy a renewable resource? Where is geothermal energy available? What are the environmental impacts of using geothermal energy? What is the visual impact of geothermal technologies? Is it possible to deplete geothermal reservoirs? How much does

  7. RTP Green Fuel: A Proven Path to Renewable Heat and Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy RTP Green Fuel: A Proven Path to Renewable Heat and Power RTP Green Fuel: A Proven Path to Renewable Heat and Power Steve Lupton presentation at the May 9, 2012, Pyrolysis Oil Worskshop on RTP green fuel. PDF icon pyrolysis_lupton.pdf More Documents & Publications Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings Cellulosic Liquid Fuels Commercial Production Today Technical Information

  8. Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small

  9. Renewable Fuels Module of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update (EIA)

    and * Changes estimates of geothermal capital costs, reducing them to reflect experience (learning- by-doing) and increasing them as warranted by rapid increases in demand...

  10. Impact of Renewable Fuels Standard/MTBE Provisions of S. 1766

    Reports and Publications (EIA)

    2002-01-01

    This service report addresses the Renewable Fuels Standard (RFS)/methyl tertiary butyl ether (MTBE) provisions of S. 1766. The 'S. 1766' Case reflects provisions of S. 1766 including a renewable fuels standard (RFS) reaching five billion gallons by 2012, a complete phase-out of MTBE within four years, and the option for states to waive the oxygen requirement for reformulated gasoline (RFG).

  11. Sandia Energy - Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gallery Australian Renewable-Energy Official Visits Sandia Concentrating Solar Power, EC, Energy, Geothermal, News, News & Events, Photovoltaic, Renewable Energy, Solar, Water...

  12. Overview of geothermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The geothermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  13. Renewable energy annual 1995

    SciTech Connect (OSTI)

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  14. Development of Geothermally Assisted Process for Production of Liquid Fuels and Chemicals from Wheat Straw

    SciTech Connect (OSTI)

    Murphy, V.G.; Linden, J.C.; Moreira, A.R.; Lenz, T.G.

    1981-06-01

    Recently there has been much interest in developing processes for producing liquid fuels from renewable resources. The most logical long term approach in terms of economics derives the carbohydrate substrate for fermentation from the hydrolysis of cellulosic crop and forest residues rather than from grains or other high grade food materials (1,2). Since the presence of lignin is the main barrier to the hydrolysis of cellulose from lignocellulosic materials, delignification processes developed by the wood pulping industry have been considered as possible prehydrolysis treatments. The delignification process under study in our laboratory is envisioned as a synthesis of two recently developed pulping processes. In the first step, called autohydrolysis, hot water is used directly to solubilize hemicellulose and to depolymerize lignin (3). Then, in a second step known as organosolv pulping (4), the autohydrolyzed material is extracted with aqueous alcohol. A s shown in Figure 1, this process can separate the original lignocellulosic material into three streams--hemicellulose in water, lignin in aqueous alcohol, and a cellulose pulp. Without further mechanical milling, delignified cellulose can be enzymatically hydrolyzed at 45-50 C to greater than 80% theoretical yield of glucose using fungal cellulases (5, 6). The resulting glucose syrup can then be fermented by yeast to produce ethanol or by selected bacteria to produce acetone and butanol or acetic and propionic acids (7). One objection to such a process, however, is the large energy input that is required. In order to extend our supplies of liquid fuels and chemicals, it is important that the use of fossil fuels in any lignocellulosic conversion process be minimized. The direct use of geothermal hot water in carrying out the autohydrolysis and extraction operations, therefore, seems especially attractive. On the one hand, it facilitates the conversion of non-food biomass to fuels and chemicals without wasting fossil fuel; and on the other hand, it provides a means for ''exporting'' geothermal energy from the well site. The primary goal of the work discussed in this report was to investigate the effects of variations in autohydrolysis conditions on the production of fermentable sugars from wheat straw. In assessing the relative merits of various sets of conditions, we considered both the direct production of sugar from the autohydrolysis of hemicellulose and the subsequent yield from the enzymatic hydrolysis of cellulose. The principal parameters studied were time, temperature, and water/fiber weight ratio; however, we also investigated the effects of adding minor amounts of phenol and aluminum sulfate to the autohydrolysis charge. Phenol was selected for study because it was reported (8) to be effective in suppressing repolymerization of reactive lignin fragments. Aluminum sulfate, on the other hand, was chosen as a representative of the Lewis acids which, we hoped, would catalyze the delignification reactions.

  15. Sweet Smell of Renewable Fuel | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sweet Smell of Renewable Fuel News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 12.06.11 Sweet Smell of Renewable Fuel Office of Science researchers borrowed from a fir tree to create a fuel that could leave

  16. Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteriaare genetically engineered to convert the formic acid into liquid fuelin this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLAs electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

  17. Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-07-17

    Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

  18. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  19. Geothermal Energy Market Study on the Atlantic Coastal Plain: Technical Feasibility of use of Eastern Geothermal Energy in Vacuum Distillation of Ethanol Fuel

    SciTech Connect (OSTI)

    1981-04-01

    The DOE is studying availability, economics, and uses of geothermal energy. These studies are being conducted to assure maximum cost-effective use of geothermal resources. The DOE is also aiding development of a viable ethanol fuel industry. One important point of the ethanol program is to encourage use of non-fossil fuels, such as geothermal energy, as process heat to manufacture ethanol. Geothermal waters available in the eastern US tend to be lower in temperature (180 F or less) than those available in the western states (above 250 F). Technically feasible use of eastern geothermal energy for ethanol process heat requires use of technology that lowers ethanol process temperature requirements. Vacuum (subatmospheric) distillation is one such technology. This study, then, addresses technical feasibility of use of geothermal energy to provide process heat to ethanol distillation units operated at vacuum pressures. They conducted this study by performing energy balances on conventional and vacuum ethanol processes of ten million gallons per year size. Energy and temperature requirements for these processes were obtained from the literature or were estimated (for process units or technologies not covered in available literature). Data on available temperature and energy of eastern geothermal resources was obtained from the literature. These data were compared to ethanol process requirements, assuming a 150 F geothermal resource temperature. Conventional ethanol processes require temperatures of 221 F for mash cooking to 240 F for stripping. Fermentation, conducted at 90 F, is exothermic and requires no process heat. All temperature requirements except those for fermentation exceed assumed geothermal temperatures of 150 F. They assumed a 130 millimeter distillation pressure for the vacuum process. It requires temperatures of 221 F for mash cooking and 140 F for distillation. Data indicate lower energy requirements for the vacuum ethanol process (30 million BTUs per hour) than for the conventional process (36 million BTUs per hour). Lower energy requirements result from improved process energy recovery. Data examined in this study indicate feasible use of eastern geothermal heated waters (150 F) to provide process heat for vacuum (130 mm Hg) ethanol distillation units. Data indicate additional heat sources are needed to raise geothermal temperatures to the 200 F level required by mash cooking. Data also indicate potential savings in overall process energy use through use of vacuum distillation technology. Further study is needed to confirm conclusions reached during this study. Additional work includes obtaining energy use data from vacuum ethanol distillation units currently operating in the 130 millimeter pressure range; economic analysis of different vacuum pressures to select an optimum; and operation of a pilot geothermally heated vacuum column to produce confirmatory process data.

  20. Fact #840: September 29, 2014 World Renewable Electricity Consumption is Growing

    Broader source: Energy.gov [DOE]

    Electricity generated from sources that are renewable – hydroelectric power, bio-fuels, geothermal, solar, wind, wood, waste – have grown 150% from 1980 to 2011 (latest year available). Of the...

  1. What Has the Federal Renewable Fuels Standard Accomplished - A National Perspective (Presentation)

    SciTech Connect (OSTI)

    Schwab, A.

    2013-04-01

    This presentation provides an overview of the nation's biofuels industry accomplishments and a perspective on the challenges and implications of reaching goals set in the Renewable Fuel Standard (RFS).

  2. Review of Transportation Issues & Comparison of Infrastructure Costs for a Renewable Fuels Standard

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes the inter-regional transportation issues and associated costs for increased distribution of renewable fuels with the assumption that ethanol will be used to meet the standards.

  3. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    SciTech Connect (OSTI)

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  4. Making Better Use of Ethanol as a Transportation Fuel With "Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Super Premium" | Department of Energy Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel Certification Brian West, Deputy Director for the Fuels, Engines, and Emissions Research Center, Oak Ridge National Laboratory PDF icon b13_west_2-b.pdf More Documents & Publications

  5. Green Racing Series Revs Engines with Renewable Fuel from INEOS Bio |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Green Racing Series Revs Engines with Renewable Fuel from INEOS Bio Green Racing Series Revs Engines with Renewable Fuel from INEOS Bio March 17, 2014 - 2:55pm Addthis A racecar heads into the pits for refueling during the 12 Hours of Sebring in Florida on Saturday. Integrated biorefinery INEOS Bio now supplies cellulosic ethanol to VP Racing Fuels, which fuels the action at TUDOR United SportsCar Championship series races. | Photo by Natalie Committee, Energy Department

  6. Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014 August 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's

  7. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    The Energy Department will present a webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" on Tuesday, August 19, from 12:00 to 1:00 p.m. Eastern Daylight Time (EDT). The webinar will feature representatives from the National Renewable Energy Laboratory presenting a unique opportunity for the integration of multiple sectors including transportation, industrial, heating fuel, and electric sectors on hydrogen.

  8. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind.energy.gov WIND PROGRAM NEWSLETTER - MAY 2015 1 National Renewable Energy Laboratory 15013 Denver West Parkway, Golden, CO 80401 303-275-3000 * www.nrel.gov NREL prints on paper that contains recycled content. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) is seeking partners to participate in an objective and credible analysis of stationary fuel cell systems to benchmark the

  9. Motor Fuel Excise Taxes (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Motor Fuel Excise Taxes A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues-creating substantial funding shortfalls that have

  10. Office of Renewable Energy Technology Geothermal and Hydropower Technologies Division, FY 1983 Annual Operating Plan

    SciTech Connect (OSTI)

    1983-01-01

    There are between 700 and 3400 guads of recoverable geothermal energy in the US. Hydrothermal, geopressure and hot dry rock are the three principal types of geothermal resources (in order of technological readiness) which can supply large amounts of energy for electric power production and direct heat applications. Hydrothermal resources include water and steam trapped in fractured or porous rocks. A hydrothermal system is classified as either hot-water or vapor-dominated (steam), according to the principal physical state of the fluid. Geopressured resources consist of water at moderately high temperatures at pressures higher than normal hydrostatic pressure. This water contains dissolved methane. Geopressured sources in sedimentary formations along the Texas and Louisiana Gulf Coast are believed to be quite large. Geopressured formations also exist in sedimentary basins elsewhere in the US. Hot dry rock resources consist of relatively unfractured and unusually hot rocks at accessible depths that contain little or no water. To extract usable power from hot dry rock, the rock must be fractured and a confined fluid circulation system created. A heat transfer fluid is introduced, circulated, and withdrawn. The overall goal of the Geothermal Program is to build a technology base that will be used by the private sector to exploit geothermal resources which can supply large amounts of energy for electric power production and direct-heat applications.

  11. Assessment of New Approaches in Geothermal Exploration Decision Making; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Akar, S.; Young, K. R.

    2015-05-11

    This poster describes the findings in a related paper and information gleaned from the project. The aim of the project is to develop a methodology for more objective geothermal decision making, including more solid go/no-go decisions at specific points in the process, and to reduce subjectivity and increase reproducibility in the future.

  12. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  13. Understanding and Informing the Policy Environment: State-Level Renewable Fuels Standards

    SciTech Connect (OSTI)

    Brown, E.; Cory, K.; Arent, D.

    2007-01-01

    Renewable fuels standard (RFS) policies are becoming a popular public policy mechanism for developing the market for renewable fuels in the transportation sector. During the past decade, U.S. states and several countries began implementing these more market-based (less command and control) policies to support increased biofuels production and use. This paper presents an overview of current and proposed U.S. state-level policies, as well as selected electric sector policies and international fuel standard policies. Current U.S. state-level renewable fuel policies list drivers including an improved economy and environment, as well as fuel self-sufficiency. Best practices and experience from an evaluation of renewable portfolio standards (RPS) in the United States and international RFS policies can inform U.S. state-level policy by illustrating the importance of policy flexibility, binding targets, effective cost caps, and tradable permits. Understanding and building on the experiences from these previous policies can improve the policy mechanism and further develop a market for renewable fuels to meet the goals of improved economy, environment, and fuel self-sufficiency.

  14. Geothermal Heat Pumps as a Cost Saving and Capital Renewal Too!

    SciTech Connect (OSTI)

    Hughes, P.J.

    1998-11-06

    An independent evaluation of the Fort Polk, Louisiana energy savings performance contract (ESPC) has verified the financial value of geothermal heat pump (GHP)-centered ESPCS to the federal government. The Department of Energy (DOE) Federal Energy Management Program (FEMP) has responded by issuing an RFP for the "National GHP-Technology-Specific Super ESPC Procurement." Federal agency sites anywhere in the nation will be able to implement GHP-centered ESPC projects as delivery orders against the awarded contracts.

  15. NREL: Hydrogen and Fuel Cells Research - Pathways to Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Voiceover: In nature hydrogen is combined with other elements but, when separated, it is a powerful energy carrier used as a transportation fuel in zero-emission fuel cell ...

  16. Fuel Cells and Renewable Portfolio Standards | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Technology Validation Manufacturing Safety, Codes & Standards Education Market Transformation Systems Analysis Information Resources Financial Opportunities News Events

  17. Renewable & Alternative Fuels - U.S. Energy Information Administration...

    Gasoline and Diesel Fuel Update (EIA)

    ... Survey Forms, Changes & Announcements Annual Photovoltaic CellModule Shipments Report ... Outlook relatedmonthlyalternative fuel vehicle Monthly Biodiesel Production ...

  18. Federal Geothermal Research Program Update - Fiscal Year 2004

    SciTech Connect (OSTI)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

  19. Federal Geothermal Research Program Update Fiscal Year 2004

    SciTech Connect (OSTI)

    Not Available

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

  20. Reducing Subjectivity in Geothermal Exploration Decision Making (Presentation); NREL(National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Akar, S.; Young, K.

    2015-01-01

    Geothermal exploration projects have a significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Two of the largest challenges for increased geothermal deployment are 1) understanding when and how to proceed in an exploration program, and 2) when to walk away from a site. Current methodologies for exploration decision-making are formulatedby subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a given location, including go/no-go decision points to help developers and investors decide when to give up on alocation. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of aparticular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basicgeothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This secondapproach was determined to be less subjective, since numerical inputs come from the collected data. And it helps to facilitate communication between project managers and exploration geologists in making objective go/no-go decisions throughout the different project phases.

  1. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  2. DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications GATE Center for Automotive Fuel Cell Systems at Virginia Tech Education and Outreach Fact Sheet Hydrogen Education Curriculum Path at Michigan ...

  3. High Octane Fuels Can Make Better use of Renewable Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... with future high compression, downspeeded engine achieves 28.5 mpg. 12 Managed by ... Fuel Economy and GHG * Increased Ethanolbiofuel Utilization * High Performance Vehicles ...

  4. NREL: State and Local Governments - Renewable Fuel Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to RFS effectiveness: Imposing stringency to require use of higher blends of ethanol or alternative fuels. Adopting an implementation plan that can ease measurement and...

  5. US Navy Tactical Fuels From Renewable Sources Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 5kaminroundtable.pdf More Documents & Publications U.S. Department of the Navy: Driving Alternative Fuels Adoption Department of the Navy Bioeconomy Activity HEFA and ...

  6. Renewable Fuels from Algae Boosted by NREL Refinery Process - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL Renewable Fuels from Algae Boosted by NREL Refinery Process February 9, 2016 A new biorefinery process developed by scientists at the Energy Department's National Renewable Energy Laboratory (NREL) has proven to be significantly more effective at producing ethanol from algae than previous research. The process, dubbed Combined Algal Processing (CAP), is detailed in a new paper by NREL's Tao Dong, Eric Knoshaug, Ryan Davis, Lieve Laurens, Stefanie Van Wychen, Philip Pienkos, and Nick

  7. Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris; Saur, Genevieve

    2015-06-10

    This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.

  8. 21st Century Renewable Fuels, Energy, and Materials

    SciTech Connect (OSTI)

    Berry, K. Joel; Das, Susanta K.

    2012-11-29

    The objectives of this project were multi-fold: (i) conduct fundamental studies to develop a new class of high temperature PEM fuel cell material capable of conducting protons at elevated temperature (180°C), (ii) develop and fabricate a 5k We novel catalytic flat plate steam reforming process for extracting hydrogen from multi-fuels and integrate with high-temperature PEM fuel cell systems, (iii) research and develop improved oxygen permeable membranes for high power density lithium air battery with simple control systems and reduced cost, (iv) research on high energy yield agriculture bio-crop (Miscanthus) suitable for reformate fuel/alternative fuel with minimum impact on human food chain and develop a cost analysis and production model, and (v) develop math and science alternative energy educator program to include bio-energy and power.

  9. Fuel Cell Electric Vehicle Evaluation (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Buses in U.S. Transit Fleets: Current Status 2014 L. Eudy and M. Post National Renewable Energy Laboratory C. Gikakis Federal Transit Administration Technical Report NREL/TP-5400-62683 December 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

  10. NREL: Geothermal Technologies - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects The NREL geothermal team is involved in various projects to help accelerate the development and deployment of clean, renewable geothermal technologies, including low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL supports the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) through various collaborations that evaluate the levelized cost of electricity

  11. Geothermal Exploration Best Practices Webinar Presentation Now...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy DOE Projects Receive Honors for Best Geothermal Presentations Workshop to Examine Outlook for State and Federal Policies to Promote Geothermal Energy in the West...

  12. Guide to Geothermal Power Finance Released

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory, funded by the U.S. Department of Energy’s Geothermal Technologies Program, today released the Guidebook to Geothermal Power Finance.

  13. DOE Geothermal Technologies Office | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Technologies Office Jump to: navigation, search Name: Department of Energy - Energy Efficiency and Renewable Energy - Geothermal Technologies Office Abbreviation: DOE...

  14. Landau Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    the Australian geothermal sector to 2020 and 2030. Australian Government, Australian Renewable Energy Agency. 1-116p. Supplemental Material sent to List of existing Geothermal...

  15. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    Transmission Lines How a Geothermal Power Plant Works (Simple) Western Renewable Energy Zones (WREZ) Reports Geothermal Regulations and Permitting for Transmission Siting...

  16. Geothermal Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 18, 2008 International Partnership for Geothermal Technology Launches Website Geothermal energy, with EGS, has the potential to be the world's only renewable baseload...

  17. ORISE: DOE EERE National Geothermal Student Competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Science Education U.S. Department of Energy Office of Energy Efficiency and Renewable Energy National Geothermal Student Competition 2013 National Geothermal Student...

  18. Geothermal Resources Council | Open Energy Information

    Open Energy Info (EERE)

    Resources Council Address: P.O. Box 1350 Place: Davis, California Zip: 95617-1350 Sector: Geothermal energy, Renewable Energy, Services Product: Global Geothermal Community...

  19. NREL: Hydrogen and Fuel Cells Research - Renewable Electrolysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... station for fueling natural gas vehicles and 2) to a home for heating and hot water and 3) to a natural gas turbine, which is connected via an electric line to the electric grid. ...

  20. An expanded review and comparison of greenhouse gas emissions from fossil fuel and geothermal electrical generating facilities

    SciTech Connect (OSTI)

    Booth, R.B.; Neil, P.E.

    1998-12-31

    This paper provides a review of the greenhouse gas emissions due to fossil fuel and geothermal electrical generation and to the emissions of their respective support activities. These support activities consist of, exploration, development, and transportation aspects of the fuel source, including waste management. These support activities could amount to an additional 6% for coal, 22% for oil, 13% for natural gas and 1% for geothermal. The presented methodologies and underlying principles can be used to better define the resultant emissions, rankings and global impacts of these electrical generating industries.

  1. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  2. Renewable Energy Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    Eligible renewable resources include wind, solar, biomass, landfill gas, anaerobic digestion, hydroelectricity, and geothermal energy. Facilities must use renewable energy to produce electricity...

  3. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    400-64420 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies 227 th ECS Meeting, Chicago, Illinois Marc Melaina, Genevieve Saur, Todd Ramsden, Joshua Eichman May 28, 2015 2 Presentation Overview: Four Metrics Analysis projects focus on low-carbon and economic transportation and stationary fuel cell applications

  4. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

  5. Geothermal Power and Interconnection: The Economics of Getting to Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basics » Geothermal FAQs Geothermal FAQs Read our frequently asked questions and their answers to learn more about the use of geothermal energy. What are the benefits of using geothermal energy? Why is geothermal energy a renewable resource? Where is geothermal energy available? What are the environmental impacts of using geothermal energy? What is the visual impact of geothermal technologies? Is it possible to deplete geothermal reservoirs? How much does geothermal energy cost per

  6. Fuel Cell Vehicles Enhance NREL Hydrogen Research Capabilities (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * www.nrel.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. Expanded research, development, and testing activities will help advance fuel cell electric vehicle technology. The National Renewable Energy Laboratory (NREL) has acquired four Fuel Cell Hybrid Vehicle-Advanced (FCHV-adv) sport utility vehicles on loan from Toyota. Over the next two years the lab will use the FCHVs, also known as fuel cell electric vehicles or

  7. Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal resources-the steam and water that lie below the earth's surface-have the potential to supply vast amounts of clean energy. But continuing to produce geothermal power efficiently and inexpensively can require innovative adjustments to the technology used to process it. Located in the Mayacamas Mountains of northern California, The Geysers is the world's larg- est geothermal complex. Encompassing 45 square miles along the Sonoma and Lake County border, the complex harnesses natural

  8. Installed Geothermal Capacity | Open Energy Information

    Open Energy Info (EERE)

    Map of Geothermal Power Plants List of Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of...

  9. Renewable Resource Standard

    Broader source: Energy.gov [DOE]

    Eligible Technologies Eligible renewable resources include wind; solar; geothermal; existing hydroelectric projects (10 megawatts or less); certain new hydroelectric projects (up to 15 megawatts...

  10. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    Note: H.B. 263 was enacted in April 2015, allowing distribution cooperatives to earn renewable energy certificates for energy generated by geothermal heat pumps. 

  11. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (40–50%), hemicellulose (25–35%), and lignin (16–33%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.

  12. Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository

    Broader source: Energy.gov [DOE]

    Geothermal Data Repository presentation by Arlene Anderson and Jon Weers at the 2013 Annual Peer Review in Colorado.

  13. Programs in Renewable Energy

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Our nation faces significant challenges as we enter the 1990s: securing a reliable supply of competitively priced energy, improving the quality of our environment, and increasing our share of foreign markets for goods and services. The US Department of Energy's (DOE) Programs in Renewable Energy are working toward meeting these challenges by developing the technologies that make use of our nation's largest energy resource: renewable energy. The sunlight, wind biomass, flowing water, ocean energy, and geothermal energy that make up the renewable energy resource can be found throughout our nation. These resources can provide all the forms of energy our nation needs: liquid fuels, electricity, and heating and cooling. Renewable energy meets about 10% of our need for these forms of energy today, yet the potential contribution is many times greater. DOE's Programs in Renewable Energy are working side-by-side with American industry to develop the technologies that convert renewable energy resources into practical, cost-competitive energy. After a decade of progress in research, several of these technologies are poised to make large contributions during the 1990s and beyond. This booklet provides an overview of the renewable energy programs and their plans for FY 1990. Sources of additional information are listed at the back of the booklet. 48 figs., 4 tabs.

  14. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    What is an FFV? An FFV, as its name implies, has the flex- ibility of running on more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel system, and engine. And they are available in a wide range of models such as sedans, pickups, and minivans. Light-duty FFVs are designed to operate with at least 15% gasoline in the fuel, mainly to ensure they start in cold weather. FFVs

  15. Statement by U.S. Secretary of Energy Samuel W. Bodman on EPA's Renewable Fuel Standard Waiver Announcement

    Broader source: Energy.gov [DOE]

    WASHINGTON -- The following is a statement from U.S. Secretary of Energy Samuel W. Bodman in response to the U.S. Environmental Protection Agency's (EPA) announcement on the Renewable Fuel Standard...

  16. EPRI-DOE Joint Report on Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration Now Available

    Broader source: Energy.gov [DOE]

    A new report “Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration” from the Electric Power Research Institute (EPRI) and jointly funded by the Offices of...

  17. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  18. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect (OSTI)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  19. Texas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Net Summer Renewable Capacity 10,985 10.1 Geothermal - - Hydro Conventional 689 0.6 ... Total Renewable Net Generation 28,967 7.0 Geothermal - - Hydro Conventional 1,262 0.3 ...

  20. Flexible Fuel Vehicles: Powered by a Renewable U.S. Fuel

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  1. EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1)

    Broader source: Energy.gov [DOE]

    Draft Supplemental Environmental Assessment This EA will evaluate the environmental impacts of a proposal to make improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of regional wood sources.

  2. DOE to Guarantee $10 Billion in Loans for Efficiency, Renewables

    Broader source: Energy.gov [DOE]

    DOE is offering $10 billion in loan guarantees for projects involving energy efficiency, renewable energy, and advanced transmission and distribution. The agency is seeking projects relating to biomass, geothermal, solar, and wind energy, as well as projects involving hydropower, alternative fuel vehicles, and energy efficiency.

  3. Renewable Energy Technologies for Federal Projects | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable energy technologies (from left to right): geothermal, hydropower, wind, concentrating solar power, and biomass. Renewable energy technologies (from left to right): ...

  4. American Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: American Renewable Energy Place: Evanston, Illinois Zip: 60202 Sector: Geothermal energy, Renewable Energy, Solar Product: American...

  5. Puerto Rico - Renewable Energy Portfolio Standard | Department...

    Broader source: Energy.gov (indexed) [DOE]

    2035. Green energy resources fall into two categories. The first category is "Sustainable Renewable Energy" which includes solar, wind, geothermal, renewable biomass, qualified...

  6. NREL Releases Report on Policy Options to Advance Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A new DOE report, Geothermal Exploration Policy Mechanisms, was recently released by the National Renewable Energy Laboratory | photo courtesy of Geothermal Resources Council. A ...

  7. First Google.Org-Funded Geothermal Mapping Report Confirms Vast...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Addthis Related Articles Geothermal, the 'undervalued' renewable resource, sees surging interest Mapping Geothermal Heat Flow and Existing Plants DOE Awards 20 Million to Develop ...

  8. 2008 Geothermal Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JULY 2009 2008 GEOTHERMAL TECHNOLOGIES MARKET REPORT Energy Efficiency & Renewable Energy (This page intentionally left blank) Table of Contents Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Major 2008 Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  9. Geothermal Prospector | Open Energy Information

    Open Energy Info (EERE)

    Prospector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Prospector AgencyCompany Organization: National Renewable Energy Laboratory Sector: Energy Focus...

  10. Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Repository Geothermal Data Repository * Personally Identifiable Information (PII) - Social security numbers - Bank account numbers - Home phone numbers and personal addresses of ...

  11. International Partnership for Geothermal Technology Launches Website |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy International Partnership for Geothermal Technology Launches Website International Partnership for Geothermal Technology Launches Website November 18, 2008 - 2:52pm Addthis Geothermal energy, with EGS, has the potential to be the world's only renewable baseload power source. It is clean, renewable and safe. The International Partnership for Geothermal Technology (IPGT) signifies the commitment of the world's geothermal energy leaders to advance the energy through the

  12. DOE Announces Webinars on the National Geothermal Data System, Energy Efficiency and Renewable Energy Benefits for Tribal Communities, and More

    Broader source: Energy.gov [DOE]

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce.

  13. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels (Fact Sheet), NREL Highlights in Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New study determines the effect of catalyst structure on product yields and coking during vapor phase upgrading of biomass pyrolysis products. Converting biomass, an abun- dant and renewable resource, into liquid transportation fuels has attracted significant atten- tion because of depleting fossil fuel reserves and associated environmental concerns. In the quest for sustainable and eco-friendly fuel alternatives, much research is focusing on improving the properties of bio-oil. Scientists at

  14. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  15. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    SciTech Connect (OSTI)

    Bolinger, Mark A; Wiser, Ryan

    2008-09-15

    For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the Energy Information Administration (EIA), natural gas-fired units account for nearly 90% of the total generating capacity added in the U.S. between 1999 and 2005 (EIA 2006b), bringing the nationwide market share of gas-fired generation to 19%. Looking ahead over the next decade, the EIA expects this trend to continue, increasing the market share of gas-fired generation to 22% by 2015 (EIA 2007a). Though these numbers are specific to the US, natural gas-fired generation is making similar advances in many other countries as well. A large percentage of the total cost of gas-fired generation is attributable to fuel costs--i.e., natural gas prices. For example, at current spot prices of around $7/MMBtu, fuel costs account for more than 75% of the levelized cost of energy from a new combined cycle gas turbine, and more than 90% of its operating costs (EIA 2007a). Furthermore, given that gas-fired plants are often the marginal supply units that set the market-clearing price for all generators in a competitive wholesale market, there is a direct link between natural gas prices and wholesale electricity prices. In this light, the dramatic increase in natural gas prices since the 1990s should be a cause for ratepayer concern. Figure 1 shows the daily price history of the 'first-nearby' (i.e., closest to expiration) NYMEX natural gas futures contract (black line) at Henry Hub, along with the futures strip (i.e., the full series of futures contracts) from August 22, 2007 (red line). First, nearby prices, which closely track spot prices, have recently been trading within a $7-9/MMBtu range in the United States and, as shown by the futures strip, are expected to remain there through 2012. These price levels are $6/MMBtu higher than the $1-3/MMBtu range seen throughout most of the 1990s, demonstrating significant price escalation for natural gas in the United States over a relatively brief period. Perhaps of most concern is that this dramatic price increase was largely unforeseen. Figure 2 compares the EIA's natural gas wellhead price forecast from each year's Annual Energy Outlook (AEO) going back to 1985 against the average US wellhead price that actually transpired. As shown, our forecasting abilities have proven rather dismal over time, as over-forecasts made in the late 1980's eventually yielded to under-forecasts that have persisted to this day. This historical experience demonstrates that little weight should be placed on any one forecast of future natural gas prices, and that a broad range of future price conditions ought to be considered in planning and investment decisions. Against this backdrop of high, volatile, and unpredictable natural gas prices, increasing the market penetration of renewable generation such as wind, solar, and geothermal power may provide economic benefits to ratepayers by displacing gas-fired generation. These benefits may manifest themselves in several ways. First, the displacement of natural gas-fired generation by increased renewable generation reduces ratepayer exposure to natural gas price risk--i.e., the risk that future gas prices (and by extension future electricity prices) may end up markedly different than expected. Second, this displacement reduces demand for natural gas among gas-fired generators, which, all else equal, will put downward pressure on natural gas prices. Lower natural gas prices in turn benefit both electric ratepayers and other end-users of natural gas. Using analytic approaches that build upon, yet differ from, the past work of others, including Awerbuch (1993, 1994, 2003), Kahn and Stoft (1993), and Humphreys and McClain (1998), this chapter explores each of these two potential 'hedging' benefits of renewable electricity. Though we do not seek to judge whether these two specific benefits outweigh any incremental cost of renewable energy (relative to conventional fuels), we do seek to quantify the magnitude of these two individual benefits. We also note that these benefits are not unique to renewable electricity: other generation (or demand-side) resources whose costs are not tied to natural gas would provide similar benefits.

  16. Compositional and Agronomic Evaluation of Sorghum Biomass as a Potential Feedstock for Renewable Fuels

    SciTech Connect (OSTI)

    Dahlberg, J.; Wolfrum, E.; Bean, B.; Rooney, W. L.

    2011-12-01

    One goal of the Biomass Research and Development Technical Advisory Committee was to replace 30% of current U.S. petroleum consumption with biofuels by 2030. This will take mixtures of various feedstocks; an annual biomass feedstock such as sorghum will play an important role in meeting this goal. Commercial forage sorghum samples collected from field trials grown in Bushland, TX in 2007 were evaluated for both agronomic and compositional traits. Biomass compositional analysis of the samples was performed at the National Renewable Energy Lab in Golden, CO following NREL Laboratory Analytical Procedures. Depending on the specific cultivar, several additional years of yield data for this location were considered in establishing agronomic potential. Results confirm that sorghum forages can produce high biomass yields over multiple years and varied growing conditions. In addition, the composition of sorghum shows significant variation, as would be expected for most crops. Using theoretical estimates for ethanol production, the sorghum commercial forages examined in this study could produce an average of 6147 L ha{sup -1} of renewable fuels. Given its genetic variability, a known genomic sequence, a robust seed industry, and biomass composition, sorghum will be an important annual feedstock to meet the alternative fuel production goals legislated by the US Energy Security Act of 2007.

  17. Energy 101: Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Energy 101: Geothermal Energy Addthis Description See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity. Topic Geothermal Text Version Below is the text version for the Energy 101: Geothermal Energy video. The words "Energy 101: Geothermal Energy"

  18. Enhanced Geothermal System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal » Enhanced Geothermal System Basics Enhanced Geothermal System Basics A naturally occurring geothermal system, known as Enhanced Geothermal Systems (EGS), is another form of renewable energy. It is defined by three key elements: heat, fluid, and permeability at depth. Essentially, these are engineered reservoirs that produce energy from geothermal resources in areas that are not usually considered economically viable due to a lack of water and/or the ability of that water to pass

  19. Geothermal Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Geothermal » Geothermal Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the

  20. Australian Renewable-Energy Official Visits Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Australian Renewable-Energy Official Visits Sandia - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  1. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation ...

  2. Making a Difference: Geothermal Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Pumps Making a Difference: Geothermal Heat Pumps November 25, 2015 - 11:02am Addthis Making a Difference: Geothermal Heat Pumps Erin Tulley Communications Lead, Geothermal Technologies Office Image source: Sarah Cheney, Courtesy of EggGeothermal One of the ways we make a difference in the Office of Energy Efficiency and Renewable Energy (EERE) is by supporting the deployment of energy-efficient technologies. Geothermal is a proven renewable power source, but there are almost

  3. GTP to Present at Upcoming Geothermal Forum

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Program (GTP) Manager, Jay Nathwani, along with DOE's Office of Energy Efficiency and Renewable Energy Deputy Assistant Secretary, Jacques Beaudry-Losique, will be speaking with other geothermal experts at the Geothermal Energy Association's (GEA) Global Geothermal Showcase and Forum.

  4. DOE/EIA-M069(2011) Model Documentation Renewable Fuels Module

    Gasoline and Diesel Fuel Update (EIA)

    and * Changes estimates of geothermal capital costs, reducing them to reflect experience (learning-by- doing) and increasing them as warranted by rapid increases in demand...

  5. Environmental Emissions from Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect (OSTI)

    San Martin, Robert L.

    1989-01-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide.

  6. Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect (OSTI)

    San Martin, Robert L.

    1989-04-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

  7. Development of a Low NOx Medium-Sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    2009-11-01

    Solar Turbines Inc., in collaboration with Pennsylvania State University and the University of Southern California, will develop injector technologies for gas turbine use of high-hydrogen content renewable and opportunity fuels derived from coal, biomass, industrial process waste, or byproducts. This project will develop low-emission technology for alternate fuels with high-hydrogen content, thereby reducing natural gas requirements and lowering carbon intensity.

  8. Enhanced Geothermal Systems (EGS) | Open Energy Information

    Open Energy Info (EERE)

    (Published: July 2009) "US DOE 2008 Renewable Energy Data Book" "The Future of Geothermal Energy" 3.0 3.1 3.2 "US DOE EERE Geothermal Technologies Program, Enhanced...

  9. Renewable Electricity Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation Renewable Electricity Generation Geothermal Geothermal Read more Solar Solar Read more Water Water Read more Wind Wind Read more Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE) leads a large network of researchers and other partners to deliver innovative

  10. Geothermal Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Geothermal Success Stories Geothermal Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in finding, accessing, and using U.S. geothermal resources effectively and consistently pave the way for widespread adoption of this energy resource. Explore EERE's geothermal success stories below. May 12, 2016 Source: Kirby Baier of Continental Resources EERE Success Story-DOE-Funded Project is First Permanent Facility to Co-produce Electricity

  11. Trends in Renewable Energy Consumption and Electricity - Energy...

    Gasoline and Diesel Fuel Update (EIA)

    Trends in Renewable Energy Consumption and Electricity With data for 2010 | Release Date: December 11, ... renewable energy consumption, and solar and geothermal combined ...

  12. Assessing the Potential for Renewable Energy on Public Lands

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... These renewable resources include solar, biomass, geothermal, water, and wind energy. To accomplish this task, BLM and the Department of Energy's National Renewable Energy ...

  13. Renewable Electricity Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lost energy as inefficiencies - 62% 61% 39% Coal 23% Natural Gas 23% Oil 40% Nuclear 8% Hydro Wind Solar Biomass Geothermal 100 Quads 6% 4 National Renewable Energy Laboratory ...

  14. Utility Geothermal Development Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Geothermal Development Strategies Utility Geothermal Development Strategies The following presentations are from a Webinar conducted on December 9, 2009, that was hosted by the Geothermal Resources Council (GRC) and sponsored by the U.S. Department of Energy Geothermal Technologies Office. The Webinar focused on ways utilities can include or expand cost-effective applications of geothermal technologies in their renewable energy and energy efficiency portfolios, including financing

  15. 2015 Geothermal Technologies Office Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Office Peer Review Report The photo on the cover page is of the Fumarole Area. Photo courtesy of Akutan, 2012. Geothermal Technologies Office 2015 Peer Review Report December 2015 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Geothermal Technologies Office 2015 Peer Review Meeting December 2015 Dr. Kate Baker Chair 2015 Geothermal Technologies Peer Review Panel Susan Hamm Acting Director U.S. DOE Geothermal Technologies Office Ava Coy Peer

  16. Geothermal Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps Geothermal Heat Pumps Two commercial 36-ton geothermal heat pumps being used at the College of Southern Idaho. The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office. The geothermal heat pump, also known as the ground source heat pump, is a highly efficient renewable energy technology that is

  17. Geothermal Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. Department of Energy's (DOE) Geothermal Technologies Program (GTP) Manager, Jay Nathwani, along with DOE's Office of Energy Efficiency and Renewable Energy Deputy...

  18. Geothermal Developers' Checklist | Open Energy Information

    Open Energy Info (EERE)

    Developers' Checklist Jump to: navigation, search Tool Summary Name: Geothermal Developers' Checklist AgencyCompany Organization: National Renewable Energy Laboratory Partner:...

  19. Soultz Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Australian Renewable Energy Agency. 1-116p. Supplemental Material sent to Deep geothermal energy: the Soult-sous-Forets site has reached the sustainable production phase...

  20. Residential Geothermal Heat Pump Retrofit Webinar

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory Senior Engineer Erin Anderson about geothermal heat pump (GHP) technology options, applications, and installation costs for residences.

  1. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    SciTech Connect (OSTI)

    Patten, Kim

    2013-05-01

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nations leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs, outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing data are insufficient for promoting geothermal exploration. Authors of this paper are Arlene Anderson, US DOE Geothermal Technologies Office, David Blackwell, Southern Methodist University (SMU), Cathy Chickering (SMU), Toni Boyd, Oregon Institute of Technologys GeoHeat Center, Roland Horne, Stanford University, Matthew MacKenzie, Uberity, Joe Moore, University of Utah, Duane Nickull, Uberity, Stephen Richard, Arizona Geological Survey, and Lisa Shevenell, University of Nevada, Reno. NGDS User Centered Design: Meeting the Needs of the Geothermal Community, discusses the user- centered design approach taken in the development of a user interface solution for the NGDS. The development process is research based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user interface for the widest and greatest utility. Authors of this paper are Harold Blackman, Boise State University, Suzanne Boyd, Anthro-Tech, Kim Patten, Arizona Geological Survey, and Sam Zheng, Siemens Corporate Research. Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Node on the National Geothermal Data System, describes the motivation behind the development of the Geothermal Data Repository (GDR) and its role in the NGDS. This includes the benefits of using the GDR to share geothermal data of all types and DOEs data submission process. Authors of this paper are Jon Weers, National Renewable Energy Laboratory and Arlene Anderson, US DOE Geothermal Technologies Office. Finally, Developing the NGDS Adoption of CKAN for Domestic & International Data Deployment, provides an overview of the Node-In-A-Box software package designed to provide data consumers with a highly functional interface to access the system, and to ease the burden on data providers who wish to publish data in the system. It is important to note that this software package constitutes a reference implementation and that the NGDS architecture is based on open standards, which means other server software can make resources available, and other client applications can utilize NGDS data. Authors of this paper are Ryan Clark, Arizona Geological Survey (AZGS), Christoph Kuhmuench, Siemens Corporate Research, and Stephen Richard, AZGS.

  2. Beyond Diesel - Renewable Diesel

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  3. NREL Releases Report on Policy Options to Advance Geothermal Exploration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NREL Releases Report on Policy Options to Advance Geothermal Exploration NREL Releases Report on Policy Options to Advance Geothermal Exploration July 9, 2014 - 12:13pm Addthis A new DOE report, Geothermal Exploration Policy Mechanisms, was recently released by the National Renewable Energy Laboratory | photo courtesy of Geothermal Resources Council. A new DOE report, Geothermal Exploration Policy Mechanisms, was recently released by the National Renewable Energy

  4. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford ...

  5. Why geothermal energy? Geothermal utilization in the Philippines

    SciTech Connect (OSTI)

    Gazo, F.M.

    1997-12-31

    This paper discusses the advantages of choosing geothermal energy as a resource option in the Philippine energy program. The government mandates the full-scale development of geothermal energy resources to meet increased power demand brought by rapid industrialization and economic growth, and to reduce fossil fuel importation. It also aims to realize these additional geothermal capacities by tapping private sector investments in the exploration, development, exploitation, construction, operation and management of various geothermal areas in the country.

  6. Fuel Synthesis Catalysis Laboratory: Catalytic Testing for Thermochemical Transformations of Molecules (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis Catalysis Laboratory Catalytic testing for thermochemical transformations of molecules NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL's Fuel Synthesis Catalysis Laboratory (FSCL) provides a wide range of capabilities in heterogeneous catalyst testing. Current research areas of emphasis include the transformation of biomass pyrolysis and gasification products to

  7. Renewable energy annual 1996

    SciTech Connect (OSTI)

    1997-03-01

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

  8. Renewables Portfolio Standard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Utility Local Government Retail Supplier Savings Category Geothermal Electric Solar Thermal Electric Solar Photovoltaics Wind (All) Biomass Hydroelectric Fuel Cells...

  9. Sandia Participates in Preparation of New Mexico Renewable Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Preparation of New Mexico Renewable Energy Storage Report - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel

  10. Most Viewed Documents for Renewable Energy Sources: December 2014 | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy, Office of Scientific and Technical Information Most Viewed Documents for Renewable Energy Sources: December 2014 Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 339 Generalized displacement correlation method for estimating stress intensity factors Fu, P; Johnson, S M; Settgast, R R; Carrigan, C R (2011) 107 Seventh Edition Fuel Cell Handbook NETL (2004) 96 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman

  11. Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Geothermal EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will

  12. National Fuel Cell Technology Evaluation Center (NFCTEC); (NREL) National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam

    2014-03-11

    This presentation gives an overview of the National Fuel Cell Technology Evaluation Center (NFCTEC), describes how NFCTEC benefits the hydrogen and fuel cell community, and introduces a new fuel cell cost/price aggregation project.

  13. Making Fuel Cells Cleaner, Better, and Cheaper(Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    helps reduce contaminants in fuel cells, enabling the industry to cut costs and commercialize state-of-the-art technologies. As fuel cell systems become more commercially com- petitive, and as automo- tive fuel cell research and development trend toward decreased catalyst loadings and thinner membranes, fuel cell operation becomes even more susceptible to contaminants. Therefore, the National Renewable Energy Laboratory (NREL) and its partners have performed research on contaminants derived from

  14. Renewable Diesel Fuels: Status of Technology and R&D Needs |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2002deermccormick.pdf More Documents & Publications New Diesel Feedstocks and Future Fuels Return Condensate to the Boiler BiodieselFuelManagementBestPracticesReport.pdf

  15. Progress report on renewable energy in Hawaii

    SciTech Connect (OSTI)

    Troy, M.; Brown, N.E.

    1982-04-01

    Renewable energy projects in Hawaii are reviewed as follows: geothermal energy, ocean energy, biomass, wind energy, direct solar energy, hydroelectric and other energy.

  16. U.S. Geothermal Announces Successful Completion

    Broader source: Energy.gov [DOE]

    U.S. Geothermal Inc. (“U.S. Geothermal”), a renewable energy company focused on the production of electricity from geothermal energy, announced today that the first full size production well (NHS-1) at the Neal Hot Springs Project was successfully completed on May 23 and an initial flow test confirms the presence of a geothermal reservoir.

  17. Federal Interagency Geothermal Activities 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy FEDERAL INTERAGENCY GEOTHERMAL ACTIVITIES Updated JUNE 2011 WORKING DRAFT 2 FEDERAL INTERAGENCY GEOTHERMAL ACTIVITIES D R A F T The principal organizers of this updated document were Arlene Anderson of the Geothermal Technologies Program, U.S. Department of Energy, and Loretta Prencipe, Richard M. Todaro (technical editor), New West Technologies, LLC, and David Cuyler, Distinguished Technical Fellow, Sandia

  18. Iceland Geothermal Conference 2013 - Geothermal Policies and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal ...

  19. Hollett Takes on Renewable Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hollett Takes on Renewable Power Hollett Takes on Renewable Power January 6, 2015 - 11:41am Addthis Hollett speaks on the Energy Department's geothermal portfolio at the largest geothermal industry gathering of the year in Portland, Oregon, September 2014. Hollett speaks on the Energy Department's geothermal portfolio at the largest geothermal industry gathering of the year in Portland, Oregon, September 2014. Doug Hollett, director of the Geothermal Technologies Office (GTO), was promoted to

  20. State Policies Provide Critical Support for Renewable Electricity

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2008-07-15

    Growth in renewable energy in the U.S. over the past decade has been propelled by a number of forces, including rising fossil fuel prices, environmental concerns, and policy support at the state and federal levels. In this article, we review and discuss what are arguably the two most important types of state policies for supporting electricity generation from geothermal and other forms of renewable energy: renewables portfolio standards and utility integrated resource planning requirements. Within the Western U.S., where the vast majority of the nation's readily-accessible geothermal resource potential resides, these two types of state policies have been critical to the growth of renewable energy, and both promise to continue to play a fundamental role for the foreseeable future. In its essence, a renewables portfolio standard (RPS) requires utilities and other retail electricity suppliers to produce or purchase a minimum quantity or percentage of their generation supply from renewable resources. RPS purchase obligations generally increase over time, and retail suppliers typically must demonstrate compliance on an annual basis. Mandatory RPS policies are backed by various types of compliance enforcement mechanisms, although most states have incorporated some type of cost-containment provision, such as a cost cap or a cap on retail rate impacts, which could conceivably allow utilities to avoid (full) compliance with their RPS target. Currently, 27 states and the District of Columbia have mandatory RPS requirements. Within the eleven states of the contiguous Western U.S., all but three (Idaho, Utah, and Wyoming) now have a mandatory RPS legislation (Utah has a more-voluntary renewable energy goal), covering almost 80% of retail electricity sales in the region. Although many of these state policies have only recently been established, their impact is already evident: almost 1800 MW of new renewable capacity has been installed in Western states following the implementation of RPS policies. To date, wind energy has been the primary beneficiary of state RPS policies, representing approximately 83% of RPS-driven renewable capacity growth in the West through 2007. Geothermal energy occupies a distant second place, providing 7% of RPS-driven new renewable capacity in the West since the late 1990s, though geothermal's contribution on an energy (MWh) basis is higher. Looking to the future, a sizable quantity of renewable capacity beyond pre-RPS levels will be needed to meet state RPS mandates: about 25,000 MW by 2025 within the Western U.S. Geothermal energy is beginning to provide an increasingly significant contribution, as evidenced by the spate of new projects recently announced to meet state RPS requirements. Most of this activity has been driven by the RPS policies in California and Nevada, where the Geothermal Energy Association has identified 47 new geothermal projects, totaling more than 2,100 MW, in various stages of development. Additional geothermal projects in Arizona, New Mexico, Oregon, and Washington are also under development to meet those states RPS requirements. The other major state policy driver for renewable electricity growth, particularly in the West, is integrated resource planning (IRP). IRP was first formalized as a practice in the 1980s, but the practice was suspended in some states as electricity restructuring efforts began. A renewed interest in IRP has emerged in the past several years, however, with several Western states (California, Montana, and New Mexico) reestablishing IRP and others developing new rules to strengthen their existing processes. In its barest form, IRP simply requires that utilities periodically submit long-term resource procurement plans in which they evaluate alternative strategies for meeting their resource needs over the following ten to twenty years. However, many states have developed specific requirements for the IRP process that directly or indirectly support renewable energy. The most general of these is an explicit requirement that utilities evaluate renewables, and that

  1. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Renewable Electricity Profile 2010 North Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,674 100.0 Total Net Summer Renewable Capacity 2,499 9.0 Geothermal - - Hydro Conventional 1,956 7.1 Solar 35 0.1 Wind - - Wood/Wood Waste 481 1.7

  2. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Pennsylvania Renewable Electricity Profile 2010 Pennsylvania profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 45,575 100.0 Total Net Summer Renewable Capacity 1,984 4.4 Geothermal - - Hydro Conventional 747 1.6 Solar 9 * Wind 696 1.5 Wood/Wood Waste 108 0.2

  3. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Rhode Island Renewable Electricity Profile 2010 Rhode Island profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,782 100.0 Total Net Summer Renewable Capacity 28 1.6 Geothermal - - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1

  4. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Renewable Electricity Profile 2010 South Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 23,982 100.0 Total Net Summer Renewable Capacity 1,623 6.8 Geothermal - - Hydro Conventional 1,340 5.6 Solar - - Wind - - Wood/Wood Waste 255 1.1

  5. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Dakota Renewable Electricity Profile 2010 South Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - -

  6. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Tennessee Renewable Electricity Profile 2010 Tennessee profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,417 100.0 Total Net Summer Renewable Capacity 2,847 13.3 Geothermal - - Hydro Conventional 2,624 12.3 Solar - - Wind 29 0.1 Wood/Wood Waste 185 0.9

  7. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Vermont Renewable Electricity Profile 2010 Vermont profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,128 100.0 Total Net Summer Renewable Capacity 408 36.2 Geothermal - - Hydro Conventional 324 28.7 Solar - - Wind 5 0.5 Wood/Wood Waste 76 6.7 MSW/Landfill Gas 3

  8. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wisconsin Renewable Electricity Profile 2010 Wisconsin profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 17,836 100.0 Total Net Summer Renewable Capacity 1,267 7.1 Geothermal - - Hydro Conventional 492 2.8 Solar - - Wind 449 2.5 Wood/Wood Waste 239 1.3

  9. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming Renewable Electricity Profile 2010 Wyoming profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,986 100.0 Total Net Summer Renewable Capacity 1,722 21.6 Geothermal - - Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  10. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Renewable Electricity Profile 2010 Alabama profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill

  11. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Renewable Electricity Profile 2010 Alaska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,067 100.0 Total Net Summer Renewable Capacity 422 20.4 Geothermal - - Hydro Conventional 414 20.1 Solar - - Wind 7 0.4 Wood/Wood Waste - - MSW/Landfill Gas - -

  12. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Renewable Electricity Profile 2010 Arizona profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,392 100.0 Total Net Summer Renewable Capacity 2,901 11.9 Geothermal - - Hydro Conventional 2,720 10.1 Solar 20 - Wind 128 - Wood/Wood Waste 583 1.8

  13. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Renewable Electricity Profile 2010 Connecticut profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,284 100.0 Total Net Summer Renewable Capacity 281 3.4 Geothermal - - Hydro Conventional 122 1.5 Solar - - Wind - -

  14. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Renewable Electricity Profile 2010 Delaware profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,389 100.0 Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - Wind 2 0.1 Wood/Wood

  15. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Renewable Electricity Profile 2010 District of Columbia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source - Primary Renewable Energy Generation Source - Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 790 100.0 Total Net Summer Renewable Capacity - - Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  16. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Renewable Electricity Profile 2010 Georgia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 36,636 100.0 Total Net Summer Renewable Capacity 2,689 7.3 Geothermal - - Hydro Conventional 2,052 5.6 Solar - - Wind - - Wood/Wood Waste 617 1.7 MSW/Landfill Gas

  17. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Renewable Electricity Profile 2010 Kansas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,543 100.0 Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar - - Wind 1,072 8.5 Wood/Wood Waste - - MSW/Landfill Gas 7 0.1 Other Biomass - -

  18. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Renewable Electricity Profile 2010 Louisiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,744 100.0 Total Net Summer Renewable Capacity 517 1.9 Geothermal - - Hydro Conventional 192 0.7 Solar - - Wind - - Wood/Wood Waste 311 1.2 MSW/Landfill Gas - -

  19. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Renewable Electricity Profile 2010 Maryland profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,516 100.0 Total Net Summer Renewable Capacity 799 6.4 Geothermal - - Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 Wood/Wood Waste 3 * MSW/Landfill Gas

  20. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Renewable Electricity Profile 2010 Massachusetts profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,697 100.0 Total Net Summer Renewable Capacity 566 4.1 Geothermal - - Hydro Conventional 262 1.9 Solar 4 * Wind 10 0.1 Wood/Wood

  1. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Renewable Electricity Profile 2010 Mississippi profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 15,691 100.0 Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste 235 1.5 MSW/Landfill Gas - -

  2. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Renewable Electricity Profile 2010 Missouri profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,739 100.0 Total Net Summer Renewable Capacity 1,030 4.7 Geothermal - - Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 Wood/Wood Waste - - MSW/Landfill Gas

  3. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Renewable Electricity Profile 2010 Montana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 5,866 100.0 Total Net Summer Renewable Capacity 3,085 52.6 Geothermal - - Hydro Conventional 2,705 46.1 Solar - - Wind 379 6.5 Wood/Wood Waste - - MSW/Landfill

  4. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Renewable Electricity Profile 2010 Nebraska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,857 100.0 Total Net Summer Renewable Capacity 443 5.6 Geothermal - - Hydro Conventional 278 3.5 Solar - - Wind 154 2.0 Wood/Wood Waste - - MSW/Landfill Gas 6

  5. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Renewable Electricity Profile 2010 New Hampshire profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 4,180 100.0 Total Net Summer Renewable Capacity 671 16.1 Geothermal - - Hydro Conventional 489 11.7 Solar - - Wind 24 0.6 Wood/Wood Waste 129 3.1

  6. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Renewable Electricity Profile 2010 New Jersey profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 18,424 100.0 Total Net Summer Renewable Capacity 230 1.2 Geothermal - - Hydro Conventional 4 * Solar 28 0.2 Wind 8 * Wood/Wood

  7. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Renewable Electricity Profile 2010 North Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,674 100.0 Total Net Summer Renewable Capacity 2,499 9.0 Geothermal - - Hydro Conventional 1,956 7.1 Solar 35 0.1 Wind - - Wood/Wood Waste 481 1.7

  8. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Renewable Electricity Profile 2010 Pennsylvania profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 45,575 100.0 Total Net Summer Renewable Capacity 1,984 4.4 Geothermal - - Hydro Conventional 747 1.6 Solar 9 * Wind 696 1.5 Wood/Wood Waste 108 0.2

  9. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Renewable Electricity Profile 2010 Rhode Island profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,782 100.0 Total Net Summer Renewable Capacity 28 1.6 Geothermal - - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1

  10. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Renewable Electricity Profile 2010 South Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 23,982 100.0 Total Net Summer Renewable Capacity 1,623 6.8 Geothermal - - Hydro Conventional 1,340 5.6 Solar - - Wind - - Wood/Wood Waste 255 1.1

  11. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Renewable Electricity Profile 2010 South Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - -

  12. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Renewable Electricity Profile 2010 Tennessee profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,417 100.0 Total Net Summer Renewable Capacity 2,847 13.3 Geothermal - - Hydro Conventional 2,624 12.3 Solar - - Wind 29 0.1 Wood/Wood Waste 185 0.9

  13. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Renewable Electricity Profile 2010 Vermont profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,128 100.0 Total Net Summer Renewable Capacity 408 36.2 Geothermal - - Hydro Conventional 324 28.7 Solar - - Wind 5 0.5 Wood/Wood Waste 76 6.7 MSW/Landfill Gas 3

  14. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Renewable Electricity Profile 2010 Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 24,109 100.0 Total Net Summer Renewable Capacity 1,487 6.2 Geothermal - - Hydro Conventional 866 3.6 Solar - - Wind - - Wood/Wood Waste 331 1.4 MSW/Landfill Gas

  15. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Renewable Electricity Profile 2010 West Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 16,495 100.0 Total Net Summer Renewable Capacity 715 4.3 Geothermal - - Hydro Conventional 285 1.7 Solar - - Wind 431 2.6 Wood/Wood Waste - - MSW/Landfill Gas - -

  16. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Renewable Electricity Profile 2010 Wisconsin profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 17,836 100.0 Total Net Summer Renewable Capacity 1,267 7.1 Geothermal - - Hydro Conventional 492 2.8 Solar - - Wind 449 2.5 Wood/Wood Waste 239 1.3

  17. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Renewable Electricity Profile 2010 Wyoming profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,986 100.0 Total Net Summer Renewable Capacity 1,722 21.6 Geothermal - - Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  18. Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States

    SciTech Connect (OSTI)

    Green, B. D.; Nix, R. G.

    2006-11-01

    On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

  19. Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    The issues of the geothermal resource at Brady's Hot Springs are dealt with: the prospective supply of feedstocks to the ethanol plant, the markets for the spent grain by-products of the plant, the storage, handling and transshipment requirements for the feedstocks and by-products from a rail siding facility at Fernley, the probable market for fuel ethanol in the region, and an assessment of the economic viability of the entire undertaking.

  20. Renewable Natural Gas- Developer Perspective

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsRenewable Natural Gas - Developer PerspectiveDavid Ross, Managing Director, MultiGen International, LLC

  1. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

  2. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FUEL CELL FUEL CELL FUEL CELL Fourth Edition November 1998 Fuel Cell Handbook Fuel Cell Handbook Fourth Edition November 1998 DOE/FETC-99/1076 by J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, and M.G. Klett Parsons Corporation Reading, PA 19607 Under Contract No. DE-AC21-94MC31166 for U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 Fuel Cell Handbook, Fourth Edition Contents Disclaimer List of

  3. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This fact sheet describes opportunities for interested stationary fuel cell developers and end users to participate in an objective and credible analysis of stationary fuel cell systems to benchmark the current state of the technology and support industry growth.

  4. Drop In Fuels: Where the Road Leads

    Broader source: Energy.gov [DOE]

    Reviews key fuel industry drivers, renewable fuel mandates and projected impact on hydrocarbon fuels

  5. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, Marc; Saur, Genevieve; Ramsden, Todd; Eichman, Joshua

    2015-05-28

    This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-­carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.

  6. Profiles in renewable energy: Case studies of successful utility-sector projects

    SciTech Connect (OSTI)

    Anson, S.; Sinclair, K.; Swezey, B.

    1993-10-01

    As considerations of fuel diversity, environmental concerns, and market uncertainties are increasingly factored into electric utility resource planning, renewable energy technologies are beginning to find their place in the utility resource portfolio. This document profiles 10 renewable energy projects, utilizing six different renewable resources, that were built in the US throughout the 1980s. The resources include: biomass, geothermal, hydropower, photovoltaics, solar thermal, and wind. For each project, the factors that were key to its success and the development issues that it faced are discussed, as are the project`s cost, performance, and environmental impacts and benefits.

  7. Geothermal Industry Applauds Congressional Action on Tax Legislation

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association applauds Congress for adopting today, as part of bi-partisan tax legislation, important changes in the underlying terms of the federal tax incentives for new geothermal and other renewable power projects.

  8. Neal Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    three units was completed in July 2012.5 The power plant is owned and operated by U.S. Geothermal Inc., a renewable energy company focused on developing geothermal resources....

  9. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

  10. New Analysis Methods Estimate a Critical Property of Ethanol Fuel Blends (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods developed at NREL disclose the impact of ethanol on gasoline blend heat of vaporization with potential for improved efficiency of spark-ignition engines. More stringent standards for fuel economy, regulation of greenhouse gas emissions, and the mandated increase in the use of renew- able fuel are driving research to improve the efficiency of spark ignition engines. When fuel properties such as octane number and evaporative cooling (heat of vaporization or HOV) are insufficient, they

  11. Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2013-11-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power system at the site.

  12. Development of geothermally assisted process for production of liquid fuels and chemicals from wheat straw

    SciTech Connect (OSTI)

    Murphy, V.G.; Linden, J.C.; Moreira, A.R.; Lenz, T.G.

    1981-06-01

    The effects of variations in autohydrolysis conditions on the production of fermentable sugars from wheat straw are investigated. Both the direct production of sugar from the autohydrolysis of hemicellulose and the subsequent yield from the enzymatic hydrolysis of cellulose are considered. The principal parameters studied were time, temperature, and water/fiber weight ratio; however, the effects of adding minor amounts of phenol and aluminum sulfate to the autohydrolysis charge were also investigated. A brief study was made of the effects of two major parameters, substrate concentration and enzyme/substrate ratio, on the sugar yield from enzymatic hydrolysis of optimally pretreated straw. The efficiency with which these sugars could be fermented to ethanol was studied. In most cases experiments were carried out using distilled water; however, the effects of direct use of geothermal water were determined for each of the major steps in the process. An appendix to the body of the report describes the results of a preliminary economic evaluation of a plant designed to produce 25 x 10/sup 6/ gallons of ethanol per year from wheat straw using the best process conditions determined in the above work. Also appended are the results from a preliminary investigation of the applicability of autohydrolysis technology to the production of fermentable sugars from corn stover.

  13. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  14. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  15. Geothermal Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy ...

  16. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  17. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    2014-05-27

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  18. Renewable energy plan of action for American Samoa

    SciTech Connect (OSTI)

    Shupe, J.W. . Pacific Site Office); Stevens, J.W. )

    1990-11-01

    American Samoa has no indigenous fossil fuels and is almost totally dependent for energy on seaborne petroleum. However, the seven Pacific Islands located at 14 degrees south latitude that constitute American Samoa have a wide variety of renewable resources with the potential for substituting for imported oil. Included as possible renewable energy conversion technologies are solar thermal, photovoltaics, wind, geothermal, ocean thermal, and waste-to-energy recovery. This report evaluates the potential of each of these renewable energy alternatives and establishes recommended priorities for their development in American Samoa. Rough cost estimates are also included. Although renewable energy planning is highly site specific, information in this report should find some general application to other tropical insular areas.

  19. National Template: Stationary & Portable Fuel Cell Systems (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for stationary and portable fuel cell systems.

  20. Guidance: Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246: Federal Fleet Program, Federal Energy Management Program, U.S. Department of Energy, March 2011

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

  1. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure), Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Guide to Alternative Fuel Commercial Lawn Equipment Contents Introduction........................... 4 Compressed Natural Gas ........................ 6 Biodiesel ................................. 6 Electricity ............................... 7 Propane .................................. 8 Incentives ............................... 14 Special Considerations ...... 14 Resources............................... 15 A single commercial lawnmower can annually use as much gaso- line or diesel fuel as a

  2. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005)...

  3. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, New Zealand (Ranalli & Rybach, 2005)...

  4. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration...

  5. Geothermal Energy Association Recognizes the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  6. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    SciTech Connect (OSTI)

    Anderson, Arlene; Blackwell, David; Chickering, Cathy; Boyd, Toni; Horne, Roland; MacKenzie, Matthew; Moore, Joseph; Nickull, Duane; Richard, Stephen; Shevenell, Lisa A.

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  7. FEMP Renewable Energy Overview

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    This four-page overview describes how Federal agencies can contact the Department of Energy's Federal Energy Management Program (FEMP) to obtain assistance in acquiring renewable energy systems, renewable fuels, and renewable ("green") power for use in their facilities and vehicles. Renewable resources, technologies, and fuels are described, as well as Federal goals for using clean, sustainable renewable energy; the current goal is to supply 2.5% of the Federal Government's energy with renewable sources by 2005. Also included is a description of the resources and technologies themselves and associated benefits.

  8. Geothermal Technologies Program Peer Review Program June 6 -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Quality Geothermal Data Sets * Technology Assessment of Logging Techniques Systems ... Innovative Heat Recovery FOA Energy Efficiency & Renewable Energy eere.energy.gov 16 ...

  9. El Paso County Geothermal Electric Generation Project: Innovative...

    Open Energy Info (EERE)

    Bliss and other military reservations obtain specified percentages of their power from renewable sources of production. The geothermal resource to be evaluated, if commercially...

  10. DOE Office of Indian Energy Foundational Course on Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foundational Course Renewable Energy Technologies: Geothermal Webinar (text version) Below ... This can be compared with the 3,000 megawatts that are currently in production. The third ...

  11. RAPID/Geothermal/Environment/Nevada | Open Energy Information

    Open Energy Info (EERE)

    permitting process for Class III, industrial solid waste disposal, for renewable energy sources (including geothermal). A Class III industrial solid waste disposal permit...

  12. Guidebook to Geothermal Power Finance | Open Energy Information

    Open Energy Info (EERE)

    LAUNCH TOOL Name: Guidebook to Geothermal Power Finance AgencyCompany Organization: J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Partner: National Renewable...

  13. Nevada Geothermal Operating Company LLC | Open Energy Information

    Open Energy Info (EERE)

    is an experienced renewable energy company, focused on developing and generating clean, sustainable electric power from geothermal resources. The Company has headquarters in...

  14. Safety Measures a hinder for Geothermal Drilling | Open Energy...

    Open Energy Info (EERE)

    2010 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Safety Measures a hinder for Geothermal Drilling Citation Renewable Power...

  15. Advanced Heat/Mass Exchanger Technology for Geothermal and solar...

    Broader source: Energy.gov (indexed) [DOE]

    HeatMass Exchanger Technology for Geothermal and solar Renewable Energy Systems presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon ...

  16. Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)

    SciTech Connect (OSTI)

    Brinkman, G.; Lew, D.; Denholm, P.

    2012-09-01

    Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

  17. Dominica Grants Geothermal Exploration and Development License...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal energy is generated by heat stored beneath the earth's surface and therefore requires no purchase of fuel. Efforts have been ongoing throughout the Caribbean to harness ...

  18. List of Geothermal Incentives | Open Energy Information

    Open Energy Info (EERE)

    Coal with CCS Concentrating Solar Power Energy Storage Fuel Cells Geothermal Electric Natural Gas Nuclear Tidal Energy Wave Energy Wind energy BiomassBiogas Hydroelectric...

  19. Geothermal Energy Summary

    SciTech Connect (OSTI)

    J. L. Renner

    2007-08-01

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75C water from shallow wells. Power production is assisted by the availability of gravity fed, 7C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earths crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

  20. Regenerative Fuel Cells: Renewable Energy Storage Devices Based on Neutral Water Input

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: Proton Energy Systems is developing an energy storage device that converts water to hydrogen fuel when excess electricity is available, and then uses hydrogen to generate electricity when energy is needed. The system includes an electrolyzer, which generates and separates hydrogen and oxygen for storage, and a fuel cell which converts the hydrogen and oxygen back to electricity. Traditional systems use acidic membranes, and require expensive materials including platinum and titanium for key parts of the system. In contrast, Proton Energy Systems new system will use an inexpensive alkaline membrane and will contain only inexpensive metals such as nickel and stainless steel. If successful, Proton Energy Systems system will have similar performance to todays regenerative fuel cell systems at a fraction of the cost, and can be used to store electricity on the electric grid.

  1. April 2013 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy, Office of Scientific and Technical Information April 2013 Most Viewed Documents for Renewable Energy Sources Science Subject Feed Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 1252 /> Seventh Edition Fuel Cell Handbook NETL (2004) 628 /> Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 290 /> Chapter 17. Engineering cost analysis Higbee, Charles V. (1998) 223 /> Geothermal Power Generation - A Primer on

  2. Cost of Renewable Energy Technology Options | Open Energy Information

    Open Energy Info (EERE)

    available for the following renewable energy sources: biomass, geothermal, concentrated solar, photovoltaics and wind power. References Retrieved from "http:en.openei.orgw...

  3. Renewables in Global Energy Supply | Open Energy Information

    Open Energy Info (EERE)

    Sector: Energy Focus Area: Biomass, Geothermal, Solar, Wind, Hydrogen Website: www.iea.orgpapers2006renewablefactsheet.pdf Renewables in Global Energy Supply Screenshot...

  4. State & Local Renewable Power Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The DOE Office of Energy Efficiency and Renewable Energy provides tools, resources, and more on solar, ... National Geothermal Data System houses a collection of nationwide ...

  5. Secretary Moniz: What the Natural Gas Boom Means for Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States should take advantage of the natural gas boom and use it as an opportunity to further develop renewable energy sources like wind, solar, geothermal, and hydropower. ...

  6. BLM Lists 2011 Priority Renewable Energy Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    priority projects for developing onshore renewable energy on national public lands. The priority list includes nine solar projects, five wind projects, and five geothermal ...

  7. Geothermal Technologies Office Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Office Contacts Geothermal Technologies Office Contacts This page lists key Geothermal Technologies Office (GTO) staff, their assignments, and contact information. GTO is part of the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE). For general inquiries, please use the general contact information below. To provide feedback on this site or report technical issues, contact our Webmaster. General Contact Information U.S.

  8. NREL: Geothermal Technologies - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 December 18, 2008 GRC 2009 Annual Meeting Announced, Call for Abstracts Issued The Geothermal Resources Council (GRC) issued a call for abstracts today with the announcement of the world's largest geothermal event taking place October 4-7, 2009, in Reno, Nevada, at the Peppermill Resort Spa Casino. Themed "Geothermal 2009: Making Renewable Energy Hot," the GRC is the sponsor of the annual meeting. Archives Current News

  9. Sierra Geothermal's Key Find in Southern Nevada

    Broader source: Energy.gov [DOE]

    In May 2010, Sierra Geothermal determined temperature at the bottom of a well drilled at the company's Alum project near Silver Peak, Nev., was hot enough for commercial-sized geothermal energy production - measured as 147 degrees Celsius (297 degrees Fahrenheit). A promising discovery by a geothermal energy company that could boost use of the renewable source in southwest Nevada, power thousands of homes and create jobs.

  10. Energy 101: Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Energy 101: Geothermal Energy

  11. NREL: Geothermal Technologies - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 January 5, 2009 Geothermal Developers Remain Optimistic While the global financial crisis continues to rattle financial markets and companies worldwide, and shrinks capital available for renewable energy projects of all types, the outlook for geothermal development remains positive. Archives Current News | 2008

  12. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    SciTech Connect (OSTI)

    Anderson, Arlene; Blackwell, David; Chickering, Cathy; Boyd, Toni; Horne, Roland; MacKenzie, Matthew; Moore, Joseph; Nickull, Duane; Richard, Stephen; Shevenell, Lisa A.

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  13. Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2003-12-18

    For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the US Energy Information Administration (EIA), natural gas combined-cycle and combustion turbine power plants accounted for 96% of the total generating capacity added in the US between 1999 and 2002--138 GW out of a total of 144 GW. Looking ahead, the EIA expects that gas-fired technology will account for 61% of the 355 GW new generating capacity projected to come on-line in the US up to 2025, increasing the nationwide market share of gas-fired generation from 18% in 2002 to 22% in 2025. While the data are specific to the US, natural gas-fired generation is making similar advances in other countries as well. Regardless of the explanation for (or interpretation of) the empirical findings, however, the basic implications remain the same: one should not blindly rely on gas price forecasts when comparing fixed-price renewable with variable-price gas-fired generation contracts. If there is a cost to hedging, gas price forecasts do not capture and account for it. Alternatively, if the forecasts are at risk of being biased or out of tune with the market, then one certainly would not want to use them as the basis for resource comparisons or investment decisions if a more certain source of data (forwards) existed. Accordingly, assuming that long-term price stability is valued, the most appropriate way to compare the levelized cost of these resources in both cases would be to use forward natural gas price data--i.e. prices that can be locked in to create price certainty--as opposed to uncertain natural gas price forecasts. This article suggests that had utilities and analysts in the US done so over the sample period from November 2000 to November 2003, they would have found gas-fired generation to be at least 0.3-0.6 cents/kWh more expensive (on a levelized cost basis) than otherwise thought. With some renewable resources, in particular wind power, now largely competitive with gas-fired generation in the US (including the impact of the federal production tax credit and current high gas prices), a margin of 0.3-0.6 cents/kWh may in some cases be enough to sway resource decisions in favor of renewables.

  14. Geothermal Tomorrow

    Broader source: Energy.gov [DOE]

    This magazine-format report discusses recent strategies and activities of the DOE Geothermal Technologies Program, as well as an update of technologies and economics of the U.S. geothermal industry.

  15. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    California Renewable Electricity Profile 2010 California full profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 67,328 100.0 Total Net Summer Renewable Capacity 16,460 24.4 Geothermal 2,004 3.0 Hydro Conventional 10,141 15.1 Solar 475 0.7 Wind 2,812 4.2 Wood/Wood

  16. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    York Renewable Electricity Profile 2010 New York profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 39,357 100.0 Total Net Summer Renewable Capacity 6,033 15.3 Geothermal - - Hydro Conventional 4,314 11.0 Solar - - Wind 1,274 3.2 Wood/Wood Waste 86 0.2

  17. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Ohio Renewable Electricity Profile 2010 Ohio profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 33,071 100.0 Total Net Summer Renewable Capacity 231 0.7 Geothermal - - Hydro Conventional 101 0.3 Solar 13 * Wind 7 * Wood/Wood Waste 60 0.2 MSW/Landfill Gas 48 0.1

  18. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Oklahoma Renewable Electricity Profile 2010 Oklahoma profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass

  19. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Oregon Renewable Electricity Profile 2010 Oregon profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,261 100.0 Total Net Summer Renewable Capacity 10,684 74.9 Geothermal - - Hydro Conventional 8,425 59.1 Solar - - Wind 2,004 14.1 Wood/Wood Waste 221 1.6

  20. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Texas Renewable Electricity Profile 2010 Texas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 108,258 100.0 Total Net Summer Renewable Capacity 10,985 10.1 Geothermal - - Hydro Conventional 689 0.6 Solar 14 * Wind 9,952 9.2 Wood/Wood Waste 215 0.2 MSW/Landfill Gas 88 0.1 Other Biomass 28

  1. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    United States Renewable Electricity Profile 2010 United States profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,039,137 100.0 Total Net Summer Renewable Capacity 132,711 12.8 Geothermal 2,405 0.2 Hydro Conventional 78,825 7.6 Solar 941 0.1 Wind 39,135 3.8

  2. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Washington Renewable Electricity Profile 2010 Washington profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 30,478 100.0 Total Net Summer Renewable Capacity 23,884 78.4 Geothermal - - Hydro Conventional 21,181 69.5 Solar 1 * Wind 2,296 7.5 Wood/Wood Waste 368 1.2

  3. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Renewable Electricity Profile 2010 California full profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 67,328 100.0 Total Net Summer Renewable Capacity 16,460 24.4 Geothermal 2,004 3.0 Hydro Conventional 10,141 15.1 Solar 475 0.7 Wind 2,812 4.2 Wood/Wood

  4. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Renewable Electricity Profile 2010 Colorado profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,777 100.0 Total Net Summer Renewable Capacity 2,010 14.6 Geothermal - - Hydro Conventional 662 4.8 Solar 41 0.3 Wind 1,294 9.4 Wood/Wood Waste - - MSW/Landfill Gas 3 * Other Biomass 10

  5. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Renewable Electricity Profile 2010 Florida profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 59,222 100.0 Total Net Summer Renewable Capacity 1,182 2.0 Geothermal - - Hydro Conventional 55 0.1 Solar 123 0.2 Wind - - Wood/Wood Waste 344 0.6

  6. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Renewable Electricity Profile 2010 Hawaii profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Other Biomass Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,536 100.0 Total Net Summer Renewable Capacity 340 13.4 Geothermal 31 1.2 Hydro Conventional 24 0.9 Solar 2 0.1 Wind 62 2.4 Wood/Wood Waste - - MSW/Landfill Gas 60 2.4 Other Biomass

  7. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho Renewable Electricity Profile 2010 Idaho profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,990 100.0 Total Net Summer Renewable Capacity 3,140 78.7 Geothermal 10 0.3 Hydro Conventional 2,704 67.8 Solar - - Wind 352 8.8 Wood/Wood Waste 68 1.7 MSW/Landfill

  8. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Renewable Electricity Profile 2010 Illinois profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 44,127 100.0 Total Net Summer Renewable Capacity 2,112 4.8 Geothermal - - Hydro Conventional 34 0.1 Solar 9 * Wind 1,946 4.4 Wood/Wood Waste - - MSW/Landfill Gas 123 0.3 Other Biomass - -

  9. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana Renewable Electricity Profile 2010 Indiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,638 100.0 Total Net Summer Renewable Capacity 1,452 5.3 Geothermal - - Hydro Conventional 60 0.2 Solar - - Wind 1,340 4.8 Wood/Wood Waste - - MSW/Landfill Gas 53 0.2 Other Biomass s *

  10. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Renewable Electricity Profile 2010 Iowa profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,592 100.0 Total Net Summer Renewable Capacity 3,728 25.5 Geothermal - - Hydro Conventional 144 1.0 Solar - - Wind 3,569 24.5 Wood/Wood Waste - - MSW/Landfill Gas 11 0.1 Other Biomass 3 *

  11. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Renewable Electricity Profile 2010 Maine profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 4,430 100.0 Total Net Summer Renewable Capacity 1,692 38.2 Geothermal - - Hydro Conventional 738 16.6 Solar - - Wind 263 5.9 Wood/Wood Waste 600 13.6 MSW/Landfill Gas

  12. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Renewable Electricity Profile 2010 Michigan profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 29,831 100.0 Total Net Summer Renewable Capacity 807 2.7 Geothermal - - Hydro Conventional 237 0.8 Solar - - Wind 163 0.5 Wood/Wood Waste 232 0.8 MSW/Landfill Gas

  13. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Renewable Electricity Profile 2010 Minnesota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,715 100.0 Total Net Summer Renewable Capacity 2,588 17.6 Geothermal - - Hydro Conventional 193 1.3 Solar - - Wind 2,009 13.7 Wood/Wood Waste 177 1.2 MSW/Landfill Gas 134 0.9 Other

  14. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Renewable Electricity Profile 2010 Nevada profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 11,421 100.0 Total Net Summer Renewable Capacity 1,507 13.2 Geothermal 319 2.8 Hydro Conventional 1,051 9.2 Solar 137 1.2 Wind - - Wood/Wood Waste - - MSW/Landfill

  15. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Renewable Electricity Profile 2010 New Mexico profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,130 100.0 Total Net Summer Renewable Capacity 818 10.1 Geothermal - - Hydro Conventional 82 1.0 Solar 30 0.4 Wind 700 8.6 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 6 0.1

  16. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Renewable Electricity Profile 2010 New York profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 39,357 100.0 Total Net Summer Renewable Capacity 6,033 15.3 Geothermal - - Hydro Conventional 4,314 11.0 Solar - - Wind 1,274 3.2 Wood/Wood Waste 86 0.2

  17. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Renewable Electricity Profile 2010 North Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 6,188 100.0 Total Net Summer Renewable Capacity 1,941 31.4 Geothermal - - Hydro Conventional 508 8.2 Solar - - Wind 1,423 23.0 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 10

  18. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Renewable Electricity Profile 2010 Ohio profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 33,071 100.0 Total Net Summer Renewable Capacity 231 0.7 Geothermal - - Hydro Conventional 101 0.3 Solar 13 * Wind 7 * Wood/Wood Waste 60 0.2 MSW/Landfill Gas 48 0.1

  19. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Renewable Electricity Profile 2010 Oklahoma profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass

  20. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon Renewable Electricity Profile 2010 Oregon profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,261 100.0 Total Net Summer Renewable Capacity 10,684 74.9 Geothermal - - Hydro Conventional 8,425 59.1 Solar - - Wind 2,004 14.1 Wood/Wood Waste 221 1.6

  1. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Renewable Electricity Profile 2010 Texas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 108,258 100.0 Total Net Summer Renewable Capacity 10,985 10.1 Geothermal - - Hydro Conventional 689 0.6 Solar 14 * Wind 9,952 9.2 Wood/Wood Waste 215 0.2 MSW/Landfill Gas 88 0.1 Other Biomass 28

  2. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Renewable Electricity Profile 2010 Utah profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,497 100.0 Total Net Summer Renewable Capacity 528 7.0 Geothermal 42 0.6 Hydro Conventional 255 3.4 Solar - - Wind 222 3.0 Wood/Wood Waste - - MSW/Landfill Gas 9 0.1

  3. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington Renewable Electricity Profile 2010 Washington profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 30,478 100.0 Total Net Summer Renewable Capacity 23,884 78.4 Geothermal - - Hydro Conventional 21,181 69.5 Solar 1 * Wind 2,296 7.5 Wood/Wood Waste 368 1.2

  4. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    United States Renewable Electricity Profile 2010 United States profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,039,137 100.0 Total Net Summer Renewable Capacity 132,711 12.8 Geothermal 2,405 0.2 Hydro Conventional 78,825 7.6 Solar 941 0.1 Wind 39,135 3.8

  5. Community Renewable Energy Feasibility Fund Program

    Broader source: Energy.gov [DOE]

    The Oregon Department of Energy (ODOE) provides grants for feasibility studies for renewable energy, heat, and fuel projects under the Community Renewable Energy Feasibility Fund (CREFF). This...

  6. American Renewables LLC | Open Energy Information

    Open Energy Info (EERE)

    Renewables LLC Jump to: navigation, search Name: American Renewables LLC Place: Boston, Massachusetts Sector: Biomass Product: US developer of biomass-fueled power generating...

  7. Many Pathways to Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R.

    2008-02-01

    Presentation on the paths to renewable hydrogen presented by Robert Remick at the 2008 PowerGen: Renewable Energy and Fuels 2008 conference.

  8. Geothermal guidebook

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    The guidebook contains an overview, a description of the geothermal resource, statutes and regulations, and legislative policy concerns. (MHR)

  9. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect (OSTI)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  10. development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    field Leyte, Philippines. Report on exploration and development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL FIELD; GEOTHERMAL EXPLORATION; GEOTHERMAL POWER...

  11. How a Geothermal Power Plant Works (Simple) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Geothermal Power Plant Works (Simple) How a Geothermal Power Plant Works (Simple) Most power plants-whether fueled by coal, gas, nuclear power, or geothermal energy-have one feature in common: they convert heat to electricity. Heat from the Earth, or geothermal - Geo (Earth) + thermal (heat) - energy is accessed by drilling water or steam wells in a process similar to drilling for oil. Geothermal power plants have much in common with traditional power-generating stations. They use many of the

  12. District of Columbia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Primary Renewable Energy Capacity Source - Primary Renewable Energy Generation Source - Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 790 100.0 Total Net Summer Renewable Capacity - - Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 200 100.0 Total Renewable Net Generation - - Geothermal - - Hydro

  13. DOE Announces Geothermal Research Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Geothermal Research Initiative DOE Announces Geothermal Research Initiative October 2, 2009 - 1:58pm Addthis The U.S. Department of Energy (DOE) announces a new collaboration between the Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Office (GTO) to demonstrate low temperature geothermal electrical power generation systems using oilfield fluids produced at the Rocky Mountain Oilfield Testing Center (RMOTC). The

  14. Energy Department Opens Job Search for Geothermal Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Director Position | Department of Energy Job Search for Geothermal Technologies Office Director Position Energy Department Opens Job Search for Geothermal Technologies Office Director Position April 2, 2015 - 8:40am Addthis The Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, is seeking applications for the permanent position of Director to lead a national program in the development of innovative geothermal technologies that advance geothermal's role in the U.S.

  15. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy (Redirected from Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  16. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  17. Production of Hydrogen for Clean and Renewable Source of Energy for Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Deng, Xunming; Ingler, William B, Jr.; Abraham, Martin; Castellano, Felix; Coleman, Maria; Collins, Robert; Compaan, Alvin; Giolando, Dean; Jayatissa, Ahalapitiya. H.; Stuart, Thomas; Vonderembse, Mark

    2008-10-31

    This was a two-year project that had two major components: 1) the demonstration of a PV-electrolysis system that has separate PV system and electrolysis unit and the hydrogen generated is to be used to power a fuel cell based vehicle; 2) the development of technologies for generation of hydrogen through photoelectrochemical process and bio-mass derived resources. Development under this project could lead to the achievement of DOE technical target related to PEC hydrogen production at low cost. The PEC part of the project is focused on the development of photoelectrochemical hydrogen generation devices and systems using thin-film silicon based solar cells. Two approaches are taken for the development of efficient and durable photoelectrochemical cells; 1) An immersion-type photoelectrochemical cells (Task 3) where the photoelectrode is immersed in electrolyte, and 2) A substrate-type photoelectrochemical cell (Task 2) where the photoelectrode is not in direct contact with electrolyte. Four tasks are being carried out: Task 1: Design and analysis of DC voltage regulation system for direct PV-to-electrolyzer power feed Task 2: Development of advanced materials for substrate-type PEC cells Task 3: Development of advanced materials for immersion-type PEC cells Task 4: Hydrogen production through conversion of biomass-derived wastes

  18. A Review of Barriers to and Opportunities for the Integration of Renewable Energy in the Southeast

    SciTech Connect (OSTI)

    McConnell, Ben W; Hadley, Stanton W; Xu, Yan

    2011-08-01

    The objectives of this study were to prepare a summary report that examines the opportunities for and obstacles to the integration of renewable energy resources in the Southeast between now and the year 2030. The report, which is based on a review of existing literature regarding renewable resources in the Southeast, includes the following renewable energy resources: wind, solar, hydro, geothermal, biomass, and tidal. The evaluation was conducted by the Oak Ridge National Laboratory for the Energy Foundation and is a subjective review with limited detailed analysis. However, the report offers a best estimate of the magnitude, time frame, and cost of deployment of renewable resources in the Southeast based upon the literature reviewed and reasonable engineering and economic estimates. For the purposes of this report, the Southeast is defined as the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia. In addition, some aspects of the report (wind and geothermal) also consider the extended Southeast, which includes Maryland, Missouri, Oklahoma, and Texas. A description of the existing base of renewable electricity installations in the region is given for each technology considered. Where available, the possible barriers and other considerations regarding renewable energy resources are listed in terms of availability, investment and maintenance costs, reliability, installation requirements, policies, and energy market. As stated above, the report is a comprehensive review of renewable energy resources in the southeastern region of United States based on a literature study that included information obtained from the Southern Bio-Power wiki, sources from the Energy Foundation, sources available to ORNL, and sources found during the review. The report consists of an executive summary, this introductory chapter describing report objectives, a chapter on analysis methods and the status of renewable resources, chapters devoted to each identified renewable resource, and a brief summary chapter. Chapter 2 on analysis methods and status summarizes the benefits of integrating renewable energy resources in the Southeast. The utilization of the existing fuels, both the fossil fuels and the renewable energy resources, is evaluated. The financial rewards of renewable resources are listed, which includes the amount of fuel imported from outside the Southeast to find the net benefit of local renewable generation, and both the typical and new green job opportunities that arise from renewable generation in the Southeast. With the load growth in the Southeast, the growth of transmission and fossil fuel generation may not meet the growing demands for energy. The load growth is estimated, and the benefits of renewable resources for solving local growing energy demands are evaluated. Chapters 3-7 discuss the key renewable energy resources in the Southeast. Six resources available in this region that are discussed are (1) wind, including both onshore and offshore; (2) solar, including passive, photovoltaic, and concentrating; (3) biomass energy, including switchgrass, biomass co-firing, wood, woody biomass, wood industry by-products (harvesting residues, mill waste, etc.), agricultural byproducts, landfill gas to energy and anaerobic digester gas; (4) hydro; and (5) geothermal. Because of limited development, ocean wave and tidal were not considered to be available in significant quantity before 2030 and are not presented in the final analysis. Estimates on the location of potential megawatt generation from these renewable resources in the Southeast are made. Each chapter will describe the existing base of the renewable electricity installations in the region now and, when available, the base of the existing manufacturing capacity in the region for renewable energy resources hardware and software. The possible barriers and considerations for renewable energy resources are presented.

  19. Energy Department Opens National Competition to Advance Awareness on Geothermal Energy

    Broader source: Energy.gov [DOE]

    In support of President Obama's commitment to a clean energy future, the Energy Department announced today a new geothermal student competition: GeoEnergy Is Beautiful 2014 to promote geothermal energy as a player in the nation's renewable energy

  20. Department of Energy Announces $15 Million to Promote Innovative Geothermal Heat Recovery Methods and Technologies

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Program today announced a $15 million funding opportunity to research and develop innovative methods to extract heat from geothermal resources from the Earth's crust to produce clean, renewable energy.

  1. Geothermal Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Heat Pump Systems » Geothermal Heat Pumps Geothermal Heat Pumps Watch how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. Geothermal heat pumps (GHPs), sometimes referred to as GeoExchange, earth-coupled, ground-source, or water-source heat pumps, have been in use since the late 1940s. They use the constant temperature of the earth as the exchange medium

  2. Local Option- Rural Renewable Energy Development Zones

    Broader source: Energy.gov [DOE]

    Commercial renewable energy property in these zones are eligible for a 3 to 5 year local property tax exemption. Eligible property includes either wind, geothermal, solar, biomass, or other uncon...

  3. Tips: Renewable Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    system is not for you, you can buy electricity made from renewable energy like the sun, wind, water, plants, and geothermal from your utility company. You have many options...

  4. Award-winning research takes a fresh look at Geothermal Energy | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Award-winning research takes a fresh look at Geothermal Energy Award-winning research takes a fresh look at Geothermal Energy June 5, 2015 - 2:00pm Addthis Geothermal energy, traditionally a baseload power source among renewables, is poised to emerge also as a flexible power source, balancing intermittent wind and solar power production and reducing variability in energy prices. Source: NREL Geothermal energy, traditionally a baseload power source among renewables, is poised to

  5. Hawaii's Geothermal Development

    SciTech Connect (OSTI)

    Uemura, Roy T.

    1980-12-01

    On July 2, 1976, an event took place in the desolate area of Puna, on the island of Hawaii, which showed great promise of reducing Hawaii's dependence on fuel oil. This great event was the flashing of Hawaii's first geothermal well which was named HGP-A. The discovery of geothermal energy was a blessing to Hawaii since the electric utilities are dependent upon fuel oil for its own electric generating units. Over 50% of their revenues pay for imported fuel oil. Last year (1979) about $167.1 million left the state to pay for this precious oil. The HGP-A well was drilled to a depth of 6450 feet and the temperature at the bottom of the hole was measured at 676 F, making it one of the hottest wells in the world.

  6. Fun Fact Friday: U.S. Renewables on the Rise

    Broader source: Energy.gov [DOE]

    In 2012, 12% of our electricity came from U.S. power plants using renewable energy sources—including hydropower, wind, bioenergy, geothermal and solar. Thanks in part to government investments, the U.S. clean industry has more than doubled renewable energy generation from wind, solar, and geothermal sources since 2008.

  7. NREL Study Shows Renewable Energy Potential in Every State

    Office of Energy Efficiency and Renewable Energy (EERE)

    A new study of renewable energy's technical potential finds that every state in the nation has the space and resources to generate clean energy. The Department of Energy's National Renewable Energy Laboratory (NREL) produced the study, U.S. Renewable Energy Technical Potentials, which looks at each state's available renewable resources for solar, wind, biopower, geothermal, and hydropower energy.

  8. Stanford Geothermal Workshop- Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013.

  9. EPRI-DOE Joint Report Focuses on Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration

    Broader source: Energy.gov [DOE]

    The Energy Department released a report on fossil fleet transition with renewable integration, describing operational and engineering challenges to the fossil generation fleet.

  10. Mississippi Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 15,691 100.0 Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste 235 1.5 MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 54,487 100.0 Total Renewable Net

  11. Missouri Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,739 100.0 Total Net Summer Renewable Capacity 1,030 4.7 Geothermal - - Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 Wood/Wood Waste - - MSW/Landfill Gas 8 * Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 92,313 100.0 Total Renewable

  12. Alaska Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,067 100.0 Total Net Summer Renewable Capacity 422 20.4 Geothermal - - Hydro Conventional 414 20.1 Solar - - Wind 7 0.4 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 6,760 100.0 Total Renewable Net

  13. West Virginia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 16,495 100.0 Total Net Summer Renewable Capacity 715 4.3 Geothermal - - Hydro Conventional 285 1.7 Solar - - Wind 431 2.6 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 80,789 100.0 Total Renewable Net

  14. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy (Redirected from Geothermal Power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Energy RSF GeothermalPowerStation.jpg Geothermal energy...

  15. Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    No Name

    2014-10-01

    ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  16. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  17. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petro- leum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numer- ous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mow- ers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric, Geothermal Heat Pumps, Fuel Cells using Non-Renewable Fuels, Landfill Gas, Solar Pool Heating, Wind (Small), Geothermal Direct-Use, Fuel Cells using Renewable Fuels...

  19. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  20. Geothermal Technologies FY14 Budget At-a-Glance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY14 Budget At-a-Glance Geothermal Technologies FY14 Budget At-a-Glance Geothermal Technologies FY14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. PDF icon geothermal_ataglance_2014.pdf More Documents & Publications FY2016 Budget At-A-Glance Geothermal Technologies Office FY 2017 Budget At-A-Glance Geothermal Technologies Office FY 2015

  1. NREL: Geothermal Technologies - Neil Popovich

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Popovich Chemical Engineer-Multi Discipline On staff since 2010 Phone number: 303-275-3074 E-mail: Neil.Popovich@nrel.gov General Profile Neil Popovich is a member of the Systems Engineering and Program Integration Office (SEPIO). Areas of expertise Low temperature geothermal power production systems Mineral recovery from geothermal brines Data and instrumentation systems Fuel cell systems, manufacturing and engineering Education and background training M.S. in chemical engineering, University

  2. Energy Efficiency & Renewable Energy Bond Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Heat Solar Photovoltaics Wind (All) Biomass Combined Heat & Power Fuel Cells using Non-Renewable Fuels Daylighting Lighting Energy Mgmt. SystemsBuilding Controls Caulking...

  3. Renewable Electricity State Profiles - Energy Information Administrati...

    U.S. Energy Information Administration (EIA) Indexed Site

    Most popular Alternative Fuels Capacity and generation Consumption Environment Industry Characteristics Prices Production Projections Recurring Renewable energy type All reports ...

  4. Monthly/Annual Energy Review - renewable section

    Reports and Publications (EIA)

    2015-01-01

    Monthly and latest annual statistics on renewable energy production and consumption and overviews of fuel ethanol and biodiesel.

  5. Monthly/Annual Energy Review - renewable section

    Reports and Publications (EIA)

    2016-01-01

    Monthly and latest annual statistics on renewable energy production and consumption and overviews of fuel ethanol and biodiesel.

  6. Catalyst Renewables | Open Energy Information

    Open Energy Info (EERE)

    Renewables Place: Dallas, Texas Zip: 75204 Product: Pursue projects with low technical risk, stable fuel supply and prices, and long-term power purchase agreements References:...

  7. Renewable Fuels Module

    Gasoline and Diesel Fuel Update (EIA)

    sites is calculated by constructing a model of a representative 100-acre by 50-feet deep landfill site and by applying methane emission factors for high, low, and very low...

  8. Renewable Fuels Module

    Gasoline and Diesel Fuel Update (EIA)

    and are likely to occur in future years. Governments and businesses have adopted strategies to lessen the amount of waste generated without reducing economic output. The...

  9. Renewable Fuels Module

    Gasoline and Diesel Fuel Update (EIA)

    a combination of source reduction and recycling. To the extent that source reduction strategies are successful, they will likely alter the basic relationship between GDP and...

  10. Renewable Energy Renaissance Zones

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the purposes of renaissance zone designation, “renewable energy facility” means a facility that creates energy, fuels, or chemicals directly from the wind, the sun, trees, grasses, bio-solids,...

  11. Analysis of Low-Temperature Utilization of Geothermal Resources...

    Open Energy Info (EERE)

    low-enthalpy geothermal water will be designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. - Perform process optimizations and economic...

  12. List of Geothermal Electric Incentives | Open Energy Information

    Open Energy Info (EERE)

    Coal with CCS Concentrating Solar Power Energy Storage Fuel Cells Geothermal Electric Natural Gas Nuclear Tidal Energy Wave Energy Wind energy BiomassBiogas Hydroelectric...

  13. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  14. SMU Geothermal Conference 2011 - Geothermal Technologies Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation at the SMU Geothermal Conference in June 2011. PDF icon gtp_smu_conference_reinhardt_2011.pdf More Documents & Publications Low Temperature/Coproduced/Geopressured Subprogram Overview AAPG Low-Temperature Webinar Geothermal Technologies Program Peer Review Program June 6 - 10, 2011

  15. Site Map | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Basic Search Advanced Search Geothermal FAQ About Geothermal Site Map Geothermal Feedback Website PoliciesImportant Links

  16. Frequently Asked Questions | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Frequently Asked Questions Frequently Asked Questions What is the Geothermal Legacy Collection? The Geothermal collection is available to the geothermal community and interested ...

  17. Geothermal Energy News

    Broader source: Energy.gov (indexed) [DOE]

    geothermal900546 Geothermal Energy News en EERE Announces Up to 4 Million for Critical Materials Recovery from Geothermal Fluids http:energy.goveerearticles...

  18. Geothermal Demonstration Plant

    Office of Scientific and Technical Information (OSTI)

    Preliminary Design Manual for a Geothermal Demonstration Plant at Heber, California ER-670 Research Project 580 Topical Report, February 1978 Prepared by q HOLT/PROCON (A Joint Venture of The Ben Holt Co. and Procon Incorporated) 201 South Lake Avenue Pasadena, California 91 101 Principal Investigators Ben Holt Edward L. Ghormley EPRl Project Manager Vase1 W. Roberts Fossil Fuel and Advanced Systems Division DISCLAIMER This report was prepared as an account of work sponsored by an agency of the

  19. Large Scale Renewable Energy Property Tax Abatement (Nevada State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Solar Photovoltaics Wind (All) Biomass Hydroelectric Municipal Solid Waste Fuel Cells using Non-Renewable Fuels Landfill Gas Wind (Small) Anaerobic Digestion Fuel Cells...

  20. GEOTHERMAL PROGWM REVIEW XI PROCEEDINGS

    Office of Scientific and Technical Information (OSTI)

    PROGWM REVIEW XI PROCEEDINGS "Geothermal Energy- The Environmentally Responsible Energy Technology for the Nineties." April 27-28,1993 Berkeley, CA Sponsored by: U.S. Department of Energy Assistant Secretary, Conservation and Renewable Energy l4EC E I VEL: L OCT 0 6 1993 Geothermal Division Washington, DC 20585 A DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof,

  1. Renewable energy 1998: Issues and trends

    SciTech Connect (OSTI)

    1999-03-01

    This report presents the following five papers: Renewable electricity purchases: History and recent developments; Transmission pricing issues for electricity generation from renewable resources; Analysis of geothermal heat pump manufacturers survey data; A view of the forest products industry from a wood energy perspective; and Wind energy developments: Incentives in selected countries. A glossary is included. 19 figs., 27 tabs.

  2. Interior Department Awards $3.7 Million to 13 Tribes for Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Economic Development (IEED) has awarded 3.7 million to 13 tribes that are developing renewable energy resources for their communities. IEED selected six geothermal, four...

  3. Renewable Electricity Generation Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories The Office of Energy Efficiency and Renewable Energy's (EERE) successes in converting tax dollars into more affordable, effective, and deployable renewable energy sources make it possible to use these technologies in more ways each day. Learn how EERE's investments in geothermal, solar, water, and wind energy translate into more efficient, affordable

  4. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association hosts its annual National Geothermal Summit in Reno, Nevada, June 3-4, 2015.

  5. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984)...

  6. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Witcher, 2008) Exploration Activity...

  7. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Spiegel, 1957) Exploration Activity...

  8. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity...

  9. Geothermal Literature Review At Coso Geothermal Area (1985) ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Coso Geothermal Area (1985) Exploration Activity Details Location Coso...

  10. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Farhar, 2002) Exploration Activity Details...

  11. Geothermal Literature Review At Geysers Geothermal Area (1984...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Geothermal Area (1984) Exploration Activity Details Location...

  12. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Fleischman, 2006) Exploration Activity...

  13. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Exploration Activity Details...

  14. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Summers, 1976) Exploration Activity...

  15. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Clemons, Et Al., 1988) Exploration...

  16. Geothermal Literature Review At Salton Trough Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location...

  17. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Exploration Activity Details...

  18. Geothermal Literature Review At Medicine Lake Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location...

  19. Geothermal Literature Review At Coso Geothermal Area (1984) ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Coso Geothermal Area (1984) Exploration Activity Details Location Coso...

  20. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Schochet, Et Al., 2001) Exploration...

  1. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Exploration...

  2. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Callender, 1981) Exploration Activity...

  3. End Use and Fuel Certification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Market Opportunities High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super ...

  4. Feedback | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Public Access Feedback Feedback If you have a question or comment about Geothermal, check to see if it is on our list of frequently asked questions. If your question isn't answered ...

  5. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  6. 2012 Renewable Energy Data Book

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The 2012 Renewable Energy Data Book is 128 pages of data in tables, figures and charts, and text. It provides a look at resources and usage for wind, solar, geothermal, hydro, hydrogen, and biopower. Developed at the National Renewable Energy Laboratory (NREL) for DOE's Office of Energy Efficiency and Renewable Energy (EERE), it was produced by Rachel Gelman, edited by Mike Meshek, and designed by Stacy Buchanan and Erica Augustine and released in October, 2013. Report number for this data book is DOE/GO-102013-4291.

  7. Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps On Nov. 3, 2011, Dave Peterson, a Project Leader at the National Renewable Energy Laboratory, presented a Webinar about Geothermal/Ground Source Heat Pumps and how to properly monitor their installation. View the webinar presentation or read the transcript. More Information Some resources and tools mentioned in the presentation include: U.S.

  8. Geothermal Technologies Program Coproduction Fact Sheet | Department of

    Energy Savers [EERE]

    Industry Ends 2012 on a High Note Geothermal Industry Ends 2012 on a High Note December 18, 2012 - 12:14pm Addthis Year-end highlights include new domestic projects, international development and policy benchmarks Washington, D.C. - The past 12 months saw continued economic challenges for many American industries, including those in the renewable energy field, but the country's geothermal community witnessed a year of growth, both domestically and abroad. The Geothermal Energy Association (GEA)

  9. track 4: enhanced geothermal systems (EGS) | geothermal 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review The Energy Department pursues research ...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric, Geothermal Heat Pumps, Fuel Cells using Non-Renewable Fuels, Landfill Gas, Solar Pool Heating, Wind (Small), Geothermal Direct-Use, Fuel Cells using Renewable...

  11. NREL: Renewable Resource Data Center Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of a man and a woman checking solar measurement instruments. The Renewable Resource Data Center (RReDC) provides access to an extensive collection of renewable energy resource data, maps, and tools. Biomass, geothermal, solar, and wind resource data for locations throughout the United States can be found through the RReDC. Almost every area of the country can take advantage of renewable energy technologies, but some technologies are better suited for particular areas than others. Knowing

  12. South Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 10,050 100.0 Total

  13. Montana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 5,866 100.0 Total Net Summer Renewable Capacity 3,085 52.6 Geothermal - - Hydro Conventional 2,705 46.1 Solar - - Wind 379 6.5 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 29,791 100.0 Total

  14. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 152,151 100.0 Total

  15. Connecticut Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,284 100.0 Total Net Summer Renewable Capacity 281 3.4 Geothermal - - Hydro Conventional 122 1.5 Solar - - Wind - - Wood/Wood Waste - - MSW/Landfill Gas 159 1.9 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net

  16. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,389 100.0 Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - Wind 2 0.1 Wood/Wood Waste - - MSW/Landfill Gas 8 0.2 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 5,628

  17. Energy Department Seeks Information on Geothermal Risk and Uncertainty Management

    Broader source: Energy.gov [DOE]

    The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) has issued a Request for Information (RFI) to help quantify and manage risk in geothermal exploration, in an effort...

  18. Stationary Fuel Cell System Composite Data Products: Data through Quarter 4 of 2014; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Saur, G.; Kurtz, J.; Ainscough, C.; Sprik, S.; Post, M.

    2015-04-01

    This publication includes 33 composite data products (CDPs) produced for stationary fuel cell systems, with data through the fourth quarter of 2014.

  19. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting &...

  20. Geothermal Program Review XI: proceedings. Geothermal Energy...

    Office of Scientific and Technical Information (OSTI)

    Conference: Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties Citation Details In-Document Search ...