Sample records for renewable fuel production

  1. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T.

    2008-03-30T23:59:59.000Z

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  2. Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities

    E-Print Network [OSTI]

    Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

  3. Fuel Cells and Renewable Gaseous Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsFuel Cells and Renewable Gaseous FuelsSarah Studer, ORISE Fellow—Fuel Cell Technologies Office, U.S. Department of Energy

  4. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15T23:59:59.000Z

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  5. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

  6. Production of Renewable Fuels from Biomass by FCC Co-processing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S. by6 (AprilProduction andDepartment

  7. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Not Available

    2006-11-01T23:59:59.000Z

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  8. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    comparison of fuel policies: Renewable fuel mandate, fuelcomparison of fuel policies: Renewable fuel mandate, fuel121, 2011. C. Fischer. Renewable Portfolio Standards: When

  9. Fueling America Through Renewable Resources Purdue extension

    E-Print Network [OSTI]

    Fueling America Through Renewable Resources BioEnergy Purdue extension The effect of ethanol The rapid growth of ethanol production in Indiana is leading to drastic changes in grain marketing movements of ethanol and byproducts. With no end in sight for the expansion of ethanol plants in the state

  10. Renewable Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl.,RenGenAmes,RenewableRFL Jump

  11. Production of Hydrogen for Clean and Renewable Source of Energy for Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Deng, Xunming; Ingler, William B, Jr.; Abraham, Martin; Castellano, Felix; Coleman, Maria; Collins, Robert; Compaan, Alvin; Giolando, Dean; Jayatissa, Ahalapitiya. H.; Stuart, Thomas; Vonderembse, Mark

    2008-10-31T23:59:59.000Z

    This was a two-year project that had two major components: 1) the demonstration of a PV-electrolysis system that has separate PV system and electrolysis unit and the hydrogen generated is to be used to power a fuel cell based vehicle; 2) the development of technologies for generation of hydrogen through photoelectrochemical process and bio-mass derived resources. Development under this project could lead to the achievement of DOE technical target related to PEC hydrogen production at low cost. The PEC part of the project is focused on the development of photoelectrochemical hydrogen generation devices and systems using thin-film silicon based solar cells. Two approaches are taken for the development of efficient and durable photoelectrochemical cells; 1) An immersion-type photoelectrochemical cells (Task 3) where the photoelectrode is immersed in electrolyte, and 2) A substrate-type photoelectrochemical cell (Task 2) where the photoelectrode is not in direct contact with electrolyte. Four tasks are being carried out: Task 1: Design and analysis of DC voltage regulation system for direct PV-to-electrolyzer power feed Task 2: Development of advanced materials for substrate-type PEC cells Task 3: Development of advanced materials for immersion-type PEC cells Task 4: Hydrogen production through conversion of biomass-derived wastes

  12. The Promise of Renewable Gaseous Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsThe Promise of Renewable Gaseous FuelsJeffrey Reed, Director of Business Strategy and Development, Southern California Gas Company/San Diego Gas &...

  13. Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic

    E-Print Network [OSTI]

    California at Riverside, University of

    and techno-economic analysis of a catalytic process for the conversion of whole biomass into drop-in aviation processing of biomass Jesse Q. Bond,a Aniruddha A. Upadhye,b Hakan Olcay,c Geoffrey A. Tompsett,d Jungho Jae fuels with maximal carbon yields. The combined research areas highlighted include biomass pretreatment

  14. GRANT SOLICITATION Alternative and Renewable Fuel

    E-Print Network [OSTI]

    Area - Hydrogen Fuel Infrastructure http://www.energy.ca.gov/contracts/index.html State of California RENEWABLE HYDROGEN SET-ASIDE D

  15. Nanostructured Basic Catalysts: Opportunities for Renewable Fuels

    SciTech Connect (OSTI)

    Conner, William C; Huber, George; Auerbach, Scott

    2009-06-30T23:59:59.000Z

    This research studied and developed novel basic catalysts for production of renewable chemicals and fuels from biomass. We focused on the development of unique porous structural-base catalysts zeolites. These catalysts were compared to conventional solid base materials for aldol condensation, that were being commercialized for production of fuels from biomass and would be pivotal in future biomass conversion to fuels and chemicals. Specifically, we had studied the aldolpyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our research has indicated that the base strength of framework nitrogen in nitrogen substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

  16. Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    "Exploration of new markets and new uses for bioproducts, alternative renewable fuels and their co-products will contribute to the long term sustainability of Ontario's agri-food, energy and rural...

  17. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Plevin, RJ; Hochman, G; Zilberman, DD

    2015-01-01T23:59:59.000Z

    carbon policies on the renewable fuels standard: economicreport: 2009 update. REN21 Renewable Energy Policy Networktransportation fuels: Comparing renewable fuel mandates and

  18. Fueling America Through Renewable Resources Purdue extension

    E-Print Network [OSTI]

    Fueling America Through Renewable Resources BioEnergy Purdue extension is Biodiesel as Attractive Is Biodiesel? Biodiesel is a renewable fuel alternative to standard on-road diesel. Biodiesel is made from-three percent of biodiesel produced in the United States comes from soybean oil. The remaining 27% is produced

  19. Fueling America Through Renewable Resources Purdue extension

    E-Print Network [OSTI]

    Holland, Jeffrey

    Fueling America Through Renewable Resources BioEnergy Purdue extension Meeting the ethanol demand #12; Fueling America Through Renewable Crops BioEnergy Meeting the Ethanol Demand: Consequences profitable than the corn- soybean rotation, even when relative commodity prices point to a preference

  20. Fueling America Through Renewable Resources Purdue extension

    E-Print Network [OSTI]

    Fueling America Through Renewable Resources BioEnergy Purdue extension The Value of distillers and global marketplaces as the price of corn increases to meet the ethanol demand. An estimated 1.4 to 1 Nutrient Digestibility and Availability #12; Fueling America Through Renewable Crops BioEnergy Variation

  1. Enhanced Renewable Methane Production System | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates...

  2. State Clean Energy Practices: Renewable Fuel Standards

    SciTech Connect (OSTI)

    Mosey, G.; Kreycik, C.

    2008-07-01T23:59:59.000Z

    The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, renewable fuel standards (RFS) policies are a mechanism for developing a market for renewable fuels in the transportation sector. This flexible market-based policy, when properly executed, can correct for market failures and promote growth of the renewable fuels industry better than a more command-oriented approach. The policy attempts to correct market failures such as embedded fossil fuel infrastructure and culture, risk associated with developing renewable fuels, consumer information gaps, and lack of quantification of the non-economic costs and benefits of both renewable and fossil-based fuels. This report focuses on renewable fuel standards policies, which are being analyzed as part of this project.

  3. Renewable Fuels and Lubricants Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  4. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01T23:59:59.000Z

    Gas Reductions under Low Carbon Fuel Standards? Americanto Implement the Low Carbon Fuel Standard, Volume I Sta?Paper Series Multi-objective fuel policies: Renewable fuel

  5. Renewable Energy Production Tax Credit

    Broader source: Energy.gov [DOE]

    In June 2006, [http://archive.flsenate.gov/cgi-bin/View_Page.pl?File=sb0888er.html&Dire... S.B. 888] established a renewable energy production tax credit to encourage the development and...

  6. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Environmental Management (EM)

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

  7. August 19, 2011 Alternative and Renewable Fuel

    E-Print Network [OSTI]

    August 19, 2011 Alternative and Renewable Fuel and Vehicle Technology Program Solicitation Number-Commercial Demonstrations APPLICATIONPACKAGE GRANT SOLICITATION CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor............................................................. 18 20. Grounds for Rejection

  8. Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  9. Missouri Renewable Fuel Standard Brochure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCalifornia State0ButtonWeb site The

  10. Renewable Energy: Solar Fuels GRC and GRS

    SciTech Connect (OSTI)

    Nathan Lewis

    2010-02-26T23:59:59.000Z

    This Gordon Research Conference seeks to bring together chemists, physicists, materials scientists and biologists to address perhaps the outstanding technical problem of the 21st Century - the efficient, and ultimately economical, storage of energy from carbon-neutral sources. Such an advance would deliver a renewable, environmentally benign energy source for the future. A great technological challenge facing our global future is energy. The generation of energy, the security of its supply, and the environmental consequences of its use are among the world's foremost geopolitical concerns. Fossil fuels - coal, natural gas, and petroleum - supply approximately 90% of the energy consumed today by industrialized nations. An increase in energy supply is vitally needed to bring electric power to the 25% of the world's population that lacks it, to support the industrialization of developing nations, and to sustain economic growth in developed countries. On the geopolitical front, insuring an adequate energy supply is a major security issue for the world, and its importance will grow in proportion to the singular dependence on oil as a primary energy source. Yet, the current approach to energy supply, that of increased fossil fuel exploration coupled with energy conservation, is not scaleable to meet future demands. Rising living standards of a growing world population will cause global energy consumption to increase significantly. Estimates indicate that energy consumption will increase at least two-fold, from our current burn rate of 12.8 TW to 28 - 35 TW by 2050. - U.N. projections indicate that meeting global energy demand in a sustainable fashion by the year 2050 will require a significant fraction of the energy supply to come carbon free sources to stabilize atmospheric carbon dioxide levels at twice the pre-anthropogenic levels. External factors of economy, environment, and security dictate that this global energy need be met by renewable and sustainable sources from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The 'grand challenge' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source. Speakers will discuss recent advances in homoogeneous and heterogeneous catalysis of multi-electron transfer processes of importance to solar fuel production, such as water oxidation and reduction, and carbon dioxide reduction. Speakers will also discuss advances in scaleably manufacturable systems for the capture and conversion of sunlight into electrical charges that can be readily coupled into, and utilized for, fuel production in an integrated system.

  11. A Biennially Renewable Fuel Resource: Woodchips

    E-Print Network [OSTI]

    Krantz, B.

    1983-01-01T23:59:59.000Z

    A BIENNIALLY RENEWABlE FUEL RESOURCE: WOOOCHIPS Bruce Krantz Urban Forestr,y Services Oconolllowoc. Wisconsin Abstract: Recent genetic improvements with some tree species has given us hybrids that have disease resistance, rapid growth... tissues, particularly wood. Wood was the fuel used by man in his scientific and industrial advancement and is probably the most acceptable of all the solid fuels available today. Ergo, trees are a valuable energy resource; and, of course...

  12. Fueling America Through Renewable Resources Purdue extension

    E-Print Network [OSTI]

    Fueling America Through Renewable Resources BioEnergy Purdue extension economics of ethanol Chris.S. agriculture. Biofuels include both ethanol (corn) and biodiesel (soybean oil), but ethanol is far in the lead of the process to produce ethanol from cellulose (plant material) (Mosier, 2006). Why is there such startling

  13. October 2012 Renewable Fuel Standard Waiver

    E-Print Network [OSTI]

    Noble, James S.

    for four different biofuel categories and their effects on agricultural commodity markets. This report no waiver of the RFS in response to the drought. Analysis reported here estimates the effects of a waiverOctober 2012 Renewable Fuel Standard Waiver Options during the Drought of 2012 FAPRI-MU Report #11

  14. Renewable Transportation Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesysRenewable Hawaii Inc

  15. Renewable Fuel Standard Schedule | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewable Energyobtained from sources which

  16. Renewable Fuel Vehicles | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewable Energyobtained from sources whichJump to:

  17. Renewable Fuel Standards Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010InJanuaryGeothermalRenewable Energy andErin

  18. Renewable Fuels Consulting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl.,RenGenAmes,Renewable

  19. Renewable Fuels Limited RFL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl.,RenGenAmes,RenewableRFL Jump to:

  20. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    Complexity of Renewable Energy Production in the Countrysidea shift to renewable energy production. Even if politicaldifficulties. Renewable energy production as a new economic

  1. Autothermal Reforming of Renewable Fuels

    SciTech Connect (OSTI)

    Schmidt, Lanny D

    2009-05-01T23:59:59.000Z

    The conversion of biomass into energy and chemicals is a major research and technology challenge of this century, comparable to petroleum processing in the last century. Recently we have successfully transformed both volatile liquids and nonvolatile liquids and solids into syngas with no carbon formation in autothermal catalytic reactors with residence times of ~10 milliseconds. In the proposed research program we explore the mechanisms of these processes and their extensions to other biomass sources and applications by examining different feeds, catalysts, flow conditions, and steam addition to maximize production of either syngas or chemicals. We will systematically study the catalytic partial oxidation in millisecond autothermal reactors of solid biomass and the liquid products formed by pyrolysis of solid biomass. We will examine alcohols, polyols, esters, solid carbohydrates, and lignocellulose to try to maximize formation of either hydrogen and syngas or olefins and oxygenated chemicals. We will explore molecules and mixtures of practical interest as well as surrogate molecules that contain the functional groups of biofuels but are simpler to analyze and interpret. We will examine spatial profiles within the catalyst and transient and periodic operation of these reactors at pressures up to 10 atm to obtain data from which to explore more detailed mechanistic models and optimize performance to produce a specific desired product. New experiments will examine the conversion of syngas into biofuels such as methanol and dimethyl ether to explore the entire process of producing biofuels from biomass in small distributed systems. Experiments and modeling will be integrated to probe and understand detailed reaction kinetics and the processes by which solid biomass particles are transformed into syngas and chemicals by reactive flash volatilization.

  2. Webinar: "Upgrading Renewable and Sustainable Carbohydrates for the Production of High Energy Density Fuels"

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships ToolkitWaste Heat Wasteof|WebinarElectronics2012)

  3. High Octane Fuels Can Make Better Use of Renewable Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Mid-Blend Ethanol Fuels - Implementation Perspectives Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" The Impact of Low Octane...

  4. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    is only one type of fossil fuel and one alternative fuel andGHG emissions and reducing fossil fuel use, and ?nd biofuelin GHG intensity of both fossil fuels and renewable fuels,

  5. Renewable Energy Production Tax Credits (Corporate)

    Broader source: Energy.gov [DOE]

    In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify...

  6. Renewable Electricity Production Tax Credit (PTC)

    Broader source: Energy.gov [DOE]

    '''''Note: The American Recovery and Reinvestment Act of 2009 allows taxpayers eligible for the federal renewable electricity production tax credit (PTC) to take the federal business energy...

  7. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify...

  8. Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint

    SciTech Connect (OSTI)

    Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

    2005-09-01T23:59:59.000Z

    To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

  9. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    transport fuel use come from renewable sources (including biofuels).transport fuel use to come from renewable sources (including biofuels).

  10. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    development of local renewable energy strategies: The casesin Germany to support renewable energies. Published masterThe Social Complexity of Renewable Energy Production in the

  11. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    fuel produced from renewable biomass sources, such as fattyfuel is produced from renewable biomass sources, such aswith Oxygenated Biomass Fuels. Renewable and Sustainable

  12. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    SciTech Connect (OSTI)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30T23:59:59.000Z

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  13. ,"Energy","Water","Renewable","Petroleum","Alt. Fuel",,"On-Line...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy","Water","Renewable","Petroleum","Alt. Fuel",,"On-Line Data Collection System",,"Report Period","Due In",,,"Primary","Secondary","Secondary" 2003,,,"EMS4","Environmental...

  14. A Biennially Renewable Fuel Resource: Woodchips 

    E-Print Network [OSTI]

    Krantz, B.

    1983-01-01T23:59:59.000Z

    for the production of 'hybrid poplars' one acre can generate the wood fuel equivalent of 40 barrels of oil ($8/bbl) or 2500 therms of natural gas ($0.13/therm) per year and can be harvested every other year. Beyond the economic and environmental benefits...

  15. Life Cycle Assessment of Renewable Hydrogen Production viaWind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Production via WindElectrolysis: Milestone Completion Report Life Cycle Assessment of Renewable Hydrogen Production via WindElectrolysis: Milestone Completion...

  16. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

  17. Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors

    SciTech Connect (OSTI)

    Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

    2014-02-01T23:59:59.000Z

    Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

  18. The Renewable Fuel Standard and Ethanol Pricing: A Sensitivity Analysis

    E-Print Network [OSTI]

    McNair, Robert

    2014-04-18T23:59:59.000Z

    of biofuel. The current Renewable Fuel Standard (RFS) requires 36 billion gallons of renewable fuel use by 2022. A large proportion of the mandate is to consist of corn-based ethanol. Most ethanol is consumed in the U.S. as a 10 percent blend of ethanol...

  19. California Energy Commission Alternative and Renewable Fuel and Vehicle Technology

    E-Print Network [OSTI]

    California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program Advisory, Statutes of 2007) created the Alternative and Renewable Fuel and Vehicle Technology Program (hereinafter "Program") to be administered by the California Energy Commission (Energy Commission).1 AB 118 authorizes

  20. California Energy Commission Alternative and Renewable Fuel and Vehicle Technology

    E-Print Network [OSTI]

    California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program Advisory by the Energy Commission. Under the Program, the following shall be eligible for funding: 3 · Alternative, Statutes of 2007) created the Alternative and Renewable Fuel and Vehicle Technology Program (hereinafter

  1. Renewable Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit provides a tax credit against the corporate income tax of one cent per kilowatt-hour for companies that generate electricity...

  2. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit provides a tax credit against the personal income tax of one cent per kilowatt-hour for companies that generate electricity...

  3. Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteria are genetically engineered to convert the formic acid into liquid fuel—in this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLA’s electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

  4. Property:RenewableFuelStandard/RenewableBiofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property is set byisProperty EditProperty Edit

  5. Request for Information Renewable Energy Generation/Production...

    Open Energy Info (EERE)

    Request for Information Renewable Energy GenerationProduction Shreveport Airport Authority - Response Deadline 2 January 2014 Home > Groups > Renewable Energy RFPs Rosborne318's...

  6. Kamal Kapadia DRAFT Productive Uses of Renewables

    E-Print Network [OSTI]

    Kammen, Daniel M.

    ) ................................................. 13 China: Passive Solar Heating for Rural Health Clinics (China PSHRHC)......................... 13?............................................................................... 4 DESIGNING AND IMPLEMENTING RENEWABLE ENERGY PROJECTS WITH PRODUCTIVE USE COMPONENTS: ANALYSIS the productive uses of energy is an important aspect in the design and implementation of rural energy projects

  7. Making Better Use of Ethanol as a Transportation Fuel With "Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Breakout...

  8. Timing for Startup of the Renewable Fuel Standard

    Reports and Publications (EIA)

    2002-01-01T23:59:59.000Z

    This paper responds to whether or not moving the start date of the Renewable Fuel Standard (RFS) from its currently proposed January 2004 to October 2004 would improve the chances of a smooth transition.

  9. EISA 2007: Focus on Renewable Fuels Standard Program

    Broader source: Energy.gov [DOE]

    At the November 6, 2008 joint Web conference of DOE's Biomass and Clean Cities programs, Paul Argyropoulos (U.S. Environmental Protection Agency, Office of Transportation and Air Quality) explained the EISA 2007, Renewable Fuel Standards.

  10. PROGRAM OPPORTUNITY NOTICE Alternative and Renewable Fuel and Vehicle

    E-Print Network [OSTI]

    Alternative Fuel Readiness Plans PON-13-603 http://www.energy.ca.gov/contracts State of California California Energy Commission August 12, 2013 #12;8-9-13 Page i PON-13-603 Alternative Fuel Readiness Plans TablePROGRAM OPPORTUNITY NOTICE Alternative and Renewable Fuel and Vehicle Technology Program

  11. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  12. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  13. Fuel Cells & Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overview FuelStorage,Cells & Fuel

  14. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat...

  15. NREL: Hydrogen and Fuel Cells Research - Renewable Electrolysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData andEvaluation

  16. Dairy Biomass as a Renewable Fuel Source

    E-Print Network [OSTI]

    Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

    2008-03-19T23:59:59.000Z

    biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

  17. Dairy Biomass as a Renewable Fuel Source 

    E-Print Network [OSTI]

    Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

    2008-03-19T23:59:59.000Z

    biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

  18. Elastomer Compatibility Testing of Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Frame, E.; McCormick, R. L.

    2005-11-01T23:59:59.000Z

    In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

  19. Renewable Fuels Assocation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesys

  20. Fuel Cells and Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h y d r o g e n fandand

  1. Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuelsConversions to someone byPlug-InCritical

  2. Constructing and engineering fatty acid metabolic pathways for the production of fuels and chemicals

    E-Print Network [OSTI]

    Steen, Eric James

    2010-01-01T23:59:59.000Z

    motivated production of renewable, biomass-derived fuels andconversion of renewable feedstocks, such as biomass-derivedrenewable energy is the production of these compounds directly from cellulosic plant biomass.

  3. U.S. Fuel Ethanol (Renewable) Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-14 Jan-15 Feb-15 Mar-15

  4. Calgren Renewable Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump28 2013 Next »OctoberCalgren

  5. Patriot Renewable Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle Biscuits Pvt Ltd

  6. Victory Renewable Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt ManagementVera IrrigationVestas WindVictory Power

  7. American Renewable Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgouraAlbatechFuelsdiesel LLCCleanAGHAmerican

  8. Fuel Cells & Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3 Fuel Cell2|& Renewable Portfolio

  9. Understanding and Informing the Policy Environment: State-Level Renewable Fuels Standards

    SciTech Connect (OSTI)

    Brown, E.; Cory, K.; Arent, D.

    2007-01-01T23:59:59.000Z

    Renewable fuels standard (RFS) policies are becoming a popular public policy mechanism for developing the market for renewable fuels in the transportation sector. During the past decade, U.S. states and several countries began implementing these more market-based (less command and control) policies to support increased biofuels production and use. This paper presents an overview of current and proposed U.S. state-level policies, as well as selected electric sector policies and international fuel standard policies. Current U.S. state-level renewable fuel policies list drivers including an improved economy and environment, as well as fuel self-sufficiency. Best practices and experience from an evaluation of renewable portfolio standards (RPS) in the United States and international RFS policies can inform U.S. state-level policy by illustrating the importance of policy flexibility, binding targets, effective cost caps, and tradable permits. Understanding and building on the experiences from these previous policies can improve the policy mechanism and further develop a market for renewable fuels to meet the goals of improved economy, environment, and fuel self-sufficiency.

  10. NREL: State and Local Governments - Renewable Fuel Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6Data TheNews TheEnergy RebatesFuel

  11. Renewable Fuel Standard Potential Economic and Environmental

    E-Print Network [OSTI]

    Ginzel, Matthew

    found that the United States has the capability to produce adequate biomass feedstock for production of 16-20 billion gallons of cellulosic biofuels to meet RFS2. 500-600 million dry tons of biomass feedstock could be produced. Uncertainties regarding feedstock production and supply: ·Competition

  12. The Quest for Sustainable Energy Renewable fuel is at the heart of

    E-Print Network [OSTI]

    The Quest for Sustainable Energy Renewable fuel is at the heart of Government energy policy be cheaper than other fuels The Quest for Sustainable Energy Renewable fuel is at the heart of Government

  13. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and Fuel Cells

  14. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  15. Model documentation Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This report documents the objectives, analaytical approach and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1996 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described.

  16. Fuel Cells using Renewable Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreight BestFuel Cell Control

  17. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdf Flash2008-50.pdf4.pdf0 Flash2011-40 Issue aTechnologies

  18. Fueling America Through Renewable Resources What Is Biodiesel?

    E-Print Network [OSTI]

    Shawn P. Conley; Department Of Agronomy

    The use of vegetable oil as a fuel source in diesel engines is as old as the diesel engine itself. However, the demand to develop and utilize plant oils and animal fats as biodiesel fuels has been limited until recently. The technical definition of biodiesel is: “The mono alkyl esters of long fatty acids derived from renewable lipid feedstock such as vegetable oils or animal fats, for use in compression ignition (diesel) engines ” (National Biodiesel Board, 1996). In simple terms, biodiesel is a renewable fuel manufactured from methanol and vegetable oil, animal fats, and recycled cooking fats (U.S. Department of Energy, 2006). The term “biodiesel ” itself is often misrepresented and misused. Biodiesel only refers to 100 % pure fuel (B100) that meets the definition above and specific standards given

  19. Renewable Fuel Heating Plant SyStem SpecificationS

    E-Print Network [OSTI]

    Renewable Fuel Heating Plant SyStem SpecificationS Manufacturer: Advanced Recycling Equipment efficiency of natural gas combustion) The facility is designed to meet additional future heating loads, so annual output will increase when the Research Support Facility comes online What it will heat

  20. National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure

    E-Print Network [OSTI]

    National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. Margaret K. Mann Hydrogen Analysis to address the nation's energy and environmental goals. · The NREL Hydrogen Analysis Group provides

  1. Renewable Fuel Supply Ltd RFSL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl.,RenGenAmes,Renewable EnergyRFSL

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Tax Alternative Fuel License Renewable Fuel Sales Volume Goals Sustainable Biofuels Production Practices Biodiesel Definition Biodiesel Labeling Requirement Propane...

  3. List of Fuel Cells using Renewable Fuels Incentives | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,LakefrontLighthouseEvaporative Coolers

  4. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01T23:59:59.000Z

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  5. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    Cost and Risk: The Treatment of Renewable Energy in Westernof renewable energy – the value of the price risk mitigationof Renewable Energy as a Hedge Against Fuel Price Risk:

  6. Fuel Cell Technologies Researcher Lightens Green Fuel Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Researcher Lightens Green Fuel Production Fuel Cell Technologies Researcher Lightens Green Fuel Production August 25, 2014 - 9:36am Addthis Research funded...

  7. Webinar: "Upgrading Renewable and Sustainable Carbohydrates for...

    Office of Environmental Management (EM)

    "Upgrading Renewable and Sustainable Carbohydrates for the Production of High Energy Density Fuels" Webinar: "Upgrading Renewable and Sustainable Carbohydrates for the Production...

  8. Economic and emissions impacts of renewable fuel goals for aviation in the US*

    E-Print Network [OSTI]

    t The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuelEconomic and emissions impacts of renewable fuel goals for aviation in the US* Niven Winchester and emissions impacts of renewable fuel goals for aviation in the US q Niven Winchester a, , Dominic Mc

  9. Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel

    E-Print Network [OSTI]

    Homes, Christopher C.

    Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel Matthew Eisaman and their impact · Technology: Extracting CO2 from seawater · Application: Renewable liquid fuel #12;Outline: Renewable liquid fuel #12;The data on atmospheric CO2 2000 years ago http://cdiac.ornl.gov/trends/co2

  10. Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean

  11. Renewable Hydrogen Production Using Sugars and Sugar Alcohols...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Sugars and Sugar Alcohols (Presentation) Renewable Hydrogen Production Using Sugars and Sugar Alcohols (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen...

  12. Making Better Use of Ethanol as a Transportation Fuel With ŤRenewable...

    Broader source: Energy.gov (indexed) [DOE]

    Robert Wagner, 062111 Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Brian West Fuels, Engines, and Emissions Research Center Oak Ridge...

  13. Overview of An Analysis Project for Renewable Biogas / Fuel Cell Technologies (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.

    2009-11-19T23:59:59.000Z

    Presentation on renewable biogas: as an opportunity for commercialization of fuel cells presented as part of a panel discussion at the 2009 Fuel Cell Seminar, Palm Springs, CA.

  14. Model documentation renewable fuels module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources--wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuels Promotion The New Jersey Assembly urges the U.S. Congress to maintain the federal Renewable Fuels Standard, which will increase the production of domestic renewable fuel,...

  16. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01T23:59:59.000Z

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

  17. 2011 RENEWABLE ENERGY: SOLAR FUELS GORDON RESEARCH CONFERENCE

    SciTech Connect (OSTI)

    Joseph Hupp

    2011-01-21T23:59:59.000Z

    The conference will present and discuss current science that underlies solar fuels production, and will focus on direct production pathways for production. Thus, recent advances in design and understanding of molecular systems and materials for light capture and conversion of relevance for solar fuels will be discussed. An important set of topics will be homogeneous, heterogeneous and biological catalysts for the multi-electron processes of water oxidation, hydrogen production and carbon dioxide reduction to useful fuels. Also, progress towards integrated and scalable systems will be presented. Attached is a copy of the formal schedule and speaker program and the poster program.

  18. Updated: March 22, 2011 Alternative and Renewable Fuel and Vehicle Technologies Program

    E-Print Network [OSTI]

    Updated: March 22, 2011 Alternative and Renewable Fuel and Vehicle Technologies Program FY 2011 Biomass Collaborative (courtesy of University of California, Davis) Howard Levenson ­ California ­ Center for Energy Efficiency and Renewable Technologies Jananne Sharpless ­ Member at Large Eileen Tutt

  19. Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines

    SciTech Connect (OSTI)

    Sullivan, Neal P

    2012-08-06T23:59:59.000Z

    The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.

  20. Fuel Ethanol Oxygenate Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan2009 2010 2011

  1. Model documentation: Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

  2. alternative fuels production: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 2 Alternative and Renewable fuels and...

  3. Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System

    E-Print Network [OSTI]

    Victoria, University of

    Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System by Alvin Peter, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability of the author. #12;ii Supervisory Committee Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel

  4. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies," originally presented on August 19, 2014.

  5. Mandating green: On the design of renewable fuel policies and cost containment mechanisms

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    Mandating green: On the design of renewable fuel policies and cost containment mechanisms Gabriel E Workshop and at the Stanford University Precourt Energy Efficiency Center Sustainable Transportation

  6. Genetically Modified Bacteria for Fuel Production: Development of Rhodobacteria as a Versatile Platform for Fuels Production

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    Electrofuels Project: Penn State is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline. Penn State is developing engineered tanks to support microbial fuel production and determining the most economical way to feed the electricity or hydrogen to the bacteria, including using renewable sources of power like solar energy.

  7. 21st Century Renewable Fuels, Energy, and Materials

    SciTech Connect (OSTI)

    Berry, K J; Das, Susanta K

    2012-11-29T23:59:59.000Z

    The objectives of this project were multi-fold: (i) conduct fundamental studies to develop a new class of high temperature PEM fuel cell material capable of conducting protons at elevated temperature (180oC), (ii) develop and fabricate a 5kWe novel catalytic flat plate steam reforming process for extracting hydrogen from multi-fuels and integrate with high-temperature PEM fuel cell systems, (iii) research and develop improved oxygen permeable membranes for high power density lithium air battery with simple control systems and reduced cost, (iv) research on high energy yield agriculture bio-crop (Miscanthus) suitable for reformate fuel/alternative fuel with minimum impact on human food chain and develop a cost analysis and production model, and (v) develop math and science alternative energy educator program to include bio-energy and power.

  8. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    Renewable Energy Policy Network and Worldwatch Institute, 2009. National ties Energy and Board, challenges to Canada.

  9. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01T23:59:59.000Z

    higher than fossil fuels. f > 0 because demand function hasfossil fuel increases. Proof : By reducing domestic demand,fossil fuel, then fuel price increases (decreases) if mc b ? f + 1 demand

  10. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    N. -O. Field Testing of NExBTL Renewable Diesel in HelsinkiAakko, P. ; Harju, T. NExBTL-Biodiesel Fuel of the SecondAakko, P. ; Harju, T. NExBTL-Biodiesel Fuel of the Second

  11. Climate policy and the airline industry : emissions trading and renewable jet fuel

    E-Print Network [OSTI]

    McConnachie, D. (Dominic Alistair)

    2012-01-01T23:59:59.000Z

    In this thesis, I assess the impact of the current EU Emissions Trading Scheme and a hypothetical renewable jet fuel mandate on US airlines. I find that both the EU Scheme up until 2020 and a renewable jet fuel mandate of ...

  12. Renewable Energy Production By State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.JuneAsPipelineof EnergyRenewable

  13. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01T23:59:59.000Z

    GHG intensity among fossil fuels. We ?nd that the relativeunder a RFS while world fossil fuel price is the same orwith the more-polluting fossil fuels being consumed abroad

  14. Renewable Energy Production Incentive | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010InJanuary 29,3,UtilityInvestor-Owned Utility

  15. Renewable Energy Products LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl.,RenGenAmes, Iowa Zip:REII

  16. Monthly/Annual Energy Review - renewable section

    Reports and Publications (EIA)

    2015-01-01T23:59:59.000Z

    Monthly and latest annual statistics on renewable energy production and consumption and overviews of fuel ethanol and biodiesel.

  17. Co-Solvent Enhanced Production of Platform Fuel Precursors From Lignocellulosic Biomass

    E-Print Network [OSTI]

    Cai, Charles Miao-Zi

    2014-01-01T23:59:59.000Z

    W. Huber. "Production of Renewable Petroleum Refinery DieselW. Huber. "Production of Renewable Petroleum Refinery DieselW. Huber. "Production of Renewable Petroleum Refinery Diesel

  18. Renewable Hydrogen Production from Biological Systems

    Broader source: Energy.gov (indexed) [DOE]

    Workshop September 24 th , 2013 H 2 production PSIIPSI pathway PSInonphotochemical PQ Dark fermentation H 2 uptake oxyhydrogen reaction photoreduction Photosynthetic H 2 pathways...

  19. Model documentation, Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook 1998 (AEO98) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. For AEO98, the RFM was modified in three principal ways, introducing capital cost elasticities of supply for new renewable energy technologies, modifying biomass supply curves, and revising assumptions for use of landfill gas from municipal solid waste (MSW). In addition, the RFM was modified in general to accommodate projections beyond 2015 through 2020. Two supply elasticities were introduced, the first reflecting short-term (annual) cost increases from manufacturing, siting, and installation bottlenecks incurred under conditions of rapid growth, and the second reflecting longer term natural resource, transmission and distribution upgrade, and market limitations increasing costs as more and more of the overall resource is used. Biomass supply curves were also modified, basing forest products supplies on production rather than on inventory, and expanding energy crop estimates to include states west of the Mississippi River using information developed by the Oak Ridge National Laboratory. Finally, for MSW, several assumptions for the use of landfill gas were revised and extended.

  20. Stationary Fuel Cell System Composite Data Products: Data Through Quarter 4 of 2012

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Saur, G.

    2013-05-01T23:59:59.000Z

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes stationary fuel cell system composite data products for data through the fourth quarter of 2012.

  1. Economic and emissions impacts of renewable fuel goals for aviation in the US

    E-Print Network [OSTI]

    McConnachie, Dominic

    The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the economic and emissions impacts of this goal ...

  2. A techno-economic and environmental assessment of hydroprocessed renewable distillate fuels

    E-Print Network [OSTI]

    Pearlson, Matthew Noah

    2011-01-01T23:59:59.000Z

    This thesis presents a model to quantify the economic costs and environmental impacts of producing fuels from hydroprocessed renewable oils (HRO) process. Aspen Plus was used to model bio-refinery operations and supporting ...

  3. Market Cost of Renewable Jet Fuel Adoption in the United States

    E-Print Network [OSTI]

    Winchester, N.

    The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines of meeting this goal ...

  4. What Has the Federal Renewable Fuels Standard Accomplished - A National Perspective (Presentation)

    SciTech Connect (OSTI)

    Schwab, A.

    2013-04-01T23:59:59.000Z

    This presentation provides an overview of the nation's biofuels industry accomplishments and a perspective on the challenges and implications of reaching goals set in the Renewable Fuel Standard (RFS).

  5. Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News

    E-Print Network [OSTI]

    Lovley, Derek

    Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News TUESDAY 25 MAY, 2010 | | Solar Power To Help Convert Carbon Dioxide Into Fuel by Energy Matters Microbiologist Derek Lovley dioxide into transportation fuels, with the help of special micro-organisms and solar power. The team

  6. Renewable and alteRnative eneRgy Fact Sheet Using Biodiesel Fuel in Your Engine

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Renewable and alteRnative eneRgy Fact Sheet Using Biodiesel Fuel in Your Engine introduction Biodiesel is an engine fuel that is created by chemically reacting fatty acids and alcohol. Practically sodium hydroxide). Biodiesel is much more suitable for use as an engine fuel than straight vegetable oil

  7. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    The Energy Department will present a webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" on Tuesday, August 19, from 12:00 to 1:00 p.m. Eastern Daylight Time (EDT). The webinar will feature representatives from the National Renewable Energy Laboratory presenting a unique opportunity for the integration of multiple sectors including transportation, industrial, heating fuel, and electric sectors on hydrogen.

  8. Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels

    E-Print Network [OSTI]

    US Grid 3.43 7.9 0.19 1,408 Average US Fossil Fuel Plant 5.06 11.6 0.27 2,031 Microturbine (60 kW) 0

  9. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01T23:59:59.000Z

    E?ect of Biofuels on Crude Oil Markets. Agbioforum, 2010(assumption is that the oil market is competitive while it isemissions and market share of non-crude oil fuels. Thirdly,

  10. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01T23:59:59.000Z

    relates domestic crude oil consumption q c to the marginalDomestic ROW Total Crude oil consumption (mbpd) Domestic ROWcrude oil fuels while achieving a total level of biofuel consumption.

  11. The Evolving Bioeconomy and Renewable Fuels Professional Networking Event |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy TechConnect World Innovation Conference andFederal

  12. EISA 2007: Focus on Renewable Fuels Standard Program

    Broader source: Energy.gov (indexed) [DOE]

    Multi Media Issues Multi- -Media Issues Fuel Blends Market Fuel Blends Market Absorption Absorption 5 Program Considerations Throughout the Supply Chain What's our baseline?...

  13. Alternative Fuel Production Facility Incentives (Kentucky) |...

    Broader source: Energy.gov (indexed) [DOE]

    or biomass as a feedstock. Beginning Aug. 1, 2010, tax incentives are also available for energy-efficient alternative fuel production facilities and up to five alternative fuel...

  14. Environmental Law and Fossil Fuels: Barriers to Renewable Energy

    E-Print Network [OSTI]

    Outka, Uma

    2012-01-01T23:59:59.000Z

    This article is concerned with renewable energy’s too-slow transition and with how existing legal regimes work to preserve fossil energy dominance. It develops from two related claims: that an implicit support structure for fossil energy is written...

  15. Fuel Cells and Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3 Fuel Cell2|&Fuel Cells

  16. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01T23:59:59.000Z

    products driving the demand for oil and can be substitutedis aimed at meeting US demand for oil. If di?erence in oilPrice elasticity of demand for crude oil: estimates for 23

  17. Model documentation renewable fuels module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1997 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs. and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves three purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Finally, such documentation facilitates continuity in EIA model development by providing information sufficient to perform model enhancements and data updates as part of EIA`s ongoing mission to provide analytical and forecasting information systems.

  18. Fuel Cells & Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overview FuelStorage,Cells &

  19. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    order for the low carbon fuel standard, 2012. URL http://mediated e?ects of low carbon fuel policies. AgBioForum, 15(Gas Reductions under Low Carbon Fuel Standards? American

  20. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    increase in fuel consumers’ and ethanol producers’ surplusof cane ethanol, higher emissions, lower expenditure on fuelthe sum of fuel consumer, oil producer, and ethanol producer

  1. DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL EDUCATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,CraftyChair's Overview DEERI Office of ENERGYTHEPROGRAM

  2. Iowa Renewable Fuels Association IRFA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to:IESIntervalIosilPark, Texas: EnergyFuels

  3. List of Renewable Fuel Vehicles Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other Alternative FuelEnergy

  4. List of Renewable Fuels Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other Alternative FuelEnergy Jump to: navigation,

  5. List of Renewable Transportation Fuels Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other Alternative FuelEnergy Jump to:

  6. City of Tulare Renewable Biogas Fuel Cell Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" | Department ofAddressingCity ofSacramentoC C

  7. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of Energy IRSJulyIncandescent

  8. US Navy Tactical Fuels From Renewable Sources Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and Battery TechnologyDepartmentIndia Joint Center for

  9. Alternative Fuels Data Center: Renewable Natural Gas (Biomethane)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuelsConversions to someone

  10. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuelsConversions to someoneRefuse Vehicles

  11. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of theResponses to Public

  12. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of theResponses to PublicHydrogen Energy

  13. Renewable Fuel Standards Program Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4Visitors3 *Activities)of2013

  14. Renewable Fuel Vehicle Modeling and Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4Visitors3

  15. DOI: 10.1002/cssc.201200016 A Light-Assisted Biomass Fuel Cell for Renewable

    E-Print Network [OSTI]

    Osterloh, Frank

    DOI: 10.1002/cssc.201200016 A Light-Assisted Biomass Fuel Cell for Renewable Electricity Generation, microbial fuel cells (MFCs) that can degrade biomass in wastewater (glucose, fats, proteins, ammonia in the cell with a solution of oxidizable biomass, as it occurs in municipal wastewater. Under these altered

  16. Purchasing Renewable Power | Department of Energy

    Energy Savers [EERE]

    Products & Technologies Renewable Energy Purchasing Renewable Power Purchasing Renewable Power Federal agencies can purchase renewable power or renewable energy certificates...

  17. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    served California Power Plants and Transmission Lines (energyalmanac.ca.gov) Performs co-optimization of energy and ancillary service products to minimize system production cost...

  18. DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications GATE Center for Automotive Fuel Cell Systems at Virginia Tech Education and Outreach Fact Sheet Hydrogen Education Curriculum Path at Michigan Technological University...

  19. California: Agricultural Residues Produce Renewable Fuel | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWaste To Wisdom: UtilizingDepartment of Energyof

  20. Assumption to the Annual Energy Outlook 2014 - Renewable Fuels Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5AreOil and Gas Supply

  1. Safe Renewable Corporation formerly Safe Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energysource History ViewJump to:Safe

  2. Property:RenewableFuelStandard/Year | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/Organization RAPID/Contact/ID8/Positionmaterial Jump to:Property Edit

  3. Southeast Renewable Fuels LLC SRF | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast Colorado Power Assn Jump to: navigation, searchSRF Jump

  4. Template:Set RenewableFuelStandard | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained ByManagement IncDrillbe nice if logos could

  5. Renewable & Alternative Fuels - U.S. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/) ReleaseRemoteRemotelyRenae

  6. Mass spectrometry on bio-renewable fuels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os ZD15netMaryspectrometry on

  7. Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.TierIdaho County EmploysCNG

  8. Baylor University - Renewable Aviation Fuels Development Center | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy ResourcesBayWaEnergy

  9. COLLOQUIUM: Renewable Fuels and Chemicals | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26, 2014, 4:00pm to|Physics Lab19, 2014,

  10. Property:RenewableFuelStandard/AdvancedBiofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property is set byisProperty Edit with form

  11. Property:RenewableFuelStandard/CellulosicBiofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property is set byisProperty Edit

  12. Property:RenewableFuelStandard/Total | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property is set byisProperty EditProperty

  13. Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property is set byisProperty

  14. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01T23:59:59.000Z

    2010. Measuring energy security: can the United StatesCBO, 2010. Energy Independence and Security Act of 2010: Achange Transportation Energy security Renewable energy

  15. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    In the United States: > 200 fuel cell vehicles > 20 fuel cell buses ~ 60 fueling stations Production & Delivery biomass & solar). · Potential U.S. employment from fuel cell and hydrogen industries of up to 925,000 jobsEnergy Efficiency & Renewable Energy DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program

  16. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    on renewable energy in Europe emphasizes the potential topotential for conflict than most other forms of renewable energy,of renewable energy. As shown, they hold the potential to

  17. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    for diesel and the other oil products aggregate as gasoline.range of the elasticities for diesel and other oil products.the price of other oil products. A carbon tax increases

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    that prepare biomass materials that can be used for the production of fuel, renewable energy, bioenergy, or alternative fuel. In addition, permitting agencies may expedite...

  19. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner56: MitigationEnergyRenewable Energy

  20. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    which restrict the renewable resource path of development.renewable sources. 3 Amongst Swiss, Germans, and Austrians those best practice Fossil resources

  1. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    produced renewable energy (wind, sun, water, biomass/gas).park. Renewable heat energy is usually produced in biomassrenewable local producers (wind-turbines, solar panels, water- turbines, biomass,

  2. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    the development of local renewable energy strategies: Theobstacles in the development towards local energy autarky?on. The development towards a renewable local energy regime

  3. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    q d d d (1j) Other oil products demand h a D x (p x + t h )that, due to growing demand, world oil price increases fromof the rest of oil products to the demand function for these

  4. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    reduction in global crude oil consumption, which accountsconsumption of oil products from di?erent types of crude andin consumption of oil products from the two types of crude

  5. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    sustainability” (not identical with “renewability”) and “participation”. A region, village, or city is called “energy

  6. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    of Energy National Renewable Energy Laboratory Dieseland Specifications. Renewable and Sustainable Energy Reviewstheir Reduction Approaches. Renewable and Sustainable Energy

  7. 2007 Renewable Energy: Solar Fuels Gordon Research Conference - January 21-26

    SciTech Connect (OSTI)

    Daniel G. Nocera

    2008-02-01T23:59:59.000Z

    This Gordon Research Conference seeks to brings together chemists, physicists, materials scientists and biologists to address perhaps the outstanding technical problem of the 21st Century - the efficient, and ultimately economical, storage of energy from carbon-neutral sources. Such an advance would deliver a renewable, environmentally benign energy source for the future. A great technological challenge facing our global future is energy. The generation of energy, the security of its supply, and the environmental consequences of its use are among the world's foremost geopolitical concerns. Fossil fuels - coal, natural gas, and petroleum - supply approximately 90% of the energy consumed today by industrialized nations. An increase in energy supply is vitally needed to bring electric power to the 25% of the world's population that lacks it, to support the industrialization of developing nations, and to sustain economic growth in developed countries. On the geopolitical front, insuring an adequate energy supply is a major security issue for the world, and its importance will grow in proportion to the singular dependence on oil as a primary energy source. Yet, the current approach to energy supply, that of increased fossil fuel exploration coupled with energy conservation, is not scaleable to meet future demands. Rising living standards of a growing world population will cause global energy consumption to increase significantly. Estimates indicate that energy consumption will increase at least two-fold, from our current burn rate of 12.8 TW to 28 - 35 TW by 2050. - U.N. projections indicate that meeting global energy demand in a sustainable fashion by the year 2050 will require a significant fraction of the energy supply to come carbon free sources to stabilize atmospheric carbon dioxide levels at twice the pre-anthropogenic levels. External factors of economy, environment, and security dictate that this global energy need be met by renewable and sustainable sources from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The ''grand challenge'' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source.

  8. Market Cost of Renewable Jet Fuel Adoption in the United States

    E-Print Network [OSTI]

    Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation,* Dominic McConnachie, Christoph Wollersheim and Ian A. Waitz Abstract The US Federal Aviation model of the aviation industry. If soybean oil is used as a feedstock, we find that meeting the aviation

  9. Ris Energy Report 5 Renewable-based fuels for transport 4 Introduction

    E-Print Network [OSTI]

    and future technologies for renewable fuel pro- duction. First-generation biofuels Most "first-generation increase dramatically in the 1960s and 1970s. The overall potential of first-generation biofuels in unmodified diesel engines, but low temperatures can cause the oil to con- geal, clogging the filters

  10. The problem of non-renewable energy resources in the production of physical capital

    E-Print Network [OSTI]

    Nesterov, Yurii

    2007/8 The problem of non-renewable energy resources in the production of physical capital Agustin PĂ©rez-Barahona #12;CORE DISCUSSION PAPER 2007/8 The problem of non-renewable energy resources-run growth, although energy is produced by means of non-renewable energy resources. The mechanism behind

  11. Fuel cell electric power production

    SciTech Connect (OSTI)

    Hwang, H.-S.; Heck, R. M.; Yarrington, R. M.

    1985-06-11T23:59:59.000Z

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  12. Fuel cell electric power production

    DOE Patents [OSTI]

    Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

    1985-01-01T23:59:59.000Z

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biogas Production Sales Tax Exemption Biogas production systems, including sales and storage systems, that create a transportation fuel or renewable natural gas, are exempt from...

  14. Fossil fuel potential of Turkey: A statistical evaluation of reserves, production, and consumption

    SciTech Connect (OSTI)

    Korkmaz, S.; Kara-Gulbay, R.; Turan, M. [Karadeniz Technical University, Trabzon (Turkey)

    2008-07-01T23:59:59.000Z

    Since Turkey is a developing country with tremendous economic growth, its energy demand is also getting increased. Of this energy, about 70% is supplied from fossil fuels and the remaining 30% is from renewable sources. Among the fossil fuels, 90% of oil, natural gas, and coal are imported, and only 10% is from domestic sources. All the lignite is supplied from domestic sources. The total share of renewable sources and lignite in the total energy production is 45%. In order for Turkey to have sufficient and reliable energy sources, first the renewable energy sources must be developed, and energy production from fossil fuels, except for lignite, must be minimized. Particularly, scarcity of fossil fuels and increasing oil prices have a strong effect on economic growth of the country.

  15. Renewable and Appropriate Energy Laboratory Report Review of Technologies for the Production and Use of Charcoal

    E-Print Network [OSTI]

    Kammen, Daniel M.

    of Charcoal Production __________________________________5 The Petroleum LinkRenewable and Appropriate Energy Laboratory Report Review of Technologies for the Production areas. The production, transport and combustion of charcoal constitutes a critical energy and economic

  16. Alternative Fuels Data Center: Natural Gas Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduce OperatingPropaneStationProduction to

  17. Renewables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliability Technology

  18. Community Based Renewable Energy Production Incentive (Pilot Program)

    Broader source: Energy.gov [DOE]

    In June 2009, Maine established the Community-based Renewable Energy Pilot Program. As the name suggests, this program is intended to encourage the development of locally owned, in-state renewable...

  19. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01T23:59:59.000Z

    diesel (R) Demand elasticity — other oil products. (elasticity — other oil products (R) Supply elasticity — cornsuppliers of oil and oil products. Gasoline consumers bene?t

  20. Increasing Biofuel Deployment through Renewable Super Premium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by 2022 (EISA 2007) RENEWABLE FUEL STANDARD * BETO Office Goal: "Enable nation-wide production of biofuels compatible with today's transportation infrastructure, reduce...

  1. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and Fuel Cellsan FFV? An FFV, as

  2. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValley of theEthanol8 F l e e t

  3. Alternative Fuels Data Center: Ethanol Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean CitiesStation Locations to someone by

  4. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01T23:59:59.000Z

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  5. Fuel Cell Power Plants Renewable and Waste Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP) (Fact Sheet)UTCLiftEnergy

  6. High Octane Fuels Can Make Better Use of Renewable Transportation Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHigh EfficiencyMetalcost

  7. Fuels generated from renewable energy: a possible solution for large scale energy storage

    E-Print Network [OSTI]

    Franssen, Michael

    conversion Conclusions and Outlook Fuel processing from CO2 and H2O: syngas Basically production of syngas H2 and H2O: syngas Basically production of syngas H2

  8. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01T23:59:59.000Z

    that, due to growing demand, world oil price increases fromdiesel (R) Demand elasticity — other oil products. (H) Demand elasticity — other oil products (R) Supply

  9. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    SciTech Connect (OSTI)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01T23:59:59.000Z

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  10. Biochar – synergies between carbon storage, environmental functions and renewable energy production 

    E-Print Network [OSTI]

    Crombie, Kyle

    2014-11-27T23:59:59.000Z

    Growing concerns about climate change and the inevitable depletion of fossil fuel resources have led to an increased focus on renewable energy technologies and reducing GHG emissions. Limiting the atmospheric level of ...

  11. Beginning of Construction for Purposes of the Renewable Electricity Production Tax Credit and Energy Investment Tax Credit

    Broader source: Energy.gov [DOE]

    Beginning of Construction for Purposes of the Renewable Electricity Production Tax Credit and Energy Investment Tax Credit

  12. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01T23:59:59.000Z

    such as increase in shale and tight oil production and largein oil extraction from shale and tight oil formations since

  13. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H [ORNL; Parish, Esther S [ORNL; Kline, Keith L [ORNL

    2015-01-01T23:59:59.000Z

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  14. A Framework to Report the Production of Renewable Diesel from Algae

    E-Print Network [OSTI]

    A Framework to Report the Production of Renewable Diesel from Algae Colin M. Beal & Colin H. Smith(s) 2010. This article is published with open access at Springerlink.com Abstract Recently, algae have algae are a viable source for renewable diesel, three questions that must be answered are (1) how much

  15. EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1)

    Broader source: Energy.gov [DOE]

    Draft Supplemental Environmental Assessment This EA will evaluate the environmental impacts of a proposal to make improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of regional wood sources.

  16. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    produced renewable energy (wind, sun, water, biomass/gas).locally produced energy from wind, sun, or water poweredsource. “Wind and Sun won´t send an energy bill” as a

  17. Nuclear-renewables energy system for hydrogen and electricity production

    E-Print Network [OSTI]

    Haratyk, Geoffrey

    2011-01-01T23:59:59.000Z

    Climate change concerns and expensive oil call for a different mix of energy technologies. Nuclear and renewables attract attention because of their ability to produce electricity while cutting carbon emissions. However ...

  18. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22T23:59:59.000Z

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  19. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production...

    Energy Savers [EERE]

    DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using...

  20. Production of synthetic hydrocarbon fuels from peat

    SciTech Connect (OSTI)

    Bodle, W.W.; Punwani, D.; Weil, S.A.

    1982-06-22T23:59:59.000Z

    A process and apparatus for production of synthetic hydrocarbon fuels from peat providing wide variation of the composite proportion of liquid-gas output while maintaining high overall carbon conversion to useful fuel. The process and apparatus utilizes three process stages in a single vessel providing functions of drying wet peat, provisions for addition of both wet and dry peat to a hydropyrolysis zone and gasification of the peat char.

  1. Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduceNew Hampshire FleettoSurpasses 1in

  2. National Fuel Cell Technology Evaluation Center (NFCTEC) (Revised) (Fact Sheet), Energy Systems Integration Facility (ESIF), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar Energy Harvestingproducts (CDPs) that show the status

  3. Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels

    E-Print Network [OSTI]

    Suemanotham, Amornrat

    2014-01-01T23:59:59.000Z

    potential of microalgae for biofuels production. Renewable and Sustainable Energypotential from a harmonized model, 2012, Argonne, IL: Argonne National Laboratory; Golden, CO: National Renewable Energy

  4. Available Alternative Fuel School Bus Products--2004

    SciTech Connect (OSTI)

    Not Available

    2004-04-01T23:59:59.000Z

    This 4-page Clean Cities fact sheet provides a list of the currently available (and soon to be available) model year 2004 alternative fuel school bus and school bus engine products. It includes information from Blue Bird Corporation, Collins Bus Corporation, Corbeil Bus, Ford Motor Company, General Motors Corporation, Thomas Built Buses, Inc., Clean Air Partners, Cummins Westport, and Deere & Company.

  5. Spent Nuclear Fuel (SNF) Project Product Specification

    SciTech Connect (OSTI)

    PAJUNEN, A.L.

    2000-01-20T23:59:59.000Z

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

  6. Alternative Fuels Data Center: Wisconsin Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Wisconsin's Incentives and Laws, including the latest ones listed below. Sustainable Biofuels Production Practices Renewable Fuel Sales Volume Goals Alternative Fueling...

  7. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData and ResourcesEnergy

  8. The production and utilization of a clean, abundant, and renewable energy source is widely accepted as one of the key challenges facing mankind today. Population

    E-Print Network [OSTI]

    Bruck, Jehoshua (Shuki)

    The production and utilization of a clean, abundant, and renewable energy source is widely accepted-splitter and may one day be used as a source of clean energy.The components include (a) Membrane assembly of underdeveloped nations will increase our current demand for energy. Although fossil fuels may power the planet

  9. Made with Renewable Energy: How and Why Companies are Labeling Consumer Products

    SciTech Connect (OSTI)

    Baker Brannan, D.; Heeter, J.; Bird, L.

    2012-03-01T23:59:59.000Z

    Green marketing--a marketing strategy highlighting the environmental attributes of a product, often through the use of labels or logos--dates back to the 1970s. It did not proliferate until the 1990s, however, when extensive market research identified a rapidly growing group of consumers with a heightened concern for the environment. This group expressed not only a preference for green products but also a willingness to pay a premium for such products. The response was a surge in green marketing that lasted through the early 1990s. This report discusses the experience of companies that communicate to consumers that their products are 'made with renewable energy.' For this report, representatives from 20 companies were interviewed and asked to discuss their experiences marketing products produced using renewable energy. The first half of this report provides an overview of the type of companies that have labeled products or advertised them as being made with renewable energy. It also highlights the avenues companies use to describe their use of renewable energy. The second half of the report focuses on the motivations for making on-product claims about the use of renewable energy and the challenges in doing so.

  10. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2005-03-01T23:59:59.000Z

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the program period in the areas of technology, manufacturing processes, cost reduction and balance-of-plant equipment designs is discussed in this report.

  11. Life Cycle Assessment of Renewable Hydrogen Production via

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartment Under

  12. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash,Energy NREL Job Task Analysis:Energy

  13. Renewable Hydrogen Production Using Sugars and Sugar Alcohols

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4Visitors3(Presentation) | Department

  14. Renewable Hydrogen Production at Hickam Air Force Base

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4Visitors3(Presentation) |

  15. Renewable Hydrogen Production at Hickam Air Force Base | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4Visitors3(Presentation) |Energy at

  16. Renewable Hydrogen Production from Biological Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4Visitors3(Presentation) |Energy

  17. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation...

  18. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    John M. Sweeten, Kalyan Annamalai

    2012-05-03T23:59:59.000Z

    ABSTRACT The Texas Panhandle is regarded as the â??Cattle Feeding Capital of the Worldâ?ť, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFOâ??s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Wacoâ??the primary source of potable water for Wacoâ??s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 â?? Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 â?? Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and Califor

  19. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Kalyan Annamalai, John M. Sweeten,

    2012-05-03T23:59:59.000Z

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling beh

  20. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    John M. Sweeten, Kalyan Annamalai

    2012-05-02T23:59:59.000Z

    The Texas Panhandle is regarded as the �Cattle Feeding Capital of the World�, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO�s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco�the primary source of potable water for Waco�s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 � Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 � Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys a

  1. Renewable Energy and Environmental Sustainability Using Biomass from Dairy and Beef Animal Production Facilities

    E-Print Network [OSTI]

    Mukhtar, Saqib

    Production Facilities The Texas Panhandle is regarded as the "Cattle Feeding Capital of the World", producingRenewable Energy and Environmental Sustainability Using Biomass from Dairy and Beef Animal basis. Heretofore, it has been used extensively for irrigated and dry land crop production, and in some

  2. Energy Department Policy on Acquiring Tribal Renewable Energy Products |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNF &DepartmentEnergy NuclearDecathlon

  3. General Renewable Energy-Productive Uses and Development Impact | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXAGarnet VRX sroGeneracionInformationEnergy

  4. Request for Information Renewable Energy Generation/Production Shreveport

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: Wind energyInformationRenovalia EnergyAirport

  5. Enhanced Renewable Methane Production System Benefits Wastewater Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovation Portal Industrial

  6. Diagram of the Biofuel Production Process (SPORL -Alcohol Production):Introduction: The Northwest Advanced Renewables Alliance (NARA) is an organization

    E-Print Network [OSTI]

    Collins, Gary S.

    Diagram of the Biofuel Production Process (SPORL - Alcohol Production):Introduction: The Northwest Advanced Renewables Alliance (NARA) is an organization that aims to create a sustainable aviation biofuels to determine the atmospheric emissions and emission sources that may be released from proposed NARA biofuels

  7. Spent Nuclear Fuel (SNF) Project Product Specification

    SciTech Connect (OSTI)

    PAJUNEN, A.L.

    2000-12-07T23:59:59.000Z

    The process for removal of Spent Nuclear Fuel (SNF) from the K Basins has been divided into major sub-systems. The Fuel Retrieval System (FRS) removes fuel from the existing storage canisters, cleans it, and places it into baskets. The multi-canister overpack (MCO) loading system places the baskets into an MCO that has been pre-loaded in a cask. The cask, containing a loaded MCO, is then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the cask, and MCO, are transferred to the Canister Storage Building (CSB), where the MCO is removed from the cask, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The purpose of this document is to specify the process related characteristics of an MCO at the interface between major process systems. The characteristics are derived from the primary technical documents that form the basis for safety analysis and design calculations. This document translates the calculation assumptions into implementation requirements and describes the method of verifying that the requirement is achieved. These requirements are used to define validation test requirements and describe requirements that influence multiple sub-project safety analysis reports. This product specification establishes limits and controls for each significant process parameter at interfaces between major sub-systems that potentially affect the overall safety and/or quality of the SNF packaged for processing, transport, and interim dry storage. The product specifications in this document cover the SNF packaged in MCOs to be transported throughout the SNF Project. The description of the product specifications are organized in the document as follows: Section 2.0--Summary listing of product specifications at each major sub-system interface. Section 3.0--Summary description providing guidance as to how specifications are complied with by equipment design or processing within a major sub-system. Section 4.0--Specific technical basis description for each product specification. The scope of this product specification does not include data collection requirements to support accountability or environmental compliance activities.

  8. Byrne, et al., 2008. In Peter Droege eds. Urban Energy Transition: From Fossil Fuels to Renewable Power.

    E-Print Network [OSTI]

    Delaware, University of

    Byrne, et al., 2008. In Peter Droege eds. Urban Energy Transition: From Fossil Fuels to Renewable to significantly increase the share of such emissions attributed to Southern countries. Nevertheless, on a per and industrializing countries are derived by assuming the same trend for change in the national shares of emissions

  9. American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative and Renewable Fuel and Vehicle Technology Program.

    E-Print Network [OSTI]

    and other matching funds instead of federal dollars, does this exclude us from the process? Will the Energy and Renewable Fuel and Vehicle Technology Program. Questions and Answers as of 4/27/09 1 1) Our county is working on a joint proposal for American Recovery and Reinvestment Act (ARRA) funds with other agencies

  10. October 2005 Gasification-Based Fuels and Electricity Production from

    E-Print Network [OSTI]

    ................................................. 15 3.2.1 Synthesis of Fischer-Tropsch Fuels.4 FISCHER-TROPSCH FUELS PRODUCTION, and production cost estimates for gasification-based thermochemical conversion of switchgrass into Fischer-Tropsch

  11. Fuel cell entropy production with ohmic heating and diffusive polarization

    E-Print Network [OSTI]

    Naterer, Greg F.

    Fuel cell entropy production with ohmic heating and diffusive polarization G.F. Naterer a,*, C production of ohmic heating and concentration polarization is investigated for two types of fuel cells (PEMFC oxide fuel cell (SOFC), this article formulates entropy production within electrodes of a proton

  12. 95 Production and Testing of Coconut Oil Biodiesel Fuel and its Blend

    E-Print Network [OSTI]

    Oguntola J Alamu; Opeoluwa Dehinbo; Adedoyin M Sulaiman; Oguntola J. Alamu; Opeoluwa Dehinbo; Adedoyin M. Sulaiman

    Many researchers have successfully worked on generating energy from different alternative sources including solar and biological sources such as the conversion of trapped energy from sunlight to electricity and conversion of some renewable agricultural products to fuel. This work considers the use of coconut oil for the production of alternative renewable and environmental friendly biodiesel fuel as an alternative to conventional diesel fuel. Test quantities of coconut oil biodiesel were produced through transesterification reaction using 100g coconut oil, 20.0 % ethanol (wt % coconut oil), 0.8% potassium hydroxide catalyst at 65°C reaction temperature and 120 min. reaction time. The experiment was carried out three times and average results evaluated. Low yield of the biodiesel (10.4%) was obtained. The coconut oil biodiesel produced was subsequently blended with petroleum diesel and characterized as alternative diesel fuel through some ASTM standard fuel tests. The products were further evaluated by comparing specific gravity and viscosity of the biodiesel blend, the raw coconut oil and conventional petroleum diesel.

  13. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable

  14. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable!

  15. Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations

    SciTech Connect (OSTI)

    Shi, Fan; Wang, Ping; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-08-02T23:59:59.000Z

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize “food versus fuel” concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  16. Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations

    SciTech Connect (OSTI)

    Shi,Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-01-01T23:59:59.000Z

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  17. Fuel Cell Technologies Researcher Lightens Green Fuel Production |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion Study CommentsStolar, OlenaSurrogate2015 |ViewStorage,

  18. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 3 2012 Composite Data Products

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.; Post, M.

    2013-01-01T23:59:59.000Z

    This report from the U.S. Department of Energy's National Renewable Energy Laboratory includes early fuel cell market composite data products for the third quarter of 2012 for American Recovery and Reinvestment Act (ARRA) and combined (IAA, DLA, ARRA) deployment projects.

  19. The Social Complexity of Renewable Energy Production in the Countryside

    E-Print Network [OSTI]

    Kunze, Conrad; Busch, Henner

    2011-01-01T23:59:59.000Z

    in one case. Biomass or Biogas plants for electricityand heat production 24 Biogas plants use manure and energythat they do not run on biogas but biological waste or wood.

  20. ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT

    E-Print Network [OSTI]

    ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT SHELLS, and academic organizations is developing a steam reforming process to be demonstrated on the gaseous byproducts, catalytic, steam-reforming reactor was then successfully operated on methane and peanut shell pyrolysis

  1. Biomass gasification for liquid fuel production

    SciTech Connect (OSTI)

    Najser, Jan, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Peer, Václav, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz [VSB - Technical university of Ostrava, Energy Research Center, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Vantuch, Martin [University of Zilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Zilina (Slovakia)

    2014-08-06T23:59:59.000Z

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they do?t compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  2. Integration Strategy for DB-MHR TRISO Fuel production in conjunction with MOX Fuel production

    SciTech Connect (OSTI)

    MCGUIRE, DAVID

    2005-09-30T23:59:59.000Z

    One of the nuclear power options for the future involves the evolution of gas cooled reactors to support the likely high temperature operations needed for commercial scale hydrogen production. One such proposed option is to use a Gas Turbine Modular Helium Reactor fueled with uranium based TRISO (coated particle) fuel. It has also been suggested that such a MHR could be operated in a ''Deep Burn'' manner fueled with TRISO fuel produced from recycle spent nuclear fuel. This concept known as a DBMHR must withstand significant development and fuel fabrication cost to be economically viable. The purpose of this report is to consider and propose a strategy where synergy with a parallel MOX fuel to LWR program provides economic or other advantage for either or both programs. A strategy involving three phases has been envisioned with potential for economic benefit relative to a stand-alone TRISO/DBMHR program. Such a strategy and related timing will ultimately be driven by economics, but is offered here for consideration of value to the total AFCI program. Phase I Near-term. Conventional spent fuel aqueous processing, MOX fuel fabrication, and use of present and future LWR/ALWR's with objective of a ''Continuous Recycle'' mode of fuel cycle management. Phase II Intermediate. Augmentation of LWR/ALWR industry with MHR deployment as justified by hydrogen economy and/or electrical demand. Phase III Long-term. Introduction of DBMHR's to offer alternative method for transuranic destruction and associated repository benefits, in addition to Phase II benefits. The basic philosophy of this strategy appears sound. However, the details of the technology plans and economic evaluations should receive additional detail and evaluation in the next fiscal year as funding can support.

  3. PRODUCTION, STORAGE AND PROPERTIES OF HYDROGEN AS INTERNAL COMBUSTION ENGINE FUEL: A CRITICAL REVIEW

    E-Print Network [OSTI]

    In the age of ever increasing energy demand, hydrogen may play a major role as fuel. Hydrogen can be used as a transportation fuel, whereas neither nuclear nor solar energy can be used directly. The blends of hydrogen and ethanol have been used as alternative renewable fuels in a carbureted spark ignition engine. Hydrogen has very special properties as a transportation fuel, including a rapid burning speed, a high effective octane number, and no toxicity or ozone-forming potential. A stoichiometric hydrogen–air mixture has very low minimum ignition energy of 0.02 MJ. Combustion product of hydrogen is clean, which consists of water and a little amount of nitrogen oxides (NOx). The main drawbacks of using hydrogen as a transportation fuel are huge on-board storage tanks. Hydrogen stores approximately 2.6 times more energy per unit mass than gasoline. The disadvantage is that it needs an estimated 4 times more volume than gasoline to store that energy. The production and the storage of hydrogen fuel are not yet fully standardized. The paper reviews the different production techniques as well as storage systems of hydrogen to be used as IC engine fuel. The desirable and undesirable properties of hydrogen as IC engine fuels have also been discussed.

  4. Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production

    E-Print Network [OSTI]

    Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production David F. Savage , Jeffrey production is pre- dicted to peak soon, it is reason- able to assume that unconventional fossil fuel sources and economic energy volatility, and smoothing the transition from fossil fuels in the distant future

  5. Cellulosic Liquid Fuels Commercial Production Today

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desert SouthwestofDepartmentCellulosic

  6. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    Deployment of Renewable Energy and Energy Efficiency. LBNL-Effects of Energy Efficiency and Renewable Energy PracticesCan Deployment of Renewable Energy Put Downward Pressure on

  7. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    Deployment of Renewable Energy and Energy Efficiency. LBNL-Can Deployment of Renewable Energy Put Downward Pressure onEfficiency and Renewable Energy Practices and Policies.

  8. Microbial Fuel Cell Coupling: Clean, renewable energy generated from wastewater amongst other potential uses

    E-Print Network [OSTI]

    Reynolds, Mark

    2014-01-01T23:59:59.000Z

    5] Logan, Bruce. ”Microbial Fuel Cells: Methodology andin a flat plate microbial fuel cell. Environ. Sci. Technol.Korneel, et al. ”Microbial fuel cells: performances and

  9. Renewable Diesel Fuels: Status of Technology and R&D Needs

    Broader source: Energy.gov (indexed) [DOE]

    global warming gases *Rural economic development Renewable Diesel Options Near-Term Biodiesel: neat or up to 20% blend Ethanol: up to 15% blend (E-diesel) Medium-Term Biomass...

  10. Photosynthesis for Hydrogen and Fuels Production Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 TermoelectricaPavingPerryEnergy ScoutingPhotosynthesis for

  11. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    effects, driven by fuel chemistry and fluid dynamics, andeffects, driven by fuel chemistry and fluid dynamics, and

  12. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    SciTech Connect (OSTI)

    None

    2012-02-15T23:59:59.000Z

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  13. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...

  14. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation of Direct H 2 PEM Fuel Cell Systems for Transportation Applications: 2012 Update October 18, 2012 Prepared By: Brian D. James Andrew B. Spisak...

  15. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

    2007-05-01T23:59:59.000Z

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  16. Petroleum Products and Alternative Fuels Tax Law (Tennessee)

    Broader source: Energy.gov [DOE]

    The Petroleum Products and Alternative Fuels Tax Law is relevant to all natural gas and/or biofuel projects. Compressed Natural Gas CNG, petroleum product and/or alternative dealers must apply for...

  17. Land-Use Analysis of Croplands for Sustainable Food and Energy Production in the United States

    E-Print Network [OSTI]

    Zumkehr, Andrew Lee

    2013-01-01T23:59:59.000Z

    without the use of fossil fuel energy. Examining seasonalof renewable energy as the longevity of fossil fuel reservessuch energy production can completely replace fossil fuels.

  18. Ethanol: Producting Food, Feed, and Fuel

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 joint quarterly Web conference of DOE's Biomass and Clean Cities programs, Todd Sneller (Nebraska Ethanol Board) discussed the food versus fuel issue.

  19. Product Supplied for Distillate Fuel Oil

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara 436 Energy Information3,879

  20. Ethanol Plant Production of Fuel Ethanol

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarkets EnergyConsumption5 15Environmental

  1. Los Alamos scientists advance biomass fuel production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5invests inLos AlamosLosChristopherLos

  2. Product Supplied for Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 20116,650.0 167,905.6 173,210.44,115

  3. Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels

    E-Print Network [OSTI]

    Suemanotham, Amornrat

    2014-01-01T23:59:59.000Z

    81 Alternative microalgae fuel productionlife cycle analysis of microalgae fuels with existingto the production of microalgae fuel including cultivation,

  4. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    its lower heating value compared to diesel fuel. Biodiesellower in heating value compared to typical diesel fuel on aGTL diesel fuel, which is due to the lower heating value of

  5. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    Effects of Methyl Ester Biodiesel Blends on NOx Emissions.Increase When Burning Biodiesel; A New (Old) Theory. FuelE. ; Natarajan, M. Effects of Biodiesel Fuels Upon Criteria

  6. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    with a 10% aromatic, ultra-low sulfur diesel fuel used inequivalent 10% aromatic ultra-low sulfur diesel fuel used inx emissions compared to ultra-low sulfur diesel fuel (ULSD).

  7. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure), Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCalifornia State0 Cleanr Clean C

  8. Fission product release from irradiated LWR fuel under accident conditions

    SciTech Connect (OSTI)

    Strain, R.V.; Sanecki, J.E.; Osborne, M.F.

    1984-01-01T23:59:59.000Z

    Fission product release from irradiated LWR fuel is being studied by heating fuel rod segments in flowing steam and an inert carrier gas to simulate accident conditions. Fuels with a range of irradiation histories are being subjected to several steam flow rates over a wide range of temperatures. Fission product release during each test is measured by gamma spectroscopy and by detailed examination of the collection apparatus after the test has been completed. These release results are complemented by a detailed posttest examination of samples of the fuel rod segment. Results of release measurements and fuel rod characterizations for tests at 1400 through 2000/sup 0/C are presented in this paper.

  9. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    Fueled with Diesel or Compressed Natural Gas. EnvironmentalFueled with Diesel or Compressed Natural Gas. EnvironmentalToxic pollutants from Compressed Natural Gas and Low Sulfur

  10. Production of jet fuels from coal-derived liquids

    SciTech Connect (OSTI)

    Johnson, R.W.; Zackro, W.C.; Czajkowski, G. (Allied-Signal, Inc., Des Plaines, IL (USA). Engineered Materials Research Center); Shah, P.P.; Kelly, A.P. (UOP, Inc., Des Plaines, IL (USA))

    1989-03-01T23:59:59.000Z

    The US Air Force is evaluating various feedstock sources of endothermic fuels. The technical feasibility of producing endothermic fuel from the naphtha by-product from Great Plains Gasification Plant in Beulah, North Dakota was evaluated. The capital and operating costs of deriving the fuel from coal naphtha were also estimated. The coal naphtha from Great Plains was successfully processed to remove sulfur, nitrogen and oxygen contaminants (UOP HD Unibon{reg sign} Hydrotreating) and then to saturate aromatic molecules (UOP AH Unibon{reg sign}). The AH Unibon product was fractionated to yield endothermic fuel candidates with less than 5% aromatics. The major cycloparaffins in the AH Unibon product were cyclohexane and methylcyclohexane. The production of endothermic fuel from the naphtha by-product stream was estimated to be cost competitive with existing technology. 17 figs., 23 tabs.

  11. ULTRACLEAN FUELS PRODUCTION AND UTILIZATION FOR THE TWENTY-FIRST CENTURY: ADVANCES TOWARDS SUSTAINABLE TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    Fox, E.

    2013-06-17T23:59:59.000Z

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  12. Integrated coke, asphalt and jet fuel production process and apparatus

    DOE Patents [OSTI]

    Shang, Jer Y. (McLean, VA)

    1991-01-01T23:59:59.000Z

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  13. Alternative Fuels Used in Transportation: Science Projects in Renewable Energy and Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM -Alicia Moulton About

  14. US STATE POLICIES FOR RENEWABLE ENERGY: CONTEXT AND EFFECTIVENESS

    E-Print Network [OSTI]

    Delmas, Magali

    emissions come primarily from the combustion of fossil fuels in energy use. Energy-related carbon dioxide to sell green products, disclosure policies, and subsidies. Analyzing the effectiveness of state renewable://www.eia.doe.gov/bookshelf/brochures/greenhouse/Chapter1.htm This is without hydroelectricity. Biomass (71%) was the predominant non-hydro renewable fuel

  15. Biomass IBR Fact Sheet: Renewable Energy Institute International

    Broader source: Energy.gov [DOE]

    The Renewable Energy Institute International, in collaboration with Red Lion Bio-Energy and Pacific Renewable Fuels, is demonstrating a pilot, pre-commercial-scale integrated biorefinery for the production of high-quality, synthetic diesel fuels from agriculture and forest residues using advanced thermochemical and catalytic conversion technologies.

  16. Area Solar energy production BACKGROUND -All renewable energies, except for geothermal and tidal, derive their energy from the sun. By harnessing the power of

    E-Print Network [OSTI]

    Keinan, Alon

    Area Solar energy production ­ BACKGROUND - All renewable energies installations. Advantages: · A renewable form of energy - "Locks up" carbon, except for geothermal and tidal, derive their energy from the sun

  17. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01T23:59:59.000Z

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  18. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliability TechnologyRenewal Individual Permit Renewal

  19. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)Renewable Energy Renewable! Activities

  20. Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-07-17T23:59:59.000Z

    Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

  1. Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels

    E-Print Network [OSTI]

    Suemanotham, Amornrat

    2014-01-01T23:59:59.000Z

    and second generation biofuels: A comprehensive review.Production of liquid biofuels from renewable resources.al. , Second Generation Biofuels: High-Efficiency Microalgae

  2. Navy Mobility Fuels Forecasting System Phase 5 report: Impacts of ultra low sulfur diesel fuel production on Navy fuel availability

    SciTech Connect (OSTI)

    Hadder, G.R.; Das, S.; Lee, R.; Domingo, N.; Davis, R.M.

    1989-09-01T23:59:59.000Z

    Legislation for ultra low sulfur (ULS) diesel fuel, with a greatly reduced allowable sulfur content and a new limit on aromatics content, is expected to be in place by 1995. The ULS diesel fuel has been specified to satisfy national standards for particulate emissions from heavy-duty diesel engines. The economic and engineering models of the Navy Mobility Fuels Forecasting System have been used to study the impacts of ULS diesel fuel production on other refined petroleum products, with emphasis on the quality of Navy mobility fuels. The study predicts that to produce ULS diesel fuel, Gulf and West Coast refiners will have to invest about $4.4 billion in new processing capacity. Refiners will shift aromatics from No. 2 diesel fuel to jet fuel and to No. 2 fuel oil. Therefore, particulate emissions could be transferred from the nation's highways to the airways and to communities which use No. 2 fuel oil for residential and commercial heating. The study also predicts that there will be an increase in the aromatics content of domestically produced Navy JP-5 jet fuel and F-76 marine diesel fuel. The gum-forming tendencies of F-76 an F-77 burner fuel oil will increase in most cases. The freezing point of JP-5 will improve. There will be minor changes in the cost of JP-5, but sizable reductions in the cost of F-76 and F-77. 20 refs., 2 figs., 17 tabs.

  3. EERE SBIR Case Study: Improving Hybrid Poplars as a Renewable Source of Ethanol Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western22, 2014FluidLaboratoryDesertEEREEEREEthanol Fuel

  4. 2010 Fuel Cell Technologies Market Report, June 2011, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies09Combustion2/2010 1Fuel

  5. Making Better Use of Ethanol as a Transportation Fuel With “Renewable Super Premium”

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–B: End Use and Fuel Certification Brian West, Deputy Director for the Fuels, Engines, and Emissions Research Center, Oak Ridge National Laboratory

  6. Sweet Smell of Renewable Fuel | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action Title:Sustainable

  7. City of Tulare Renewable Biogas Fuel Cell Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSSDepartmentDepartment ofCity and CountyDepartment

  8. On the Path to Low Cost Renewable Fuels, an Important Breakthrough |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil's Impact on Our NationalCombustion |Department of

  9. RTP Green Fuel: A Proven Path to Renewable Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide: PowerFrequency | Department ofEnvergent

  10. 2009 Fuel Cell Market Report, November 2010, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies PlenaryEnergy 09 Federal

  11. National Renewable Energy Laboratory (NREL): Hydrogen and Fuel Cell Capabilities Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |Energy NovemberC O OR DI N AT ORNationalNational

  12. Renewable Diesel Fuels: Status of Technology and R&D Needs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4Visitors3 * August

  13. Liquid fuels production from biomass. Final report

    SciTech Connect (OSTI)

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-06-30T23:59:59.000Z

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  14. Fuel Cell Product Certification/Listing Lessons Learned | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP) (FactEnergy Product

  15. Alternative Fuels Data Center: Propane Production and Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduceNew

  16. Alternative Fuels Data Center: Hydrogen Production and Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2NorthAvailabilityBasicsFuelingProduction

  17. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    Srinivasan, Ram

    2013-07-31T23:59:59.000Z

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

  18. Petroleum Refining Energy Use in Relation to Fuel Products Made

    E-Print Network [OSTI]

    White, J. R.; Marshall, J. F.; Shoemaker, G. L.; Smith, R. B.

    1983-01-01T23:59:59.000Z

    that reduce the energy effects of changing octane levels. These changes have been incorporated in the linear program representation of a modern 'fuels' refinery. The total flow of crude oil to products and the corresponding energy use are included...

  19. Synthetic fuel production by indirect coal liquefaction

    E-Print Network [OSTI]

    and dimethyl ether) by indirect coal liquefaction (ICL). Gasification of coal pro- duces a synthesis gas by coal gasification. The principal con- stituents of ``syngas'' are carbon monoxide and hydrogen, which modern coal gasification facilities in operation to make hydrogen for ammonia production. Also

  20. Renewable Natural Gas- Developer Perspective

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsRenewable Natural Gas - Developer PerspectiveDavid Ross, Managing Director, MultiGen International, LLC

  1. Fuel Cell Assembly Process Flow for High Productivity

    E-Print Network [OSTI]

    Edwards, David A.

    Fuel Cell Assembly Process Flow for High Productivity Problem Presenter Ram Ramanan Bloom Energy: Introduction Bloom Energy manufactures power modules based on fuel cell technology. These are built up their possible placement within a cell assembly. Currently, these rules for assembling the basic components

  2. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'ware aPowering commercial

  3. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    Natural Gas Liquids Natural Gas Vehicle Ammonia Non-methanein emissions for natural gas vehicles (NGVs), emissions for226. Timmons, S. Natural Gas Fuel Effects on Vehicle Exhaust

  4. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    of Biodiesel Chemistry, Carbon Footprint and Regional Fuelof Biodiesel Chemistry, Carbon Footprint and Regional Fuelof Biodiesel Chemistry, Carbon Footprint and Regional Fuel

  5. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    Biodiesel Blends on NOx Emissions. SAE Technical Paper 2008,Energy Laboratory Diesel Emissions Control - Sulfur Effectsbetween NOx, Particulate Emission, and Fuel Consumption of a

  6. On the Path to Low Cost Renewable Fuels, an Important Breakthrough |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf EnvironmentalGuide,(ONG-C2M2) |Department of

  7. Green Racing Series Revs Engines with Renewable Fuel from INEOS Bio |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLoggingsubscriber to the GreenOne of

  8. Light-Powered Microbial Fuel Cell Offering Clean, Renewable Hydrogen-Based

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count

  9. RTP Green Fuel: A Proven Path to Renewable Heat and Power | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010In addition to 1 |D I S P URFIof CleanEnergy

  10. renewable sources of power. Demand for fossil fuels surely will overrun supply s

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting8.pdfand Characterization of aHome *NRC FORM 741OFrenewable

  11. Property:RenewableFuelStandard/BiomassBasedDiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property is set byisProperty Edit with

  12. Fuel-sodium reaction product formation in breached mixed-oxide fuel

    SciTech Connect (OSTI)

    Bottcher, J.H.; Lambert, J.D.B.; Strain, R.V.; Ukai, S.; Shibahara, S.

    1988-01-01T23:59:59.000Z

    The run-beyond-cladding-breach (RBCB) operation of mixed-oxide LMR fuel pins has been studied for six years in the Experimental Breeder Reactor-II (EBR-II) as part of a joint program between the US Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan. The formation of fuel-sodium reaction product (FSRP), Na/sub 3/MO/sub 4/, where M = U/sub 1-y/Pu/sub y/, in the outer fuel regions is the major phenomenon governing RBCB behavior. It increases fuel volume, decreases fuel stoichiometry, modifies fission-product distributions, and alters thermal performance of a pin. This paper describes the morphology of Na/sub 3/MO/sub 4/ observed in 5.84-mm diameter pins covering a variety of conditions and RBCB times up to 150 EFPD's. 8 refs., 1 fig.

  13. Environmental improvements resulting from the use of renewable energy sources and nonpolluting fuels and technologies with district heating and cooling

    SciTech Connect (OSTI)

    Kainlauri, E.O. [Iowa State Univ., Ames, IA (United States)

    1996-12-31T23:59:59.000Z

    The use of district heating and cooling (DHC) for a group of buildings or on a city-wide basis does by itself usually improve the local environmental conditions, regardless of the type of fuel used, as the DHC system replaces a larger number of individual units and is able to utilize anti-pollution and emission-cleaning devices at a central location. The DHC system may also be able to use several alternative choices for fuel, including renewable energy sources, depending on both economic and environmentally required conditions. The DHC systems are also safe and clean for the users, eliminating the need for fuel-burning equipment in their buildings. Solar energy is being utilized to a small degree in district heating systems, sometimes with the assistance of energy storage facilities, to reduce the amount of fuel needed to burn for the total system. The use of municipal and industrial waste as fuel helps reduce the amount of fossil fuel being burned and also reduces the areas of landfill needed to dispose wastes, but special care must be exercised to avoid releases of toxic gases into the atmosphere. This paper describes a few examples of the use of solar energy and energy storage in community-wide systems (Lyckebo in Sweden, Kerava in Finland), the use of natural gas in DHC (Lappenranta and Lahti in Finland), and applications of heat pump utilization in DHC (Uppsala wastewater and Stockholm preheat system in Sweden). Some projections are made of several alternative fuels derived from biomass, recycling, and other possible technologies in the future development of waste-handling and DHC systems. A brief discussion is included regarding the environmental concerns and legislative development in the US and elsewhere in the world.

  14. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19T23:59:59.000Z

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  15. Fuel-sodium reaction product and its influence on breached, mixed-oxide fuel pins

    SciTech Connect (OSTI)

    Strain, R.V.; Bottcher, J.H. (Argonne National Lab., IL (United States)); Ukai, S.; Arii, Y. (Power Reactor and Nuclear Fuels Development Corp., Ibaraki-ken (Japan))

    1992-01-01T23:59:59.000Z

    The formation and consequences of fuel-sodium reaction product (FSRP) have been studied in experiments irradiated in Experimental Breeder Reactor II as part of a joint program between the U.S. Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan. This paper describes observations on the parameters that most influence the extent of the formation of FSRP and the effects it has on the performance of the fuel pin during continued operation.

  16. Alternative Fuels Data Center: Biodiesel Production and Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimentalInfrastructure Development toBiodiesel

  17. A Brief Literature Overview of Various Routes to Biorenewable Fuels from Lipids for the National Alliance for Advanced Biofuels and Bio-products (NAABB) Consortium

    SciTech Connect (OSTI)

    Albrecht, Karl O.; Hallen, Richard T.

    2011-03-29T23:59:59.000Z

    Renewable methods of producing transportation fuels are currently the focus of numerous large research efforts across the globe. Renewable fuel produced from algal lipids is one aspect of this research that could have profound implications on future transportation fuel requirements. However, technical challenges remain in several areas of algal-lipid-based fuels. These challenges include the identification and development of robust and productive algal species as well as extraction methods to recover the produced lipids. Not the least of these technical challenges is the conversion of the algae lipids to fungible fuels. This brief literature review focuses primarily on state-of-the-art “downstream” applications of producing fuel from fats and lipids, which can be applied to ongoing research with algae-derived lipids.

  18. Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)

    SciTech Connect (OSTI)

    Brinkman, G.; Lew, D.; Denholm, P.

    2012-09-01T23:59:59.000Z

    Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

  19. Guidance: Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246: Federal Fleet Program, Federal Energy Management Program, U.S. Department of Energy, March 2011

    SciTech Connect (OSTI)

    Not Available

    2011-03-01T23:59:59.000Z

    On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

  20. Subtask 3: Fuel production complex | Center for Bio-Inspired Solar Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ... StrengtheningLabSubmittingProduction 2:

  1. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26T23:59:59.000Z

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  2. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect (OSTI)

    Weakley, Steven A.

    2012-09-28T23:59:59.000Z

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

  3. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect (OSTI)

    Weakley, Steven A.; Brown, Scott A.

    2011-09-29T23:59:59.000Z

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

  4. Microalgal Production of Jet Fuel: Cooperative Research and Development Final Report, CRADA Number CRD-07-208

    SciTech Connect (OSTI)

    Jarvis, E. E.; Pienkos, P. T.

    2012-06-01T23:59:59.000Z

    Microalgae are photosynthetic microorganisms that can use CO2 and sunlight to generate the complex biomolecules necessary for their survival. These biomolecules include energy-rich lipid compounds that can be converted using existing refinery equipment into valuable bio-derived fuels, including jet fuel for military and commercial use. Through a dedicated and thorough collaborative research, development and deployment program, the team of the National Renewable Energy Laboratory (NREL) and Chevron will identify a suitable algae strain that will surpass the per-acre biomass productivity of terrestrial plant crops.

  5. FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Stephen P. Bergin

    2003-04-23T23:59:59.000Z

    This project has two primary purposes: (1) Build a small-footprint (SFP) fuel production plant to prove the feasibility of this relatively transportable technology on an intermediate scale (i.e. between laboratory-bench and commercial capacity) and produce as much as 150,000 gallons of hydrogen-saturated Fischer-Tropsch (FT) diesel fuel; and (2) Use the virtually sulfur-free fuel produced to demonstrate (over a period of at least six months) that it can not only be used in existing diesel engines, but that it also can enable significantly increased effectiveness and life of the next-generation exhaust-after-treatment emission control systems that are currently under development and that will be required for future diesel engines. Furthermore, a well-to-wheels economic analysis will be performed to characterize the overall costs and benefits that would be associated with the actual commercial production, distribution and use of such FT diesel fuel made by the process under consideration, from the currently underutilized (or entirely un-used) energy resources targeted, primarily natural gas that is stranded, sub-quality, off-shore, etc. During the first year of the project, which is the subject of this report, there have been two significant areas of progress: (1) Most of the preparatory work required to build the SFP fuel-production plant has been completed, and (2) Relationships have been established, and necessary project coordination has been started, with the half dozen project-partner organizations that will have a role in the fuel demonstration and evaluation phase of the project. Additional project tasks directly related to the State of Alaska have also been added to the project. These include: A study of underutilized potential Alaska energy resources that could contribute to domestic diesel and distillate fuel production by providing input energy for future commercial-size SFP fuel production plants; Demonstration of the use of the product fuel in a heavy-duty diesel vehicle during the Alaska winter; a comparative study of the cold-starting characteristics of FT and conventional diesel fuel; and demonstration of the use of the fuel to generate electricity for rural Alaskan villages using both a diesel generator set, and a reformer-equipped fuel cell.

  6. The Renewable Energy Footprint

    E-Print Network [OSTI]

    Outka, Uma

    2011-01-01T23:59:59.000Z

    With the shift toward renewable energy comes the potential for staggering land impacts – many millions of acres may be consumed to meet demand for electricity and fuel over the next 20 years. To conservationists’ dismay, the more renewable energy we...

  7. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01T23:59:59.000Z

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  8. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01T23:59:59.000Z

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  9. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    for and receive production incentives, referred to as supplemental energy payments (SEPs), from the New RenewableCALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable

  10. Regenerative Fuel Cells: Renewable Energy Storage Devices Based on Neutral Water Input

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    GRIDS Project: Proton Energy Systems is developing an energy storage device that converts water to hydrogen fuel when excess electricity is available, and then uses hydrogen to generate electricity when energy is needed. The system includes an electrolyzer, which generates and separates hydrogen and oxygen for storage, and a fuel cell which converts the hydrogen and oxygen back to electricity. Traditional systems use acidic membranes, and require expensive materials including platinum and titanium for key parts of the system. In contrast, Proton Energy Systems’ new system will use an inexpensive alkaline membrane and will contain only inexpensive metals such as nickel and stainless steel. If successful, Proton Energy Systems’ system will have similar performance to today’s regenerative fuel cell systems at a fraction of the cost, and can be used to store electricity on the electric grid.

  11. FEMP Renewable Energy Overview

    SciTech Connect (OSTI)

    Not Available

    2003-06-01T23:59:59.000Z

    This four-page overview describes how Federal agencies can contact the Department of Energy's Federal Energy Management Program (FEMP) to obtain assistance in acquiring renewable energy systems, renewable fuels, and renewable ("green") power for use in their facilities and vehicles. Renewable resources, technologies, and fuels are described, as well as Federal goals for using clean, sustainable renewable energy; the current goal is to supply 2.5% of the Federal Government's energy with renewable sources by 2005. Also included is a description of the resources and technologies themselves and associated benefits.

  12. Fission-product release from irradiated LWR fuel

    SciTech Connect (OSTI)

    Osborne, M.F.; Lorenz, R.A.; Wichner, R.P.

    1982-01-01T23:59:59.000Z

    An experimental investigation of fission product release from commercial LWR fuel under accident conditions is being conducted at Oak Ridge National Laboratory (ORNL). This work, which is sponsored by the US Nuclear Regulatory Commission (NRC), is an extension of earlier experiments up to 1600/sup 0/C and is designed to obtain the experimental data needed to reliably assess the consequences of accidents for fuel temperatures up to melting. The objectives of this program are (1) to determine fission product release rates from fully-irradiated commercial LWR fuel in high-temperature steam; (2) to collect and characterize the aerosol released; (3) to identify the chemical forms of the released material; (4) to correlate the results with related experimental data and develop a consistent source term model; and (5) to aid in the interpretation of tests using simulated LWR fuel.

  13. ETHANOL FROM CORN: CLEAN RENEWABLE FUEL FOR THE FUTURE, OR DRAIN ON OUR RESOURCES AND POCKETS?

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    , and by law refiners must add to gasoline oxygenating additives like methyl ter- tiary-butyl ether (MTBE better, thus reducing carbon monoxide and other emissions. MTBE is the fuel oxygenate preferred by oil as gaso- line, mixes well with gasoline, and does not increase the gasoline vapor pressure. MTBE has

  14. Production of New Biomass/Waste-Containing Solid Fuels

    SciTech Connect (OSTI)

    Glenn A. Shirey; David J. Akers

    2005-09-23T23:59:59.000Z

    CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

  15. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect (OSTI)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20T23:59:59.000Z

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in existing boilers, evaluation of these composite fuels to determine their applicability to the major combustor types, development of preliminary designs and economic projections for commercial facilities producing up to 200,000 tons per year of biomass/waste-containing fuels, and the development of dewatering technologies to reduce the moisture content of high-moisture biomass and waste materials during the pelletization process.

  16. MEMBERS ONLY | Join | Renew | Shop | About | Contact Us | Home ASME.ORG > News & Public Policy > Press Releases > Research Begun on New Fuel Cell Type

    E-Print Network [OSTI]

    SEARCH ASME: MEMBERS ONLY | Join | Renew | Shop | About | Contact Us | Home ASME.ORG > News Type NEW YORK, June 25, 2004 - In the June 2004 issue of Mechanical Engineering, a publication of ASME the potential to generate 2.3 megawatts of electricity, or enough energy to power 1,500 homes. One of the fuel

  17. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    E-Print Network [OSTI]

    Blair, N.

    2010-01-01T23:59:59.000Z

    Renewables 2025 Renewable Generation Wind Biomass (solidy sal es. • Renewable generation from biomass units appears20% RPS 2025 Renewable Generation Wind Biomass (solid fuel,

  18. Fuel-cycle assessment of selected bioethanol production.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Hong, H.; Energy Systems

    2007-01-31T23:59:59.000Z

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil fuel, farming consumes most of the fossil fuel in the life cycle of corn stover-based ethanol.

  19. Production of metal waste forms from spent fuel treatment

    SciTech Connect (OSTI)

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-02-01T23:59:59.000Z

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities.

  20. Renewable Energy Renaissance Zones

    Broader source: Energy.gov [DOE]

    For the purposes of renaissance zone designation, “renewable energy facility” means a facility that creates energy, fuels, or chemicals directly from the wind, the sun, trees, grasses, biosolids,...

  1. Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels

    E-Print Network [OSTI]

    Suemanotham, Amornrat

    2014-01-01T23:59:59.000Z

    Park, Production of Fischer–Tropsch fuels and electricitythe production of Fischer– Tropsch (FT) fuel derived fromCERT technology for Fischer–Tropsch (FT) liquid fuel and co–

  2. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16T23:59:59.000Z

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  3. Excellence in biotechnology for fuels and chemicals

    SciTech Connect (OSTI)

    Neufeld, S.

    1999-04-23T23:59:59.000Z

    The Biotechnology Center for Fuels and Chemicals (BCFC) leads a national effort, in cooperation with industry, to develop innovative, market-driven biotechnologies for producing fuels and chemicals from renewable resources. The BCFC researchers focus on using bioprocesses to convert renewable biomass feedstocks into valuable products.

  4. Renewable energy and telecommunications

    E-Print Network [OSTI]

    Renewable energy and telecommunications Case study: Energy Systems Week When AK Erlang first used fossil fuels and switch to renewable energy sources. But the unlikely convergence of the two fields lay to be able to deal with. "If we integrate renewable energies, such as wind power, in the electricity grid

  5. FORECASTING THE ROLE OF RENEWABLES IN HAWAII

    E-Print Network [OSTI]

    Sathaye, Jayant

    2013-01-01T23:59:59.000Z

    diesel fueL Several renewable technologies have the potential to contribute s to electricity generation.

  6. Recovery Act: Beneficial CO{sub 2} Capture in an Integrated Algal Biorefinery for Renewable Generation and Transportation Fuels

    SciTech Connect (OSTI)

    Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid; Kessler, Ben; Moats, Kenneth; Park, Jonathan; Schwenk, Jacob; White, Nicholas; Bakhit, Anis; Bargiel, Jeff; Allnutt, F.C.

    2014-03-31T23:59:59.000Z

    DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycal’s pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawai’i. Phycal’s algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal mass culturing, heterotrophic reactors for the Heteroboost™ process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.

  7. Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01T23:59:59.000Z

    M. A. Piette, Integrating Renewable Resources in CaliforniaEnable Integration of Renewable Resources,” February 2012.P. Worhach, ”|ntegration of Renewable Resources at 20% RPS,”

  8. Field Testing of Automated Demand Response for Integration of Renewable Resources in California's Ancillary Services Market for Regulation Products

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01T23:59:59.000Z

    A. Piette, Integrating Renewable Resources in California andEnable Integration of Renewable Resources,” February 2012.ntegration of Renewable Resources at 20% RPS,” CAISO, August

  9. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    SciTech Connect (OSTI)

    Bolinger, Mark A; Wiser, Ryan

    2008-09-15T23:59:59.000Z

    For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the Energy Information Administration (EIA), natural gas-fired units account for nearly 90% of the total generating capacity added in the U.S. between 1999 and 2005 (EIA 2006b), bringing the nationwide market share of gas-fired generation to 19%. Looking ahead over the next decade, the EIA expects this trend to continue, increasing the market share of gas-fired generation to 22% by 2015 (EIA 2007a). Though these numbers are specific to the US, natural gas-fired generation is making similar advances in many other countries as well. A large percentage of the total cost of gas-fired generation is attributable to fuel costs--i.e., natural gas prices. For example, at current spot prices of around $7/MMBtu, fuel costs account for more than 75% of the levelized cost of energy from a new combined cycle gas turbine, and more than 90% of its operating costs (EIA 2007a). Furthermore, given that gas-fired plants are often the marginal supply units that set the market-clearing price for all generators in a competitive wholesale market, there is a direct link between natural gas prices and wholesale electricity prices. In this light, the dramatic increase in natural gas prices since the 1990s should be a cause for ratepayer concern. Figure 1 shows the daily price history of the 'first-nearby' (i.e., closest to expiration) NYMEX natural gas futures contract (black line) at Henry Hub, along with the futures strip (i.e., the full series of futures contracts) from August 22, 2007 (red line). First, nearby prices, which closely track spot prices, have recently been trading within a $7-9/MMBtu range in the United States and, as shown by the futures strip, are expected to remain there through 2012. These price levels are $6/MMBtu higher than the $1-3/MMBtu range seen throughout most of the 1990s, demonstrating significant price escalation for natural gas in the United States over a relatively brief period. Perhaps of most concern is that this dramatic price increase was largely unforeseen. Figure 2 compares the EIA's natural gas wellhead price forecast from each year's Annual Energy Outlook (AEO) going back to 1985 against the average US wellhead price that actually transpired. As shown, our forecasting abilities have proven rather dismal over time, as over-forecasts made in the late 1980's eventually yielded to under-forecasts that have persisted to this day. This historical experience demonstrates that little weight should be placed on any one forecast of future natural gas prices, and that a broad range of future price conditions ought to be considered in planning and investment decisions. Against this backdrop of high, volatile, and unpredictable natural gas prices, increasing the market penetration of renewable generation such as wind, solar, and geothermal power may provide economic benefits to ratepayers by displacing gas-fired generation. These benefits may manifest themselves in several ways. First, the displacement of natural gas-fired generation by increased renewable generation reduces ratepayer exposure to natural gas price risk--i.e., the risk that future gas prices (and by extension future electricity prices) may end up markedly different than expected. Second, this displacement reduces demand for natural gas among gas-fired generators, which, all else equal, will put downward pressure on natural gas prices. Lower natural gas prices in turn benefit both electric ratepayers and other end-users of natural gas. Using analytic approaches that build upon, yet differ from, the past work of others, including Awerbuch (1993, 1994, 2003), Kahn and Stoft (1993), and Humphreys and McClain (1998), this chapter explores each of these two potential 'hedging' benefits of renewable electricity. Though we do not seek to judge whether these two specific benefits outweigh any incremental cost of renewable energy (relative to conventional fuels), we do seek to quantify the magnitude of these two individual benefit

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Renewable Fuel Definitions Biodiesel is defined as a renewable, biodegradable, mono alkyl ester combustible liquid fuel that is derived from vegetable oils or animal fats and...

  11. Assessment of Technologies for Compliance with the Low Carbon Fuel Standard

    E-Print Network [OSTI]

    Yeh, Sonia; Lutsey, Nicholas P.; Parker, Nathan C.

    2009-01-01T23:59:59.000Z

    of U.S. croplands for biofuels increases greenhouse gasesthe indirect Effects of Biofuels Production. Renewable FuelsTyner, W. E. ; Birur, D. K. Biofuels for all? Understanding

  12. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

    2012-07-01T23:59:59.000Z

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

  13. Direct fuel cell for the production of electricity from lignin

    SciTech Connect (OSTI)

    Weetall, H.H.; Forsyth, B.D.; Hertl, W.

    1985-07-01T23:59:59.000Z

    This report describes the use of an anthraquinone mediated fuel cell for the direct production of electrical energy from sulfonated lignin and Kraft Black Liquor. The cell produces the equivalent of one kWh for each 2-3 lb sulfonated lignin and 5-8 lb black liquor combustibles. In the case of the sulfonated lignin, chain session occurs during the oxidation process, reducing the molecular weight from ca. 2 x 10/sup 4/ to less than 1000 D.

  14. Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars

    SciTech Connect (OSTI)

    Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

    2014-05-18T23:59:59.000Z

    Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

  15. Water consumption footprint and land requirements of alternative diesel and jet fuel

    E-Print Network [OSTI]

    Staples, Mark Douglas

    2013-01-01T23:59:59.000Z

    The Renewable Fuels Standard 2 (RFS2) is an important component of alternative transportation fuels policy in the United States (US). By mandating the production of alternative fuels, RFS2 attempts to address a number of ...

  16. Metabolic Engineering of oleaginous yeast for the production of biofuels

    E-Print Network [OSTI]

    Tai, Mitchell

    2012-01-01T23:59:59.000Z

    The past few years have introduced a flurry of interest over renewable energy sources. Biofuels have gained attention as renewable alternatives to liquid transportation fuels. Microbial platforms for biofuel production ...

  17. Biomass Biorefinery for the production of Polymers and Fuels

    SciTech Connect (OSTI)

    Dr. Oliver P. Peoples

    2008-05-05T23:59:59.000Z

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  18. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: 2007 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost...

  19. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Application Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application This report estimates fuel cell system cost for systems produced in the...

  20. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    07 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost for systems...

  1. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01T23:59:59.000Z

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  2. 2008 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  3. Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    No Name

    2014-10-01T23:59:59.000Z

    ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  4. National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar EnergyKambaraorRENEWABLE ENERGY AND ENERGY EFFICIENCY

  5. Renewable energy generation sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewableIndustrialenergy

  6. Renewable Fuels Module This

    Gasoline and Diesel Fuel Update (EIA)

    documentation: www.eia.gov analysismodel- documentation.cfm) is included for offshore wind to account for the substantial cost of establishing the unique construction...

  7. Renewable Fuels Module

    Gasoline and Diesel Fuel Update (EIA)

    http:www.eia.govFTPROOTmodeldoc m068(2010).pdf) is included for offshore wind to account for the substantial cost of establishing the unique construction...

  8. Renewable Fuels Module This

    Gasoline and Diesel Fuel Update (EIA)

    documentation: www.eia.gov analysismodel-documentation.cfm) is included for offshore wind to account for the substantial cost of establishing the unique construction...

  9. Fuel and core testing plan for a target fueled isotope production reactor.

    SciTech Connect (OSTI)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-12-01T23:59:59.000Z

    In recent years there has been an unstable supply of the critical diagnostic medical isotope 99Tc. Several concepts and designs have been proposed to produce 99Mo the parent nuclide of 99Tc, at a commercial scale sufficient to stabilize the world supply. This work lays out a testing and experiment plan for a proposed 2 MW open pool reactor fueled by Low Enriched Uranium (LEU) 99Mo targets. The experiments and tests necessary to support licensing of the reactor design are described and how these experiments and tests will help establish the safe operating envelop for a medical isotope production reactor is discussed. The experiments and tests will facilitate a focused and efficient licensing process in order to bring on line a needed production reactor dedicated to supplying medical isotopes. The Target Fuel Isotope Reactor (TFIR) design calls for an active core region that is approximately 40 cm in diameter and 40 cm in fuel height. It contains up to 150 cylindrical, 1-cm diameter, LEU oxide fuel pins clad with Zircaloy (zirconium alloy), in an annular hexagonal array on a {approx}2.0 cm pitch surrounded, radially, by a graphite or a Be reflector. The reactor is similar to U.S. university reactors in power, hardware, and safety/control systems. Fuel/target pin fabrication is based on existing light water reactor fuel fabrication processes. However, as part of licensing process, experiments must be conducted to confirm analytical predictions of steady-state power and accident conditions. The experiment and test plan will be conducted in phases and will utilize existing facilities at the U.S. Department of Energy's Sandia National Laboratories. The first phase is to validate the predicted reactor core neutronics at delayed critical, zero power and very low power. This will be accomplished by using the Sandia Critical Experiment (CX) platform. A full scale TFIR core will be built in the CX and delayed critical measurements will be taken. For low power experiments, fuel pins can be removed after the experiment and using Sandia's metrology lab, relative power profiles (radially and axially) can be determined. In addition to validating neutronic analyses, confirming heat transfer properties of the target/fuel pins and core will be conducted. Fuel/target pin power limits can be verified with out-of-pile (electrical heating) thermal-hydraulic experiments. This will yield data on the heat flux across the Zircaloy clad and establish safety margin and operating limits. Using Sandia's Annular Core Research Reactor (ACRR) a 4 MW TRIGA type research reactor, target/fuel pins can be driven to desired fission power levels for long durations. Post experiment inspection of the pins can be conducted in the Auxiliary Hot Cell Facility to observe changes in the mechanical properties of the LEU matrix and burn-up effects. Transient tests can also be conducted at the ACRR to observe target/fuel pin performance during accident conditions. Target/fuel pins will be placed in double experiment containment and driven by pulsing the ACRR until target/fuel failure is observed. This will allow for extrapolation of analytical work to confirm safety margins.

  10. A novel coal feeder for production of low sulfur fuel

    SciTech Connect (OSTI)

    Khang, S.J.; Lin, L.; Keener, T.C.; Yeh, P.

    1991-01-01T23:59:59.000Z

    A dual-screw feeder was designed for desulfurization of coal. This reactor contains two screw tubes, the inner tube acting as a coal pyrolizer and the outer tube acting as a desulfurizer with hot calcined lime pellets or other renewable sorbent pellets. The objectives of this project is to study the feasibility of an advanced concept of desulfurization and possibly some denitrification in this coal feeder. In this year, two basic studies have been performed: (1) the desulfurization and (2) the denitrification due to mild pyrolysis. Specifically, the following tasks have been performed: (1) Setting up the Dual-Screw reactor, (2) Determination of the pyrolysis product and the sulfur distribution in char, tar and gas based on experimental data, (3) Study of the devolatilization, the desulfurization kinetics and the denitrification kinetics and obtaining the basic kinetic parameters, (4) Study of the sulfur removal efficiency of lime pellets fed into the outer tube of the dual-feeder reactor, (5) Study of the effect of the coal particle size on pyrolysis and desulfurization, (6) Study of the coal pyrolysis and desulfurization using a TGA(Thermal Gravimetric Analyzer).

  11. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    placed on any one forecast of future natural gas prices, andreference case forecast of spot natural gas prices deliveredPrice Forecasts to Compare Renewable to Natural Gas- Fired

  12. Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-01-01T23:59:59.000Z

    Profiles of Renewable and Natural Gas Electricity Contracts:Price Risk: Using Forward Natural Gas Prices Instead of Gas2001). “Which way the natural gas price: an attempt to

  13. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect (OSTI)

    Gabriel Miller

    2009-03-25T23:59:59.000Z

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report formed the basis for much of the subsequent work under the grant. An explanation of the process is presented as well as the completed work on the four tasks.

  14. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment...

    Office of Environmental Management (EM)

    Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong...

  15. Modeling the Effects of Steam-Fuel Reforming Products on Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of n-Heptane Modeling the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of...

  16. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for...

  17. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...

  18. Opportunities for Biomass-Based Fuels and Products in a Refinery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Biomass-Based Fuels and Products in a Refinery Opportunities for Biomass-Based Fuels and Products in a Refinery Breakout Session 2: Frontiers and Horizons Session...

  19. U.S. Fuel Cell Market Production and Deployment Continues Strong...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Fuel Cell Market Production and Deployment Continues Strong Growth U.S. Fuel Cell Market Production and Deployment Continues Strong Growth January 8, 2014 - 12:00am Addthis...

  20. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application This presentation reports on the status of mass production cost...

  1. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

    2009-05-01T23:59:59.000Z

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

  2. RENEWABLE ENERGY RESOURCES PROCUREMENT PLAN This Renewable Energy Resources Procurement Plan ("RPS Procurement Plan" or

    E-Print Network [OSTI]

    : Eligible Renewable Energy Resources Biodiesel Fuel cells using renewable fuels Ocean wave, ocean thermalRENEWABLE ENERGY RESOURCES PROCUREMENT PLAN This Renewable Energy Resources Procurement Plan ("RPS California's electric utilities and other retail sellers to procure eligible renewable energy resources so

  3. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01T23:59:59.000Z

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  4. Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels

    E-Print Network [OSTI]

    Suemanotham, Amornrat

    2014-01-01T23:59:59.000Z

    A comprehensive review. Renewable and Sustainable Energyapplications: A review. Renewable and Sustainable Energyof liquid biofuels from renewable resources. Progress in

  5. Response to several FOIA requests - Renewable Energy. Demand...

    Office of Environmental Management (EM)

    Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA...

  6. DRAFT COMMITTEE REPORT RENEWABLE ENERGY PROGRAM

    E-Print Network [OSTI]

    , Senate Bill 1, Consumer Education Program, renewable energy, solar thermal, photovoltaic, biomass, fuelDRAFT COMMITTEE REPORT RENEWABLE ENERGY PROGRAM 2011 ANNUAL REPORT TO THE LEGISLATURE NOVEMBER 2011 CEC3002011007CTD #12;CALIFORNIA ENERGY COMMISSION RENEWABLES COMMITTEE Carla

  7. Renewable energy annual 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  8. Moving bed reactor for solar thermochemical fuel production

    DOE Patents [OSTI]

    Ermanoski, Ivan

    2013-04-16T23:59:59.000Z

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  9. Photobiotechnology: Application of photosynthesis to the production of renewable fuels and chemicals

    SciTech Connect (OSTI)

    Greenbaum, E.

    1993-06-01T23:59:59.000Z

    Sustained hydrogen photoevolution from Chlamydomonas reinhardtii and C. moewusii was measured under an anoxic, CO{sub 2}-containing atmosphere. It has been discovered that light intensity and temperature influence the partitioning of reductant between the hydrogen photoevolution pathway and the Calvin cycle. Under low incident light intensity (1--3 W m{sup {minus}2}) or low temperature (approx. 0{degrees}C), the flow of photosynthetic reductant to the Calvin cycle was reduced, and reductant was partitioned to the hydrogen pathway as evidenced by sustained H{sub 2} photoevolution. Under saturating light (25 W m{sup {minus}2} ) and moderate temperature 20 {plus_minus} 5{degrees}C), the Calvin cycle became the absolute sink for reductant with the exception of a burst of H{sub 2} occurring at light on. A novel photobiophysical phenomenon was observed in isolated spinach chloroplasts that were metalized by precipitating colloidal platinum onto the surface of the thylakoid membranes. A two-point irradiation and detection system was constructed in which a continuous beam helium-neon laser ({lambda} = 632.8 nm) was used to irradiate the platinized chloroplasts at varying perpendicular distances from a single linear platinum electrode in pressure contact with the platinized chloroplasts. No external voltage bias was applied to the system. The key objective of the experiments reported in this report was to measure the relative photoconductivity of the chloroplast-metal composite matrix.

  10. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01T23:59:59.000Z

    projections of renewable technology cost, fossil fuel priceboth renewable technology costs and avoided fuel costs. Theof future renewable technology cost and performance would

  11. Potential for Hydrogen Production from Key Renewable Resources in the United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal7 Estimated

  12. Fuel Cell Vehicles Enhance NREL Hydrogen Research Capabilities (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE)FrequentlyLecturesFuel Cell HandbookFuel*

  13. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    SciTech Connect (OSTI)

    F.D. Guffey; R.C. Wingerson

    2002-10-01T23:59:59.000Z

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to alkaline hydrolysis may be beneficial in removing hemicellulose and lignin from the feedstock. In addition, alkaline hydrolysis has been shown to remove a significant portion of the hemicellulose and lignin. The resulting cellulose can be exposed to a finishing step with wet alkaline oxidation to remove the remaining lignin. The final product is a highly pure cellulose fraction containing less than 1% of the native lignin with an overall yield in excess of 85% of the native cellulose. This report summarizes the results from the first year's effort to move the technology to commercialization.

  14. Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity

    E-Print Network [OSTI]

    Delucchi, Mark

    1997-01-01T23:59:59.000Z

    CO2 GREENHOUSE GASES FROM THE PRODUCTION AND USE OF TRANSPORTATION FUELS AND ELECTRICITYCO2 GREENHOUSE GASES FROM THE PRODUCTION AND USE OF TRANSPORTATION FUELS AND ELECTRICITY

  15. Renewable Hydrogen Production from Biomass Pyrolysis Aqueous Phase Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4Visitors3(Presentation) |Energy7,

  16. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    prices hurt the economy), then natural gas is said to have aNatural Gas Policy – Fueling the Demands of a Growing Economy.Natural Gas Policy – Fueling the Demands of a Growing Economy.

  17. A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Victoria, University of

    A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles by Sébastien Prince options considered for future fuel cell vehicles. In this thesis, a model is developed to determine

  18. Study of the Enzymatic Hydrolysis of Cellulose for Production of Fuel Ethanol

    E-Print Network [OSTI]

    California at Riverside, University of

    Study of the Enzymatic Hydrolysis of Cellulose for Production of Fuel Ethanol by the Simultaneous to ethanol, a promising alternative fuel, can be carried out efficiently and economically using are presented in light of the impact of enzymatic hydrolysis on fuel ethanol production. Key words: enzymatic

  19. FOREST FUEL REDUCTION AND ENERGYWOOD PRODUCTION USING A CTL / SMALL CHIPPER HARVESTING SYSTEM

    E-Print Network [OSTI]

    Bolding, M. Chad

    FOREST FUEL REDUCTION AND ENERGYWOOD PRODUCTION USING A CTL / SMALL CHIPPER HARVESTING SYSTEM THESIS ABSTRACT FOREST FUEL REDUCTION AND ENERGYWOOD PRODUCTION USING A CTL / SMALL CHIPPER HARVESTING concerning mechanical forest fuel reduction. This study examined and measured the feasibility of harvesting

  20. Improving electricity production in tubular microbial fuel cells through optimizing the anolyte flow with spiral spacers

    E-Print Network [OSTI]

    Improving electricity production in tubular microbial fuel cells through optimizing the anolyte h l i g h t s " The spiral spacers improve electricity production in tubular microbial fuel cells fuel cells Spiral spacers Energy Wastewater treatment a b s t r a c t The use of spiral spacers

  1. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    DOE Patents [OSTI]

    Herrmann, Steven Douglas

    2014-05-27T23:59:59.000Z

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  2. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for

    E-Print Network [OSTI]

    Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update fuel cell vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel, and biomass. Thus, fuel cell vehicles offer an environmentally clean and energysecure transportation pathway

  3. Fueling Robot Automates Hydrogen Hose Reliability Testing (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE)FrequentlyLecturesFuel Cell

  4. COMMISSION GUIDEBOOK RENEWABLES PORTFOLIO

    E-Print Network [OSTI]

    pipeline, conduit hydroelectric, digester gas, electrolysis, eligibility, energy storage, fuel cell thermal, supplemental energy payments, tidal current, tradable renewable energy credits, TRECs, water Guidebook APRIL 2013 CEC3002013005ED7CMF CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor

  5. COMMISSION GUIDEBOOK RENEWABLES PORTFOLIO

    E-Print Network [OSTI]

    pipeline, conduit hydroelectric, digester gas, electrolysis, eligibility, energy storage, fuel cell thermal, supplemental energy payments, tidal current, tradable renewable energy credits, TRECs, water Guidebook APRIL 2013 CEC3002013005ED7CMFREV CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Producer Excise Tax and Inspection Exemption The first 1,000 gallons of renewable fuel that an individual produces each year are exempt from the motor vehicle fuel...

  7. C A L I F O R N I A E N E R G Y C O M M I S S I O N! Alternative and Renewable Fuel and

    E-Print Network [OSTI]

    California at Davis, University of

    C A L I F O R N I A E N E R G Y C O M M I S S I O N! Alternative and Renewable Fuel and Vehicle Institute for Energy, Environment and the Economy June 27, 2012 Jim McKinney, Manager Emerging Fuels and Technologies Office 1 #12;C A L I F O R N I A E N E R G Y C O M M I S S I O N! Alternative and Renewable Fuel

  8. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOE Fuel Cell Technologies

  9. Fuels and Other Products | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy ForrestalPrincetonF2: Jet Fuel8:Fueling the

  10. Renewable energy: Renewing the environment

    SciTech Connect (OSTI)

    Noun, R.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31T23:59:59.000Z

    During the past 20 years, the United States has enacted some of the world`s most comprehensive legislation to protect and preserve its environmental heritage. These regulations have spawned a $115-billion-per-year industry for {open_quotes}green{close_quotes} products and services, with more than 35,000 companies providing jobs for American workers. On the other hand, environmental regulations have placed heavy cost burdens on many U.S. businesses as they struggle to remain competitive in both domestic and foreign markets. How, then, can one reconcile the growing need for environmental protection with the desire for a stronger, healthier economy? Even as Congress debates the value of existing environmental legislation, new threats are appearing on the horizon. For example, extensive storm damage from Hurricane Andrew and other natural disasters has prompted members of the $650-billion insurance industry to begin studying the effects that global warming may have on future property damage claims. More and more people are realizing that the most efficient and economical way to control pollution is to avoid creating it in the first place. And that`s where renewable energy comes in. Technologies based on nonpolluting renewable energy sources such as sunlight and wind can help preserve our environmental heritage without a tangled web of regulations to burden industry. Renewable energy technologies can also help the United States become a world leader in a potential $400-billion-a-year global market for environmentally friendly products.

  11. Production Tax Credit for Renewable Electricity Generation (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

  12. Value of Demand Response: Quantities from Production Cost Modeling (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps toValidatingCloudPoissonVEN Monthly

  13. In search of an alternative fuel: Bio-Solar Hydrogen Production

    E-Print Network [OSTI]

    Petta, Jason

    In search of an alternative fuel: Bio-Solar Hydrogen Production from Arthrospira maxima Dariya Comparison of Potential Corn, Cellulose, and Aquatic Microbial Fuel Production Assuming demonstrated biomass production by ­ Sodium substitution ­ Nitrate elimination ­ Hypotonic stress · Conclusions Overview #12;b a

  14. New Renewable 1 Emerging Renewables

    E-Print Network [OSTI]

    Renewable Facilities disbursements include $6 million for the Agriculture Biomass-to-Energy Program. 5New Renewable Facilities 1 Emerging Renewables 2,3 Existing Renewable Facilities 4 Consumer,000,000)$ Appropriations Appropriation for PACE Reserve program per SB 77 (2010) 11 (50,000,000)$ RENEWABLE ENERGY PROGRAM

  15. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009...

  16. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies

  17. HNEI Overview and Fuel Cell Programs

    E-Print Network [OSTI]

    fuels · Integrated bioenergy systems · Technology Assessment and Policy #12;ACT 253 (HB1003 and from the energy fund to HNEI. Passed out of House and Senate EEN committees #12;Technology Assessment fuel cells and materials · Fuel cell testing and modeling · Hydrogen ­ · Renewable hydrogen production

  18. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13T23:59:59.000Z

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

  19. Ana Moore | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni Alumni PARC/I-CARES

  20. Vehiculos de combustible flexible: brindando opciones en combustible renovable (Flexible Fuel Vehicles: Providing a Renewable Fuel Choice), Programa de Technologias de Vehiculos (Vehicle Technologies Program - VTP) (Fact Sheet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize Available ResourcesVehicleMayo 2010 la Junta de

  1. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewal Individual Permit Renewal Application The Permit expires March 31, 2014 and existing permit conditions will be in effect until a new permit is issued. The Permittees...

  2. Tax Credits for Home Energy Improvements: If You Buy an Energy-Efficient Product or Renewable Energy System for Your Home, You May be Eligible for a Federal Tax Credit (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    This two-page fact sheet provides an overview of 2010 federal tax credits for energy efficient products or renewable energy systems in the home.

  3. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels (Fact Sheet), NREL Highlights in Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP » Important Trinity / NERSC-8Improvedin

  4. Straight Vegetable Oil as a Vehicle Fuel? (Fact Sheet), Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochastic WeeklyStores Catalog TheaSVO

  5. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish Version) (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C. bescii CelA,PortalComplianceUtilizar

  6. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /of Energy 3 BTO PeerDepartment of Energy Enabling

  7. Cellulosic Liquid Fuels Commercial Production Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSS LetterStateDepartment ofEqualityCellulosic Liquid

  8. Fuel Production/Quality Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen hStrategy1

  9. Mild, Nontoxic Production of Fuels and Chemicals from Biomass - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625Data ShowC -9MicrowaveFuelMike

  10. Hydrogen Production and Storage for Fuel Cells: Current Status | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detectorof Energy LeakHydrogenof Energy

  11. Microsoft PowerPoint - Converting Sustainable Forest Products into Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312),Microgrid WorkshopApproved forResourceSeptember

  12. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmily KnouseEnSysDepartment of

  13. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmily KnouseEnSysDepartment ofDepartment of

  14. Webinar: Photosynthesis for Hydrogen and Fuels Production | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department of Energy Webinar: Energy IsinEnergy

  15. Alternative Fuels Data Center: Conventional Natural Gas Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2North Carolina for MoreFuelsConventional

  16. Webinar: Photosynthesis for Hydrogen and Fuels Production | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships ToolkitWaste Heatv3) | Department ofHow to

  17. Fuel NOx pollution production during the combustion of a low caloric value fuel gas 

    E-Print Network [OSTI]

    Caraway, John Phillip

    1995-01-01T23:59:59.000Z

    The objective of this investigation is to identify and qualify physical mechanisms and parameters that affect the combustion of low caloric value fuel gases (LCVG) and the formation of NO, pollutants produced from fuel bound nitrogen. Average...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel and Advanced Vehicle Acquisition Requirements Renewable Fuel Standard Biofuels Feedstock Requirements Fuel-Efficient Vehicle Acquisition Requirement Low-Speed...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    interest in the qualified property. Renewable fuel is defined as a fuel produced from biomass that is used to replace or reduce conventional fuel use. (Reference Florida Statutes...

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    alternative fuels; promotes the development and use of alternative fuel vehicles and technology that will enhance the use of alternative and renewable transportation fuels;...

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Labeling Requirement Biodiesel, biobutanol, and ethanol blend dispensers must be affixed with decals identifying the type of fuel blend. If fuel blends containing...

  2. Stationary Fuel Cell System Composite Data Products: Data through Quarter 4 of 2013

    SciTech Connect (OSTI)

    Saur, G.; Kurtz, J.; Ainscough, C.; Peters, M.

    2014-05-01T23:59:59.000Z

    This report includes 25 composite data products (CDPs) produced for stationary fuel cell systems, with data through the fourth quarter of 2013.

  3. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update February 29, 2008 Final Version Brian D. James Jeffrey A. Kalinoski...

  4. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update September 30, 2010 Prepared by: Brian D. James, Jeffrey A. Kalinoski...

  5. mMass Production Cost Estimation for Direct H2 PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2009 Update January 1, 2010 Prepared by: Brian D. James, Jeffrey A. Kalinoski &...

  6. Stationary Fuel Cell System Composite Data Products: Data through Quarter 2 of 2013

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-11-01T23:59:59.000Z

    This report includes 24 composite data products (CDPs) produced for stationary fuel cell systems, with data through the second quarter of 2013.

  7. Renewable Northwest Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewable EnergyForecast

  8. CHALLENGES IN DEVELOPMENT AND OPERATION OF MEMS MICROBIAL FUEL CELLS

    E-Print Network [OSTI]

    Steckl, Andrew J.

    CHALLENGES IN DEVELOPMENT AND OPERATION OF MEMS MICROBIAL FUEL CELLS A. Fraiwan1 , S. Sundermier1 Microbial Fuel Cells, Micro-sized, Power Density, Limiting Factors INTRODUCTION Microbial fuel cells (MFCs fuel cells (MFCs) have been a major focus for renewable energy production. With the successful

  9. Mission | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture in theInformationMission andCenter

  10. Hao Yan | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecoveryG - SSC DataThe Principal

  11. Ian Pahk | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen StorageITERITER Subscribe to RSS - ITER

  12. Chad Simmons | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos LaboratoryCertified Reference Materials (CRMs) New

  13. Chelsea Brown | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization of SelectiveBrown Graduate student

  14. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T.ExternalscriptEnv LANLFebruary 12, 2015prev

  15. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T.ExternalscriptEnv LANLFebruary 12, 2015prevAZ

  16. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T.ExternalscriptEnv LANLFebruary 12,

  17. Dalvin Mendez | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctober HanfordDecember

  18. Daniel Mieritz | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctober HanfordDecemberDamian

  19. Danielle Ladd | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDaniel Wood About

  20. Devens Gust | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavid Turner David3DepthDetectingNERSCPrincipal