National Library of Energy BETA

Sample records for renewable fuel heat

  1. NREL Ignites New Renewable Fuels Heating Plant - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignites New Renewable Fuels Heating Plant Innovative DOE Contract Helps Lab Reduce Fuel Use, Carbon Emissions November 20, 2008 Golden, Colo. - With the spark from a high intensity road flare, engineers at the U.S. Department of Energy's National Renewable Energy Laboratory lit its new, smoke-free Renewable Fuels Heating Plant today. The $3.3 million project is the Laboratory's latest step toward operating as a net-zero energy facility. The RFHP will heat NREL's South Table Mountain Campus

  2. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy...

  3. RTP Green Fuel: A Proven Path to Renewable Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuel Oil - A Commercial Perspective Steve Lupton Technical Information Exchange on Pyrolysis Oil: Potential for a Renewable Heating Oil Substitution Fuel in New ...

  4. RTP Green Fuel: A Proven Path to Renewable Heat and Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy RTP Green Fuel: A Proven Path to Renewable Heat and Power RTP Green Fuel: A Proven Path to Renewable Heat and Power Steve Lupton presentation at the May 9, 2012, Pyrolysis Oil Worskshop on RTP green fuel. PDF icon pyrolysis_lupton.pdf More Documents & Publications Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings Cellulosic Liquid Fuels Commercial Production Today Technical Information

  5. Renewable Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Fuels 5 th Annual Green Technologies Conference IEEE IEEE Ch IEEE IEEE H l Helena L L. Chum April 5 April 5 th 2013 , 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Outline * Renewable Fuels Renewable Fuels * Biomass and Bioenergy Today C di i i i i /d l i * Commoditization existing/developing * Sustainability y Considerations to Imp prove Agriculture and

  6. List of Fuel Cells using Renewable Fuels Incentives | Open Energy...

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Conservation...

  7. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  8. EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1)

    Broader source: Energy.gov [DOE]

    Draft Supplemental Environmental Assessment This EA will evaluate the environmental impacts of a proposal to make improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of regional wood sources.

  9. List of Renewable Fuels Incentives | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Personal...

  10. Fuel Cells & Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells & Renewable Portfolio Standards Webinar - Jun 9 th , 2011 Ohio Fuel Cell Coalition Ohio Fuel Cell Coalition * Mission - The Ohio Fuel Cell Coalition is a united group ...

  11. Renewable Heat NY

    Broader source: Energy.gov [DOE]

    NOTE: On August 2015, NYSERDA increased the incentive levels for technologies offered under the Renewable Heat NY program. In general, new incentives fund up to 45% of the total project cost, which...

  12. List of Renewable Transportation Fuels Incentives | Open Energy...

    Open Energy Info (EERE)

    Wind Biomass Renewable Transportation Fuels Fuel Cells Ground Source Heat Pumps Ethanol Methanol Biodiesel No Community Energy Project Grants (Michigan) State Grant Program...

  13. American Renewable Fuels | Open Energy Information

    Open Energy Info (EERE)

    Fuels Jump to: navigation, search Name: American Renewable Fuels Place: Dallas, Texas Zip: TX 75201 Sector: Renewable Energy Product: Developer of commercial scale renewable fuels...

  14. EPA's Renewable Fuels Standard Web page

    SciTech Connect (OSTI)

    2011-12-30

    The Renewable Fuel Standard (RFS) program regulations were developed in collaboration with refiners, renewable fuel producers, and many other stakeholders.

  15. Renewable Fuels and Vehicles Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuels & Vehicles Overview Dale Gardner Associate Director, Renewable Fuels S&T 12 August 2008 State Energy Advisory Board to 2 National Renewable Energy Laboratory Innovation for Our Energy DOE Programs Supported 3 National Renewable Energy Laboratory Innovation for Our Energy Advanced Energy Initiative * Develop advanced battery technologies that allow plug-in hybrid electric vehicles to have a 40 mile range operating solely on battery charge. * Accelerate progress towards the

  16. Renewable Fuel Standards Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuel Standards Resources Renewable Fuel Standards Resources Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of ...

  17. Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Hydrocarbon Biofuels to someone by E-mail Share Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Facebook Tweet about Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Twitter Bookmark Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Google Bookmark Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Delicious Rank Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels on Digg Find More places to share Alternative Fuels

  18. Calgren Renewable Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Renewable Fuels LLC Place: Newport Beach, California Zip: 92660 Product: Developer of bio-ethanol plants in US, particularly California. References: Calgren Renewable Fuels...

  19. Baylor University - Renewable Aviation Fuels Development Center...

    Open Energy Info (EERE)

    University - Renewable Aviation Fuels Development Center Jump to: navigation, search Name: Baylor University - Renewable Aviation Fuels Development Center Address: One Bear Place...

  20. Property:RenewableFuelStandard/RenewableBiofuel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardRenewableBiofuel Jump to: navigation, search This is a property of type Number. Pages...

  1. Renewable Fuels Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

  2. Fuel Cells and Renewable Gaseous Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells and Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Breakout Session 3-C: Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Sarah Studer, ORISE Fellow-Fuel Cell Technologies Office, U.S. Department of Energy PDF icon studer_bioenergy_2015.pdf More Documents & Publications Workshop on Gas Clean-Up for Fuel Cell Applications U.S Department of Energy Fuel Cell Technologies Office Overview: 2015 Smithsonian Science Education Academies for Teachers Novel

  3. CSP Heat Integration for Baseload Renewable Energy Deployment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Concentrating Solar Power » CSP Heat Integration for Baseload Renewable Energy Deployment CSP Heat Integration for Baseload Renewable Energy Deployment --This project has been closed-- In October 2013, DOE announced an award under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program to advance the state of the art in CSP hybrid plants, which incorporate thermal and or chemical energy from a CSP system into a fossil fueled

  4. Renewable Fuels Assocation | Open Energy Information

    Open Energy Info (EERE)

    DC Zip: 20001 Sector: Renewable Energy Product: US national trade association for the ethanol industry, the Renewable Fuels Association (RFA) has been working as the "Voice of the...

  5. Renewable Fuels Consulting | Open Energy Information

    Open Energy Info (EERE)

    Consulting Jump to: navigation, search Name: Renewable Fuels Consulting Place: Mason City, Iowa Sector: Renewable Energy Product: RFC specializes in providing technical solutions...

  6. Renewable Transportation Fuels | Open Energy Information

    Open Energy Info (EERE)

    Transportation Fuels Jump to: navigation, search TODO: Add description List of Renewable Transportation Fuels Incentives Retrieved from "http:en.openei.orgw...

  7. Renewable Fuels Limited RFL | Open Energy Information

    Open Energy Info (EERE)

    Limited RFL Jump to: navigation, search Name: Renewable Fuels Limited (RFL) Place: York, United Kingdom Zip: YO19 6ET Sector: Biomass Product: Supplies various biomass fuels and...

  8. Missouri Renewable Fuel Standard Brochure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The Missouri Renewable Fuel Standard requires ethanol in most gasoline beginning January 1, 2008. ARE YOU READY? TEN THINGS MISSOURI TANK OWNERS AND OPERATORS NEED TO KNOW ABOUT ETHANOL 1. Ethanol is a type of alcohol made usually from corn in Missouri and other states. 2. E10 is a blend of 10% ethanol and 90% unleaded gasoline. E85 is a blend of 75% to 85% fuel ethanol and 25% to 15% unleaded gasoline. Blends between E10 and E85 are not allowed to be sold at retail. 3. Any vehicle or small

  9. Renewable Fuels and Lubricants (ReFUEL) Laboratory

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    Fact sheet describing NREL's Renewable Fuels and Lubricants Laboratory (ReFUEL). ReFUEL is a world-class research and testing facility dedicated to future fuels and advanced heavy-duty vehicle research, located in Denver, Colorado.

  10. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program (VTP) (Fact Sheet) | Department of Energy Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are

  11. Renewable Fuel Standards Program Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Standards Program Update Renewable Fuel Standards Program Update Paul Argyropoulos, ... May 6, 2010 EISA 2007: Focus on Renewable Fuels Standard Program Market Drivers ...

  12. Renewable Fuel Standard Schedule | Open Energy Information

    Open Energy Info (EERE)

    National Geographic Scope United States Temporal Resolution Annual The United States Environmental Protection Agency, under the National Renewable Fuel Standard program and as...

  13. Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution

    Broader source: Energy.gov [DOE]

    Two-day agenda from the workshop: Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution fuel in New England.

  14. Sandia Energy - From Compost to Sustainable Fuels: Heat-Loving...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Compost to Sustainable Fuels: Heat-Loving Fungi Are Sequenced Home Renewable Energy Energy Transportation Energy News Modeling Modeling & Analysis From Compost to Sustainable...

  15. Renewable Fuels and Lubricants Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  16. Safe Renewable Corporation formerly Safe Fuels | Open Energy...

    Open Energy Info (EERE)

    Renewable Corporation (formerly Safe Fuels) Place: Texas Zip: 77380 Product: Texas-based biodiesel producer. References: Safe Renewable Corporation (formerly Safe Fuels)1 This...

  17. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation ...

  18. Renewable Motor Fuel Production Capacity Under H.R.4

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes renewable motor fuel production capacity with the assumption that ethanol will be used to meet the renewable fuels standard.

  19. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

  20. State Clean Energy Practices: Renewable Fuel Standards

    SciTech Connect (OSTI)

    Mosey, G.; Kreycik, C.

    2008-07-01

    The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, renewable fuel standards (RFS) policies are a mechanism for developing a market for renewable fuels in the transportation sector. This flexible market-based policy, when properly executed, can correct for market failures and promote growth of the renewable fuels industry better than a more command-oriented approach. The policy attempts to correct market failures such as embedded fossil fuel infrastructure and culture, risk associated with developing renewable fuels, consumer information gaps, and lack of quantification of the non-economic costs and benefits of both renewable and fossil-based fuels. This report focuses on renewable fuel standards policies, which are being analyzed as part of this project.

  1. List of Renewable Fuel Vehicles Incentives | Open Energy Information

    Open Energy Info (EERE)

    Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Fuels Loan Program (Kansas) State Loan Program Kansas...

  2. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Not Available

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  3. Victory Renewable Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Victory Renewable Fuels LLC Place: Iowa Zip: 51242 Product: Plans to develop a 113.7m litre biodiesel and multiple feedstock facility in Iowa....

  4. Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable

  5. Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  6. Engineered fuel: Renewable fuel of the future?

    SciTech Connect (OSTI)

    Tomczyk, L.

    1997-01-01

    The power generation and municipal solid waste management industries share an interest in the use of process engineered fuel (PEF) comprised mainly of paper and plastics as a supplement to conventional fuels. PEF is often burned in existing boilers, making PEF an alternative to traditional refuse derived fuels (RDF). This paper describes PEF facilities and makes a comparison of PEF and RDF fuels.

  7. Alternative Fuels Data Center: Renewable Natural Gas (Biomethane)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production Renewable Natural Gas (Biomethane) Production to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas (Biomethane) Production on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas (Biomethane) Production on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas (Biomethane) Production on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas (Biomethane) Production on Delicious Rank Alternative Fuels Data

  8. National Renewable Energy Laboratory (NREL): Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory (NREL) Hydrogen and Fuel Cell Capabilities Overview 2014 Fuel Cell Seminar and Energy Exposition National Lab Showcase Keith Wipke, NREL Fuel ...

  9. Renewable Fuels and Lubricants Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Fuels and Lubricants Laboratory State-of-the-Art Fuel and Vehicle Testing The Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve efficiency of conventional gasoline-powered vehicles and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such

  10. The Promise of Renewable Gaseous Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Promise of Renewable Gaseous Fuels The Promise of Renewable Gaseous Fuels Breakout Session 3-C: Renewable Gaseous Fuels The Promise of Renewable Gaseous Fuels Jeffrey Reed, Director of Business Strategy and Development, Southern California Gas Company/San Diego Gas & Electric PDF icon reed_bioenergy_2015.pdf More Documents & Publications QER - Comment of American Gas Association 3 Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus Renewable Natural Gas

  11. Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Google Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on

  12. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From

  13. Grid-Interactive Renewable Water Heating Economic and Environmental...

    Energy Savers [EERE]

    1 Grid-Interactive Renewable Water Heating Economic and Environmental Value Grid-interactive renewable water heaters have smart controls that quickly change their charge rate and ...

  14. Renewable Jet Fuel Is Taking Flight | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Jet Fuel Is Taking Flight Renewable Jet Fuel Is Taking Flight August 26, 2015 - 3:58pm Addthis Zia Haq Senior Analyst and Defense Production Act Coordinator, Bioenergy ...

  15. High Octane Fuels Can Make Better Use of Renewable Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mid-Blend Ethanol Fuels - Implementation Perspectives Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" The Impact of Low Octane Hydrocarbon ...

  16. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies held on August 19, 2014.

  17. Fuel Cells and Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Portfolio Standards Fuel Cells and Renewable Portfolio Standards Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells and Renewable Portfolio Standards, June 9, 2011. PDF icon infocalljun911_wolak.pdf More Documents & Publications Fuel Cell Power Plants Renewable and Waste Fuels Co-production of Hydrogen and Electricity (A Developer's Perspective) DFC Technology Status

  18. Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar titled "District Heating with Renewable Energy," originally presented on November 20, 2012.

  19. NREL: Transportation Research - Renewable Fuels and Lubricants Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Fuels and Lubricants Laboratory Photo of a heavy-duty truck being driven on a chassis dynamometer. The heavy-duty chassis dynamometer at the ReFUEL Laboratory simulates on-road driving in a controlled laboratory setting. Photo by Dennis Schroeder, NREL NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development focuses on overcoming barriers to the increased use of renewable

  20. Fuel Cells & Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Renewable Portfolio Standards Fuel Cells & Renewable Portfolio Standards Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells and Renewable Portfolio Standards, June 9, 2011. PDF icon infocalljun911_valente.pdf More Documents & Publications Ohio Fuel Cell Initiative Raising H2 and Fuel Cell Awareness in Ohio State of the States: Fuel Cells in America 2014

  1. Renewable & Alternative Fuels - U.S. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    (EIA) Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative transportation fuels All renewable & alternative fuels data reports Analysis & Projections Major Topics Most popular Alternative Fuels Capacity and generation Consumption Environment Industry Characteristics Prices Production Projections Recurring Renewable energy type All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues &

  2. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    The Energy Department will present a webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" on Tuesday, August 19, from 12:00 to 1:00 p.m. Eastern Daylight Time (EDT). The webinar will feature representatives from the National Renewable Energy Laboratory presenting a unique opportunity for the integration of multiple sectors including transportation, industrial, heating fuel, and electric sectors on hydrogen.

  3. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    SciTech Connect (OSTI)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  4. Renewable Energy Systems Exemption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Wind (All) Hydroelectric Geothermal Heat Pumps Fuel Cells using Non-Renewable Fuels Landfill Gas Solar Pool Heating Wind (Small) Geothermal Direct-Use Fuel Cells...

  5. NREL: Technology Deployment - California's Alternative and Renewable Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Vehicle Technology Program California's Alternative and Renewable Fuel and Vehicle Technology Program NREL supports the California Energy Commission (CEC) in the planning, implementation, and evaluation of California's Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP), created by Assembly Bill 118 in 2007. Under this statute, CEC works to develop and deploy alternative and renewable transportation fuel and vehicle technologies-including electricity, natural gas,

  6. Iowa Renewable Fuels Association IRFA | Open Energy Information

    Open Energy Info (EERE)

    Product: Fosters the development and growth of renewable fuels industry through education, promotion and infrastructure development in Iowa. Coordinates: 33.831879,...

  7. Property:RenewableFuelStandard/AdvancedBiofuel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardAdvancedBiofuel Jump to: navigation, search This is a property of type Number. Pages...

  8. Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardUndifferentiatedAdvancedBiofuel Jump to: navigation, search This is a property of type...

  9. Winter Heating Fuels - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Winter Heating Fuels Click on the map to view state specific heating fuels data below | click to reset to U.S. values Click on map above to view state-specific heating fuel data ...

  10. Renewable Energy: Solar Fuels GRC and GRS

    SciTech Connect (OSTI)

    Nathan Lewis Nancy Ryan Gray

    2010-02-26

    This Gordon Research Conference seeks to bring together chemists, physicists, materials scientists and biologists to address perhaps the outstanding technical problem of the 21st Century - the efficient, and ultimately economical, storage of energy from carbon-neutral sources. Such an advance would deliver a renewable, environmentally benign energy source for the future. A great technological challenge facing our global future is energy. The generation of energy, the security of its supply, and the environmental consequences of its use are among the world's foremost geopolitical concerns. Fossil fuels - coal, natural gas, and petroleum - supply approximately 90% of the energy consumed today by industrialized nations. An increase in energy supply is vitally needed to bring electric power to the 25% of the world's population that lacks it, to support the industrialization of developing nations, and to sustain economic growth in developed countries. On the geopolitical front, insuring an adequate energy supply is a major security issue for the world, and its importance will grow in proportion to the singular dependence on oil as a primary energy source. Yet, the current approach to energy supply, that of increased fossil fuel exploration coupled with energy conservation, is not scaleable to meet future demands. Rising living standards of a growing world population will cause global energy consumption to increase significantly. Estimates indicate that energy consumption will increase at least two-fold, from our current burn rate of 12.8 TW to 28 - 35 TW by 2050. - U.N. projections indicate that meeting global energy demand in a sustainable fashion by the year 2050 will require a significant fraction of the energy supply to come carbon free sources to stabilize atmospheric carbon dioxide levels at twice the pre-anthropogenic levels. External factors of economy, environment, and security dictate that this global energy need be met by renewable and sustainable sources from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The 'grand challenge' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source. Speakers will discuss recent advances in homoogeneous and heterogeneous catalysis of multi-electron transfer processes of importance to solar fuel production, such as water oxidation and reduction, and carbon dioxide reduction. Speakers will also discuss advances in scaleably manufacturable systems for the capture and conversion of sunlight into electrical charges that can be readily coupled into, and utilized for, fuel production in an integrated system.

  11. Research Institutions, Businesses Launch Renewable Fuels Venture - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Research Institutions, Businesses Launch Renewable Fuels Venture March 19, 2007 A joint venture among businesses and Colorado research institutions to further develop renewable fuels was announced today at the state capitol in Denver. The new Colorado Center for Biorefining and Biofuels (C2B2) is a research venture between large and small businesses and the newly formed Colorado Renewable Energy Collaboratory, the association of four of Colorado's premier research

  12. Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat,

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fight the Freeze, and Conquer the Mountains Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles Beat

  13. Making Better Use of Ethanol as a Transportation Fuel With "Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Breakout ...

  14. Winter Heating Fuels - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Winter Heating Fuels Click on the map to view state specific heating fuels data below | click to reset to U.S. values Click on map above to view state-specific heating fuel data Propane Heating oil Natural gas Electricity For more data on: Heating oil and propane prices - Heating Oil and Propane Update Propane stocks - Weekly Petroleum Status Report Heating oil/distillate stocks - Weekly Petroleum Status Report Natural gas storage - Weekly Natural Gas Storage Report Natural gas prices - Natural

  15. High Octane Fuels Can Make Better Use of Renewable Transportation Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Brian West, Deputy Director, Engines and Emissions Research Center; Oak Ridge National Laboratory

  16. EISA 2007: Focus on Renewable Fuels Standard Program

    Broader source: Energy.gov [DOE]

    At the November 6, 2008 joint Web conference of DOE's Biomass and Clean Cities programs, Paul Argyropoulos (U.S. Environmental Protection Agency, Office of Transportation and Air Quality) explained the EISA 2007, Renewable Fuel Standards.

  17. Renewable Fuel Supply Ltd RFSL | Open Energy Information

    Open Energy Info (EERE)

    Supply Ltd RFSL Jump to: navigation, search Name: Renewable Fuel Supply Ltd (RFSL) Place: United Kingdom Zip: W1J 5EN Sector: Biomass Product: UK(tm)s largest supplier of...

  18. Property:RenewableFuelStandard/Year | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardYear Jump to: navigation, search This is a property of type Date. Pages using the...

  19. Property:RenewableFuelStandard/Total | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardTotal Jump to: navigation, search This is a property of type Number. Pages using the...

  20. Property:RenewableFuelStandard/BiomassBasedDiesel | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardBiomassBasedDiesel Jump to: navigation, search This is a property of type Number. Pages...

  1. Timing for Startup of the Renewable Fuel Standard

    Reports and Publications (EIA)

    2002-01-01

    This paper responds to whether or not moving the start date of the Renewable Fuel Standard (RFS) from its currently proposed January 2004 to October 2004 would improve the chances of a smooth transition.

  2. Fuel Cells and Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 9, 2011 * FuelCell Energy (FCE) * The Benefits of Fuel Cells * Considerations for a Comprehensive Clean Energy Portfolio * Q&A Agenda FuelCell Energy Worlds Leading ...

  3. Energy Efficiency & Renewable Energy Bond Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Heat Solar Photovoltaics Wind (All) Biomass Combined Heat & Power Fuel Cells using Non-Renewable Fuels Daylighting Lighting Energy Mgmt. SystemsBuilding Controls Caulking...

  4. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect (OSTI)

    2011-01-01

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  5. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  6. Heating subsurface formations by oxidizing fuel on a fuel carrier

    DOE Patents [OSTI]

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  7. Renewable Energy: Solar Fuels - Gordon Research Conference (Lucca, IT) -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JCAP Renewable Energy: Solar Fuels - Gordon Research Conference (Lucca, IT) Renewable Energy: Solar Fuels - Gordon Research Conference (Lucca, IT) Sun, Feb 28, 2016 9:00am 09:00 Fri, Mar 4, 2016 5:00pm 17:00 Renaissance Tuscany Il Ciocco Lucca Italy Harry Atwater, "Artficial Photosynthesis Progress and Prospects" Giulia Galli, "Ab Initio Studies of Heterogeneous Interfaces for Water Photocatalysis" Clifford Kubiak, "If You Are Going to Make a Solar Fuel from CO2,

  8. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel ...

  9. Elastomer Compatibility Testing of Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Frame, E.; McCormick, R. L.

    2005-11-01

    In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

  10. California: Agricultural Residues Produce Renewable Fuel | Department...

    Broader source: Energy.gov (indexed) [DOE]

    technology is expected to produce biofuel that reduces greenhouse gas emissions by 80% compared to fossil fuel and help make California a leader in advanced biofuel production. ...

  11. New Process Helps Overcome Obstacles to Produce Renewable Fuels and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemicals - News Releases | NREL New Process Helps Overcome Obstacles to Produce Renewable Fuels and Chemicals Lignin Valorization Study Published in Proceedings of the National Academy of Sciences August 20, 2014 There's an old saying in the biofuels industry: "You can make anything from lignin except money." But now, a new study may pave the way to challenging that adage. The study from the Energy Department's National Renewable Energy Laboratory (NREL) demonstrates a concept

  12. Fuel Cell Power Plants Renewable and Waste Fuels

    Broader source: Energy.gov [DOE]

    Presentation by Frank Wolak, Fuel Cell Energy, at the Waste-to-Energy using Fuel Cells Workshop held Jan. 13, 2011

  13. Community Renewable Energy Feasibility Fund Program

    Broader source: Energy.gov [DOE]

    The Oregon Department of Energy (ODOE) provides grants for feasibility studies for renewable energy, heat, and fuel projects under the Community Renewable Energy Feasibility Fund (CREFF). This...

  14. List of Heat recovery Incentives | Open Energy Information

    Open Energy Info (EERE)

    Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Energy Storage Nuclear Wind Heat recovery Fuel Cells using Renewable Fuels No Agricultural Energy Efficiency...

  15. The Promise of Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    drop-in fuel by 2025 16 Opportunity Areas Use of dedicated energy crops to produce methane Co-production of methane and hydrogen with other products Joint deployment...

  16. City of Tulare Renewable Biogas Fuel Cell Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City of Tulare Renewable Biogas Fuel Cell Project City of Tulare Renewable Biogas Fuel Cell Project Presented at the Technology Transition Corporation and U.S. Department of Energy Fuel Cell Technologies Program Webinar: Go Local: Maximizing Your Local Renewable Resources With Fuel Cells, August 16, 2011. PDF icon webinaraug16_nelson.pdf More Documents & Publications Synergy between Membranes and Microbial Fuel Cells High Temperature BOP and Fuel Processing Fuel Cell Power Plants Biofuel

  17. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Advanced Vehicles Data Center (AFDC) Web site at www.afdc.energy.gov. ... Fuel Converters on its Web site at www.epa.govotaqcertdearmfr cisd0602.pdf. ...

  18. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  19. Overview of An Analysis Project for Renewable Biogas / Fuel Cell Technologies (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.

    2009-11-19

    Presentation on renewable biogas: as an opportunity for commercialization of fuel cells presented as part of a panel discussion at the 2009 Fuel Cell Seminar, Palm Springs, CA.

  20. Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential for a renewable heating oil substitution fuel in New England - Agenda Time Pre-Conference Presentation and Discussion (Grenier Room) May 8, 2012; Manchester New Hampshire 7:30-8:00 p.m. Pre-Registration for May 9-10, 2012 Conference 8:00-8:05 p.m. Welcome and Introduction Elliott Levine, Technology Manager, U.S. Department of Energy (DOE) 8:05-9:00 p.m. Presentation and Discussion on the Qualification of Alternative Fuels. Tom Butcher, Brookhaven National Laboratory John Huber,

  1. NREL: Hydrogen and Fuel Cells Research - Renewable Electrolysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... station for fueling natural gas vehicles and 2) to a home for heating and hot water and 3) to a natural gas turbine, which is connected via an electric line to the electric grid. ...

  2. Large Scale Renewable Energy Property Tax Abatement (Nevada State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Solar Photovoltaics Wind (All) Biomass Hydroelectric Municipal Solid Waste Fuel Cells using Non-Renewable Fuels Landfill Gas Wind (Small) Anaerobic Digestion Fuel Cells...

  3. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  4. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

  5. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice

    SciTech Connect (OSTI)

    Clean Cities

    2010-03-01

    Flexible fuel vehicles can operate on either gasoline or E85, a mixture of 85% ethanol and 15% gasoline. The fact sheet discusses the costs, benefits, and vehicle performance of using E85.

  6. Guidance. Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246

    SciTech Connect (OSTI)

    none,

    2011-04-01

    On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

  7. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  8. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect (OSTI)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  9. Combined Heat and Power Market Potential for Opportunity Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004...

  10. Fuel-Flexible Microturbine and Gasifier System for Combined Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, ...

  11. Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    in Hawaii Plug-In Vehicles to Harness Renewable Energy in Hawaii to someone by E-mail Share Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in Hawaii on Facebook Tweet about Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in Hawaii on Twitter Bookmark Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in Hawaii on Google Bookmark Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy in

  12. Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines

    SciTech Connect (OSTI)

    Sullivan, Neal P

    2012-08-06

    The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.

  13. Fuel Cell Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel cells provide power and heat cleanly and efficiently, using diverse domestic fuels, including hydrogen produced from renewable resources and biomass-based fuels. Fuel ...

  14. New Analysis Methods Estimate a Critical Property of Ethanol Fuel Blends (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods developed at NREL disclose the impact of ethanol on gasoline blend heat of vaporization with potential for improved efficiency of spark-ignition engines. More stringent standards for fuel economy, regulation of greenhouse gas emissions, and the mandated increase in the use of renew- able fuel are driving research to improve the efficiency of spark ignition engines. When fuel properties such as octane number and evaporative cooling (heat of vaporization or HOV) are insufficient, they

  15. Heated transportable fuel cell cartridges

    DOE Patents [OSTI]

    Lance, Joseph R. (N. Huntingdon, PA); Spurrier, Francis R. (Whitehall, PA)

    1985-01-01

    A fuel cell stack protective system is made where a plurality of fuel cells, each containing liquid electrolyte subject to crystallization, is enclosed by a containing vessel, and where at least one electric heater is placed in the containing vessel and is capable of preventing electrolyte crystallization.

  16. Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Navigating the Intersection of Fuels and Combustion Cars and trucks in the United States burn through 3.2 billion barrels of gasoline each year. Putting more energy-efficient vehicles on the road-to displace oil consumption, decrease greenhouse gases (GHGs), and improve the nation's energy security-requires simultaneous advances in fuel formulation, combustion strategy, and engine design. Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100%

  17. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (40–50%), hemicellulose (25–35%), and lignin (16–33%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.

  18. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies," originally presented on August 19, 2014.

  19. Impact of Renewable Fuels Standard/MTBE Provisions of S. 517 Requested by Sens. Daschle & Murkowski

    Reports and Publications (EIA)

    2002-01-01

    Additional analysis of the impact of the Renewable Fuels Standard (RFS) and methyl tertiary butyl ether (MTBE) ban provisions of S. 517.

  20. Production of Renewable Fuels from Biomass by FCC Co-processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Renewable Fuels from Biomass by FCC Co-processing Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and ...

  1. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces;...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Install Waste Heat Recovery Systems for Fuel-Fired Furnaces For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. ...

  2. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect (OSTI)

    Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.

    2005-04-15

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  3. Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems

    Broader source: Energy.gov [DOE]

    Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  4. Impact of Renewable Fuels Standard/MTBE Provisions of S. 1766

    Reports and Publications (EIA)

    2002-01-01

    This service report addresses the Renewable Fuels Standard (RFS)/methyl tertiary butyl ether (MTBE) provisions of S. 1766. The 'S. 1766' Case reflects provisions of S. 1766 including a renewable fuels standard (RFS) reaching five billion gallons by 2012, a complete phase-out of MTBE within four years, and the option for states to waive the oxygen requirement for reformulated gasoline (RFG).

  5. Residential Renewable Energy Tax Credit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Renewable Energy Tax Credit < Back Eligibility Residential Savings Category Solar Water Heat Solar Photovoltaics Wind (All) Geothermal Heat Pumps Fuel Cells using ...

  6. Heat exchanger for fuel cell power plant reformer

    DOE Patents [OSTI]

    Misage, Robert; Scheffler, Glenn W.; Setzer, Herbert J.; Margiott, Paul R.; Parenti, Jr., Edmund K.

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  7. Native Village of Teller Addresses Heating Fuel Shortage, Improves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utility, which runs its own diesel fuel bulk storage facility for the diesel generators. However, residential heating oil and fuel for all public buildings except the...

  8. Fuel cell system with combustor-heated reformer

    DOE Patents [OSTI]

    Pettit, William Henry

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  9. Microfabricated fuel heating value monitoring device

    DOE Patents [OSTI]

    Robinson, Alex L.; Manginell, Ronald P.; Moorman, Matthew W.

    2010-05-04

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  10. Multi-Function Fuel-Fired Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Function Fuel-Fired Heat Pump CRADA Ed Vineyard Oak Ridge National Laboratory, ... 10% for a residential multifunction heat pump that provides space conditioning, water ...

  11. Method and apparatus for fuel gas moisturization and heating

    DOE Patents [OSTI]

    Ranasinghe, Jatila; Smith, Raub Warfield

    2002-01-01

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  12. Sweet Smell of Renewable Fuel | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sweet Smell of Renewable Fuel News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 12.06.11 Sweet Smell of Renewable Fuel Office of Science researchers borrowed from a fir tree to create a fuel that could leave

  13. Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteriaare genetically engineered to convert the formic acid into liquid fuelin this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLAs electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

  14. List of Geothermal Heat Pumps Incentives | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Hydrogen Landfill Gas Methanol Passive Solar Space Heat Photovoltaics Solar Space Heat...

  15. What Has the Federal Renewable Fuels Standard Accomplished - A National Perspective (Presentation)

    SciTech Connect (OSTI)

    Schwab, A.

    2013-04-01

    This presentation provides an overview of the nation's biofuels industry accomplishments and a perspective on the challenges and implications of reaching goals set in the Renewable Fuel Standard (RFS).

  16. Review of Transportation Issues & Comparison of Infrastructure Costs for a Renewable Fuels Standard

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes the inter-regional transportation issues and associated costs for increased distribution of renewable fuels with the assumption that ethanol will be used to meet the standards.

  17. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    SciTech Connect (OSTI)

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  18. Making Better Use of Ethanol as a Transportation Fuel With "Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Super Premium" | Department of Energy Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel Certification Brian West, Deputy Director for the Fuels, Engines, and Emissions Research Center, Oak Ridge National Laboratory PDF icon b13_west_2-b.pdf More Documents & Publications

  19. Green Racing Series Revs Engines with Renewable Fuel from INEOS Bio |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Green Racing Series Revs Engines with Renewable Fuel from INEOS Bio Green Racing Series Revs Engines with Renewable Fuel from INEOS Bio March 17, 2014 - 2:55pm Addthis A racecar heads into the pits for refueling during the 12 Hours of Sebring in Florida on Saturday. Integrated biorefinery INEOS Bio now supplies cellulosic ethanol to VP Racing Fuels, which fuels the action at TUDOR United SportsCar Championship series races. | Photo by Natalie Committee, Energy Department

  20. Assumption to the Annual Energy Outlook 2014 - Renewable Fuels...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind 1. Some renewables, such as landfill gas...

  1. Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014 August 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's

  2. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind.energy.gov WIND PROGRAM NEWSLETTER - MAY 2015 1 National Renewable Energy Laboratory 15013 Denver West Parkway, Golden, CO 80401 303-275-3000 * www.nrel.gov NREL prints on paper that contains recycled content. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) is seeking partners to participate in an objective and credible analysis of stationary fuel cell systems to benchmark the

  3. Motor Fuel Excise Taxes (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Motor Fuel Excise Taxes A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues-creating substantial funding shortfalls that have

  4. Understanding and Informing the Policy Environment: State-Level Renewable Fuels Standards

    SciTech Connect (OSTI)

    Brown, E.; Cory, K.; Arent, D.

    2007-01-01

    Renewable fuels standard (RFS) policies are becoming a popular public policy mechanism for developing the market for renewable fuels in the transportation sector. During the past decade, U.S. states and several countries began implementing these more market-based (less command and control) policies to support increased biofuels production and use. This paper presents an overview of current and proposed U.S. state-level policies, as well as selected electric sector policies and international fuel standard policies. Current U.S. state-level renewable fuel policies list drivers including an improved economy and environment, as well as fuel self-sufficiency. Best practices and experience from an evaluation of renewable portfolio standards (RPS) in the United States and international RFS policies can inform U.S. state-level policy by illustrating the importance of policy flexibility, binding targets, effective cost caps, and tradable permits. Understanding and building on the experiences from these previous policies can improve the policy mechanism and further develop a market for renewable fuels to meet the goals of improved economy, environment, and fuel self-sufficiency.

  5. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Power Systems | Department of Energy for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells for Supermarkets, April 4, 2011. PDF icon infocallapr11_smith.pdf More Documents & Publications Fuel Cells at Supermarkets: NYSERDA's Perspective Fuel Cell Case Study Hydrogen

  6. NREL: Hydrogen and Fuel Cells Research - Pathways to Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Voiceover: In nature hydrogen is combined with other elements but, when separated, it is a powerful energy carrier used as a transportation fuel in zero-emission fuel cell ...

  7. Renewable energy technologies for federal facilities: Geothermal heat pump

    SciTech Connect (OSTI)

    1996-05-01

    This sheet summarizes information on geothermal heat pumps (GHPs), which extracts heat from the ground in the winter and transfers heat to the ground in the summer. More than 200,000 GHPs are operating in US; they can reduce energy consumption and related emissions by 23 to 44% compared to air-source heat pumps. Opportunities for use of GHPs, requirements, and cost are described. Important terms are defined.

  8. Fuel Cells and Renewable Portfolio Standards | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Technology Validation Manufacturing Safety, Codes & Standards Education Market Transformation Systems Analysis Information Resources Financial Opportunities News Events

  9. Renewable & Alternative Fuels - U.S. Energy Information Administration...

    Gasoline and Diesel Fuel Update (EIA)

    ... Survey Forms, Changes & Announcements Annual Photovoltaic CellModule Shipments Report ... Outlook relatedmonthlyalternative fuel vehicle Monthly Biodiesel Production ...

  10. An Assessment of Heating Fuels And Electricity Markets During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon An Assessment of Heating Fuels And Electricity Markets During the Winters of 2013... Before the House Subcommittee on Energy and Power - Committee on Energy and Commerce

  11. Combined Heat and Power Market Potential for Opportunity Fuels

    SciTech Connect (OSTI)

    Jones, David; Lemar, Paul

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  12. Nuclear reactor fuel element having improved heat transfer

    DOE Patents [OSTI]

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  13. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  14. Grid-Interactive Renewable Water Heating Economic and Environmental Value

    Energy Savers [EERE]

    Gregory Wagner About Us Gregory Wagner - COMMUNICATIONS SPECIALIST, WIND AND WATER POWER TECHNOLOGIES OFFICE Gregory Wagner Most Recent Calming the Waters: The Impact of Turbulence on Tidal Energy Systems March 29

    Grid Connected Functionalities Grid Connected Functionalities Lead Performer: National Renewable Energy Laboratory (NREL) Objective The objective of Grid Connected Functionality is to develop planning and establish strategic directions, along with supporting framework documents

  15. DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications GATE Center for Automotive Fuel Cell Systems at Virginia Tech Education and Outreach Fact Sheet Hydrogen Education Curriculum Path at Michigan ...

  16. High Octane Fuels Can Make Better use of Renewable Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... with future high compression, downspeeded engine achieves 28.5 mpg. 12 Managed by ... Fuel Economy and GHG * Increased Ethanolbiofuel Utilization * High Performance Vehicles ...

  17. NREL: State and Local Governments - Renewable Fuel Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to RFS effectiveness: Imposing stringency to require use of higher blends of ethanol or alternative fuels. Adopting an implementation plan that can ease measurement and...

  18. US Navy Tactical Fuels From Renewable Sources Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 5kaminroundtable.pdf More Documents & Publications U.S. Department of the Navy: Driving Alternative Fuels Adoption Department of the Navy Bioeconomy Activity HEFA and ...

  19. Renewable Fuels from Algae Boosted by NREL Refinery Process - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL Renewable Fuels from Algae Boosted by NREL Refinery Process February 9, 2016 A new biorefinery process developed by scientists at the Energy Department's National Renewable Energy Laboratory (NREL) has proven to be significantly more effective at producing ethanol from algae than previous research. The process, dubbed Combined Algal Processing (CAP), is detailed in a new paper by NREL's Tao Dong, Eric Knoshaug, Ryan Davis, Lieve Laurens, Stefanie Van Wychen, Philip Pienkos, and Nick

  20. Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris; Saur, Genevieve

    2015-06-10

    This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.

  1. 21st Century Renewable Fuels, Energy, and Materials

    SciTech Connect (OSTI)

    Berry, K. Joel; Das, Susanta K.

    2012-11-29

    The objectives of this project were multi-fold: (i) conduct fundamental studies to develop a new class of high temperature PEM fuel cell material capable of conducting protons at elevated temperature (180°C), (ii) develop and fabricate a 5k We novel catalytic flat plate steam reforming process for extracting hydrogen from multi-fuels and integrate with high-temperature PEM fuel cell systems, (iii) research and develop improved oxygen permeable membranes for high power density lithium air battery with simple control systems and reduced cost, (iv) research on high energy yield agriculture bio-crop (Miscanthus) suitable for reformate fuel/alternative fuel with minimum impact on human food chain and develop a cost analysis and production model, and (v) develop math and science alternative energy educator program to include bio-energy and power.

  2. Fuel Cell Electric Vehicle Evaluation (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Buses in U.S. Transit Fleets: Current Status 2014 L. Eudy and M. Post National Renewable Energy Laboratory C. Gikakis Federal Transit Administration Technical Report NREL/TP-5400-62683 December 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

  3. Renewable energy technologies for federal facilities: Solar water heating

    SciTech Connect (OSTI)

    1996-05-01

    This sheet presents information on solar water heaters (passive and active), solar collectors (flat plate, evacuated tube, parabolic trough), lists opportunities for use of solar water heating, and describes what is required and the costs. Important terms are defined.

  4. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOE Patents [OSTI]

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  5. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    400-64420 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies 227 th ECS Meeting, Chicago, Illinois Marc Melaina, Genevieve Saur, Todd Ramsden, Joshua Eichman May 28, 2015 2 Presentation Overview: Four Metrics Analysis projects focus on low-carbon and economic transportation and stationary fuel cell applications

  6. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Waste Heat Recovery Systems for Fuel-Fired Furnaces Install Waste Heat Recovery Systems for Fuel-Fired Furnaces This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems. PROCESS HEATING TIP SHEET #8 PDF icon Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (September 2005) More Documents & Publications Load Preheating Using Flue Gases from a Fuel-Fired Heating System Using Waste

  7. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  8. Fuel Cell Vehicles Enhance NREL Hydrogen Research Capabilities (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * www.nrel.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. Expanded research, development, and testing activities will help advance fuel cell electric vehicle technology. The National Renewable Energy Laboratory (NREL) has acquired four Fuel Cell Hybrid Vehicle-Advanced (FCHV-adv) sport utility vehicles on loan from Toyota. Over the next two years the lab will use the FCHVs, also known as fuel cell electric vehicles or

  9. York Electric Cooperative- Dual Fuel Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    York Electric Cooperative, Inc. (YEC) offers a $200 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residences, commercial, and industrial...

  10. Refundable Clean Heating Fuel Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The state of New York began offering a corporate income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized...

  11. Very low temperature radiant heating/cooling indoor end system for efficient use of renewable energies

    SciTech Connect (OSTI)

    Ren, Jianbo; Wang, Yiping; Wang, Congrong; Xiong, Weicheng; Zhu, Li

    2010-06-15

    Solar or solar-assisted space heating systems are becoming more and more popular. The solar energy utilization efficiency is high when the collector is coupled with indoor radiant heating suppliers, since in principle, lower supply temperature means lower demand temperature and then the system heat loss is less. A new type radiant end system is put forward for even lower supply temperature compared to the conventional radiant floor heating systems. A three dimensional model was established to investigate its energy supply capacities. Simulation results show that 50 W per meter length tube can be achieved with the medium temperature of 30 C for heating and 15 C for cooling. The predicted results agree well with the actual data from a demonstration building. Furthermore, it is demonstrated that a supply temperature of 22 C in winter and of 17 C in summer already met the indoor requirements. The new end system has good prospects for effective use of local renewable resources. (author)

  12. Model documentation: Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

  13. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    SciTech Connect (OSTI)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  14. An Assessment of Heating Fuels And Electricity Markets During the

    Energy Savers [EERE]

    4: The Transportation Issue Amped Up! Volume 1, No. 4: The Transportation Issue Amped_Up_4.jpg Amped Up! is a bimonthly newsletter that highlights the initiatives, events, and technologies in the Office of Energy Efficiency and Renewable Energy that influence change. Features in this issue include: - Meet EV Everywhere Director Bob Graham - Deputy Assistant Secretary for Transportation Reuben Sarkar on the New Optima Initiative - Sustainable Transportation Day 2015 - Fuel Cell Electric Vehicles

  15. Hydrogen Fuel-Cell Unit to Provide Renewable Power to Honolulu Port

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unit to Provide Renewable Power to Honolulu Port - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  16. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    What is an FFV? An FFV, as its name implies, has the flex- ibility of running on more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel system, and engine. And they are available in a wide range of models such as sedans, pickups, and minivans. Light-duty FFVs are designed to operate with at least 15% gasoline in the fuel, mainly to ensure they start in cold weather. FFVs

  17. Refundable Clean Heating Fuel Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The value of the tax credit is $0.01/gallon for each percent of biodiesel blended with conventional home heating oil, up to a maximum of $0.20/ gallon. In other words, the purchaser of a mixture ...

  18. Statement by U.S. Secretary of Energy Samuel W. Bodman on EPA's Renewable Fuel Standard Waiver Announcement

    Broader source: Energy.gov [DOE]

    WASHINGTON -- The following is a statement from U.S. Secretary of Energy Samuel W. Bodman in response to the U.S. Environmental Protection Agency's (EPA) announcement on the Renewable Fuel Standard...

  19. EPRI-DOE Joint Report on Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration Now Available

    Broader source: Energy.gov [DOE]

    A new report “Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration” from the Electric Power Research Institute (EPRI) and jointly funded by the Offices of...

  20. Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

    2013-05-01

    A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

  1. Fuel Cell Combined Heat and Power Commercial Demonstration

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing evaluating the performance of 5 kW stationary combined heat and power fuel cell systems that have been deployed in Oregon and California. It also describes the business case that was developed to identify markets and address cost.

  2. Flexible Fuel Vehicles: Powered by a Renewable U.S. Fuel

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  3. The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland

    SciTech Connect (OSTI)

    Horttanainen, M. Teirasvuo, N.; Kapustina, V.; Hupponen, M.; Luoranen, M.

    2013-12-15

    Highlights: New experimental data of mixed MSW properties in a Finnish case region. The share of renewable energy of mixed MSW. The results were compared with earlier international studies. The average share of renewable energy was 30% and the average LHVar 19 MJ/kg. Well operating source separation decreases the renewable energy content of MSW. - Abstract: For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (5060%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.

  4. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect (OSTI)

    2011-12-19

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  5. NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes. Heat pump water heaters (HPWHs) remove heat from the air and use it to heat water, presenting an energy-saving opportunity for homeowners. Researchers at the National Renewable Energy Laboratory (NREL) developed a simulation model to study the inter- actions of HPWHs and space conditioning equipment, related to climate and installa- tion location in the home. This model was created in TRNSYS

  6. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels (Fact Sheet), NREL Highlights in Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New study determines the effect of catalyst structure on product yields and coking during vapor phase upgrading of biomass pyrolysis products. Converting biomass, an abun- dant and renewable resource, into liquid transportation fuels has attracted significant atten- tion because of depleting fossil fuel reserves and associated environmental concerns. In the quest for sustainable and eco-friendly fuel alternatives, much research is focusing on improving the properties of bio-oil. Scientists at

  7. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  8. GenSys Blue: Fuel Cell Heating Appliance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GenSys Blue: Fuel Cell Heating Appliance GenSys Blue: Fuel Cell Heating Appliance Presented at the High Temperature Membrane Working Group Meetng, Nov. 16, 2009. PDF icon ...

  9. Load Preheating Using Flue Gases from a Fuel-Fired Heating System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Load Preheating Using Flue Gases from a Fuel-Fired Heating System This tip sheet discusses ... PROCESS HEATING TIP SHEET 9 PDF icon Load Preheating Using Flue Gases from a Fuel-Fired ...

  10. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 TDA Research ...

  11. Compositional and Agronomic Evaluation of Sorghum Biomass as a Potential Feedstock for Renewable Fuels

    SciTech Connect (OSTI)

    Dahlberg, J.; Wolfrum, E.; Bean, B.; Rooney, W. L.

    2011-12-01

    One goal of the Biomass Research and Development Technical Advisory Committee was to replace 30% of current U.S. petroleum consumption with biofuels by 2030. This will take mixtures of various feedstocks; an annual biomass feedstock such as sorghum will play an important role in meeting this goal. Commercial forage sorghum samples collected from field trials grown in Bushland, TX in 2007 were evaluated for both agronomic and compositional traits. Biomass compositional analysis of the samples was performed at the National Renewable Energy Lab in Golden, CO following NREL Laboratory Analytical Procedures. Depending on the specific cultivar, several additional years of yield data for this location were considered in establishing agronomic potential. Results confirm that sorghum forages can produce high biomass yields over multiple years and varied growing conditions. In addition, the composition of sorghum shows significant variation, as would be expected for most crops. Using theoretical estimates for ethanol production, the sorghum commercial forages examined in this study could produce an average of 6147 L ha{sup -1} of renewable fuels. Given its genetic variability, a known genomic sequence, a robust seed industry, and biomass composition, sorghum will be an important annual feedstock to meet the alternative fuel production goals legislated by the US Energy Security Act of 2007.

  12. An analysis of heating fuel market behavior, 1989--1990

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    The purpose of this report is to fully assess the heating fuel crisis from a broader and longer-term perspective. Using EIA final, monthly data, in conjunction with credible information from non-government sources, the pricing phenomena exhibited by heating fuels in late December 1989 and early January 1990 are described and evaluated in more detail and more accurately than in the interim report. Additionally, data through February 1990 (and, in some cases, preliminary figures for March) make it possible to assess the market impact of movements in prices and supplies over the heating season as a whole. Finally, the longer time frame and the availability of quarterly reports filed with the Securities and Exchange Commission make it possible to weigh the impact of revenue gains in December and January on overall profits over the two winter quarters. Some of the major, related issues raised during the House and Senate hearings in January concerned the structure of heating fuel markets and the degree to which changes in this structure over the last decade may have influenced the behavior and financial performance of market participants. Have these markets become more concentrated Was collusion or market manipulation behind December's rising prices Did these, or other, factors permit suppliers to realize excessive profits What additional costs were incurred by consumers as a result of such forces These questions, and others, are addressed in the course of this report.

  13. Alternative Fuels Data Center: The Heat Is on in St. Louis Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The Heat Is on in St. Louis Buses to someone by E-mail Share Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Facebook Tweet about Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Twitter Bookmark Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Google Bookmark Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Delicious Rank Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Digg Find More places to share

  14. Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Home Heating Energy Saver 101 Infographic: Home Heating Energy Saver 101 Infographic: Home Heating Everything you need to know about home heating, including how heating systems work, the different types on the market and proper maintenance. Read more Thermostats Thermostats Save money on heating by automatically setting back your thermostat when you are asleep or away. Read more Wood and Pellet Heating Wood and Pellet Heating Wood and pellets are renewable fuel sources, and modern wood

  15. Fossil fuel-fired peak heating for geothermal greenhouses

    SciTech Connect (OSTI)

    Rafferty, K.

    1997-01-01

    Greenhouses are a major application of low-temperature geothermal resources. In virtually all operating systems, the geothermal fluid is used in a hot water heating system to meet 100% of both the peak and annual heating requirements of the structure. This strategy is a result of the relatively low costs associated with the development of most US geothermal direct-use resources and past tax credit programs which penalized systems using any conventional fuel sources. Increasingly, greenhouse operations will encounter limitations in available geothermal resource flow due either to production or disposal considerations. As a result, it will be necessary to operate additions at reduced water temperatures reflective of the effluent from the existing operations. Water temperature has a strong influence on heating system design. Greenhouse operators tend to have unequivocal preferences regarding heating system equipment. Many growers, particularly cut flower and bedding plant operators, prefer the {open_quotes}bare tube{close_quotes} type heating system. This system places small diameter plastic tubes under the benches or adjacent to the plants. Hot water is circulated through the tubes providing heat to the plants and the air in the greenhouse. Advantages include the ability to provide the heat directly to the plants, low cost, simple installation and the lack of a requirement for fans to circulate air. The major disadvantage of the system is poor performance at low (<140{degrees}F) water temperatures, particularly in cold climates. Under these conditions, the quantity of tubing required to meet the peak heating load is substantial. In fact, under some conditions, it is simply impractical to install sufficient tubing in the greenhouse to meet the peak heating load.

  16. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect (OSTI)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  17. Development of a Low NOx Medium-Sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    2009-11-01

    Solar Turbines Inc., in collaboration with Pennsylvania State University and the University of Southern California, will develop injector technologies for gas turbine use of high-hydrogen content renewable and opportunity fuels derived from coal, biomass, industrial process waste, or byproducts. This project will develop low-emission technology for alternate fuels with high-hydrogen content, thereby reducing natural gas requirements and lowering carbon intensity.

  18. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in collaboration with the University of California-Irvine, Packer Engineering, and Argonne National Laboratory, will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel

  19. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004 report was to determine the best opportunity fuel(s) for distributed energy resources and combined heat and power (DER/CHP) applications, examine the DER/CHP technologies that can use them, and assess the potential market impacts of opportunity fueled DER/CHP applications. PDF icon chp_opportunityfuels.pdf More

  20. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to

    Office of Scientific and Technical Information (OSTI)

    Replace Fossil Fuels, Final Technical Report (Technical Report) | SciTech Connect Technical Report: Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Citation Details In-Document Search Title: Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of

  1. NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones. Heat pump water heaters (HPWHs) have the potential to significantly reduce energy use in homes compared to traditional electric resistance water heaters. Researchers at the National Renewable Energy Laboratory (NREL) completed thorough laboratory testing of five integrated HPWHs-all available in the U.S. market-to evaluate the cost of saved energy as a function of climate. The performance of

  2. Numerical simulation of gas dynamics and heat exchange tasks in fuel assemblies of the nuclear reactors

    SciTech Connect (OSTI)

    Zhuchenko, S. V.

    2014-11-12

    This report presents a PC-based program for solution gas dynamics and heat exchange mathematical tasks in fuel assemblies of the fast-neutron nuclear reactors. A fuel assembly consisting of bulk heat-generating elements, which are integrated together by the system of supply and pressure manifolds, is examined. Spherical heat-generating microelements, which contain nuclear fuel, are pulled into the heat-generating elements. Gaseous coolant proceed from supply manifolds to heat-generating elements, where it withdraws the nuclear reaction heat and assembles in pressure manifolds.

  3. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  4. In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification

    Broader source: Energy.gov [DOE]

    Explores in-cylinder mechanisms by which fuel reactivity stratification via a two fuel system affects premixed charge compression ignition heat release rate to achieve diesel-like efficiency

  5. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    Broader source: Energy.gov [DOE]

    With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed...

  6. Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu today applauded the commissioning of a combined heat and power (CHP) fuel cell system at Portland Community College in Oregon. The CHP fuel cell system will help...

  7. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Fuel Cells Provide Com- bined Heat and Power at Verizon's Garden City Central ... installed a 1.4 MW phosphoric acid fuel cell (PAFC) system, consisting of seven ...

  8. Beyond Diesel - Renewable Diesel

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  9. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study ...

  10. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water treatment gas for ...

  11. Programs in Renewable Energy

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Our nation faces significant challenges as we enter the 1990s: securing a reliable supply of competitively priced energy, improving the quality of our environment, and increasing our share of foreign markets for goods and services. The US Department of Energy's (DOE) Programs in Renewable Energy are working toward meeting these challenges by developing the technologies that make use of our nation's largest energy resource: renewable energy. The sunlight, wind biomass, flowing water, ocean energy, and geothermal energy that make up the renewable energy resource can be found throughout our nation. These resources can provide all the forms of energy our nation needs: liquid fuels, electricity, and heating and cooling. Renewable energy meets about 10% of our need for these forms of energy today, yet the potential contribution is many times greater. DOE's Programs in Renewable Energy are working side-by-side with American industry to develop the technologies that convert renewable energy resources into practical, cost-competitive energy. After a decade of progress in research, several of these technologies are poised to make large contributions during the 1990s and beyond. This booklet provides an overview of the renewable energy programs and their plans for FY 1990. Sources of additional information are listed at the back of the booklet. 48 figs., 4 tabs.

  12. Fuel Synthesis Catalysis Laboratory: Catalytic Testing for Thermochemical Transformations of Molecules (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis Catalysis Laboratory Catalytic testing for thermochemical transformations of molecules NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL's Fuel Synthesis Catalysis Laboratory (FSCL) provides a wide range of capabilities in heterogeneous catalyst testing. Current research areas of emphasis include the transformation of biomass pyrolysis and gasification products to

  13. Environmental assessment for radioisotope heat source fuel processing and fabrication

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs.

  14. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    SciTech Connect (OSTI)

    Nix, Andrew Carl

    2015-03-23

    The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in modern turbine engines; and What advancements in film cooling hole geometry and design can increase effectiveness of film cooling in turbines burning high-hydrogen coal syngas due to the higher heat loads and mass flow rates of the core flow? Experimental and numerical investigations of advanced cooling geometries that can improve resistance to surface deposition were performed. The answers to these questions were investigated through experimental measurements of turbine blade surface temperature and coolant coverage (via infrared camera images and thermocouples) and time-varying surface roughness in the NETL high-pressure combustion rig with accelerated, simulated surface deposition and advanced cooling hole concepts, coupled with detailed materials analysis and characterization using conventional methods of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), 3-D Surface Topography (using a 3-D stylus profilometer). Detailed surface temperatures and cooling effectiveness could not be measured due to issues with the NETL infrared camera system. In collaboration with faculty startup funding from the principal investigator, experimental and numerical investigations were performed of an advanced film cooling hole geometry, the anti-vortex hole (AVH), focusing on improving cooling effectiveness and decreasing the counter-rotating vortex of conventional cooling holes which can entrain mainstream particulate matter to the surface. The potential benefit of this program is in gaining a fundamental understanding of how the use of alternative fuels will effect the operation of modern gas turbine engines, providing valuable data for more effective cooling designs for future turbine systems utilizing alternative fuels.

  15. NREL Improves Window Heat Transfer Calculations (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of algorithm discrepancies helps to promote market confidence in EnergyPlus and DOE-2. Heat loss through windows represents a significant amount of the overall energy use in homes. To address discrepancies in building simulation software-and market barriers impeding building energy use analysis-researchers at the National Renewable Energy Laboratory (NREL) identified and resolved window-related energy predictions of EnergyPlus and DOE-2, thereby improving the accuracy of both simulation

  16. National Fuel Cell Technology Evaluation Center (NFCTEC); (NREL) National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam

    2014-03-11

    This presentation gives an overview of the National Fuel Cell Technology Evaluation Center (NFCTEC), describes how NFCTEC benefits the hydrogen and fuel cell community, and introduces a new fuel cell cost/price aggregation project.

  17. Making Fuel Cells Cleaner, Better, and Cheaper(Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    helps reduce contaminants in fuel cells, enabling the industry to cut costs and commercialize state-of-the-art technologies. As fuel cell systems become more commercially com- petitive, and as automo- tive fuel cell research and development trend toward decreased catalyst loadings and thinner membranes, fuel cell operation becomes even more susceptible to contaminants. Therefore, the National Renewable Energy Laboratory (NREL) and its partners have performed research on contaminants derived from

  18. Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During RIA

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During RIA Citation Details In-Document Search Title: Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During RIA This paper describes a model for the cladding-coolant heat transfer of high burnup fuel during a Reactivity Initiated Accident (RIA) which is implemented in the fuel performance code FRAPTRAN 1.2. The minimum stable film boiling temperature, affected by the subcooling and the

  19. Renewable Diesel Fuels: Status of Technology and R&D Needs |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2002deermccormick.pdf More Documents & Publications New Diesel Feedstocks and Future Fuels Return Condensate to the Boiler BiodieselFuelManagementBestPracticesReport.pdf

  20. Conceptual study of measures against heat generation for TRU fuel fabrication system

    SciTech Connect (OSTI)

    Kawaguchi, Koichi; Namekawa, Takashi

    2007-07-01

    To lower the reprocessing cost and the environmental burden, the Japan Atomic Energy Agency (JAEA) has developed low decontamination TRU fuel fabrication system. TRU fuel contains MA of 1.2 to 5 wt% and its decay heat is estimated a few tens W/kg-HM. As the heat affects fuel quality through oxidation of fuel material and members, it is necessary to remove decay heat. In this work, authors designed concepts of the measures against heat generation at typical equipments using with the thermal hydraulics analysis technique. As a result, it is shown that it is possible to cool fuel materials with specific heat generation up to 20 W/kg-HM enough, though more detailed study is required for comprehensive equipments. (authors)

  1. Influence of district heating water temperatures on the fuel saving and reduction of ecological cost of the heat generation

    SciTech Connect (OSTI)

    Portacha, J.; Smyk, A.; Zielinski, A.; Misiewicz, L.

    1998-07-01

    Results of examinations carried out on the district heating water temperature influence in the cogeneration plant with respect to both the fuel economy and the ecological cost reduction of heat generation for the purposes of heating and hot service water preparation are presented in this paper. The decrease of water return temperature effectively contributes to the increase of fuel savings in all the examined cases. The quantitative savings depend on the outlet water temperature of the cogeneration plant and on the fuel type combusted at the alternative heat generating plant. A mathematical model and a numerical method for calculations of annual cogeneration plant performance, e.g. annual heat and electrical energy produced in cogeneration mode, and the annual fuel consumption, are also discussed. In the discussed mathematical model, the variable operating conditions of cogeneration plant vs. outside temperature and method of control can be determined. The thermal system of cogeneration plant was decomposed into subsystems so as to set up the mathematical model. The determination of subsystem tasks, including a method of convenient aggregation thereof is an essential element of numerical method for calculations of a specific cogeneration plant thermal system under changing conditions. Costs of heat losses in the environment, resulting from the pollutants emission, being formed in the fuel combustion process in the heat sources, were defined. In addition, the environment quantitative and qualitative pollution characteristics were determined both for the heat generation in a cogeneration plant and for an alternative heat-generating plant. Based on the calculations, a profitable decrease of ecological costs is achieved in the cogeneration economy even if compared with the gas-fired heat generating plant. Ecological costs of coal-fired heat generating plant are almost three time higher than those of the comparable cogeneration plant.

  2. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Office | Department of Energy Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study about Verizons Communications, who installed a 14-MW phosphoric acid fuel cell system at its Central Office in Garden City, New York, in 2005 and is now reaping environmental benefits and demonstrating the viaility of fuel cells in a commerical, critical telecommunications

  3. Renewable Natural Gas- Developer Perspective

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsRenewable Natural Gas - Developer PerspectiveDavid Ross, Managing Director, MultiGen International, LLC

  4. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

  5. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FUEL CELL FUEL CELL FUEL CELL Fourth Edition November 1998 Fuel Cell Handbook Fuel Cell Handbook Fourth Edition November 1998 DOE/FETC-99/1076 by J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, and M.G. Klett Parsons Corporation Reading, PA 19607 Under Contract No. DE-AC21-94MC31166 for U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 Fuel Cell Handbook, Fourth Edition Contents Disclaimer List of

  6. NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heaters. Water heating energy use represents the second largest energy demand for homes nationwide, offering an opportunity for innovative solar water heating (SWH) technologies to offset energy use and costs. In the Low-Cost Solar Water Heating Research and Development Roadmap, researchers at the National Renewable Energy Laboratory (NREL) outlined a strategy to expand the SWH market. Recognizing that

  7. Fuel Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydrogen & Fuel Cells » Fuel Cell Basics Fuel Cell Basics August 14, 2013 - 2:09pm Addthis Text Version Photo of two hydrogen fuel cells. Fuel cells can provide heat and electricity for buildings and electrical power for vehicles and electronic devices. HOW FUEL CELLS WORK Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. A fuel cell consists of two electrodes-a negative electrode

  8. The Northeast heating fuel market: Assessment and options

    SciTech Connect (OSTI)

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  9. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This fact sheet describes opportunities for interested stationary fuel cell developers and end users to participate in an objective and credible analysis of stationary fuel cell systems to benchmark the current state of the technology and support industry growth.

  10. Drop In Fuels: Where the Road Leads

    Broader source: Energy.gov [DOE]

    Reviews key fuel industry drivers, renewable fuel mandates and projected impact on hydrocarbon fuels

  11. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, Marc; Saur, Genevieve; Ramsden, Todd; Eichman, Joshua

    2015-05-28

    This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-­carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.

  12. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect (OSTI)

    Ade, Brian J; Gauld, Ian C

    2011-10-01

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

  13. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet, 2015 | Department of Energy Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 TDA Research Inc., in collaboration with FuelCell Energy, is developing a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to replace natural gas in fuel cell power plants while reducing

  14. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  15. Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-07-17

    Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

  16. EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at...

  17. Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight

    Broader source: Energy.gov [DOE]

    Did you know 50 percent of the energy generated annually from all sources is lost as waste heat? What scientists are doing to take advantage of this opportunity to save money and new developments in harvesting fuel through photosynthesis.

  18. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.

    SciTech Connect (OSTI)

    Nakos, James Thomas

    2010-12-01

    The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

  19. Combined Heat and Power Market Potential for Opportunity Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries ...

  20. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    higher electrical effciency than an ... of hybrid fuel cell systems also make them a suitable power source for urban and ... for material stability, strength, and ...

  1. National Template: Stationary & Portable Fuel Cell Systems (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for stationary and portable fuel cell systems.

  2. Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation

    SciTech Connect (OSTI)

    Chiang, R. T.

    2013-07-01

    The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

  3. APS- Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Through the Renewable Incentive Program, Arizona Public Service (APS) offers customers who install solar water heating systems the opportunity to sell the renewable energy credits (RECs) associat...

  4. Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security

    Broader source: Energy.gov [DOE]

    During a site visit to the Native Village of Teller in April 2012, the Office of Indian Energy's Strategic Technical Assistance Response Team helped the community successfully transfer 10,000 gallons of fuel to a bulk fuel facility to secure the community's heating supply for the winter.

  5. Guidance: Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246: Federal Fleet Program, Federal Energy Management Program, U.S. Department of Energy, March 2011

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

  6. A Validation Study of Pin Heat Transfer for MOX Fuel Based on the IFA-597 Experiments

    SciTech Connect (OSTI)

    Phillippe, Aaron M; Clarno, Kevin T; Banfield, James E; Ott, Larry J; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth; Hamilton, Steven P

    2014-01-01

    Abstract The IFA-597 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the thermal behavior of mixed oxide (MOX) fuel and the effects of an annulus on fission gas release in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for MOX fuel systems was performed, with a focus on the first 20 time steps ( 6 GWd/MT(iHM)) for explicit comparison between the codes. In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole, dish, and chamfer. The analysis demonstrated relative agreement for both solid (rod 1) and annular (rod 2) fuel in the experiment, demonstrating the accuracy of the codes and their underlying material models for MOX fuel, while also revealing a small energy loss artifact in how gap conductance is currently handled in Exnihilo for chamfered fuel pellets. The within-pellet power shape was shown to significantly impact the predicted centerline temperatures. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for MOX fuel with respect to a well-validated nuclear fuel performance code.

  7. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure), Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Guide to Alternative Fuel Commercial Lawn Equipment Contents Introduction........................... 4 Compressed Natural Gas ........................ 6 Biodiesel ................................. 6 Electricity ............................... 7 Propane .................................. 8 Incentives ............................... 14 Special Considerations ...... 14 Resources............................... 15 A single commercial lawnmower can annually use as much gaso- line or diesel fuel as a

  8. Fundamentals of Understanding & Collecting data for SHOPPs EIA-877 Winter Heating Fuels Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Collection Procedures for Winter Heating Fuels Telephone Survey State Heating Oil and Propane Program (SHOPP) Office of Energy Statistics Office of Petroleum & Biofuels Statistics Petroleum Marketing Statistics Team October 8, 2014 | Washington, D.C. Presentation Roadmap Office of Petroleum and Biofuels Statistics 2 * Survey Overview * Getting Started * Pricing Characteristics * Collecting Additional Information * Weekly Data Submission * Weekly Data Collection Tips * Data

  9. FEMP Renewable Energy Overview

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    This four-page overview describes how Federal agencies can contact the Department of Energy's Federal Energy Management Program (FEMP) to obtain assistance in acquiring renewable energy systems, renewable fuels, and renewable ("green") power for use in their facilities and vehicles. Renewable resources, technologies, and fuels are described, as well as Federal goals for using clean, sustainable renewable energy; the current goal is to supply 2.5% of the Federal Government's energy with renewable sources by 2005. Also included is a description of the resources and technologies themselves and associated benefits.

  10. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect (OSTI)

    Donald Olander

    2005-08-24

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  11. Tribal Renewable Energy Foundational Course: Direct Use for Building Heat and Hot Water

    Broader source: Energy.gov [DOE]

    Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on direct use for building heat and hot water by clicking on the .swf link below. You can also download the...

  12. Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors

    SciTech Connect (OSTI)

    Popa-Simil, L.

    2012-07-01

    A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

  13. Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)

    SciTech Connect (OSTI)

    Brinkman, G.; Lew, D.; Denholm, P.

    2012-09-01

    Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

  14. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology February 6, 2013 - 11:20am Addthis Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District’s wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Professor Jack Brouwer, Associate

  15. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  16. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  17. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  18. Northeast Heating Fuel Market The, Assessment and Options

    Reports and Publications (EIA)

    2000-01-01

    In response to the President's request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast

  19. Use of Integrated Decay Heat Limits to Facilitate Spent Nuclear Fuel Loading to Yucca Mountain

    SciTech Connect (OSTI)

    Li, Jun; Yim, Man-Sung; McNelis, David; Piet, Steven

    2007-07-01

    As an alternative to the use of the linear loading or areal power density (APD) concept, using integrated decay heat limits based on the use of mountain-scale heat transfer analysis is considered to represent the thermal impact from the deposited spent nuclear fuel (SNF) to the Yucca Mountain repository. Two different integrated decay heat limits were derived to represent both the short-term (up to 50 years from the time of repository closure) and the long-term decay heat effect (up to 1500 years from the time of repository closure). The derived limits were found to appropriately represent the drift wall temperature limit (200 deg. C) and the midway between adjacent drifts temperature limit (96 deg. C) as long as used fuel is uniformly loaded into the mountain. These limits can be a useful practical guide to facilitate the loading of used fuel into Yucca Mountain. (authors)

  20. Estimating Renewable Energy Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  1. Industrial Heat Pumps for Steam and Fuel Savings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This brief introduces heat-pump technology and its application in industrial processes as part of steam systems. The focus is on the most common applications, with guidelines for ...

  2. Regenerative Fuel Cells: Renewable Energy Storage Devices Based on Neutral Water Input

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: Proton Energy Systems is developing an energy storage device that converts water to hydrogen fuel when excess electricity is available, and then uses hydrogen to generate electricity when energy is needed. The system includes an electrolyzer, which generates and separates hydrogen and oxygen for storage, and a fuel cell which converts the hydrogen and oxygen back to electricity. Traditional systems use acidic membranes, and require expensive materials including platinum and titanium for key parts of the system. In contrast, Proton Energy Systems new system will use an inexpensive alkaline membrane and will contain only inexpensive metals such as nickel and stainless steel. If successful, Proton Energy Systems system will have similar performance to todays regenerative fuel cell systems at a fraction of the cost, and can be used to store electricity on the electric grid.

  3. Geothermal Heat Pumps as a Cost Saving and Capital Renewal Too!

    SciTech Connect (OSTI)

    Hughes, P.J.

    1998-11-06

    An independent evaluation of the Fort Polk, Louisiana energy savings performance contract (ESPC) has verified the financial value of geothermal heat pump (GHP)-centered ESPCS to the federal government. The Department of Energy (DOE) Federal Energy Management Program (FEMP) has responded by issuing an RFP for the "National GHP-Technology-Specific Super ESPC Procurement." Federal agency sites anywhere in the nation will be able to implement GHP-centered ESPC projects as delivery orders against the awarded contracts.

  4. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect (OSTI)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  5. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    Note: H.B. 263 was enacted in April 2015, allowing distribution cooperatives to earn renewable energy certificates for energy generated by geothermal heat pumps. 

  6. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake; Pienkos, Philip P.; O'Leary, Stephen J.; Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  7. Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Pump - 2013 Peer Review Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech07_vineyard_040213.pdf More Documents & Publications Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Buildings Performance Database - 2013 BTO Peer Review

  8. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    SciTech Connect (OSTI)

    Roberts, William L

    2012-10-31

    The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.

  9. Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2003-12-18

    For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the US Energy Information Administration (EIA), natural gas combined-cycle and combustion turbine power plants accounted for 96% of the total generating capacity added in the US between 1999 and 2002--138 GW out of a total of 144 GW. Looking ahead, the EIA expects that gas-fired technology will account for 61% of the 355 GW new generating capacity projected to come on-line in the US up to 2025, increasing the nationwide market share of gas-fired generation from 18% in 2002 to 22% in 2025. While the data are specific to the US, natural gas-fired generation is making similar advances in other countries as well. Regardless of the explanation for (or interpretation of) the empirical findings, however, the basic implications remain the same: one should not blindly rely on gas price forecasts when comparing fixed-price renewable with variable-price gas-fired generation contracts. If there is a cost to hedging, gas price forecasts do not capture and account for it. Alternatively, if the forecasts are at risk of being biased or out of tune with the market, then one certainly would not want to use them as the basis for resource comparisons or investment decisions if a more certain source of data (forwards) existed. Accordingly, assuming that long-term price stability is valued, the most appropriate way to compare the levelized cost of these resources in both cases would be to use forward natural gas price data--i.e. prices that can be locked in to create price certainty--as opposed to uncertain natural gas price forecasts. This article suggests that had utilities and analysts in the US done so over the sample period from November 2000 to November 2003, they would have found gas-fired generation to be at least 0.3-0.6 cents/kWh more expensive (on a levelized cost basis) than otherwise thought. With some renewable resources, in particular wind power, now largely competitive with gas-fired generation in the US (including the impact of the federal production tax credit and current high gas prices), a margin of 0.3-0.6 cents/kWh may in some cases be enough to sway resource decisions in favor of renewables.

  10. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    SciTech Connect (OSTI)

    Bolinger, Mark A; Wiser, Ryan

    2008-09-15

    For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the Energy Information Administration (EIA), natural gas-fired units account for nearly 90% of the total generating capacity added in the U.S. between 1999 and 2005 (EIA 2006b), bringing the nationwide market share of gas-fired generation to 19%. Looking ahead over the next decade, the EIA expects this trend to continue, increasing the market share of gas-fired generation to 22% by 2015 (EIA 2007a). Though these numbers are specific to the US, natural gas-fired generation is making similar advances in many other countries as well. A large percentage of the total cost of gas-fired generation is attributable to fuel costs--i.e., natural gas prices. For example, at current spot prices of around $7/MMBtu, fuel costs account for more than 75% of the levelized cost of energy from a new combined cycle gas turbine, and more than 90% of its operating costs (EIA 2007a). Furthermore, given that gas-fired plants are often the marginal supply units that set the market-clearing price for all generators in a competitive wholesale market, there is a direct link between natural gas prices and wholesale electricity prices. In this light, the dramatic increase in natural gas prices since the 1990s should be a cause for ratepayer concern. Figure 1 shows the daily price history of the 'first-nearby' (i.e., closest to expiration) NYMEX natural gas futures contract (black line) at Henry Hub, along with the futures strip (i.e., the full series of futures contracts) from August 22, 2007 (red line). First, nearby prices, which closely track spot prices, have recently been trading within a $7-9/MMBtu range in the United States and, as shown by the futures strip, are expected to remain there through 2012. These price levels are $6/MMBtu higher than the $1-3/MMBtu range seen throughout most of the 1990s, demonstrating significant price escalation for natural gas in the United States over a relatively brief period. Perhaps of most concern is that this dramatic price increase was largely unforeseen. Figure 2 compares the EIA's natural gas wellhead price forecast from each year's Annual Energy Outlook (AEO) going back to 1985 against the average US wellhead price that actually transpired. As shown, our forecasting abilities have proven rather dismal over time, as over-forecasts made in the late 1980's eventually yielded to under-forecasts that have persisted to this day. This historical experience demonstrates that little weight should be placed on any one forecast of future natural gas prices, and that a broad range of future price conditions ought to be considered in planning and investment decisions. Against this backdrop of high, volatile, and unpredictable natural gas prices, increasing the market penetration of renewable generation such as wind, solar, and geothermal power may provide economic benefits to ratepayers by displacing gas-fired generation. These benefits may manifest themselves in several ways. First, the displacement of natural gas-fired generation by increased renewable generation reduces ratepayer exposure to natural gas price risk--i.e., the risk that future gas prices (and by extension future electricity prices) may end up markedly different than expected. Second, this displacement reduces demand for natural gas among gas-fired generators, which, all else equal, will put downward pressure on natural gas prices. Lower natural gas prices in turn benefit both electric ratepayers and other end-users of natural gas. Using analytic approaches that build upon, yet differ from, the past work of others, including Awerbuch (1993, 1994, 2003), Kahn and Stoft (1993), and Humphreys and McClain (1998), this chapter explores each of these two potential 'hedging' benefits of renewable electricity. Though we do not seek to judge whether these two specific benefits outweigh any incremental cost of renewable energy (relative to conventional fuels), we do seek to quantify the magnitude of these two individual benefits. We also note that these benefits are not unique to renewable electricity: other generation (or demand-side) resources whose costs are not tied to natural gas would provide similar benefits.

  11. Renewable Electricity State Profiles - Energy Information Administrati...

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable & Alternative Fuels Glossary FAQS Overview Data Summary Biomass Geothermal Hydropower Solar ... Recurring Renewable energy type All reports Browse by Tag ...

  12. American Renewables LLC | Open Energy Information

    Open Energy Info (EERE)

    Renewables LLC Jump to: navigation, search Name: American Renewables LLC Place: Boston, Massachusetts Sector: Biomass Product: US developer of biomass-fueled power generating...

  13. Many Pathways to Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R.

    2008-02-01

    Presentation on the paths to renewable hydrogen presented by Robert Remick at the 2008 PowerGen: Renewable Energy and Fuels 2008 conference.

  14. A Validation Study of Pin Heat Transfer for UO2 Fuel Based on the IFA-432 Experiments

    SciTech Connect (OSTI)

    Phillippe, Aaron M; Clarno, Kevin T; Banfield, James E; Ott, Larry J; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth; Hamilton, Steven P

    2014-01-01

    The IFA-432 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the effects of gap size, fuel density, and fuel densification on fuel centerline temperature in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for uranium dioxide (UO$_2$) fuel systems was performed, with a focus on the densification stage (2.2 \\unitfrac{GWd}{MT(UO$_{2}$)}). In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole. The analysis demonstrated excellent agreement for rods 1, 2, 3, and 5 (varying gap thicknesses and density with traditional fuel), demonstrating the accuracy of the codes and their underlying material models for traditional fuel. For rod 6, which contained unstable fuel that densified an order of magnitude more than traditional, stable fuel, the magnitude of densification was over-predicted and the temperatures were outside of the experimental uncertainty. The radial power shape within the fuel was shown to significantly impact the predicted centerline temperatures, whereas modeling the fuel at the thermocouple location as either annular or solid was relatively negligible. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for UO$_2$ fuel with respect to a well-validated nuclear fuel performance code.

  15. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect (OSTI)

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  16. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  17. Production of Hydrogen for Clean and Renewable Source of Energy for Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Deng, Xunming; Ingler, William B, Jr.; Abraham, Martin; Castellano, Felix; Coleman, Maria; Collins, Robert; Compaan, Alvin; Giolando, Dean; Jayatissa, Ahalapitiya. H.; Stuart, Thomas; Vonderembse, Mark

    2008-10-31

    This was a two-year project that had two major components: 1) the demonstration of a PV-electrolysis system that has separate PV system and electrolysis unit and the hydrogen generated is to be used to power a fuel cell based vehicle; 2) the development of technologies for generation of hydrogen through photoelectrochemical process and bio-mass derived resources. Development under this project could lead to the achievement of DOE technical target related to PEC hydrogen production at low cost. The PEC part of the project is focused on the development of photoelectrochemical hydrogen generation devices and systems using thin-film silicon based solar cells. Two approaches are taken for the development of efficient and durable photoelectrochemical cells; 1) An immersion-type photoelectrochemical cells (Task 3) where the photoelectrode is immersed in electrolyte, and 2) A substrate-type photoelectrochemical cell (Task 2) where the photoelectrode is not in direct contact with electrolyte. Four tasks are being carried out: Task 1: Design and analysis of DC voltage regulation system for direct PV-to-electrolyzer power feed Task 2: Development of advanced materials for substrate-type PEC cells Task 3: Development of advanced materials for immersion-type PEC cells Task 4: Hydrogen production through conversion of biomass-derived wastes

  18. 2014 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Beiter, Philipp

    2015-11-15

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  19. 2014 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Beiter, Philipp

    2015-11-01

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  20. 2008 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Gelman, Rachel

    2009-07-01

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  1. 2008 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  2. 2010 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Gelman, Rachel

    2011-10-01

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  3. 2011 Renewable Energy Data Book

    SciTech Connect (OSTI)

    R. Gelman

    2013-02-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  4. 2009 Renewable Energy Data Book

    SciTech Connect (OSTI)

    Gelman, Rachel

    2010-08-01

    This Renewable Energy Data Book for 2009 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced waterpower, hydrogen, renewable fuels, and clean energy investments.

  5. 2014 Renewable Energy Data Book

    Broader source: Energy.gov [DOE]

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  6. Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

  7. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  8. EPRI-DOE Joint Report Focuses on Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration

    Broader source: Energy.gov [DOE]

    The Energy Department released a report on fossil fleet transition with renewable integration, describing operational and engineering challenges to the fossil generation fleet.

  9. Method and apparatus for real-time measurement of fuel gas compositions and heating values

    DOE Patents [OSTI]

    Zelepouga, Serguei; Pratapas, John M.; Saveliev, Alexei V.; Jangale, Vilas V.

    2016-03-22

    An exemplary embodiment can be an apparatus for real-time, in situ measurement of gas compositions and heating values. The apparatus includes a near infrared sensor for measuring concentrations of hydrocarbons and carbon dioxide, a mid infrared sensor for measuring concentrations of carbon monoxide and a semiconductor based sensor for measuring concentrations of hydrogen gas. A data processor having a computer program for reducing the effects of cross-sensitivities of the sensors to components other than target components of the sensors is also included. Also provided are corresponding or associated methods for real-time, in situ determination of a composition and heating value of a fuel gas.

  10. Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    No Name

    2014-10-01

    ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  11. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  12. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petro- leum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numer- ous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mow- ers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment

  13. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect (OSTI)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  14. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  15. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    SciTech Connect (OSTI)

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for installation labor and materials, and $627 for overhead and management), and the benefit-to-cost ratio was 1.48. A general trend toward higher-than-average fuel-oil savings was observed in houses with high pre-weatherization fuel-oil consumption. Program savings could likely be increased by targeting higher energy consumers for weatherization, although equity issues would have to be considered. Weatherization measures associated with higher-than-average savings were use of a blower door for air-sealing, attic and wall insulation, and replacement space-heating systems. Space-heating system tune-ups were not particularly effective at improving the steady-state efficiency of systems, although other benefits such as improved seasonal efficiency, and system safety and reliability may have resulted. The Program should investigate methods of improving the selection and/or application of space-heating system tune-ups and actively promote improved tune-up procedures that have been developed as a primary technology transfer activity. Houses were more air-tight following weatherization, but still leakier than what is achievable. Additional technology transfer effort is recommended to increase the use of blower doors considering that only half the weatherized houses used a blower door during air sealing. A guidebook developed by a committee of experts and covering a full range of blower-door topics might be a useful technology transfer and training document. Weatherization appeared to make occupants feel better about their house and house environment.

  16. Renewable Electricity State Profiles - Energy Information Administrati...

    U.S. Energy Information Administration (EIA) Indexed Site

    Most popular Alternative Fuels Capacity and generation Consumption Environment Industry Characteristics Prices Production Projections Recurring Renewable energy type All reports ...

  17. Monthly/Annual Energy Review - renewable section

    Reports and Publications (EIA)

    2015-01-01

    Monthly and latest annual statistics on renewable energy production and consumption and overviews of fuel ethanol and biodiesel.

  18. Monthly/Annual Energy Review - renewable section

    Reports and Publications (EIA)

    2016-01-01

    Monthly and latest annual statistics on renewable energy production and consumption and overviews of fuel ethanol and biodiesel.

  19. Catalyst Renewables | Open Energy Information

    Open Energy Info (EERE)

    Renewables Place: Dallas, Texas Zip: 75204 Product: Pursue projects with low technical risk, stable fuel supply and prices, and long-term power purchase agreements References:...

  20. Electrochemical Potential (ECP) of Clean Heated Fuel Cladding Material and Structural SS under BWR Operating Conditions

    SciTech Connect (OSTI)

    Pop, Mike G.; Bell, Merl; Kilian, Renate; Dorsch, Thomas; Christian, Mueller

    2007-07-01

    To preliminarily monitor the relative effect of advanced water chemistry measures on SS structural material and fuel cladding in BWR environments a number of experiments were performed using laboratory equipment (recirculation loop, autoclave with heated electrodes, reference electrodes, etc.). The simulation of the plant condition was done without impurities or crud deposit contribution (clean surfaces). Subsequent testing, performed during 2007 and not yet cleared for release, is considering the effect of combined complex BWR chemistries and crud deposition. The heated Zircaloy fuel cladding tubing was prepared to simulate heat transfer by internal heating at levels existing in BWR (70 W/cm{sup 2}). For comparison purposes additional type SS347 electrode and unheated zirconium was used. A platinum electrode was used to measure the redox potential of the electrolyte. A high temperature Ag/AgCl electrode was used as a reference electrode. The assembly was installed in a recirculation 1 liter autoclave. Present report presents corrosion potential measurements performed under the following BWR water chemistry conditions (at 288 deg. C fluid exit temperature, 86 bar with surface temperature of Zirconium hot finger at 296 deg. C) - normal (inert) water conditions, - hydrogen injection in three steps from 0.68 ppm to 1.6 ppm, - oxygen injection in three steps from 2.4 ppm to 10 ppm - -methanol 2 ppm and oxygen 2 ppm in a close loop (without methanol refreshing) (authors)

  1. Renewable Fuels Module

    Gasoline and Diesel Fuel Update (EIA)

    sites is calculated by constructing a model of a representative 100-acre by 50-feet deep landfill site and by applying methane emission factors for high, low, and very low...

  2. Renewable Fuels Module

    Gasoline and Diesel Fuel Update (EIA)

    and are likely to occur in future years. Governments and businesses have adopted strategies to lessen the amount of waste generated without reducing economic output. The...

  3. Renewable Fuels Module

    Gasoline and Diesel Fuel Update (EIA)

    a combination of source reduction and recycling. To the extent that source reduction strategies are successful, they will likely alter the basic relationship between GDP and...

  4. Renewable Energy Renaissance Zones

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the purposes of renaissance zone designation, “renewable energy facility” means a facility that creates energy, fuels, or chemicals directly from the wind, the sun, trees, grasses, bio-solids,...

  5. Assessment of Heating Fuels and Electricity Markets During the Winters of 2013-2014 and 2014-2015 Now Available

    Broader source: Energy.gov [DOE]

    Cold weather that blanketed much of the Eastern United States in 2013-2014 and 2014-2015 exhibited unique characteristics that prompted different — but related — challenges across heating fuels and...

  6. Renewable energy annual 1995

    SciTech Connect (OSTI)

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  7. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  8. Carbonaceous material for production of hydrogen from low heating value fuel gases

    DOE Patents [OSTI]

    Koutsoukos, Elias P.

    1989-01-01

    A process for the catalytic production of hydrogen, from a wide variety of low heating value fuel gases containing carbon monoxide, comprises circulating a carbonaceous material between two reactors--a carbon deposition reactor and a steaming reactor. In the carbon deposition reactor, carbon monoxide is removed from a fuel gas and is deposited on the carbonaceous material as an active carbon. In the steaming reactor, the reactive carbon reacts with steam to give hydrogen and carbon dioxide. The carbonaceous material contains a metal component comprising from about 75% to about 95% cobalt, from about 5% to about 15% iron, and up to about 10% chromium, and is effective in suppressing the production of methane in the steaming reactor.

  9. List of Heat pumps Incentives | Open Energy Information

    Open Energy Info (EERE)

    Municipal Solid Waste Renewable Fuels Small Hydroelectric Wind Fuel Cells using Renewable Fuels Yes Alternative and Clean Energy State Grant Program (Pennsylvania) State Grant...

  10. Tips: Renewable Energy | Department of Energy

    Office of Environmental Management (EM)

    Tips: Renewable Energy Tips: Renewable Energy Use solar power to heat water and more Today's solar power is highly efficient. You can buy systems to heat your water, provide...

  11. End Use and Fuel Certification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Market Opportunities High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super ...

  12. Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in Golden, Colorado, to discuss biogas and waste-to-energy technologies for fuel cell applications. The overall objective was to identify opportunities for coupling renewable biomethane with highly efficient fuel cells to produce electricity; heat; combined heat and power (CHP); or combined heat, hydrogen and power (CHHP) for stationary or motive applications. The workshop focused on biogas sourced from wastewater treatment plants (WWTPs), landfills, and industrial facilities that generate or process large amounts of organic waste, including large biofuel production facilities (biorefineries).

  13. Stationary Fuel Cell System Composite Data Products: Data through Quarter 4 of 2014; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Saur, G.; Kurtz, J.; Ainscough, C.; Sprik, S.; Post, M.

    2015-04-01

    This publication includes 33 composite data products (CDPs) produced for stationary fuel cell systems, with data through the fourth quarter of 2014.

  14. Small-Scale Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Vermont's Small Scale Renewable Energy Incentive Program (SSREIP), initiated in June 2003, currently provides funding for new solar water heating and advanced wood pellet heating installations. T...

  15. State of Play: How National and International Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SDE + * CfD * Renewable Obligation * Carbon Tax * Emissions Penalties Source: European Pellet Council Credit: Seth Walker RISI Renewable Fuel Standard It's all about market share....

  16. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

  17. The National Renewable

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    National Renewable Energy Laboratory's (NREL) Alternative Fuels Utilization Program, which is widely known for its alternative fuel vehicle (AFV) emissions information, is also doing much to bring better alternative fuel vehicles to the field. Many of the AFVs of tomor- row will include components developed through NREL's research, which is sponsored by the U.S. Department of Energy (DOE). Most of NREL's projects involve ethanol, methanol, natural gas, biodiesel, and propane, but researchers are

  18. Alternative Fuels Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Alternative Fuels Group Place: Maryland Sector: Renewable Energy Product: US-based producer of renewable fuels. References: Alternative...

  19. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

  20. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    SciTech Connect (OSTI)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  1. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413

    SciTech Connect (OSTI)

    Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

  2. List of Other Alternative Fuel Vehicles Incentives | Open Energy...

    Open Energy Info (EERE)

    Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Vehicle Conversion Credits - Corporate (Louisiana)...

  3. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... U.S. Department of Energy Energy Efficiency and Renewable Energy Source: Alternative Fuels ... Biodiesel Electricity Ethanol Hydrogen Natural Gas Propane Emerging Fuels Fuel Prices ...

  4. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOE Patents [OSTI]

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  5. DOE Fuel Cell Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Fuel Cell Technologies Office Fuel Cell Seminar & Energy Exposition Columbus, Ohio Dr. Sunita Satyapal Director Fuel Cell Technologies Office Energy Efficiency and Renewable ...

  6. 2012 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2013-10-01

    This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  7. 2011 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2012-10-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  8. 2013 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Esterly, S.

    2014-12-01

    This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  9. 2009 Renewable Energy Data Book, August 2010

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This Renewable Energy Data Book for 2009 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  10. 2010 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2011-10-01

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  11. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy The WIPP Site Holds Promise as an Ideal Source of Renewable Energy Encompassing 16 square miles of open Chihuahuan desert with abundant sunshine and minimal ...

  12. State and Alternative Fuel Provider Fleets Alternative Compliance; U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  13. A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Efficient Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat Introduction In order for metal products to have desired properties, most metal is thermally processed at a high temperature one or more times under a controlled atmosphere. Many different thermal operations are used including oxide reduction, annealing, brazing, sintering, and carburizing. A mixture of hydrogen and nitrogen gas often provides a

  14. Examination of frit vent from Sixty-Watt Heat Source simulant fueled clad vent set

    SciTech Connect (OSTI)

    Ulrich, G.B.

    1995-11-01

    The flow rate and the metallurgical condition of a frit vent from a simulant-fueled clad vent set (CVS) that had been hot isostatically pressed (HIP) for the Sixty-Watt Heat Source program were evaluated. The flow rate form the defueled vent cup subassembly was reduced approximately 25% from the original flow rate. No obstructions were found to account for the reduced flow rate. Measurements indicate that the frit vent powder thickness was reduced about 30%. Most likely, the powder was compressed during the HIP operation, which increased the density of the powder layer and thus reduced the flow rate of the assembly. All other observed manufacturing attributes appeared to be normal, but the vent hole activation technique needs further refinement before it is used in applications requiring maximum CVS integrity.

  15. Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat

    SciTech Connect (OSTI)

    Wilson, V.C.

    1997-01-01

    A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500W{sub e} at 9.2 V and 15.7{percent} efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel. {copyright} {ital 1997 American Institute of Physics.}

  16. Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat

    SciTech Connect (OSTI)

    Wilson, Volney C.

    1997-01-10

    A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10 A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500 W{sub e} at 9.2 V and 15.7% efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel.

  17. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  18. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternative fuels are defined as methanol, ethanol, natural gas, liquefied petroleum gas (propane), coal-derived liquid fuels, hydrogen, electricity, biodiesel, renewable diesel,...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Sales Volume Goals The Wisconsin Legislature sets goals for minimum annual renewable fuel sales volumes based on annual renewable fuel volumes required under the federal Renewable Fuel Standard. On an annual basis, the Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP), in cooperation with the Department of Commerce, the Department of Revenue, and the Energy Office, must determine whether the annual goals for the previous year were met. If the goals were

  20. Biodiesel Fuel Basics

    Broader source: Energy.gov [DOE]

    Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases.

  1. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT); NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Burton, E.; Wang, L.; Gonder, J.; Brooker, A.; Konan, A.

    2015-02-10

    This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuel savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.

  2. Clean and Renewable Energy | OpenEI Community

    Open Energy Info (EERE)

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Fuel Type Term Title...

  3. Clean and Renewable Energy | OpenEI Community

    Open Energy Info (EERE)

    Clean and Renewable Energy Home > Clean and Renewable Energy > Posts by term > Clean and Renewable Energy Content Group Activity By term Q & A Feeds Term: Clean Energy Fuels Type...

  4. Straight Vegetable Oil as a Vehicle Fuel? (Fact Sheet), Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Performance of SVO Research has shown that there are sev- eral technical barriers to widespread use of SVO as a vehicle fuel. The published engineering literature strongly indicates that the use of SVO leads to reduced engine life, 1 caused by the buildup of carbon deposits inside the engine and the buildup of SVO in the engine lubricant. These issues are attributable to SVO's high viscosity and high boiling point relative to the required boiling range for diesel fuel. The carbon buildup doesn't

  5. Applications of high-temperature solar heat to the production of selected fuels and chemicals

    SciTech Connect (OSTI)

    Beall, S.E. Jr.; Bamberger, C.E.; Goeller, H.A.

    1981-07-01

    An attempt is made to judge whether solar heat in the 500 K to 2500 K temperature range might be economical for some important fuel- and chemical-production processes. Previous work in related areas is reviewed and the chemicals aluminum oxide (and bauxite), calcium sulfate (and gypsum), and calcium oxide (lime) chosen for detailed study. In addition to reviewing the energy needs of the more common bulk chemicals, several innovative processes requiring heat in the 1500 to 2500 K range were investigated. Hydrogen production by several thermochemical means, carbon monoxide production by thermochemical and direct thermal dissociation, and nitrogen fixation by direct thermal reaction of nitrogen and oxygen in air were considered. The engineering feasibility of the processes is discussed. The problem of matching the conventional and innovative processes to a high-temperature solar supply is studied. Some solar-thermal power plants of current designs are examined and several advanced concepts of highly concentrating systems are considered for very high-temperature applications. Conclusions and recommendations are presented.

  6. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

  7. Grand Traverse Band of Ottawa & Chippewa Indians - Renewable...

    Energy Savers [EERE]

    Sharing electric utility expertise Sharing electric utility expertise GTB Renewable Energy Options GTB Renewable Energy Options * * Biomass (wood and crops) & District Heat ...

  8. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

    2013-10-30

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

  9. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewal Individual Permit Renewal Application The Permit expires March 31, 2014 and existing permit conditions will be in effect until a new permit is issued. The Permittees submitted a renewal application to EPA on March 27, 2014. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Individual Permit Renewal Application February 10, 2015 NPDES Permit No. NM0030759, Supplemental Information for Permit Renewal Application

  10. Energy Smart Guide to Campus Cost Savings: Today's Trends in Project Finance, Clean Fuel Fleets, Combined Heat& Power, Emissions Markets

    SciTech Connect (OSTI)

    Not Available

    2003-07-01

    The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.

  11. Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-10-31

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51⁰C to 43 ⁰C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturer’s rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

  12. Most Viewed Documents for Renewable Energy Sources: December 2014 | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy, Office of Scientific and Technical Information Most Viewed Documents for Renewable Energy Sources: December 2014 Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 339 Generalized displacement correlation method for estimating stress intensity factors Fu, P; Johnson, S M; Settgast, R R; Carrigan, C R (2011) 107 Seventh Edition Fuel Cell Handbook NETL (2004) 96 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman

  13. Performance of AGR-1 High-Temperature Reactor Fuel During Post-Irradiation Heating Tests

    SciTech Connect (OSTI)

    Morris, Robert Noel; Baldwin, Charles A; Hunn, John D; Demkowicz, Paul; Reber, Edward

    2014-01-01

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide TRISO fuel compacts from the AGR-1 experiment has been evaluated at temperatures of 1600 1800 C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4 to 19.1% FIMA have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium, and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 10-6 after 300 h at 1600 C or 100 h at 1800 C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 C, and 85Kr release was very low during the tests (particles with breached SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 C in one compact. Post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior.

  14. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  15. Wood fuel technologies and group-oriented Timber Stand Improvement Program: model for waste wood utilization and resource renewal

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Progress is reported on the following: educating and assisting landowners in the most efficient and profitable use of wood resources; developing local timber resources as energy alternatives by representing collective interests to Consumers Power, the woodchip industry, firewood retailers, country residents, and woodlot owners; and providing public information on the economics and methods of wood heat as a supplemental energy source. (MHR)

  16. Regulatory and Commercial Barriers to Introduction of Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel Certification Robert McCormick, Principal Engineer in Fuels Performance, National Renewable Energy ...

  17. Renewable Energy Institute International REII | Open Energy Informatio...

    Open Energy Info (EERE)

    research, development, demonstration, and deployment programmes on renewable energy and alternative fuels in collaboration with government, industry, academia, institutes and...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Independence and Security Act of 2007 Enacted December 19, 2007 The Energy Independence and Security Act (EISA) of 2007 (Public Law 110-140) aims to improve vehicle fuel economy and reduce U.S. dependence on petroleum. EISA includes provisions to increase the supply of renewable alternative fuel sources by setting a mandatory Renewable Fuel Standard, which requires transportation fuel sold in the United States to contain a minimum of 36 billion gallons of renewable fuels annually by 2022. In

  19. Renewable Energy Sales and Use Tax Abatement

    Broader source: Energy.gov [DOE]

    The abatement applies to property used to generate electricity from renewable energy resources including solar, wind, biomass*, fuel cells, geothermal or hydro. Generation facilities must have a...

  20. National Renewable Energy Laboratory Technologies Available for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories National Renewable Energy ...

  1. Renewable Portfolio Standard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels Program Info Sector Name State Website http:www.nmprc.state.nm.usutilitiesrenewable-energy.html State New Mexico Program Type Renewables Portfolio Standard Summary...

  2. Tips: Renewable Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tips: Renewable Energy Tips: Renewable Energy Use solar power to heat water and more! Today's solar power is highly efficient. You can buy systems to heat your water, provide electricity, and even offload your home heating system. Use solar power to heat water and more! Today's solar power is highly efficient. You can buy systems to heat your water, provide electricity, and even offload your home heating system. A small wind turbine system can provide additional electricity in your home, or even

  3. Renewable Energy Project Bond Program

    Broader source: Energy.gov [DOE]

    For the purposes of this program, renewable energy is defined as "a source of energy that occurs naturally, is regenerated naturally or uses as a fuel source, a waste product or byproduct from a...

  4. Renew Services Ltd | Open Energy Information

    Open Energy Info (EERE)

    in Fife, Renew is now exploring projects across Scotland, mostly in community combined heat and power (CHP) and wind. References: Renew Services Ltd1 This article is a stub. You...

  5. Recovery Act: Beneficial CO{sub 2} Capture in an Integrated Algal Biorefinery for Renewable Generation and Transportation Fuels

    SciTech Connect (OSTI)

    Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid; Kessler, Ben; Moats, Kenneth; Park, Jonathan; Schwenk, Jacob; White, Nicholas; Bakhit, Anis; Bargiel, Jeff; Allnutt, F.C.

    2014-03-31

    DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycal’s pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawai’i. Phycal’s algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal mass culturing, heterotrophic reactors for the Heteroboost™ process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.

  6. High efficiency, quasi-instantaneous steam expansion device utilizing fossil or nuclear fuel as the heat source

    SciTech Connect (OSTI)

    Claudio Filippone, Ph.D.

    1999-06-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition and Specifications Alternative fuels include biofuel, ethanol, methanol, hydrogen, coal-derived liquid fuels, electricity, natural gas, propane gas, or a synthetic transportation fuel. Biofuel is defined as a renewable, biodegradable, combustible liquid or gaseous fuel derived from biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery feedstock and that meets ASTM specifications and federal quality requirements for

  8. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The purpose of this Steam Technical Brief is to introduce heat-pump technology and its ... A heat pump is a device that can increase the temperature of a waste-heat source to a ...

  9. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  10. Building America Case Study: Calculating Design Heating Loads for Superinsulated Buildings, Ithaca, New York; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.

  11. An Assessment of Heating Fuels And Electricity Markets During the Winters of 2013-2014 and 2014-2015

    Broader source: Energy.gov [DOE]

    Cold weather that blanketed much of the Eastern United States in 2013-2014 and 2014-2015 exhibited unique characteristics that prompted different — but related — challenges across heating fuels and electricity markets. In an effort to understand the impacts of the winter conditions on these markets, the Office of Electricity Delivery and Energy Reliability conducted an in-depth analysis of regional fuel and electricity sectors during the winters of 2013-2014 and 2014-2015 to assess market behavior and performance.

  12. Load Preheating Using Flue Gases from a Fuel-Fired Heating System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Would the heat loss be considerable? 4. What type of ... Will an auxiliary heating system be needed? Resources See ... will mean a stronger economy, a cleaner environment, ...

  13. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Presented ...

  14. BioFuels Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Energy LLC Jump to: navigation, search Name: BioFuels Energy, LLC Place: Encinitas, California Zip: 92024 Sector: Renewable Energy Product: Encinitas-based renewable...

  15. Aurora BioFuels Inc | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Inc Jump to: navigation, search Name: Aurora BioFuels Inc. Place: Alameda, California Zip: 94502 Sector: Biofuels, Renewable Energy Product: California-based renewable...

  16. DRI Renewable Energy Center (REC) (NV)

    SciTech Connect (OSTI)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.

  17. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    SciTech Connect (OSTI)

    2009-11-01

    TDA Research Inc., in collaboration with FuelCell Energy, will develop a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to replace natural gas in fuel cell power plants while reducing greenhouse gas emissions from fossil fuels.

  18. Alternative Fuel Vehicle Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find alternative fuel vehicle resources. Alternative Fuels Data Center FuelEconomy.gov-Gas Mileage, Emissions, Air Pollution Ratings, and Safety Data National Renewable Energy ...

  19. Reversible Fuel Cells Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reversible Fuel Cells Workshop Reversible Fuel Cells Workshop The National Renewable Energy Laboratory hosted a workshop addressing the current state-of-the-art of reversible fuel ...

  20. Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating SPECIFICATION, CHECKLIST AND GUIDE Renewable Energy Ready Home Table of ... Assumptions of the RERH Solar Water Heating Specification ...

  1. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    SciTech Connect (OSTI)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  2. Renewable Energy Property Tax Exemption

    Broader source: Energy.gov [DOE]

    For most eligible renewable energy systems, the assessed value of the system is exempt from property tax. One exception is solar energy heating or cooling systems which are exempt from property tax...

  3. Colorado Renewable Resource Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Product: Colorado-based cooperative and forestry producer, that targets the use of woody biomass to generate heat or electricity. References: Colorado Renewable Resource...

  4. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  5. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Standard (RFS) Program The national RFS Program was developed to increase the volume of renewable fuel that is blended into transportation fuels. As required by the Energy Policy Act of 2005, the U.S. Environmental Protection Agency (EPA) finalized RFS Program regulations, effective September 1, 2007. The Energy Independence and Security Act of 2007 (EISA) increased and expanded this standard. By 2022, 36 billion gallons of renewable fuel must be blended into domestic

  7. Summit County - Energy Smart Colorado Renewable Energy Rebate...

    Open Energy Info (EERE)

    Rebate Program Applicable Sector Residential Eligible Technologies Solar Water Heat, Photovoltaics Active Incentive Yes Implementing Sector Local Energy Category Renewable...

  8. Lake County - Energy Smart Colorado Renewable Energy Rebate Program...

    Open Energy Info (EERE)

    Rebate Program Applicable Sector Residential Eligible Technologies Solar Water Heat, Photovoltaics Active Incentive Yes Implementing Sector Local Energy Category Renewable...

  9. Steam Technical Brief: Industrial Heat Pumps for Steam and Fuel Savings

    SciTech Connect (OSTI)

    2010-06-25

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  10. Renewable Energy

    Broader source: Energy.gov [DOE]

    The team facilitates the use of renewable energy sources, as deemed appropriate for LM operations and approved by LM, as defined in:

  11. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power...

    Office of Scientific and Technical Information (OSTI)

    Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude glycerol from biodiesel ...

  12. In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty ... (RCCI) Combustion in a Light-Duty Engine High Efficiency Fuel Reactivity ...

  13. Tribal Renewable Energy Program Review - USDA

    Energy Savers [EERE]

    Tribal Renewable Energy Program Review USDA October 25, 2010 Denver, Colorado. President Obama's Commitment to Renewable Energy "To put people back to work today, reduce our dependence on foreign oil, together we will double our renewable energy production." Complimentary Efforts * Biomass R&D Initiative Board * Biofuels Interagency Workgroup * Growing America's Fuels * Farm Bill Title IX Renewable Energy * America Recovery and Reinvestment Act * Memorandum of Understanding:

  14. Effects of Zircaloy oxidation and steam dissociation on PWR core heat-up under conditions simulating uncovered fuel rods

    SciTech Connect (OSTI)

    Viskanta, R.; Mohanty, A.K.

    1986-04-01

    The studies described in this report identify the regimes of slow transients in a partially uncovered core of a PWR. The threshold height and onset time for oxidation of the cladding of a fuel rod have been evaluated. The effects of oxidation in increasing the decay heat load, component temperature, reduction of cladding thickness and generation of hydrogen have been estimated. The condition for steam starvation has been determined. At high uncovered core heights, typically say 2.8 m for a geometry simulating the TMI-2 type of reactor, the solid and coolant temperatures can reach the limits of steam dissociation. The effects of radiation heat exchange between cladding and coolant, Zircaloy oxidation, steam dissociation, gap conductance between fuel and cladding and system pressure on the heatup of fuel rods have been investigated. The time for uncovering a certain core height is taken as the independent parameter. It is seen that if the uncovering process is allowed to continue beyond 9 minutes corresponding to an uncovered height of 1.9 m, onset of cladding oxidation can be a reality. These values provide a guideline for the response time of the emergency core cooling systems. 10 refs., 22 figs.

  15. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  16. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  17. Hawkeye Renewables formerly Midwest Renewables | Open Energy...

    Open Energy Info (EERE)

    (formerly Midwest Renewables) Place: Iowa Falls, Iowa Zip: 50126 Product: Midwest bioethanol producer References: Hawkeye Renewables (formerly Midwest Renewables)1 This...

  18. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    analysis tools for renewable energy developed at the National Renewable Energy Laboratory. ... Generatedthumb20140812-2498-10dls5b Estimated Consumption of Alternative Fuels by AFVs ...

  19. Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Buildings Performance ...

  20. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity

    Broader source: Energy.gov [DOE]

    Working to expand the usage of thermoelectric technology beyond seat heating and cooling and in doing so reduce CO2 emissions and conserve energy.

  1. Using Heat and Chemistry to Make Products, Fuels, and Power: Thermochemical Conversion

    SciTech Connect (OSTI)

    2010-09-01

    Information about the Biomass Program's collaborative projects exploring thermochemical conversion processes that use heat and chemistry to convert biomass into a liquid or gaseous intermediate.

  2. National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Because original equipment manufacturer (OEM) vehicles designed to run on compressed natural gas (CNG) and liquefied petroleum gas (LPG) have only been available in limited models in past years, many fleets have had to rely on conversions as a source for alternative fuel vehicles (AFVs). The Federal fleet is no different-so far it has converted approximately 900 vehicles to CNG or LPG, providing the National Renewable Energy Laboratory (NREL) with an opportunity to test a variety of conversion

  3. National Renewable Energy

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Because original equipment manufacturer (OEM) vehicles designed to run on compressed natural gas (CNG) and liquefied petroleum gas (LPG) have only been available in limited models in past years, many fleets have had to rely on conversions as a source for alternative fuel vehicles (AFVs). The Federal fleet is no different-so far it has converted approximately 900 vehicles to CNG or LPG, providing the National Renewable Energy Laboratory (NREL) with an opportunity to test a variety of conversion

  4. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  5. National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

  6. Fuel Cells on Bio-Gas (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-03-04

    The conclusions of this presentation are: (1) Fuel cells operating on bio-gas offer a pathway to renewable electricity generation; (2) With federal incentives of $3,500/kW or 30% of the project costs, reasonable payback periods of less than five years can be achieved; (3) Tri-generation of electricity, heat, and hydrogen offers an alternative route to solving the H{sub 2} infrastructure problem facing fuel cell vehicle deployment; and (4) DOE will be promoting bio-gas fuel cells in the future under its Market Transformation Programs.

  7. Low Temperature Heat Release Behavior of Conventional and Alternative Fuels in a Motored Engine

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  8. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office

    Fuel Cell Technologies Publication and Product Library (EERE)

    This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the

  9. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas

    Broader source: Energy.gov [DOE]

    Success story about using waste water treatment gas for hydrogen production at UC Irvine. Presented by Jack Brouwer, UC Irvine, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  10. Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During...

    Office of Scientific and Technical Information (OSTI)

    the fuel performance code FRAPTRAN 1.2. The minimum stable film boiling temperature, affected by the subcooling and the clad oxidation, is modeled by a modified Henry correlation. ...

  11. Fuels Technologies

    Energy Savers [EERE]

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Vehicle Incentives The California Energy Commission (CEC) administers the Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP) to provide financial incentives for businesses, vehicle and technology manufacturers, workforce training partners, fleet owners, consumers, and academic institutions with the goal of developing and deploying alternative and renewable fuels and advanced transportation technologies. The CEC must prepare and adopt an annual Investment

  13. Renewable Energy Opportunities at Fort Hood, Texas

    SciTech Connect (OSTI)

    Chvala, William D.; Warwick, William M.; Dixon, Douglas R.; Solana, Amy E.; Weimar, Mark R.; States, Jennifer C.; Reilly, Raymond W.

    2008-06-30

    The document provides an overview of renewable resource potential at Fort Hood based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewables Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps for heating and cooling buildings, as directed by IMCOM.

  14. Renewable Fuels Legislation Impact Analysis

    Reports and Publications (EIA)

    2005-01-01

    An analysis based on an extension of the ethanol supply curve in our model to allow for enough ethanol production to meet the requirements of S. 650. This analysis provides an update of the May 23, 2005 analysis, with revised ethanol production and cost assumptions.

  15. Renewable Fuels | Open Energy Information

    Open Energy Info (EERE)

    needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks What links here Related changes...

  16. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  17. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX{reg_sign}) molten carbonate fuel cell. Volumes 1--6, Final report

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  18. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which assigns a RIN to each gallon of renewable fuel. Entities regulated by RFS include oil refiners, blenders, and gasoline and diesel importers. The volumes required of each...

  19. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  20. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  1. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office

    SciTech Connect (OSTI)

    2010-12-01

    This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the company's energy use, and reduce costs in an environmentally responsible manner.

  2. April 2013 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy, Office of Scientific and Technical Information April 2013 Most Viewed Documents for Renewable Energy Sources Science Subject Feed Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 1252 /> Seventh Edition Fuel Cell Handbook NETL (2004) 628 /> Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 290 /> Chapter 17. Engineering cost analysis Higbee, Charles V. (1998) 223 /> Geothermal Power Generation - A Primer on

  3. June 2014 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy, Office of Scientific and Technical Information June 2014 Most Viewed Documents for Renewable Energy Sources Science Subject Feed Chapter 6. Drilling and Well Construction Culver, Gene (1998) 426 /> Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 300 /> Seventh Edition Fuel Cell Handbook NETL (2004) 118 /> Chapter 17. Engineering cost analysis Higbee, Charles V. (1998) 115 /> Generalized displacement correlation method for estimating stress

  4. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    School Bus * Shuttle Bus * Transit Bus * Refuse Truck * Tractor * Van * Vocational Truck Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 2 Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 3 Table of Contents About the Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  5. The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD |

    Energy Savers [EERE]

    Department of Energy The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD The broader goal of the RPS is to achieve various benefits associated with renewable energy. These benefits relate to the environment, resource diversity, technology advancement, and in-state economic development. PDF icon THE THE RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD More Documents & Publications Reference Manual and

  6. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

  7. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration (EIA) Alternative Fuel Vehicle Data Glossary › FAQS › Overview Fleet & Fuel Data Supplier Data Supplier Data (includes manufactured and converted vehicles) Compressed Natural Gas Electricity Ethanol, 85 Percent (E85) Hydrogen Liquefied Natural Gas Liquefied Petroleum Gas Diesel-Electric Hybrid Gasoline-Electric Hybrid About Compressed Natural Gas Compressed Natural Gas is clean-burning, domestically produced, relatively low priced as a transportation fuel, and widely

  8. Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    SciTech Connect (OSTI)

    Dawn Scates

    2010-10-01

    A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000C in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

  9. AltAir Fuels | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Product: Seattle-based developer of projects for the production of jet fuel from renewable and sustainable oils. References: AltAir Fuels1 This article is a...

  10. Office of Energy Efficiency and Renewable Energy Overview Appropriatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Third, EERE will achieve rapid growth in renewable energy supplies using biomass, wind, solar, geothermal, water power, fuel cells, and other energy resources to produce ...

  11. Communication and Control of Electric Vehicles Supporting Renewables: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Kuss, M.; Denholm, P.

    2009-08-01

    Discusses the technologies needed, potential scenarios, limitations, and opportunities for using grid-connected renewable energy to fuel the electric vehicles of the future.

  12. U.S. Energy Information Administration | Renewable Energy...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Information Administration (EIA), Form EIA-819, "Monthly Oxygenate Report." 2009: EIA, Petroleum Supply Annual, Table 1 data for net production of fuel ethanol at renewable ...

  13. Producing Clean, Renewable Diesel from Biomass | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wood waste and forest residue into clean, renewable fuel. ... toward full-scale commercialization of a proven technology. With the support of Energy Department funding, TRI has ...

  14. Federal Sector Renewable Energy Project Implementation: ""What's Working and Why

    Broader source: Energy.gov [DOE]

    Presentation by Robert Westby, National Renewable Energy Laboratory, at the Waste-to-Energy Using Fuel Cells Workshop held Jan. 13, 2011.

  15. Vehicle Technologies Office Merit Review 2014: PEV Integration with Renewables

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about PEV...

  16. Evaluation of Aqueous and Powder Processing Techniques for Production of Pu-238-Fueled General Purpose Heat Sources

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energy’s request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluation with input from four national laboratories experienced in Pu-238 handling.

  17. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, Renewable ...

  18. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    Note: H.B. 40, enacted in June 2015, created Vermont's Renewable Energy Standard and repeals the Sustainably Priced Energy Enterprise Development program's renewable energy goals. The Renewable...

  19. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    Renewable Energy Laboratory Innovation for Our Energy Future Renewable Resource Options Geothermal Biomass Solar Hydro Wind National Renewable Energy Laboratory Innovation ...

  20. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gökhan O. Alptekin TDA Research, Inc. Wheat Ridge, CO U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  The objective is to develop a low-cost, high-capacity expendable sorbent to remove both sulfur species in biogas to ppb levels, making its use possible in a fuel cell CHP unit  The high concentrations of sulfur species in the

  1. Renew Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Power Inc Place: Champaign, Illinois Product: Developing a direct formic acid fuel cell. References: Renew Power Inc1 This article is a stub. You can help OpenEI by...

  2. Xcel Energy- Renewable Development Fund Grants

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Xcel Energy Renewable Development Fund (RDF) was created in 1999 as an outcome of 1994 Minnesota legislation concerning spent nuclear fuel at Xcel Energy’s Prairie Island Nuclear Plant. The...

  3. Federal Sector Renewable Energy Project Implementation: "What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: "What's Working and Why" Implementation: What s Working and Why DOD-DOE Waste-to- Energy and Fuel Cell Workshop January 13, ...

  4. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Petroleum Use Reduction Vehicles Program Vehicles AFVs and HEVs Fuel Consumption and ... Source: National Renewable Energy Laboratory, at Alternative Fuel Data Center (AFDC) This ...

  5. NREL Dedicates Advanced Hydrogen Fueling Station | Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy...

  6. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commercialization of hydrogen and fuel cell technologies: * Early markets such as ... Updated Program Plan May 2011 Hydrogen and Fuel Cells Key Goals 2 from renewables or low ...

  7. National Fuel Cell Technology Evaluation Center (NFCTEC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fuel Cell Technology Evaluation Center (NFCTEC) Jim Alkire U.S. Department of Energy Fuel Cell Technologies Office Jennifer Kurtz & Sam Sprik National Renewable Energy ...

  8. National Fuel Cell and Hydrogen Energy Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fuel Cell and Hydrogen Energy Overview Total Energy USA Houston, Texas Dr. Sunita Satyapal Director, Office of Fuel Cell Technologies Energy Efficiency and Renewable ...

  9. Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors

    SciTech Connect (OSTI)

    Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

    2014-02-01

    Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

  10. Progress Report for Advanced Automotive Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 1999 FY 1999 FY 1999 FY 1999 Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Office of

  11. Diesel Fuel Price Pass-through

    Gasoline and Diesel Fuel Update (EIA)

    1000 Independence Avenue, SW Washington, DC 20585 Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  12. NREL Develops High Speed Scanner to Monitor Fuel Cell Material Defects (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel cell scanner could provide effective in-line quality control in a high-volume manufacturing facility. NREL scientists have developed and built a high-throughput, high-resolution, in-line fuel cell scanner to monitor quality and detect critical defects in polymer electrolyte membrane fuel cell (PEMFC) materials. The fuel cell scanner uses a visible light diffuse reflectance imaging technique to gener- ate high-resolution images of PEMFC materials as they are transported along a roll-to-roll

  13. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    SciTech Connect (OSTI)

    Geiling, D.W.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  14. Type: Renewal

    Energy Savers [EERE]

    1 INCITE Awards Type: Renewal Title: -Ab Initio Dynamical Simulations for the Prediction of Bulk Properties‖ Principal Investigator: Theresa Windus, Iowa State University Co-Investigators: Brett Bode, Iowa State University Graham Fletcher, Argonne National Laboratory Mark Gordon, Iowa State University Monica Lamm, Iowa State University Michael Schmidt, Iowa State University Scientific Discipline: Chemistry: Physical INCITE Allocation: 10,000,000 processor hours Site: Argonne National

  15. Stationary Fuel Cell System Composite Data Products: Data through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Equipment, Waste Heat Recovery Costs, ... Fuel Cell CHP Fuel Cell Electric Gas Turbine Internal Combustion ... Equipment, Waste Heat Recovery Costs, ...

  16. Renewable Electricity: How Do You Know You Have It?; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-08-01

    When electricity is generated - either from a renewable or non-renewable power plant - the electrons added to the grid are indistinguishable. So, on what basis can a consumer of electricity claim to be using renewables? In the United States, renewable energy certificates (RECs) were developed as states passed renewable portfolio standards (RPSs) and were requiring fuel mix disclosure labels. RECs are also used in the voluntary market, where customers are buying renewables to meet sustainability goals. The concept of RECs is used most widely in the United States, but international markets also have tradable renewable electricity certificates. This fact sheet reviews how to ensure that RECs are not double-counted, roles of electricity regulators, renewable generators and purchasers. It concludes with a discussion of the international use of RECs.

  17. Regulatory and Commercial Barriers to Introduction of Renewable Super Premium

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–B: End Use and Fuel Certification Robert McCormick, Principal Engineer in Fuels Performance, National Renewable Energy Laboratory

  18. Clean and Renewable Energy | OpenEI Community

    Open Energy Info (EERE)

    Renewable Energy, Solar, Wind Jessi3bl GE, Clean Energy Fuels Partner to Expand Natural Gas Highway Posted by: Jessi3bl 16 Dec 2012 - 19:18 Tags: clean energy, Clean Energy Fuels,...

  19. REAP Renewable Energy Fair

    Broader source: Energy.gov [DOE]

    The Renewable Energy Alaska Project (REAP) is hosting their annual Renewable Energy Fair at Fairview Elementary School.

  20. Renewable Energy 101 (Presentation)

    SciTech Connect (OSTI)

    Walker, A.

    2012-03-01

    Presentation given at the 2012 Department of Homeland Security Renewable Energy Roundtable as an introduction to renewable technologies and applications.

  1. Absorption Heat Pump Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD ... tested in early April An absorption heat pump transfers heat to the water from fuel and ...

  2. Webinar: "Upgrading Renewable and Sustainable Carbohydrates for the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of High Energy Density Fuels" | Department of Energy "Upgrading Renewable and Sustainable Carbohydrates for the Production of High Energy Density Fuels" Webinar: "Upgrading Renewable and Sustainable Carbohydrates for the Production of High Energy Density Fuels" This webinar, part of the Biomass Program's bimonthly webinar series, featured presenters from Los Alamos National Laboratory who focused on high energy density fuels PDF icon

  3. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    SciTech Connect (OSTI)

    Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

    2013-08-31

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  4. Renewable energy 1998: Issues and trends

    SciTech Connect (OSTI)

    1999-03-01

    This report presents the following five papers: Renewable electricity purchases: History and recent developments; Transmission pricing issues for electricity generation from renewable resources; Analysis of geothermal heat pump manufacturers survey data; A view of the forest products industry from a wood energy perspective; and Wind energy developments: Incentives in selected countries. A glossary is included. 19 figs., 27 tabs.

  5. Study Reveals Fuel Injection Timing Impact on Particle Number Emissions (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Start of injection can improve environmental performance of fuel-efficient gasoline direct injection engines. In an ongoing quest to meet ever-more-rigorous fuel economy and emissions requirements, vehicle manufacturers are increasingly turning to gasoline direct injection (GDI) coupled with turbocharging as a cost-effective option for improving the efficiency and performance of gasoline engines. While GDI engines are expected to account for 60% of the U.S. market by 2016, and the technology

  6. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel Certification Paul Machiele, Center Director for Fuel Programs, Office of Transportation & Air Quality, U.S. Environmental Protection Agency PDF icon b13_machiele_2-b.pdf More Documents & Publications High Octane Fuels Can Make Better Use of Renewable Transportation Fuels The

  7. Building America Case Study: Calculating Design Heating Loads for Superinsulated Buildings, Ithaca, New York (Fact Sheet), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calculating Design Heating Loads for Superinsulated Buildings Ithaca, New York PROJECT INFORMATION Project Name: Third Residential EcoVillage Experience (TREE) Location: Ithaca, NY Partners: Builder: AquaZephyr, LLC Consortium for Advanced Residential Buildings, carb-swa.com Building Component: Heating, ventilating, and air conditioning Application: New and/or retrofit; single- family and/or multifamily Year tested: 2014 Climate zones: Cold (5-8) PERFORMANCE DATA Accuracy of Sizing Method: PHPP

  8. NREL Documents Efficiency of Mini-Split Heat Pumps (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    report delivers MSHP performance data for use in whole-building simulation tools. Mini-split heat pumps (MSHPs) are highly efficient refrigerant-based air conditioning and heating systems that permit room-by-room conditioning and control in homes. Because of their size, efficiency, and price, MSHPs are very popular overseas and are gaining market share in energy-efficient home upgrades in the United States. They are a good option for retrofitting older homes that lack ductwork. To evaluate MSHP

  9. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect (OSTI)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  10. BD Agro Renewables | Open Energy Information

    Open Energy Info (EERE)

    and technical support for systems using fermented crops and manure to produce heat and electrical energy. References: BD Agro Renewables1 This article is a stub. You can help...

  11. Renewable Energy Maps and Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It also shows renewable energy resources and economic calculations for photovoltaic, solar ventilation preheating, and solar water heating technologies. The interactive FEMP ...

  12. Renewable Energy Systems Tax Credit (Personal) | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Personal) Renewable Energy Systems Tax Credit (Personal) < Back Eligibility Commercial Residential Multifamily Residential Savings Category Solar - Passive Solar Water Heat Solar...

  13. Microsoft PowerPoint - Quinault Indian Nation Biomass Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Renewable Energy Opportunities and Strategies Presented By: Quinault Indian ... both demand-side that reduce energy consumption, and supply-side that generate heat ...

  14. Barriers to CHP with Renewable Portfolio Standards, Draft White Paper, September 2007

    Broader source: Energy.gov [DOE]

    A draft white paper discussing the barriers to combine heat and power (CHP) with renewable portfolio standards

  15. Biomass IBR Fact Sheet: Renewable Energy Institute International

    Broader source: Energy.gov [DOE]

    The Renewable Energy Institute International, in collaboration with Red Lion Bio-Energy and Pacific Renewable Fuels, is demonstrating a pilot, pre-commercial-scale integrated biorefinery for the production of high-quality, synthetic diesel fuels from agriculture and forest residues using advanced thermochemical and catalytic conversion technologies.

  16. NREL: Transportation Research - Alternative Fuels Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alternative Fuels Characterization Find out about other biomass research projects at NREL. NREL alternative fuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, other biomass-derived fuels, and natural gas. By studying the fuel chemistry as well as combustion and emissions impacts of alternative fuels, NREL helps improve engine efficiency, reduce

  17. Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-04-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

  18. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

  19. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.

    2011-08-16

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  20. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, Jr., John R.; Chiu, W. K. S.

    2011-01-01

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFCs performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cells microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  1. RP-5 Renewable Energy Efficiency Project

    SciTech Connect (OSTI)

    Neil Clifton; Dave Wall; Jamal Zughbi

    2007-06-30

    This is the final technical report for the RP-5 Renewable Energy Efficiency Project (REEP). The report summarizes, in a comprehensive manner, all the work performed during the award period extending between July 12, 2002 and June 30, 2007. This report has been prepared in accordance with the Department of Energy (DOE) Guidelines and summarizes all of the activities that occurred during the award period. The RP-5 Renewable Energy Efficiency Project, under development by the Inland Empire Utilities Agency (IEUA), is comprised of a series of full-scale demonstration projects that will showcase innovative combinations of primary and secondary generation systems using methane gas derived from local processing of biosolids, dairy manure and other organic material. The goal of the project is to create renewable energy-based generation systems with energy efficiencies 65% or more. The project was constructed at the 15 MGD Regional Wastewater Treatment Plant No. 5 located in the City of Chino in California where the Agency has constructed its new energy-efficient (platinum-LEED rating) headquarters building. Technologies that were featured in the project include internal combustion engines (ICE), absorption chillers, treatment plant secondary effluent cooling systems, heat recovery systems, thermal energy storage (TES), Organic Rankine Cycle (ORC) secondary power generation system, the integration of a future fuel cell system, gas cleaning requirements, and other state-of-the-art design combinations. The RP-5 REEP biogas source is coming from three manure digesters which are located within the RP-5 Complex and are joined with the RP-5 REEP through gas conveyance pipelines. Food waste is being injected into the manure digesters for digester gas production enhancement. The RP-5 REEP clearly demonstrates the biogas production and power generation viability, specifically when dealing with renewable and variable heating value (Btu) fuel. The RP-5 REEP was challenged with meeting stringent utility, gas, power, and air quality rules and regulations. Coordination with the Southern California Gas Company (SCGC), Southern California Edison (SCE), and South Coast Air Quality Management District (SCAQMD) was continuous and extensive. The interconnecting agreement and the permit to construct and operate were major obstacles despite the early start and coordination with the utility companies and regulatory agencies. The RP-5 REEP is part of a unique RP-5 Complex approach where several facilities are tied and connected with each other; where energy and gas can be transferred from one facility to another (see attached RP-5 Complex Ultimate Energy Balance Diagram). The REEP also incorporated new technologies, such as TES and ORC, along with using heat recovery for the platinum-LEED headquarter buildings heating and cooling via efficient absorption chillers. Through the conceptual design phase, numerous innovative technologies were researched and evaluated, with the most proven and efficient selected to be part of the RP-5 REEP.

  2. Delivering Renewable Hydrogen: A Focus on Near-Term Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivering Renewable Hydrogen: A Focus on Near-Term Applications Delivering Renewable Hydrogen: A Focus on Near-Term Applications On November 16, 2009, the National Renewable Energy Laboratory and the California Fuel Cell Partnership conducted a workshop on near-term applications of renewable hydrogen. Held in Palm Springs, California, the workshop consisted of several presentations in addition to a special show-and-tell session on hydrogen systems analysis models.

  3. Delivering Renewable Hydrogen: A Focus on Near-Term Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delivering Renewable Hydrogen: A Focus on Near-Term Applications Delivering Renewable Hydrogen: A Focus on Near-Term Applications Agenda for the Delvering Renewable Hydrogen Workshop held Nov. 16, 2010, in Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_agenda.pdf More Documents & Publications Transportation and Stationary Power Integration Workshop Agenda, October 27, 2008, Phoenix, Arizonia Refueliing Infrastructure for Alternative Fuel Vehicles:

  4. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    SciTech Connect (OSTI)

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injection strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.

  5. Large-Scale Renewable Energy Guide: Developing Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities Large-Scale Renewable Energy Guide: Developing Renewable Energy ...

  6. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, ...

  7. Natural Innovative Renewable Energy formerly Northwest Iowa Renewable...

    Open Energy Info (EERE)

    Innovative Renewable Energy formerly Northwest Iowa Renewable Energy Jump to: navigation, search Name: Natural Innovative Renewable Energy (formerly Northwest Iowa Renewable...

  8. PPM Atlantic Renewable Formerly Atlantic Renewable Energy Corp...

    Open Energy Info (EERE)

    PPM Atlantic Renewable Formerly Atlantic Renewable Energy Corp Jump to: navigation, search Name: PPM Atlantic Renewable (Formerly Atlantic Renewable Energy Corp) Place: Virginia...

  9. Renewable Energy Opportunities at Fort Polk, Louisiana

    SciTech Connect (OSTI)

    Solana, Amy E.; Boyd, Brian K.; Horner, Jacob A.; Gorrissen, Willy J.; Orrell, Alice C.; Weimar, Mark R.; Hand, James R.; Russo, Bryan J.; Williamson, Jennifer L.

    2010-11-17

    This document provides an overview of renewable resource potential at Fort Polk, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Polk took place on February 16, 2010.

  10. Renewable Energy Opportunities at Fort Sill, Oklahoma

    SciTech Connect (OSTI)

    Boyd, Brian K.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

    2011-03-31

    This document provides an overview of renewable resource potential at Fort Sill, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Sill took place on June 10, 2010.

  11. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect (OSTI)

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  12. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  13. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  14. PPC Renewables | Open Energy Information

    Open Energy Info (EERE)

    PPC Renewables Jump to: navigation, search Name: PPC Renewables Place: Greece Sector: Renewable Energy Product: The renewables division of Public Power Corp. of Greece (PPC)....

  15. First Renewables | Open Energy Information

    Open Energy Info (EERE)

    search Name: First Renewables Place: United Kingdom Sector: Biomass, Renewable Energy, Wind energy Product: First Renewables owns and operates a portfolio of renewable...

  16. Tribal Renewable Energy Foundational Course: Direct Use for Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Use for Building Heat and Hot Water Tribal Renewable Energy Foundational Course: Direct Use for Building Heat and Hot Water Watch the U.S. Department of Energy Office of ...

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition - Internal Revenue Code The Internal Revenue Service (IRS) defines alternative fuels as liquefied petroleum gas (propane), compressed natural gas, liquefied natural gas, liquefied hydrogen, liquid fuel derived from coal through the Fischer-Tropsch process, liquid hydrocarbons derived from biomass, and P-Series fuels. Biodiesel, ethanol, and renewable diesel are not considered alternative fuels by the IRS. While the term "hydrocarbons" includes liquids that

  18. Vegetable oil fuel

    SciTech Connect (OSTI)

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  19. Renewable Energy Powers Renewable Energy Lab, Employees

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Powers Renewable Energy Lab, Employees For more information contact: Mike Marsh (303) 275-4085 email: marshm@tcplink.nrel.gov Golden, Colo., July 9, 1997 -- The ...

  20. Refuse-derived fuels in US Air Force heating and power systems. Final report, June 1982-February 1985

    SciTech Connect (OSTI)

    Joensen, A.W.

    1986-01-01

    This investigation was conducted to document and review all data associated with densified refuse-derived fuel (dRDF)--its preparation and properties, storage and handling, boiler cofiring efficiency and environmental emissions, potential boiler metal wastage, and any other experiences associated with the use of this fuel. The results of this investigation provide the basis for the development of an optimum dRDF fuel specification. These results identify performance characteristics and operating problems of the existing dRDF fuel pellet and contain an economic feasibility assessment of using this fuel.