Powered by Deep Web Technologies
Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Procurement Options for New Renewable Electricity Supply  

DOE Green Energy (OSTI)

State renewable portfolio standard (RPS) policies require utilities and load-serving entities (LSEs) to procure renewable energy generation. Utility procurement options may be a function of state policy and regulatory preferences, and in some cases, may be dictated by legislative authority. Utilities and LSEs commonly use competitive solicitations or bilateral contracting to procure renewable energy supply to meet RPS mandates. However, policymakers and regulators in several states are beginning to explore the use of alternatives, namely feed-in tariffs (FITs) and auctions to procure renewable energy supply. This report evaluates four procurement strategies (competitive solicitations, bilateral contracting, FITs, and auctions) against four main criteria: (1) pricing; (2) complexity and efficiency of the procurement process; (3) impacts on developers access to markets; and (4) ability to complement utility decision-making processes. These criteria were chosen because they take into account the perspective of each group of stakeholders: ratepayers, regulators, utilities, investors, and developers.

Kreycik, C. E.; Couture, T. D.; Cory, K. S.

2011-12-01T23:59:59.000Z

2

Procurement Options for New Renewable Electricity Supply | Open Energy  

Open Energy Info (EERE)

Procurement Options for New Renewable Electricity Supply Procurement Options for New Renewable Electricity Supply Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Procurement Options for New Renewable Electricity Supply Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy Phase: Evaluate Options Topics: Finance, Low emission development planning, -LEDS Resource Type: Case studies/examples, Lessons learned/best practices, Technical report Website: nrelpubs.nrel.gov/Webtop/ws/nich/www/public/Record?rpp=25&upp=0&m=1&w= Cost: Free OpenEI Keyword(s): feed-in tariffs, renewable portfolio standards, FITs, FIT, RPS, renewable energy, procurement UN Region: Northern America Language: English Tool Overview "State renewable portfolio standard (RPS) policies require utilities and

3

1 The Price Elasticity of Supply of Renewable Electricity Generation  

E-Print Network (OSTI)

Many states have adopted policies aimed at promoting the growth of renewable electricity within their state. The most salient of these policies is a renewable portfolio standard (RPS) which mandates that retail electricity providers purchase a predetermined fraction of their electricity from renewable sources. Renewable portfolio standards are a policy tool likely to persist for many decades due to the long term goals of many state RPSs and the likely creation of a federal RPS alongside any comprehensive climate change bill. However, there is little empirical evidence about the costs of these RPS policies. I take an instrumental variables approach to estimate the long-run price elasticity of supply of renewable generation. To instrument for the price paid to renewable generators I use the phased-in implementation of RPSs over time. Using this IV strategy, my preferred estimate of the supply elasticity is 2.7. This parameter allows me to measure the costs of carbon abatement in the electricity sector and to compare those costs with the costs of a broader based policy. Using my parameter estimates, I find that a policy to reduce the CO2 emissions in the northeastern US electricity sector by 2.5 % using only an RPS would cost at least six times more than the regional cap-and-trade system (Regional Greenhouse Gas Initiative). The marginal cost of CO2 abatement is $12 using the most optimistic assumptions for an RPS compared to a marginal cost of abatement of $2 in the Regional Greenhouse Gas Initiative.

Erik Johnson; Erik Johnson

2010-01-01T23:59:59.000Z

4

Renewable Resources in the U.S. Electricity Supply  

Reports and Publications (EIA)

Provides an overview of current and long term forecasted uses of renewable resources in the Nation's electricity marketplace, the largest domestic application of renewable resources today.

Information Center

1993-02-01T23:59:59.000Z

5

Realisable Scenarios for a Future Electricity Supply based 100% on Renewable Energies  

E-Print Network (OSTI)

Realisable Scenarios for a Future Electricity Supply based 100% on Renewable Energies Gregor Czisch that we must transform our energy system into one using only renewable energies. But questions arise how. These questions were the focus of a study which investigated the cost optimum of a future renewable electricity

6

Investigating optimal configuration of a prospective renewable-based electricity supply sector  

Science Conference Proceedings (OSTI)

Proposed emission reduction targets as well as the scarcity of fossil fuel resources make a transition of the energy system towards a carbon free electricity supply necessary. Promising energy resources are solar and wind energy. The high temporal and ... Keywords: energy system model, geographic information system (GIS), linear optimization, power supply, renewable energy, simulation, supergrid

Tino Aboumahboub; Katrin Schaber; Peter Tzscheutschler; Thomas Hamacher

2010-02-01T23:59:59.000Z

7

Preliminary Examination of the Supply and Demand Balance for Renewable Electricity  

SciTech Connect

In recent years, the demand for renewable electricity has accelerated as a consequence of state and federal policies and the growth of voluntary green power purchase markets, along with the generally improving economics of renewable energy development. This paper reports on a preliminary examination of the supply and demand balance for renewable electricity in the United States, with a focus on renewable energy projects that meet the generally accepted definition of "new" for voluntary market purposes, i.e., projects installed on or after January 1, 1997. After estimating current supply and demand, this paper presents projections of the supply and demand balance out to 2010 and describe a number of key market uncertainties.

Swezey, B.; Aabakken, J.; Bird, L.

2007-10-01T23:59:59.000Z

8

A Preliminary Examination of the Supply and Demand Balance for Renewable Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

A Preliminary Examination A Preliminary Examination of the Supply and Demand Balance for Renewable Electricity Blair Swezey, Jørn Aabakken, and Lori Bird Technical Report NREL/TP-670-42266 October 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 A Preliminary Examination of the Supply and Demand Balance for Renewable Electricity Blair Swezey, Jørn Aabakken, and Lori Bird Prepared under Task No. WF6N.1015 Technical Report NREL/TP-670-42266 October 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

9

Examination of the Regional Supply and Demand Balance for Renewable Electricity in the United States through 2015: Projecting from 2009 through 2015 (Revised)  

SciTech Connect

This report examines the balance between the demand and supply of new renewable electricity in the United States on a regional basis through 2015. It expands on a 2007 NREL study that assessed the supply and demand balance on a national basis. As with the earlier study, this analysis relies on estimates of renewable energy supplies compared to demand for renewable energy generation needed to meet existing state renewable portfolio standard (RPS) policies in 28 states, as well as demand by consumers who voluntarily purchase renewable energy. However, it does not address demand by utilities that may procure cost-effective renewables through an integrated resource planning process or otherwise.

Bird, L.; Hurlbut, D.; Donohoo, P.; Cory, K.; Kreycik, C.

2010-06-01T23:59:59.000Z

10

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

Scale Renewable Energy Integration . . . . . . . . . . .Impacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

11

Supplying Renewable Energy to Deferrable Loads: Algorithms and Economic Analysis  

E-Print Network (OSTI)

Supplying Renewable Energy to Deferrable Loads: Algorithms and Economic Analysis Anthony in order to mitigate the unpredictable and non-controllable fluctuation of renewable power supply. We cast for optimally supplying renewable power to time-flexible electricity loads in the presence of a spot market

Oren, Shmuel S.

12

The future role of renewable energy sources in European electricity supply : A model-based analysis for the EU-15.  

E-Print Network (OSTI)

??Ambitious targets for the use of renewable electricity (RES-E) have been formulated by the EU Commission and the EU Member States. Taking into account technical, (more)

Rosen, Johannes

2008-01-01T23:59:59.000Z

13

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

14

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

15

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

16

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

17

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

1.2 Limitations to Large-Scale Renewable EnergyImpacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

18

Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply  

E-Print Network (OSTI)

Spatio-temporal generation patterns for wind and solar photovoltaic power in Europe are used to investigate the future rise in transmission needs with an increasing penetration of these variable renewable energy sources (VRES) on the pan-European electricity system. VRES growth predictions according to the official National Renewable Energy Action Plans of the EU countries are used and extrapolated logistically up to a fully VRES-supplied power system. We find that keeping today's international net transfer capacities (NTCs) fixed over the next forty years reduces the final need for backup energy by 13% when compared to the situation with no NTCs. An overall doubling of today's NTCs will lead to a 26% reduction, and an overall quadrupling to a 33% reduction. The remaining need for backup energy is due to correlations in the generation patterns, and cannot be further reduced by transmission. The main investments in transmission lines are due during the ramp-up of VRES from 15% (as planned for 2020) to 80%. Add...

Becker, Sarah; Andresen, Gorm B; Schramm, Stefan; Greiner, Martin

2013-01-01T23:59:59.000Z

19

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

Hand, M.

2012-10-01T23:59:59.000Z

20

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

Hand, M. M.

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

Mai, T.

2012-08-01T23:59:59.000Z

22

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

Mai, T.

2012-08-01T23:59:59.000Z

23

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

Hand, M.; Mai, T.

2012-08-01T23:59:59.000Z

24

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

ous systems absorb large amounts of hydroelectric power.that snow melts and hydroelectric power supply increases andwater supplies from hydroelectric dams or discards renewable

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

25

electricity supply | OpenEI  

Open Energy Info (EERE)

supply supply Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting, among other things, data on the U.S. electricity supply. Source NREL Date Released March 05th, 2006 (8 years ago) Date Updated Unknown Keywords electricity supply NREL Data application/vnd.ms-excel icon Electricity Supply (13 worksheets) (xls, 1.2 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment

26

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

Hand, M. M.

2012-08-01T23:59:59.000Z

27

Guide to Purchasing Green Power: Renewable Electricity, Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates and On-Site Renewable Generation Title Guide to Purchasing Green Power: Renewable Electricity,...

28

Electricity Supply Sector  

U.S. Energy Information Administration (EIA)

Electricity Supply Sector Part 1 of 6 Supporting Documents Sector-Specific Issues and Reporting Methodologies Supporting the General Guidelines for the Voluntary

29

Power Systems Engineering Research Center Renewable Electricity Futures  

E-Print Network (OSTI)

Power Systems Engineering Research Center Renewable Electricity Futures Trieu Mai Electricity of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity

Van Veen, Barry D.

30

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

DeMeo, E.

2012-08-01T23:59:59.000Z

31

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

Mai, T.

2012-08-01T23:59:59.000Z

32

EERE: Renewable Electricity Generation - Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy Search Search Search Help | A-Z Subject Index EERE Geothermal Renewable Electricity Generation EERE plays a key role in advancing America's "all...

33

Renewable Electricity Generation (Fact Sheet)  

DOE Green Energy (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

Not Available

2012-09-01T23:59:59.000Z

34

Renewable Electricity Futures Study. Executive Summary  

Science Conference Proceedings (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

2012-12-01T23:59:59.000Z

35

Integration of Contracted Renewable Energy and Spot Market Supply to Serve  

E-Print Network (OSTI)

Integration of Contracted Renewable Energy and Spot Market Supply to Serve Flexible Loads Anthony-mail: oren@ieor.berkeley.edu). Abstract: We present a contract for integrating renewable energy supply and electricity spot markets for serving deferrable electric loads in order to mitigate renewable energy

Oren, Shmuel S.

36

State Renewable Electricity Profiles 2010  

U.S. Energy Information Administration (EIA)

State Renewable Electricity Profiles 2010. March 2012 Independent Statistics & Analysis . www.eia.gov . U.S. Department of Energy . Washington, DC 20585

37

Consumer Behaviour in Renewable Electricity.  

E-Print Network (OSTI)

?? A higher percentage of energy from renewable resources is an important goal on many sustainable development agendas. In liberalized electricity markets, an increase in (more)

Hanimann, Raphael

2013-01-01T23:59:59.000Z

38

EERE: Renewable Electricity Generation - Solar  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Renewable Electricity Generation EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to...

39

renewable electricity | OpenEI  

Open Energy Info (EERE)

electricity electricity Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

40

Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures  

DOE Green Energy (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

DOE Green Energy (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

2012-06-01T23:59:59.000Z

42

Renewable Electricity Generation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Generation Renewable Electricity Generation Geothermal Read more Solar Read more Water Read more Wind Read more Our nation has abundant solar, water, wind,...

43

Renewable Electricity Purchases: History and Recent Developments  

Reports and Publications (EIA)

This article presents an analysis of prices of renewable-based electricity that utilities have paid to nonutilities, the primary generators of renewable electricity.

Information Center

1999-02-01T23:59:59.000Z

44

Mohave Electric Cooperative - Renewable Energy Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Mohave Electric Cooperative - Renewable Energy Incentive Program Mohave Electric Cooperative - Renewable Energy Incentive Program...

45

Renewable Electricity Generation  

Energy.gov (U.S. Department of Energy (DOE))

Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems....

46

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes the details of purchasing green power. Discussion covers topics like renewable electricity, renewable energy certificates, and on-site renewable generation.

47

The Potential for Supply-Following Loads to Enable Deep Renewables  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential for Supply-Following Loads to Enable Deep Renewables Potential for Supply-Following Loads to Enable Deep Renewables Penetration in Electricity Grids Speaker(s): Jay Taneja Date: February 27, 2013 - 12:00pm Location: 90-1099 Seminar Host/Point of Contact: Rich Brown Driven by renewables portfolio standards and other high-level policy directives, renewable electricity generation is being phased in to the electrical grid at an unprecedented rate, and primarily displacing traditional fossil fuel-powered sources. Most electricity generation by renewables is non-dispatchable, meaning that it often fluctuates unpredictably and cannot be scheduled or shifted. This makes matching supply and demand to ensure electrical reliability a fundamentally new challenge as the proportion of renewable sources increases. To overcome

48

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

Renewable energy spillage, operating costs and capacityfocused on renewable energy utilization, cost of operationssystem operating costs, renewable energy utilization,

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

49

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

of locational renewable energy production in each renewableto total renewable energy production, although accountingproduction data from the 2006 data set of the National Renewable Energy

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

50

A Stochastic Unit Commitment Model for Integrating Renewable Supply  

E-Print Network (OSTI)

A Stochastic Unit Commitment Model for Integrating Renewable Supply and Demand Response Anthony from the large-scale integration of renewable energy sources and deferrable demand in power systems. We- sorbing the uncertainty and variability associated with renewable supply: centralized co

Oren, Shmuel S.

51

Renewable and Efficient Electric Power Systems  

E-Print Network (OSTI)

.8.1 Ideal Transformers 37 1.8.2 Magnetization Losses 40 Problems 44 2 Fundamentals of Electric Power 51 2Renewable and Efficient Electric Power Systems Gilbert M. Masters Stanford University A JOHN WILEY & SONS, INC., PUBLICATION #12;#12;Renewable and Efficient Electric Power Systems #12;#12;Renewable

Kammen, Daniel M.

52

NREL: Learning - Renewable Energy for Electricity Providers  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy for Electricity Providers Photo of wind turbines. The Ponnequin Wind Farm in Colorado generates electricity for 6,000 customers. You'll find many renewable energy...

53

Tribal Renewable Energy Foundational Course: Electricity Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar...

54

Guide to Purchasing Green Power: Renewable Electricity, Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

generated from a subset of renewable resources, including solar, wind, geothermal, biogas, biomass, and low-impact hydroelectric sources. These electricity sources are derived...

55

Renewable Fuel Supply Ltd RFSL | Open Energy Information  

Open Energy Info (EERE)

Supply Ltd RFSL Supply Ltd RFSL Jump to: navigation, search Name Renewable Fuel Supply Ltd (RFSL) Place United Kingdom Zip W1J 5EN Sector Biomass Product UKâ€(tm)s largest supplier of biomass to the UK co-firing power stations. References Renewable Fuel Supply Ltd (RFSL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Fuel Supply Ltd (RFSL) is a company located in United Kingdom . References ↑ "[fsl@@Pikefsl@@Renewablefsl@@generationfsl@@sub*-Utilityfsl@@Photovoltanicsfsl@@Fuelfsl@@Wind-Poerfsl@@/ Renewable Fuel Supply Ltd (RFSL)" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Fuel_Supply_Ltd_RFSL&oldid=350339" Categories:

56

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

China, Europe (Denmark, Germany, Greece) and the United States (PJM, NYISO, CAISO, Ontario IMO) accept renewable

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

57

Grid-Based Renewable Electricity and Hydrogen Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Renewable Electricity and Hydrogen Integration Carolyn Elam Senior Project Leader - Hydrogen Production Electric & Hydrogen Technologies & Systems Center National Renewable Energy Laboratory Goals for Electrolysis in Hydrogen Fuel Supply * Goal is to supply hydrogen fuel for 20% of the light- duty vehicle fleet - 12 million short tons of hydrogen annually - 450 TWh per year * Must be competitive - With gasoline, assuming FCV will have twice the efficiency of an ICE - With other hydrogen production methods * Net zero impact or reduction in GHG emissions - Compared to Gasoline ICE - 31% reduction in carbon emissions from the current electricity mix - Compared to Natural Gas-Derived Hydrogen - 65% reduction in carbon emissions from the current electricity mix Goals for Electrolysis (cont.)

58

Renewable Electricity Generation (Fact Sheet), Office of Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet),...

59

Renewable Electricity Generation in the United States  

E-Print Network (OSTI)

This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

Schmalensee, Richard

60

Renewable Electricity Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Standard Renewable Electricity Standard Renewable Electricity Standard < Back Eligibility Investor-Owned Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Missouri Program Type Renewables Portfolio Standard Provider Missouri Public Service Commission In November 2008, voters in Missouri enacted Proposition C, a ballot initiative that repealed the state's existing voluntary renewable energy and energy efficiency objective and replaced it with an expanded, mandatory renewable electricity standard of 15% by 2021. The standard also contains a solar electricity carve-out of 2% of each interim portfolio requirement meaning that by 2021, 0.3% of retail electricity sales must be derived from

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Electricity from Renewables: Status, Prospects, and Impediments  

E-Print Network (OSTI)

Electricity from Renewables: Status, Prospects, and Impediments America's Energy Future Study Panel on Electricity from Renewables K. John Holmes, National Research Council, Study Director (jholmes@nas.edu) #12, Carnegie Mellon University ·James J. Markowsky***, American Electric Power (Ret.) ·Richard A. Meserve

Kammen, Daniel M.

62

Renewable Electricity Futures Study: Executive Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Executive Summary Executive Summary NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report)

63

Trends in Utility Scale Renewable Electricity  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Trends in Utility Scale Renewable Electricity for ReTech 2012

64

Renewable Electricity Purchases: History and Recent Developments  

U.S. Energy Information Administration (EIA)

Energy Information Administration/ Renewable Energy Annual 1998 Issues and Trends 1 1 For a broader understanding of electric power industry restructuring, see Energy ...

65

Renewable Electricity Facility Tax Credit (Personal) (Kansas...  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Renewable Electricity Facility Tax Credit (Personal) (Kansas) This is the approved revision of this page,...

66

Renewable Electricity Facility Tax Credit (Corporate) (Kansas...  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Renewable Electricity Facility Tax Credit (Corporate) (Kansas) This is the approved revision of this...

67

Renewable Energy Consumption and Electricity Preliminary ...  

U.S. Energy Information Administration (EIA)

Renewable Energy Consumption and Electricity Preliminary Statistics 2010 June 2011 ... and Job Creation Act of 2010 (H.R. 4853) was signed in December

68

Examination of the Regional Supply and Demand Balance for Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy (U.S.) DSIRE Database of State Incentives for Renewables and Efficiency EIA Energy Information Administration ERCOT Electric Reliability Council of Texas EPA...

69

Renewable Electricity Futures: Exploration of Up to 80% Renewable Electricity Penetration in the United States (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M.; DeMeo, E.; Hostick, D.; Mai, T.; Schlosser, C. A.

2013-04-01T23:59:59.000Z

70

Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning  

DOE Green Energy (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

2012-06-01T23:59:59.000Z

71

Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand  

DOE Green Energy (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

2012-06-01T23:59:59.000Z

72

Renewable Electricity Generation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Generation Renewable Electricity Generation Renewable Electricity Generation Geothermal Read more Solar Read more Water Read more Wind Read more Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE) leads a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost competitive with traditional sources of energy. Working with our national laboratories and through these partnerships, we are catalyzing the transformation of the nation's energy system and building on a tradition of U.S. leadership in science and

73

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

55. Sample distribution of vehicle electricity demand forand distribution facilities that supply electricity demand.55. Sample distribution of vehicle electricity demand for

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

74

Trends in Renewable Energy Consumption and Electricity  

Reports and Publications (EIA)

Presents a summary of the nations renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and State. The report covers the period from 2006 through 2010.

2012-12-11T23:59:59.000Z

75

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Generation Renewable Electricity Generation and Storage Technologies Volume 2 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable

76

2014 Electricity Forms Reclearance: Renewable Electricity  

U.S. Energy Information Administration (EIA)

... CSP, Geothermal Could also be collected for non-renewable generators Unclear how to handle arrays/wind farms with multiple manufacturers ...

77

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate PV: $8,000 Solar Water Heaters: $1,000 Solar Water Wells: $750 Wind-electric: $6,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount PV: $2.00/watt Solar Water Heaters: $1,000/unit Solar Water Wells: $750/unit Wind-electric: $1.00/watt Provider Guadalupe Valley Electric Cooperative '''''The $1.5 million budget cap for PV rebates in 2013 has been met. No additional applications for PV rebates will be accepted. '''''

78

Renewable Power Options for Electricity Generation on Kaua'i...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

79

Annual Renewable Electricity Consumption by Country (2005 - 2009...  

Open Energy Info (EERE)

Renewable Electricity Consumption by Country (2005 - 2009) Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as...

80

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

forecasting for wind energy: Temperature dependence andlarge amounts of wind energy with a small electric system.Large scale integration of wind energy in the european power

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

Current and projected capacity of wind power installations (electricity prices (left) and wind power production (right)of wind speed (left) and wind power pro- duction (right) for

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

82

Farmers Electric Cooperative (Kalona) - Renewable Energy Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Renewable Energy Rebates Farmers Electric Cooperative (Kalona) - Renewable Energy Rebates Farmers Electric Cooperative (Kalona) - Renewable Energy Rebates < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Wind Maximum Rebate $5,000 per site $20,000 per total system per year Rebate is capped at wattage that meets 25% of customer's annual kWhr use Program Info State Iowa Program Type Utility Rebate Program Rebate Amount $1,000 per peak kW Provider Farmers Electric Cooperative Farmer's Electric Cooperative (Kalona) offers rebates for the installation of small wind and solar photovoltaic (PV) systems to its member customers. The amount of the rebate is set at $1,000 per peak kilowatt (kW) for both technologies, with a maximum rebate of $5,000. It is only available for

83

The renewable electric plant information system  

DOE Green Energy (OSTI)

This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

Sinclair, K.

1995-12-01T23:59:59.000Z

84

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

function of real-time electricity prices (left) and windinflexible) demand and real-time prices. The case study inas a special case. The real-time price process is modeled as

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

85

NREL: Energy Analysis - Renewable Electricity Futures Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Futures Study Renewable Electricity Futures Study RE Futures Visualizations These visualizations are based on RE Futures modeling and represent the transformation of the U.S. electric system to a high renewable system from 2010 to 2050 and the hourly operation and transmission flow of that system in 2050. Transformation of the Electric Sector (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display the transformation of the electric sector in 2010 through 2050 Hourly Operation in 2050 (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display hourly operation in 2010 through 2050 Power Flow in 2050 (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display power flow in 2010 through 2050

86

Optimal endogenous carbon taxes for electric power supply chains with power plants  

Science Conference Proceedings (OSTI)

In this paper, we develop a modeling and computational framework that allows for the determination of optimal carbon taxes applied to electric power plants in the context of electric power supply chain (generation/distribution/consumption) networks. ... Keywords: Carbon taxes, Electric power, Environmental policies, Network equilibria, Renewable energy, Supply chains, Variational inequalities

Anna Nagurney; Zugang Liu; Trisha Woolley

2006-11-01T23:59:59.000Z

87

Electric Vehicle Supply Equipment (EVSE) Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing What's New PLUGLESS Level 2 EV Charging System by Evatran Group Inc. - August 2013 The Advanced Vehicle Testing Activity is tasked...

88

New Electric Grid Technologies for Renewable Integration  

E-Print Network (OSTI)

and changing electric loads that are becoming part of the "orchestra" · Dealing with economic and public policy & Intelligent Agent (temporal power flow control) · Solar and Wind Forecasting Tools · Generator and LoadNew Electric Grid Technologies for Renewable Integration - The Need for Being Smarter - Presented

Islam, M. Saif

89

Renewable electricity, Feed-in-Tariff, Renewable Obligation  

E-Print Network (OSTI)

Keywords JEL Classification The aim of this paper is to look at the UKs renewable energy policy in the context of its overall decarbonisation and energy policies. This will allow us to explore the precise nature of the failure of UK renewables policy and to suggest policy changes which might be appropriate in light of the UKs institutional and resource endowments. Our focus is on the electricity sector both in terms of renewable generation and to a lesser extent the facilitating role of electricity distribution and transmission networks. We will suggest that the precise nature of the failure of UK policy is rather more to do with societal preferences and the available mechanisms for encouraging social acceptability than it is to do with financial support mechanisms. Radical changes to current policy are required, but they must be careful to be institutionally appropriate to the UK. What we suggest is that current policies exhibit an unnecessarily low benefit to cost ratio, and that new policies for renewable deployment must pay close attention to cost effectiveness.

Michael G. Pollitt; Michael G. Pollitt

2010-01-01T23:59:59.000Z

90

Empowering Variable Renewables: Options for Flexible Electricity Systems |  

Open Energy Info (EERE)

Empowering Variable Renewables: Options for Flexible Electricity Systems Empowering Variable Renewables: Options for Flexible Electricity Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Empowering Variable Renewables: Options for Flexible Electricity Systems Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Renewable Energy Topics: Market analysis, Technology characterizations Resource Type: Publications Website: www.iea.org/g8/2008/Empowering_Variable_Renewables.pdf Empowering Variable Renewables: Options for Flexible Electricity Systems Screenshot References: Empowering Variable Renewables: Options for Flexible Electricity Systems[1] Summary "Increasing the share of renewables in energy portfolios is a key tool in the drive to reduce anthropogenic carbon dioxide emissions, as well as

91

NREL: Education Programs - NREL to Showcase Renewable Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

two mobile renewable electricity generation systems and three advanced vehicles-a Toyota Highlander fuel cell electric vehicle, a plug-in Toyota Prius hybrid electric vehicle,...

92

Renewable Resource Electricity in the Changing Regulatory Environment  

Reports and Publications (EIA)

This article surveys in the development of renewable resource electricity recent actions and proposals and summarizes their implications for the renewables industry.

Information Center

1995-12-01T23:59:59.000Z

93

Renewable Electricity Futures Study. Volume 1: Exploration of...  

NLE Websites -- All DOE Office Websites (Extended Search)

of High-Penetration Renewable Electricity Futures D-7 Jay Caspary Southwest Power Pool Lynn Coles National Renewable Energy Laboratory Brendan Kirby Consult Kirby Trieu Mai...

94

Electricity generation from non-hydro renewable sources varies ...  

U.S. Energy Information Administration (EIA)

May 2, 2012 Electricity generation from non-hydro renewable sources varies by state. Wind accounted for most non-hydro renewable generation in 2011, but sources of ...

95

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchasing Green Power Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation DOE/EE-0307 This guide can be downloaded from: www1.eere.energy.gov/femp/technologies/renewable_purchasingpower.html www.epa.gov/greenpower/ www.wri.org/publications www.resource-solutions.org/publications.php Office of Air (6202J) EPA430-K-04-015 www.epa.gov/greenpower March 2010 ISBN: 1-56973-577-8 Guide to Purchasing Green Power i Table of Contents Summary ........................................................................................................................................................1 Chapter 1: Introduction ....................................................................................................................................2

96

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

DEMAND . . . .Demand for Electricity and Power PeakDemand . . . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

Benenson, P.

2010-01-01T23:59:59.000Z

97

State Policies Provide Critical Support for Renewable Electricity  

E-Print Network (OSTI)

it can compete against other renewable resource options.Critical Support for Renewable Electricity Galen Barbose,July 15, 2008 Growth in renewable energy in the U.S. over

Barbose, Galen

2009-01-01T23:59:59.000Z

98

THE IMPACTS OF RENEWABLE ENERGY POLICIES ON RENEWABLE ENERGY SOURCES FOR ELECTRICITY GENERATING CAPACITY .  

E-Print Network (OSTI)

??Electricity generation from non-hydro renewable sources has increased rapidly in the last decade. For example, Renewable Energy Sources for Electricity (RES-E) generating capacity in the (more)

[No author

2011-01-01T23:59:59.000Z

99

State Policies Provide Critical Support for Renewable Electricity  

DOE Green Energy (OSTI)

Growth in renewable energy in the U.S. over the past decade has been propelled by a number of forces, including rising fossil fuel prices, environmental concerns, and policy support at the state and federal levels. In this article, we review and discuss what are arguably the two most important types of state policies for supporting electricity generation from geothermal and other forms of renewable energy: renewables portfolio standards and utility integrated resource planning requirements. Within the Western U.S., where the vast majority of the nation's readily-accessible geothermal resource potential resides, these two types of state policies have been critical to the growth of renewable energy, and both promise to continue to play a fundamental role for the foreseeable future. In its essence, a renewables portfolio standard (RPS) requires utilities and other retail electricity suppliers to produce or purchase a minimum quantity or percentage of their generation supply from renewable resources. RPS purchase obligations generally increase over time, and retail suppliers typically must demonstrate compliance on an annual basis. Mandatory RPS policies are backed by various types of compliance enforcement mechanisms, although most states have incorporated some type of cost-containment provision, such as a cost cap or a cap on retail rate impacts, which could conceivably allow utilities to avoid (full) compliance with their RPS target. Currently, 27 states and the District of Columbia have mandatory RPS requirements. Within the eleven states of the contiguous Western U.S., all but three (Idaho, Utah, and Wyoming) now have a mandatory RPS legislation (Utah has a more-voluntary renewable energy goal), covering almost 80% of retail electricity sales in the region. Although many of these state policies have only recently been established, their impact is already evident: almost 1800 MW of new renewable capacity has been installed in Western states following the implementation of RPS policies. To date, wind energy has been the primary beneficiary of state RPS policies, representing approximately 83% of RPS-driven renewable capacity growth in the West through 2007. Geothermal energy occupies a distant second place, providing 7% of RPS-driven new renewable capacity in the West since the late 1990s, though geothermal's contribution on an energy (MWh) basis is higher. Looking to the future, a sizable quantity of renewable capacity beyond pre-RPS levels will be needed to meet state RPS mandates: about 25,000 MW by 2025 within the Western U.S. Geothermal energy is beginning to provide an increasingly significant contribution, as evidenced by the spate of new projects recently announced to meet state RPS requirements. Most of this activity has been driven by the RPS policies in California and Nevada, where the Geothermal Energy Association has identified 47 new geothermal projects, totaling more than 2,100 MW, in various stages of development. Additional geothermal projects in Arizona, New Mexico, Oregon, and Washington are also under development to meet those states RPS requirements. The other major state policy driver for renewable electricity growth, particularly in the West, is integrated resource planning (IRP). IRP was first formalized as a practice in the 1980s, but the practice was suspended in some states as electricity restructuring efforts began. A renewed interest in IRP has emerged in the past several years, however, with several Western states (California, Montana, and New Mexico) reestablishing IRP and others developing new rules to strengthen their existing processes. In its barest form, IRP simply requires that utilities periodically submit long-term resource procurement plans in which they evaluate alternative strategies for meeting their resource needs over the following ten to twenty years. However, many states have developed specific requirements for the IRP process that directly or indirectly support renewable energy. The most general of these is an explicit requirement that utilities evaluate renewables, and that

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-07-15T23:59:59.000Z

100

State Policies Provide Critical Support for Renewable Electricity  

SciTech Connect

Growth in renewable energy in the U.S. over the past decade has been propelled by a number of forces, including rising fossil fuel prices, environmental concerns, and policy support at the state and federal levels. In this article, we review and discuss what are arguably the two most important types of state policies for supporting electricity generation from geothermal and other forms of renewable energy: renewables portfolio standards and utility integrated resource planning requirements. Within the Western U.S., where the vast majority of the nation's readily-accessible geothermal resource potential resides, these two types of state policies have been critical to the growth of renewable energy, and both promise to continue to play a fundamental role for the foreseeable future. In its essence, a renewables portfolio standard (RPS) requires utilities and other retail electricity suppliers to produce or purchase a minimum quantity or percentage of their generation supply from renewable resources. RPS purchase obligations generally increase over time, and retail suppliers typically must demonstrate compliance on an annual basis. Mandatory RPS policies are backed by various types of compliance enforcement mechanisms, although most states have incorporated some type of cost-containment provision, such as a cost cap or a cap on retail rate impacts, which could conceivably allow utilities to avoid (full) compliance with their RPS target. Currently, 27 states and the District of Columbia have mandatory RPS requirements. Within the eleven states of the contiguous Western U.S., all but three (Idaho, Utah, and Wyoming) now have a mandatory RPS legislation (Utah has a more-voluntary renewable energy goal), covering almost 80% of retail electricity sales in the region. Although many of these state policies have only recently been established, their impact is already evident: almost 1800 MW of new renewable capacity has been installed in Western states following the implementation of RPS policies. To date, wind energy has been the primary beneficiary of state RPS policies, representing approximately 83% of RPS-driven renewable capacity growth in the West through 2007. Geothermal energy occupies a distant second place, providing 7% of RPS-driven new renewable capacity in the West since the late 1990s, though geothermal's contribution on an energy (MWh) basis is higher. Looking to the future, a sizable quantity of renewable capacity beyond pre-RPS levels will be needed to meet state RPS mandates: about 25,000 MW by 2025 within the Western U.S. Geothermal energy is beginning to provide an increasingly significant contribution, as evidenced by the spate of new projects recently announced to meet state RPS requirements. Most of this activity has been driven by the RPS policies in California and Nevada, where the Geothermal Energy Association has identified 47 new geothermal projects, totaling more than 2,100 MW, in various stages of development. Additional geothermal projects in Arizona, New Mexico, Oregon, and Washington are also under development to meet those states RPS requirements. The other major state policy driver for renewable electricity growth, particularly in the West, is integrated resource planning (IRP). IRP was first formalized as a practice in the 1980s, but the practice was suspended in some states as electricity restructuring efforts began. A renewed interest in IRP has emerged in the past several years, however, with several Western states (California, Montana, and New Mexico) reestablishing IRP and others developing new rules to strengthen their existing processes. In its barest form, IRP simply requires that utilities periodically submit long-term resource procurement plans in which they evaluate alternative strategies for meeting their resource needs over the following ten to twenty years. However, many states have developed specific requirements for the IRP process that directly or indirectly support renewable energy. The most general of these is an explicit requirement that utilities evaluate renewables

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Easy Way to Use Renewables: Buy Clean Electricity | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Easy Way to Use Renewables: Buy Clean Electricity The Easy Way to Use Renewables: Buy Clean Electricity November 17, 2009 - 8:45pm Addthis John Lippert Clean air means a lot to...

102

Electricity supply chain coordination based on quantity discount contracts  

Science Conference Proceedings (OSTI)

Electricity supply chain coordination mechanism from the fuel supply, power generation and transmission to electricity consumption has become an important research topic to ease electric coal supply conflicts. In this paper, based on the quantity discount ...

Yu Dai; Hongming Yang; Jiajie Wu

2009-02-01T23:59:59.000Z

103

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

ELECTRICITY SUPPLY Hydroelectric Energy Supply Thermal-question. Data on PG&E's hydroelectric resources and Pacific27 Table 28 Table 29 Hydroelectric Supply in California Fuel

Benenson, P.

2010-01-01T23:59:59.000Z

104

Alternative Fuels Data Center: Electric Vehicle Supply Equipment...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Supply Equipment (EVSE) Incentive - Bay Area to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Bay...

105

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment (EVSE) Testing on Facebook Tweet...

106

Alternative Fuels Data Center: Electric Vehicle Supply Equipment...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Supply Equipment (EVSE) Rebate - DTE Energy to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - DTE Energy...

107

Electricity Net Generation From Renewable Energy by Energy Use...  

Open Energy Info (EERE)

Electricity Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Provides annual net electricity generation (thousand kilowatt-hours) from...

108

Optimization of the utilization of renewable energy sources in the electricity sector  

Science Conference Proceedings (OSTI)

Emission reduction targets as well as the scarcity of fossil resources make a transition of the energy system towards a carbon free electricity supply necessary. Promising energy resources are solar and wind energy. The challenging characteristics of ... Keywords: energy system model, geographic information system (GIS), linear optimization, power supply, renewable energy, simulation, supergrid

Tino Aboumahboub; Katrin Schaber; Peter Tzscheutschler; Thomas Hamacher

2010-02-01T23:59:59.000Z

109

Recharging Energy Storage Devices and/or Supplying Electric Power  

sources for emergency and other uses. Patent Gui-Jia Su. Electric Vehicle Recharging and or Supplying Electrical Power,

110

Oil and Natural Gas Market Supply and Renewable Portfolio Standard Impacts of Selected Provisions of H.R. 3221  

Gasoline and Diesel Fuel Update (EIA)

Oil and Natural Gas Market Supply and Renewable Portfolio Standard Impacts of Selected Provisions of Oil and Natural Gas Market Supply and Renewable Portfolio Standard Impacts of Selected Provisions of H.R. 3221 1 Oil and Natural Gas Market Supply and Renewable Portfolio Standard Impacts of Selected Provisions of H.R. 3221 November 2007 This paper responds to an October 31, 2007, request from Representatives Barton, McCrery, and Young. Their letter, a copy of which is provided as Appendix A, asks the Energy Information Administration (EIA) to assess selected provisions of H.R. 3221, the energy bill adopted by the House of Representatives in early August 2007. EIA was asked to focus on Title VII, dealing with energy on Federal lands; Section 9611, which would establish a Federal renewable portfolio standard (RPS) for certain electricity sellers; and Section 13001, which would eliminate the

111

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on AddThis.com...

112

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on AddThis.com... More in this section... Federal State Advanced Search

113

Alternative Fuels Data Center: State Agency Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Electric State Agency Electric Vehicle Supply Equipment (EVSE) Installation to someone by E-mail Share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Facebook Tweet about Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Twitter Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Google Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Delicious Rank Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Digg Find More places to share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on

114

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Installation Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on AddThis.com...

115

Alternative Fuels Data Center: State Highway Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Highway Electric State Highway Electric Vehicle Supply Equipment (EVSE) Regulations to someone by E-mail Share Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Facebook Tweet about Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Twitter Bookmark Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Google Bookmark Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Delicious Rank Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Digg Find More places to share Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on

116

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on AddThis.com... More in this section... Federal State Advanced Search

117

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on AddThis.com... More in this section... Federal

118

Alternative Fuels Data Center: State Agency Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Electric State Agency Electric Vehicle Supply Equipment (EVSE) Installation to someone by E-mail Share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Facebook Tweet about Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Twitter Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Google Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Delicious Rank Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Digg Find More places to share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on

119

Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mandatory Electric Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards to someone by E-mail Share Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Facebook Tweet about Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Twitter Bookmark Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Google Bookmark Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Delicious Rank Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Digg Find More places to share Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on

120

NREL: Vehicles and Fuels Research - NREL to Showcase Renewable Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL to Showcase Renewable Electricity Generation Systems and Advanced NREL to Showcase Renewable Electricity Generation Systems and Advanced Vehicles at Denver Earth Day Fair April 18, 2013 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will showcase two mobile renewable electricity generation systems and three advanced vehicles-a Toyota Highlander fuel cell electric vehicle, a plug-in Toyota Prius hybrid electric vehicle, and a Mitsubishi i-MiEV electric vehicle-at the Denver Earth Day Fair on April 22. The larger of NREL's two renewable electricity generation systems features a 12 kilowatt biodiesel-powered back-up generator as well as a 1.8 kilowatt photovoltaic array that taps into energy from the sun to produce renewable electricity, which will power the fair. The smaller system includes a 384

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Figure 6. Electricity Market Model Supply Regions  

E-Print Network (OSTI)

The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submoduleselectricity capacity planning, electricity fuel dispatching, load and demand electricity, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2010, DOE/EIA-M068(2010). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described.

unknown authors

2010-01-01T23:59:59.000Z

122

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Digg Find More places to share Alternative Fuels Data Center: Electric

123

The effectiveness of the policies on renewable electricity in China  

E-Print Network (OSTI)

After the legislation of the Renewable Energy Law, China's government established a series of policies to promote renewable energy source electricity (RES-e) from 2005-2012. The effectiveness of the policies varies depending ...

Xiao, Qing S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

124

Electric Vehicle Supply Equipment Installed Cost Analysis  

Science Conference Proceedings (OSTI)

More than 140,000 plug-in electric vehicles (PEVs) have been sold since December 2010. Critical to maintaining this upward trend is achievement of a diverse and available charging infrastructure. The purpose of this study is to analyze one key element of the charging infrastructurethe cost of installation. While the fuel cost of electricity to charge a PEV is significantly lower than the cost of gasoline, the cost to hire an electrician to install electric vehicle supply equipment (EVSE) for ...

2013-12-06T23:59:59.000Z

125

Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Highway Electric Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements to someone by E-mail Share Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Facebook Tweet about Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Twitter Bookmark Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Google Bookmark Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Delicious Rank Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Digg Find More places to share Alternative Fuels Data Center: Highway

126

The Role of Renewable Energies in Energy Supply and Management for Sustainable Development. "case of Rwanda".  

E-Print Network (OSTI)

?? Final Master Thesis report EGI 2010-2013 Thesis Title: The Role of Renewable Energies in Energy supply Planning and Management for Sustainable Development Case (more)

Rutagengwa, John

2013-01-01T23:59:59.000Z

127

Modeling renewable portfolio standards for the annual energy outlook 1998 - electricity market module  

SciTech Connect

The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Load and Demand-Side Management (LDSM) Submodule. For the Annual Energy Outlook 1998 (AEO98), the EMM has been modified to represent Renewable Portfolio Standards (RPS), which are included in many of the Federal and state proposals for deregulating the electric power industry. A RPS specifies that electricity suppliers must produce a minimum level of generation using renewable technologies. Producers with insufficient renewable generating capacity can either build new plants or purchase {open_quotes}credits{close_quotes} from other suppliers with excess renewable generation. The representation of a RPS involves revisions to the ECP, EFD, and the EFP. The ECP projects capacity additions required to meet the minimum renewable generation levels in future years. The EFD determines the sales and purchases of renewable credits for the current year. The EFP incorporates the cost of building capacity and trading credits into the price of electricity.

1998-02-01T23:59:59.000Z

128

El Paso Electric Company - Small and Medium System Renewable...  

Open Energy Info (EERE)

Place New Mexico Name El Paso Electric Company - Small and Medium System Renewable Energy Certificate Purchase Program Incentive Type Performance-Based Incentive Applicable...

129

Figure 8. Renewable energy share of U.S. electricity ...  

U.S. Energy Information Administration (EIA)

Title: Figure 8. Renewable energy share of U.S. electricity generation in four cases, 2000-2040 (percent) Subject: Annual Energy Outlook 2013 Author

130

Figure 15. Renewable electricity generation in three cases ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 15. Renewable electricity generation in three cases, 2005-2040 (billion kilowatthours) Extended Policies No Sunset ...

131

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council Northwest Power Pool Area This...

132

Communication and Control of Electric Vehicles Supporting Renewables: Preprint  

DOE Green Energy (OSTI)

Discusses the technologies needed, potential scenarios, limitations, and opportunities for using grid-connected renewable energy to fuel the electric vehicles of the future.

Markel, T.; Kuss, M.; Denholm, P.

2009-08-01T23:59:59.000Z

133

Annual Renewable Electricity Net Generation by Country (1980...  

Open Energy Info (EERE)

Net Generation by Country (1980 - 2009) Total annual renewable electricity net generation by country, 1980 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu)....

134

Renewable Energy for Electricity Generation in Latin America...  

Open Energy Info (EERE)

America: Market, Technologies, and Outlook (Webinar) Focus Area: Water power Topics: Market Analysis Website: www.leonardo-energy.orgwebinar-renewable-energy-electricity-gene...

135

Factors affecting adoption of renewable and other electricity ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Factors affecting adoption of renewable and other electricity generation technologies

136

Renewable energy shows strongest growth in global electric ...  

U.S. Energy Information Administration (EIA)

The U.S. Energy Information Administration's International Energy Outlook 2011 (IEO2011) projects that the amount of global hydroelectric and other renewable electric ...

137

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Electric

138

Contribution of Renewables to World Energy Supply (1971 - 2008) | OpenEI  

Open Energy Info (EERE)

Contribution of Renewables to World Energy Supply (1971 - 2008) Contribution of Renewables to World Energy Supply (1971 - 2008) Dataset Summary Description OECD Factbook 2010: Economic, Environmental and Social Statistics - ISBN 92-64-08356-1 - © OECD 2010. Available directly from the OECD Statistics website (beta version).Presents the annual contribution of renewables to energy supply, as a percentage of total primary energy supply for the world, plus approximately 40 countries (1971 - 2008). Source OECD Date Released January 01st, 2010 (4 years ago) Date Updated Unknown Keywords energy supply ISBN 92-64-08356-1 OECD renewable energy world Data application/vnd.ms-excel icon OECD Factbook 2010: Contribution of Renewables to Energy Supply (xls, 38.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

139

Analysis of Two Proposed Renewable Electricity Standards  

Gasoline and Diesel Fuel Update (EIA)

4 4 Impacts of a 25-Percent Renewable Electricity Standard as Proposed in the American Clean Energy and Security Act Discussion Draft April 2009 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by

140

CASE STUDY -ELECTRIC UTILITY RESTRUCTURING -MASSACHUSETTS RENEWABLE ENERGY TRUST FUND  

E-Print Network (OSTI)

CASE STUDY - ELECTRIC UTILITY RESTRUCTURING - MASSACHUSETTS RENEWABLE ENERGY TRUST FUND John A or not WTE will be considered a "renewable energy" source with respect to mandated fractions of state. This discussion will provide a brief history of the Massachusetts, Renewable Energy Trust Fund (RETF), delineate

Columbia University

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Electric Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) to someone by E-mail Share Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) on Facebook Tweet about Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) on Twitter Bookmark Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) on Google Bookmark Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) on Delicious Rank Alternative Fuels Data Center: Commercial Electric Vehicle

142

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

schemes in the European electricity market. Scheer H. , ThePromoting electricity from renewable energy sources 2001 on the promotion of electricity produced from renewable

Haas, Reinhard

2008-01-01T23:59:59.000Z

143

Electric resonance-rectifier circuit for renewable energy conversion  

Science Conference Proceedings (OSTI)

Variable speed generators are used more frequently for converting the energy from renewable energy sources to electric energy. The power production form a variable speed generator is dependent on the electrical damping of the generator. In this paper

C. Bostrm; B. Ekergrd; M. Leijon

2012-01-01T23:59:59.000Z

144

Renewable Energy for Electricity Generation in Latin America: Market,  

Open Energy Info (EERE)

for Electricity Generation in Latin America: Market, for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Focus Area: Water power Topics: Market Analysis Website: www.leonardo-energy.org/webinar-renewable-energy-electricity-generatio Equivalent URI: cleanenergysolutions.org/content/renewable-energy-electricity-generati Language: English Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation This video teaches the viewer about the current status and future

145

Contracting Issues with Renewable Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contracting Issues with Renewable Electricity Contracting Issues with Renewable Electricity Contracting Issues with Renewable Electricity October 16, 2013 - 5:08pm Addthis For many Federal agencies integrating renewable energy into a construction project, the technical and contracting issues associated with generating power at the facility are new. This page summarizes the various contracting issues that result from having on-site power generation that is actively interconnected with the power grid instead of using only a back-up generator. Many of these agreements depend on the ownership structure of the renewable energy system. Common agreements associated with a renewable electricity-generation facility include: An interconnection agreement covers the safe connection of the system to the power grid, including provisions for safe design, connection,

146

Long Island Power Authority - Renewable Electricity Goal | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Goal Renewable Electricity Goal Long Island Power Authority - Renewable Electricity Goal < Back Eligibility Municipal Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State New York Program Type Renewables Portfolio Standard Provider Long Island Power Authority As a municipal utility, the Long Island Power Authority (LIPA) is not obligated to comply with the [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... New York Renewable Portfolio Standard (RPS)]. The LIPA Board of Trustees has nevertheless decided to make their own renewable energy commitment mirroring the requirements for New York's investor owned utilities. The initiative is outlined in LIPA's 2004-2013 Energy Plan, approved in June

147

Opportunities for renewable energy technologies in water supply in developing country villages  

DOE Green Energy (OSTI)

This report provides the National Renewable Energy Laboratory (NREL) with information on village water supply programs in developing countries. The information is intended to help NREL develop renewable energy technologies for water supply and treatment that can be implemented, operated, and maintained by villagers. The report is also useful to manufacturers and suppliers in the renewable energy community in that it describes a methodology for introducing technologies to rural villages in developing countries.

Niewoehner, J.; Larson, R.; Azrag, E.; Hailu, T.; Horner, J.; VanArsdale, P. [Water for People, Denver, CO (United States)

1997-03-01T23:59:59.000Z

148

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Open Access Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on AddThis.com...

149

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on AddThis.com...

150

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Financing to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

151

Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment Rebate - GWP to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

152

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on AddThis.com... More in this section...

153

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

154

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebates to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

155

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

156

Alternative Fuels Data Center: Residential Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Residential Electric Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Google Bookmark Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Delicious Rank Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on AddThis.com...

157

Mongolia Renewable Energy and Rural Electricity Access Project | Open  

Open Energy Info (EERE)

Mongolia Renewable Energy and Rural Electricity Access Project Mongolia Renewable Energy and Rural Electricity Access Project Jump to: navigation, search Name of project Mongolia Renewable Energy and Rural Electricity Access Project Location of project Mongolia Energy Services Lighting, Cooking and water heating, Space heating, Cooling, Earning a living Year initiated 2006 Organization World Bank Website http://documents.worldbank.org Coordinates 46.862496°, 103.846656° References The World Bank[1] The objective of the Renewable Energy and Rural Electricity Access Project is to increase access to electricity and improve reliability of electricity service among the herder population and in off-grid soum centers by: (i) assisting the development of institutions and delivery mechanisms; (ii) facilitating herders' investments in Solar Home Systems (SHSs) and small

158

Policies for Renewable Electricity Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policies for Renewable Electricity Use Policies for Renewable Electricity Use Policies for Renewable Electricity Use October 16, 2013 - 5:12pm Addthis The renewable energy screening should include an assessment of several key utility policies at the facility site. In addition to financial incentives, states and local governments have adopted policies to remove barriers to the use of renewable energy and to facilitate the use of these technologies in a safe and fair manner. These policies are focused on electric-generating technologies and enabling the economic use of on-site power generation at a customer's site. The screening needs to outline the key provisions at the facility site and assess the impact on the use of these technologies at the site under review. Key policies include: Interconnection

159

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Study to someone by E-mail Study to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle Supply Equipment (EVSE) Study

160

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rules to someone by E-mail Rules to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle Supply Equipment (EVSE) Rules

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Renewable Energy Trends in Consumption and Electricity  

U.S. Energy Information Administration (EIA)

ireds112 _fnt1 _fnt2 _fnt3 _fntref1 _fntref2 _fntref3 Total Renewable Total Biomass Waste Landfill Gas Geothermal Hydroelectric Conventional Solar Thermal/PV

162

Presentation to EAC: Renewable Electricity Futures Activities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Office of Electricity Delivery & Energy Reliability Search form Search Office of Electricity Delivery & Energy Reliability Services Electricity...

163

California's Summer 2004 Electricity Supply and Demand Outlook  

E-Print Network (OSTI)

transmission or system-wide electricity failures will occur; and, · No significant gaming (manipulationCALIFORNIA ENERGY COMMISSION California's Summer 2004 Electricity Supply and Demand Outlook Ashuckian, Manager Electricity Analysis Office Terrence O'Brien, Deputy Director Systems Assessment

164

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Digg Find More places to share Alternative Fuels Data Center: Electric

165

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Digg Find More places to share Alternative Fuels Data Center: Electric

166

Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Wind Maximum Rebate Payment limited to 25% of customers monthly kWh usage Program Info State Iowa Program Type Performance-Based Incentive Rebate Amount $0.20/kWh Provider Farmers Electric Cooperative Farmers Electric Cooperative offers a production incentive to members that install qualifying wind and solar electricity generating systems. Qualifying grid-tied solar and wind energy systems are eligible for a $0.20 per kilowatt-hour (kWh) production incentive for up to 10 years for energy production that offsets up to 25% of monthly energy usage.

167

Electricity, Renewables and Climate Change Draft Final Report  

E-Print Network (OSTI)

the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion. They have not necessarily undergone formal peer review or editorial treatment. Electricity, Renewables and Climate Change Karen Palmer and Dallas Burtraw The electricity sector is a major source of carbon dioxide emissions that contribute to global climate change. Switching from fossil fuels to renewable fuels such as geothermal, biomass or wind would help to reduce carbon emissions from electricity generation. This research analyzes the costs and carbon emission consequences of three policies to promote the use of renewables to generate electricity: (1) a renewable portfolio standard (RPS) set at various levels between 5 and 20%, (2) a renewable energy production credit (REPC) in the form of a tax credit for wind and biomass and (3) a climate policy, which allocates carbon emission allowances to electricity generators, including renewables, on the basis of electricity generation. We find that the RPS raises electricity prices, lowers total generation, reduces gas-fired generation and lowers carbon emissions, with the size of these effects growing in the stringency of the portfolio standard. The regional effects of the RPS depend on the stringency of the policy. The REPC policy produces a large increase in renewables generation, but also produces a lower electricity price, which limits its effectiveness in reducing carbon emissions. The RPS policy appears to be more cost-effective than the REPC with respect to achieving both an increase in renewables generation and a drop in carbon emissions. However, depending on how emission allowances are allocated, a climate policy can be cost-effective at achieving reductions in carbon emissions and promoting renewables.

Karen Palmer; Dallas Burtraw

2004-01-01T23:59:59.000Z

168

Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cumberland Valley Electric Cooperative - Energy Efficiency and Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation: $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Insulation: $20 for every 1000 BTU offset Geothermal Heat Pump: $100 Provider Cumberland Valley Electric Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps,

169

Presentation to EAC: Renewable Electricity Futures Activities & Status, October 29, 2010  

Energy.gov (U.S. Department of Energy (DOE))

Presentation to the Electricity Advisory Committee, October 29, 2010,on Renewable Electricity Futures Activities & Status. The presentation provides a high-level overview of the Renewable...

170

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Digg

171

Nuclear-renewables energy system for hydrogen and electricity production  

E-Print Network (OSTI)

Climate change concerns and expensive oil call for a different mix of energy technologies. Nuclear and renewables attract attention because of their ability to produce electricity while cutting carbon emissions. However ...

Haratyk, Geoffrey

2011-01-01T23:59:59.000Z

172

Evaluating Policies to Increase Electricity Generation from Renewable Energy  

E-Print Network (OSTI)

Building on a review of experience in the United States and the European Union, this article advances four main propositions concerning policies aimed at increasing electricity generation from renewable energy. First, who ...

Schmalensee, Richard

173

Transmission Pricing Issues for Electricity Generation From Renewable Resources  

Reports and Publications (EIA)

This article discusses how the resolution of transmission pricing issues which have arisen under the Federal Energy Regulatory Commission's (FERC) open access environment may affect the prospects for renewable-based electricity.

Information Center

1999-02-01T23:59:59.000Z

174

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

Vehicles on Regional Power Generation, ORNL/TM-2007/150, Oakincrease renewable power generation, and reduce greenhouserecharging or renewable power generation, and the technical

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

175

La Plata Electric Association - Renewable Generation Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

La Plata Electric Association - Renewable Generation Rebate Program La Plata Electric Association - Renewable Generation Rebate Program La Plata Electric Association - Renewable Generation Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Wind Maximum Rebate PV 10 kW or smaller: $4,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount PV 10 kW-DC or smaller: Upfront incentive of $0.40 per watt DC PV greater than 10 kW-DC: Performance-based incentive of $44.91/MWh ($0.04491/kWh) paid every 6 months for 10 years Provider La Plata Electric Association La Plata Electric Association (LPEA) offers a one-time rebate, not to exceed the cost of the system, to residential and small commercial customers who install a photovoltaic (PV), wind or hydropower facility. To

176

Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

DOE Green Energy (OSTI)

To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

2005-09-01T23:59:59.000Z

177

The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios  

E-Print Network (OSTI)

Impact of a 15-Percent Renewable Portfolio Standard, EnergyAlternatives for Competitive Renewable Energy Zones inU.S. Electric Supply, National Renewable Energy Laboratory.

Nicolosi, Marco

2011-01-01T23:59:59.000Z

178

The potential impact of renewable energy deployment on natural gas prices in New England  

E-Print Network (OSTI)

The Potential Impact of Renewable Energy Deployment onand in New England. Renewable energy (RE) technologies cangeneration with fixed-price renewable electricity supply. In

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

179

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

emissions rate from natural gas supply that occurs upstreamassociated with natural gas supply to the power plant weresuggest natural gas-fired power plants will supply

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

180

Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Bulk Electric Power Systems: Bulk Electric Power Systems: Operations and Transmission Planning Volume 4 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Role of Renewable Energy in Sustainable Electricity Generation Portfolios  

Science Conference Proceedings (OSTI)

The future electric power system is likely to use far more renewable energy, including biomass, geothermal, small hydro, and intermittent renewable resources such as wind and solar power, than today (3.4% of U.S. primary energy and 2.3% of electricity during 2004, U.S. Energy Information Agency). Exogenous factors such as global climate change and high fossil fuel prices are leading policymakers and energy companies to seek more sustainable energy futures. But how much can renewable energy contribute? Th...

2006-03-30T23:59:59.000Z

182

Enabling Renewable Energy and the Future Grid with Advanced Electricity Storage  

DOE Green Energy (OSTI)

Environmental concerns about using fossil fuels and their resource constrains, along with that on energy security, have spurred great interests in generating electrical energy from renewable sources such as wind and solar. The variable and stochastic nature of renewable sources however makes solar and wind power difficult to manage, especially at high levels of penetration. To effectively use the intermittent renewable energy and enable its delivery demand electrical energy storage (EES) that can also improve the reliability, stability, and efficiency of the electrical grid, which is expected to support plug-in electrical vehicles; enable real-time, two-way communication to balance demand and supply. While EES has gained wide attention for hybrid and electrical vehicle (e.g. plug-in-hybrid electrical) needs, public awareness and understanding of the critical challenges in energy storage for renewable integration and the future grid is relatively lacking. This paper examines the benefits and challenges of EES, in particular electrochemical storage or battery technologies, and discusses the fundamental principles, economics, and feasibility of the storage technologies. It intends to provide an understanding of the needs and challenges of electrical storage technologies for the stationary applications and offer general directions of research and development to the materials community.

Yang, Zhenguo; Liu, Jun; Baskaran, Suresh; Imhoff, Carl H.; Holladay, Jamelyn D.

2010-08-06T23:59:59.000Z

183

Renewables in Global Energy Supply | Open Energy Information  

Open Energy Info (EERE)

in Global Energy Supply AgencyCompany Organization: International Energy Agency Sector: Energy Focus Area: Biomass, Geothermal, Solar, Wind, Hydrogen Website: www.iea.orgpapers...

184

Role of Energy Storage with Renewable Electricity Generation  

DOE Green Energy (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-01-01T23:59:59.000Z

185

Building Bio-based Supply Chains: Theoretical Perspectives on Innovative Contract Design  

E-Print Network (OSTI)

supply chain for renewable energy production, this frameworkof biomass production for renewable energy productsmayenergy production, primarily for co- firing electricity generation facilities. 1 State renewable

Endres, Jody M.; Endres, A. Bryan; Stoller, Jeremy J.

2013-01-01T23:59:59.000Z

186

Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec...  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 120V EVSE Features Low and High Current Settings Integrated Flashlight Auto-restart EVSE...

187

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's (DOE) Vehicle Technologies Office (VTO) to...

188

Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment  

NLE Websites -- All DOE Office Websites (Extended Search)

pROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment EVSE Features LED status light EVSE Specifications Grid connection Hardwired Connector type J1772 Test...

189

Electric Vehicle Supply Equipment (EVSE) Test Report: ChargePoint  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOgIES PROgRAM Electric Vehicle Supply Equipment (EVSE) Test Report: ChargePoint EVSE Features WiFi, cellular communications Automated meter infrastructure Vacuum florescent...

190

The integration of renewable energy sources into electric power transmission systems  

DOE Green Energy (OSTI)

Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L. [Oak Ridge National Lab., TN (United States); Lawler, J.S. [Univ. of Tennessee, Knoxville, TN (United States)

1995-07-01T23:59:59.000Z

191

Comparative Analysis of Three Proposed Federal Renewable Electricity Standards  

SciTech Connect

This paper analyzes potential impacts of proposed national renewable electricity standard (RES) legislation. An RES is a mandate requiring certain electricity retailers to provide a minimum share of their electricity sales from qualifying renewable power generation. The analysis focuses on draft bills introduced individually by Senator Jeff Bingaman and Representative Edward Markey, and jointly by Representative Henry Waxman and Markey. The analysis uses NREL's Regional Energy Deployment System (ReEDS) model to evaluate the impacts of the proposed RES requirements on the U.S. energy sector in four scenarios.

Sullivan, P.; Logan, J.; Bird, L.; Short, W.

2009-05-01T23:59:59.000Z

192

Comparative Analysis of Three Proposed Federal Renewable Electricity Standards  

SciTech Connect

This paper analyzes potential impacts of proposed national renewable electricity standard (RES) legislation. An RES is a mandate requiring certain electricity retailers to provide a minimum share of their electricity sales from qualifying renewable power generation. The analysis focuses on draft bills introduced individually by Senator Jeff Bingaman and Representative Edward Markey, and jointly by Representative Henry Waxman and Markey. The analysis uses NREL's Regional Energy Deployment System (ReEDS) model to evaluate the impacts of the proposed RES requirements on the U.S. energy sector in four scenarios.

Sullivan, P.; Logan, J.; Bird, L.; Short, W.

2009-05-01T23:59:59.000Z

193

Renewable Electricity Production Tax Credit (PTC) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Electricity Production Tax Credit (PTC) Renewable Electricity Production Tax Credit (PTC) < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Water Home Weatherization Wind Program Info Program Type Corporate Tax Credit Rebate Amount 2.3¢/kWh for wind, geothermal, closed-loop biomass; 1.1¢/kWh for other eligible technologies. Generally applies to first 10 years of operation. Provider U.S. Internal Revenue Service '''''Note: The American Recovery and Reinvestment Act of 2009 allows taxpayers eligible for the federal renewable electricity production tax credit (PTC) to take the federal business energy investment tax credit (ITC) instead of taking the PTC for new installations.'''''

194

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

24. Renewable and nuclear power plant cost characteristicsnuclear power plantsgeothermal, and nuclear power plants are represented as

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

195

Non-powered Dams: An untapped source of renewable electricity in the USA  

Science Conference Proceedings (OSTI)

Hydropower has been a source of clean, renewable electricity in the USA for more than 100 years. Today, approximately 2500 US dams provide 78 GW of conventional and 22 GW of pumped-storage hydropower. In contrast, another approximately 80 000 dams in the USA do not include hydraulic turbine equipment and provide non-energy related services, such as flood control, water supply, navigation, and recreation.

Hadjerioua, Boualem [ORNL; Kao, Shih-Chieh [ORNL; Wei, Yaxing [ORNL; Battey, Hoyt [Department of Energy; Smith, Brennan T [ORNL

2012-01-01T23:59:59.000Z

196

Renewable Energy Consumption for Electricity Generation by Energy Use  

Open Energy Info (EERE)

Electricity Generation by Energy Use Electricity Generation by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by energy source (e.g. biomass, geothermal, etc.) This data was compiled and published by the Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords biomass Commercial Electric Power Electricity Generation geothermal Industrial PV Renewable Energy Consumption solar wind Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Elec_.Gen_EIA.Aug_.2010.xls (xls, 19.5 KiB) Quality Metrics Level of Review Some Review

197

Highly Efficient Electric Motor Systems - National Renewable ...  

Electric Motor Systems ... savings. Conical hubs Matching axial field poles. Issued Patents on Motor Geometry. 7 NREL Energy Forum November 2009 www.novatorque.com.

198

Comparative Analysis of Three Proposed Federal Renewable Electricity Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

77 77 May 2009 Comparative Analysis of Three Proposed Federal Renewable Electricity Standards Patrick Sullivan, Jeffrey Logan, Lori Bird, and Walter Short National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-45877 May 2009 Comparative Analysis of Three Proposed Federal Renewable Electricity Standards Patrick Sullivan, Jeffrey Logan, Lori Bird, and Walter Short Prepared under Task No. SAO7.9C50 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

199

The Role of Energy Storage with Renewable Electricity Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

87 87 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-47187 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan Prepared under Task No. WER8.5005 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

200

Development of mobile workforce management system for electricity supply industries  

Science Conference Proceedings (OSTI)

This research paper presents the features of a proposed Mobile Workforce Management System (MWMS) that will be used for the Electricity Supply Industries (ESI). The paper wraps up the types of related works that has been executed; the study on problems ... Keywords: electricity supply industry, mobile workforce management system

Faridah Hani Mohamed Salleh; Zaihisma Che Cob; Mohana Shanmugam; Siti Salbiah Mohamed Shariff

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Role of Renewable Energy in Sustainable Electricity Generation Portfolios  

Science Conference Proceedings (OSTI)

This Technical Update describes the use of energy system and capacity planning models and alternative scenarios of the future to evaluate the potential role of renewable energy in a sustainable electricity generation portfolio. Base case runs of the three models considered in this study all forecast growing contributions from renewables over a range of scenarios, but predictions vary widely due to differing modeling approaches and differing assumptions about future market, policy, technology, and other c...

2007-01-31T23:59:59.000Z

202

Willingness to pay for electricity from renewable energy  

SciTech Connect

National polls reveal widespread public preference and willingness to pay more for renewables. ``Green pricing`` programs attempt to capitalize on these preferences and on an expressed willingness to pay more for environmental protection. This report explores the utility option of green pricing as a method of aggregating public preferences for renewables. It summarizes national data on public preferences for renewables and willingness to pay (WTP) for electricity from renewable energy sources; examines utility market studies on WTP for renewables and green-pricing program features; critiques utility market research on green pricing; and discusses experiences with selected green-pricing programs. The report draws inferences for program design and future research. Given the limited experiences with the programs so far, the evidence suggests that programs in which customers pay a monthly premium for a specific renewable electricity product elicit a higher monthly financial commitment per customer than programs asking for contributions to unspecified future actions involving renewables. The experience with green-pricing programs is summarized and factors likely to affect customer participation are identified.

Farhar, B.C.; Houston, A.H.

1996-09-01T23:59:59.000Z

203

Supply Curves for Rooftop Solar PV-Generated Electricity for the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

A0-44073 A0-44073 November 2008 Supply Curves for Rooftop Solar PV-Generated Electricity for the United States Paul Denholm and Robert Margolis Supply Curves for Rooftop Solar PV-Generated Electricity for the United States Paul Denholm and Robert Margolis Prepared under Task No. PVB7.6301 Technical Report NREL/TP-6A0-44073 November 2008 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

204

Table 10.2c Renewable Energy Consumption: Electric Power Sector ...  

U.S. Energy Information Administration (EIA)

Table 10.2c Renewable Energy Consumption: Electric Power Sector, 1949-2011 ... Through 2000, also includes non-renewable waste (municipal solid waste from

205

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

Statewide California Electricity Demand. [accessed June 22,fuel efficiency and electricity demand assumptions used into added vehicle electricity demand in the BAU (no IGCC)

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

206

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

CEC (2009) Statewide Electricity Rates by Utility, Class andrates if the marginal electricity rate from the LCFS isestimated marginal electricity emissions rate in California

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

207

Response to several FOIA requests - Renewable Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOIA requests - Renewable Energy Response to several FOIA requests - Renewable Energy, Electricity Price and Supply Pattern, nepdg50015250.pdf Response to several FOIA...

208

Energy storage sizing for improved power supply availability during extreme events of a microgrid with renewable energy sources.  

E-Print Network (OSTI)

??A new Markov chain based energy storage model to evaluate the power supply availability of microgrids with renewable energy generation for critical loads is proposed. (more)

Song, Junseok

2012-01-01T23:59:59.000Z

209

Is It Going to Happen? Regulatory Change and Renewable Electricity  

E-Print Network (OSTI)

to unilaterally alter the terms of a voluntary agreement to the disadvantage of wind turbine owners. In contrast of capacity (kW) or the amount of renewable electricity (kWh) added by the policy. One would also argue of how this problem has affected the wind policy in Denmark see Agnolucci (2004a). 2 This problem

Watson, Andrew

210

Derwent cogeneration renews steam supply to Courtauld`s  

SciTech Connect

A 220 MW gas turbine CHP scheme replaces coal-fired boilers at Courtauld`s power station, near Derby, England. It provides steam both to processes and to drive the three existing back-pressure turbines. The scheme that has evolved comprises four MS6001B gas turbines, with fired dual-pressure heat recovery boilers and a 58 MW condensing steam turbine. The plant is of outdoor construction, sited next to the existing Spondon H. With the original coal-fired boilers now decommissioned, the three back-pressure turbines bridge across the HP and LP steam outputs of the new plant. The plant is designed for dual-fuel operation, but in practice will burn only gas. The plant was completed in March this year and was available as an emergency steam supply to cover outages in the coal-fired plant. 6 figs.

Jeffs, E.

1995-05-01T23:59:59.000Z

211

Electric Vehicle Supply Equipment (EVSE) Test Report: Blink  

NLE Websites -- All DOE Office Websites (Extended Search)

1,500 2,000 2,500 3,000 Time (s) Power (Watts) Charge Start EVSE Power In EVSE Power Out Electric Vehicle Supply Equipment (EVSE) Test Report: Blink EVSE Tested Blink Residential...

212

Electric Vehicle Supply Equipment (EVSE) Test Report: SPX  

NLE Websites -- All DOE Office Websites (Extended Search)

1,500 2,000 2,500 3,000 Time (s) Power (Watts) Charge Start EVSE Power In EVSE Power Out Electric Vehicle Supply Equipment (EVSE) Test Report: SPX EVSE Tested SPX Residential...

213

Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec...  

NLE Websites -- All DOE Office Websites (Extended Search)

VEhICLE TEChNOLOgIES pROgRAm Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 240V EVSE Features Integrated Flashlight 25ft of coiled cable Auto-reset EVSE...

214

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

active natural gas generators and imports will decline, inadditional system imports and natural gas-fired generation66%) Natural gas (22%) Renewable (1.4%) DSW imports 3 Coal (

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

215

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

Designing Markets for Electricity, Wiley-IEEE Press. CEC (in Major Drivers in U.S. Electricity Markets, NREL/CP-620-and fuel efficiency and electricity demand assumptions used

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

216

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

Impacts of Plug-in Hybrid Electric Vehicles on RegionalAnalysis of Plug-in Hybrid Electric Vehicles, ANL/ESD/09-2,of Plug-In Hybrid Electric Vehicles, Volume 2: United States

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

217

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

of Plug-in Hybrid Electric Vehicles on Regional PowerTransmission Area, in Electric Vehicle Symposium, Anaheim,of Plug-in Hybrid Electric Vehicles, ANL/ESD/09-2, Argonne

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

218

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

s Colorado service area, system electricity requirementsColorado from the Southwest. ) The definitions of the three regions used by the Western Electricity

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

219

Financial Impact of Energy Efficiency under a Federal Renewable Electricity  

Open Energy Info (EERE)

Financial Impact of Energy Efficiency under a Federal Renewable Electricity Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas 'Super-Utility' Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "Super-Utility" Focus Area: Energy Efficiency Topics: Potentials & Scenarios Website: eetd.lbl.gov/ea/ems/reports/lbnl-2924e.pdf Equivalent URI: cleanenergysolutions.org/content/financial-impact-energy-efficiency-un Language: English Policies: Regulations Regulations: "Utility/Electricity Service Costs,Mandates/Targets" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

220

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Southwest Southwest Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 116, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Southwest Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Southwest (xls, 119.1 KiB) Quality Metrics Level of Review Peer Reviewed

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Northwest Power Pool Area Northwest Power Pool Area Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 118, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. This dataset contains data for the northwest power pool area of the U.S. Western Electricity Coordinating Council (WECC). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Northwest Power Pool Area Renewable Energy Generation WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Northwest Power Pool Area - Reference (xls, 119.3 KiB)

222

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

California California Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 117, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO California EIA Renewable Energy Generation Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / California (xls, 119.2 KiB) Quality Metrics Level of Review Peer Reviewed

223

Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"  

E-Print Network (OSTI)

Impacts of a 25-Percent Renewable Electricity Standard asand lower costs: Combining renewable energy and energyand I. Horowitz. 2009. Renewable portfolio standards and

Cappers, Peter

2010-01-01T23:59:59.000Z

224

El Paso Electric Company - Small and Medium System Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

El Paso Electric Company - Small and Medium System Renewable Energy El Paso Electric Company - Small and Medium System Renewable Energy Certificate Purchase Program El Paso Electric Company - Small and Medium System Renewable Energy Certificate Purchase Program < Back Eligibility Commercial Fed. Government Industrial Nonprofit Residential State Government Savings Category Energy Sources Buying & Making Electricity Solar Wind Program Info Start Date 3/1/2009 State New Mexico Program Type Performance-Based Incentive Rebate Amount Systems 10 kW or less: PV: $0.04/kWh for RECs produced for a period of 8 years Wind: $0.03 /kWh for RECs produced for a period of 8 years Systems greater than 10 kW and up to 100 kW: PV: $0.04/kWh for RECs produced for a period of 8 years Wind: $0.02 /kWh for RECs produced for a period of 8 years Systems greater than 100 kW and up to 1,000 kW:

225

Electricity Supply Board Smart Grid Host Site Progress Report  

Science Conference Proceedings (OSTI)

The Electricity Supply Board (ESB) Networks Smart Grid Demonstration Project Host Site is part of a five-year collaborative initiative with 19 utility members. This project will integrate distribution and transmission level load management and embedded generation with customer-level storage by means of electric vehicle (EV) batteries, distribution-gridconnected wind farms, and customer demand response from smart meters.

2011-06-28T23:59:59.000Z

226

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

Wind power planning: assessing long-term costs and benefits, Energy Policy,wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation, Energy Policy,wind or solar power will singularly provide a majority of renewable generation in a future with energy policies

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

227

Energy Storage: The Key to a Reliable, Clean Electricity Supply |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage: The Key to a Reliable, Clean Electricity Supply Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program is investing in new technologies that make storing energy cheaper and more efficient. Energy storage isn't just for AA batteries any more. Thanks to investments from the Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity

228

Energy Storage: The Key to a Reliable, Clean Electricity Supply |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program is investing in new technologies that make storing energy cheaper and more efficient. Energy storage isn't just for AA batteries any more. Thanks to investments from the Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity

229

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

the availability of hydro power has the greatest impact oncontribute to a redesigned hydro power supply system in thein 2050 (like all non-hydro power plants in this analysis,

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

230

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Rockies Rockies Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 119, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. The dataset contains data for the Rockies region of WECC. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Rockies WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Rockies- Reference Case (xls, 119 KiB)

231

Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options  

SciTech Connect

A net-zero energy building (NZEB) is a residential or commercial building with greatly reduced energy needs. In such a building, efficiency gains have been made such that the balance of energy needs can be supplied with renewable energy technologies. Past work has developed a common NZEB definition system, consisting of four well-documented definitions, to improve the understanding of what net-zero energy means. For this paper, we created a classification system for NZEBs based on the renewable sources a building uses.

Pless, S.; Torcellini, P.

2010-06-01T23:59:59.000Z

232

Distributed Generation and Renewable Energy in the Electric Cooperative Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation and Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero Cooperative Research Network (CRN) National Rural Electric Cooperative Association September 22, 2004 Co-op Basics  Customer owned  Serve 35 million people in 47 states  75 percent of nation's area  2.3 million miles of line is close to half of nation's total  Growth rate twice that of IOU Electrics  Six customers per line-mile vs 33 for IOU  Co-ops view DP as a needed solution; not as a "problem" Broad Range of Technologies Chugach EA 1-MW Fuel Cell Installation Post Office in Anchorage, AK Chugach EA Microturbine Demo Unit at Alaska Village Electric Co-op CRN Transportable 200kW Fuel Cell at Delta- Montrose EA in Durango, CO Plug Power Fuel Cell at Fort Jackson, SC

233

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

availability, operational limits, ramp rates, and start-up costs Reliability requirements Transmission andavailability, electricity demand, and dispatches power plants based on operating costs and transmission

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

234

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

determine marginal generation sources. Although electricity16. Validation of generation by energy source in EDGE-CA (Validation of generation by energy source in EDGE-CA (TWh).

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

235

Electric vehicle system for charging and supplying electrical ...  

A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft.

236

Intelligence in Electricity Networks for Embedding Renewables and Distributed Generation  

E-Print Network (OSTI)

Abstract Over the course of the 20 th century, the electrical power systems of industrialized economies have become one of the most complex systems created by mankind. In the same period, electricity made a transition from a novelty, to a convenience, to an advantage, and finally to an absolute necessity. World-wide electricity use has been ever-growing. The electricity infrastructure consists of two highlyinterrelated and complex subsystems for commodity trade and physical delivery. To ensure the infrastructure is up and running in the first place, the increasing electricity demand poses a serious threat. Additionally, there are a number of other trends that are forcing a change in infrastructure management. Firstly, there is a shift to intermittent sources: a larger share of renewables in the energy mix means a higher influence of weather patterns on generation. At the same time, introducing more combined heat and power generation (CHP) couples electricity production to heat demand patterns. Secondly, the location of electricity generation relative to the load centers is changing. Large-scale generation from wind is migrating towards and into the seas and oceans, away from the locations of high electricity demand. On

J. K. Kok; M. J. J. Scheepers; I. G. Kamphuis; J. K. Kok; M. J. J. Scheepers; I. G. Kamphuis

2010-01-01T23:59:59.000Z

237

renewable sources of power. Demand for fossil fuels surely will overrun supply s  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And they will be forced to embrace energy efficiencies - those that are within our reach today, and those that will be developed tomorrow. Precisely when they come lo grips with that reality - this year, 10 years from now, or 20 years from now - will determine bow smooth the transition will be for consumers and industry alike.

238

Modelling renewable electric resources: A case study of wind  

DOE Green Energy (OSTI)

The central issue facing renewables in the integrated resource planning process is the appropriate assessment of the value of renewables to utility systems. This includes their impact on both energy and capacity costs (avoided costs), and on emissions and environmental impacts, taking account of the reliability, system characteristics, interactions (in dispatch), seasonality, and other characteristics and costs of the technologies. These are system-specific considerations whose relationships may have some generic implications. In this report, we focus on the reliability contribution of wind electric generating systems, measured as the amount of fossil capacity they can displace while meeting the system reliability criterion. We examine this issue for a case study system at different wind characteristics and penetration, for different years, with different system characteristics, and with different modelling techniques. In an accompanying analysis we also examine the economics of wind electric generation, as well as its emissions and social costs, for the case study system. This report was undertaken for the {open_quotes}Innovative IRP{close_quotes} program of the U.S. Department of Energy, and is based on work by both Union of Concerned Scientists (UCS) and Tellus Institute, including America`s Energy Choices and the UCS Midwest Renewables Project.

Bernow, S.; Biewald, B.; Hall, J.; Singh, D. [Tellus Institute, Boston, MA (United States)

1994-07-01T23:59:59.000Z

239

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

Gas Emissions from Plug-in Hybrid Vehicles: Implications forGas Emissions from Plug-in Hybrid Vehicles: Implications forassessment of plug-in hybrid vehicles on electric utilities

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

240

Easing the Natural Gas Crisis: Reducing Natural Gas Prices Through Electricity Supply Diversification -- Testimony  

E-Print Network (OSTI)

Natural Gas Prices Through Electricity Supply Diversification Testimony Prepared for a Hearing on Power Generation

Wiser, Ryan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout … Renewable Electricity Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 30, 2013 April 30, 2013 Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Renewable Electricity Generation 2 EERE's National Mission To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 3 Why Clean Energy Matters To America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation * Enhancing energy security by reducing our dependence on foreign oil and gas * Saving money by cutting energy costs for American families and businesses * Protecting health and safety by mitigating the impact

242

An Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of Hydrogen An Analysis of Hydrogen Production from Renewable Electricity Sources Preprint J.I. Levene, M.K. Mann, R. Margolis, and A. Milbrandt National Renewable Energy Laboratory Prepared for ISES 2005 Solar World Congress Orlando, Florida August 6-12, 2005 Conference Paper NREL/CP-560-37612 September 2005 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

243

Smart Electric Vehicle Supply Equipment Demand Response Pilot  

Science Conference Proceedings (OSTI)

This report discusses a unique pilot project to evaluate electric vehicle supply equipment (EVSE) capable of demand response (DR) and its integration into the utility smart metering infrastructure.BackgroundThere is an immediate need to research grid interface compatibility of public charging apparatus and to develop requirements and reference design blueprints for the entire plug-in electric vehicle (PEV) charging infrastructurefrom the vehicle ...

2012-12-31T23:59:59.000Z

244

Electric Vehicle Supply Equipment (EVSE) Test and Evaluation  

Science Conference Proceedings (OSTI)

Deployment of electric vehicle supply equipment (EVSE) to support the electrification of transportation continues worldwide. In the United States alone, thousands of EVSEs have been deployed over the last year. EVSE hardware is designed to safely provide AC or DC power to plug-in electric vehicles in both commercial and residential spaces.More than 40 vendors have been identified that manufacture EVSE products for the North American market.EPRI has performed laboratory evaluations for a ...

2012-12-31T23:59:59.000Z

245

Modeling EU electricity market competition using the residual supply index  

Science Conference Proceedings (OSTI)

An econometric approach to related hourly Residual Supply Index to price-cost margins in the major EU electricity generation markets suggests that market structure, as measured by the RSI, is a significant explanatory factor for markups, even when scarcity and other explanatory variables are included. (author)

Swinand, Gregory; Scully, Derek; Ffoulkes, Stuart; Kessler, Brian

2010-11-15T23:59:59.000Z

246

A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption  

E-Print Network (OSTI)

and less costly than older coal-fired power plants. In addition, technological advances in electricity, supply, trans- mission, and consumption is developed. The model is sufficiently general to handle the economics of power production. For example, new gas-fired combined cycle power plants are more effi- cient

Nagurney, Anna

247

Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Executive Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West Executive Summary David J. Hurlbut, Joyce McLaren, and Rachel Gelman National Renewable Energy Laboratory Prepared under Task No. AROE.2000 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-6A20-57830 August 2013 Contract No. DE-AC36-08GO28308

248

Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West  

NLE Websites -- All DOE Office Websites (Extended Search)

(This page intentionally left blank) (This page intentionally left blank) National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West David J. Hurlbut, Joyce McLaren, and Rachel Gelman National Renewable Energy Laboratory Prepared under Task No. AROE.2000 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-6A20-57830 August 2013 Contract No. DE-AC36-08GO28308

249

Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy,  

E-Print Network (OSTI)

of Energy Efficiency, Renewable Energy, and Small-Scale Cogeneration from electricity generation. Renewable energy, energy efficiency, and energy, where performance is measured relative to three objectives: energy production

250

Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel Market  

E-Print Network (OSTI)

billion annual sales, 40% of domestic primary energy (Energy Information Administration (2000, 2005 An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England Zugang Liu and Anna Nagurney§ Isenberg School of Management University

Nagurney, Anna

251

Introduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network (OSTI)

primary energy (Energy Information Administration (2000, 2005)) Deregulation Wholesale market Bilateral Conclusions An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England Zugang Liu and Anna Nagurney§ Penn State University Hazleton § John F

Nagurney, Anna

252

Introduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network (OSTI)

of net assets, $220 billion annual sales, 40% of domestic primary energy (Energy Information Conclusions An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England Forthcoming in Naval Research Logistics Zugang Liu and Anna Nagurney

Nagurney, Anna

253

Introduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network (OSTI)

of net assets, $220 billion annual sales, 40% of domestic primary energy (Energy Information Conclusions An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England Zugang Liu and Anna Nagurney§ Isenberg School of Management University

Nagurney, Anna

254

Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network (OSTI)

primary energy (Energy Information Administration (2000, 2005)) Deregulation Wholesale market Bilateral An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England Zugang Liu Isenberg School of Management University of Massachusetts at Amherst

Nagurney, Anna

255

The Easy Way to Use Renewables: Buy Clean Electricity | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Easy Way to Use Renewables: Buy Clean Electricity The Easy Way to Use Renewables: Buy Clean Electricity The Easy Way to Use Renewables: Buy Clean Electricity November 17, 2009 - 8:45pm Addthis John Lippert Clean air means a lot to me. My wife and I had a small solar electric system installed on the roof of our house that produces about 2% of the annual electricity consumed by our all-electric house. We don't have a large south-facing roof, so we couldn't easily install a larger system. But what about the remaining 98% electricity that we need to buy? About half a dozen years ago we signed up for 100% wind electricity after our state deregulated its electricity industry. We didn't have much of a choice to purchase "green" electricity. Only two utility companies offered electricity produced by renewable energy to residents of Maryland where I

256

Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector  

Science Conference Proceedings (OSTI)

The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary, as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute electric power in the state from 10 Colorado generation development areas (GDAs) that have the capacity for more than 96,000 megawatts (MW) of wind generation and 26,000 MW of solar generation. The SB07-91 Report recognized that only a small fraction of these large capacity opportunities are destined to be developed. As a rough comparison, 13,964 MW of installed nameplate capacity was available in Colorado in 2008. The legislature did not direct the SB07-91 task force to examine several issues that are addressed in the REDI report. These issues include topics such as transmission, regulation, wildlife, land use, permitting, electricity demand, and the roles that different combinations of supply-side resources, demand-side resources, and transmission can play to meet a CO{sub 2} emissions reduction goal. This report, which expands upon research from a wide array of sources, serves as a sequel to the SB07-91 Report. Reports and research on renewable energy and transmission abound. This report builds on the work of many, including professionals who have dedicated their careers to these topics. A bibliography of information resources is provided, along with many citations to the work of others. The REDI Project was designed to present baseline information regarding the current status of Colorado's generation and transmission infrastructure. The report discusses proposals to expand the infrastructure, and identifies opportunities to make further improvements in the state's regulatory and policy environment. The report offers a variety of options for consideration as Colorado seeks pathways to meet the 20 x 20 goal. The primary goal of the report is to foster broader discussion regarding how the 20 x 20 goal interacts with electric resource portfolio choices, particularly the expansion of utility-scale renewable energy and the high-voltage transmission infrastructure. The report also is intended to serve as a resource when identifying opportunities stemming from the American Recovery and Reinvestment Act of 2009.

None

2009-12-31T23:59:59.000Z

257

Renewable energy for domestic electricity production and prediction of short-time electric consumption  

Science Conference Proceedings (OSTI)

Modern interest in renewable energy development is linked to concerns about exhaustion of fossil fuels and environmental, social and political risks of extensive use of fossil fuels and nuclear energy. It is a form of energy development with a focus ... Keywords: Kohonen Self-Organizing Maps, Photovoltaic Solar Cells, Short-Time Electric Consumption, Time Series, Windmills

Stphane Grieu; Frdrik Thiery; Adama Traor; Monique Polit

2007-06-01T23:59:59.000Z

258

A Plug-In Electric Vehicle Simulator for Electric Vehicles Supply Equipment Evaluation  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is developing a portable plug-in electric vehicle simulator to support laboratory testing and evaluation of electric vehicle supply equipment. The device implements the signaling required in the Society of Automotive Engineers J1772 Recommended Practice, SAE Electric Vehicle Conductive Charge Coupler, and provides connection of power quality monitoring and simulated load equipment. The complete unit is self contained and battery powered for ease of field use, ...

2010-12-22T23:59:59.000Z

259

Electricity for Millions: Developing Renewable Energy in China (Revised)  

DOE Green Energy (OSTI)

This two page fact sheet describes NREL's work developing renewable energy in China. Renewable focus areas include rural energy development, wind energy development, geothermal energy development, renewable energy business development and policy and planning.

Not Available

2006-04-01T23:59:59.000Z

260

Electricity for Millions: Developing Renewable Energy in China (Revised)  

SciTech Connect

This two page fact sheet describes NREL's work developing renewable energy in China. Renewable focus areas include rural energy development, wind energy development, geothermal energy development, renewable energy business development and policy and planning.

2006-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A distributed renewable energy system meeting 100% of electricity demand in Humboldt County: a feasibility study.  

E-Print Network (OSTI)

??A model of electricity supply and demand in Humboldt County, California over the course of one year is presented. Wind, oceanwave, solar, and biomass electricity (more)

Ross, Darrell Adam

2009-01-01T23:59:59.000Z

262

Shares of electricity generation from renewable energy sources ...  

U.S. Energy Information Administration (EIA)

Non-hydroelectric renewable generation has increased in many states over the past decade. In 2011, Maine had the highest percentage of non-hydroelectric renewable ...

263

Impacts of Renewable Fuel and Electricity Standards on State Economies (Poster)  

SciTech Connect

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, discusses the impacts of renewable fuel and electricity standards on state economies.

Brown, E.; Cory, K.; Brown, J.; Bird, L.; Sweezey, B.

2006-10-03T23:59:59.000Z

264

Wind Energy and Production of Hydrogen and Electricity -- Opportunities for Renewable Hydrogen: Preprint  

DOE Green Energy (OSTI)

An assessment of options for wind/hydrogen/electricity systems at both central and distributed scales provides insight into opportunities for renewable hydrogen.

Levene, J.; Kroposki, B.; Sverdrup, G.

2006-03-01T23:59:59.000Z

265

Renewable technologies for energy security: institutions and investment in Fiji's electricity sector .  

E-Print Network (OSTI)

??Renewable energy technologies have been advocated in Fiji's electricity sector on the basis that they improve energy security and serve as a risk-mitigation measure against (more)

Dornan, Matthew

2013-01-01T23:59:59.000Z

266

Support for solar power and renewable electricity generation at the U.S. Environmental Protection Agency.  

E-Print Network (OSTI)

?? The United States Environmental Protection Agency (EPA) is poised to play an important role in supporting national plans for renewable electricity generation. As distributed (more)

Krausz, Brian

2009-01-01T23:59:59.000Z

267

Comparing the Risk Profiles of Renewable and Natural Gas Electricity Contracts  

E-Print Network (OSTI)

Comparing the Risk Profiles of Renewable and Natural Gas Electricity Contracts: A Summary.............................................................................20 B. Natural Gas Tolling Contracts.............................................................................24 B. Natural Gas Tolling Contracts

Kammen, Daniel M.

268

Renewables Portfolio Standard Overview  

DOE Green Energy (OSTI)

A Renewables Portfolio Standard (RPS) is a requirement on electric utilities and other electric suppliers to supply a minimum percentage or amount of their load with eligible sources of renewable energy. The RPS has become increasingly popular because of its benefits and the public benefits of renewable energy. A well-designed state RPS can effectively deliver a renewable energy supply and associated benefits, at a low cost or even with consumer savings. This fact sheet provides an overview of an effective RPS design.

Not Available

2005-02-01T23:59:59.000Z

269

Introducing Competition in the French Electricity Supply Industry: The Destabilisation of a Public Hierarchy in an Open Institutional Environment  

E-Print Network (OSTI)

.1 5.4 23. 8.1 22.2 * Railways (SHEM/SNCF) in hydro-production, small producers (minihydro, renewables) and self-producers (co-generation, etc). Source: Ministre de l'Industrie, Statistiques Gaz, Electricit,Charbon, Edition 2000... environment Dominique FINON Institut dEconomie et de Politique de lEnergie*, CNRS and Grenoble University, France ABSTRACT The introduction of market rules in a electricity supply industry characterized by a vertically integrated monopoly...

Finon, Dominique

2004-06-16T23:59:59.000Z

270

Future Electricity Supplies MIT ENGINEERING SYSTEMS SYMPOSIUM (31 Mar 04, pg. 1) FUTURE ELECTRICITY SUPPLIES  

E-Print Network (OSTI)

and Europe have re- energized the debate over aging electricity and other infrastructures. Whether long. To these "common" challenges we must add now infrastructure security and long-term environmental stewardship bulbs, or household appliances. Energy "utilization" efficiency opportunities however offer great

de Weck, Olivier L.

271

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

Acknowledgments SUMMARY Electricity Demand ElectricityAdverse Impacts ELECTRICITY DEMAND . . . .Demand forElectricity Sales Electricity Demand by Major Utility

Benenson, P.

2010-01-01T23:59:59.000Z

272

PV FAQs: How Much Land Will PV Need to Supply Our Electricity?  

DOE Green Energy (OSTI)

This PV FAQ fact sheet answers the question ''How much land will PV need to supply our electricity?'' The answer is that PV could supply our electricity with little visible impact on our landscape.

Not Available

2004-01-01T23:59:59.000Z

273

Smart buildings with electric vehicle interconnection as buffer for local renewables?  

E-Print Network (OSTI)

Smart buildings with electric vehicle interconnection as buffer for local renewables? Michael, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement and partly by NEC Laboratories America Inc. Smart buildings with electric vehicle interconnection as buffer

274

Easing the Natural Gas Crisis: Reducing Natural Gas Prices Through Electricity Supply Diversification -- Testimony  

E-Print Network (OSTI)

Natural Gas Prices Through Electricity Supply Diversification Testimony Prepared for a Hearing on Power Generation Resource Incentives &

Wiser, Ryan

2005-01-01T23:59:59.000Z

275

Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply  

Reports and Publications (EIA)

This report addresses the potential impact of rotating electrical outages on petroleum product and natural gas supply in California.

Information Center

2001-06-01T23:59:59.000Z

276

Importance of Flexible Electricity Supply: Solar Integration Series. 1 of 3 (Brochure)  

DOE Green Energy (OSTI)

The first out of a series of three fact sheets describing the importance of flexible electricity supply.

Not Available

2011-05-01T23:59:59.000Z

277

EIA's Energy in Brief: How much of the world's electricity supply ...  

U.S. Energy Information Administration (EIA)

A feed-in tariff is a financial incentive that encourages the adoption of renewable electricity. ... According to the World and European Wind Energy Associations, ...

278

Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Report and Executive Summary  

SciTech Connect

This study assesses the outlook for utility-scale renewable energy development in the West once states have met their renewable portfolio standard (RPS) requirements. In the West, the last state RPS culminates in 2025, so the analysis uses 2025 as a transition point on the timeline of RE development. Most western states appear to be on track to meet their final requirements, relying primarily on renewable resources located relatively close to the customers being served. What happens next depends on several factors including trends in the supply and price of natural gas, greenhouse gas and other environmental regulations, consumer preferences, technological breakthroughs, and future public policies and regulations. Changes in any one of these factors could make future renewable energy options more or less attractive.

Hurlbut, D. J.; McLaren, J.; Gelman, R.

2013-08-01T23:59:59.000Z

279

202-328-5000 www.rff.orgDesigning Renewable Electricity Policies to Reduce Emissions  

E-Print Network (OSTI)

A variety of renewable electricity policies to promote investment in wind, solar, and other types of renewable generators exist across the United States. The federal renewable energy investment tax credit, the federal renewable energy production tax credit, and state renewable portfolio standards are among the most notable. Whether the benefits of promoting new technology and reducing pollution emissions from the power sector justify these policies costs has been the subject of considerable debate. We argue in this paper that the debate is misguided because it does not consider two important interactions between renewable electricity generators and the rest of the power system. First, the value of electricity from a renewable generators depends on the generation and investment it displaces. Second, a large increase in renewable generation can reduce electricity prices, increasing consumption and emissions from fossil generators, and offsetting some of the environmental benefits of the policies. Two policy conclusions follow. First, existing renewable electricity policies can be redesigned to promote investment in the highest-value generators, which can greatly reduce the cost of achieving a given emissions reduction. Second, subsidies financed out of general tax revenue reduce emissions less than subsidies financed by charges to electricity consumers.

Reduce Emissions; Harrison Fell; Joshua Linn; Clayton Munnings

2012-01-01T23:59:59.000Z

280

Renewable Power Options for Electricity Generation on Kaua'i: Economics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Power Options for Electricity Generation on Kaua'i: Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. 52076.pdf More Documents & Publications Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Proposal to Negotiate, without competitive tendering, the renewal of hte contract for hte supply of natural gas for the heating plant on the Prvessin Site  

E-Print Network (OSTI)

Proposal to Negotiate, without competitive tendering, the renewal of hte contract for hte supply of natural gas for the heating plant on the Prvessin Site

1994-01-01T23:59:59.000Z

282

Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols  

SciTech Connect

Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteriaare genetically engineered to convert the formic acid into liquid fuelin this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLAs electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

2010-07-01T23:59:59.000Z

283

Renewable Generation and Interconnection to the Electrical Grid in Southern California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SOUTHERN CALIFORNIA EDISON® SOUTHERN CALIFORNIA EDISON® SM 1 Federal Utility Partnership Working Group Providence, Rhode Island April 15, 2010 Renewable Generation and Interconnection to the Electrical Grid in Southern California Daniel Tunnicliff, P.E. Manager, Government & Institutions SOUTHERN CALIFORNIA EDISON® SM 2 Overview * SCE Overview * SCE Procurement Objectives * Renewable Procurement * Challenges to Meeting Renewable Goals in California * Interconnection Processes * Lessons Learned SOUTHERN CALIFORNIA EDISON® SM 3 SCE Overview * Large system  13 million residents  4.8 million customer accounts  50,000-square-mile service area * Nation's leader in environmental solutions  Energy efficiency  Renewable energy procurement  Electric transportation  Advanced meters  Smart grid

284

Renewable Energy Technology Characterizations  

Science Conference Proceedings (OSTI)

Renewable energy technologies span the range from developmental to commercially available. Some can make significant contributions now to electricity supply with zero or reduced environmental emissions. This report describes the technical and economic status of the major emerging renewable options and offers projections for their future performance and cost.

1997-12-30T23:59:59.000Z

285

Natural gas, renewables dominate electric capacity additions in ...  

U.S. Energy Information Administration (EIA)

Of the ten states with the highest levels of capacity additions, most of the new capacity uses natural gas or renewable energy sources.

286

Renewable Power Options for Electricity Generation on Kauai...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

coming from renewable energy by 2023. vii List of Acronyms Btu British thermal unit CSP concentrating solar power DER distributed energy resource DG distributed generation DOE...

287

Renewable Energy For Electric Utilities (New Mexico) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

distribution cooperatives must offer their retail customers a voluntary renewable energy tariff to the extent that their suppliers under their all-requirements contracts...

288

Promotion of electricity from renewable energy sources in Finland.  

E-Print Network (OSTI)

??The main purpose of this case was to study the development of energy projects from renewable energy sources and green energy promotion in Finland. A (more)

Pozdnyakova, Liudmila

2009-01-01T23:59:59.000Z

289

Shares of electricity generation from renewable energy sources ...  

U.S. Energy Information Administration (EIA)

In 2011, the states with the largest shares of generation coming from renewables, including hydro, were: Idaho (93%), Washington (82%), and Oregon ...

290

Renewable utility-scale electricity production differs by fuel ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... For non-hydro renewables, the 2011 generation share ranges from less than 1% in Alaska, Ohio, Alabama, and Kentucky, ...

291

Empowering Minds to Engineer the Future Electric Energy System Challenges in Integrating g Renewable Technologies into an Electric Power  

E-Print Network (OSTI)

Presented by WIRES- a national coalition of investor- and publicly-owned transmission providers customers, renewable energy developers, and technology and service companies dedicated to promoting investment in strong, well-planned, and beneficial high voltage electric transmission infrastructure

Dennis Ray

2010-01-01T23:59:59.000Z

292

A Dynamic Supply-Demand Model for Electricity Prices Manuela Buzoianu  

E-Print Network (OSTI)

played a role during the crisis period. 1 Introduction The energy industry provides electrical powerA Dynamic Supply-Demand Model for Electricity Prices Manuela Buzoianu , Anthony E. Brockwell of supply and demand equilibrium. The model includes latent supply and demand curves, which may vary over

293

uring the 1990s, the elec-tricity supply industry in  

E-Print Network (OSTI)

D uring the 1990s, the elec- tricity supply industry in Latin America underwent profound, according to the Energy Information Administration, the average cost for electricity supply for a consumer by a government that wanted to introduce market-oriented reforms throughout society, electricity supply included

Rudnick, Hugh

294

CMOS Open Defect Detection Based on Supply Current in Time-Variable Electric Field and Supply Voltage Application  

Science Conference Proceedings (OSTI)

In this paper, a new test method is proposed for detecting open defects in CMOS ICs. The method is based on supply current of ICs generated by applying time-variable supply voltage and electric field from the outside of the ICs. The feasibility of the ...

Masaki Hashizume; Masahiro Ichimiya; Hiroyuki Yotsuyanagi; Takeomi Tamesada

2001-11-01T23:59:59.000Z

295

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

Electrical Energy Consumption in California: Data Collection and Analysis,"analysis of electricity requirements for irrigated agri- electrical energy

Benenson, P.

2010-01-01T23:59:59.000Z

296

Power Charging and Supply System for Electric Vehicles ...  

Functions as a mobile electrical power generator for emergency and other uses; Applications and Industries. Electric vehicles; Hybrid electric ...

297

Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation), National Renewable Energy Laboratory (NREL)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration for Electric Vehicle Grid Integration for Sustainable Military Installations NDIA Joint Service Power Expo Mike Simpson Mike.Simpson@NREL.gov 5 May 2011 NREL/PR-5400-51519 NATIONAL RENEWABLE ENERGY LABORATORY Agenda 2 1. NREL Transportation Research 2. Net Zero Energy Installations (NZEI) 3. Fort Carson as a Case Study - Vehicles On-Site - Utility Operations - Vehicle Charge Management 4. Full Fleet Simulation 5. Continuing Work NATIONAL RENEWABLE ENERGY LABORATORY NREL is the only national laboratory solely dedicated to advancing renewable energy and energy efficiency. Our employees are committed to building a cleaner, sustainable world. Photo Credits: NREL 3 NATIONAL RENEWABLE ENERGY LABORATORY What is Electric Vehicle Grid Integration (EVGI)? 4 Cross Cutting Enablers Grid / Renewables

298

Integrating High Levels of Renewables in to the Lanai Electric Grid  

DOE Green Energy (OSTI)

The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Sandia National Laboratory (Sandia) to assess the economic and technical feasibility of increasing the contribution of renewable energy sources on the island of Lanai with a stated goal of reaching 100% renewable energy. NREL and Sandia partnered with Castle & Cooke, Maui Electric Company (MECO), and SRA International to perform the assessment.

Kroposki, B.; Burman, K.; Keller, J.; Kandt, A.; Glassmire, J.; Lilienthal, P.

2012-06-01T23:59:59.000Z

299

Oconee Electrical Component Integrated Plant Assessment and Time Limited Aging Analyses for License Renewal: Revision 1  

Science Conference Proceedings (OSTI)

Duke Power Co. and Baltimore Gas and Electric Co. were the first two utilities to apply for and obtain license renewal for their nuclear units. This report is one in a series of EPRI reports providing the technical basis for the Oconee and Calvert Cliffs License Renewal Applications.

2000-08-10T23:59:59.000Z

300

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network (OSTI)

Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

Hand, Maureen

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Integrating High Levels of Renewables into the Lanai Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

4.3 Wind Power Options There are two options for adding wind power to the renewable energy mix. As is shown in Figure 4-3, Option A would connect the large wind farm on the...

302

Trends in electricity demand and supply in the developing countries, 1980--1990  

SciTech Connect

This report provides an overview of trends concerning electricity demand and supply in the developing countries in the 1980--1990 period, with special focus on 13 major countries for which we have assembled consistent data series. We describe the linkage between electricity demand and economic growth, the changing sectoral composition of electricity consumption, and changes in the mix of energy sources for electricity generation. We also cover trends in the efficiency of utility electricity supply with respect to power plant efficiency and own-use and delivery losses, and consider the trends in carbon dioxide emissions from electricity supply.

Meyers, S.; Campbell, C.

1992-11-01T23:59:59.000Z

303

Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling  

DOE Green Energy (OSTI)

The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid.

Burman, K.; Keller, J.; Kroposki, B.; Lilienthal, P.; Slaughter, R.; Glassmire, J.

2011-11-01T23:59:59.000Z

304

The Outlook for Electricity Supply and Demand to 2035: Key Drivers  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov The Outlook for Electricity Supply and Demand to 2035: Key Drivers

305

How much electric supply capacity is needed to keep U.S ...  

U.S. Energy Information Administration (EIA)

Tools; Glossary All Reports ... peak electricity demand and determined that another 117 GW should be available in case of supply outages or extreme weather ...

306

Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)  

DOE Green Energy (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-03-01T23:59:59.000Z

307

Electricity Net Generation From Renewable Energy by Energy Use Sector and  

Open Energy Info (EERE)

Net Generation From Renewable Energy by Energy Use Sector and Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual net electricity generation (thousand kilowatt-hours) from renewable energy in the United States by energy use sector (commercial, industrial, electric power) and by energy source (e.g. biomas, solar thermal/pv). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords 2004 2008 Electricity net generation renewable energy Data application/vnd.ms-excel icon 2008_RE.net_.generation_EIA.Aug_.2010.xls (xls, 16.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 - 2008 License License Other or unspecified, see optional comment below Comment Rate this dataset

308

Hedging effects of wind on retail electric supply costs  

Science Conference Proceedings (OSTI)

In the short term, renewables - especially wind - are not as effective as conventional hedges due to uncertain volume and timing as well as possibly poor correlation with high-value periods. In the long term, there are more potential hedging advantages to renewables because conventional financial hedges are not available very far in the future. (author)

Graves, Frank; Litvinova, Julia

2009-12-15T23:59:59.000Z

309

Assessing the viability of the bundled energy efficiency/electricity supply business model.  

E-Print Network (OSTI)

??The restructuring of the U.S. electricity economy has enabled the emergence of a unique form of energy efficiency provision, the bundled energy efficiency/electricity supply contract. (more)

Benson, C.L.

2013-01-01T23:59:59.000Z

310

Design and evaluation of seasonal storage hydrogen peak electricity supply system  

E-Print Network (OSTI)

The seasonal storage hydrogen peak electricity supply system (SSHPESS) is a gigawatt-year hydrogen storage system which stores excess electricity produced as hydrogen during off-peak periods and consumes the stored hydrogen ...

Oloyede, Isaiah Olanrewaju

2011-01-01T23:59:59.000Z

311

Willingness to Pay for Electricity from Renewable Resources:...  

NLE Websites -- All DOE Office Websites (Extended Search)

C-2 Willingness to Subscribe to Product with Different Levels of Environmentally Friendly Electricity at Various Price Increases . . . . . . . . . . . . . . . . . . . . . . . . . ....

312

Renewable electricity production grows in Texas - Today in ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency. ... electric power plant emissions.

313

Shares of electricity generation from renewable energy sources up ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... imports and exports, production, prices, sales. Electricity.

314

Green Power Network - Description of Wisconsin Electric RFP for...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Wisconsin Electric's Plans for Request For Proposals (RFP) for 5 mw Renewable Energy Supply March 17,1998 Project Overview: Wisconsin Electric plans to solicit bids for...

315

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

make the case for renewable energy based on cost alone. OfThe use of renewable energy can avoid these costs and risks.measures, the cost of renewable energy supply has declined,

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

316

Technological impact of Non-Conventional Renewable Energy in the Chilean Electricity System  

E-Print Network (OSTI)

Technological impact of Non-Conventional Renewable Energy in the Chilean Electricity System Juan D of methodology and analysis of the energy sector, considering whether they are simulation models. Molina C. GSM Victor J. Martinez A. GSM Hugh Rudnick, Fellow Department of Electrical Engineering

Rudnick, Hugh

317

Price strategies in dynamic duopolistic markets with deregulated electricity supplies using mixed strategies  

Science Conference Proceedings (OSTI)

While effective competition can force service providers to seek economically efficient methods to reduce costs, the deregulated electricity supply industry still allows some generators to exercise market power at particular locations, thereby preventing ... Keywords: deregulated electricity supplies, mixed strategies, price strategies

Jose B. Cruz, Jr.; Xiaohuan Tan

2005-10-01T23:59:59.000Z

318

Price strategies in dynamic duopolistic markets with deregulated electricity supplies using mixed strategies  

Science Conference Proceedings (OSTI)

While effective competition can force service providers to seek economically efficient methods to reduce costs, the deregulated electricity supply industry still allows some generators to exercise market power at particular locations, thereby preventing ... Keywords: Deregulated electricity supplies, Mixed strategies, Price strategies

Jose B. Cruz, Jr.; Xiaohuan Tan

2005-10-01T23:59:59.000Z

319

Prospects of Renewable Energy for Meeting Growing Electricity Demand in Pakistan  

Science Conference Proceedings (OSTI)

Pakistan is an energy deficit country. About half of the country's population has access to electricity and per capita supply is only 520 kWh. Majority of the country's population resides in rural areas and most of them are yet without electricity. Conventional electricity generation includes 66.8% thermal

Mohammad Aslam Uqaili; Khanji Harijan; Mujeebuddin Memon

2007-01-01T23:59:59.000Z

320

Austin Energy Offers 100% Renewable Electrical Vehicle Charging ...  

Austin area electric vehicle drivers can purchase pre-paid Plug-in EVerywhere network cards for $25 each, which allows unlimited public station charging for six months.

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

El Paso Electric Company - Small and Medium System Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential State Government Savings Category Energy Sources Buying & Making Electricity Solar Wind Program Info Start Date 312009 State New Mexico Program Type...

322

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Western Electricity Coordinating Council California This dataset comes from the Energy Information Administration (EIA),...

323

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. The dataset contains data for the Rockies region...

324

Renewable electricity production grows in Texas - Today in ...  

U.S. Energy Information Administration (EIA)

... the warmest month on record in the state, there were severe spikes in wholesale electric prices as well as emergency actions taken by the grid ...

325

202-328-5000 www.rff.orgFederal Policies for Renewable Electricity: Impacts and Interactions  

E-Print Network (OSTI)

Three types of policies that are prominent in the federal debate over addressing greenhouse gas emissions in the United States are a cap-and-trade program (CTP) on emissions, a renewable portfolio standard (RPS) for electricity production, and tax credits for renewable electricity producers. Each of these policies would have different consequences, and combinations of these policies could induce interactions yielding a whole that is not the sum of its parts. This paper utilizes the Haiku electricity market model to evaluate the economic and technology outcomes, climate benefits, and cost-effectiveness of three such policies and all possible combinations of the policies. A central finding is that the carbon dioxide (CO2) emissions reductions from CTP can be significantly greater than those from the other policies, even for similar levels of renewable electricity production, since of the three policies, CTP is the only one that distinguishes electricity generated by coal and natural gas. It follows that CTP is the most cost-effective among these approaches at reducing CO2 emissions. An alternative compliance payment mechanism in an RPS program could substantially affect renewables penetration, and the electricity price effects of the policies hinge partly on the regulatory structure of electricity markets, which varies across the country.

Karen Palmer; Anthony Paul; Matt Woerman; Karen Palmer; Anthony Paul; Matt Woerman

2011-01-01T23:59:59.000Z

326

Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

258 258 May 2010 Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector Lori Bird, Caroline Chapman, Jeff Logan, Jenny Sumner, and Walter Short National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-48258 May 2010 Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector Lori Bird, Caroline Chapman, Jeff Logan, Jenny Sumner, and Walter Short Prepared under Task No. SAO9.2038 NOTICE

327

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan National Renewable Energy Laboratory National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov The Joint Institute for Strategic Energy Analysis 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.jisea.org Technical Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan

328

Autonomous induction generator/rectifier as regulated DC power supply for hybrid renewable energy systems  

Science Conference Proceedings (OSTI)

The present article deals with the wind power-generating unit of a Hybrid Photovoltaic-Wind Renewable Energy System (HPVWRES). The dynamic flux model of the self-excited induction generator used in the wind power-generating unit is given. This model, ... Keywords: experimental investigation, hybrid, induction generator, modeling, rectifier, regulation, renewable Energy

A. Nesba; R. Ibtiouen; S. Mekhtoub; O. Touhami; N. Takorabet

2005-10-01T23:59:59.000Z

329

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

330

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply; Executive Summary (Revised)  

NLE Websites -- All DOE Office Websites (Extended Search)

0% Wind Energy by 2030 0% Wind Energy by 2030 Increasing Wind Energy's Contribution to U.S. Electricity Supply DOE/GO-102008-2578 * December 2008 More information is available on the web at: www.eere.energy.gov/windandhydro http://www.nrel.gov/docs/fy08osti/41869.pdf December 2008 GRATEFUL APPRECIATION TO PARTNERS The U.S. Department of Energy would like to acknowledge the in-depth analysis and extensive research conducted by the National Renewable Energy Laboratory and the major contributions and manuscript reviews by the American Wind Energy Association and many wind industry organizations that contributed to the production of this report. The costs curves for energy supply options and the WinDS modeling assumptions were developed in cooperation with Black & Veatch. The preparation of

331

Fleet Renewal with Electric Vehicles at La Poste  

Science Conference Proceedings (OSTI)

We provide a decision model for La Poste, the French national postal operator, to address its adoption of electric vehicles (EVs) for mail and parcel distribution. Two competing technologies are availableinternal combustion vehicles (ICVs) and ... Keywords: decision making under uncertainty, electric vehicles, equipment replacement, real options

Paul R. Kleindorfer; Andrei Neboian; Alain Roset; Stefan Spinler

2012-09-01T23:59:59.000Z

332

Portland General Electric Company Renewable Energy RFP , Deadline Sept 28, 2001  

NLE Websites -- All DOE Office Websites (Extended Search)

Portland General Electric Company Portland General Electric Company REQUEST FOR PROPOSALS Issued: August 22, 2001 INTRODUCTION Portland General Electric Company (PGE) is requesting bid proposals for retail marketing services and renewable power or tradable renewable credits (TRCs) sufficient to meet the needs of PGE customer enrollments for the period from March 1, 2002 to December 31, 2003. Proposals are due by 5:00 p.m. on September 28, 2001. Pursuant to the Oregon Public Utility Commission (OPUC) adoption of Portfolio Options contained in ORS 757.603(2), OAR 860-038-0220 (refer to OPUC Order 01-337 at http://www.puc.state.or.us/orders/2001ords/01-337.pdf.) PGE is seeking to purchase Marketing Services and Renewable Energy or TRCs in support of the Company's portfolio option offers of

333

Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission  

Science Conference Proceedings (OSTI)

The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.

Mosey, G.; Vimmerstedt, L.

2009-07-01T23:59:59.000Z

334

Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector  

SciTech Connect

This report examines the impact of various renewable portfolio standards (RPS) and cap-and-trade policy options on the U.S. electricity sector, focusing mainly on renewable energy generation. The analysis uses the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that simulates the least-cost expansion of electricity generation capacity and transmission in the United States to examine the impact of an emissions cap--similar to that proposed in the Waxman-Markey bill (H.R. 2454)--as well as lower and higher cap scenarios. It also examines the effects of combining various RPS targets with the emissions caps. The generation mix, carbon emissions, and electricity price are examined for various policy combinations to simulate the effect of implementing policies simultaneously.

Bird, L.; Chapman, C.; Logan, J.; Sumner, J.; Short, W.

2010-05-01T23:59:59.000Z

335

The Integration of Renewable Energy Sources into Electric Power Distribution Systems  

Science Conference Proceedings (OSTI)

Renewable energy technologies such as photovoltaic, solar thermal electricity, and wind turbine power are environmentally beneficial sources of electric power generation. The integration of renewable energy sources into electric power distribution systems can provide additional economic benefits because of a reduction in the losses associated with transmission and distribution lines. Benefits associated with the deferment of transmission and distribution investment may also be possible for cases where there is a high correlation between peak circuit load and renewable energy electric generation, such as photovoltaic systems in the Southwest. Case studies were conducted with actual power distribution system data for seven electric utilities with the participation of those utilities. Integrating renewable energy systems into electric power distribution systems increased the value of the benefits by about 20 to 55% above central station benefits in the national regional assessment. In the case studies presented in Vol. II, the range was larger: from a few percent to near 80% for a case where costly investments were deferred. In general, additional savings of at least 10 to 20% can be expected by integrating at the distribution level. Wind energy systems were found to be economical in good wind resource regions, whereas photovoltaic systems costs are presently a factor of 2.5 too expensive under the most favorable conditions.

Barnes, P.R.

1994-01-01T23:59:59.000Z

336

Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retail Supplier Retail Supplier Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Wind Program Info State Maine Program Type Renewables Portfolio Standard Provider Maine Public Utilities Commission Maine's original Renewable Resource Portfolio Requirement was passed as part of the state's 1997 electric-utility restructuring law. In 1999, Maine's Public Utility Commission (PUC) adopted rules requiring each electricity provider to supply at least 30% of their total electric sales using electricity generated by eligible renewable and certain energy efficiency resources. Actually, at the time of passage, the required percentage of renewables was actually lower than the existing percentage

337

Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy, and Small-?Scale Cogeneration.  

E-Print Network (OSTI)

??There is growing interest in reducing the environmental and human-?health impacts resulting from electricity generation. Renewable energy, energy efficiency, and energy conservation are all commonly (more)

Siler-Evans, Kyle

2012-01-01T23:59:59.000Z

338

Communication and Control of Electric Vehicles Supporting Renewables...  

NLE Websites -- All DOE Office Websites (Extended Search)

current state of charge, is the RT energy available in the battery pack, and is the base price of electricity, representing the cost originally paid to get the energy into the...

339

Role of Renewable Energy in a Sustainable Electric Generation ...  

U.S. Energy Information Administration (EIA)

Plug-in Hybrid Electric Vehicles (PHEV) Widely Available and Deployed After 2020 None Carbon Capture and Storage (CCS) Nuclear Generation 12.5 GWe by 2030 64 GWe by 2030

340

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption.
2011-07-25T20:15:39Z...

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Tribal Renewable Energy Foundational Course: Electricity Grid Basics  

Energy.gov (U.S. Department of Energy (DOE))

Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on electricity grid basics by clicking on the .swf link below. You can also download the PowerPoint slides...

342

Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management  

DOE Green Energy (OSTI)

The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

A. David Lester

2008-10-17T23:59:59.000Z

343

Production Cost Modeling of Cogenerators in an Interconnected Electric Supply System  

E-Print Network (OSTI)

The Optimal State Electricity Supply System in Texas (OSEST) research project is part of the continuing Public Utility Commission of Texas (PUCT) effort to identify possible improvements in the production, transmission, and use of electricity in the state. The OSEST project is designed to identify the general configuration of the optimal electric supply system resulting from coordinated system planning and operation from a statewide perspective. The Optimized Generation Planning Program (OGP) and Multi-Area Production Simulation Program with Megawatt Flow (MAPS/MWFLOW) are two computer programs developed by General Electric that are being used in the study. Both of these programs perform production costing calculations to evaluate the performance of various electric supply system configurations necessary to appropriately model the present and future cogeneration activity in the service areas of the electric utilities that compose the Electric Reliability Council of Texas (ERCOT).

Ragsdale, K.

1989-09-01T23:59:59.000Z

344

Electric Vehicle Supply Equipment (EVSE) Test Report: ClipperCreek  

NLE Websites -- All DOE Office Websites (Extended Search)

(Vrms) 208.89 Supply frequency (Hz) 60.00 Initial ambient temperature (F) 52 Test Vehicle 1,3 Make and model 2011 Chevrolet Volt Battery type Li-ion Steady state charge power...

345

Electric Vehicle Supply Equipment (EVSE) Test Report: Leviton  

NLE Websites -- All DOE Office Websites (Extended Search)

(Vrms) 239.69 Supply frequency (Hz) 59.99 Initial ambient temperature (F) 58 Test Vehicle 1,3 Make and model 2011 Chevrolet Volt Battery type Li-ion Steady state charge power...

346

The Potential for Supply-Following Loads to Enable Deep Renewables...  

NLE Websites -- All DOE Office Websites (Extended Search)

electrical loads that are responsive to grid conditions such as energy availability or electricity price. This talk presents the design, implementation, and evaluation of three...

347

Pricing and Hedging Electricity Supply Contracts: a Case with Tolling Agreements  

E-Print Network (OSTI)

Pricing and Hedging Electricity Supply Contracts: a Case with Tolling Agreements Shi-Jie Deng Email Customized electric power contracts catering to specific business and risk management needs have gained increasing popularity among large energy firms in the restructured electricity in- dustry. A tolling

348

Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE))

Renewable energy leveraged from natural, renewable resources delivers electricity, heating, cooling, and other applications to Federal facilities and fleets. By using renewable energy, Federal agencies increase national security, conserve natural resources, and meet regulatory requirements and goals.

349

Moving Towards Sustainable Community Renewable Energy: A Strategic Approach for Communities.  

E-Print Network (OSTI)

??The developed world relies on an enormous supply of electricity and heat energy to power countless daily activities, predominantly using non-renewable fossil fuels. Although this (more)

Greenius, Leigh; Jagniecki, Elsa

2010-01-01T23:59:59.000Z

350

Economics of Nuclear and Renewable Electricity Energy Science Coalition  

E-Print Network (OSTI)

Nuclear energy arose as a spin-off from nuclear weapons. Its use grew rapidly during the 1960s, nurtured by huge subsidies and the belief that nuclear electricity would soon become too cheap to meter. According to the International Atomic Energy Agency, at the end of 2009 there were 438 operating nuclear power reactors in the world, total

Dr Mark Diesendorf

2010-01-01T23:59:59.000Z

351

Development of renewable energy Challenges for the electrical grids  

E-Print Network (OSTI)

Energy Association : 450 member companies · Representing 10 billion Euros turnover and 80 000 jobs · Multi-industry : Wind, Photovoltaïcs, hydroelectricity, Biomass, Marine Energy, Thermal solar ­ 5 400 MW solar PV ­ 2 300 MW Biomass ­ ... · Significant change of the electricity production scheme

Canet, Léonie

352

Permit for Charging Equipment Installation: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a residence in the City, State jurisdiction. This permit addresses one of the following situations: Only an additional branch circuit would be added at the residence A hard-wired charging station would be installed at the residence. The attached requirements for wiring the charging station are taken directly out of the 2011 edition of the National Electrical Code (NEC) NFPA 70, Article 625 Electric Vehicle Charging System. This article does not provide all of the information necessary for the installation of electric vehicle charging equipment. Please refer to the current edition of the electrical code adopted by the local jurisdiction for additional installation requirements. Reference to the 2011 NEC may be

353

Supply Curves for Solar PV-Generated Electricity for the United States  

DOE Green Energy (OSTI)

Energy supply curves attempt to estimate the relationship between the cost of an energy resource and the amount of energy available at or below that cost. In general, an energy supply curve is a series of step functions with each step representing a particular group or category of energy resource. The length of the step indicates how much of that resource is deployable or accessible at a given cost. Energy supply curves have been generated for a number of renewable energy sources including biomass fuels and geothermal, as well as conservation technologies. Generating a supply curve for solar photovoltaics (PV) has particular challenges due to the nature of the resource. The United States has a massive solar resource base -- many orders of magnitude greater than the total consumption of energy. In this report, we examine several possible methods for generating PV supply curves based exclusively on rooftop deployment.

Denholm, P.; Margolis, R.

2008-11-01T23:59:59.000Z

354

A study of supply function equilibria in electricity markets.  

E-Print Network (OSTI)

??Deregulation is a growing trend and the electricity industry has not escaped its reaches. With worldwide experiences spanning only thirty years, there is substantial interest (more)

Lee, Kelvin.

2008-01-01T23:59:59.000Z

355

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

for Electricity and Power Peak Demand . . . . ELECTRICITYby Major Utility Service Area Projected Peak Demand for1977 Historical Peak Demand by Utility Service Area Weather-

Benenson, P.

2010-01-01T23:59:59.000Z

356

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

SciTech Connect

Electricity markets in the United States have witnessed unprecedented instability over the last few years, with substantial volatility in wholesale market prices, significant financial distress among major industry organizations, and unprecedented legal, regulatory and legislative activity. These events demonstrate the considerable risks that exist in the electricity industry. Recent industry instability also illustrates the need for thoughtful resource planning to balance the cost, reliability, and risk of the electricity supplied to end-use customers. In balancing different supply options, utilities, regulators, and other resource planners must consider the unique risk profiles of each generating source. This paper evaluates the relative risk profiles of renewable and natural gas generating plants. The risks that exist in the electricity industry depend in part on the technologies that are used to generate electricity. Natural gas has become the fuel of choice for new power plant additions in the United States. To some, this emphasis on a single fuel source signals the potential for increased risk. Renewable generation sources, on the other hand, are frequently cited as a potent source of socially beneficial risk reduction relative to natural gas-fired generation. Renewable generation is not risk free, however, and also imposes certain costs on the electricity sector. This paper specifically compares the allocation and mitigation of risks in long-term natural gas-fired electricity contracts with the allocation and mitigation of these same risks in long-term renewable energy contracts. This comparison highlights some of the key differences between renewable and natural gas generation that decision makers should consider when making electricity investment and contracting decisions. Our assessment is relevant in both regulated and restructured markets. In still-regulated markets, the audience for this report clearly includes regulators and the utilities they regulate. In restructured markets, the role of regulatory oversight of resource planning is more limited. Nonetheless, even in restructured markets, it is increasingly recognized that regulators have a critical role to play in directing the resource planning of providers of last resort--electric suppliers that provide service to those customers who choose not to switch to a competitive supplier. Our review of electricity contracts may also have educational value for those unfamiliar with the typical contents of these agreements. Details of our findings are provided in the body of the paper, but this summary is written to provide a concise alternative to reading the full report.

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-03-12T23:59:59.000Z

357

Software system for calculation and analysis of electrical power, derived from renewable energy sources  

Science Conference Proceedings (OSTI)

The software system for modeling and analysis of the processes of electric power conversion of renewable energy sources (solar radiation and wind velocity) is described. The characteristics of the generators and specific climatic conditions of the geographical ... Keywords: graphical dependences, photovoltaics and wind turbine generators, programme models

Katerina Gabrovska; Nicolay Mihailov

2003-06-01T23:59:59.000Z

358

Evaluating Policies to Increase the Generation of Electricity from Renewable Energy  

E-Print Network (OSTI)

Focusing on the U.S. and the E.U., this essay seeks to advance four main propositions. First, the incidence of the short-run costs of programs to subsidize the generation of electricity from renewable sources varies with ...

Schmalensee, Richard

359

Solar Two is a concentrating solar power plant that can supply electric power "on demand"  

E-Print Network (OSTI)

Solar Two is a concentrating solar power plant that can supply electric power "on demand time ever, a utility-scale solar power plant can supply elec- tricity when the utility needs it most achievement. The design is based on lessons learned at Solar One, this country's first power tower. Solar One

Laughlin, Robert B.

360

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

Ways to Switch America to Renewable Electricity. Cambridge,Dioxide, and Mercury and a Renewable Portfolio Standard.associated with the use of renewable and natural gas-fired

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Program on Technology Innovation: Electric Efficiency Through Water Supply Technologies-- A Roadmap  

Science Conference Proceedings (OSTI)

Electricity consumption associated with sourcing, treating, and transporting water is expected to increase significantly in the future as a result of a growing population and an increasing need for alternative water supplies. Furthermore, there is a concern that climate change may necessitate an increase in irrigation in some areas of the United States. Consequently, there is a critical need for technologies that can reduce the electricity consumption associated with water supply. This report identifies ...

2009-06-18T23:59:59.000Z

362

Large Scale Deployment of Renewables for Electricity Generation  

E-Print Network (OSTI)

-cellulose material. Anaerobic digestion or gasification of biomass produces gas that can be used in similar applications to natural gas. Small-scale biogas production is now a well-established technology and large-scale application is in the advanced stages... of development. The possibility of using biogas in fuel cells exists, but there are a number of technical difficulties that remain to be overcome in this area. Source: www.britishbiogen.co.uk and WEA (2000). 5 All figures refer to electricity.Where necessary...

Neuhoff, Karsten

2006-03-14T23:59:59.000Z

363

Electric Vehicle Supply Equipment (EVSE) Test Report: Schneider...  

NLE Websites -- All DOE Office Websites (Extended Search)

Schneider Electric EVSE Features Charge Delay Option Power Light Indicator Eight-segment Progress Indicator Auto-restart EVSE Specifications Grid connection Plug and cord NEMA 6-50...

364

Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Electric Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find electric vehicle and infrastructure codes and standards in these categories:

365

Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)  

DOE Green Energy (OSTI)

As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

Not Available

2013-09-01T23:59:59.000Z

366

Electric Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dispensing Dispensing Infrastructure NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. CONTROLLING AUTHORITIES: State and Federal Energy Regulatory Commissions CONTROLLING AUTHORITIES: Local Building and Fire Departments CONTROLLING AUTHORITIES: DOT/NHTS Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for electric. Electric Vehicle and Infrastructure Codes and Standards Chart Institute of Electrical and Electronics Engineers, Inc. FERC Federal Energy

367

Electric energy supply systems: description of available technologies  

Science Conference Proceedings (OSTI)

When comparing coal transportation with electric transmission as a means of delivering electric power, it is desirable to compare entire energy systems rather than just the transportation/transmission components because the requirements of each option may affect the requirements of other energy system components. PNL's assessment consists of two parts. The first part, which is the subject of this document, is a detailed description of the technical, cost, resource and environmental characteristics of each system component and technologies available for these components. The second part is a computer-based model that PNL has developed to simulate construction and operation of alternative system configurations and to compare the performance of these systems under a variety of economic and technical conditions. This document consists of six chapters and two appendices. A more thorough description of coal-based electric energy systems is presented in the Introduction and Chapter 1. Each of the subsequent chapters describes technologies for five system components: Western coal resources (Chapter 2), coal transportation (Chapter 3), coal gasification and gas transmission (Chapter 4), and electric power transmission (Chapter 6).

Eisenhauer, J.L.; Rogers, E.A.; King, J.C.; Stegen, G.E.; Dowis, W.J.

1985-02-01T23:59:59.000Z

368

Biomass power and state renewable energy policies under electric industry restructuring  

DOE Green Energy (OSTI)

Several states are pursuing policies to foster renewable energy as part of efforts to restructure state electric power markets. The primary policies that states are pursuing for renewables are system benefits charges (SBCs) and renewable portfolio standards (RPSs). However, the eligibility of biomass under state RPS and SBC policies is in question in some states. Eligibility restrictions may make it difficult for biomass power companies to access these policies. Moreover, legislative language governing the eligibility of biomass power is sometimes vague and difficult to interpret. This paper provides an overview of state RPS and SBC policies and focuses on the eligibility of biomass power. For this paper, the authors define biomass power as using wood and agricultural residues and landfill methane, but not waste-to-energy, to produce energy.

Porter, K.; Wiser, R.

2000-08-01T23:59:59.000Z

369

Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Electricity Shortage in Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply 1. Summary 2. Electricity Reliability Issues in California 3. Petroleum Refineries 4. Constraints Outside the Refinery Gate 5. Petroleum Product Prices and Supply Disruptions 6. Natural Gas 7. End Notes 8. Contacts 1. Summary Industry electric reliability organizations, the California Energy Commission, and the California Independent System Operator, expect California to be subject to rotating electricity outages in the summer of 2001 during the peak afternoon demand hours. These outages are expected to affect almost all sectors of the State's economy, including crude oil and natural gas producers, petroleum refineries, and pipelines. This report addresses the potential impact of rotating electrical

370

A Case Study of Supply Chain Sustainability in the Electric Power Industry  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute's (EPRI's) Energy Sustainability Interest Group, consisting of approximately 30 electric power companies, is working to identify best practices in order to improve sustainability performance in the electric power industry. One component of a comprehensive approach toward meeting this objective is to work with the industrys non-fuel supply chain to improve the environmental performance of producing and delivering their products and services. Many corporations and par...

2012-05-14T23:59:59.000Z

371

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures  

E-Print Network (OSTI)

and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Trieu Mai, Ph.D. 5th International Conference on Integration of Renewable and Distributed Energy Resources source. · To what extent can renewable energy technologies commercially available today meet the U

372

Landscapes of power: the cultural and historical geographies of renewable energy in Britain since the 1870's.  

E-Print Network (OSTI)

??This thesis considers historical applications of naturally renewing energy resources in Britain from the beginnings of public electricity supply in the late nineteenth century to (more)

Gardner, Zo

2008-01-01T23:59:59.000Z

373

Consensus forecast of U. S. electricity supply and demand to the year 2000  

SciTech Connect

Recent forecasts of total electricity generating capacity and energy demand as well as for electricity produced from nuclear energy and hydroelectric power are presented in tables and graphs to the year 2000. A forecast of the distribution of type of fuel and energy source that will supply the future electricity demand is presented. Use of electricity by each major consuming sector is presented for 1975. Projected demands for electricity in the years 1985 and 2000, as allocated to consuming sectors, are derived and presented.

Lane, J.A.

1976-02-01T23:59:59.000Z

374

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

incentives, TGC) PV feed in Renewable energy act Renewables Portfolio Standards Selected technologies Clean Energy

Haas, Reinhard

2008-01-01T23:59:59.000Z

375

NREL: Energy Analysis: Electric System Flexibility and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric System Flexibility and Storage Electric System Flexibility and Storage Options for Increasing Electric System Flexibility to Accommodate Higher Levels of Variable Renewable Electricity Increased electric system flexibility, needed to enable electricity supply-demand balance with high levels of renewable generation, can come from a portfolio of supply- and demand-side options, including flexible conventional generation, grid storage, curtailment of some renewable generation, new transmission, and more responsive loads. NREL's electric system flexibility studies investigate the role of various electric system flexibility options on large-scale deployment of renewable energy. NREL's electric system flexibility analyses show that: Key factors in improving grid flexibility include (1) increasing the

376

WB/GEF Renewable Energy Development Project: Renewable Energy in China  

DOE Green Energy (OSTI)

Fact sheet describes China's Renewable Energy Development Project to supply electricity to rural households and institutions with wind energy and solar power (photovoltaics). World Bank and Global Environmental Facility fund the project.

Not Available

2004-04-01T23:59:59.000Z

377

Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience  

DOE Green Energy (OSTI)

Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.

Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

2012-04-01T23:59:59.000Z

378

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

Science Conference Proceedings (OSTI)

The promotion of electricity generated from Renewable Energy Sources (RES) has recently gained high priority in the energy policy strategies of many countries in response to concerns about global climate change, energy security and other reasons. This chapter compares and contrasts the experience of a number of countries in Europe, states in the US as well as Japan in promoting RES, identifying what appear to be the most successful policy measures. Clearly, a wide range of policy instruments have been tried and are in place in different parts of the world to promote renewable energy technologies. The design and performance of these schemes varies from place to place, requiring further research to determine their effectiveness in delivering the desired results. The main conclusions that can be drawn from the present analysis are: (1) Generally speaking, promotional schemes that are properly designed within a stable framework and offer long-term investment continuity produce better results. Credibility and continuity reduce risks thus leading to lower profit requirements by investors. (2) Despite their significant growth in absolute terms in a number of key markets, the near-term prognosis for renewables is one of modest success if measured in terms of the percentage of the total energy provided by renewables on a world-wide basis. This is a significant challenge, suggesting that renewables have to grow at an even faster pace if we expect them to contribute on a significant scale to the world's energy mix.

Haas, Reinhard; Meyer, Niels I.; Held, Anne; Finon, Dominique; Lorenzoni, Arturo; Wiser, Ryan; Nishio, Ken-ichiro

2007-06-01T23:59:59.000Z

379

iREED 2008 Renewable Energies and Eco-Design in Electrical Engineering, 10-11 December 2008 ECO-DESIGN OF ELECTRO-MECHANICAL ENERGY CONVERTERS  

E-Print Network (OSTI)

iREED 2008 Renewable Energies and Eco-Design in Electrical Engineering, 10-11 December 2008 ECO Author manuscript, published in "Conference on Renewable Energies and Eco-Design in Electrical Engineering 2008, MONTPELLIER : France (2008)" #12;iREED 2008 Renewable Energies and Eco-Design in Electrical

Paris-Sud XI, Université de

380

An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England  

E-Print Network (OSTI)

with fuel supply markets that captures both the economic network transactions in energy supply chains markets to quantify the interactions in electric power/energy supply chains and their effects on flows% of domestic primary energy [17, 18]. Currently, the electric power industry in the US is undergoing

Nagurney, Anna

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows  

DOE Green Energy (OSTI)

The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

NONE

1996-11-01T23:59:59.000Z

382

Electric Vehicle Handbook: Electrical Contractors (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electrical Electrical Contractors Plug-In Electric Vehicle Handbook for Electrical Contractors 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Installing and Maintaining EVSE . . . . . . . 9 EVSE Training for Electrical Contractors . . . . . . . . . . . . . . . . 18 Electrifying the Future . . . . . . . . . . . . . . . 19 Clean Cities Helps Deploy PEV Charging Infrastructure Installing plug-in electric vehicle (PEV) charg- ing infrastructure requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Depart- ment of Energy's flagship alternative-transportation deployment initiative . It is supported by a diverse and capable team of stakeholders from private companies, utilities, government agencies, vehicle

383

Analysis of residential, industrial and commercial sector responses to potential electricity supply constraints in the 1990s  

DOE Green Energy (OSTI)

There is considerable debate over the ability of electric generation capacity to meet the growing needs of the US economy in the 1990s. This study provides new perspective on that debate and examines the possibility of power outages resulting from electricity supply constraints. Previous studies have focused on electricity supply growth, demand growth, and on the linkages between electricity and economic growth. This study assumes the occurrence of electricity supply shortfalls in the 1990s and examines the steps that homeowners, businesses, manufacturers, and other electricity users might take in response to electricity outages.

Fisher, Z.J.; Fang, J.M.; Lyke, A.J.; Krudener, J.R.

1986-09-01T23:59:59.000Z

384

Integrating Renewable Energy Using Data Analytics Systems: Challenges and Opportunities  

E-Print Network (OSTI)

Integrating Renewable Energy Using Data Analytics Systems: Challenges and Opportunities Andrew and intermittent nature of many renewable energy sources makes integrating them into the electric grid challenging-following loads adjust their power consumption to match the avail- able renewable energy supply. We show Internet

California at Berkeley, University of

385

How to supply bus stops with electricity without connecting them to the electricity grid.  

E-Print Network (OSTI)

?? This Bachelors degree thesis has been performed on behalf of Upplands Lokaltrafik. The thesis aims to suggest a design of a stand-alone renewable power (more)

Axelsson, Karin; Ekblom, Tove

2013-01-01T23:59:59.000Z

386

The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments  

Science Conference Proceedings (OSTI)

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C. [Zaininger Engineering Co., San Jose, CA (United States)

1994-06-01T23:59:59.000Z

387

Program Plan for Renewable Energy generation of electricity. Response to Section 2111 of the Energy Policy Act of 1992  

SciTech Connect

A 5-Year Program Plan for providing cost-effective options for generating electricity from renewable energy sources is presented by the US Department of Energy Office of Energy Efficiency and Renewable Energy. The document covers the Utility-Sector situation, scope of the program, specific generating technologies, and implementation of the program plan.

1994-12-01T23:59:59.000Z

388

Oconee Electrical Component Integrated Plant Assessment and Time Limited Aging Analyses for License Renewal: Parts 1 and 2  

Science Conference Proceedings (OSTI)

Duke Power Co. and Baltimore Gas and Electric Co. are the first two utilities to apply for license renewal of their nuclear units. This report is one in a series of EPRI reports providing the technical basis for the Oconee and Calvert Cliffs License Renewal Applications.

1998-11-30T23:59:59.000Z

389

Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 167 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the

390

Renewable Fuels Module This  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Module Fuels Module This page inTenTionally lefT blank 175 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve

391

Biomass power and state renewable energy policies under electric industry restructuring  

E-Print Network (OSTI)

BIOMASS POWER AND STATE RENEWABLE ENERGY POLICIES UNDERBIOMASS PROVISIONS IN STATE RENEWABLE ENERGY POLICIES Ofthe 17 states that have adopted renewable energy policy

Porter, Kevin; Wiser, Ryan

2000-01-01T23:59:59.000Z

392

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

San Francisco, CA, 2010 (6) National Renewable EnergyLaboratory (NREL), Renewable Resource Data Center, Website:Impact of Increased Renewable Energy Penetrations on

Barbose, Galen

2013-01-01T23:59:59.000Z

393

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

and J. Hamrin. 2005. Renewable Energy Policies and Marketspromoting the development of renewable energy". In: Energyand optimisation of renewable support schemes in the

Haas, Reinhard

2008-01-01T23:59:59.000Z

394

Biomass power and state renewable energy policies under electric industry restructuring  

E-Print Network (OSTI)

POWER AND STATE RENEWABLE ENERGY POLICIES UNDER ELECTRICKevin Porter National Renewable Energy Laboratory 901 Dpolicies to foster renewable energy as part of efforts to

Porter, Kevin; Wiser, Ryan

2000-01-01T23:59:59.000Z

395

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

and J. Hamrin. 2005. Renewable Energy Policies and Marketsexperience with renewable energy obligation supportM. (2001): REBUS: Renewable Energy Burden Sharing (Main

Haas, Reinhard

2008-01-01T23:59:59.000Z

396

The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments  

SciTech Connect

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The following utility- and site-specific conditions that may affect the economic viability of distributed renewable energy sources were considered: distribution system characteristics, and design standards, and voltage levels; load density, reliability, and power quality; solar insolation and wind resource levels; utility generation characteristics and load profiles; and investor-owned and publicly owned utilities, size, and financial assumptions.

Zaininger, H.W.

1994-01-01T23:59:59.000Z

397

Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers  

DOE Green Energy (OSTI)

Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

2012-04-01T23:59:59.000Z

398

Alternative and Renewable Energy Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative and Renewable Energy Portfolio Standard Alternative and Renewable Energy Portfolio Standard Alternative and Renewable Energy Portfolio Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State West Virginia Program Type Renewables Portfolio Standard Provider West Virginia Division of Energy In June 2009, West Virginia enacted an ''Alternative and Renewable Energy Portfolio Standard'' that requires investor-owned utilities (IOUs)* with more than 30,000 residential customers to supply 25% of retail electric sales from eligible alternative and renewable energy resources by 2025.

399

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska" Nebraska" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",21631,22972,22387,22724,21946,25279,27323,28388,28720,29981,29046,30412,31550,30368,31944,31392,31599,32403,32356,33776,36243 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",165,208 " Combined Heat and Power, Electric","-","-","-","-","-","-","-",8,8,9,7,8,8,21,"*",8,4,5,5,5,6

400

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware" Delaware" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",7100,7604,6267,8306,8501,8324,8122,6579,6318,6239,4137,1872,171,31,24,26,17,48,19,13,30 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-",1402,4429,5271,6653,6866,7078,6025,7283,5227,3695,4839 " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-","-","-","-","-","-",109,128,129,102,132,1579,675,758

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi" Mississippi" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",22924,23305,20488,23234,26222,26395,28838,31228,31992,32212,33896,47550,35099,31359,32838,30619,34159,34427,33796,34759,40841 " Independent Power Producers","-","-","-",3,3,3,4,5,4,257,1404,2277,5028,7308,9060,12704,10182,13718,12653,12129,11779 " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-","-","-","-",1440,1366,"-","-","-","-","-","-","-","-"

402

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",4493,4286,4167,4581,4762,4847,4982,5108,4590,4609,4938,5416,5472,5673,5866,5946,6069,6146,6262,6167,6205 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",80,"-","-","-" " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-",211,227,224,237,244,162,182,174,187,210,177,209,204

403

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",59011,60121,56627,53202,61519,65400,67827,71073,74894,73505,76284,78991,79797,86102,86420,90159,91118,89926,89179,86705,90177 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-","-",226,1039,783,828,319,165,820,1423,1383,1843 " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-","-","-","-","-","-","-",46,5,30,45,127,41,55

404

On the energy sources of Mozambican households and the demand-supply curves for domestic electricity in the northern electrical grid in Mozambique.  

E-Print Network (OSTI)

??The development of electrical infrastructure to supply rural households is considered economically unfeasible because of the high cost of capital investment required to expand the (more)

Arthur, Maria de Fatima Serra Ribeiro

2009-01-01T23:59:59.000Z

405

The National Energy Modeling System: An Overview 2000 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

renewable fuels module (RFM) consists of five submodules that represent the various types of renewable energy technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (wind, solar, and geothermal) are used to generate electricity, the interaction with the electricity market module (EMM) is important for modeling grid-connected renewable-electric applications. The penetration of grid-connected generation technologies, with the exception of municipal solid waste, is determined by EMM. Hydropower is included in EMM directly. renewable fuels module (RFM) consists of five submodules that represent the various types of renewable energy technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (wind, solar, and geothermal) are used to generate electricity, the interaction with the electricity market module (EMM) is important for modeling grid-connected renewable-electric applications. The penetration of grid-connected generation technologies, with the exception of municipal solid waste, is determined by EMM. Hydropower is included in EMM directly. Figure 11. Renewable Fuels Module Structure Each submodule of RFM is solved independently of the rest. Because variable operation and maintenance costs for renewable technologies are lower than for any other major generating technology and they produce almost no air pollution, all available renewable generating capacity is dispatched first by EMM.

406

Solar Renewable Energy Credits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Renewable Energy Credits Solar Renewable Energy Credits Solar Renewable Energy Credits < Back Eligibility Commercial Construction Fed. Government Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Benchmarks set by procurement administrators Program Info Start Date 2012 State Illinois Program Type Performance-Based Incentive Rebate Amount Negotiated with procurement administrators In August 2007, Illinois enacted legislation (Public Act 095-0481) that created the Illinois Power Agency (IPA). The agency's purpose is to develop electricity procurement plans for investor-owned electric utilities (EUs) supplying over 100,000 Illinois customers to ensure "adequate, reliable, affordable, efficient, and environmentally sustainable electric

407

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

LCA can help determine environmental burdens from "cradle LCA can help determine environmental burdens from "cradle to grave" and facilitate more consistent comparisons of energy technologies. Figure 1. Generalized life cycle stages for energy technologies Source: Sathaye et al. (2011) Life cycle GHG emissions from renewable electricity generation technologies are generally less than those from fossil fuel-based technologies, based on evidence assembled by this project. Further, the proportion of GHG emissions from each life cycle stage differs by technology. For fossil-fueled technologies, fuel combustion during operation of the facility emits the vast majority of GHGs. For nuclear and renewable energy technologies, the majority of GHG emissions occur upstream of operation. LCA of Energy Systems

408

Three-phase power supplying system for induction motor of the diesel-electric locomotive  

Science Conference Proceedings (OSTI)

In the railway traction systems, an important role play Diesel-electric locomotive. The AC traction motor proves its advantages compared to the DC older motor, but the supply (the power inverter) is more sophisticated and expensive and, in many cases, ...

M. Huzau; Eva-Henrietta Dulf; V. Tulbure; Cl. Festila

2008-05-01T23:59:59.000Z

409

Easing the Natural Gas Crisis: Reducing Natural Gas Prices Through Electricity Supply Diversification  

E-Print Network (OSTI)

anticipated future growth in imported natural gas, reducing natural gas prices may well enhance social welfareEasing the Natural Gas Crisis: Reducing Natural Gas Prices Through Electricity Supply on the findings of a recent study that I helped manage and conduct, a study titled "Easing the Natural Gas Crisis

410

Report on emergency electrical power supply systems for nuclear fuel cycle and reactor facilities security systems  

SciTech Connect

The report includes information that will be useful to those responsible for the planning, design and implementation of emergency electric power systems for physical security and special nuclear materials accountability systems. Basic considerations for establishing the system requirements for emergency electric power for security and accountability operations are presented. Methods of supplying emergency power that are available at present and methods predicted to be available in the future are discussed. The characteristics of capacity, cost, safety, reliability and environmental and physical facility considerations of emergency electric power techniques are presented. The report includes basic considerations for the development of a system concept and the preparation of a detailed system design.

1977-01-01T23:59:59.000Z

411

Production Tax Credit for Renewable Electricity Generation (released in AEO2005)  

Reports and Publications (EIA)

In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the Federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10-percent Federal tax credit on new investment in capital-intensive wind and solar generation technologies.

Information Center

2005-04-01T23:59:59.000Z

412

Renewable Energy Requirement Status: 2005  

Science Conference Proceedings (OSTI)

The potential impacts of renewable portfolio standards (RPS) and other requirements are significant for electricity generation, transmission, and distribution companies, especially for those that depend on coal and other fossil fuels to supply the power delivered to their customers. this Technical Update is to update the information presented in the previous EPRI report, Renewable Energy Requirement Status and Compliance Strategies: 2004 (1008374, December 2004). Although the assessment focuses on state ...

2006-03-30T23:59:59.000Z

413

Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

renewable energy companies compete in a rapidly renewable energy companies compete in a rapidly growing, highly competitive global market worth hundreds of billions of dollars per year[7], a market projected to grow to $460 billion per year by 2030[1]. Due in part to a highly skilled workforce and a growing energy education system, American businesses, workers, and their communities are uniquely positioned to take advantage of this opportunity. Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE), part of the U.S. Department of Energy (DOE), plays a key role in advancing America's "all of the

414

Technology R&D Needs for Integrating High Penetrations of Variable Utility-Scale Renewable Power Sources into the Electric Power Inf rastructure  

Science Conference Proceedings (OSTI)

While the North American electric energy resource portfolio continues to evolve, integrating large-scale renewable resources into the electric power infrastructure presents significant challenges. This is particularly true of variable renewable resources, such as wind and solar, which represent two of the most rapidly growing renewable resources being deployed. The root of this challenge lies in the inherent variability of wind and solar resources, which differentiates these from other renewable resource...

2008-05-15T23:59:59.000Z

415

Renewable Energy Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Standard Renewable Energy Standard Renewable Energy Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Rhode Island Program Type Renewables Portfolio Standard Provider Rhode Island Office of Energy Resources Rhode Island's Renewable Energy Standard (RES), established in June 2004, requires the state's retail electricity providers -- including non-regulated power producers and distribution companies -- to supply 16% of their retail electricity sales from renewable resources by the end of 2019. The requirement began at 3% by the end of 2007, and then increases an additional 0.5% per year through 2010, an additional 1% per year from 2011

416

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

most renewable energy technologies currently are at a costRenewable energy advocates argue that RES deserve similar subsidies to overcome their current cost-costs while and minimizing the financial subsidies; and Ensure sustainable growth of the renewable energy

Haas, Reinhard

2008-01-01T23:59:59.000Z

417

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

the costs of renewable energy procurement, the costs of theRE is the total costs of renewable energy procurement, r resThough the total costs of renewable energy procurement ( C

Barbose, Galen

2013-01-01T23:59:59.000Z

418

If the shoe FITs: using feed-in tariffs to meet U.S. Renewable electricity targets  

SciTech Connect

Experiences in Europe have demonstrated that well-designed FITs can drive rapid and dramatic growth in renewable electricity markets, promote strong manufacturing industries, and create thousands of new jobs in a cost-effective manner. If properly structured, FIT-inspired mechanisms in the U.S. have the potential to jumpstart rapid renewable energy market growth that could reshape the country's energy landscape. (author)

Rickerson, Wilson H.; Sawin, Janet L.; Grace, Robert C.

2007-05-15T23:59:59.000Z

419

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas" Arkansas" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",37053,38365,37370,38049,39548,39527,43678,42790,43199,44131,41486,44728,42873,41637,45055,40545,42068,45523,45880,45423,47108 " Independent Power Producers","-","-","*",2,1,"-","*",4,3,1,"*","*",1247,5030,3204,3997,6966,6311,5940,8786,10732 " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-","-","-","-",539,1304,1550,1436,1215,1151,847,1286,1361,1220

420

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

United States" United States" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",2808151,2825023,2797219,2882525,2910712,2994529,3077442,3122523,3212171,3173674,3015383,2629946,2549457,2462281,2505231,2474846,2483656,2504131,2475367,2372776,2471632 " Independent Power Producers",31895,38596,45836,53396,54514,58222,60132,58741,91455,200905,457540,780592,955331,1063205,1118870,1246971,1259062,1323856,1332068,1277916,1338712 " Combined Heat and Power, Electric",61275,71942,91319,107976,123500,141480,146567,148111,153790,155404,164606,169515,193670,195674,184259,180375,165359,177356,166915,159146,162042

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

South Dakota" South Dakota" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",6427,6573,6246,5256,7991,8812,10066,12450,9089,10557,9697,7401,7722,7905,7358,6368,6989,5991,6942,7780,8682 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-","-","-","-",39,153,152,143,145,140,416,1367 "Electric Power Sector Generation Subtotal",6427,6573,6246,5256,7991,8812,10066,12450,9089,10557,9697,7401,7722,7944,7510,6521,7132,6137,7083,8196,10050 " Combined Heat and Power, Commercial","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","*","*","*"

422

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana" Indiana" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",97738,98200,97300,99951,103485,105189,105557,110466,112772,114183,119721,114666,112030,112396,114690,117374,117644,116728,115888,103594,107853 " Independent Power Producers","-","-","-","-","-",46,70,85,788,2828,3794,3665,9879,3417,3268,3659,3488,4518,4839,4228,6464 " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-","-","-",1,12,22,5474,5630,5650,5526,5915,5301,5984,7525

423

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",361,180,74,188,274,189,110,71,244,230,97,"-","-","-","-","-","-","-","-","-","-" " Independent Power Producers","-","-","-","-","-","-","-","-","-","-",47,123,262,74,36,226,81,75,72,35,200 "Electric Power Sector Generation Subtotal",361,180,74,188,274,189,110,71,244,230,144,123,262,74,36,226,81,75,72,35,200

424

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",62289,66767,70109,68025,71204,68967,70877,78060,81299,83096,88150,85808,81710,80348,81352,82915,84356,88826,94453,89640,91233 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-","-",3290,10954,11851,20891,16390,17617,22209,24217,21713,19954 " Combined Heat and Power, Electric","-","-","-","-",271,399,388,383,410,434,425,459,1153,1823,1874,1689,1959,1853,370,301,188

425

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky" Kentucky" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",73807,75505,77351,84998,84097,86162,88438,91558,86151,81658,81350,83678,80162,80697,82921,85680,86816,85259,86012,90030,97472 " Independent Power Producers","-","-","-","-","-","-","-","-",4766,11011,11503,11448,11369,10566,11097,11622,11449,11397,11316,119,171 "Electric Power Sector Generation Subtotal",73807,75505,77351,84998,84097,86162,88438,91558,90917,92669,92853,95126,91530,91263,94018,97302,98266,96656,97328,90149,97644 " Combined Heat and Power, Commercial","-","-","-","-","-","-","-","-","-","-","-",98,"-","-","-","-","-","-","-","-","-"

426

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

North Dakota" North Dakota" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",26824,27535,28592,28500,29004,28842,30770,29720,30519,31260,31123,30136,31147,31075,29527,31513,30328,30403,30853,31375,31344 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-","-","-","-",52,209,215,363,614,1687,2625,3216 "Electric Power Sector Generation Subtotal",26824,27535,28592,28500,29004,28842,30770,29720,30519,31260,31123,30136,31147,31127,29735,31728,30692,31016,32539,34000,34560

427

Test of Polymer Electrolyte Membrane Fuel Cell / Uninterruptible Power Supply for Electric Utility Battery Replacement Markets  

Science Conference Proceedings (OSTI)

A sub-scale polymer electrolyte membrane (PEM) fuel cell/capacitor uninterruptible power supply (UPS) was designed and constructed based on previous research. Testing of this sub-scale UPS as a replacement for existing battery systems is documented in this report. The project verified that the PEM fuel cells, coupled with an ultracapacitor, could functionally replace batteries used for emergency power at electric generating stations. Remaining steps to commercialization include continuing market research...

2001-12-18T23:59:59.000Z

428

RENEWABLE ENERGY AT WHAT COST? ASSESSING THE EFFECT OF FEED-IN TARIFF POLICIES ON CONSUMER ELECTRICITY PRICES IN THE EUROPEAN UNION.  

E-Print Network (OSTI)

??In the last two decades, feed-in tariffs (FIT) have emerged as the dominant policy instrument for supporting electricity from renewable sources in the European Union. (more)

Klein, Christopher A.

2012-01-01T23:59:59.000Z

429

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

CEC). 2000. California Natural Gas Analysis and Issues.2002. Average Price of Natural Gas Sold to Electric Utilityfor investments in natural gas and renewables to complement

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

430

Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report  

DOE Green Energy (OSTI)

Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

Kevin Morrow; Dimitri Hochard; Jeff Wishart

2011-09-01T23:59:59.000Z

431

Decarbonizing the Electric Sector: Combining Renewable and Nuclear Energy using Thermal Storage  

Science Conference Proceedings (OSTI)

Both renewable and nuclear energy can provide significant contributions to decarbonizing the electric sector. However, a grid employing large amounts of wind and solar energy requires the balance of the system to be highly flexible to respond to the increased variability of the net load. This makes deployment of conventional nuclear power challenging both due to the technical challenges of plant cycling and economic limits of reduced capacity factor. In the United States nuclear power plants generally provide constant, base load power and are most economic when operated at constant power levels. Operating nuclear power plants in load-following modes decreases the plants' annual energy output and increases the levelized cost of energy, decreasing economic competitiveness. One possible solution is to couple thermal energy storage to nuclear power plants. This would enable the reactor to remain at nearly constant output, while cycling the electrical generator in response to the variability of the net load. This paper conceptually explores combinations of wind, solar, and nuclear that can provide a large fraction of a system's electricity, assuming the use of thermal energy storage that would allow nuclear power to provide load following and cycling duty while operating at a constant reactor power output.

Denholm, P.; King, J.; Kutscher, C.; Wilson, P.

2012-05-01T23:59:59.000Z

432

Diesel plant retrofitting options to enhance decentralized electricity supply in Indonesia  

Science Conference Proceedings (OSTI)

Over the last 20 years, the government of Indonesia has undertaken an extensive program to provide electricity to the population of that country. The electrification of rural areas has been partially achieved through the use of isolated diesel systems, which account for about 20% of the country`s generated electricity. Due to many factors related to inefficient power production with diesels, the National Renewable Energy Laboratory, in conjunction with PLN, the Indonesian national utility, Community Power Corporation, and Idaho Power Company, analyzed options for retrofitting existing diesel power systems. This study considered the use of different combinations of advanced diesel control, the addition of wind generators, photovoltaics and batteries to reduce the systems of overall cost and fuel consumption. This analysis resulted in a general methodology for retrofitting diesel power systems. This paper discusses five different retrofitting options to improve the performance of diesel power systems. The systems considered in the Indonesian analysis are cited as examples for the options discussed.

Baring-Gould, E.I.; Barley, C.D.; Drouilhet, S. [and others

1997-09-01T23:59:59.000Z

433

Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint  

SciTech Connect

The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

Simpson, M.; Markel, T.

2012-08-01T23:59:59.000Z

434

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" Pennsylvania" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",165683,162367,166034,166201,169029,168942,175022,177167,173903,161596,97076,27634,30537,30099,33900,1058,1311,1077,1225,1160,1087 " Independent Power Producers",784,1158,1892,2839,3331,4161,5191,4742,5231,21630,93924,158605,164018,165678,170336,205816,205075,212668,209081,205083,213653 " Combined Heat and Power, Electric",4587,4726,6302,6692,6588,7129,7301,7239,7732,7107,6558,6171,5718,6774,6676,7629,8854,9033,8978,10278,12168 "Electric Power Sector Generation Subtotal",171054,168251,174228,175731,178948,180232,187513,189147,186867,190333,197557,192410,200274,202551,210912,214503,215240,222778,219284,216521,226908

435

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" Oregon" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",49172,46298,41220,40743,37490,44031,47884,49068,46352,51698,46060,38060,39732,38578,39093,37407,43069,43203,44591,42703,41143 " Independent Power Producers",370,330,335,427,399,429,457,511,510,583,496,467,718,4003,4801,4493,4055,4269,5801,6621,6953 " Combined Heat and Power, Electric",250,324,300,326,276,276,2032,2166,3686,3916,4464,5675,5842,5358,5891,5947,4831,6181,6952,6386,6421 "Electric Power Sector Generation Subtotal",49792,46952,41855,41496,38165,44736,50373,51746,50549,56196,51020,44201,46292,47939,49785,47847,51955,53653,57344,55710,54516

436

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho" Idaho" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",8618,8282,6260,9023,7303,10063,12231,13512,11978,12456,10114,6667,8164,7733,7766,8032,10495,8612,8894,9978,8589 " Independent Power Producers",498,464,394,693,613,927,1053,1164,958,1043,855,1696,681,1788,2175,1895,2042,2098,2361,2324,2674 " Combined Heat and Power, Electric",81,81,81,83,81,79,98,205,215,209,194,201,245,245,248,240,214,177,134,192,156 "Electric Power Sector Generation Subtotal",9197,8827,6736,9799,7997,11069,13381,14881,13150,13708,11163,8564,9090,9765,10188,10167,12751,10888,11389,12494,11419

437

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",114528,104968,119310,125782,126749,121881,114706,112183,114926,87875,85856,70133,74588,81728,75177,89348,100338,87349,83347,85124,96940 " Independent Power Producers",15407,17428,17919,20462,18752,18957,19080,18587,31929,57912,78996,88665,63545,65429,75928,68721,76509,82491,85067,80767,69294 " Combined Heat and Power, Electric",17547,19021,21149,21598,21642,21691,21513,21932,23267,22964,23410,21305,26976,25458,24567,23459,21399,22342,21535,21009,19582 "Electric Power Sector Generation Subtotal",147482,141418,158378,167842,167143,162529,155299,152701,170122,168751,188263,180103,165109,172616,175672,181527,198247,192181,189949,186900,185816

438

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado" Colorado" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",31313,31038,31899,32687,33324,32674,33972,34376,35471,36167,40108,41958,41510,41226,40436,41015,42056,42353,41177,37468,39584 " Independent Power Producers",226,206,218,231,246,237,267,298,308,178,790,1667,961,2877,5596,6834,7004,9680,10629,11515,9937 " Combined Heat and Power, Electric",930,984,1012,1013,1775,2427,2632,2726,2850,2897,3044,2958,2866,2314,1685,1643,1533,1782,1545,1531,1135 "Electric Power Sector Generation Subtotal",32469,32228,33128,33931,35345,35337,36871,37400,38630,39243,43942,46582,45337,46417,47718,49492,50593,53816,53351,50513,50656

439

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota" Minnesota" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",41550,40428,37784,41254,40917,42503,41792,40303,43977,44154,46616,44798,48569,49576,47232,46791,46711,47793,46758,44442,45429 " Independent Power Producers",240,174,316,294,330,399,432,445,506,832,1067,1424,1206,2858,2792,3332,4136,3774,5472,5851,5909 " Combined Heat and Power, Electric","-","-","-","-","-","-","-",50,650,606,605,510,552,697,309,938,639,1143,784,628,560 "Electric Power Sector Generation Subtotal",41789,40602,38099,41548,41247,42902,42224,40798,45133,45592,48288,46732,50327,53132,50333,51062,51485,52710,53014,50921,51898

440

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland" Maryland" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",31497,38215,39587,43488,43766,44659,44381,44553,48514,49324,31783,88,31,52,30,44,12,24,6,2,3 " Independent Power Producers",20,20,20,18,20,167,277,290,305,341,15801,46079,44828,48824,48457,48780,45406,46274,43748,40492,40879 " Combined Heat and Power, Electric",1227,1192,1122,1017,1067,1071,1136,1377,1405,1528,3050,2808,2835,2813,2926,3196,2902,3275,3086,2795,2237 "Electric Power Sector Generation Subtotal",32744,39427,40729,44524,44852,45896,45793,46219,50223,51193,50634,48975,47695,51689,51413,52020,48320,49573,46840,43290,43118

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

New York" New York" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",128655,126077,112229,106315,103763,101161,104360,108099,115840,97009,73188,58569,43466,41579,40956,39963,41599,40248,38170,35771,34633 " Independent Power Producers",2433,2411,2837,2833,3040,3142,3479,3187,3316,24869,40757,62191,76297,77979,81182,90252,86965,91333,89612,86856,89333 " Combined Heat and Power, Electric",1262,2815,6252,9652,13943,23754,22950,25109,21459,21097,21188,20401,17189,15615,13744,14475,11624,12388,10722,8866,11183 "Electric Power Sector Generation Subtotal",132350,131303,121318,118799,120746,128057,130790,136394,140615,142975,135132,141161,136952,135173,135882,144690,140187,143969,138504,131494,135150

442

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Maine" Maine" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",9064,9519,8335,8076,9016,2668,7800,3223,3549,1189,3,"-",1,1,1,1,"*",1,1,1,2 " Independent Power Producers",1880,1884,1807,1922,1911,1501,1611,1595,1805,5949,7619,12050,13006,11668,12630,13127,11091,10154,10942,10946,11278 " Combined Heat and Power, Electric",473,751,824,801,661,803,815,787,842,829,1691,2924,3212,1691,1400,730,701,702,575,479,603 "Electric Power Sector Generation Subtotal",11417,12154,10967,10799,11588,4972,10226,5605,6195,7967,9313,14975,16219,13361,14031,13858,11792,10857,11517,11426,11883

443

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",36479,35802,32838,28164,27466,26972,27759,33899,26037,4360,1705,1566,1157,2056,1524,1622,943,494,507,448,803 " Independent Power Producers",1729,1772,1941,2398,2938,3577,3114,3560,12600,29003,30158,30176,34031,40102,41036,42122,41847,43406,39846,35883,38145 " Combined Heat and Power, Electric",751,2573,4422,5619,6648,6241,6139,6647,6296,6333,5981,5769,5852,5378,4053,2896,1938,2400,1444,1918,3192 "Electric Power Sector Generation Subtotal",38958,40148,39201,36180,37052,36790,37012,44105,44933,39695,37844,37511,41040,47536,46614,46640,44728,46300,41797,38249,42139

444

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan" Michigan" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",89059,94567,82679,92250,83721,92479,95155,89565,85146,87875,89572,97067,100452,96634,99609,104831,97374,96786,94504,82787,89667 " Independent Power Producers",639,694,868,1186,1343,1456,1777,1679,1747,1723,1751,2399,5031,2302,2560,4337,3859,11028,10954,10449,12570 " Combined Heat and Power, Electric",6354,6702,7907,8906,9221,9611,12045,12288,11014,11080,10476,10502,10138,9917,13904,10161,9077,9327,7350,6204,7475 "Electric Power Sector Generation Subtotal",96051,101963,91455,102341,94285,103546,108977,103532,97907,100678,101800,109968,115620,108853,116073,119329,110310,117141,112807,99440,109712

445

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio" Ohio" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",126510,132694,136297,133735,129021,137860,142900,141249,146448,140912,144358,135484,139904,139086,142305,102751,98159,100536,98397,93940,92198 " Independent Power Producers",9,9,9,7,3,5,5,"-","-","-",3157,5242,6421,6124,4699,52817,55836,53366,53646,40775,49722 " Combined Heat and Power, Electric",32,26,33,26,1305,20,49,44,155,117,275,268,302,382,319,328,322,350,298,472,652 "Electric Power Sector Generation Subtotal",126551,132729,136338,133768,130329,137885,142954,141293,146603,141029,147790,140995,146627,145591,147324,155896,154317,154252,152341,135187,142572

446

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Utah" Utah" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",32260,30158,32921,33461,34455,32101,32229,33969,35160,36071,35827,35139,36072,37545,37166,36695,39591,43320,44424,40992,39522 " Independent Power Producers",23,23,23,229,384,377,424,402,395,409,440,396,485,447,406,706,829,1096,976,1325,1517 " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-","-",8,9,10,11,9,7,7,11,11,-2,10,9 "Electric Power Sector Generation Subtotal",32283,30181,32943,33690,34839,32478,32653,34371,35556,36488,36276,35544,36568,38002,37579,37408,40430,44427,45398,42327,41048

447

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii" Hawaii" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",7996,7333,6861,6084,6055,6191,6420,6213,6301,6452,6535,6383,7513,6493,6982,6915,7040,6928,6701,6510,6416 " Independent Power Producers",386,377,408,512,623,641,606,656,647,603,656,521,400,551,267,280,349,508,901,804,762 " Combined Heat and Power, Electric",542,146,1760,2585,2713,2809,2932,2869,2790,2782,2860,3225,3289,3640,3568,3769,3566,3525,3190,3122,2945 "Electric Power Sector Generation Subtotal",8924,7856,9030,9181,9391,9640,9958,9738,9738,9837,10051,10129,11202,10685,10818,10964,10956,10961,10792,10435,10123

448

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Washington" Washington" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",100479,101353,84115,83771,82348,95671,112606,117453,97128,112072,96227,67683,88568,82205,83501,83153,94067,90531,93162,90733,88057 " Independent Power Producers",177,189,312,302,336,365,324,408,350,484,6588,9454,9817,13541,15054,15287,10887,13797,14908,10531,12330 " Combined Heat and Power, Electric",8,257,706,2663,4568,4693,4204,2947,3246,3048,4065,4427,3268,3350,2583,2517,2385,1948,1860,2085,1740 "Electric Power Sector Generation Subtotal",100664,101799,85133,86736,87252,100729,117135,120808,100724,115604,106879,81564,101654,99097,101138,100956,107339,106277,109929,103349,102127

449

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina" Carolina" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",69260,69838,71479,75588,74194,78440,76326,78374,84397,87347,90421,86735,93689,91544,94407,99104,95873,99997,97921,97337,100611 " Independent Power Producers",60,38,63,58,64,61,52,55,64,40,179,497,633,278,486,735,730,771,753,430,1034 " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-",349,627,565,509,416,100,855,595,623,619,506,650,770 "Electric Power Sector Generation Subtotal",69320,69876,71541,75646,74258,78501,76378,78429,84810,88014,91165,87741,94738,91923,95747,100435,97225,101387,99179,98416,102414

450

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" Oklahoma" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",45063,44850,45943,48811,45381,47955,47545,48380,51454,50279,51403,50414,51218,49777,48298,54251,51917,54178,60075,57517,57421 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-","-",844,3970,4247,8913,10282,14784,14871,12651,14423,11546 " Combined Heat and Power, Electric",1017,2964,2895,3139,3381,3314,3042,3173,3539,3434,3027,2731,2622,5217,2256,2822,2642,2854,2682,2318,2382 "Electric Power Sector Generation Subtotal",46080,47814,48838,51949,48762,51269,50586,51553,54993,53712,54430,53988,57810,59240,59467,67355,69344,71902,75409,74258,71348

451

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Florida" Florida" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",123624,130744,133977,140067,141791,147157,145140,147984,169447,166914,169889,170966,182347,188035,193384,196096,200015,200534,196524,195063,206062 " Independent Power Producers",1696,2267,3025,3472,3551,4082,3903,3716,4258,4560,5676,5675,7247,8276,10334,10189,10156,11500,10142,10774,10587 " Combined Heat and Power, Electric",647,549,745,2138,5777,9333,11125,9779,9348,9526,10037,8957,9242,10335,8779,8515,8656,8420,8326,7203,6914 "Electric Power Sector Generation Subtotal",125967,133560,137746,145677,151119,160571,160168,161479,183053,181000,185602,185598,198835,206645,212497,214800,218827,220453,214992,213040,223563

452

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia" West Virginia" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",77364,71254,72334,71078,77703,77322,83978,88284,89605,91678,89709,51609,63342,64057,59084,61242,68164,69348,66667,51709,56720 " Independent Power Producers",250,300,568,1238,1353,936,929,960,946,892,1040,28458,29373,28429,28498,30556,23959,23058,23138,17700,22757 " Combined Heat and Power, Electric","-","*",354,443,414,377,442,456,443,435,451,306,409,446,465,467,470,417,411,413,388 "Electric Power Sector Generation Subtotal",77614,71554,73256,72759,79470,78635,85349,89701,90994,93005,91200,80373,93123,92932,88047,92265,92593,92823,90216,69822,79865

453

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",592,171,109,54,69,653,3301,3563,2061,9,11,"-",12,12,12,11,11,11,11,11,11 " Independent Power Producers",50,2403,4315,4037,4191,3310,3964,3552,5028,5843,5406,6990,6927,5557,4891,5957,5875,6989,7324,7633,7696 " Combined Heat and Power, Electric",422,292,291,502,400,447,379,539,518,473,506,459,71,9,"-",18,18,"-","-","-","-" "Electric Power Sector Generation Subtotal",1064,2867,4716,4594,4660,4410,7644,7654,7608,6326,5923,7449,7010,5578,4904,5987,5904,7000,7335,7644,7707

454

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" Connecticut" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",32156,23552,25154,28715,27201,26932,15774,13228,15123,20484,16993,2817,21,60,45,42,48,37,52,47,66 " Independent Power Producers",673,719,1024,1058,1099,1604,1279,1246,1461,4993,13223,25296,28878,27167,30345,31564,32431,31087,28138,28959,31185 " Combined Heat and Power, Electric",1987,2562,2671,2691,2552,2512,2289,2321,2264,2243,2401,2080,2053,1986,1966,1697,1874,1831,1956,1874,1724 "Electric Power Sector Generation Subtotal",34815,26833,28848,32463,30853,31048,19342,16795,18847,27720,32617,30193,30952,29212,32356,33303,34352,32956,30147,30880,32974

455

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina" North Carolina" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",79845,83520,83007,88754,91455,96110,102787,107371,113112,109882,114433,109807,115598,118433,118329,121675,117797,123216,118778,112961,121251 " Independent Power Producers",104,431,432,429,1175,1773,1638,1793,467,474,693,810,1914,1943,1699,1863,1815,1686,1398,1341,2605 " Combined Heat and Power, Electric",2587,3470,3579,3482,3544,3965,3247,1467,3024,2835,3287,3343,3272,3575,3207,3064,2854,3034,2929,2188,2598 "Electric Power Sector Generation Subtotal",82535,87420,87018,92665,96174,101848,107671,110631,116603,113191,118414,113961,120784,123951,123234,126602,122467,127936,123105,116490,126454

456

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey" Jersey" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",36489,37029,31167,34285,31932,27088,19791,23761,35911,38868,25254,1630,1569,1910,1649,1249,1043,-191,-206,-187,-186 " Independent Power Producers",253,716,1240,1099,1408,1434,1700,1556,1138,1229,15677,41097,43924,41228,42169,46809,48723,51439,52292,52182,56686 " Combined Heat and Power, Electric",2202,3824,8384,9975,12108,13591,13156,13370,13598,13525,14104,13418,13693,12777,10705,11365,9999,10653,10740,8717,8041 "Electric Power Sector Generation Subtotal",38943,41569,40791,45359,45448,42113,34647,38687,50647,53622,55035,56145,59186,55916,54523,59422,59765,61901,62825,60712,64540

457

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada" Nevada" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",19286,20922,20963,19820,20519,19997,21362,22870,26553,26486,29342,27896,25009,24635,24246,24112,19686,22377,22979,26095,23711 " Independent Power Producers",764,999,1181,1552,1565,1611,1762,1831,1749,1712,3691,3535,4653,5324,11022,13955,9546,7624,9872,9393,9015 " Combined Heat and Power, Electric","-",144,1203,2130,2433,2356,2456,2331,2312,2335,2453,2445,2428,3236,2399,2146,2282,2257,1900,2013,2157 "Electric Power Sector Generation Subtotal",20051,22065,23348,23502,24518,23964,25580,27031,30614,30532,35485,33876,32089,33195,37667,40214,31515,32257,34751,37500,34883

458

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico" Mexico" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",28491,25065,27708,28364,30018,29432,29364,30568,31428,31654,32856,32211,29926,31770,32243,33562,35411,34033,33845,34245,30848 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-",185,370,40,273,589,805,1291,1404,2420,4881,4912 " Combined Heat and Power, Electric",19,19,19,17,18,17,382,507,520,524,520,493,496,504,"-",479,479,472,464,477,417 "Electric Power Sector Generation Subtotal",28510,25084,27726,28382,30036,29449,29747,31075,31948,32179,33560,33074,30462,32548,32831,34846,37181,35909,36729,39603,36178

459

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" Virginia" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",47200,48941,48964,52182,52732,52727,56533,58986,63815,65071,65843,62135,62880,61806,65104,65456,61176,64317,59780,59225,58902 " Independent Power Producers",428,813,1670,2298,2313,3341,3017,2510,2285,2408,2858,4697,4828,6058,6263,5279,4636,6538,4970,5627,9303 " Combined Heat and Power, Electric",2162,2318,2886,4068,4062,3856,3952,3746,2827,3234,5344,4593,4074,4368,4509,5251,4409,4638,5020,2608,2545 "Electric Power Sector Generation Subtotal",49790,52072,53520,58547,59107,59925,63502,65242,68927,70713,74045,71426,71783,72232,75876,75986,70221,75493,69770,67461,70750

460

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama" Alabama" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",76232,85051,90792,94124,95171,99589,115093,113684,113394,113909,118037,118744,123739,126846,124555,126304,124365,124273,128055,118782,122766 " Independent Power Producers",28,25,25,11,15,7,6,5,4,49,42,45,2357,4065,6127,4821,7103,9202,10683,15302,20923 " Combined Heat and Power, Electric",666,787,778,788,693,647,671,683,842,747,550,698,1459,1311,1446,2174,4683,5705,2569,4606,4243 "Electric Power Sector Generation Subtotal",76925,85863,91596,94922,95879,100244,115770,114372,114240,114704,118629,119487,127555,132221,132127,133299,136152,139180,141307,138690,147933

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana" Louisiana" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",58168,57158,55188,59353,60170,65555,58643,61120,66107,64837,57601,50378,54922,43485,47604,44158,40891,43523,43164,43592,51681 " Independent Power Producers",866,749,855,1434,1169,1162,1167,1253,1264,1024,11091,14007,16941,21184,18811,18095,18740,17735,18768,16746,17780 " Combined Heat and Power, Electric",1604,1581,954,1579,1606,1404,1377,1568,1664,1522,1421,1551,1650,1845,5233,8254,4165,4416,4317,4836,5083 "Electric Power Sector Generation Subtotal",60638,59488,56997,62366,62945,68121,61187,63941,69035,67383,70113,65936,73513,66513,71648,70507,63796,65674,66249,65174,74544

462

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Texas" Texas" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",234047,238343,239964,248174,255141,261709,272283,277190,293068,292458,297299,265013,149587,86882,92054,95187,94638,97260,94637,90418,95099 " Independent Power Producers",24,24,24,22,21,24,122,151,183,1072,10466,30779,138777,197114,205978,216933,224749,224719,229159,227007,232230 " Combined Heat and Power, Electric",13642,13589,14417,15794,15448,18178,19080,19891,23626,25590,28495,35618,56862,55432,49841,44759,41286,46010,45785,44780,43045 "Electric Power Sector Generation Subtotal",247713,251956,254405,263990,270610,279911,291485,297232,316877,319120,336259,331410,345226,339428,347872,356879,360674,367989,369581,362206,370374

463

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

New Hampshire" New Hampshire" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",10810,12705,13451,14586,11888,13936,15419,14264,14238,13876,12702,13095,12276,6232,6169,5638,4575,4888,4348,3788,3979 " Independent Power Producers",1135,1168,1209,1216,1130,1099,1180,1164,1360,1818,1861,1574,3385,15014,17315,18438,17297,18237,18471,16314,18163 " Combined Heat and Power, Electric",93,90,87,83,68,85,85,75,92,94,86,80,20,"-","-","-","-","-","-","-","-" "Electric Power Sector Generation Subtotal",12038,13964,14747,15885,13086,15120,16684,15504,15690,15788,14648,14749,15681,21245,23484,24076,21872,23125,22819,20103,22143

464

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia" Georgia" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",97565,90809,91779,95738,98753,102016,98729,101780,108717,110537,116177,110565,111856,115755,117919,126445,127368,132832,126031,115075,120426 " Independent Power Producers",8,7,8,11,53,316,124,219,407,513,1431,1847,4894,3031,3861,4913,5164,6843,5431,9080,12115 " Combined Heat and Power, Electric","-","-","-","-","-","-","-",568,792,716,664,386,388,207,33,141,178,274,114,25,178 "Electric Power Sector Generation Subtotal",97573,90816,91787,95748,98806,102332,98853,102567,109915,111766,118271,112798,117138,118993,121813,131499,132709,139949,131576,124180,132719

465

EIA Energy Kids - Electricity  

U.S. Energy Information Administration (EIA)

The energy sources we use to make electricity can be renewable or non-renewable, but electricity itself is neither renewable nor non-renewable.

466

Energy conversion apparatus for supplying variable voltage direct current power to an electrically propelled vehicle  

SciTech Connect

A synchronous machine, operable as both a motor and a generator, is mounted on an electrically powered vehicle, such as a mine shuttle car, and includes a plurality of conductors having connections that are detachably engagable with receptacles of a stationary power bank. Engagement of the conductors with the receptacles supplies variable voltage alternating current power to the machine. The machine is drivingly connected to a flywheel on the vehicle and, operating as a motor, energizes the flywheel to store a preselected amount of mechanical energy. The electrical connection between the vehicle and the power bank is opened after the flywheel has been sufficiently charged. The stored energy in the flywheel is then available to drive the machine as a generator and produce high frequency, three phase, alternating current power. The generated power is transmitted to a full wave silicon controlled rectifier that converts the alternating current power to direct current for powering the traction motors of the vehicle. A variable voltage controller is connected to the rectifier and actuates the rectifier to supply direct current at a selected voltage level. The controller is responsive to an operator foot pedal. By manually depressing the foot pedal to a selected position, the voltage level of the rectified current is controlled. Thus, the speed of the traction motors is adjustable topropel the vehicle at a speed within a given range. After a portion of the energy stored by the flywheel is consumed, the vehicle is returned to the power bank to replenish the energy supply.

Jamison, W.B.; Burr, J.F.

1976-09-07T23:59:59.000Z

467

RETHINKING FEED-IN TARIFFS AND PRIORITY DISPATCH FOR RENEWABLES  

E-Print Network (OSTI)

Within the German System of feed-in tariffs for renewable electricity supply (RES) producers of renewable electricity also have the privilege of priority dispatch. Depending on the design of the tariff this is either a physical priority dispatch (guaranteed grid access) or a financial priority (bonus payments). In either case suppliers of renewable energy sources are inclined to deliver energy even when the cost of production exceeds the market price, i.e. the electricitys value. We suggest to remove the priority dispatch and to modify the design of feed-in tariffs in such a way that RES suppliers receive a payment for their potential supply in cases where the price of electricity drops below their marginal costs. Thereby, renewable electricity producers will suffer no drawbacks but social welfare increases.

Mark Andor; Kai Flinkerbusch; Matthias Janssen; Bjrn Liebau; Magnus Wobben

2010-01-01T23:59:59.000Z

468

New England Wind Forum: Renewable Energy Portfolio Standards  

Wind Powering America (EERE)

Renewable Energy Portfolio Standards Renewable Energy Portfolio Standards Renewable Energy Portfolio Standards (RPSs) are requirements for sellers of electricity to retail customers to include in their supply portfolio a specified fraction of eligible renewable energy. In New England, all the states have adopted such standards: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont (although Vermont's renewable energy goals are not binding). Each state treats wind as an eligible resource, and all states require increasing percentages of renewable energy supply over time. Renewable Energy Portfolio Standards policies in Massachusetts and Connecticut represent the greatest potential to spur the development of new wind power in New England due to their population densities (compared to the rest of New England) and aggressive Renewable Energy Portfolio Standards targets.

469

Programs in Renewable Energy  

DOE Green Energy (OSTI)

Our nation faces significant challenges as we enter the 1990s: securing a reliable supply of competitively priced energy, improving the quality of our environment, and increasing our share of foreign markets for goods and services. The US Department of Energy's (DOE) Programs in Renewable Energy are working toward meeting these challenges by developing the technologies that make use of our nation's largest energy resource: renewable energy. The sunlight, wind biomass, flowing water, ocean energy, and geothermal energy that make up the renewable energy resource can be found throughout our nation. These resources can provide all the forms of energy our nation needs: liquid fuels, electricity, and heating and cooling. Renewable energy meets about 10% of our need for these forms of energy today, yet the potential contribution is many times greater. DOE's Programs in Renewable Energy are working side-by-side with American industry to develop the technologies that convert renewable energy resources into practical, cost-competitive energy. After a decade of progress in research, several of these technologies are poised to make large contributions during the 1990s and beyond. This booklet provides an overview of the renewable energy programs and their plans for FY 1990. Sources of additional information are listed at the back of the booklet. 48 figs., 4 tabs.

Not Available

1990-01-01T23:59:59.000Z

470

THE INFLUENCE OF STATE-LEVEL RENEWABLE ENERGY POLICY INSTRUMENTS ON ELECTRICITY GENERATION IN THE UNITED STATES: A CROSS-SECTIONAL TIME SERIES ANALYSIS.  

E-Print Network (OSTI)

??Since the late 1990s, state governments in the U.S. have diversified policy instruments for encouraging the electric power industry to deploy renewable sources for electricity (more)

Park, Sunjoo

2013-01-01T23:59:59.000Z

471

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

that procure electricity objectively analyze the trade-offselectricity in the last several years (CEC 2002b; California Technology, Trade &electricity is derived from renewable sources. The D W R ' s contracting decisions undoubtedly involved trade-

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

472

Method of and apparatus for controlling loads on an electrical power supply  

SciTech Connect

To enable a consumer of electrical energy to effect control of total energy consumption by various individual appliances and loads, each individual load has a control unit, conveniently in a plug top, which responds to pulses broadcast on the power supply wiring in the form of short duration interruptions of the waveform. At each appliance a microprocessor unit counts the number of successive pulses in a predetermined time interval and operates an electronic switch if the received count reaches a predetermined number, which may be different for different loads thereby enabling selective control of the loads. Provision is made for automatic restoration of supply if the overall energy consumption falls. Provision can also be made for automatic resumption of supp

Peddie, R.A.; Fielden, J.S.

1984-09-11T23:59:59.000Z

473

Introducing competition in the French electricity supply industry : the destabilisation of a public hierarchy in an open institutional environment  

E-Print Network (OSTI)

The introduction of market rules in a electricity supply industry characterized by a vertically integrated monopoly and public ownership is not inherently doomed to failure if characteristics of the reform or other elements ...

Finon, Dominique

2002-01-01T23:59:59.000Z

474

An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England  

E-Print Network (OSTI)

the prices of fuels at energy markets and the transportation/distribution costs in making their economic the fuel price at each energy fuel market am. Since this paper focuses on the electric power supply chain markets that captures both the economic network transactions in energy supply markets and the physical

Nagurney, Anna

475

Easing the Natural Gas Crisis: Reducing Natural Gas Prices Through Electricity Supply Diversification -- Testimony  

E-Print Network (OSTI)

imbalance between natural gas supply and demand will clearlywell the shape of the natural gas supply curve (measured byprice elasticity of natural gas supply, or the percentage

Wiser, Ryan

2005-01-01T23:59:59.000Z

476

Renewable Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portfolio Standard Portfolio Standard Renewable Portfolio Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Water Buying & Making Electricity Solar Wind Program Info State Illinois Program Type Renewables Portfolio Standard In August 2007, Illinois enacted legislation (Public Act 095-0481) that created the Illinois Power Agency (IPA). The agency's purpose is to develop electricity procurement plans for investor-owned electric utilities (EUs) supplying over 100,000 Illinois customers to ensure "adequate, reliable, affordable, efficient, and environmentally sustainable electric service at the lowest total cost." The only EUs that meet these criteria and are therefore subject to the IPA procurement process are Commonwealth

477

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

Renewable Energy Policies and Markets in the United States. Prepared for the Energy Foundations China

Haas, Reinhard

2008-01-01T23:59:59.000Z

478

Assumptions to the Annual Energy Outlook 2002 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).117 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

479

Assumptions to the Annual Energy Outlook 2001 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

480

EIA - Assumptions to the Annual Energy Outlook 2009 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2009 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind1. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy.

Note: This page contains sample records for the topic "renewable electricity supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont" Vermont" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",4993,5259,4698,4301,5294,4840,5004,5323,4394,4735,5307,4734,2971,626,643,674,803,701,753,712,721 " Independent Power Producers",134,95,132,297,282,280,309,314,508,933,958,711,2465,5396,4800,5013,6256,5121,6046,6546,5874 "Electric Power Sector Generation Subtotal",5126,5353,4830,4598,5576,5120,5313,5637,4902,5668,6265,5445,5437,6022,5444,5687,7059,5822,6799,7257,6595 " Combined Heat and Power, Industrial",38,35,40,46,41,40,37,43,45,36,38,35,20,6,27,30,25,2,21,25,25 "Industrial and Commercial Generation Subtotal",38,35,40,46,41,40,37,43,45,36,38,35,20,6,27,30,25,2,21,25,25

482

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming" Wyoming" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",39378,38667,41852,40155,42337,39684,40852,40765,44699,42951,44586,43764,42532,42261,43060,44032,42905,43144,43909,43182,44739 " Independent Power Producers","-","-","-","-","-","-","-","-",2,11,246,349,576,1052,1350,702,1484,1465,1627,1918,2408 "Electric Power Sector Generation Subtotal",39378,38667,41852,40155,42337,39684,40852,40765,44701,42962,44832,44113,43108,43314,44410,44734,44389,44610,45537,45100,47146 " Combined Heat and Power, Industrial",597,631,622,617,665,568,620,644,646,670,663,664,676,313,398,833,1012,1024,964,929,973

483

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas" Kansas" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",33869,32315,31764,36433,37284,38230,39875,37844,41481,42003,44765,44643,46692,46156,46409,45421,44621,49256,45276,44443,45270 " Independent Power Producers",1,1,10,5,10,11,11,14,11,12,15,65,479,377,368,436,895,857,1354,2234,2654 "Electric Power Sector Generation Subtotal",33870,32316,31774,36438,37294,38242,39886,37858,41492,42015,44780,44708,47171,46532,46778,45857,45516,50114,46630,46677,47924 " Combined Heat and Power, Commercial","-","-","-","-",5,5,1,1,1,2,2,2,1,1,1,"*","-","-","-","-","-"

484

Renewable Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Energy Sources Renewable Energy Renewable Energy Watch as these fourth grade students go from learning about electricity to making their own electricity...

485

Review of International Experience with Renewable Energy Obligation Support Mechanisms  

E-Print Network (OSTI)

sikt? [How apt is the renewable electricity certificatesupply of electricity from renewable energy sources in theenergiteknik [The renewable electricity certificate system

Wiser, R.

2005-01-01T23:59:59.000Z

486

Review of International Experience with Renewable Energy Obligation Support Mechanisms  

E-Print Network (OSTI)

electricity production from renewable energy (approx. 15-25electricity production from renewable energy sources andthe production of electricity from renewable energy sources

Wiser, R.

2005-01-01T23:59:59.000Z

487

EIA - The National Energy Modeling System: An Overview 2003-Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuelsl Module Renewable Fuelsl Module The National Energy Modeling System: An Overview 2003 Renewable Fuels Module Figure 11. Renewable Fuels Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Renewable Fuels Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The renewable fuels module (RFM) represents renewable energy resoures and large–scale technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (biomass, conventional hydroelectricity, geothermal, landfill gas, solar photovoltaics, solar thermal, and wind) are used to generate electricity, the RFM primarily interacts with the electricity market module (EMM). New renewable energy generating capacity is either model–determined or

488

The state of energy storage in electric utility systems and its effect on renewable energy resources  

DOE Green Energy (OSTI)

This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

Rau, N.S.

1994-08-01T23:59:59.000Z

489

Renewable Energy Evaluation Tools  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RENEWABLE ENERGY RENEWABLE ENERGY EVALUATION TOOLS Andy Walker, PhD PE Principal Engineer, NREL Renewable Energy Round Table May 2, 2012 2 TECHNICAL ASSESSMENT AND SCREENING TOOLS WE USE IN OUR PROJECTS Campus/Base Assessments INFRASTRUCTURE BUILDINGS ASSESSMENT RENEWABLE SUPPLY SIDE VEHICLES & TOOLS Campus/Base Assessments INFRASTRUCTURE BUILDINGS ASSESSMENT RENEWABLE SUPPLY SIDE VEHICLES & TOOLS 9 9 Renewable Energy Technologies Photovoltaics Daylighting Biomass Heat/Power Concentrating Solar Heat/Power Solar Vent Air Preheat Solar Water Heating Wind Power Ground Source Heat Pump Landfill Gas 10 10 Renewable Energy Resources Geographical Information System (GIS) Datasets * NREL Datasets (http://www.nrel.gov/gis/) - solar radiation 10x10 km grid

490

Biomass power and state renewable energy policies under electric industry restructuring  

E-Print Network (OSTI)

BIOMASS POWER AND STATE RENEWABLE ENERGY POLICIES UNDERHowever, the eligibility of biomass under state RPS and SBCmay make it difficult for biomass power companies to access

Porter, Kevin; Wiser, Ryan

2000-01-01T23:59:59.000Z

491

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

and wind energy plants at favourable locations, most renewable energy technologies currently are at a costwind energy are tax free. Deduction of 15% investment costs

Haas, Reinhard

2008-01-01T23:59:59.000Z

492

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

Wind, Biomass, Small hydro, for Energy and Competitivenesshalf of the non-hydro renewable energy capacity additionsshore wind 50, hydro: 50, solar energy: 150, biomass: 20

Haas, Reinhard

2008-01-01T23:59:59.000Z

493

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

1) Borenstein, S. , Electricity Rate Structures and thes underlying retail electricity rate through net metering.turn impact retail electricity rates, particularly as retail

Barbose, Galen

2013-01-01T23:59:59.000Z

494

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

Penetrations on Electricity Bill Savings from ResidentialPENETRATIONS ON ELECTRICITY BILL SAVINGS FROM RESIDENTIALBill Savings In this paper, we have chosen two compensation mechanisms for electricity

Barbose, Galen

2013-01-01T23:59:59.000Z

495

DOE Updated U.S. Geothermal: Supply Curve (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) 2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) eere.energy.gov The Parker Ranch installation in Hawaii Geothermal Technologies Program (GTP) DOE Updated U.S. Geothermal Supply Curve Chad Augustine National Renewable Energy Laboratory Strategic Energy Analysis Center Chad.Augustine@nrel.gov February 1, 2010 Chad Augustine (NREL) Katherine R. Young (NREL) Arlene Anderson (DOE-GTP) NREL/PR-6A2-47527 Pacific Gas & Electric/PIX 00059 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 2 | 2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) eere.energy.gov

496

Real-Time Pricing- A Flexible Alternative for Electrical Power Supply  

E-Print Network (OSTI)

In an increasingly competitive operating environment, utilities must place greater emphasis on developing programs that benefit the customer while at the same time benefiting the utility. Economy Surplus Power (ESP) is such a program. ESP offers industrial customers attractively priced power supply arrangements based on incremental production costs. Industrial customers receive hourly price quotes for electrical power through a direct computer link between TVA and the customer. The customer has the option to increase or decrease the amount of power requested in response to price signals, plant load conditions, or production requirements. This paper will describe the arrangements for the sale and use of ESP, including the communication system, pricing variations, use of curtailment rights, the types of customers currently participating in the program, and recent modifications.

Reynolds, S. D.; Frye, A. O. Jr.

1991-06-01T23:59:59.000Z

497

Renewables for TransportationTransportation  

E-Print Network (OSTI)

thermal biomass Tank to Wheel Example renewable fuel options: Biofuels biogas Process heat/steam: Solar)) Biofuels, biogas Renewable electricity Renewable H2 sequestration (CCS)) Electricity: solar PV, wind

California at Davis, University of

498

EIA Renewable Energy- The Role of Renewable Energy Consumption in ...  

U.S. Energy Information Administration (EIA)

Pie graph and bar graph showing the percentage of renewable energy consumption in the Nation's overall energy supply

499

How much electric supply capacity is needed to keep U.S ...  

U.S. Energy Information Administration (EIA)

Today in Energy ... tags: capacity demand electricity generation capacity NERC (North American Electric Reliability Corporation)

500

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

energy supply pattern. On the other hand, wind electricity, with an ownership costcost. ENVIRONMENTAL SAVINGS ANALYSIS Solar, wind, and fuel cells are all considered as clean and renewable energy

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z