National Library of Energy BETA

Sample records for renewable electricity futures

  1. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-09-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  2. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-11-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  3. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  4. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  5. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  6. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  7. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  8. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  9. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  10. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  11. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  12. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  13. NREL: Energy Analysis - Renewable Electricity Futures Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Electricity Futures Study RE Futures Scenario Viewer A screenshot of the main map on the RE Futures Scenario Viewer Explore the RE Futures scenarios at a state-level and download the data. RE Futures Visualizations These visualizations are based on RE Futures modeling and represent the transformation of the U.S. electric system to a high renewable system from 2010 to 2050 and the hourly operation and transmission flow of that system in 2050. Transformation of the Electric Sector

  14. Renewable Electricity Futures Study. Executive Summary

    SciTech Connect (OSTI)

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  15. Renewable Electricity Futures Study Executive Summary

    Broader source: Energy.gov [DOE]

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible and that further work is warranted to investigate this clean generation pathway.

  16. Renewable Electricity Futures for the United States

    Broader source: Energy.gov [DOE]

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible and that further work is warranted to investigate this clean generation pathway.

  17. Renewable Electricity Futures Study - Volume One

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hand, Maureen; Mai, Treui; Baldwin, Sam; Brinkman, Greg; Sandor, Debbie; Denholm, Paul; Heath, Garvin; Wiser, Ryan

    2016-06-01

    Renewable Electricity Futures Study - Volume One. This is part of a series of four volumes describing exploring a high-penetration renewable electricity future for the United States of America. This data set is provides data for the entire volume one document and includes all data for the charts and graphs included in the document.

  18. Renewable Electricity Futures for the United States

    SciTech Connect (OSTI)

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.; Wiser , Ryan; Brinkman, G.; Denholm, Paul; Arent, Doug; Porro, Gian; Sandor, Debra; Hostick, Donna J.; Milligan, Michael; DeMeo, Ed; Bazilian, Morgan

    2014-04-14

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.

  19. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Hand, M. M.; Baldwin, S.; DeMeo, E.; Reilly, J. M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  20. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  1. Renewable Electricity Futures: Exploration of Up to 80% Renewable Electricity Penetration in the United States (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; DeMeo, E.; Hostick, D.; Mai, T.; Schlosser, C. A.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  2. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renee Forney (Acting) About Us Renee Forney (Acting) - Deputy CIO for Cybersecurity

    Exploration of High-Penetration Renewable Electricity Futures Volume 1 of 4 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S.

  3. Presentation to EAC: Renewable Electricity Futures Activities & Status,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 29, 2010 | Department of Energy Presentation to EAC: Renewable Electricity Futures Activities & Status, October 29, 2010 Presentation to EAC: Renewable Electricity Futures Activities & Status, October 29, 2010 Presentation to the Electricity Advisory Committee, October 29, 2010, on Renewable Electricity Futures Activities & Status. The presentation provides a high-level overview of the Renewable Electricity Futures study, its current status, modeling approach, and key

  4. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  5. Renewable Electricity Futures Study Volume 1: Exploration of High-Penetration Renewable Electrcity Futures

    Broader source: Energy.gov [DOE]

    The Renewable Electricity Futures Study (RE Futures) is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States1 over the next several decades. This study includes geographic and electric system operation resolution that is unprecedented for long-term studies of the U.S. electric sector. The analysis examines the implications and challenges of renewable electricity generation levels—from 30% up to 90%, with a focus on 80%, of all U.S. electricity generation from renewable technologies—in 2050. The study focuses on some key technical implications of this environment, exploring whether the U.S. power system can supply electricity to meet customer demand with high levels of renewable electricity, including variable wind and solar generation. The study also begins to address the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the United States.

  6. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  7. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Electricity Generation and Storage Technologies Volume 2 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M.

  8. Renewable Electricity Futures Study: Executive Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance ... Austrian Academy of Sciences, Austria, and EASAC- EP Dale Osborn Midwest ...

  9. Presentation to EAC: Renewable Electricity Futures Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE) SunShot Vision Study: February 2012 (Book), SunShot, ...

  10. Renewable Electricity Futures: Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Electricity Futures: Operational Analysis of the Western Interconnection at Very High Renewable Penetrations Gregory Brinkman National Renewable Energy Laboratory Technical Report NREL/TP-6A20-64467 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  11. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, Michael; Ela, Erik; Hein, Jeff; Schneider, Thomas; Brinkman, Gregory; Denholm, Paul

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  12. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  13. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  14. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  15. Renewable Electricity Futures. Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    SciTech Connect (OSTI)

    Brinkman, Gregory

    2015-09-01

    The Renewable Electricity Futures Study (RE Futures)--an analysis of the costs and grid impacts of integrating large amounts of renewable electricity generation into the U.S. power system--examined renewable energy resources, technical issues regarding the integration of these resources into the grid, and the costs associated with high renewable penetration scenarios. These scenarios included up to 90% of annual generation from renewable sources, although most of the analysis was focused on 80% penetration scenarios. Hourly production cost modeling was performed to understand the operational impacts of high penetrations. One of the conclusions of RE Futures was that further work was necessary to understand whether the operation of the system was possible at sub-hourly time scales and during transient events. This study aimed to address part of this by modeling the operation of the power system at sub-hourly time scales using newer methodologies and updated data sets for transmission and generation infrastructure. The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). It focused on operational impacts, and it helps verify that the operational results from the capacity expansion models are useful. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%.

  16. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J. Massachusetts Institute of Technology Mai,

  17. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bulk Electric Power Systems: Operations and Transmission Planning Volume 4 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M.

  18. Envisioning a Renewable Electricity Future for the United States

    Broader source: Energy.gov [DOE]

    This paper presents high renewable electricity penetration scenarios in the United States using detailed capacity expansion modeling that is designed to properly account for the variability and uncertainty of wind and solar resources. The scenarios focus solely on the electricity system, an important sector within the larger energy sector, and demonstrate long-term visions of a U.S. power system where renewable technologies, including biomass, geothermal, hydropower, solar, and wind, contribute 80% of 2050 annual electricity, including 49–55% from wind and solar photovoltaic generation. We also present the integration challenges of achieving this high penetration and characterize the options to increase grid flexibility to manage variability.

  19. Renewable Electricity Futures Study Volume 3: End-Use Electricity Demand

    Broader source: Energy.gov [DOE]

    This volume details the end-use electricity demand and efficiency assumptions. The projection of electricity demand is an important consideration in determining the extent to which a predominantly renewable electricity future is feasible. Any scenario regarding future electricity use must consider many factors, including technological, sociological, demographic, political, and economic changes (e.g., the introduction of new energy-using devices; gains in energy efficiency and process improvements; changes in energy prices, income, and user behavior; population growth; and the potential for carbon mitigation).

  20. Renewable Electricity Futures Study Volume 2: Renewable Electricity Generation and Storage Technologies

    Broader source: Energy.gov [DOE]

    This volume includes chapters discussing biopower, geothermal, hydropower, ocean, solar, wind, and storage technologies. Each chapter includes a resource availability estimate, technology cost and performance characterization, discussions of output characteristics and grid service possibilities, large-scale production and deployment issues, and barriers to high penetration along with possible responses to them. Only technologies that are currently commercially available—biomass, geothermal, hydropower, solar PV, CSP, and wind-powered systems—are included in the modeling analysis. Some of these renewable technologies—such as run-of-river hydropower, onshore wind, hydrothermal geothermal, dedicated and co-fired-with-coal biomass—are relatively mature and well-characterized. Other renewable technologies—such as fixed-bottom offshore wind, solar PV, and solar CSP—are at earlier stages of deployment with greater potential for future technology advancements over the next 40 years.

  1. Decision-Making for High Renewable Electricity Futures in the United States

    Broader source: Energy.gov [DOE]

    This short Report Review highlights aspects of policy, regulation, finance, markets and operations that can help enable high penetration renewable energy electricity generation futures. It uses analytical results from the NREL Renewable Electricity Futures (REF) Study as a basis for discussion. As technical issues have been shown not to be key impediments for this pathway at the hourly level for the bulk system, we focus on other aspects of public and private decision-making. We conclude by describing how the REF might inform future research and development by the scientific community.

  2. Renewable Electricity Futures: Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    Broader source: Energy.gov [DOE]

    The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). The scenarios analyzed for this study included a variety of generation infrastructure buildouts and power system operational assumptions, with three different portfolios of renewable generators. The High scenario had approximately 82% renewable generation after curtailment, which included 41% of its generation coming from variable generation (VG) sources like wind and solar photovoltaics (PV). The remaining renewable generation came from hydropower, geothermal, and concentrating solar power (CSP). The Higher Baseload scenario adds CSP and geothermal to the High scenario to make 88% renewable generation. This study also included a Higher VG scenario with added wind and solar PV generation to get to 86% renewable generation. Both Higher scenarios added the same amount of possible generation, but the Higher VG scenario showed more curtailment from the incremental generation, leading to lower penetration levels after curtailment. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%. Dynamic studies will need to be done to understand any impacts on reliability during contingencies and transient events.

  3. Renewable Electricity Futures:  Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    Broader source: Energy.gov [DOE]

    The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). The scenarios analyzed for this study included a variety of generation infrastructure buildouts and power system operational assumptions, with three different portfolios of renewable generators. The High scenario had approximately 82% renewable generation after curtailment, which included 41% of its generation coming from variable generation (VG) sources like wind and solar photovoltaics (PV). The remaining renewable generation came from hydropower, geothermal, and concentrating solar power (CSP). The Higher Baseload scenario adds CSP and geothermal to the High scenario to make 88% renewable generation. This study also included a Higher VG scenario with added wind and solar PV generation to get to 86% renewable generation. Both Higher scenarios added the same amount of possible generation, but the Higher VG scenario showed more curtailment from the incremental generation, leading to lower penetration levels after curtailment. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%. Dynamic studies will need to be done to understand any impacts on reliability during contingencies and transient events.

  4. Renewable Electricity Futures Study Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Broader source: Energy.gov [DOE]

    This volume focuses on the role of variable renewable generation in creating challenges to the planning and operations of power systems and the expansion of transmission to deliver electricity from remote resources to load centers. The technical and institutional changes to power systems that respond to these challenges are, in many cases, underway, driven by the economic benefits of adopting more modern communication, information, and computation technologies that offer significant operational cost savings and improved asset utilization. While this volume provides background information and numerous references, the reader is referred to the literature for more complete tutorials.

  5. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    SciTech Connect (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-03-20

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  6. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    ScienceCinema (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-06-07

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  7. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  8. Renewable Electricity Working Group Presentation

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electricity Working Group Chris Namovicz, Renewable Electricity Analysis Team July 9, 2013 Agenda * Review status of AEO 2013 * Discuss new model updates and development efforts for AEO 2014 and future AEOs - Model updates - Policy updates - Planned additions updates - Performance updates * Obtain feedback from stakeholders on any key items that EIA should look at Chris Namovicz, July 9 2 Status of AEO 2013 Chris Namovicz, July 9 * AEO 2013 was released in stages this year - Reference

  9. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, ...

  10. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  11. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Renewable Electricity Profile 2010 Alabama profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill

  12. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Renewable Electricity Profile 2010 Alaska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,067 100.0 Total Net Summer Renewable Capacity 422 20.4 Geothermal - - Hydro Conventional 414 20.1 Solar - - Wind 7 0.4 Wood/Wood Waste - - MSW/Landfill Gas - -

  13. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Renewable Electricity Profile 2010 Arizona profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,392 100.0 Total Net Summer Renewable Capacity 2,901 11.9 Geothermal - - Hydro Conventional 2,720 10.1 Solar 20 - Wind 128 - Wood/Wood Waste 583 1.8

  14. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Renewable Electricity Profile 2010 Connecticut profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,284 100.0 Total Net Summer Renewable Capacity 281 3.4 Geothermal - - Hydro Conventional 122 1.5 Solar - - Wind - -

  15. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Renewable Electricity Profile 2010 Delaware profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,389 100.0 Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - Wind 2 0.1 Wood/Wood

  16. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Renewable Electricity Profile 2010 District of Columbia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source - Primary Renewable Energy Generation Source - Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 790 100.0 Total Net Summer Renewable Capacity - - Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  17. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Renewable Electricity Profile 2010 Georgia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 36,636 100.0 Total Net Summer Renewable Capacity 2,689 7.3 Geothermal - - Hydro Conventional 2,052 5.6 Solar - - Wind - - Wood/Wood Waste 617 1.7 MSW/Landfill Gas

  18. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Renewable Electricity Profile 2010 Kansas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,543 100.0 Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar - - Wind 1,072 8.5 Wood/Wood Waste - - MSW/Landfill Gas 7 0.1 Other Biomass - -

  19. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Renewable Electricity Profile 2010 Louisiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,744 100.0 Total Net Summer Renewable Capacity 517 1.9 Geothermal - - Hydro Conventional 192 0.7 Solar - - Wind - - Wood/Wood Waste 311 1.2 MSW/Landfill Gas - -

  20. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Renewable Electricity Profile 2010 Maryland profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,516 100.0 Total Net Summer Renewable Capacity 799 6.4 Geothermal - - Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 Wood/Wood Waste 3 * MSW/Landfill Gas

  1. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Renewable Electricity Profile 2010 Massachusetts profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,697 100.0 Total Net Summer Renewable Capacity 566 4.1 Geothermal - - Hydro Conventional 262 1.9 Solar 4 * Wind 10 0.1 Wood/Wood

  2. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Renewable Electricity Profile 2010 Mississippi profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 15,691 100.0 Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste 235 1.5 MSW/Landfill Gas - -

  3. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Renewable Electricity Profile 2010 Missouri profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,739 100.0 Total Net Summer Renewable Capacity 1,030 4.7 Geothermal - - Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 Wood/Wood Waste - - MSW/Landfill Gas

  4. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Renewable Electricity Profile 2010 Montana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 5,866 100.0 Total Net Summer Renewable Capacity 3,085 52.6 Geothermal - - Hydro Conventional 2,705 46.1 Solar - - Wind 379 6.5 Wood/Wood Waste - - MSW/Landfill

  5. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Renewable Electricity Profile 2010 Nebraska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,857 100.0 Total Net Summer Renewable Capacity 443 5.6 Geothermal - - Hydro Conventional 278 3.5 Solar - - Wind 154 2.0 Wood/Wood Waste - - MSW/Landfill Gas 6

  6. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Renewable Electricity Profile 2010 New Hampshire profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 4,180 100.0 Total Net Summer Renewable Capacity 671 16.1 Geothermal - - Hydro Conventional 489 11.7 Solar - - Wind 24 0.6 Wood/Wood Waste 129 3.1

  7. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Renewable Electricity Profile 2010 New Jersey profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 18,424 100.0 Total Net Summer Renewable Capacity 230 1.2 Geothermal - - Hydro Conventional 4 * Solar 28 0.2 Wind 8 * Wood/Wood

  8. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Renewable Electricity Profile 2010 North Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,674 100.0 Total Net Summer Renewable Capacity 2,499 9.0 Geothermal - - Hydro Conventional 1,956 7.1 Solar 35 0.1 Wind - - Wood/Wood Waste 481 1.7

  9. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Renewable Electricity Profile 2010 Pennsylvania profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 45,575 100.0 Total Net Summer Renewable Capacity 1,984 4.4 Geothermal - - Hydro Conventional 747 1.6 Solar 9 * Wind 696 1.5 Wood/Wood Waste 108 0.2

  10. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Renewable Electricity Profile 2010 Rhode Island profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,782 100.0 Total Net Summer Renewable Capacity 28 1.6 Geothermal - - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1

  11. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Renewable Electricity Profile 2010 South Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 23,982 100.0 Total Net Summer Renewable Capacity 1,623 6.8 Geothermal - - Hydro Conventional 1,340 5.6 Solar - - Wind - - Wood/Wood Waste 255 1.1

  12. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Renewable Electricity Profile 2010 South Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - -

  13. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Renewable Electricity Profile 2010 Tennessee profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,417 100.0 Total Net Summer Renewable Capacity 2,847 13.3 Geothermal - - Hydro Conventional 2,624 12.3 Solar - - Wind 29 0.1 Wood/Wood Waste 185 0.9

  14. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Renewable Electricity Profile 2010 Vermont profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,128 100.0 Total Net Summer Renewable Capacity 408 36.2 Geothermal - - Hydro Conventional 324 28.7 Solar - - Wind 5 0.5 Wood/Wood Waste 76 6.7 MSW/Landfill Gas 3

  15. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Renewable Electricity Profile 2010 Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 24,109 100.0 Total Net Summer Renewable Capacity 1,487 6.2 Geothermal - - Hydro Conventional 866 3.6 Solar - - Wind - - Wood/Wood Waste 331 1.4 MSW/Landfill Gas

  16. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Renewable Electricity Profile 2010 West Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 16,495 100.0 Total Net Summer Renewable Capacity 715 4.3 Geothermal - - Hydro Conventional 285 1.7 Solar - - Wind 431 2.6 Wood/Wood Waste - - MSW/Landfill Gas - -

  17. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Renewable Electricity Profile 2010 Wisconsin profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 17,836 100.0 Total Net Summer Renewable Capacity 1,267 7.1 Geothermal - - Hydro Conventional 492 2.8 Solar - - Wind 449 2.5 Wood/Wood Waste 239 1.3

  18. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Renewable Electricity Profile 2010 Wyoming profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,986 100.0 Total Net Summer Renewable Capacity 1,722 21.6 Geothermal - - Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  19. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Alaska Renewable Electricity Profile 2010 Alaska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,067 100.0 Total Net Summer Renewable Capacity 422 20.4 Geothermal - - Hydro Conventional 414 20.1 Solar - - Wind 7 0.4 Wood/Wood Waste - - MSW/Landfill Gas - -

  20. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Arizona Renewable Electricity Profile 2010 Arizona profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,392 100.0 Total Net Summer Renewable Capacity 2,901 11.9 Geothermal - - Hydro Conventional 2,720 10.1 Solar 20 - Wind 128 - Wood/Wood Waste 583 1.8

  1. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Connecticut Renewable Electricity Profile 2010 Connecticut profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,284 100.0 Total Net Summer Renewable Capacity 281 3.4 Geothermal - - Hydro Conventional 122 1.5 Solar - - Wind - -

  2. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Delaware Renewable Electricity Profile 2010 Delaware profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,389 100.0 Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - Wind 2 0.1 Wood/Wood

  3. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    District of Columbia Renewable Electricity Profile 2010 District of Columbia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source - Primary Renewable Energy Generation Source - Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 790 100.0 Total Net Summer Renewable Capacity - - Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  4. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Georgia Renewable Electricity Profile 2010 Georgia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 36,636 100.0 Total Net Summer Renewable Capacity 2,689 7.3 Geothermal - - Hydro Conventional 2,052 5.6 Solar - - Wind - - Wood/Wood Waste 617 1.7 MSW/Landfill Gas

  5. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Kansas Renewable Electricity Profile 2010 Kansas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,543 100.0 Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar - - Wind 1,072 8.5 Wood/Wood Waste - - MSW/Landfill Gas 7 0.1 Other Biomass - -

  6. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Louisiana Renewable Electricity Profile 2010 Louisiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,744 100.0 Total Net Summer Renewable Capacity 517 1.9 Geothermal - - Hydro Conventional 192 0.7 Solar - - Wind - - Wood/Wood Waste 311 1.2 MSW/Landfill Gas - -

  7. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Maryland Renewable Electricity Profile 2010 Maryland profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,516 100.0 Total Net Summer Renewable Capacity 799 6.4 Geothermal - - Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 Wood/Wood Waste 3 * MSW/Landfill Gas

  8. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Massachusetts Renewable Electricity Profile 2010 Massachusetts profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,697 100.0 Total Net Summer Renewable Capacity 566 4.1 Geothermal - - Hydro Conventional 262 1.9 Solar 4 * Wind 10 0.1 Wood/Wood

  9. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi Renewable Electricity Profile 2010 Mississippi profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 15,691 100.0 Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste 235 1.5 MSW/Landfill Gas - -

  10. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Missouri Renewable Electricity Profile 2010 Missouri profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,739 100.0 Total Net Summer Renewable Capacity 1,030 4.7 Geothermal - - Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 Wood/Wood Waste - - MSW/Landfill Gas

  11. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Montana Renewable Electricity Profile 2010 Montana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 5,866 100.0 Total Net Summer Renewable Capacity 3,085 52.6 Geothermal - - Hydro Conventional 2,705 46.1 Solar - - Wind 379 6.5 Wood/Wood Waste - - MSW/Landfill

  12. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nebraska Renewable Electricity Profile 2010 Nebraska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,857 100.0 Total Net Summer Renewable Capacity 443 5.6 Geothermal - - Hydro Conventional 278 3.5 Solar - - Wind 154 2.0 Wood/Wood Waste - - MSW/Landfill Gas 6

  13. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Hampshire Renewable Electricity Profile 2010 New Hampshire profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 4,180 100.0 Total Net Summer Renewable Capacity 671 16.1 Geothermal - - Hydro Conventional 489 11.7 Solar - - Wind 24 0.6 Wood/Wood Waste 129 3.1

  14. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Jersey Renewable Electricity Profile 2010 New Jersey profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 18,424 100.0 Total Net Summer Renewable Capacity 230 1.2 Geothermal - - Hydro Conventional 4 * Solar 28 0.2 Wind 8 * Wood/Wood

  15. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Renewable Electricity Profile 2010 North Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,674 100.0 Total Net Summer Renewable Capacity 2,499 9.0 Geothermal - - Hydro Conventional 1,956 7.1 Solar 35 0.1 Wind - - Wood/Wood Waste 481 1.7

  16. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Pennsylvania Renewable Electricity Profile 2010 Pennsylvania profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 45,575 100.0 Total Net Summer Renewable Capacity 1,984 4.4 Geothermal - - Hydro Conventional 747 1.6 Solar 9 * Wind 696 1.5 Wood/Wood Waste 108 0.2

  17. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Rhode Island Renewable Electricity Profile 2010 Rhode Island profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,782 100.0 Total Net Summer Renewable Capacity 28 1.6 Geothermal - - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1

  18. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Renewable Electricity Profile 2010 South Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 23,982 100.0 Total Net Summer Renewable Capacity 1,623 6.8 Geothermal - - Hydro Conventional 1,340 5.6 Solar - - Wind - - Wood/Wood Waste 255 1.1

  19. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Dakota Renewable Electricity Profile 2010 South Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - -

  20. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Tennessee Renewable Electricity Profile 2010 Tennessee profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,417 100.0 Total Net Summer Renewable Capacity 2,847 13.3 Geothermal - - Hydro Conventional 2,624 12.3 Solar - - Wind 29 0.1 Wood/Wood Waste 185 0.9

  1. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Vermont Renewable Electricity Profile 2010 Vermont profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,128 100.0 Total Net Summer Renewable Capacity 408 36.2 Geothermal - - Hydro Conventional 324 28.7 Solar - - Wind 5 0.5 Wood/Wood Waste 76 6.7 MSW/Landfill Gas 3

  2. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Virginia Renewable Electricity Profile 2010 Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 24,109 100.0 Total Net Summer Renewable Capacity 1,487 6.2 Geothermal - - Hydro Conventional 866 3.6 Solar - - Wind - - Wood/Wood Waste 331 1.4 MSW/Landfill Gas

  3. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    West Virginia Renewable Electricity Profile 2010 West Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 16,495 100.0 Total Net Summer Renewable Capacity 715 4.3 Geothermal - - Hydro Conventional 285 1.7 Solar - - Wind 431 2.6 Wood/Wood Waste - - MSW/Landfill Gas - -

  4. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wisconsin Renewable Electricity Profile 2010 Wisconsin profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 17,836 100.0 Total Net Summer Renewable Capacity 1,267 7.1 Geothermal - - Hydro Conventional 492 2.8 Solar - - Wind 449 2.5 Wood/Wood Waste 239 1.3

  5. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming Renewable Electricity Profile 2010 Wyoming profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,986 100.0 Total Net Summer Renewable Capacity 1,722 21.6 Geothermal - - Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  6. Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certificates, and On-Site Renewable Generation | Department of Energy Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Document describes renewable electricity, renewable energy certificates, and on-site renewable generation, which agencies and organizations can consider to diversify their energy supply and

  7. Options Impacting the Electric System of the Future (ESF); NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Cory, Karlynn

    2015-08-10

    As utilities are faced with adapting to new technologies, technology and policy due diligence are necessary to ensure the development of a future grid that brings greater value to utilities and their consumers. This presentation explores the different kinds of future directions the power industry could consider to create, discussing key components necessary for success. It will also discuss the practical application and possible strategies for utilities and innovators to implement smart technologies that will enable an ultimate ‘intelligent’ grid capable of two-way communication, interoperability, and greater efficiency and system resiliency.

  8. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Renewable Electricity Profile 2010 California full profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 67,328 100.0 Total Net Summer Renewable Capacity 16,460 24.4 Geothermal 2,004 3.0 Hydro Conventional 10,141 15.1 Solar 475 0.7 Wind 2,812 4.2 Wood/Wood

  9. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Renewable Electricity Profile 2010 Colorado profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,777 100.0 Total Net Summer Renewable Capacity 2,010 14.6 Geothermal - - Hydro Conventional 662 4.8 Solar 41 0.3 Wind 1,294 9.4 Wood/Wood Waste - - MSW/Landfill Gas 3 * Other Biomass 10

  10. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Renewable Electricity Profile 2010 Florida profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 59,222 100.0 Total Net Summer Renewable Capacity 1,182 2.0 Geothermal - - Hydro Conventional 55 0.1 Solar 123 0.2 Wind - - Wood/Wood Waste 344 0.6

  11. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Renewable Electricity Profile 2010 Hawaii profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Other Biomass Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,536 100.0 Total Net Summer Renewable Capacity 340 13.4 Geothermal 31 1.2 Hydro Conventional 24 0.9 Solar 2 0.1 Wind 62 2.4 Wood/Wood Waste - - MSW/Landfill Gas 60 2.4 Other Biomass

  12. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho Renewable Electricity Profile 2010 Idaho profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,990 100.0 Total Net Summer Renewable Capacity 3,140 78.7 Geothermal 10 0.3 Hydro Conventional 2,704 67.8 Solar - - Wind 352 8.8 Wood/Wood Waste 68 1.7 MSW/Landfill

  13. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Renewable Electricity Profile 2010 Illinois profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 44,127 100.0 Total Net Summer Renewable Capacity 2,112 4.8 Geothermal - - Hydro Conventional 34 0.1 Solar 9 * Wind 1,946 4.4 Wood/Wood Waste - - MSW/Landfill Gas 123 0.3 Other Biomass - -

  14. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana Renewable Electricity Profile 2010 Indiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,638 100.0 Total Net Summer Renewable Capacity 1,452 5.3 Geothermal - - Hydro Conventional 60 0.2 Solar - - Wind 1,340 4.8 Wood/Wood Waste - - MSW/Landfill Gas 53 0.2 Other Biomass s *

  15. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Renewable Electricity Profile 2010 Iowa profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,592 100.0 Total Net Summer Renewable Capacity 3,728 25.5 Geothermal - - Hydro Conventional 144 1.0 Solar - - Wind 3,569 24.5 Wood/Wood Waste - - MSW/Landfill Gas 11 0.1 Other Biomass 3 *

  16. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Renewable Electricity Profile 2010 Maine profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 4,430 100.0 Total Net Summer Renewable Capacity 1,692 38.2 Geothermal - - Hydro Conventional 738 16.6 Solar - - Wind 263 5.9 Wood/Wood Waste 600 13.6 MSW/Landfill Gas

  17. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Renewable Electricity Profile 2010 Michigan profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 29,831 100.0 Total Net Summer Renewable Capacity 807 2.7 Geothermal - - Hydro Conventional 237 0.8 Solar - - Wind 163 0.5 Wood/Wood Waste 232 0.8 MSW/Landfill Gas

  18. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Renewable Electricity Profile 2010 Minnesota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,715 100.0 Total Net Summer Renewable Capacity 2,588 17.6 Geothermal - - Hydro Conventional 193 1.3 Solar - - Wind 2,009 13.7 Wood/Wood Waste 177 1.2 MSW/Landfill Gas 134 0.9 Other

  19. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Renewable Electricity Profile 2010 Nevada profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 11,421 100.0 Total Net Summer Renewable Capacity 1,507 13.2 Geothermal 319 2.8 Hydro Conventional 1,051 9.2 Solar 137 1.2 Wind - - Wood/Wood Waste - - MSW/Landfill

  20. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Renewable Electricity Profile 2010 New Mexico profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,130 100.0 Total Net Summer Renewable Capacity 818 10.1 Geothermal - - Hydro Conventional 82 1.0 Solar 30 0.4 Wind 700 8.6 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 6 0.1

  1. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Renewable Electricity Profile 2010 New York profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 39,357 100.0 Total Net Summer Renewable Capacity 6,033 15.3 Geothermal - - Hydro Conventional 4,314 11.0 Solar - - Wind 1,274 3.2 Wood/Wood Waste 86 0.2

  2. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Renewable Electricity Profile 2010 North Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 6,188 100.0 Total Net Summer Renewable Capacity 1,941 31.4 Geothermal - - Hydro Conventional 508 8.2 Solar - - Wind 1,423 23.0 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 10

  3. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Renewable Electricity Profile 2010 Ohio profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 33,071 100.0 Total Net Summer Renewable Capacity 231 0.7 Geothermal - - Hydro Conventional 101 0.3 Solar 13 * Wind 7 * Wood/Wood Waste 60 0.2 MSW/Landfill Gas 48 0.1

  4. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Renewable Electricity Profile 2010 Oklahoma profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass

  5. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon Renewable Electricity Profile 2010 Oregon profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,261 100.0 Total Net Summer Renewable Capacity 10,684 74.9 Geothermal - - Hydro Conventional 8,425 59.1 Solar - - Wind 2,004 14.1 Wood/Wood Waste 221 1.6

  6. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Renewable Electricity Profile 2010 Texas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 108,258 100.0 Total Net Summer Renewable Capacity 10,985 10.1 Geothermal - - Hydro Conventional 689 0.6 Solar 14 * Wind 9,952 9.2 Wood/Wood Waste 215 0.2 MSW/Landfill Gas 88 0.1 Other Biomass 28

  7. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Renewable Electricity Profile 2010 Utah profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,497 100.0 Total Net Summer Renewable Capacity 528 7.0 Geothermal 42 0.6 Hydro Conventional 255 3.4 Solar - - Wind 222 3.0 Wood/Wood Waste - - MSW/Landfill Gas 9 0.1

  8. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington Renewable Electricity Profile 2010 Washington profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 30,478 100.0 Total Net Summer Renewable Capacity 23,884 78.4 Geothermal - - Hydro Conventional 21,181 69.5 Solar 1 * Wind 2,296 7.5 Wood/Wood Waste 368 1.2

  9. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    United States Renewable Electricity Profile 2010 United States profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,039,137 100.0 Total Net Summer Renewable Capacity 132,711 12.8 Geothermal 2,405 0.2 Hydro Conventional 78,825 7.6 Solar 941 0.1 Wind 39,135 3.8

  10. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    California Renewable Electricity Profile 2010 California full profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 67,328 100.0 Total Net Summer Renewable Capacity 16,460 24.4 Geothermal 2,004 3.0 Hydro Conventional 10,141 15.1 Solar 475 0.7 Wind 2,812 4.2 Wood/Wood

  11. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Colorado Renewable Electricity Profile 2010 Colorado profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,777 100.0 Total Net Summer Renewable Capacity 2,010 14.6 Geothermal - - Hydro Conventional 662 4.8 Solar 41 0.3 Wind 1,294 9.4 Wood/Wood Waste - - MSW/Landfill Gas 3 * Other Biomass 10

  12. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Florida Renewable Electricity Profile 2010 Florida profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 59,222 100.0 Total Net Summer Renewable Capacity 1,182 2.0 Geothermal - - Hydro Conventional 55 0.1 Solar 123 0.2 Wind - - Wood/Wood Waste 344 0.6

  13. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Hawaii Renewable Electricity Profile 2010 Hawaii profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Other Biomass Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,536 100.0 Total Net Summer Renewable Capacity 340 13.4 Geothermal 31 1.2 Hydro Conventional 24 0.9 Solar 2 0.1 Wind 62 2.4 Wood/Wood Waste - - MSW/Landfill Gas 60 2.4 Other Biomass

  14. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Idaho Renewable Electricity Profile 2010 Idaho profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,990 100.0 Total Net Summer Renewable Capacity 3,140 78.7 Geothermal 10 0.3 Hydro Conventional 2,704 67.8 Solar - - Wind 352 8.8 Wood/Wood Waste 68 1.7 MSW/Landfill

  15. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Illinois Renewable Electricity Profile 2010 Illinois profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 44,127 100.0 Total Net Summer Renewable Capacity 2,112 4.8 Geothermal - - Hydro Conventional 34 0.1 Solar 9 * Wind 1,946 4.4 Wood/Wood Waste - - MSW/Landfill Gas 123 0.3 Other Biomass - -

  16. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Indiana Renewable Electricity Profile 2010 Indiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,638 100.0 Total Net Summer Renewable Capacity 1,452 5.3 Geothermal - - Hydro Conventional 60 0.2 Solar - - Wind 1,340 4.8 Wood/Wood Waste - - MSW/Landfill Gas 53 0.2 Other Biomass s *

  17. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Iowa Renewable Electricity Profile 2010 Iowa profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,592 100.0 Total Net Summer Renewable Capacity 3,728 25.5 Geothermal - - Hydro Conventional 144 1.0 Solar - - Wind 3,569 24.5 Wood/Wood Waste - - MSW/Landfill Gas 11 0.1 Other Biomass 3 *

  18. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Maine Renewable Electricity Profile 2010 Maine profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 4,430 100.0 Total Net Summer Renewable Capacity 1,692 38.2 Geothermal - - Hydro Conventional 738 16.6 Solar - - Wind 263 5.9 Wood/Wood Waste 600 13.6 MSW/Landfill Gas

  19. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Michigan Renewable Electricity Profile 2010 Michigan profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 29,831 100.0 Total Net Summer Renewable Capacity 807 2.7 Geothermal - - Hydro Conventional 237 0.8 Solar - - Wind 163 0.5 Wood/Wood Waste 232 0.8 MSW/Landfill Gas

  20. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Renewable Electricity Profile 2010 Minnesota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,715 100.0 Total Net Summer Renewable Capacity 2,588 17.6 Geothermal - - Hydro Conventional 193 1.3 Solar - - Wind 2,009 13.7 Wood/Wood Waste 177 1.2 MSW/Landfill Gas 134 0.9 Other

  1. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nevada Renewable Electricity Profile 2010 Nevada profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 11,421 100.0 Total Net Summer Renewable Capacity 1,507 13.2 Geothermal 319 2.8 Hydro Conventional 1,051 9.2 Solar 137 1.2 Wind - - Wood/Wood Waste - - MSW/Landfill

  2. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Mexico Renewable Electricity Profile 2010 New Mexico profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,130 100.0 Total Net Summer Renewable Capacity 818 10.1 Geothermal - - Hydro Conventional 82 1.0 Solar 30 0.4 Wind 700 8.6 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 6 0.1

  3. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    York Renewable Electricity Profile 2010 New York profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 39,357 100.0 Total Net Summer Renewable Capacity 6,033 15.3 Geothermal - - Hydro Conventional 4,314 11.0 Solar - - Wind 1,274 3.2 Wood/Wood Waste 86 0.2

  4. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Dakota Renewable Electricity Profile 2010 North Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 6,188 100.0 Total Net Summer Renewable Capacity 1,941 31.4 Geothermal - - Hydro Conventional 508 8.2 Solar - - Wind 1,423 23.0 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 10

  5. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Ohio Renewable Electricity Profile 2010 Ohio profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 33,071 100.0 Total Net Summer Renewable Capacity 231 0.7 Geothermal - - Hydro Conventional 101 0.3 Solar 13 * Wind 7 * Wood/Wood Waste 60 0.2 MSW/Landfill Gas 48 0.1

  6. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Oklahoma Renewable Electricity Profile 2010 Oklahoma profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass

  7. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Oregon Renewable Electricity Profile 2010 Oregon profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,261 100.0 Total Net Summer Renewable Capacity 10,684 74.9 Geothermal - - Hydro Conventional 8,425 59.1 Solar - - Wind 2,004 14.1 Wood/Wood Waste 221 1.6

  8. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Texas Renewable Electricity Profile 2010 Texas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 108,258 100.0 Total Net Summer Renewable Capacity 10,985 10.1 Geothermal - - Hydro Conventional 689 0.6 Solar 14 * Wind 9,952 9.2 Wood/Wood Waste 215 0.2 MSW/Landfill Gas 88 0.1 Other Biomass 28

  9. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    United States Renewable Electricity Profile 2010 United States profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,039,137 100.0 Total Net Summer Renewable Capacity 132,711 12.8 Geothermal 2,405 0.2 Hydro Conventional 78,825 7.6 Solar 941 0.1 Wind 39,135 3.8

  10. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Washington Renewable Electricity Profile 2010 Washington profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 30,478 100.0 Total Net Summer Renewable Capacity 23,884 78.4 Geothermal - - Hydro Conventional 21,181 69.5 Solar 1 * Wind 2,296 7.5 Wood/Wood Waste 368 1.2

  11. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  12. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  13. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  14. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  15. Renewable Electricity Overview

    Broader source: Energy.gov (indexed) [DOE]

    National Renewable Energy Laboratory Innovation for Our Energy Example Results: Costs and ... performance and reliability - Wind Forecasting - In situ 'health' monitoring - Gearbox ...

  16. Communication and Control of Electric Vehicles Supporting Renewables: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Kuss, M.; Denholm, P.

    2009-08-01

    Discusses the technologies needed, potential scenarios, limitations, and opportunities for using grid-connected renewable energy to fuel the electric vehicles of the future.

  17. Renewable Electricity Purchases: History and Recent Developments

    Reports and Publications (EIA)

    1999-01-01

    This article presents an analysis of prices of renewable-based electricity that utilities have paid to nonutilities, the primary generators of renewable electricity.

  18. Renewable Electricity in the Annual Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 For Renewable Electricity Working Group AEO2014 Second Meeting September 26, 2013 Christopher Namovicz and Gwen Bredehoeft, Renewable Electricity Analysis Team Agenda Renewable Electricity Analysis Team, September 26, 2013 2 * Status of AEO2014 and future development plans * Data and model updates - PTC expiration update - Capital costs - Transmission - 860 (planned capacity) data - Polysys integration - Spinning reserves - RPS updates * Preliminary Results for the AEO2014 Reference case

  19. Tribal Renewable Energy Foundational Course: Electricity Grid...

    Energy Savers [EERE]

    Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar ...

  20. Mohave Electric Cooperative- Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Mohave Electric Cooperative provides incentives for its customers to install renewable energy systems on their homes and businesses. Mohave Electric Cooperative will provide rebates for...

  1. State Renewable Electricity Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electricity Profiles 2010 March 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as

  2. EERE FY 2016 Budget Overview -- Renewable Electricity Generation...

    Office of Environmental Management (EM)

    Renewable Electricity Generation EERE FY 2016 Budget Overview -- Renewable Electricity Generation Office of Energy Efficiency and Renewable Energy FY 2016 Budget Overview --...

  3. Renewable Electricity Generation (Fact Sheet), Office of Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet), ...

  4. Renewable Electricity Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation Renewable Electricity Generation Geothermal Geothermal Read more Solar Solar Read more Water Water Read more Wind Wind Read more Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE) leads a large network of researchers and other partners to deliver innovative

  5. US Renewable Futures in the GCAM

    SciTech Connect (OSTI)

    Smith, Steven J.; Mizrahi, Andrew H.; Karas, Joseph F.; Nathan, Mayda

    2011-10-06

    This project examines renewable energy deployment in the United States using a version of the GCAM integrated assessment model with detailed a representation of renewables, the GCAM-RE. Electricity generation was modeled in four generation segments and 12-subregions. This level of regional and sectoral detail allows a more explicit representation of renewable energy generation. Wind, solar thermal power, and central solar PV plants are implemented in explicit resource classes with new intermittency parameterizations appropriate for each technology. A scenario analysis examines a range of assumptions for technology characteristics, climate policy, and long-distance transmission. We find that renewable generation levels grow over the century in all scenarios. As expected, renewable generation increases with lower renewable technology costs, more stringent climate policy, and if alternative low-carbon technology are not available. The availability of long distance transmission lowers policy costs and changes the renewable generation mix.

  6. Alaska Village Electric Cooperative (AVEC) - Deploying Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deploying Renewables in Remote Alaskan Communities By Meera Kohler Alaska Village Electric Cooperative U.S. Dept. of Energy Program Review Denver, CO November 17, 2008 New turbines ...

  7. Lincoln Electric System- Renewable Energy Rebate

    Broader source: Energy.gov [DOE]

    Customer-generators may also qualify for an incentive payment based on the amount of electricity generated by the renewable energy system that goes to the electricity grid. For more information o...

  8. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 152,151 100.0 Total

  9. South Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 10,050 100.0 Total

  10. US Renewable Futures in the GCAM

    SciTech Connect (OSTI)

    Smith, S.J.; Mizrahi, A.H.; Karas, J.F.; Nathan, M.

    2011-10-01

    This report examines renewable energy deployment in the United States using a version of the Global Change Assessment Model (GCAM) with a detailed representation of renewables; the GCAM-RE. Electricity generation was modeled in four generation segments and 12-subregions. This level of regional and sector detail allows a more explicit representation of renewable energy generation. Wind, solar thermal power, and central solar PV plants are implemented in explicit resource classes with new intermittency parameterizations appropriate for each technology. A scenario analysis examines a range of assumptions for technology characteristics, climate policy, and long distance transmission.

  11. North Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 6,188 100.0 Total Net Summer Renewable Capacity 1,941 31.4 Geothermal - - Hydro Conventional 508 8.2 Solar - - Wind 1,423 23.0 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 10 0.2 Generation (thousand megawatthours) Total Electricity Net Generation 34,740 100.0 Total Renewable Net Generation 6,150

  12. Ohio Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 33,071 100.0 Total Net Summer Renewable Capacity 231 0.7 Geothermal - - Hydro Conventional 101 0.3 Solar 13 * Wind 7 * Wood/Wood Waste 60 0.2 MSW/Landfill Gas 48 0.1 Other Biomass 2 * Generation (thousand megawatthours) Total Electricity Net Generation 143,598 100.0 Total Renewable

  13. Oklahoma Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 72,251 100.0 Total Renewable Net Generation

  14. Fact #840: September 29, 2014 World Renewable Electricity Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    29, 2014 World Renewable Electricity Consumption is Growing - Dataset Fact 840: September 29, 2014 World Renewable Electricity Consumption is Growing - Dataset Excel file with ...

  15. The renewable electric plant information system

    SciTech Connect (OSTI)

    Sinclair, K.

    1995-12-01

    This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

  16. Achieving 30% Renewable Electricity Use by 2025 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Projects » Achieving 30% Renewable Electricity Use by 2025 Achieving 30% Renewable Electricity Use by 2025 Achieving 30% Renewable Electricity Use by 2025 By 2025, 30% of the electricity consumed by the federal government is to come from renewable energy sources, according to Executive Order 13693: Planning for Federal Sustainability in the Next Decade. To achieve 30% renewable electricity by the 2025 target, the executive order established a hierarchy of practices for federal

  17. Oregon Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 14,261 100.0 Total Net Summer Renewable Capacity 10,684 74.9 Geothermal - - Hydro Conventional 8,425 59.1 Solar - - Wind 2,004 14.1 Wood/Wood Waste 221 1.6 MSW/Landfill Gas 31 0.2 Other Biomass 3 * Generation (thousand megawatthours) Total Electricity Net Generation 55,127 100.0

  18. Rhode Island Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,782 100.0 Total Net Summer Renewable Capacity 28 1.6 Geothermal - - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1 Wood/Wood Waste - - MSW/Landfill Gas 24 1.3 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net

  19. Alabama Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",32417,100 "Total Net Summer Renewable Capacity",3855,11.9 " Geothermal","-","-" " Hydro Conventional",3272,10.1 "

  20. New York Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",39357,100 "Total Net Summer Renewable Capacity",6033,15.3 " Geothermal","-","-" " Hydro Conventional",4314,11 "

  1. North Carolina Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",27674,100 "Total Net Summer Renewable Capacity",2499,9 " Geothermal","-","-" " Hydro Conventional",1956,7.1 "

  2. North Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",6188,100 "Total Net Summer Renewable Capacity",1941,31.4 " Geothermal","-","-" " Hydro Conventional",508,8.2 "

  3. Ohio Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",33071,100 "Total Net Summer Renewable Capacity",231,0.7 " Geothermal","-","-" " Hydro Conventional",101,0.3 "

  4. Oklahoma Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",21022,100 "Total Net Summer Renewable Capacity",2412,11.5 " Geothermal","-","-" " Hydro Conventional",858,4.1 " Solar","-","-"

  5. Oregon Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",14261,100 "Total Net Summer Renewable Capacity",10684,74.9 " Geothermal","-","-" " Hydro Conventional",8425,59.1 "

  6. Pennsylvania Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",45575,100 "Total Net Summer Renewable Capacity",1984,4.4 " Geothermal","-","-" " Hydro Conventional",747,1.6 "

  7. Rhode Island Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Primary Renewable Energy Capacity Source","Municipal Solid Waste/Landfill Gas" "Primary Renewable Energy Generation Source","Municipal Solid Waste/Landfill Gas" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",1782,100 "Total Net Summer Renewable Capacity",28,1.6 " Geothermal","-","-" " Hydro

  8. South Carolina Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",23982,100 "Total Net Summer Renewable Capacity",1623,6.8 " Geothermal","-","-" " Hydro Conventional",1340,5.6 "

  9. South Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",3623,100 "Total Net Summer Renewable Capacity",2223,61.3 " Geothermal","-","-" " Hydro Conventional",1594,44 "

  10. The Role of Energy Storage with Renewable Electricity Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole ...

  11. Renewable Resources in the U.S. Electricity Supply

    Reports and Publications (EIA)

    1993-01-01

    Provides an overview of current and long term forecasted uses of renewable resources in the nation's electricity marketplace, the largest domestic application of renewable resources today.

  12. Renewable Resource Electricity in the Changing Regulatory Environment

    Reports and Publications (EIA)

    1995-01-01

    This article surveys in the development of renewable resource electricity recent actions and proposals and summarizes their implications for the renewables industry.

  13. EERE FY 2016 Budget Overview-- Renewable Electricity Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy FY 2016 Budget Overview -- Renewable Electricity Generation, a presentation with Doug Hollett, Deputy Assistant Secretary, March 2015.

  14. Islands and Our Renewable Energy Future (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

    2012-05-01

    Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

  15. Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Green Power Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation DOE/EE-0307 This guide can be downloaded from: www1.eere.energy.gov/femp/technologies/renewable_purchasingpower.html www.epa.gov/greenpower/ www.wri.org/publications www.resource-solutions.org/publications.php Office of Air (6202J) EPA430-K-04-015 www.epa.gov/greenpower March 2010 ISBN: 1-56973-577-8 Guide to Purchasing Green Power i Table of Contents Summary

  16. Guest Editorial: Electric Machines in Renewable Energy Applications

    SciTech Connect (OSTI)

    Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard; Brown, Ian; Chiba, Akira; Dorrell, David; Erlich, Istvan; Kerszenbaum, Isidor; Levi, Emil; Mayor, Kevin; Mohammed, Osama; Papathanassiou, Stavros; Popescu, Mircea; Qiao, Wei; Wu, Dezheng

    2015-12-01

    The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewable energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.

  17. Renewable Electricity: Insights for the Coming Decade

    SciTech Connect (OSTI)

    Stark, C.; Pless, J.; Logan, J.; Zhou, E.; Arent, D. J.

    2015-02-01

    A sophisticated set of renewable electricity (RE) generation technologies is now commercially available. Globally, RE captured approximately half of all capacity additions since 2011. The cost of RE is already competitive with fossil fuels in some areas around the world, and prices are anticipated to continue to decline over the next decade. RE options, led by wind and solar, are part of a suite of technologies and business solutions that are transforming electricity sectors around the world. Renewable deployment is expected to continue due to: increasingly competitive economics; favorable environmental characteristics such as low water use, and minimal local air pollution and greenhouse gas (GHG) emissions; complementary risk profiles when paired with natural gas generators; strong support from stakeholders. Despite this positive outlook for renewables, the collapse in global oil prices since mid-2014 and continued growth in natural gas supply in the United States--due to the development of low-cost shale gas--raise questions about the potential impacts of fossil fuel prices on RE. Today, oil plays a very minor role in the electricity sectors of most countries, so direct impacts on RE are likely to be minimal (except where natural gas prices are indexed on oil). Natural gas and RE generating options appear to be more serious competitors than oil and renewables. Low gas prices raise the hurdle for RE to be cost competitive. Additionally, although RE emits far less GHG than natural gas, both natural gas and RE offer the benefits of reducing carbon relative to coal and oil (see Section 4.1 for more detail on the GHG intensity of electricity technologies). However, many investors and decision makers are becoming aware of the complementary benefits of pairing natural gas and renewables to minimize risk of unstable fuel prices and maintain the reliability of electricity to the grid.

  18. Renewable Electricity Generation Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories The Office of Energy Efficiency and Renewable Energy's (EERE) successes in converting tax dollars into more affordable, effective, and deployable renewable energy sources make it possible to use these technologies in more ways each day. Learn how EERE's investments in geothermal, solar, water, and wind energy translate into more efficient, affordable

  19. Section 406 Renewable Energy and Electric Transmission Loan Guarantee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program under ARRA | Department of Energy 406 Renewable Energy and Electric Transmission Loan Guarantee Program under ARRA Section 406 Renewable Energy and Electric Transmission Loan Guarantee Program under ARRA A temporary program for rapid deployment of renewable energy and electric power transmission projects. Section 406 Renewable Energy and Electric Transmission Loan Guarantee Program under ARRA (9.54 KB) More Documents & Publications Interested Parties - Allowing Multiple Projects

  20. State Policies Provide Critical Support for Renewable Electricity

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2008-07-15

    Growth in renewable energy in the U.S. over the past decade has been propelled by a number of forces, including rising fossil fuel prices, environmental concerns, and policy support at the state and federal levels. In this article, we review and discuss what are arguably the two most important types of state policies for supporting electricity generation from geothermal and other forms of renewable energy: renewables portfolio standards and utility integrated resource planning requirements. Within the Western U.S., where the vast majority of the nation's readily-accessible geothermal resource potential resides, these two types of state policies have been critical to the growth of renewable energy, and both promise to continue to play a fundamental role for the foreseeable future. In its essence, a renewables portfolio standard (RPS) requires utilities and other retail electricity suppliers to produce or purchase a minimum quantity or percentage of their generation supply from renewable resources. RPS purchase obligations generally increase over time, and retail suppliers typically must demonstrate compliance on an annual basis. Mandatory RPS policies are backed by various types of compliance enforcement mechanisms, although most states have incorporated some type of cost-containment provision, such as a cost cap or a cap on retail rate impacts, which could conceivably allow utilities to avoid (full) compliance with their RPS target. Currently, 27 states and the District of Columbia have mandatory RPS requirements. Within the eleven states of the contiguous Western U.S., all but three (Idaho, Utah, and Wyoming) now have a mandatory RPS legislation (Utah has a more-voluntary renewable energy goal), covering almost 80% of retail electricity sales in the region. Although many of these state policies have only recently been established, their impact is already evident: almost 1800 MW of new renewable capacity has been installed in Western states following the

  1. A Renewable Energy Future: Innovation and Beyond | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Renewable Energy Future: Innovation and Beyond A Renewable Energy Future: Innovation and Beyond This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session by Dr. Dan E. Arvizu, director of NREL. Entitled "A Renewable Energy Future: Innovation and Beyond," the presentation demonstrates the transformation needed in the energy sector to achieve a clean energy vision and identifies innovation as what is

  2. Mississippi Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source WoodWood Waste Primary Renewable Energy ... Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - ...

  3. Kansas Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar ...

  4. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  5. Renewable Electricity: How do you know you have it? (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consumer of electricity claim to be using renewables? In the United States, renewable energy certificates (RECs) are used to track renewable electricity from the point of...

  6. Renewable Electricity: How Do You Know You Have It?; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-08-01

    When electricity is generated - either from a renewable or non-renewable power plant - the electrons added to the grid are indistinguishable. So, on what basis can a consumer of electricity claim to be using renewables? In the United States, renewable energy certificates (RECs) were developed as states passed renewable portfolio standards (RPSs) and were requiring fuel mix disclosure labels. RECs are also used in the voluntary market, where customers are buying renewables to meet sustainability goals. The concept of RECs is used most widely in the United States, but international markets also have tradable renewable electricity certificates. This fact sheet reviews how to ensure that RECs are not double-counted, roles of electricity regulators, renewable generators and purchasers. It concludes with a discussion of the international use of RECs.

  7. Renewable Electricity Use by the U.S. Information and Communication Technology (ICT) Industry

    SciTech Connect (OSTI)

    Miller, John; Bird, Lori; Heeter, Jenny; Gorham, Bethany

    2015-07-20

    The information and communication technology (ICT) sector continues to witness rapid growth and uptake of ICT equipment and services at both the national and global levels. The electricity consumption associated with this expansion is substantial, although recent adoptions of cloudcomputing services, co-location data centers, and other less energy-intensive equipment and operations have likely reduced the rate of growth in this sector. This paper is intended to aggregate existing ICT industry data and research to provide an initial look at electricity use, current and future renewable electricity acquisition, as well as serve as a benchmark for future growth and trends in ICT industry renewable electricity consumption.

  8. Fact #840: September 29, 2014 World Renewable Electricity Consumption is

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growing - Dataset | Department of Energy 40: September 29, 2014 World Renewable Electricity Consumption is Growing - Dataset Fact #840: September 29, 2014 World Renewable Electricity Consumption is Growing - Dataset Excel file with dataset for Fact #840: World Renewable Electricity Consumption is Growing fotw#840_web.xlsx (19.51 KB) More Documents & Publications Quarterly Analysis Review February 2015 Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide -

  9. AEO 2014 Renewable Electricity Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    DATE: September 30, 2013 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Office of Energy Analysis Alan Beamon Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Renewable Electricity Analysis Team SUBJECT: AEO 2014 Renewable Electricity Working Group Meeting Summary ATTENDEES: In person John Conti Alan Beamon Bob Eynon Chris Namovicz Danielle Lowenthal-Savy Erin Boedecker Gwen Bredehoeft Jim Diefenderfer Marie Rinkoski Spangler Michael

  10. Renewable Electricity in the Annual Energy Outlook (AEO)

    U.S. Energy Information Administration (EIA) Indexed Site

    For Renewable Electricity Working Group July 24, 2014 Christopher Namovicz and Gwen Bredehoeft Renewable Electricity Analysis Team AEO2014 results and status updates for the AEO2015 Agenda Renewable Electricity Analysis Team July 24, 2014 2 * Review of AEO2014 - Changes made for AEO2014 - Review of Results * Status of AEO2015 * Updates planned for AEO2015 WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Updates included in the AEO2014

  11. Summary of AEO2015 Renewable Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    August 13, 2014 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Renewable Electricity Analysis Team SUBJECT: Summary of AEO2015 Renewable Electricity Working Group Meeting held on July 24, 2014 Presenters: Chris Namovicz, Gwen Bredehoeft Topics included AEO2014 model and data updates, a summary of AEO2014 model results,

  12. Summary of AEO2015 Renewable Electricity Working Group Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE February 29, 2016 MEMORANDUM FOR: John Conti Assistant Administrator for Energy Analysis Jim Diefenderfer Office Director Office of Electricity, Coal, Nuclear, and Renewables Analysis Paul Holtberg Team Leader Analysis Integration Team FROM: Renewable Electricity Analysis Team SUBJECT: Summary of AEO2015 Renewable Electricity Working Group Meeting held on February 9, 2016 Presenter: Chris

  13. New Hampshire Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Hampshire Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State ...

  14. New Hampshire Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent ...

  15. Wyoming Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",307,3.8 " Solar","-","-" " Wind",1415,17.7 " WoodWood ...

  16. Missouri Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... Geothermal - - Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 WoodWood Waste - - MSW...

  17. Kansas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",3,"*" " Solar","-","-" " Wind",1072,8.5 " WoodWood ...

  18. Texas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",689,0.6 " Solar",14,"*" " Wind",9952,9.2 " WoodWood ...

  19. Nebraska Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... Geothermal - - Hydro Conventional 278 3.5 Solar - - Wind 154 2.0 WoodWood Waste - - MSW...

  20. Alaska Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 414 20.1 Solar - - Wind 7 0.4 WoodWood Waste - - MSW...

  1. Minnesota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",193,1.3 " Solar","-","-" " Wind",2009,13.7 " WoodWood ...

  2. New Jersey Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste... Total Net Summer Renewable Capacity 230 1.2 Geothermal - - Hydro Conventional 4 * Solar 28 ...

  3. West Virginia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",285,1.7 " Solar","-","-" " Wind",431,2.6 " WoodWood ...

  4. Kentucky Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... Geothermal - - Hydro Conventional 824 4.0 Solar - - Wind - - WoodWood Waste 52 0.3 MSW...

  5. Indiana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",60,0.2 " Solar","-","-" " Wind",1340,4.8 " WoodWood ...

  6. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste... Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - ...

  7. Illinois Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",34,0.1 " Solar",9,"*" " Wind",1946,4.4 " WoodWood ...

  8. Iowa Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",144,1 " Solar","-","-" " Wind",3569,24.5 " WoodWood ...

  9. Renewable Electricity State Profiles - Energy Information Administrati...

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable & Alternative Fuels Glossary FAQS Overview Data Summary Biomass Geothermal Hydropower Solar ... Recurring Renewable energy type All reports Browse by Tag ...

  10. Renewable Energy for Electricity Generation in Latin America...

    Open Energy Info (EERE)

    and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and...

  11. Renewable Electricity Generation and Delivery at the Sacramento...

    Office of Environmental Management (EM)

    Electricity Generation and Delivery at the Sacramento Municipal Utility District Renewable ... change, is captured and destroyed Manure wastes are stabilized, reducing odor and flies ...

  12. Renewable Electricity Grid Integration Roadmap for Mexico: Supplement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOR LOW EMISSION DEVELOPMENT STRATEGIES Renewable Electricity Grid Integration Roadmap for Mexico: Supplement to the IEA Expert Group Report on Recommended Practices for...

  13. United States Renewable Electric Power Industry Net Generation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" ...onal",289246,247510,254831,273445,260203 "Solar",508,612,864,891,1212 ...

  14. 2014 Data Book Shows Increased Use of Renewable Electricity ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Book shows that U.S. renewable electricity grew to 15.5 percent of total installed capacity and 13.5 percent of total electricity generation. Published annually by the National...

  15. The Outlook for Renewable Electricity in the United States

    U.S. Energy Information Administration (EIA) Indexed Site

    The Outlook for Renewable Electricity in the United States For 2014 EIA Energy Conference July 14, 2014 | Washington, DC By Gwen Bredehoeft Assessing the role of policy and other uncertainties Renewables have accounted for an increasing share of capacity additions over the last decade U.S. annual electricity generation capacity additions gigawatts Source: EIA, Annual Energy Outlook 2014 0 10 20 30 40 50 60 1990 1995 2000 2005 2010 Other renewables Solar Wind Hydropower and other Natural gas and

  16. Transportation Electrification Load Development For a Renewable Future Analysis

    SciTech Connect (OSTI)

    Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

    2010-09-30

    Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

  17. Modeling renewable portfolio standards for the annual energy outlook 1998 - electricity market module

    SciTech Connect (OSTI)

    NONE

    1998-02-01

    The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Load and Demand-Side Management (LDSM) Submodule. For the Annual Energy Outlook 1998 (AEO98), the EMM has been modified to represent Renewable Portfolio Standards (RPS), which are included in many of the Federal and state proposals for deregulating the electric power industry. A RPS specifies that electricity suppliers must produce a minimum level of generation using renewable technologies. Producers with insufficient renewable generating capacity can either build new plants or purchase {open_quotes}credits{close_quotes} from other suppliers with excess renewable generation. The representation of a RPS involves revisions to the ECP, EFD, and the EFP. The ECP projects capacity additions required to meet the minimum renewable generation levels in future years. The EFD determines the sales and purchases of renewable credits for the current year. The EFP incorporates the cost of building capacity and trading credits into the price of electricity.

  18. Texas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Geothermal - - Hydro Conventional 689 0.6 Solar 14 * Wind 9,952 9.2 WoodWood Waste 215 ...

  19. Montana Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 2,705 46.1 Solar - - Wind 379 6.5 WoodWood Waste - - MSW...

  20. Georgia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 2,052 5.6 Solar - - Wind - - WoodWood Waste 617 1.7 MSW...

  1. Colorado Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Geothermal - - Hydro Conventional 662 4.8 Solar 41 0.3 Wind 1,294 9.4 WoodWood Waste - - ...

  2. New York Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 4,314 11.0 Solar - - Wind 1,274 3.2 WoodWood Waste 86 0.2 ...

  3. Indiana Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Geothermal - - Hydro Conventional 60 0.2 Solar - - Wind 1,340 4.8 WoodWood Waste - - ...

  4. Idaho Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... 10 0.3 Hydro Conventional 2,704 67.8 Solar - - Wind 352 8.8 WoodWood Waste 68 1.7 ...

  5. Maine Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 738 16.6 Solar - - Wind 263 5.9 WoodWood Waste 600 13.6 ...

  6. Minnesota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Geothermal - - Hydro Conventional 193 1.3 Solar - - Wind 2,009 13.7 WoodWood Waste 177 ...

  7. South Carolina Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 1,340 5.6 Solar - - Wind - - WoodWood Waste 255 1.1 MSW...

  8. New Mexico Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",82,1 " Solar",30,0.4 " Wind",700,8.6 " WoodWood ...

  9. Nevada Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... 319 2.8 Hydro Conventional 1,051 9.2 Solar 137 1.2 Wind - - WoodWood Waste - - MSW...

  10. New Mexico Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Geothermal - - Hydro Conventional 82 1.0 Solar 30 0.4 Wind 700 8.6 WoodWood Waste - - ...