Powered by Deep Web Technologies
Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

2

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

3

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

4

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

5

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

Mai, T.

2012-08-01T23:59:59.000Z

6

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

Mai, T.

2012-08-01T23:59:59.000Z

7

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

Hand, M.; Mai, T.

2012-08-01T23:59:59.000Z

8

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

Hand, M.

2012-10-01T23:59:59.000Z

9

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

Hand, M. M.

2012-08-01T23:59:59.000Z

10

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

Hand, M. M.

2012-08-01T23:59:59.000Z

11

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

DeMeo, E.

2012-08-01T23:59:59.000Z

12

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

Mai, T.

2012-08-01T23:59:59.000Z

13

Renewable Electricity Futures Study. Executive Summary  

Science Conference Proceedings (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

2012-12-01T23:59:59.000Z

14

Renewable Electricity Futures Study: Executive Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Executive Summary Executive Summary NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report)

15

NREL: Energy Analysis - Renewable Electricity Futures Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Futures Study Renewable Electricity Futures Study RE Futures Visualizations These visualizations are based on RE Futures modeling and represent the transformation of the U.S. electric system to a high renewable system from 2010 to 2050 and the hourly operation and transmission flow of that system in 2050. Transformation of the Electric Sector (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display the transformation of the electric sector in 2010 through 2050 Hourly Operation in 2050 (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display hourly operation in 2010 through 2050 Power Flow in 2050 (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display power flow in 2010 through 2050

16

Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures  

DOE Green Energy (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

2012-06-01T23:59:59.000Z

17

Renewable Electricity Futures: Exploration of Up to 80% Renewable Electricity Penetration in the United States (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M.; DeMeo, E.; Hostick, D.; Mai, T.; Schlosser, C. A.

2013-04-01T23:59:59.000Z

18

Renewable Electricity Futures Study. Volume 1: Exploration of...  

NLE Websites -- All DOE Office Websites (Extended Search)

of High-Penetration Renewable Electricity Futures D-7 Jay Caspary Southwest Power Pool Lynn Coles National Renewable Energy Laboratory Brendan Kirby Consult Kirby Trieu Mai...

19

Power Systems Engineering Research Center Renewable Electricity Futures  

E-Print Network (OSTI)

Power Systems Engineering Research Center Renewable Electricity Futures Trieu Mai Electricity of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity

Van Veen, Barry D.

20

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

DOE Green Energy (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Generation Renewable Electricity Generation and Storage Technologies Volume 2 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable

22

Presentation to EAC: Renewable Electricity Futures Activities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Office of Electricity Delivery & Energy Reliability Search form Search Office of Electricity Delivery & Energy Reliability Services Electricity...

23

Presentation to EAC: Renewable Electricity Futures Activities & Status, October 29, 2010  

Energy.gov (U.S. Department of Energy (DOE))

Presentation to the Electricity Advisory Committee, October 29, 2010, on Renewable Electricity Futures Activities & Status. The presentation provides a high-level overview of the Renewable...

24

Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning  

DOE Green Energy (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

2012-06-01T23:59:59.000Z

25

Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand  

DOE Green Energy (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

2012-06-01T23:59:59.000Z

26

Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Bulk Electric Power Systems: Bulk Electric Power Systems: Operations and Transmission Planning Volume 4 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable

27

Realisable Scenarios for a Future Electricity Supply based 100% on Renewable Energies  

E-Print Network (OSTI)

Realisable Scenarios for a Future Electricity Supply based 100% on Renewable Energies Gregor Czisch that we must transform our energy system into one using only renewable energies. But questions arise how. These questions were the focus of a study which investigated the cost optimum of a future renewable electricity

28

Enabling Renewable Energy and the Future Grid with Advanced Electricity Storage  

DOE Green Energy (OSTI)

Environmental concerns about using fossil fuels and their resource constrains, along with that on energy security, have spurred great interests in generating electrical energy from renewable sources such as wind and solar. The variable and stochastic nature of renewable sources however makes solar and wind power difficult to manage, especially at high levels of penetration. To effectively use the intermittent renewable energy and enable its delivery demand electrical energy storage (EES) that can also improve the reliability, stability, and efficiency of the electrical grid, which is expected to support plug-in electrical vehicles; enable real-time, two-way communication to balance demand and supply. While EES has gained wide attention for hybrid and electrical vehicle (e.g. plug-in-hybrid electrical) needs, public awareness and understanding of the critical challenges in energy storage for renewable integration and the future grid is relatively lacking. This paper examines the benefits and challenges of EES, in particular electrochemical storage or battery technologies, and discusses the fundamental principles, economics, and feasibility of the storage technologies. It intends to provide an understanding of the needs and challenges of electrical storage technologies for the stationary applications and offer general directions of research and development to the materials community.

Yang, Zhenguo; Liu, Jun; Baskaran, Suresh; Imhoff, Carl H.; Holladay, Jamelyn D.

2010-08-06T23:59:59.000Z

29

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures  

E-Print Network (OSTI)

and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Trieu Mai, Ph.D. 5th International Conference on Integration of Renewable and Distributed Energy Resources source. · To what extent can renewable energy technologies commercially available today meet the U

30

“Empowering Minds to Engineer the Future Electric Energy System” Challenges in Integrating g Renewable Technologies into an Electric Power  

E-Print Network (OSTI)

Presented by WIRES- a national coalition of investor- and publicly-owned transmission providers customers, renewable energy developers, and technology and service companies dedicated to promoting investment in strong, well-planned, and beneficial high voltage electric transmission infrastructure

Dennis Ray

2010-01-01T23:59:59.000Z

31

The future role of renewable energy sources in European electricity supply : A model-based analysis for the EU-15.  

E-Print Network (OSTI)

??Ambitious targets for the use of renewable electricity (RES-E) have been formulated by the EU Commission and the EU Member States. Taking into account technical,… (more)

Rosen, Johannes

2008-01-01T23:59:59.000Z

32

Guide to Purchasing Green Power: Renewable Electricity, Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates and On-Site Renewable Generation Title Guide to Purchasing Green Power: Renewable Electricity,...

33

Electricity from Renewables: Status, Prospects, and Impediments  

E-Print Network (OSTI)

Electricity from Renewables: Status, Prospects, and Impediments America's Energy Future Study Panel on Electricity from Renewables K. John Holmes, National Research Council, Study Director (jholmes@nas.edu) #12, Carnegie Mellon University ·James J. Markowsky***, American Electric Power (Ret.) ·Richard A. Meserve

Kammen, Daniel M.

34

EERE: Renewable Electricity Generation - Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy Search Search Search Help | A-Z Subject Index EERE Geothermal Renewable Electricity Generation EERE plays a key role in advancing America's "all...

35

Renewable Electricity Generation (Fact Sheet)  

DOE Green Energy (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

Not Available

2012-09-01T23:59:59.000Z

36

EERE: Renewable Electricity Generation - Solar  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Renewable Electricity Generation EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to...

37

Consumer Behaviour in Renewable Electricity.  

E-Print Network (OSTI)

??  A higher percentage of energy from renewable resources is an important goal on many sustainable development agendas. In liberalized electricity markets, an increase in… (more)

Hanimann, Raphael

2013-01-01T23:59:59.000Z

38

State Renewable Electricity Profiles 2010  

U.S. Energy Information Administration (EIA)

State Renewable Electricity Profiles 2010. March 2012 Independent Statistics & Analysis . www.eia.gov . U.S. Department of Energy . Washington, DC 20585

39

Hydro, Solar, Wind The Future of Renewable Energy  

E-Print Network (OSTI)

Hydro, Solar, Wind The Future of Renewable Energy Joseph Flocco David Lath Department of Electrical. Hydropower Water has grown in previous years to become the most widely used form of renewable energy across years to come from Hydropower. It is considered to be a renewable energy source because it uses

Lavaei, Javad

40

renewable electricity | OpenEI  

Open Energy Info (EERE)

electricity electricity Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Communication and Control of Electric Vehicles Supporting Renewables: Preprint  

DOE Green Energy (OSTI)

Discusses the technologies needed, potential scenarios, limitations, and opportunities for using grid-connected renewable energy to fuel the electric vehicles of the future.

Markel, T.; Kuss, M.; Denholm, P.

2009-08-01T23:59:59.000Z

42

Renewable Electricity Purchases: History and Recent Developments  

Reports and Publications (EIA)

This article presents an analysis of prices of renewable-based electricity that utilities have paid to nonutilities, the primary generators of renewable electricity.

Information Center

1999-02-01T23:59:59.000Z

43

Mohave Electric Cooperative - Renewable Energy Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Mohave Electric Cooperative - Renewable Energy Incentive Program Mohave Electric Cooperative - Renewable Energy Incentive Program...

44

Renewable Electricity Generation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Generation Renewable Electricity Generation Geothermal Read more Solar Read more Water Read more Wind Read more Our nation has abundant solar, water, wind,...

45

Renewable Electricity Generation  

Energy.gov (U.S. Department of Energy (DOE))

Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems....

46

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes the details of purchasing green power. Discussion covers topics like renewable electricity, renewable energy certificates, and on-site renewable generation.

47

Renewable Energy Futures to 2050: Current Perspectives  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Futures to 2050: Current Perspectives Renewable Energy Futures to 2050: Current Perspectives Speaker(s): Eric Martinot Date: April 4, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ryan Wiser The future of renewable energy is fundamentally a choice, not a foregone conclusion given technology and economic trends. The new REN21 Renewables Global Futures Report illuminates that choice by showing the range of credible possibilities for the future of renewable energy. The report is not one scenario or viewpoint, but a synthesis of the contemporary thinking of many, as compiled from 170 interviews with leading experts from around the world, including CEOs and parliamentarians, and from 50 recently published energy scenarios by a range of organizations. Conservative projections show 15-20% global energy shares from renewables in the

48

Modelling the future development of renewable energy technologies in the European electricity sector using agent-based simulation.  

E-Print Network (OSTI)

??Increasing the share of renewable energy sources in final energy consumption forms an important part of the EU's energy and climate strategy. An agent-based simulation… (more)

Held, Anne Mirjam

2010-01-01T23:59:59.000Z

49

US Renewable Futures in the GCAM  

DOE Green Energy (OSTI)

This project examines renewable energy deployment in the United States using a version of the GCAM integrated assessment model with detailed a representation of renewables, the GCAM-RE. Electricity generation was modeled in four generation segments and 12-subregions. This level of regional and sectoral detail allows a more explicit representation of renewable energy generation. Wind, solar thermal power, and central solar PV plants are implemented in explicit resource classes with new intermittency parameterizations appropriate for each technology. A scenario analysis examines a range of assumptions for technology characteristics, climate policy, and long-distance transmission. We find that renewable generation levels grow over the century in all scenarios. As expected, renewable generation increases with lower renewable technology costs, more stringent climate policy, and if alternative low-carbon technology are not available. The availability of long distance transmission lowers policy costs and changes the renewable generation mix.

Smith, Steven J.; Mizrahi, Andrew H.; Karas, Joseph F.; Nathan, Mayda

2011-10-06T23:59:59.000Z

50

Guide to Purchasing Green Power: Renewable Electricity, Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

generated from a subset of renewable resources, including solar, wind, geothermal, biogas, biomass, and low-impact hydroelectric sources. These electricity sources are derived...

51

Renewable and Efficient Electric Power Systems  

E-Print Network (OSTI)

.8.1 Ideal Transformers 37 1.8.2 Magnetization Losses 40 Problems 44 2 Fundamentals of Electric Power 51 2Renewable and Efficient Electric Power Systems Gilbert M. Masters Stanford University A JOHN WILEY & SONS, INC., PUBLICATION #12;#12;Renewable and Efficient Electric Power Systems #12;#12;Renewable

Kammen, Daniel M.

52

Renewables in India : Status and Future Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewables in India : Status and Future Potential Renewables in India : Status and Future Potential Speaker(s): Luis Fernandes Date: July 9, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose We analyse the status and the trends in the growth of renewables in India. We propose a methodology linking micro-simulation to macro-modelling to obtain technical and economic potential estimates for solar water heaters in residential and commercial and biomass gasifiers for thermal applications in industry. We assess the sustainability of renewables based on the criteria of life cycle cost, net energy ratio, resource constraint and greenhouse gas emissions. The renewable based technologies seem to be sustainable based on all criteria, except the high life cycle cost. In some cases e.g. in wind and biomass based systems land availability may

53

Renewable Energy for Electricity Generation in Latin America: Market,  

Open Energy Info (EERE)

for Electricity Generation in Latin America: Market, for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Focus Area: Water power Topics: Market Analysis Website: www.leonardo-energy.org/webinar-renewable-energy-electricity-generatio Equivalent URI: cleanenergysolutions.org/content/renewable-energy-electricity-generati Language: English Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation This video teaches the viewer about the current status and future

54

NREL: Learning - Renewable Energy for Electricity Providers  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy for Electricity Providers Photo of wind turbines. The Ponnequin Wind Farm in Colorado generates electricity for 6,000 customers. You'll find many renewable energy...

55

Tribal Renewable Energy Foundational Course: Electricity Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar...

56

Choices for A Brighter Future: Perspectives on Renewable Energy  

DOE Green Energy (OSTI)

The report discusses the perspectives on the evolving U.S. electricity future, the renewable electric technology portfolio, the regional outlook, and the opportunities to move forward. Renewables are at a critical juncture as the domestic electricity marketplace moves toward an era of increased choice and greater diversity. The cost and performance of these technologies have improved dramatically over the past decade, yet their market penetration has stalled as the power industry grapples with the implications of the emerging competitive marketplace. Renewable energy technologies already contribute to the global energy mix and are ready to make an even greater contribution in the future. However, the renewables industry faces critical market uncertainties, both domestically and internationally, as policy commitments to renewables at both the federal and state levels are being reshaped to match the emerging competitive marketplace. The energy decisions that we make, or fail to make, today will have long-lasting implications. We can act now to ensure that renewable energy will play a major role in meeting the challenges of the evolving energy future. We have the power to choose.

NREL

1999-09-30T23:59:59.000Z

57

Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Realizing a Clean Energy Future 2 Table of Contents Profound Energy System Transformation is Underway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 A Clean Energy Future Has Arrived . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Renewable Industry Continues to Grow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Renewable Energy Technical Potential is Enormous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Comprehensive Studies Validate Opportunity for U .S . Renewables to Provide Clean Electricity and Transportation . . . . . . . . . . . . . . . . . . . 8 Realizing Clean Energy's Potential: Challenge and Opportunity . . . . . . . . . . . . . . . . . . . . . . . 9 Renewables and Natural

58

Renewable Electricity Generation (Fact Sheet), Office of Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet),...

59

Renewable Electricity Generation in the United States  

E-Print Network (OSTI)

This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

Schmalensee, Richard

60

Renewable Electricity Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Standard Renewable Electricity Standard Renewable Electricity Standard < Back Eligibility Investor-Owned Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Missouri Program Type Renewables Portfolio Standard Provider Missouri Public Service Commission In November 2008, voters in Missouri enacted Proposition C, a ballot initiative that repealed the state's existing voluntary renewable energy and energy efficiency objective and replaced it with an expanded, mandatory renewable electricity standard of 15% by 2021. The standard also contains a solar electricity carve-out of 2% of each interim portfolio requirement meaning that by 2021, 0.3% of retail electricity sales must be derived from

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Role of Renewable Energy in Sustainable Electricity Generation Portfolios  

Science Conference Proceedings (OSTI)

The future electric power system is likely to use far more renewable energy, including biomass, geothermal, small hydro, and intermittent renewable resources such as wind and solar power, than today (3.4% of U.S. primary energy and 2.3% of electricity during 2004, U.S. Energy Information Agency). Exogenous factors such as global climate change and high fossil fuel prices are leading policymakers and energy companies to seek more sustainable energy futures. But how much can renewable energy contribute? Th...

2006-03-30T23:59:59.000Z

62

Role of Renewable Energy in Sustainable Electricity Generation Portfolios  

Science Conference Proceedings (OSTI)

This Technical Update describes the use of energy system and capacity planning models and alternative scenarios of the future to evaluate the potential role of renewable energy in a sustainable electricity generation portfolio. Base case runs of the three models considered in this study all forecast growing contributions from renewables over a range of scenarios, but predictions vary widely due to differing modeling approaches and differing assumptions about future market, policy, technology, and other c...

2007-01-31T23:59:59.000Z

63

Renewable Electricity Purchases: History and Recent Developments  

U.S. Energy Information Administration (EIA)

Energy Information Administration/ Renewable Energy Annual 1998 Issues and Trends 1 1 For a broader understanding of electric power industry restructuring, see Energy ...

64

Renewable Electricity Facility Tax Credit (Personal) (Kansas...  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Renewable Electricity Facility Tax Credit (Personal) (Kansas) This is the approved revision of this page,...

65

Renewable Electricity Facility Tax Credit (Corporate) (Kansas...  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Renewable Electricity Facility Tax Credit (Corporate) (Kansas) This is the approved revision of this...

66

Renewable Energy Consumption and Electricity Preliminary ...  

U.S. Energy Information Administration (EIA)

Renewable Energy Consumption and Electricity Preliminary Statistics 2010 June 2011 ... and Job Creation Act of 2010 (H.R. 4853) was signed in December

67

Trends in Utility Scale Renewable Electricity  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Trends in Utility Scale Renewable Electricity for ReTech 2012

68

Renewable Electricity Generation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Generation Renewable Electricity Generation Renewable Electricity Generation Geothermal Read more Solar Read more Water Read more Wind Read more Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE) leads a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost competitive with traditional sources of energy. Working with our national laboratories and through these partnerships, we are catalyzing the transformation of the nation's energy system and building on a tradition of U.S. leadership in science and

69

The Future of Electricity (and Gas) Regulation  

E-Print Network (OSTI)

is less than 20% of final energy consumption, even if other sectors managed to achieve a highly ambitious 10% renewables target, electricity would be required to acheive around a 35% renewable share to meet the overall target (see DUKES Table 1... analyses of how current and future policy can achieve this in the context of the UK. 3 Note climate change concern could be relatively greater than or less than actual climate change. 2 countries who operate within the context of EU energy...

Pollitt, Michael G.

70

Trends in Renewable Energy Consumption and Electricity  

Reports and Publications (EIA)

Presents a summary of the nation’s renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and State. The report covers the period from 2006 through 2010.

2012-12-11T23:59:59.000Z

71

Islands and Our Renewable Energy Future (Presentation)  

DOE Green Energy (OSTI)

Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

2012-05-01T23:59:59.000Z

72

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate PV: $8,000 Solar Water Heaters: $1,000 Solar Water Wells: $750 Wind-electric: $6,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount PV: $2.00/watt Solar Water Heaters: $1,000/unit Solar Water Wells: $750/unit Wind-electric: $1.00/watt Provider Guadalupe Valley Electric Cooperative '''''The $1.5 million budget cap for PV rebates in 2013 has been met. No additional applications for PV rebates will be accepted. '''''

73

2014 Electricity Forms Reclearance: Renewable Electricity  

U.S. Energy Information Administration (EIA)

... CSP, Geothermal – Could also be collected for non-renewable generators – Unclear how to handle arrays/wind farms with multiple manufacturers ...

74

Renewable Power Options for Electricity Generation on Kaua'i...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

75

Annual Renewable Electricity Consumption by Country (2005 - 2009...  

Open Energy Info (EERE)

Renewable Electricity Consumption by Country (2005 - 2009) Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as...

76

Farmers Electric Cooperative (Kalona) - Renewable Energy Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Renewable Energy Rebates Farmers Electric Cooperative (Kalona) - Renewable Energy Rebates Farmers Electric Cooperative (Kalona) - Renewable Energy Rebates < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Wind Maximum Rebate $5,000 per site $20,000 per total system per year Rebate is capped at wattage that meets 25% of customer's annual kWhr use Program Info State Iowa Program Type Utility Rebate Program Rebate Amount $1,000 per peak kW Provider Farmers Electric Cooperative Farmer's Electric Cooperative (Kalona) offers rebates for the installation of small wind and solar photovoltaic (PV) systems to its member customers. The amount of the rebate is set at $1,000 per peak kilowatt (kW) for both technologies, with a maximum rebate of $5,000. It is only available for

77

The renewable electric plant information system  

DOE Green Energy (OSTI)

This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

Sinclair, K.

1995-12-01T23:59:59.000Z

78

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future 2008 SUSTAINABILITY REPORT and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. #12;1 NATIONAL RENEWABLE ENERGY LABORATORY The National Renewable Energy Laboratory (NREL) is the only federal laboratory dedicated

79

Willingness to pay for electricity from renewable energy  

SciTech Connect

National polls reveal widespread public preference and willingness to pay more for renewables. ``Green pricing`` programs attempt to capitalize on these preferences and on an expressed willingness to pay more for environmental protection. This report explores the utility option of green pricing as a method of aggregating public preferences for renewables. It summarizes national data on public preferences for renewables and willingness to pay (WTP) for electricity from renewable energy sources; examines utility market studies on WTP for renewables and green-pricing program features; critiques utility market research on green pricing; and discusses experiences with selected green-pricing programs. The report draws inferences for program design and future research. Given the limited experiences with the programs so far, the evidence suggests that programs in which customers pay a monthly premium for a specific renewable electricity product elicit a higher monthly financial commitment per customer than programs asking for contributions to unspecified future actions involving renewables. The experience with green-pricing programs is summarized and factors likely to affect customer participation are identified.

Farhar, B.C.; Houston, A.H.

1996-09-01T23:59:59.000Z

80

New Electric Grid Technologies for Renewable Integration  

E-Print Network (OSTI)

and changing electric loads that are becoming part of the "orchestra" · Dealing with economic and public policy & Intelligent Agent (temporal power flow control) · Solar and Wind Forecasting Tools · Generator and LoadNew Electric Grid Technologies for Renewable Integration - The Need for Being Smarter - Presented

Islam, M. Saif

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Renewable electricity, Feed-in-Tariff, Renewable Obligation  

E-Print Network (OSTI)

Keywords JEL Classification The aim of this paper is to look at the UK’s renewable energy policy in the context of its overall decarbonisation and energy policies. This will allow us to explore the precise nature of the ‘failure ’ of UK renewables policy and to suggest policy changes which might be appropriate in light of the UK’s institutional and resource endowments. Our focus is on the electricity sector both in terms of renewable generation and to a lesser extent the facilitating role of electricity distribution and transmission networks. We will suggest that the precise nature of the failure of UK policy is rather more to do with societal preferences and the available mechanisms for encouraging social acceptability than it is to do with financial support mechanisms. Radical changes to current policy are required, but they must be careful to be institutionally appropriate to the UK. What we suggest is that current policies exhibit an unnecessarily low benefit to cost ratio, and that new policies for renewable deployment must pay close attention to cost effectiveness.

Michael G. Pollitt; Michael G. Pollitt

2010-01-01T23:59:59.000Z

82

Empowering Variable Renewables: Options for Flexible Electricity Systems |  

Open Energy Info (EERE)

Empowering Variable Renewables: Options for Flexible Electricity Systems Empowering Variable Renewables: Options for Flexible Electricity Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Empowering Variable Renewables: Options for Flexible Electricity Systems Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Renewable Energy Topics: Market analysis, Technology characterizations Resource Type: Publications Website: www.iea.org/g8/2008/Empowering_Variable_Renewables.pdf Empowering Variable Renewables: Options for Flexible Electricity Systems Screenshot References: Empowering Variable Renewables: Options for Flexible Electricity Systems[1] Summary "Increasing the share of renewables in energy portfolios is a key tool in the drive to reduce anthropogenic carbon dioxide emissions, as well as

83

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchasing Green Power Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation DOE/EE-0307 This guide can be downloaded from: www1.eere.energy.gov/femp/technologies/renewable_purchasingpower.html www.epa.gov/greenpower/ www.wri.org/publications www.resource-solutions.org/publications.php Office of Air (6202J) EPA430-K-04-015 www.epa.gov/greenpower March 2010 ISBN: 1-56973-577-8 Guide to Purchasing Green Power i Table of Contents Summary ........................................................................................................................................................1 Chapter 1: Introduction ....................................................................................................................................2

84

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance: · TransmissionExpansionandRenewableEnergy Zone Planning · IncreasingUseofExistingGrid. Wind Resource Assessment

85

Leveraging Renewable Energy in Data Centers: Present and Future  

E-Print Network (OSTI)

Leveraging Renewable Energy in Data Centers: Present and Future Keynote Summary Ricardo Bianchini in powering data centers (at least par- tially) with renewable or "green" sources of energy, such as solar Keywords Renewable energy, energy-aware scheduling, data centers. 1. INTRODUCTION Data centers consume

Bianchini, Ricardo

86

Renewable Resources in the U.S. Electricity Supply  

Reports and Publications (EIA)

Provides an overview of current and long term forecasted uses of renewable resources in the Nation's electricity marketplace, the largest domestic application of renewable resources today.

Information Center

1993-02-01T23:59:59.000Z

87

Renewable Resource Electricity in the Changing Regulatory Environment  

Reports and Publications (EIA)

This article surveys in the development of renewable resource electricity recent actions and proposals and summarizes their implications for the renewables industry.

Information Center

1995-12-01T23:59:59.000Z

88

Electricity generation from non-hydro renewable sources varies ...  

U.S. Energy Information Administration (EIA)

May 2, 2012 Electricity generation from non-hydro renewable sources varies by state. Wind accounted for most non-hydro renewable generation in 2011, but sources of ...

89

NREL: Education Programs - NREL to Showcase Renewable Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

two mobile renewable electricity generation systems and three advanced vehicles-a Toyota Highlander fuel cell electric vehicle, a plug-in Toyota Prius hybrid electric vehicle,...

90

Renewable Energy Requirements for Future Building Codes: Options for Compliance  

Science Conference Proceedings (OSTI)

As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy Credits (RECs). Each REC represents a specified amount of renewable electricity production and provides an offset of environmental externalities associated with non-renewable electricity production. The purpose of this paper is to explore the possible issues with RECs and comparable alternative compliance options. Existing codes have been examined to determine energy equivalence between the energy generation requirement and the RECs alternative over the life of the building. The price equivalence of the requirement and the alternative are determined to consider the economic drivers for a market decision. This research includes case studies that review how the few existing codes have incorporated RECs and some of the issues inherent with REC markets. Section 1 of the report reviews compliance options including RECs, green energy purchase programs, shared solar agreements and leases, and other options. Section 2 provides detailed case studies on codes that include RECs and community based alternative compliance methods. The methods the existing code requirements structure alternative compliance options like RECs are the focus of the case studies. Section 3 explores the possible structure of the renewable energy generation requirement in the context of energy and price equivalence. The price of RECs have shown high variation by market and over time which makes it critical to for code language to be updated frequently for a renewable energy generation requirement or the requirement will not remain price-equivalent over time. Section 4 of the report provides a maximum case estimate for impact to the PV market and the REC market based on the Kaufmann et al. proposed requirement levels. If all new buildings in the commercial sector complied with the requirement to install rooftop PV arrays, nearly 4,700 MW of solar would be installed in 2012, a major increase from EIA estimates of 640 MW of solar generation capacity installed in 2009. The residential sector could contribute roughly an additional 2,300 MW based on the same code requirement levels of 4 W/ft{sup 2} of r

Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

2011-09-30T23:59:59.000Z

91

State Policies Provide Critical Support for Renewable Electricity  

E-Print Network (OSTI)

it can compete against other renewable resource options.Critical Support for Renewable Electricity Galen Barbose,July 15, 2008 Growth in renewable energy in the U.S. over

Barbose, Galen

2009-01-01T23:59:59.000Z

92

Current Renewable Energy Technologies and Future Projections  

SciTech Connect

The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

2007-05-01T23:59:59.000Z

93

THE IMPACTS OF RENEWABLE ENERGY POLICIES ON RENEWABLE ENERGY SOURCES FOR ELECTRICITY GENERATING CAPACITY .  

E-Print Network (OSTI)

??Electricity generation from non-hydro renewable sources has increased rapidly in the last decade. For example, Renewable Energy Sources for Electricity (RES-E) generating capacity in the… (more)

[No author

2011-01-01T23:59:59.000Z

94

State Policies Provide Critical Support for Renewable Electricity  

DOE Green Energy (OSTI)

Growth in renewable energy in the U.S. over the past decade has been propelled by a number of forces, including rising fossil fuel prices, environmental concerns, and policy support at the state and federal levels. In this article, we review and discuss what are arguably the two most important types of state policies for supporting electricity generation from geothermal and other forms of renewable energy: renewables portfolio standards and utility integrated resource planning requirements. Within the Western U.S., where the vast majority of the nation's readily-accessible geothermal resource potential resides, these two types of state policies have been critical to the growth of renewable energy, and both promise to continue to play a fundamental role for the foreseeable future. In its essence, a renewables portfolio standard (RPS) requires utilities and other retail electricity suppliers to produce or purchase a minimum quantity or percentage of their generation supply from renewable resources. RPS purchase obligations generally increase over time, and retail suppliers typically must demonstrate compliance on an annual basis. Mandatory RPS policies are backed by various types of compliance enforcement mechanisms, although most states have incorporated some type of cost-containment provision, such as a cost cap or a cap on retail rate impacts, which could conceivably allow utilities to avoid (full) compliance with their RPS target. Currently, 27 states and the District of Columbia have mandatory RPS requirements. Within the eleven states of the contiguous Western U.S., all but three (Idaho, Utah, and Wyoming) now have a mandatory RPS legislation (Utah has a more-voluntary renewable energy goal), covering almost 80% of retail electricity sales in the region. Although many of these state policies have only recently been established, their impact is already evident: almost 1800 MW of new renewable capacity has been installed in Western states following the implementation of RPS policies. To date, wind energy has been the primary beneficiary of state RPS policies, representing approximately 83% of RPS-driven renewable capacity growth in the West through 2007. Geothermal energy occupies a distant second place, providing 7% of RPS-driven new renewable capacity in the West since the late 1990s, though geothermal's contribution on an energy (MWh) basis is higher. Looking to the future, a sizable quantity of renewable capacity beyond pre-RPS levels will be needed to meet state RPS mandates: about 25,000 MW by 2025 within the Western U.S. Geothermal energy is beginning to provide an increasingly significant contribution, as evidenced by the spate of new projects recently announced to meet state RPS requirements. Most of this activity has been driven by the RPS policies in California and Nevada, where the Geothermal Energy Association has identified 47 new geothermal projects, totaling more than 2,100 MW, in various stages of development. Additional geothermal projects in Arizona, New Mexico, Oregon, and Washington are also under development to meet those states RPS requirements. The other major state policy driver for renewable electricity growth, particularly in the West, is integrated resource planning (IRP). IRP was first formalized as a practice in the 1980s, but the practice was suspended in some states as electricity restructuring efforts began. A renewed interest in IRP has emerged in the past several years, however, with several Western states (California, Montana, and New Mexico) reestablishing IRP and others developing new rules to strengthen their existing processes. In its barest form, IRP simply requires that utilities periodically submit long-term resource procurement plans in which they evaluate alternative strategies for meeting their resource needs over the following ten to twenty years. However, many states have developed specific requirements for the IRP process that directly or indirectly support renewable energy. The most general of these is an explicit requirement that utilities evaluate renewables, and that

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-07-15T23:59:59.000Z

95

State Policies Provide Critical Support for Renewable Electricity  

SciTech Connect

Growth in renewable energy in the U.S. over the past decade has been propelled by a number of forces, including rising fossil fuel prices, environmental concerns, and policy support at the state and federal levels. In this article, we review and discuss what are arguably the two most important types of state policies for supporting electricity generation from geothermal and other forms of renewable energy: renewables portfolio standards and utility integrated resource planning requirements. Within the Western U.S., where the vast majority of the nation's readily-accessible geothermal resource potential resides, these two types of state policies have been critical to the growth of renewable energy, and both promise to continue to play a fundamental role for the foreseeable future. In its essence, a renewables portfolio standard (RPS) requires utilities and other retail electricity suppliers to produce or purchase a minimum quantity or percentage of their generation supply from renewable resources. RPS purchase obligations generally increase over time, and retail suppliers typically must demonstrate compliance on an annual basis. Mandatory RPS policies are backed by various types of compliance enforcement mechanisms, although most states have incorporated some type of cost-containment provision, such as a cost cap or a cap on retail rate impacts, which could conceivably allow utilities to avoid (full) compliance with their RPS target. Currently, 27 states and the District of Columbia have mandatory RPS requirements. Within the eleven states of the contiguous Western U.S., all but three (Idaho, Utah, and Wyoming) now have a mandatory RPS legislation (Utah has a more-voluntary renewable energy goal), covering almost 80% of retail electricity sales in the region. Although many of these state policies have only recently been established, their impact is already evident: almost 1800 MW of new renewable capacity has been installed in Western states following the implementation of RPS policies. To date, wind energy has been the primary beneficiary of state RPS policies, representing approximately 83% of RPS-driven renewable capacity growth in the West through 2007. Geothermal energy occupies a distant second place, providing 7% of RPS-driven new renewable capacity in the West since the late 1990s, though geothermal's contribution on an energy (MWh) basis is higher. Looking to the future, a sizable quantity of renewable capacity beyond pre-RPS levels will be needed to meet state RPS mandates: about 25,000 MW by 2025 within the Western U.S. Geothermal energy is beginning to provide an increasingly significant contribution, as evidenced by the spate of new projects recently announced to meet state RPS requirements. Most of this activity has been driven by the RPS policies in California and Nevada, where the Geothermal Energy Association has identified 47 new geothermal projects, totaling more than 2,100 MW, in various stages of development. Additional geothermal projects in Arizona, New Mexico, Oregon, and Washington are also under development to meet those states RPS requirements. The other major state policy driver for renewable electricity growth, particularly in the West, is integrated resource planning (IRP). IRP was first formalized as a practice in the 1980s, but the practice was suspended in some states as electricity restructuring efforts began. A renewed interest in IRP has emerged in the past several years, however, with several Western states (California, Montana, and New Mexico) reestablishing IRP and others developing new rules to strengthen their existing processes. In its barest form, IRP simply requires that utilities periodically submit long-term resource procurement plans in which they evaluate alternative strategies for meeting their resource needs over the following ten to twenty years. However, many states have developed specific requirements for the IRP process that directly or indirectly support renewable energy. The most general of these is an explicit requirement that utilities evaluate renewables

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-07-15T23:59:59.000Z

96

The Easy Way to Use Renewables: Buy Clean Electricity | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Easy Way to Use Renewables: Buy Clean Electricity The Easy Way to Use Renewables: Buy Clean Electricity November 17, 2009 - 8:45pm Addthis John Lippert Clean air means a lot to...

97

US Virgin Islands renewable energy future  

E-Print Network (OSTI)

The US Virgin Islands must face drastic changes to its electrical system. There are two problems with electricity production in the USVI-it's dirty and it's expensive. Nearly one hundred percent of the electricity in these ...

Oldfield, Brian (Brian K.)

2013-01-01T23:59:59.000Z

98

Electricity Net Generation From Renewable Energy by Energy Use...  

Open Energy Info (EERE)

Electricity Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Provides annual net electricity generation (thousand kilowatt-hours) from...

99

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

.eia.doe.gov/emeu/aer/contents.html. Wash- ington, DC: U.S. Department of Energy, Energy Information Administration. Mermoud, A. (1996National Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy NREL is operated by Midwest

100

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

1: U.S. and International Renewable Hydrogen Demonstrationfueling station powered by renewable electricity. The systemand Natural Gas, National Renewable Energy Laboratory, U.S.

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NREL: Vehicles and Fuels Research - NREL to Showcase Renewable Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL to Showcase Renewable Electricity Generation Systems and Advanced NREL to Showcase Renewable Electricity Generation Systems and Advanced Vehicles at Denver Earth Day Fair April 18, 2013 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will showcase two mobile renewable electricity generation systems and three advanced vehicles-a Toyota Highlander fuel cell electric vehicle, a plug-in Toyota Prius hybrid electric vehicle, and a Mitsubishi i-MiEV electric vehicle-at the Denver Earth Day Fair on April 22. The larger of NREL's two renewable electricity generation systems features a 12 kilowatt biodiesel-powered back-up generator as well as a 1.8 kilowatt photovoltaic array that taps into energy from the sun to produce renewable electricity, which will power the fair. The smaller system includes a 384

102

Transportation Electrification Load Development For a Renewable Future Analysis  

SciTech Connect

Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

2010-09-30T23:59:59.000Z

103

The effectiveness of the policies on renewable electricity in China  

E-Print Network (OSTI)

After the legislation of the Renewable Energy Law, China's government established a series of policies to promote renewable energy source electricity (RES-e) from 2005-2012. The effectiveness of the policies varies depending ...

Xiao, Qing S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

104

Procurement Options for New Renewable Electricity Supply | Open Energy  

Open Energy Info (EERE)

Procurement Options for New Renewable Electricity Supply Procurement Options for New Renewable Electricity Supply Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Procurement Options for New Renewable Electricity Supply Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy Phase: Evaluate Options Topics: Finance, Low emission development planning, -LEDS Resource Type: Case studies/examples, Lessons learned/best practices, Technical report Website: nrelpubs.nrel.gov/Webtop/ws/nich/www/public/Record?rpp=25&upp=0&m=1&w= Cost: Free OpenEI Keyword(s): feed-in tariffs, renewable portfolio standards, FITs, FIT, RPS, renewable energy, procurement UN Region: Northern America Language: English Tool Overview "State renewable portfolio standard (RPS) policies require utilities and

105

El Paso Electric Company - Small and Medium System Renewable...  

Open Energy Info (EERE)

Place New Mexico Name El Paso Electric Company - Small and Medium System Renewable Energy Certificate Purchase Program Incentive Type Performance-Based Incentive Applicable...

106

Figure 8. Renewable energy share of U.S. electricity ...  

U.S. Energy Information Administration (EIA)

Title: Figure 8. Renewable energy share of U.S. electricity generation in four cases, 2000-2040 (percent) Subject: Annual Energy Outlook 2013 Author

107

Figure 15. Renewable electricity generation in three cases ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 15. Renewable electricity generation in three cases, 2005-2040 (billion kilowatthours) Extended Policies No Sunset ...

108

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council Northwest Power Pool Area This...

109

Factors affecting adoption of renewable and other electricity ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Factors affecting adoption of renewable and other electricity generation technologies

110

Annual Renewable Electricity Net Generation by Country (1980...  

Open Energy Info (EERE)

Net Generation by Country (1980 - 2009) Total annual renewable electricity net generation by country, 1980 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu)....

111

Renewable Energy for Electricity Generation in Latin America...  

Open Energy Info (EERE)

America: Market, Technologies, and Outlook (Webinar) Focus Area: Water power Topics: Market Analysis Website: www.leonardo-energy.orgwebinar-renewable-energy-electricity-gene...

112

Renewable energy shows strongest growth in global electric ...  

U.S. Energy Information Administration (EIA)

The U.S. Energy Information Administration's International Energy Outlook 2011 (IEO2011) projects that the amount of global hydroelectric and other renewable electric ...

113

RENEWABLE ENERGY RESOURCES AND TECHNOLOGIES IN NIGERIA: PRESENT SITUATION, FUTURE PROSPECTS AND POLICY FRAMEWORK  

E-Print Network (OSTI)

Abstract. Nigeria is endowed with abundant energy resources, both conventional and renewable, which provide her with immense capacity to develop an effective national energy plan. However, introduction of renewable energy resources into the nation’s energy mix have implications on its energy budget. The national energy supply system has been projected into the future using MARKAL, a large scale linear optimization model. However, this model may not be absolutely representative of the highly non-linear future of renewable energy. Results of the model reveal that under only a least cost constraint, only large hydro power technology is the prominent commercial renewable energy technology in the electricity supply mix of the country. Despite the immense solar energy potentials available, solar electricity generation is attractive only under severe CO2 emissions mitigation of the nation’s energy supply system. Similarly, the penetration of small-scale hydro power technology in the electricity supply mix is favoured only under CO2 emissions constraints. Due to economy of scale, large hydro power technology takes the lion share of all the commercial renewable energy resources share for electricity generation under any CO 2 emissions constraint. These analyses reveal that some barriers exist to the development and penetration of renewable energy resources for electricity production in Nigeria’s energy supply system. Barriers and possible strategies to overcome them are discussed. Intensive efforts and realistic approach towards energy supply system in the country will have to be adopted in order to adequately exploit renewable energy resources and technologies for economic growth and development.

John-felix K. Akinbami

2001-01-01T23:59:59.000Z

114

CASE STUDY -ELECTRIC UTILITY RESTRUCTURING -MASSACHUSETTS RENEWABLE ENERGY TRUST FUND  

E-Print Network (OSTI)

CASE STUDY - ELECTRIC UTILITY RESTRUCTURING - MASSACHUSETTS RENEWABLE ENERGY TRUST FUND John A or not WTE will be considered a "renewable energy" source with respect to mandated fractions of state. This discussion will provide a brief history of the Massachusetts, Renewable Energy Trust Fund (RETF), delineate

Columbia University

115

Analysis of Two Proposed Renewable Electricity Standards  

Gasoline and Diesel Fuel Update (EIA)

4 4 Impacts of a 25-Percent Renewable Electricity Standard as Proposed in the American Clean Energy and Security Act Discussion Draft April 2009 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by

116

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

schemes in the European electricity market. Scheer H. , ThePromoting electricity from renewable energy sources –2001 on the promotion of electricity produced from renewable

Haas, Reinhard

2008-01-01T23:59:59.000Z

117

National Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future  

E-Print Network (OSTI)

benchmark awarded by the U.S. Green Building Council · Expected completion: Summer 2010 #12;NationalNational Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future research objectives for clean energy technologies · Creating a sustainable energy future for not only our

118

Electric resonance-rectifier circuit for renewable energy conversion  

Science Conference Proceedings (OSTI)

Variable speed generators are used more frequently for converting the energy from renewable energy sources to electric energy. The power production form a variable speed generator is dependent on the electrical damping of the generator. In this paper

C. Boström; B. Ekergård; M. Leijon

2012-01-01T23:59:59.000Z

119

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future Strengthening U.S. Leadership: NREL/TP-6A0-44261 NREL is a national laboratory of the U. S. Department of Energy, Office of Energy Strengthening U.S. Leadership NREL/TP-6A0-44261 of International Clean Energy December 2008 Cooperation

120

Renewable energy provisioning for ICT services in a future internet  

Science Conference Proceedings (OSTI)

As one of the first worldwide initiatives provisioning ICT (Information and Communication Technologies) services entirely based on renewable energy such as solar, wind and hydroelectricity across Canada and around the world, the GreenStar Network (GSN) ... Keywords: Mantychore FP7, future internet, green ICT, green star network

Kim Khoa Nguyen; Mohamed Cheriet; Mathieu Lemay; Bill St. Arnaud; Victor Reijs; Andrew Mackarel; Pau Minoves; Alin Pastrama; Ward Van Heddeghem

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Contracting Issues with Renewable Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contracting Issues with Renewable Electricity Contracting Issues with Renewable Electricity Contracting Issues with Renewable Electricity October 16, 2013 - 5:08pm Addthis For many Federal agencies integrating renewable energy into a construction project, the technical and contracting issues associated with generating power at the facility are new. This page summarizes the various contracting issues that result from having on-site power generation that is actively interconnected with the power grid instead of using only a back-up generator. Many of these agreements depend on the ownership structure of the renewable energy system. Common agreements associated with a renewable electricity-generation facility include: An interconnection agreement covers the safe connection of the system to the power grid, including provisions for safe design, connection,

122

Long Island Power Authority - Renewable Electricity Goal | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Goal Renewable Electricity Goal Long Island Power Authority - Renewable Electricity Goal < Back Eligibility Municipal Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State New York Program Type Renewables Portfolio Standard Provider Long Island Power Authority As a municipal utility, the Long Island Power Authority (LIPA) is not obligated to comply with the [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... New York Renewable Portfolio Standard (RPS)]. The LIPA Board of Trustees has nevertheless decided to make their own renewable energy commitment mirroring the requirements for New York's investor owned utilities. The initiative is outlined in LIPA's 2004-2013 Energy Plan, approved in June

123

Modeling renewable portfolio standards for the annual energy outlook 1998 - electricity market module  

SciTech Connect

The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Load and Demand-Side Management (LDSM) Submodule. For the Annual Energy Outlook 1998 (AEO98), the EMM has been modified to represent Renewable Portfolio Standards (RPS), which are included in many of the Federal and state proposals for deregulating the electric power industry. A RPS specifies that electricity suppliers must produce a minimum level of generation using renewable technologies. Producers with insufficient renewable generating capacity can either build new plants or purchase {open_quotes}credits{close_quotes} from other suppliers with excess renewable generation. The representation of a RPS involves revisions to the ECP, EFD, and the EFP. The ECP projects capacity additions required to meet the minimum renewable generation levels in future years. The EFD determines the sales and purchases of renewable credits for the current year. The EFP incorporates the cost of building capacity and trading credits into the price of electricity.

1998-02-01T23:59:59.000Z

124

Renewable: A key component of our global energy future  

DOE Green Energy (OSTI)

Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

Hartley, D.

1995-12-31T23:59:59.000Z

125

Mongolia Renewable Energy and Rural Electricity Access Project | Open  

Open Energy Info (EERE)

Mongolia Renewable Energy and Rural Electricity Access Project Mongolia Renewable Energy and Rural Electricity Access Project Jump to: navigation, search Name of project Mongolia Renewable Energy and Rural Electricity Access Project Location of project Mongolia Energy Services Lighting, Cooking and water heating, Space heating, Cooling, Earning a living Year initiated 2006 Organization World Bank Website http://documents.worldbank.org Coordinates 46.862496°, 103.846656° References The World Bank[1] The objective of the Renewable Energy and Rural Electricity Access Project is to increase access to electricity and improve reliability of electricity service among the herder population and in off-grid soum centers by: (i) assisting the development of institutions and delivery mechanisms; (ii) facilitating herders' investments in Solar Home Systems (SHSs) and small

126

Policies for Renewable Electricity Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policies for Renewable Electricity Use Policies for Renewable Electricity Use Policies for Renewable Electricity Use October 16, 2013 - 5:12pm Addthis The renewable energy screening should include an assessment of several key utility policies at the facility site. In addition to financial incentives, states and local governments have adopted policies to remove barriers to the use of renewable energy and to facilitate the use of these technologies in a safe and fair manner. These policies are focused on electric-generating technologies and enabling the economic use of on-site power generation at a customer's site. The screening needs to outline the key provisions at the facility site and assess the impact on the use of these technologies at the site under review. Key policies include: Interconnection

127

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

damental renewable energy-to-electricity costs of solar,of the Delivered Cost of Hydrogen, National Renewable EnergyHydrogen Costs Clean Energy Group l l Renewable Hydrogen

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

128

Renewable Energy Trends in Consumption and Electricity  

U.S. Energy Information Administration (EIA)

ireds112 _fnt1 _fnt2 _fnt3 _fntref1 _fntref2 _fntref3 Total Renewable Total Biomass Waste Landfill Gas Geothermal Hydroelectric Conventional Solar Thermal/PV

129

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

130

Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Wind Maximum Rebate Payment limited to 25% of customers monthly kWh usage Program Info State Iowa Program Type Performance-Based Incentive Rebate Amount $0.20/kWh Provider Farmers Electric Cooperative Farmers Electric Cooperative offers a production incentive to members that install qualifying wind and solar electricity generating systems. Qualifying grid-tied solar and wind energy systems are eligible for a $0.20 per kilowatt-hour (kWh) production incentive for up to 10 years for energy production that offsets up to 25% of monthly energy usage.

131

Electricity, Renewables and Climate Change Draft Final Report  

E-Print Network (OSTI)

the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion. They have not necessarily undergone formal peer review or editorial treatment. Electricity, Renewables and Climate Change Karen Palmer and Dallas Burtraw The electricity sector is a major source of carbon dioxide emissions that contribute to global climate change. Switching from fossil fuels to renewable fuels such as geothermal, biomass or wind would help to reduce carbon emissions from electricity generation. This research analyzes the costs and carbon emission consequences of three policies to promote the use of renewables to generate electricity: (1) a renewable portfolio standard (RPS) set at various levels between 5 and 20%, (2) a renewable energy production credit (REPC) in the form of a tax credit for wind and biomass and (3) a climate policy, which allocates carbon emission allowances to electricity generators, including renewables, on the basis of electricity generation. We find that the RPS raises electricity prices, lowers total generation, reduces gas-fired generation and lowers carbon emissions, with the size of these effects growing in the stringency of the portfolio standard. The regional effects of the RPS depend on the stringency of the policy. The REPC policy produces a large increase in renewables generation, but also produces a lower electricity price, which limits its effectiveness in reducing carbon emissions. The RPS policy appears to be more cost-effective than the REPC with respect to achieving both an increase in renewables generation and a drop in carbon emissions. However, depending on how emission allowances are allocated, a climate policy can be cost-effective at achieving reductions in carbon emissions and promoting renewables.

Karen Palmer; Dallas Burtraw

2004-01-01T23:59:59.000Z

132

Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cumberland Valley Electric Cooperative - Energy Efficiency and Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation: $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Insulation: $20 for every 1000 BTU offset Geothermal Heat Pump: $100 Provider Cumberland Valley Electric Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps,

133

The Solar Economy: Renewable Energy for a Sustainable Global Future  

E-Print Network (OSTI)

The Solar Economy: Renewable Energy for a Sustainable GlobalThe Solar Economy: Renewable Energy for a Sustainable Globalthe European Association for Renewable Energies-and general

Mirza, Umar Karim

2003-01-01T23:59:59.000Z

134

Nuclear-renewables energy system for hydrogen and electricity production  

E-Print Network (OSTI)

Climate change concerns and expensive oil call for a different mix of energy technologies. Nuclear and renewables attract attention because of their ability to produce electricity while cutting carbon emissions. However ...

Haratyk, Geoffrey

2011-01-01T23:59:59.000Z

135

Transmission Pricing Issues for Electricity Generation From Renewable Resources  

Reports and Publications (EIA)

This article discusses how the resolution of transmission pricing issues which have arisen under the Federal Energy Regulatory Commission's (FERC) open access environment may affect the prospects for renewable-based electricity.

Information Center

1999-02-01T23:59:59.000Z

136

Evaluating Policies to Increase Electricity Generation from Renewable Energy  

E-Print Network (OSTI)

Building on a review of experience in the United States and the European Union, this article advances four main propositions concerning policies aimed at increasing electricity generation from renewable energy. First, who ...

Schmalensee, Richard

137

Procurement Options for New Renewable Electricity Supply  

DOE Green Energy (OSTI)

State renewable portfolio standard (RPS) policies require utilities and load-serving entities (LSEs) to procure renewable energy generation. Utility procurement options may be a function of state policy and regulatory preferences, and in some cases, may be dictated by legislative authority. Utilities and LSEs commonly use competitive solicitations or bilateral contracting to procure renewable energy supply to meet RPS mandates. However, policymakers and regulators in several states are beginning to explore the use of alternatives, namely feed-in tariffs (FITs) and auctions to procure renewable energy supply. This report evaluates four procurement strategies (competitive solicitations, bilateral contracting, FITs, and auctions) against four main criteria: (1) pricing; (2) complexity and efficiency of the procurement process; (3) impacts on developers access to markets; and (4) ability to complement utility decision-making processes. These criteria were chosen because they take into account the perspective of each group of stakeholders: ratepayers, regulators, utilities, investors, and developers.

Kreycik, C. E.; Couture, T. D.; Cory, K. S.

2011-12-01T23:59:59.000Z

138

La Plata Electric Association - Renewable Generation Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

La Plata Electric Association - Renewable Generation Rebate Program La Plata Electric Association - Renewable Generation Rebate Program La Plata Electric Association - Renewable Generation Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Wind Maximum Rebate PV 10 kW or smaller: $4,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount PV 10 kW-DC or smaller: Upfront incentive of $0.40 per watt DC PV greater than 10 kW-DC: Performance-based incentive of $44.91/MWh ($0.04491/kWh) paid every 6 months for 10 years Provider La Plata Electric Association La Plata Electric Association (LPEA) offers a one-time rebate, not to exceed the cost of the system, to residential and small commercial customers who install a photovoltaic (PV), wind or hydropower facility. To

139

Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

DOE Green Energy (OSTI)

To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

2005-09-01T23:59:59.000Z

140

Integrating Innovation and Policy for a Renewable Energy Future (Presentation)  

SciTech Connect

Presentation on renewable energy innovations and policies by Dr. Dan Arvizu of the National Renewable Energy Laboratory.

Arvizu, D. E.

2007-02-05T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Grid-Based Renewable Electricity and Hydrogen Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Renewable Electricity and Hydrogen Integration Carolyn Elam Senior Project Leader - Hydrogen Production Electric & Hydrogen Technologies & Systems Center National Renewable Energy Laboratory Goals for Electrolysis in Hydrogen Fuel Supply * Goal is to supply hydrogen fuel for 20% of the light- duty vehicle fleet - 12 million short tons of hydrogen annually - 450 TWh per year * Must be competitive - With gasoline, assuming FCV will have twice the efficiency of an ICE - With other hydrogen production methods * Net zero impact or reduction in GHG emissions - Compared to Gasoline ICE - 31% reduction in carbon emissions from the current electricity mix - Compared to Natural Gas-Derived Hydrogen - 65% reduction in carbon emissions from the current electricity mix Goals for Electrolysis (cont.)

142

Role of Energy Storage with Renewable Electricity Generation  

DOE Green Energy (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-01-01T23:59:59.000Z

143

1 The Price Elasticity of Supply of Renewable Electricity Generation  

E-Print Network (OSTI)

Many states have adopted policies aimed at promoting the growth of renewable electricity within their state. The most salient of these policies is a renewable portfolio standard (RPS) which mandates that retail electricity providers purchase a predetermined fraction of their electricity from renewable sources. Renewable portfolio standards are a policy tool likely to persist for many decades due to the long term goals of many state RPSs and the likely creation of a federal RPS alongside any comprehensive climate change bill. However, there is little empirical evidence about the costs of these RPS policies. I take an instrumental variables approach to estimate the long-run price elasticity of supply of renewable generation. To instrument for the price paid to renewable generators I use the phased-in implementation of RPSs over time. Using this IV strategy, my preferred estimate of the supply elasticity is 2.7. This parameter allows me to measure the costs of carbon abatement in the electricity sector and to compare those costs with the costs of a broader based policy. Using my parameter estimates, I find that a policy to reduce the CO2 emissions in the northeastern US electricity sector by 2.5 % using only an RPS would cost at least six times more than the regional cap-and-trade system (Regional Greenhouse Gas Initiative). The marginal cost of CO2 abatement is $12 using the most optimistic assumptions for an RPS compared to a marginal cost of abatement of $2 in the Regional Greenhouse Gas Initiative.

Erik Johnson; Erik Johnson

2010-01-01T23:59:59.000Z

144

Renewable electricity generation in California includes variable ...  

U.S. Energy Information Administration (EIA)

Have a question, comment, or suggestion for a future article? Send your feedback to todayinenergy@eia.gov

145

Comparative Analysis of Three Proposed Federal Renewable Electricity Standards  

SciTech Connect

This paper analyzes potential impacts of proposed national renewable electricity standard (RES) legislation. An RES is a mandate requiring certain electricity retailers to provide a minimum share of their electricity sales from qualifying renewable power generation. The analysis focuses on draft bills introduced individually by Senator Jeff Bingaman and Representative Edward Markey, and jointly by Representative Henry Waxman and Markey. The analysis uses NREL's Regional Energy Deployment System (ReEDS) model to evaluate the impacts of the proposed RES requirements on the U.S. energy sector in four scenarios.

Sullivan, P.; Logan, J.; Bird, L.; Short, W.

2009-05-01T23:59:59.000Z

146

Comparative Analysis of Three Proposed Federal Renewable Electricity Standards  

SciTech Connect

This paper analyzes potential impacts of proposed national renewable electricity standard (RES) legislation. An RES is a mandate requiring certain electricity retailers to provide a minimum share of their electricity sales from qualifying renewable power generation. The analysis focuses on draft bills introduced individually by Senator Jeff Bingaman and Representative Edward Markey, and jointly by Representative Henry Waxman and Markey. The analysis uses NREL's Regional Energy Deployment System (ReEDS) model to evaluate the impacts of the proposed RES requirements on the U.S. energy sector in four scenarios.

Sullivan, P.; Logan, J.; Bird, L.; Short, W.

2009-05-01T23:59:59.000Z

147

Renewable Electricity Production Tax Credit (PTC) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Electricity Production Tax Credit (PTC) Renewable Electricity Production Tax Credit (PTC) < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Water Home Weatherization Wind Program Info Program Type Corporate Tax Credit Rebate Amount 2.3¢/kWh for wind, geothermal, closed-loop biomass; 1.1¢/kWh for other eligible technologies. Generally applies to first 10 years of operation. Provider U.S. Internal Revenue Service '''''Note: The American Recovery and Reinvestment Act of 2009 allows taxpayers eligible for the federal renewable electricity production tax credit (PTC) to take the federal business energy investment tax credit (ITC) instead of taking the PTC for new installations.'''''

148

Comparative Analysis of Three Proposed Federal Renewable Electricity Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

77 77 May 2009 Comparative Analysis of Three Proposed Federal Renewable Electricity Standards Patrick Sullivan, Jeffrey Logan, Lori Bird, and Walter Short National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-45877 May 2009 Comparative Analysis of Three Proposed Federal Renewable Electricity Standards Patrick Sullivan, Jeffrey Logan, Lori Bird, and Walter Short Prepared under Task No. SAO7.9C50 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

149

The Role of Energy Storage with Renewable Electricity Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

87 87 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-47187 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan Prepared under Task No. WER8.5005 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

150

Renewable Energy Consumption for Electricity Generation by Energy Use  

Open Energy Info (EERE)

Electricity Generation by Energy Use Electricity Generation by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by energy source (e.g. biomass, geothermal, etc.) This data was compiled and published by the Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords biomass Commercial Electric Power Electricity Generation geothermal Industrial PV Renewable Energy Consumption solar wind Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Elec_.Gen_EIA.Aug_.2010.xls (xls, 19.5 KiB) Quality Metrics Level of Review Some Review

151

The Solar Economy: Renewable Energy for a Sustainable Global Future  

E-Print Network (OSTI)

with the use of renewable energies. Strong arguments haveThe Solar Economy: Renewable Energy for a Sustainable GlobalThe Solar Economy: Renewable Energy for a Sustainable Global

Mirza, Umar Karim

2003-01-01T23:59:59.000Z

152

Highly Efficient Electric Motor Systems - National Renewable ...  

Electric Motor Systems ... savings. Conical hubs Matching axial field poles. Issued Patents on Motor Geometry. 7 NREL Energy Forum November 2009 www.novatorque.com.

153

Table 10.2c Renewable Energy Consumption: Electric Power Sector ...  

U.S. Energy Information Administration (EIA)

Table 10.2c Renewable Energy Consumption: Electric Power Sector, 1949-2011 ... Through 2000, also includes non-renewable waste (municipal solid waste from

154

What Do You Think of Electric 'Cars of the Future'? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Think of Electric 'Cars of the Future'? Think of Electric 'Cars of the Future'? What Do You Think of Electric 'Cars of the Future'? April 29, 2010 - 7:30am Addthis On Tuesday, Shannon wrote about plug-in hybrid electric vehicles and all-electric vehicles. DOE is has a number of projects in the works to encourage development and adoption of these vehicles. While the flying "cars of the future" we imagined in years past have not come to fruition, plug-in and all-electric vehicles have given us a new vision for the "cars of the future," and it's an efficient one! What do you think of electric "cars of the future"? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail

155

What Do You Think of Electric 'Cars of the Future'? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What Do You Think of Electric 'Cars of the Future'? What Do You Think of Electric 'Cars of the Future'? What Do You Think of Electric 'Cars of the Future'? April 29, 2010 - 7:30am Addthis On Tuesday, Shannon wrote about plug-in hybrid electric vehicles and all-electric vehicles. DOE is has a number of projects in the works to encourage development and adoption of these vehicles. While the flying "cars of the future" we imagined in years past have not come to fruition, plug-in and all-electric vehicles have given us a new vision for the "cars of the future," and it's an efficient one! What do you think of electric "cars of the future"? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment

156

National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future  

DOE Green Energy (OSTI)

The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

Not Available

2011-01-01T23:59:59.000Z

157

Is It Going to Happen? Regulatory Change and Renewable Electricity  

E-Print Network (OSTI)

to unilaterally alter the terms of a voluntary agreement to the disadvantage of wind turbine owners. In contrast of capacity (kW) or the amount of renewable electricity (kWh) added by the policy. One would also argue of how this problem has affected the wind policy in Denmark see Agnolucci (2004a). 2 This problem

Watson, Andrew

158

SOLAR ENERGY AND OUR ELECTRICITY FUTURE  

E-Print Network (OSTI)

SOLAR ENERGY AND OUR ELECTRICITY FUTURE Sandia is a multiprogram laboratory operated by Sandia Solar Power (CSP) #12;Solar Energy Fun Facts More energy from sunlight strikes the Earth in one hour Solar energy is the only long-term option capable of meeting the energy (electricity and transportation

159

Primer on electricity futures and other derivatives  

SciTech Connect

Increased competition in bulk power and retail electricity markets is likely to lower electricity prices, but will also result in greater price volatility as the industry moves away from administratively determined, cost-based rates and encourages market-driven prices. Price volatility introduces new risks for generators, consumers, and marketers. Electricity futures and other derivatives can help each of these market participants manage, or hedge, price risks in a competitive electricity market. Futures contracts are legally binding and negotiable contracts that call for the future delivery of a commodity. In most cases, physical delivery does not take place, and the futures contract is closed by buying or selling a futures contract on or near the delivery date. Other electric rate derivatives include options, price swaps, basis swaps, and forward contracts. This report is intended as a primer for public utility commissioners and their staff on futures and other financial instruments used to manage price risks. The report also explores some of the difficult choices facing regulators as they attempt to develop policies in this area.

Stoft, S.; Belden, T.; Goldman, C.; Pickle, S.

1998-01-01T23:59:59.000Z

160

Financial Impact of Energy Efficiency under a Federal Renewable Electricity  

Open Energy Info (EERE)

Financial Impact of Energy Efficiency under a Federal Renewable Electricity Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas 'Super-Utility' Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "Super-Utility" Focus Area: Energy Efficiency Topics: Potentials & Scenarios Website: eetd.lbl.gov/ea/ems/reports/lbnl-2924e.pdf Equivalent URI: cleanenergysolutions.org/content/financial-impact-energy-efficiency-un Language: English Policies: Regulations Regulations: "Utility/Electricity Service Costs,Mandates/Targets" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Renewable Electricity Futures Study. Volume 3: End-Use Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

-7 to -14% natural gas -15% to -20% fuel oil -15% to -25% natural gas -15% to -33% fuel oil -8.6% in heating degree days (2020) -11.5% in heating degree days (2030) Ruth and Lin...

162

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Northwest Power Pool Area Northwest Power Pool Area Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 118, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. This dataset contains data for the northwest power pool area of the U.S. Western Electricity Coordinating Council (WECC). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Northwest Power Pool Area Renewable Energy Generation WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Northwest Power Pool Area - Reference (xls, 119.3 KiB)

163

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Southwest Southwest Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 116, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Southwest Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Southwest (xls, 119.1 KiB) Quality Metrics Level of Review Peer Reviewed

164

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

California California Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 117, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO California EIA Renewable Energy Generation Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / California (xls, 119.2 KiB) Quality Metrics Level of Review Peer Reviewed

165

Concept for Management of the Future Electricity System (Smart...  

Open Energy Info (EERE)

Concept for Management of the Future Electricity System (Smart Grid Project) Jump to: navigation, search Project Name Concept for Management of the Future Electricity System...

166

Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"  

E-Print Network (OSTI)

Impacts of a 25-Percent Renewable Electricity Standard asand lower costs: Combining renewable energy and energyand I. Horowitz. 2009. Renewable portfolio standards and

Cappers, Peter

2010-01-01T23:59:59.000Z

167

El Paso Electric Company - Small and Medium System Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

El Paso Electric Company - Small and Medium System Renewable Energy El Paso Electric Company - Small and Medium System Renewable Energy Certificate Purchase Program El Paso Electric Company - Small and Medium System Renewable Energy Certificate Purchase Program < Back Eligibility Commercial Fed. Government Industrial Nonprofit Residential State Government Savings Category Energy Sources Buying & Making Electricity Solar Wind Program Info Start Date 3/1/2009 State New Mexico Program Type Performance-Based Incentive Rebate Amount Systems 10 kW or less: PV: $0.04/kWh for RECs produced for a period of 8 years Wind: $0.03 /kWh for RECs produced for a period of 8 years Systems greater than 10 kW and up to 100 kW: PV: $0.04/kWh for RECs produced for a period of 8 years Wind: $0.02 /kWh for RECs produced for a period of 8 years Systems greater than 100 kW and up to 1,000 kW:

168

New Electricity Technologies for a Sustainable Future  

E-Print Network (OSTI)

of the twentieth century relied upon the combustion of fossil fuels – initially coal and oil and now increasingly natural gas. The Brundtland Commission definition of sustainability requires that a sustainable electricity system must be able to meet current... needs without compromising the ability of future generations to meet their own needs (World Commission on Environment and Development, 1987). As such electricity systems based upon the depletion of finite fossil fuel reserves are fundamentally...

Jamasb, Tooraj; Nuttall, William J.; Pollitt, Michael G.

2006-03-14T23:59:59.000Z

169

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Rockies Rockies Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 119, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. The dataset contains data for the Rockies region of WECC. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Rockies WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Rockies- Reference Case (xls, 119 KiB)

170

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance and existing homes, and supports the U.S. Department of Energy's (DOE) goal to develop cost effective laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated

171

Distributed Generation and Renewable Energy in the Electric Cooperative Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation and Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero Cooperative Research Network (CRN) National Rural Electric Cooperative Association September 22, 2004 Co-op Basics  Customer owned  Serve 35 million people in 47 states  75 percent of nation's area  2.3 million miles of line is close to half of nation's total  Growth rate twice that of IOU Electrics  Six customers per line-mile vs 33 for IOU  Co-ops view DP as a needed solution; not as a "problem" Broad Range of Technologies Chugach EA 1-MW Fuel Cell Installation Post Office in Anchorage, AK Chugach EA Microturbine Demo Unit at Alaska Village Electric Co-op CRN Transportable 200kW Fuel Cell at Delta- Montrose EA in Durango, CO Plug Power Fuel Cell at Fort Jackson, SC

172

IRP and the electricity industry of the future: Workshop results  

SciTech Connect

During the next several years, the U.S. electricity industry is likely to change dramatically. Instead of an industry dominated by vertically integrated companies that are regulated primarily by state public utility commissions, we may see an industry with many more participants and less regulation. These new participants may include independent power producers, entities that dispatch and control power plants on a real-time basis, entities that build and maintain transmission networks, entities that build and maintain distribution systems and also sell electricity and related to services to some retail customers, and a variety of other organizations that sell electricity and other services to retail customers. Because markets are intended to be the primary determinant of success, the role of state and federal regulators might be less than it has been in the past. During the past decade, utilities and state regulators have developed new ways to meet customer energy-service needs, called integrated resource planning (IRP). IRP provides substantial societal benefits through the consideration and acquisition of a broad array of resources, including renewables and demand-side management (DSM) programs as well as traditional power plants-, explicit consideration of the environmental effects of electricity production and transmission; public participation in utility planning; and attention to the uncertainties associated with different resources, future demands for electricity, and other factors. IRP might evolve in different ways as the electricity industry is restructured (Table S-I). To explore these issues, we ran a Workshop on IRP and the Electricity Industry of the Future in July 1994. This report presents the wisdom and experience of the 30 workshop participants. To focus discussions, we created three scenarios to represent a few of the many ways that the electricity industry might develop.

Tonn, B.; Hirst, E.; Bauer, D.

1994-09-01T23:59:59.000Z

173

Intelligence in Electricity Networks for Embedding Renewables and Distributed Generation  

E-Print Network (OSTI)

Abstract Over the course of the 20 th century, the electrical power systems of industrialized economies have become one of the most complex systems created by mankind. In the same period, electricity made a transition from a novelty, to a convenience, to an advantage, and finally to an absolute necessity. World-wide electricity use has been ever-growing. The electricity infrastructure consists of two highlyinterrelated and complex subsystems for commodity trade and physical delivery. To ensure the infrastructure is up and running in the first place, the increasing electricity demand poses a serious threat. Additionally, there are a number of other trends that are forcing a change in infrastructure management. Firstly, there is a shift to intermittent sources: a larger share of renewables in the energy mix means a higher influence of weather patterns on generation. At the same time, introducing more combined heat and power generation (CHP) couples electricity production to heat demand patterns. Secondly, the location of electricity generation relative to the load centers is changing. Large-scale generation from wind is migrating towards and into the seas and oceans, away from the locations of high electricity demand. On

J. K. Kok; M. J. J. Scheepers; I. G. Kamphuis; J. K. Kok; M. J. J. Scheepers; I. G. Kamphuis

2010-01-01T23:59:59.000Z

174

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout … Renewable Electricity Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 30, 2013 April 30, 2013 Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Renewable Electricity Generation 2 EERE's National Mission To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 3 Why Clean Energy Matters To America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation * Enhancing energy security by reducing our dependence on foreign oil and gas * Saving money by cutting energy costs for American families and businesses * Protecting health and safety by mitigating the impact

175

Modelling renewable electric resources: A case study of wind  

DOE Green Energy (OSTI)

The central issue facing renewables in the integrated resource planning process is the appropriate assessment of the value of renewables to utility systems. This includes their impact on both energy and capacity costs (avoided costs), and on emissions and environmental impacts, taking account of the reliability, system characteristics, interactions (in dispatch), seasonality, and other characteristics and costs of the technologies. These are system-specific considerations whose relationships may have some generic implications. In this report, we focus on the reliability contribution of wind electric generating systems, measured as the amount of fossil capacity they can displace while meeting the system reliability criterion. We examine this issue for a case study system at different wind characteristics and penetration, for different years, with different system characteristics, and with different modelling techniques. In an accompanying analysis we also examine the economics of wind electric generation, as well as its emissions and social costs, for the case study system. This report was undertaken for the {open_quotes}Innovative IRP{close_quotes} program of the U.S. Department of Energy, and is based on work by both Union of Concerned Scientists (UCS) and Tellus Institute, including America`s Energy Choices and the UCS Midwest Renewables Project.

Bernow, S.; Biewald, B.; Hall, J.; Singh, D. [Tellus Institute, Boston, MA (United States)

1994-07-01T23:59:59.000Z

176

An Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of Hydrogen An Analysis of Hydrogen Production from Renewable Electricity Sources Preprint J.I. Levene, M.K. Mann, R. Margolis, and A. Milbrandt National Renewable Energy Laboratory Prepared for ISES 2005 Solar World Congress Orlando, Florida August 6-12, 2005 Conference Paper NREL/CP-560-37612 September 2005 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

177

EIA's Testimony on The Nation's Energy Future: Role of Renewable Energy and Energy Efficiency  

Reports and Publications (EIA)

Statement of Mary J. Hutzler, Department of Energy, Energy Information Administration Before the House Committee on Science United States House of Representatives Hearing on The Nation's Energy Future: Role of Renewable Energy And Energy Efficiency

Information Center

2001-02-01T23:59:59.000Z

178

Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy,  

E-Print Network (OSTI)

of Energy Efficiency, Renewable Energy, and Small-Scale Cogeneration from electricity generation. Renewable energy, energy efficiency, and energy, where performance is measured relative to three objectives: energy production

179

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance on advancing the U.S. Department of Energy's goals. With no vested interest other than upholding NREL's mission energy. Data are frequently collected from the U.S. Geological Survey (USGS), U.S. De- partment

180

Electricity Market reforms in New Zealand and Germany: A Comparative Study of the History, Development and Future of These Both Countries' Markets with a Special Focus on the Approach to Renewable energy.  

E-Print Network (OSTI)

??This dissertation will show why Germany is overall on a better way to deliver secure and sustainable electricity to its population at the moment. Though,… (more)

Holder, Florian

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Easy Way to Use Renewables: Buy Clean Electricity | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Easy Way to Use Renewables: Buy Clean Electricity The Easy Way to Use Renewables: Buy Clean Electricity The Easy Way to Use Renewables: Buy Clean Electricity November 17, 2009 - 8:45pm Addthis John Lippert Clean air means a lot to me. My wife and I had a small solar electric system installed on the roof of our house that produces about 2% of the annual electricity consumed by our all-electric house. We don't have a large south-facing roof, so we couldn't easily install a larger system. But what about the remaining 98% electricity that we need to buy? About half a dozen years ago we signed up for 100% wind electricity after our state deregulated its electricity industry. We didn't have much of a choice to purchase "green" electricity. Only two utility companies offered electricity produced by renewable energy to residents of Maryland where I

182

Electricity for Millions: Developing Renewable Energy in China (Revised)  

DOE Green Energy (OSTI)

This two page fact sheet describes NREL's work developing renewable energy in China. Renewable focus areas include rural energy development, wind energy development, geothermal energy development, renewable energy business development and policy and planning.

Not Available

2006-04-01T23:59:59.000Z

183

Electricity for Millions: Developing Renewable Energy in China (Revised)  

SciTech Connect

This two page fact sheet describes NREL's work developing renewable energy in China. Renewable focus areas include rural energy development, wind energy development, geothermal energy development, renewable energy business development and policy and planning.

2006-04-01T23:59:59.000Z

184

Renewable energy for domestic electricity production and prediction of short-time electric consumption  

Science Conference Proceedings (OSTI)

Modern interest in renewable energy development is linked to concerns about exhaustion of fossil fuels and environmental, social and political risks of extensive use of fossil fuels and nuclear energy. It is a form of energy development with a focus ... Keywords: Kohonen Self-Organizing Maps, Photovoltaic Solar Cells, Short-Time Electric Consumption, Time Series, Windmills

Stéphane Grieu; Frédérik Thiery; Adama Traoré; Monique Polit

2007-06-01T23:59:59.000Z

185

Shares of electricity generation from renewable energy sources ...  

U.S. Energy Information Administration (EIA)

Non-hydroelectric renewable generation has increased in many states over the past decade. In 2011, Maine had the highest percentage of non-hydroelectric renewable ...

186

Renewable technologies for energy security: institutions and investment in Fiji's electricity sector .  

E-Print Network (OSTI)

??Renewable energy technologies have been advocated in Fiji's electricity sector on the basis that they improve energy security and serve as a risk-mitigation measure against… (more)

Dornan, Matthew

2013-01-01T23:59:59.000Z

187

Support for solar power and renewable electricity generation at the U.S. Environmental Protection Agency.  

E-Print Network (OSTI)

?? The United States Environmental Protection Agency (EPA) is poised to play an important role in supporting national plans for renewable electricity generation. As distributed… (more)

Krausz, Brian

2009-01-01T23:59:59.000Z

188

Impacts of Renewable Fuel and Electricity Standards on State Economies (Poster)  

SciTech Connect

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, discusses the impacts of renewable fuel and electricity standards on state economies.

Brown, E.; Cory, K.; Brown, J.; Bird, L.; Sweezey, B.

2006-10-03T23:59:59.000Z

189

Wind Energy and Production of Hydrogen and Electricity -- Opportunities for Renewable Hydrogen: Preprint  

DOE Green Energy (OSTI)

An assessment of options for wind/hydrogen/electricity systems at both central and distributed scales provides insight into opportunities for renewable hydrogen.

Levene, J.; Kroposki, B.; Sverdrup, G.

2006-03-01T23:59:59.000Z

190

Comparing the Risk Profiles of Renewable and Natural Gas Electricity Contracts  

E-Print Network (OSTI)

Comparing the Risk Profiles of Renewable and Natural Gas Electricity Contracts: A Summary.............................................................................20 B. Natural Gas Tolling Contracts.............................................................................24 B. Natural Gas Tolling Contracts

Kammen, Daniel M.

191

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

Future Electric Vehicle FMVSS . Federal Motor Vehicle SafetySafety and Systems Management), 1992. "The Impact Electric Vehiclesas pure electric-powered vehicles. 2.3. Safety, Comfort, and

Scott, Allen J.

1993-01-01T23:59:59.000Z

192

Electric Vehicle Handbook: Electrical Contractors (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electrical Electrical Contractors Plug-In Electric Vehicle Handbook for Electrical Contractors 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Installing and Maintaining EVSE . . . . . . . 9 EVSE Training for Electrical Contractors . . . . . . . . . . . . . . . . 18 Electrifying the Future . . . . . . . . . . . . . . . 19 Clean Cities Helps Deploy PEV Charging Infrastructure Installing plug-in electric vehicle (PEV) charg- ing infrastructure requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Depart- ment of Energy's flagship alternative-transportation deployment initiative . It is supported by a diverse and capable team of stakeholders from private companies, utilities, government agencies, vehicle

193

Transportation Electrification Load Development For A Renewable Future Analysis: Preprint  

DOE Green Energy (OSTI)

The transition to electricity as a transportation fuel will create a new load for electricity generation. A set of regional hourly load profiles for electrified vehicles was developed for the 2010 to 2050 timeframe. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Market saturation scenarios of 30% and 50% of sales of PEVs consuming on average approx. 6 kWh per day were considered. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across four daily time slices under optimal control from the utility?s perspective. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios.

Markel, T.; Mai, T.; Kintner-Meyer, M.

2010-12-01T23:59:59.000Z

194

Renewable Energy in India: Status and future Potential  

E-Print Network (OSTI)

Centralised Grid Connected Cogeneration/Trigeneration Decentralised Distributed Generation Isolated Demand 61000 PHWR ~50 10GW Data Source Plg Comm IEPC, 2006 #1 Sustainability #12;#1 Sustainability Present;Energy End uses End-uses Cooking Transport Electricity HeatingCooling Cooling Motive Power Lighting

Banerjee, Rangan

195

Smart buildings with electric vehicle interconnection as buffer for local renewables?  

E-Print Network (OSTI)

Smart buildings with electric vehicle interconnection as buffer for local renewables? Michael, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement and partly by NEC Laboratories America Inc. Smart buildings with electric vehicle interconnection as buffer

196

202-328-5000 www.rff.orgDesigning Renewable Electricity Policies to Reduce Emissions  

E-Print Network (OSTI)

A variety of renewable electricity policies to promote investment in wind, solar, and other types of renewable generators exist across the United States. The federal renewable energy investment tax credit, the federal renewable energy production tax credit, and state renewable portfolio standards are among the most notable. Whether the benefits of promoting new technology and reducing pollution emissions from the power sector justify these policies ’ costs has been the subject of considerable debate. We argue in this paper that the debate is misguided because it does not consider two important interactions between renewable electricity generators and the rest of the power system. First, the value of electricity from a renewable generators depends on the generation and investment it displaces. Second, a large increase in renewable generation can reduce electricity prices, increasing consumption and emissions from fossil generators, and offsetting some of the environmental benefits of the policies. Two policy conclusions follow. First, existing renewable electricity policies can be redesigned to promote investment in the highest-value generators, which can greatly reduce the cost of achieving a given emissions reduction. Second, subsidies financed out of general tax revenue reduce emissions less than subsidies financed by charges to electricity consumers.

Reduce Emissions; Harrison Fell; Joshua Linn; Clayton Munnings

2012-01-01T23:59:59.000Z

197

Design and Optimization of Future Hybrid and Electric Propulsion Systems  

E-Print Network (OSTI)

Design and Optimization of Future Hybrid and Electric Propulsion Systems: An Advanced Tool and Optimization of Future Hybrid and Electric Propulsion Systems: An Advanced Tool Integrated in a Complete Hybrid Electric Vehicle ICE Internal Combustion Engine IM Induction Machine IPM Internal Permanent Magnet

Paris-Sud XI, Université de

198

Renewable Power Options for Electricity Generation on Kaua'i: Economics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Power Options for Electricity Generation on Kaua'i: Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. 52076.pdf More Documents & Publications Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

199

Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Securing America's Securing America's Clean Energy Future The Office of Energy Efficiency and Renewable Energy (EERE) invests in clean energy technologies that strengthen the economy, reduce dependence on foreign oil, and protect the environment. EERE leverages partnerships with the private sector, state and local governments, DOE national laboratories, and universities to transform the nation's economic engine to one powered by clean energy. EERE Programs 2011 Budget (in $ millions) EERE operates with $1.8 billion budget (FY 2011) and is responsible for investing more than $16 billion from the Recovery Act. Deploying Renewable Energy at Speed and Scale Growing a Clean Energy Future Organic plant material, or biomass, is an abundant, renewable resource for biofuels, bioproducts, and biopower. Biomass

200

Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols  

SciTech Connect

Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteria are genetically engineered to convert the formic acid into liquid fuel—in this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLA’s electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Renewable Generation and Interconnection to the Electrical Grid in Southern California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SOUTHERN CALIFORNIA EDISON® SOUTHERN CALIFORNIA EDISON® SM 1 Federal Utility Partnership Working Group Providence, Rhode Island April 15, 2010 Renewable Generation and Interconnection to the Electrical Grid in Southern California Daniel Tunnicliff, P.E. Manager, Government & Institutions SOUTHERN CALIFORNIA EDISON® SM 2 Overview * SCE Overview * SCE Procurement Objectives * Renewable Procurement * Challenges to Meeting Renewable Goals in California * Interconnection Processes * Lessons Learned SOUTHERN CALIFORNIA EDISON® SM 3 SCE Overview * Large system  13 million residents  4.8 million customer accounts  50,000-square-mile service area * Nation's leader in environmental solutions  Energy efficiency  Renewable energy procurement  Electric transportation  Advanced meters  Smart grid

202

Promotion of electricity from renewable energy sources in Finland.  

E-Print Network (OSTI)

??The main purpose of this case was to study the development of energy projects from renewable energy sources and green energy promotion in Finland. A… (more)

Pozdnyakova, Liudmila

2009-01-01T23:59:59.000Z

203

Renewable Energy For Electric Utilities (New Mexico) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

distribution cooperatives must offer their retail customers a voluntary renewable energy tariff to the extent that their suppliers under their all-requirements contracts...

204

Shares of electricity generation from renewable energy sources ...  

U.S. Energy Information Administration (EIA)

In 2011, the states with the largest shares of generation coming from renewables, including hydro, were: Idaho (93%), Washington (82%), and Oregon ...

205

Natural gas, renewables dominate electric capacity additions in ...  

U.S. Energy Information Administration (EIA)

Of the ten states with the highest levels of capacity additions, most of the new capacity uses natural gas or renewable energy sources.

206

Renewable Power Options for Electricity Generation on Kauai...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

coming from renewable energy by 2023. vii List of Acronyms Btu British thermal unit CSP concentrating solar power DER distributed energy resource DG distributed generation DOE...

207

Renewable utility-scale electricity production differs by fuel ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... For non-hydro renewables, the 2011 generation share ranges from less than 1% in Alaska, Ohio, Alabama, and Kentucky, ...

208

Photo of the Week: Alaska's Future in Renewable Energy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska's Future in Renewable Energy Alaska's Future in Renewable Energy Photo of the Week: Alaska's Future in Renewable Energy August 13, 2013 - 12:53pm Addthis In Alaska's rural villages, many families struggle with the impact of high energy costs -- often times, almost half of a family's income is spent on fuel to power a home. To face this, the Department of Energy's Office of Indian Energy works closely with tribal nations, state government, NGOs and the private sector to help tribes develop the energy resources that exist on tribal lands. NANA is an organization that operates in northwest Alaska -- the region pictured in the pastoral landscape above. Through building businesses and using smart development of Alaskan resources, NANA's strategic energy plan involves expanding sources of renewable energy, with the goal of reducing the region's dependence on fossil fuels by 50 percent by the year 2025. Learn more about the Energy Department's efforts to reduce energy costs in Alaska. | Photo courtesy of NANA, Arend.

209

Integrating High Levels of Renewables in to the Lanai Electric Grid  

DOE Green Energy (OSTI)

The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Sandia National Laboratory (Sandia) to assess the economic and technical feasibility of increasing the contribution of renewable energy sources on the island of Lanai with a stated goal of reaching 100% renewable energy. NREL and Sandia partnered with Castle & Cooke, Maui Electric Company (MECO), and SRA International to perform the assessment.

Kroposki, B.; Burman, K.; Keller, J.; Kandt, A.; Glassmire, J.; Lilienthal, P.

2012-06-01T23:59:59.000Z

210

Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation), National Renewable Energy Laboratory (NREL)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration for Electric Vehicle Grid Integration for Sustainable Military Installations NDIA Joint Service Power Expo Mike Simpson Mike.Simpson@NREL.gov 5 May 2011 NREL/PR-5400-51519 NATIONAL RENEWABLE ENERGY LABORATORY Agenda 2 1. NREL Transportation Research 2. Net Zero Energy Installations (NZEI) 3. Fort Carson as a Case Study - Vehicles On-Site - Utility Operations - Vehicle Charge Management 4. Full Fleet Simulation 5. Continuing Work NATIONAL RENEWABLE ENERGY LABORATORY NREL is the only national laboratory solely dedicated to advancing renewable energy and energy efficiency. Our employees are committed to building a cleaner, sustainable world. Photo Credits: NREL 3 NATIONAL RENEWABLE ENERGY LABORATORY What is Electric Vehicle Grid Integration (EVGI)? 4 Cross Cutting Enablers Grid / Renewables

211

The Future Electricity Fuels Mix: Key Drivers  

U.S. Energy Information Administration (EIA)

cogeneration . Howard Gruenspecht Electric Power, May 15, 2012 . 2010 . Examples of updated environmental retrofit costs . 10 . Howard ...

212

Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Executive Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West Executive Summary David J. Hurlbut, Joyce McLaren, and Rachel Gelman National Renewable Energy Laboratory Prepared under Task No. AROE.2000 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-6A20-57830 August 2013 Contract No. DE-AC36-08GO28308

213

Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West  

NLE Websites -- All DOE Office Websites (Extended Search)

(This page intentionally left blank) (This page intentionally left blank) National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West David J. Hurlbut, Joyce McLaren, and Rachel Gelman National Renewable Energy Laboratory Prepared under Task No. AROE.2000 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-6A20-57830 August 2013 Contract No. DE-AC36-08GO28308

214

NREL: Continuum Magazine - More than a Dream-a Renewable Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

decades in the future. Will renewable energy technologies play a dominant role in U.S. power generation? And if this is to be more than a mere academic exercise, what must we do...

215

Oconee Electrical Component Integrated Plant Assessment and Time Limited Aging Analyses for License Renewal: Revision 1  

Science Conference Proceedings (OSTI)

Duke Power Co. and Baltimore Gas and Electric Co. were the first two utilities to apply for and obtain license renewal for their nuclear units. This report is one in a series of EPRI reports providing the technical basis for the Oconee and Calvert Cliffs License Renewal Applications.

2000-08-10T23:59:59.000Z

216

Integrating High Levels of Renewables into the Lanai Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

4.3 Wind Power Options There are two options for adding wind power to the renewable energy mix. As is shown in Figure 4-3, Option A would connect the large wind farm on the...

217

Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint  

SciTech Connect

The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

Simpson, M.; Markel, T.

2012-08-01T23:59:59.000Z

218

Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling  

DOE Green Energy (OSTI)

The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid.

Burman, K.; Keller, J.; Kroposki, B.; Lilienthal, P.; Slaughter, R.; Glassmire, J.

2011-11-01T23:59:59.000Z

219

Electric Energy Challenges of the Future Future Grid Thrust Area 1 White Paper  

E-Print Network (OSTI)

being developed for the smart grid will change grid operations and grid characteristics. With high- prove system reliability and facilitate the management of variable renewable resources. Smart Grid Technologies Future smart grid technologies will also impact reserve requirement determination and our ability

220

Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)  

DOE Green Energy (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electricity Net Generation From Renewable Energy by Energy Use Sector and  

Open Energy Info (EERE)

Net Generation From Renewable Energy by Energy Use Sector and Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual net electricity generation (thousand kilowatt-hours) from renewable energy in the United States by energy use sector (commercial, industrial, electric power) and by energy source (e.g. biomas, solar thermal/pv). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords 2004 2008 Electricity net generation renewable energy Data application/vnd.ms-excel icon 2008_RE.net_.generation_EIA.Aug_.2010.xls (xls, 16.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 - 2008 License License Other or unspecified, see optional comment below Comment Rate this dataset

222

Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Report and Executive Summary  

SciTech Connect

This study assesses the outlook for utility-scale renewable energy development in the West once states have met their renewable portfolio standard (RPS) requirements. In the West, the last state RPS culminates in 2025, so the analysis uses 2025 as a transition point on the timeline of RE development. Most western states appear to be on track to meet their final requirements, relying primarily on renewable resources located relatively close to the customers being served. What happens next depends on several factors including trends in the supply and price of natural gas, greenhouse gas and other environmental regulations, consumer preferences, technological breakthroughs, and future public policies and regulations. Changes in any one of these factors could make future renewable energy options more or less attractive.

Hurlbut, D. J.; McLaren, J.; Gelman, R.

2013-08-01T23:59:59.000Z

223

Renewable Energy Technology Characterizations  

Science Conference Proceedings (OSTI)

Renewable energy technologies span the range from developmental to commercially available. Some can make significant contributions now to electricity supply with zero or reduced environmental emissions. This report describes the technical and economic status of the major emerging renewable options and offers projections for their future performance and cost.

1997-12-30T23:59:59.000Z

224

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

and Natural Gas, National Renewable Energy Laboratory, U.S.Solar Energy, National Renewable Energy Laboratory, NREL/TP-Solar Hydrogen,” In Renewable Energy: Sources for Fuels and

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

225

Willingness to Pay for Electricity from Renewable Resources:...  

NLE Websites -- All DOE Office Websites (Extended Search)

C-2 Willingness to Subscribe to Product with Different Levels of Environmentally Friendly Electricity at Various Price Increases . . . . . . . . . . . . . . . . . . . . . . . . . ....

226

Renewable electricity production grows in Texas - Today in ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency. ... electric power plant emissions.

227

Shares of electricity generation from renewable energy sources up ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... imports and exports, production, prices, sales. Electricity.

228

Managing Electricity Reliability Risk Through the Futures Markets  

E-Print Network (OSTI)

LBNL-47645 Managing Electricity Reliability Risk Through the Futures Markets Afzal S. Siddiqui Environmental Energy Technologies Division Ernest Orlando Lawrence Berkeley National Laboratory Berkeley for Operations Research and the Management Sciences INFORMS Annual Meeting in San Antonio, TX, November 2000

229

Electrical ship demand modeling for future generation warships  

E-Print Network (OSTI)

The design of future warships will require increased reliance on accurate prediction of electrical demand as the shipboard consumption continues to rise. Current US Navy policy, codified in design standards, dictates methods ...

Sievenpiper, Bartholomew J. (Bartholomew Jay)

2013-01-01T23:59:59.000Z

230

Renewable Energy Integration and the Impact of Carbon Regulation  

E-Print Network (OSTI)

Renewable Energy Integration and the Impact of Carbon Regulation on the Electric Grid Future Grid the Future Electric Energy System #12;Thrust Area 3 White Paper Renewable Energy Integration and the Impact. #12;ii Executive Summary The integration of renewable energy resources into the power grid is driven

231

Technological impact of Non-Conventional Renewable Energy in the Chilean Electricity System  

E-Print Network (OSTI)

Technological impact of Non-Conventional Renewable Energy in the Chilean Electricity System Juan D of methodology and analysis of the energy sector, considering whether they are simulation models. Molina C. GSM Victor J. Martinez A. GSM Hugh Rudnick, Fellow Department of Electrical Engineering

Rudnick, Hugh

232

SMUD plans a [open quote]renewable[close quote] future. [Sacramento Municipal Utility District (SMUD)  

Science Conference Proceedings (OSTI)

Sacramento Municipal Utility District (SMUD) is currently developing a plan to meet 54 percent of its projected power needs with renewable energy sources - up from 49 percent today - and increase to 60 percent by 2004. Since the closing of the Rancho Seco nuclear plant, with the loss of 913 MW, SMUD has had to find and develop alternative sources of energy. Besides buying power from other utilities, SMUD has a far reaching integrated resource plan (IRP) that includes many types of renewable energy sources. Among the projects already producing are: the nation's largest photovoltaic power plant, the largest utility owned wind turbine, photovoltaic recharging stations for electric vehicles, and two geothermal projects generating 134 MW.

Garner, W.L.

1994-12-01T23:59:59.000Z

233

A Preliminary Examination of the Supply and Demand Balance for Renewable Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

A Preliminary Examination A Preliminary Examination of the Supply and Demand Balance for Renewable Electricity Blair Swezey, Jørn Aabakken, and Lori Bird Technical Report NREL/TP-670-42266 October 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 A Preliminary Examination of the Supply and Demand Balance for Renewable Electricity Blair Swezey, Jørn Aabakken, and Lori Bird Prepared under Task No. WF6N.1015 Technical Report NREL/TP-670-42266 October 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

234

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan National Renewable Energy Laboratory National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov The Joint Institute for Strategic Energy Analysis 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.jisea.org Technical Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan

235

Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

258 258 May 2010 Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector Lori Bird, Caroline Chapman, Jeff Logan, Jenny Sumner, and Walter Short National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-48258 May 2010 Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector Lori Bird, Caroline Chapman, Jeff Logan, Jenny Sumner, and Walter Short Prepared under Task No. SAO9.2038 NOTICE

236

Preliminary Examination of the Supply and Demand Balance for Renewable Electricity  

SciTech Connect

In recent years, the demand for renewable electricity has accelerated as a consequence of state and federal policies and the growth of voluntary green power purchase markets, along with the generally improving economics of renewable energy development. This paper reports on a preliminary examination of the supply and demand balance for renewable electricity in the United States, with a focus on renewable energy projects that meet the generally accepted definition of "new" for voluntary market purposes, i.e., projects installed on or after January 1, 1997. After estimating current supply and demand, this paper presents projections of the supply and demand balance out to 2010 and describe a number of key market uncertainties.

Swezey, B.; Aabakken, J.; Bird, L.

2007-10-01T23:59:59.000Z

237

California's Electricity System of the Future: Scenario Analysis in Support  

E-Print Network (OSTI)

Commission nor has the California Energy Commission passed upon the accuracy or adequacy of the information of a competitive electricity market. CERTS is currently conducting research for the U.S. Department of Energy (DOECalifornia's Electricity System of the Future: Scenario Analysis in Support of Public

238

202-328-5000 www.rff.orgFederal Policies for Renewable Electricity: Impacts and Interactions  

E-Print Network (OSTI)

Three types of policies that are prominent in the federal debate over addressing greenhouse gas emissions in the United States are a cap-and-trade program (CTP) on emissions, a renewable portfolio standard (RPS) for electricity production, and tax credits for renewable electricity producers. Each of these policies would have different consequences, and combinations of these policies could induce interactions yielding a whole that is not the sum of its parts. This paper utilizes the Haiku electricity market model to evaluate the economic and technology outcomes, climate benefits, and cost-effectiveness of three such policies and all possible combinations of the policies. A central finding is that the carbon dioxide (CO2) emissions reductions from CTP can be significantly greater than those from the other policies, even for similar levels of renewable electricity production, since of the three policies, CTP is the only one that distinguishes electricity generated by coal and natural gas. It follows that CTP is the most cost-effective among these approaches at reducing CO2 emissions. An alternative compliance payment mechanism in an RPS program could substantially affect renewables penetration, and the electricity price effects of the policies hinge partly on the regulatory structure of electricity markets, which varies across the country.

Karen Palmer; Anthony Paul; Matt Woerman; Karen Palmer; Anthony Paul; Matt Woerman

2011-01-01T23:59:59.000Z

239

El Paso Electric Company - Small and Medium System Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential State Government Savings Category Energy Sources Buying & Making Electricity Solar Wind Program Info Start Date 312009 State New Mexico Program Type...

240

Austin Energy Offers 100% Renewable Electrical Vehicle Charging ...  

Austin area electric vehicle drivers can purchase pre-paid Plug-in EVerywhere network cards for $25 each, which allows unlimited public station charging for six months.

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Western Electricity Coordinating Council California This dataset comes from the Energy Information Administration (EIA),...

242

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. The dataset contains data for the Rockies region...

243

Renewable electricity production grows in Texas - Today in ...  

U.S. Energy Information Administration (EIA)

... the warmest month on record in the state, there were severe spikes in wholesale electric prices as well as emergency actions taken by the grid ...

244

The integration of renewable energy sources into electric power transmission systems  

DOE Green Energy (OSTI)

Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L. [Oak Ridge National Lab., TN (United States); Lawler, J.S. [Univ. of Tennessee, Knoxville, TN (United States)

1995-07-01T23:59:59.000Z

245

Managing electricity reliability risk through the futures markets  

SciTech Connect

In competitive electricity markets, the vertically integrated utilities that were responsible for ensuring system reliability in their own service territories, or groups of territories, often cease to exist. Typically, the burden falls to an independent system operator (ISO) to insure that enough ancillary services (AS) are available for safe, stable, and reliable operation of the grid, typically defined, in part, as compliance with officially approved engineering specifications for minimum levels of AS. In order to characterize the behavior of market participants (generators, retailers, and an ISO) in a competitive electricity market with reliability requirements, we model a spot market for electricity and futures markets for both electricity and AS. By assuming that each participant seeks to maximize its expected utility of wealth and that all markets clear, we solve for the optional quantities of electricity and AS traded in each market by all participants, as well as the corresponding market-clearing prices. We show that future prices for both electricity and AS depend on expectations of the spot price, statistical aspects of system demand, and production cost parameters. More important, our model captures the fact that electricity and AS are substitute products for the generators, implying that anticipated changes in the spot market will affect the equilibrium futures positions of both electricity and AS. We apply our model to the California electricity and AS markets to test its viability.

Siddiqui, Afzal S.

2000-10-01T23:59:59.000Z

246

Fleet Renewal with Electric Vehicles at La Poste  

Science Conference Proceedings (OSTI)

We provide a decision model for La Poste, the French national postal operator, to address its adoption of electric vehicles (EVs) for mail and parcel distribution. Two competing technologies are available—internal combustion vehicles (ICVs) and ... Keywords: decision making under uncertainty, electric vehicles, equipment replacement, real options

Paul R. Kleindorfer; Andrei Neboian; Alain Roset; Stefan Spinler

2012-09-01T23:59:59.000Z

247

The Future of Electric Vehicles and Arizona State University's MAIL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Future of Electric Vehicles and Arizona State University's The Future of Electric Vehicles and Arizona State University's MAIL Battery The Future of Electric Vehicles and Arizona State University's MAIL Battery August 11, 2010 - 4:26pm Addthis Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? EV batteries will have the ability to recharge at least 1000 times at a low cost due to its composition of only domestically-sourced, earth abundant material Electric Vehicles are becoming a reality. Last month, the President got behind the wheel of a Chevy Volt in Michigan, and traveled to Smith

248

Portland General Electric Company Renewable Energy RFP , Deadline Sept 28, 2001  

NLE Websites -- All DOE Office Websites (Extended Search)

Portland General Electric Company Portland General Electric Company REQUEST FOR PROPOSALS Issued: August 22, 2001 INTRODUCTION Portland General Electric Company (PGE) is requesting bid proposals for retail marketing services and renewable power or tradable renewable credits (TRCs) sufficient to meet the needs of PGE customer enrollments for the period from March 1, 2002 to December 31, 2003. Proposals are due by 5:00 p.m. on September 28, 2001. Pursuant to the Oregon Public Utility Commission (OPUC) adoption of Portfolio Options contained in ORS 757.603(2), OAR 860-038-0220 (refer to OPUC Order 01-337 at http://www.puc.state.or.us/orders/2001ords/01-337.pdf.) PGE is seeking to purchase Marketing Services and Renewable Energy or TRCs in support of the Company's portfolio option offers of

249

Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission  

Science Conference Proceedings (OSTI)

The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.

Mosey, G.; Vimmerstedt, L.

2009-07-01T23:59:59.000Z

250

Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector  

SciTech Connect

This report examines the impact of various renewable portfolio standards (RPS) and cap-and-trade policy options on the U.S. electricity sector, focusing mainly on renewable energy generation. The analysis uses the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that simulates the least-cost expansion of electricity generation capacity and transmission in the United States to examine the impact of an emissions cap--similar to that proposed in the Waxman-Markey bill (H.R. 2454)--as well as lower and higher cap scenarios. It also examines the effects of combining various RPS targets with the emissions caps. The generation mix, carbon emissions, and electricity price are examined for various policy combinations to simulate the effect of implementing policies simultaneously.

Bird, L.; Chapman, C.; Logan, J.; Sumner, J.; Short, W.

2010-05-01T23:59:59.000Z

251

Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE))

Renewable energy leveraged from natural, renewable resources delivers electricity, heating, cooling, and other applications to Federal facilities and fleets. By using renewable energy, Federal agencies increase national security, conserve natural resources, and meet regulatory requirements and goals.

252

The Integration of Renewable Energy Sources into Electric Power Distribution Systems  

Science Conference Proceedings (OSTI)

Renewable energy technologies such as photovoltaic, solar thermal electricity, and wind turbine power are environmentally beneficial sources of electric power generation. The integration of renewable energy sources into electric power distribution systems can provide additional economic benefits because of a reduction in the losses associated with transmission and distribution lines. Benefits associated with the deferment of transmission and distribution investment may also be possible for cases where there is a high correlation between peak circuit load and renewable energy electric generation, such as photovoltaic systems in the Southwest. Case studies were conducted with actual power distribution system data for seven electric utilities with the participation of those utilities. Integrating renewable energy systems into electric power distribution systems increased the value of the benefits by about 20 to 55% above central station benefits in the national regional assessment. In the case studies presented in Vol. II, the range was larger: from a few percent to near 80% for a case where costly investments were deferred. In general, additional savings of at least 10 to 20% can be expected by integrating at the distribution level. Wind energy systems were found to be economical in good wind resource regions, whereas photovoltaic systems costs are presently a factor of 2.5 too expensive under the most favorable conditions.

Barnes, P.R.

1994-01-01T23:59:59.000Z

253

Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy, and Small-­?Scale Cogeneration.  

E-Print Network (OSTI)

??There is growing interest in reducing the environmental and human-­?health impacts resulting from electricity generation. Renewable energy, energy efficiency, and energy conservation are all commonly… (more)

Siler-Evans, Kyle

2012-01-01T23:59:59.000Z

254

Future demand for electricity in the Nassau--Suffolk region  

DOE Green Energy (OSTI)

Brookhaven National Laboratory established a new technology for load forecasting for the Long Island Lighting Company and prepared an independent forecast of the demand for electricity in the LILCO area. The method includes: demand for electricity placed in a total energy perspective so that substitutions between electricity and other fuels can be examined; assessment of the impact of conservation, new technology, gas curtailment, and other factors upon demand for electricity; and construction of the probability distribution of the demand for electricity. A detailed analysis of changing levels of demand for electricity, and other fuels, associated with these new developments is founded upon a disaggregated end-use characterization of energy utilization, including space heat, lighting, process energy, etc., coupled to basic driving forces for future demand, namely: population, housing mix, and economic growth in the region. The range of future events covers conservation, heat pumps, solar systems, storage resistance heaters, electric vehicles, extension of electrified rail, total energy systems, and gas curtailment. Based upon cost and other elements of the competition between technologies, BNL assessed the likelihood of these future developments. An optimistic view toward conservation leads to ''low'' demand for electricity, whereas rapid development of new technologies suggests ''high'' demand. (MCW)

Carroll, T.W.; Palmedo, P.F.; Stern, R.

1977-12-01T23:59:59.000Z

255

Communication and Control of Electric Vehicles Supporting Renewables...  

NLE Websites -- All DOE Office Websites (Extended Search)

current state of charge, is the RT energy available in the battery pack, and is the base price of electricity, representing the cost originally paid to get the energy into the...

256

Role of Renewable Energy in a Sustainable Electric Generation ...  

U.S. Energy Information Administration (EIA)

Plug-in Hybrid Electric Vehicles (PHEV) Widely Available and Deployed After 2020 None Carbon Capture and Storage (CCS) Nuclear Generation 12.5 GWe by 2030 64 GWe by 2030

257

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption.
2011-07-25T20:15:39Z...

258

Tribal Renewable Energy Foundational Course: Electricity Grid Basics  

Energy.gov (U.S. Department of Energy (DOE))

Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on electricity grid basics by clicking on the .swf link below. You can also download the PowerPoint slides...

259

Electric demand growth: An uncertain future for uranium  

SciTech Connect

Broadly conceived, the demand for electricity depends upon three sets of variables: (i) the growths of the many individual demands for energy services; (ii) the competitiveness of electrically driven technologies in meeting these demands; and (iii) the energy-conversion efficiencies of installed electrical technologies. The first set of variables establishes the size of the potential market; the second, the market penetration of electrical equipment; and the third, the quantity of electricity required to operate the equipment. All forecasts of electricity consumption ultimately depend upon inferred or assumed relationships to describe the future behavior of these variables. In this paper, the authors review recent forecasts of electricity demand growth. They also examine, in a qualitative way, some of the causes for the systematic, downward revisions of these forecasts over recent years. Graphical presentations of data are extensively used in the discussions. In an important sense, forecasting, whatever the number of variables, remains a matter of ''curve fitting.''

Asbury, J.G.

1985-01-01T23:59:59.000Z

260

Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management  

DOE Green Energy (OSTI)

The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

A. David Lester

2008-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid  

SciTech Connect

Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

Chertkov, Michael [Los Alamos National Laboratory; Bent, Russell W. [Los Alamos National Laboratory; Backhaus, Scott N. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

262

Perspectives on the future of the electric utility industry  

SciTech Connect

This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

1994-04-01T23:59:59.000Z

263

Concept for Management of the Future Electricity System (Smart Grid  

Open Energy Info (EERE)

Concept for Management of the Future Electricity System (Smart Grid Concept for Management of the Future Electricity System (Smart Grid Project) Jump to: navigation, search Project Name Concept for Management of the Future Electricity System Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

The state of energy storage in electric utility systems and its effect on renewable energy resources  

DOE Green Energy (OSTI)

This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

Rau, N.S.

1994-08-01T23:59:59.000Z

265

Economics of Nuclear and Renewable Electricity Energy Science Coalition  

E-Print Network (OSTI)

Nuclear energy arose as a ‘spin-off ’ from nuclear weapons. Its use grew rapidly during the 1960s, nurtured by huge subsidies and the belief that nuclear electricity would soon become ‘too cheap to meter’. According to the International Atomic Energy Agency, at the end of 2009 there were 438 operating nuclear power reactors in the world, total

Dr Mark Diesendorf

2010-01-01T23:59:59.000Z

266

Development of renewable energy Challenges for the electrical grids  

E-Print Network (OSTI)

Energy Association : 450 member companies · Representing 10 billion Euros turnover and 80 000 jobs · Multi-industry : Wind, Photovoltaïcs, hydroelectricity, Biomass, Marine Energy, Thermal solar ­ 5 400 MW solar PV ­ 2 300 MW Biomass ­ ... · Significant change of the electricity production scheme

Canet, Léonie

267

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

Hydrogen Production, National Renewable Energy Laboratory,Production Using Concentrated Solar Energy, National Renewablethe production of hydrogen from renewable energy sources. In

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

268

Software system for calculation and analysis of electrical power, derived from renewable energy sources  

Science Conference Proceedings (OSTI)

The software system for modeling and analysis of the processes of electric power conversion of renewable energy sources (solar radiation and wind velocity) is described. The characteristics of the generators and specific climatic conditions of the geographical ... Keywords: graphical dependences, photovoltaics and wind turbine generators, programme models

Katerina Gabrovska; Nicolay Mihailov

2003-06-01T23:59:59.000Z

269

Investigating optimal configuration of a prospective renewable-based electricity supply sector  

Science Conference Proceedings (OSTI)

Proposed emission reduction targets as well as the scarcity of fossil fuel resources make a transition of the energy system towards a carbon free electricity supply necessary. Promising energy resources are solar and wind energy. The high temporal and ... Keywords: energy system model, geographic information system (GIS), linear optimization, power supply, renewable energy, simulation, supergrid

Tino Aboumahboub; Katrin Schaber; Peter Tzscheutschler; Thomas Hamacher

2010-02-01T23:59:59.000Z

270

Optimization of the utilization of renewable energy sources in the electricity sector  

Science Conference Proceedings (OSTI)

Emission reduction targets as well as the scarcity of fossil resources make a transition of the energy system towards a carbon free electricity supply necessary. Promising energy resources are solar and wind energy. The challenging characteristics of ... Keywords: energy system model, geographic information system (GIS), linear optimization, power supply, renewable energy, simulation, supergrid

Tino Aboumahboub; Katrin Schaber; Peter Tzscheutschler; Thomas Hamacher

2010-02-01T23:59:59.000Z

271

Evaluating Policies to Increase the Generation of Electricity from Renewable Energy  

E-Print Network (OSTI)

Focusing on the U.S. and the E.U., this essay seeks to advance four main propositions. First, the incidence of the short-run costs of programs to subsidize the generation of electricity from renewable sources varies with ...

Schmalensee, Richard

272

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

Ways to Switch America to Renewable Electricity. Cambridge,Dioxide, and Mercury and a Renewable Portfolio Standard.associated with the use of renewable and natural gas-fired

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

273

Large Scale Deployment of Renewables for Electricity Generation  

E-Print Network (OSTI)

-cellulose material. Anaerobic digestion or gasification of biomass produces gas that can be used in similar applications to natural gas. Small-scale biogas production is now a well-established technology and large-scale application is in the advanced stages... of development. The possibility of using biogas in fuel cells exists, but there are a number of technical difficulties that remain to be overcome in this area. Source: www.britishbiogen.co.uk and WEA (2000). 5 All figures refer to electricity.Where necessary...

Neuhoff, Karsten

2006-03-14T23:59:59.000Z

274

Siting Renewable Energy Facilities: A Spatial Analysis of Promises and Pitfalls. Resources for the Future, Discussion Paper  

E-Print Network (OSTI)

Recent efforts to site renewable energy projects have provoked as much, if not more, opposition than conventional energy projects. Because renewable energy resources are often located in sensitive and isolated environments, such as pristine mountain ranges or coastal waters, siting these facilities is especially difficult. Moreover, the viability of different renewable energy projects depends not only on complex economic and environmental factors, but also on the availability of supporting infrastructures, such as transmission lines. This paper examines the spatial relationships between four types of renewable energy resources – wind, solar, geothermal, and biomass – and an empirical measure of state-level transmission-line siting difficulty. Analyses explore the locations of renewable resource potential relative to areas of high siting difficulty, state electricity demand and imports, and states with renewable portfolio standards (RPSs). Major results reveal that state resource potential varies, and siting is significantly more difficult in states that import electricity and those with RPSs. These results suggest that states with the greatest incentives to develop renewable energy also face the most serious obstacles to siting new facilities.

Shalini P. Vajjhala; Shalini P. Vajjhala

2006-01-01T23:59:59.000Z

275

Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. Energy-efficient transportation strategies and renewable fuels have the potential to simultaneously reduce petroleum consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy's (DOE) Transportation Energy Futures (TEF) project examines how a combination of multiple strategies could achieve deep reductions in petroleum use and GHG emissions. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities related to energy efficiency

276

NREL: Energy Analysis: High Renewable Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

High Renewable Generation High Renewable Generation Feasibility of Higher Levels of Renewable Electricity Deployment As requirements for renewable electricity generation increase, with some states now requiring as much as 30% renewables in their renewable portfolio standards (RPS), the question arises: how much can renewables contribute to future electricity demand? NREL's grid integration studies use state-of-the-art modeling and analysis techniques to evaluate the operational and infrastructure impacts of higher wind and solar penetrations at regional and national scales. NREL's grid integration studies show that: The U.S. electric system is operable with 20%-50% variable generation from wind and solar power in the regional and national scenarios examined to date. Increased electric system flexibility, needed to enable electricity

277

Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Electric Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find electric vehicle and infrastructure codes and standards in these categories:

278

Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)  

DOE Green Energy (OSTI)

As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

Not Available

2013-09-01T23:59:59.000Z

279

Electric Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dispensing Dispensing Infrastructure NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. CONTROLLING AUTHORITIES: State and Federal Energy Regulatory Commissions CONTROLLING AUTHORITIES: Local Building and Fire Departments CONTROLLING AUTHORITIES: DOT/NHTS Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for electric. Electric Vehicle and Infrastructure Codes and Standards Chart Institute of Electrical and Electronics Engineers, Inc. FERC Federal Energy

280

An Economic Analysis of Photovoltaics versus Traditional Energy Sources: Where are We Now and Where Might We Be in the Near Future? (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic Analysis of Photovoltaics versus Traditional Economic Analysis of Photovoltaics versus Traditional Energy Sources: Where are We Now and Where Might We Be in the Near Future? NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Michael Woodhouse Additional NREL Authors: Alan Goodrich, Ted James, Robert Margolis, David Feldman, and Tony Markel 2 Strategic Energy Analysis Center and 2 Electric Vehicles Program The National Renewable Energy Laboratory Analysis Funding Provided by The United States DOE, Solar Energy Technologies Program Presented at the IEEE Photovoltaic Specialist Conference (PVSC) 2011, June 19-24, 2011, Seattle, Washington NREL/PR-6A20-52311 Analysis Disclaimer DISCLAIMER AGREEMENT

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Electricity Transmission System Future Vision & Grid Challenges  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Future Vision & Grid Challenges Future Vision & Grid Challenges Summary Results of Breakout Group Discussions Electricity Transmission Workshop Double Tree Crystal City, Arlington, Virginia November 1, 2012 Breakout Group Discussion Overview Future Vision and Grid Challenges Each of the four breakout groups identified the key challenges facing the grid as it integrates all of the various technologies that are (or will be) deployed while ensuring a safe, reliable, and cost-effective system as described in the Future Vision. Utilizing the Grid Tech Team framework, each group identified integration challenges through a systems-based discussion that addressed all of the following topics: * Grid Visibility What challenges in the informational domain (sensors and relays, AMIs, PMUs, end-use energy

282

Biomass power and state renewable energy policies under electric industry restructuring  

DOE Green Energy (OSTI)

Several states are pursuing policies to foster renewable energy as part of efforts to restructure state electric power markets. The primary policies that states are pursuing for renewables are system benefits charges (SBCs) and renewable portfolio standards (RPSs). However, the eligibility of biomass under state RPS and SBC policies is in question in some states. Eligibility restrictions may make it difficult for biomass power companies to access these policies. Moreover, legislative language governing the eligibility of biomass power is sometimes vague and difficult to interpret. This paper provides an overview of state RPS and SBC policies and focuses on the eligibility of biomass power. For this paper, the authors define biomass power as using wood and agricultural residues and landfill methane, but not waste-to-energy, to produce energy.

Porter, K.; Wiser, R.

2000-08-01T23:59:59.000Z

283

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

incentives, TGC) PV feed in “Renewable energy act” “Renewables Portfolio Standards” Selected technologies “Clean Energy

Haas, Reinhard

2008-01-01T23:59:59.000Z

284

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

Science Conference Proceedings (OSTI)

The promotion of electricity generated from Renewable Energy Sources (RES) has recently gained high priority in the energy policy strategies of many countries in response to concerns about global climate change, energy security and other reasons. This chapter compares and contrasts the experience of a number of countries in Europe, states in the US as well as Japan in promoting RES, identifying what appear to be the most successful policy measures. Clearly, a wide range of policy instruments have been tried and are in place in different parts of the world to promote renewable energy technologies. The design and performance of these schemes varies from place to place, requiring further research to determine their effectiveness in delivering the desired results. The main conclusions that can be drawn from the present analysis are: (1) Generally speaking, promotional schemes that are properly designed within a stable framework and offer long-term investment continuity produce better results. Credibility and continuity reduce risks thus leading to lower profit requirements by investors. (2) Despite their significant growth in absolute terms in a number of key markets, the near-term prognosis for renewables is one of modest success if measured in terms of the percentage of the total energy provided by renewables on a world-wide basis. This is a significant challenge, suggesting that renewables have to grow at an even faster pace if we expect them to contribute on a significant scale to the world's energy mix.

Haas, Reinhard; Meyer, Niels I.; Held, Anne; Finon, Dominique; Lorenzoni, Arturo; Wiser, Ryan; Nishio, Ken-ichiro

2007-06-01T23:59:59.000Z

285

Future Electricity Supplies MIT ENGINEERING SYSTEMS SYMPOSIUM (31 Mar 04, pg. 1) FUTURE ELECTRICITY SUPPLIES  

E-Print Network (OSTI)

and Europe have re- energized the debate over aging electricity and other infrastructures. Whether long. To these "common" challenges we must add now infrastructure security and long-term environmental stewardship bulbs, or household appliances. Energy "utilization" efficiency opportunities however offer great

de Weck, Olivier L.

286

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

Energy Laboratory Renewable Hydrogen Website http://www.nrel.gov/hydrogen/proj_production_ delivery.html Iowa State

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

287

Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience  

DOE Green Energy (OSTI)

Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.

Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

2012-04-01T23:59:59.000Z

288

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

and Renewable Energy, Worldwide Web, http://www.eere.energy.gov/state_state and regional levels, and our assessment of the technological status of hydrogen and renewable energyStates are funding demonstration projects for hydrogen pro- duction from renewable energy

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

289

iREED 2008 Renewable Energies and Eco-Design in Electrical Engineering, 10-11 December 2008 ECO-DESIGN OF ELECTRO-MECHANICAL ENERGY CONVERTERS  

E-Print Network (OSTI)

iREED 2008 Renewable Energies and Eco-Design in Electrical Engineering, 10-11 December 2008 ECO Author manuscript, published in "Conference on Renewable Energies and Eco-Design in Electrical Engineering 2008, MONTPELLIER : France (2008)" #12;iREED 2008 Renewable Energies and Eco-Design in Electrical

Paris-Sud XI, Université de

290

Abstract Microgrids are a new concept for future energy dis-tribution systems that enable renewable energy integration and  

E-Print Network (OSTI)

1 Abstract ­ Microgrids are a new concept for future energy dis- tribution systems that enable renewable energy integration and improved energy management capability. Microgrids consist of multiple power quality and power distribution reliability, microgrids need to operate in both grid

Collins, Emmanuel

291

Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows  

DOE Green Energy (OSTI)

The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

NONE

1996-11-01T23:59:59.000Z

292

Non-powered Dams: An untapped source of renewable electricity in the USA  

Science Conference Proceedings (OSTI)

Hydropower has been a source of clean, renewable electricity in the USA for more than 100 years. Today, approximately 2500 US dams provide 78 GW of conventional and 22 GW of pumped-storage hydropower. In contrast, another approximately 80 000 dams in the USA do not include hydraulic turbine equipment and provide non-energy related services, such as flood control, water supply, navigation, and recreation.

Hadjerioua, Boualem [ORNL; Kao, Shih-Chieh [ORNL; Wei, Yaxing [ORNL; Battey, Hoyt [Department of Energy; Smith, Brennan T [ORNL

2012-01-01T23:59:59.000Z

293

The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments  

Science Conference Proceedings (OSTI)

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C. [Zaininger Engineering Co., San Jose, CA (United States)

1994-06-01T23:59:59.000Z

294

Oconee Electrical Component Integrated Plant Assessment and Time Limited Aging Analyses for License Renewal: Parts 1 and 2  

Science Conference Proceedings (OSTI)

Duke Power Co. and Baltimore Gas and Electric Co. are the first two utilities to apply for license renewal of their nuclear units. This report is one in a series of EPRI reports providing the technical basis for the Oconee and Calvert Cliffs License Renewal Applications.

1998-11-30T23:59:59.000Z

295

Program Plan for Renewable Energy generation of electricity. Response to Section 2111 of the Energy Policy Act of 1992  

SciTech Connect

A 5-Year Program Plan for providing cost-effective options for generating electricity from renewable energy sources is presented by the US Department of Energy Office of Energy Efficiency and Renewable Energy. The document covers the Utility-Sector situation, scope of the program, specific generating technologies, and implementation of the program plan.

1994-12-01T23:59:59.000Z

296

Biomass power and state renewable energy policies under electric industry restructuring  

E-Print Network (OSTI)

BIOMASS POWER AND STATE RENEWABLE ENERGY POLICIES UNDERBIOMASS PROVISIONS IN STATE RENEWABLE ENERGY POLICIES Ofthe 17 states that have adopted renewable energy policy

Porter, Kevin; Wiser, Ryan

2000-01-01T23:59:59.000Z

297

Biomass power and state renewable energy policies under electric industry restructuring  

E-Print Network (OSTI)

POWER AND STATE RENEWABLE ENERGY POLICIES UNDER ELECTRICKevin Porter National Renewable Energy Laboratory 901 Dpolicies to foster renewable energy as part of efforts to

Porter, Kevin; Wiser, Ryan

2000-01-01T23:59:59.000Z

298

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

and J. Hamrin. 2005. “Renewable Energy Policies and Marketsexperience with renewable energy obligation supportM. (2001): REBUS: Renewable Energy Burden Sharing (Main

Haas, Reinhard

2008-01-01T23:59:59.000Z

299

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

San Francisco, CA, 2010 (6) National Renewable EnergyLaboratory (NREL), Renewable Resource Data Center, Website:Impact of Increased Renewable Energy Penetrations on

Barbose, Galen

2013-01-01T23:59:59.000Z

300

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

and J. Hamrin. 2005. “Renewable Energy Policies and Marketspromoting the development of renewable energy". In: Energyand optimisation of renewable support schemes in the

Haas, Reinhard

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments  

SciTech Connect

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The following utility- and site-specific conditions that may affect the economic viability of distributed renewable energy sources were considered: distribution system characteristics, and design standards, and voltage levels; load density, reliability, and power quality; solar insolation and wind resource levels; utility generation characteristics and load profiles; and investor-owned and publicly owned utilities, size, and financial assumptions.

Zaininger, H.W.

1994-01-01T23:59:59.000Z

302

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

Biomass Pyrolysis is a thermo-chemical process that produces oilbiomass feedstocks and holds promise as a new renewable hydrogen production method when the pyrolysis oil

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

303

Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers  

DOE Green Energy (OSTI)

Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

2012-04-01T23:59:59.000Z

304

Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector  

Science Conference Proceedings (OSTI)

The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary, as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute electric power in the state from 10 Colorado generation development areas (GDAs) that have the capacity for more than 96,000 megawatts (MW) of wind generation and 26,000 MW of solar generation. The SB07-91 Report recognized that only a small fraction of these large capacity opportunities are destined to be developed. As a rough comparison, 13,964 MW of installed nameplate capacity was available in Colorado in 2008. The legislature did not direct the SB07-91 task force to examine several issues that are addressed in the REDI report. These issues include topics such as transmission, regulation, wildlife, land use, permitting, electricity demand, and the roles that different combinations of supply-side resources, demand-side resources, and transmission can play to meet a CO{sub 2} emissions reduction goal. This report, which expands upon research from a wide array of sources, serves as a sequel to the SB07-91 Report. Reports and research on renewable energy and transmission abound. This report builds on the work of many, including professionals who have dedicated their careers to these topics. A bibliography of information resources is provided, along with many citations to the work of others. The REDI Project was designed to present baseline information regarding the current status of Colorado's generation and transmission infrastructure. The report discusses proposals to expand the infrastructure, and identifies opportunities to make further improvements in the state's regulatory and policy environment. The report offers a variety of options for consideration as Colorado seeks pathways to meet the 20 x 20 goal. The primary goal of the report is to foster broader discussion regarding how the 20 x 20 goal interacts with electric resource portfolio choices, particularly the expansion of utility-scale renewable energy and the high-voltage transmission infrastructure. The report also is intended to serve as a resource when identifying opportunities stemming from the American Recovery and Reinvestment Act of 2009.

None

2009-12-31T23:59:59.000Z

305

Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply  

E-Print Network (OSTI)

Spatio-temporal generation patterns for wind and solar photovoltaic power in Europe are used to investigate the future rise in transmission needs with an increasing penetration of these variable renewable energy sources (VRES) on the pan-European electricity system. VRES growth predictions according to the official National Renewable Energy Action Plans of the EU countries are used and extrapolated logistically up to a fully VRES-supplied power system. We find that keeping today's international net transfer capacities (NTCs) fixed over the next forty years reduces the final need for backup energy by 13% when compared to the situation with no NTCs. An overall doubling of today's NTCs will lead to a 26% reduction, and an overall quadrupling to a 33% reduction. The remaining need for backup energy is due to correlations in the generation patterns, and cannot be further reduced by transmission. The main investments in transmission lines are due during the ramp-up of VRES from 15% (as planned for 2020) to 80%. Add...

Becker, Sarah; Andresen, Gorm B; Schramm, Stefan; Greiner, Martin

2013-01-01T23:59:59.000Z

306

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

LCA can help determine environmental burdens from "cradle LCA can help determine environmental burdens from "cradle to grave" and facilitate more consistent comparisons of energy technologies. Figure 1. Generalized life cycle stages for energy technologies Source: Sathaye et al. (2011) Life cycle GHG emissions from renewable electricity generation technologies are generally less than those from fossil fuel-based technologies, based on evidence assembled by this project. Further, the proportion of GHG emissions from each life cycle stage differs by technology. For fossil-fueled technologies, fuel combustion during operation of the facility emits the vast majority of GHGs. For nuclear and renewable energy technologies, the majority of GHG emissions occur upstream of operation. LCA of Energy Systems

307

Role of Future Generation Options for the U.S. Electric Sector  

Science Conference Proceedings (OSTI)

This Technical Update documents efforts to enhance, update, and apply EPRI's financial model of the U.S. electric sector for generation capacity expansion and dispatch at the national and regional levels. The model evaluates the possible effects of various climate policy, renewable portfolio standard (RPS), technology, and market scenarios on the deployment and operation of nuclear, fossil, and renewable generation options and on electricity prices, emissions, fuel use, and other parameters. Within indiv...

2009-03-30T23:59:59.000Z

308

Production Tax Credit for Renewable Electricity Generation (released in AEO2005)  

Reports and Publications (EIA)

In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the Federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10-percent Federal tax credit on new investment in capital-intensive wind and solar generation technologies.

Information Center

2005-04-01T23:59:59.000Z

309

Restructuring and renewable energy developments in California:using Elfin to simulate the future California power market  

SciTech Connect

We provide some basic background information on support for renewable in California on the expected operation of the power pool and bilateral markets, and on the three key policy types modeled here. We discuss the Elfin production cost and expansion planning model as well as key assumptions that we made to model the future California pool. We present results from the successful Elfin models runs. We discuss the implications of the study, as well as key areas for future research. Additional information on results, Elfin's expansion planning logic, and resource options can be found in the appendices.

Kirshner, Dan; Kito, Suzie; Marnay, Chris; Pickle, Steve; Schumacher, Katja; Sezgen,Osman; Wiser, Ryan

1998-06-01T23:59:59.000Z

310

Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

renewable energy companies compete in a rapidly renewable energy companies compete in a rapidly growing, highly competitive global market worth hundreds of billions of dollars per year[7], a market projected to grow to $460 billion per year by 2030[1]. Due in part to a highly skilled workforce and a growing energy education system, American businesses, workers, and their communities are uniquely positioned to take advantage of this opportunity. Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE), part of the U.S. Department of Energy (DOE), plays a key role in advancing America's "all of the

311

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

use renewable wind and solar power to provide a local supplyGlatzmaier et al. , 1998 Solar Power-Tower Electrolysis 200PV Electrolysis n.s. 10 MW of solar power Small-Medium Grid-

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

312

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

Energy Group l 19 l R e n e w a b l e Hydrogen Table 1: U.S.International Renewable Hydrogen Demonstration Projects (CONTINUED) U.S. ProjectS Hydrogen Production from

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

313

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

Partnership Finalizes Hydro- gen Energy Roadmap,” World Wideenergy funds and other stakeholders can help develop this knowledge base for renewable hydro-energy sources; • The status of major U.S. state activities for hydro-

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

314

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

for State-Level Sustainable Energy Futures Timothy E. Lipmanfor State-Level Sustainable Energy Futures Timothy E. Lipmana new role for sustainable energy strategies. The

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

315

Technology R&D Needs for Integrating High Penetrations of Variable Utility-Scale Renewable Power Sources into the Electric Power Inf rastructure  

Science Conference Proceedings (OSTI)

While the North American electric energy resource portfolio continues to evolve, integrating large-scale renewable resources into the electric power infrastructure presents significant challenges. This is particularly true of variable renewable resources, such as wind and solar, which represent two of the most rapidly growing renewable resources being deployed. The root of this challenge lies in the inherent variability of wind and solar resources, which differentiates these from other renewable resource...

2008-05-15T23:59:59.000Z

316

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

electric vehicle industry within Los Angeles.The analysis isanalysis of a prospective electric vehicle industry, Losanalysis, an investment in the electric vehicle industry is

Scott, Allen J.

1993-01-01T23:59:59.000Z

317

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

Opinions Towards the Electric Car Industry from a Survey ofan investmentin the electric car project mustexceedthisthat establish a market for electric cars in the state by

Scott, Allen J.

1993-01-01T23:59:59.000Z

318

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

the production of electric vehicle componentswill result an1992. "Hot Sales of Electric Vehicles." p. El. Sharpe, W. ,1992. "Battery and Electric Vehicle Update." September1992.

Scott, Allen J.

1993-01-01T23:59:59.000Z

319

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

Factors Affecting the Electric Vehicle Industry in SouthernProduction 3.4. An Electric Vehicle Industry for SouthernChapter Eight: The Electric Vehicle Industry In Southern

Scott, Allen J.

1993-01-01T23:59:59.000Z

320

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

most renewable energy technologies currently are at a costRenewable energy advocates argue that RES deserve similar subsidies to overcome their current cost-costs while and minimizing the financial subsidies; and Ensure sustainable growth of the renewable energy

Haas, Reinhard

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

the costs of renewable energy procurement, the costs of theRE is the total costs of renewable energy procurement, r resThough the total costs of renewable energy procurement ( C

Barbose, Galen

2013-01-01T23:59:59.000Z

322

The future of electric two-wheelers and electric vehicles in China  

E-Print Network (OSTI)

China should consider measures to lower the carbon intensity of the grid. The recently passed Renewable

Weinert, Jonathan X.; Ogden, Joan M.; Sperling, Dan; Burke, Andy

2008-01-01T23:59:59.000Z

323

NREL Explores Earth-Abundant Materials for Future Solar Cells (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Explores Earth-Abundant Explores Earth-Abundant Materials for Future Solar Cells Researchers at the National Renewable Energy Laboratory (NREL) are using a theory-driven technique-sequential cation mutation-to understand the nature and limitations of promising solar cell materials that can replace today's technologies. Finding new materials that use Earth-abundant elements and are easily manufactured is important for large-scale solar electricity deployment. The goal of the U.S. Department of Energy SunShot Initiative is to reduce the installed cost of solar energy systems by about 75% by the end of the decade. Obtaining that goal calls for photovoltaic (PV) technologies to improve in three main areas: solar-cell efficiencies, material processing costs, and scalability to the terawatt (TW), or 10

324

If the shoe FITs: using feed-in tariffs to meet U.S. Renewable electricity targets  

SciTech Connect

Experiences in Europe have demonstrated that well-designed FITs can drive rapid and dramatic growth in renewable electricity markets, promote strong manufacturing industries, and create thousands of new jobs in a cost-effective manner. If properly structured, FIT-inspired mechanisms in the U.S. have the potential to jumpstart rapid renewable energy market growth that could reshape the country's energy landscape. (author)

Rickerson, Wilson H.; Sawin, Janet L.; Grace, Robert C.

2007-05-15T23:59:59.000Z

325

Renewable Project Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Overview Project Overview Federal Utility Partnership Working Group 5/6/09 Chandra Shah, NREL 303-384-7557, chandra.shah@nrel.gov National Renewable Energy Laboratory Innovation for Our Energy Future Presentation Overview Federal and utility renewable requirements Power Purchase Agreements (PPA) Western Area Power Administration Federal Renewable Program UESC and renewables * Participating in utility renewable programs - Opportunity Announcement process Renewable projects implemented using appropriations National Renewable Energy Laboratory Innovation for Our Energy Future Biomass Resource

326

RENEWABLE ENERGY AT WHAT COST? ASSESSING THE EFFECT OF FEED-IN TARIFF POLICIES ON CONSUMER ELECTRICITY PRICES IN THE EUROPEAN UNION.  

E-Print Network (OSTI)

??In the last two decades, feed-in tariffs (FIT) have emerged as the dominant policy instrument for supporting electricity from renewable sources in the European Union.… (more)

Klein, Christopher A.

2012-01-01T23:59:59.000Z

327

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

CEC). 2000. California Natural Gas Analysis and Issues.2002. Average Price of Natural Gas Sold to Electric Utilityfor investments in natural gas and renewables to complement

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

328

Renewable Energy Requirements for Future Building Codes: Energy Generation and Economic Analysis  

SciTech Connect

As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, installation of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including the building envelope, mechanical systems, and lighting, have been maximized at the most cost-effective limit.

Russo, Bryan J.; Weimar, Mark R.; Dillon, Heather E.

2011-09-30T23:59:59.000Z

329

Electricity Network Investment and Regulation for a Low Carbon Future  

E-Print Network (OSTI)

Charges Effective from 01 April 2005, London: National Grid It is recognised that high TNUoS charges could have a detrimental effect on renewable development in North of Scotland, where a considerable renewable resource (wind and marine) 9... links such as North-South DC cables could be proposed and built by third parties. Some links to Scottish Islands, the Netherlands and offshore generation may be built under this type of arrangement. 13 4.2 ‘Constructive Engagement’ Regulated...

Pollitt, Michael G.; Bialek, Janusz

330

Decarbonizing the Electric Sector: Combining Renewable and Nuclear Energy using Thermal Storage  

Science Conference Proceedings (OSTI)

Both renewable and nuclear energy can provide significant contributions to decarbonizing the electric sector. However, a grid employing large amounts of wind and solar energy requires the balance of the system to be highly flexible to respond to the increased variability of the net load. This makes deployment of conventional nuclear power challenging both due to the technical challenges of plant cycling and economic limits of reduced capacity factor. In the United States nuclear power plants generally provide constant, base load power and are most economic when operated at constant power levels. Operating nuclear power plants in load-following modes decreases the plants' annual energy output and increases the levelized cost of energy, decreasing economic competitiveness. One possible solution is to couple thermal energy storage to nuclear power plants. This would enable the reactor to remain at nearly constant output, while cycling the electrical generator in response to the variability of the net load. This paper conceptually explores combinations of wind, solar, and nuclear that can provide a large fraction of a system's electricity, assuming the use of thermal energy storage that would allow nuclear power to provide load following and cycling duty while operating at a constant reactor power output.

Denholm, P.; King, J.; Kutscher, C.; Wilson, P.

2012-05-01T23:59:59.000Z

331

Managing electricity reliability risk through the futures markets  

E-Print Network (OSTI)

negatively with the electricity spot price. Consequently,is incurred only for actual electricity generation, i.e. ,to produce electricity sold as energy, and to operate any AS

Siddiqui, Afzal S.

2000-01-01T23:59:59.000Z

332

Examination of the Regional Supply and Demand Balance for Renewable Electricity in the United States through 2015: Projecting from 2009 through 2015 (Revised)  

SciTech Connect

This report examines the balance between the demand and supply of new renewable electricity in the United States on a regional basis through 2015. It expands on a 2007 NREL study that assessed the supply and demand balance on a national basis. As with the earlier study, this analysis relies on estimates of renewable energy supplies compared to demand for renewable energy generation needed to meet existing state renewable portfolio standard (RPS) policies in 28 states, as well as demand by consumers who voluntarily purchase renewable energy. However, it does not address demand by utilities that may procure cost-effective renewables through an integrated resource planning process or otherwise.

Bird, L.; Hurlbut, D.; Donohoo, P.; Cory, K.; Kreycik, C.

2010-06-01T23:59:59.000Z

333

EIA Energy Kids - Electricity  

U.S. Energy Information Administration (EIA)

The energy sources we use to make electricity can be renewable or non-renewable, but electricity itself is neither renewable nor non-renewable.

334

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

that procure electricity objectively analyze the trade-offselectricity in the last several years (CEC 2002b; California Technology, Trade &electricity is derived from renewable sources. The D W R ' s contracting decisions undoubtedly involved trade-

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

335

THE INFLUENCE OF STATE-LEVEL RENEWABLE ENERGY POLICY INSTRUMENTS ON ELECTRICITY GENERATION IN THE UNITED STATES: A CROSS-SECTIONAL TIME SERIES ANALYSIS.  

E-Print Network (OSTI)

??Since the late 1990s, state governments in the U.S. have diversified policy instruments for encouraging the electric power industry to deploy renewable sources for electricity… (more)

Park, Sunjoo

2013-01-01T23:59:59.000Z

336

The future of electric two-wheelers and electric vehicles in China  

E-Print Network (OSTI)

s Electric and Hybrid Electric Vehicle Program. SAE Hybrida regular gasoline hybrid electric vehicle (HEV), while theIn the global hybrid electric vehicle market, no automakers

Weinert, Jonathan X.; Ogden, Joan M.; Sperling, Dan; Burke, Andy

2008-01-01T23:59:59.000Z

337

Renewable Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Energy Sources Renewable Energy Renewable Energy Watch as these fourth grade students go from learning about electricity to making their own electricity...

338

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

620. National Research Council (NRC) (2004). The Hydrogenthe transportation sector (NRC, 2004). Rev iew of Hydrogen2.33/kg ($16.43/GJ) Future NRC, 2004 Steam Methane Reforming

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

339

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

past, particularly with regard to solar PV development andNear Term/Future NRC, 2004 Solar PV Electrolysis 1,267 kg/continued) Production Method Solar PV Electrolysis n.s. 10

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

340

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

Renewable Energy Policies and Markets in the United States. ” Prepared for the Energy Foundation’s China

Haas, Reinhard

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

developeda two-passenger hybrid car whichoperates on leadto producea hybrid gasoline- electric car (the LA301), withAngeles the 301, a hybrid electric vehicle car project that

Scott, Allen J.

1993-01-01T23:59:59.000Z

342

Integrating renewables moves to center stage  

SciTech Connect

A number of governments around the world, including India and China, have identified green and renewable energy technologies as future engines of growth and job creation worthy of significant subsidies. In a number of countries, renewable resources will be the dominant form of new generation for the foreseeable future. In 2008, the U.S. Department of Energy published a study that concluded that the U.S. could conceivably meet 20 percent of its electricity generation by 2030 from wind alone.

2010-01-15T23:59:59.000Z

343

Potential Role of Concentrating Solar Power in Enabling High Renewables Scenarios in the United States  

Science Conference Proceedings (OSTI)

This work describes the analysis of concentrating solar power (CSP) in two studies -- The SunShot Vision Study and the Renewable Electricity Futures Study -- and the potential role of CSP in a future energy mix.

Denholm, P.; Hand, M.; Mai, T.; Margolis, R.; Brinkman, G.; Drury, E.; Mowers, M.; Turchi, C.

2012-10-01T23:59:59.000Z

344

Review of International Experience with Renewable Energy Obligation Support Mechanisms  

E-Print Network (OSTI)

electricity production from renewable energy (approx. 15-25electricity production from renewable energy sources andthe production of electricity from renewable energy sources

Wiser, R.

2005-01-01T23:59:59.000Z

345

Review of International Experience with Renewable Energy Obligation Support Mechanisms  

E-Print Network (OSTI)

sikt? [‘How apt is the renewable electricity certificatesupply of electricity from renewable energy sources in theenergiteknik‘ [‘The renewable electricity certificate system

Wiser, R.

2005-01-01T23:59:59.000Z

346

National Renewable Energy Laboratory  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

347

Electric automobiles: energy, environmental, and economic prospects for the future  

DOE Green Energy (OSTI)

The book discusses the pros and cons of electric cars for the motorist as well as for the nation as a whole. For the motorist, it compares the prospective performance and costs of electric cars with those of conventional cars. For the nation, it projects the changes in energy use, petroleum use, air pollution, and traffic noise that would result from substituting electric cars for conventional cars. Specific projections are advanced for the years 1980, 1990, and 2000. Beginning with the reasons for the current interest in electric cars and why they have not yet come into widespread use, the book offers useful information on: prospective propulsion batteries, with projections of battery performance and capabilities; patterns for urban driving, which serve as a basis for determining the applicability of electric cars with different driving ranges and passenger capabilities; comprehensive projections of electric utility capacity and generation by fuel type, both with and without electric cars; the number of electric cars that may be recharged without adding utility capacity beyond that already planned; the requirements of electric cars for battery materials; and the impact of electric cars on urban air quality and traffic noise.

Hamilton, W.

1980-01-01T23:59:59.000Z

348

Quantifying the Value of Hydropower in the Electric Grid: Modeling Results for Future Scenarios  

Science Conference Proceedings (OSTI)

Work reported in this Technical Report is part of a larger study that is made up of multiple components and intends to utilize and enhance tools that can value hydropower assets in a changing electric grid. The study’s main objective is to develop a methodology to facilitate improved valuation and resource planning for pumped storage and conventional hydropower projects in the future electric transmission grid.This report covers Modeling Results for Future Electricity Market ...

2012-12-31T23:59:59.000Z

349

A Plan for a Sustainable Future Using Wind, Water, and Sun  

Science Conference Proceedings (OSTI)

A Plan for a Sustainable Future Using Wind, Water, and Sun · Electrical Energy Storage for Renewable Integration and Grid Applications: Status, Challenges ...

350

Power Delivery System and Electricity Markets for the Future  

Science Conference Proceedings (OSTI)

This report is in draft form pending approval by EPRI Power Delivery & Markets Group Council. Upon approval, the report will be reformatted and issued as a final report by October 31, 2003. The Electricity Roadmap Initiative is an ongoing collaborative exploration of the opportunities for electricity-based innovation over the next 20 years and beyond. Thus far, over 150 organizations have participated with EPRI and its members in shaping a comprehensive vision of how to further increase electricity's val...

2003-08-27T23:59:59.000Z

351

The Past, Present, and Future of Electricity Reliability Oversight...  

NLE Websites -- All DOE Office Websites (Extended Search)

90 The Energy Policy Act of 2005 directs the Federal Energy Regulatory Commission (FERC) to certify an Electricity Reliability Organization (ERO) that will propose and enforce...

352

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

Planning. UCLA. Motor Vehicles Manufacturers’ Association (Authority MVMA Motor Vehicle Manufacturer’s AssoemUon NaSneedsof electric vehicle manufacturers. Thesesectors include

Scott, Allen J.

1993-01-01T23:59:59.000Z

353

Computational Intelligence Techniques for a Smart Electric Grid of the Future  

Science Conference Proceedings (OSTI)

The electric grid of the future is required to become smarter so as to provide an affordable, reliable, and sustainable supply of electricity. Under such circumstances, considerable research activities have been carried out in the U.S. and Europe to ... Keywords: Adaptive and Self-Healing Systems, Communications, Computational Intelligence, Information Infrastructure, Learning, Smart Electric Grid

Zhenhua Jiang

2009-05-01T23:59:59.000Z

354

Structural Change and Futures for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

Technological change and evolving customer needs have already combined to precipitate fundamental structural change in several capital-intensive industries, notably the telecommunications, natural gas, and transportation sectors. These forces are now being unleashed in the electric utility sector. This report outlines some common patterns of change across several industries and presents scenarios of structural change for the electric power industry.

1995-08-09T23:59:59.000Z

355

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

and wind energy plants at favourable locations, most renewable energy technologies currently are at a costwind energy are tax free. Deduction of 15% investment costs

Haas, Reinhard

2008-01-01T23:59:59.000Z

356

Biomass power and state renewable energy policies under electric industry restructuring  

E-Print Network (OSTI)

BIOMASS POWER AND STATE RENEWABLE ENERGY POLICIES UNDERHowever, the eligibility of biomass under state RPS and SBCmay make it difficult for biomass power companies to access

Porter, Kevin; Wiser, Ryan

2000-01-01T23:59:59.000Z

357

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

Wind, Biomass, Small hydro, for Energy and Competitiveness”half of the non-hydro renewable energy capacity additionsshore wind 50€, hydro: 50€, solar energy: 150€, biomass: 20

Haas, Reinhard

2008-01-01T23:59:59.000Z

358

Renewables for TransportationTransportation  

E-Print Network (OSTI)

thermal biomass Tank to Wheel Example renewable fuel options: Biofuels biogas Process heat/steam: Solar)) Biofuels, biogas Renewable electricity Renewable H2 sequestration (CCS)) Electricity: solar PV, wind

California at Davis, University of

359

The Future of Electric Vehicles and Arizona State University...  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Air Ionic Liquid (MAIL) Battery - an ARPA-E funded project out of Arizona State. Electric Vehicles (or EVs) are very different than cars as we know them. Rather than...

360

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

1) Borenstein, S. , Electricity Rate Structures and thes underlying retail electricity rate through net metering.turn impact retail electricity rates, particularly as retail

Barbose, Galen

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

Penetrations on Electricity Bill Savings from ResidentialPENETRATIONS ON ELECTRICITY BILL SAVINGS FROM RESIDENTIALBill Savings In this paper, we have chosen two compensation mechanisms for electricity

Barbose, Galen

2013-01-01T23:59:59.000Z

362

Hydrogen Fuel Cell Electric Vehicles (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

nations around the world pursue a variety of sustainable nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs are important to our nation's future because they can: * Play an important role in our portfolio of sustainable transportation options * Provide a cost-competitive, appealing alternative for drivers * Reduce dependence on imported oil and diversify energy sources for transportation * Enable global economic leadership and job growth. Offering a Sustainable Transportation Option Americans have tremendous freedom to travel wherever and whenever they want. Ninety percent of travel in the United States is achieved by automobiles that refuel quickly

363

Tim Belden currently is employed at Portland General Electric.1 Primer on Electricity Futures  

E-Print Network (OSTI)

of Energy Management Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. #12;ii by the Assistant Secretary of Energy Efficiency and Renewable Energy, Office of Utility Technologies, Office

364

Assessment of Future Vehicle Transportation Options and their Impact on the Electric Grid  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Vehicle Transportation Future Vehicle Transportation Options and Their Impact on the Electric Grid January 10, 2010 New Analysis of Alternative Transportation Technologies 3 What's New? * Additional Alternative Transportation Vehicles - Compressed Air Vehicles (CAVs) * Use electricity from the grid to power air compressor that stores compressed air - Natural Gas Vehicles (NGVs) * Connection to grid is in competing demand for fuel * Still an internal combustion engine (ICE) - Hydrogen Vehicles * Use fuel cell technology, no connection to electricity grid 4 General Takeaways * CAVs - Unproven technology - Poor environmental performance - High cost * NGVs - Poor environmental performance - Lack of refueling infrastructure - Cheaper fuel cost than ICEs - No direct impact on electric power grid * Hydrogen - Unproven technology

365

Electric car: is it still the vehicle of the future  

DOE Green Energy (OSTI)

An analysis of electric and internal combustion engine (ICE) cars of equivalent performance shows that, even with advanced batteries, the electric vehicle would be much more costly to run (23 cents/mile vs 16 cents/mile) than the ICE car. The electric vehicle, of course, would not use gasoline, thus reducing the nation's dependence on imported oil; however, the cost of oil saved in this way would be about $190/bbl, and the same result could be achieved at about one-quarter the cost by manufacturing synfuels from domestic coal or oil shale. A similar analysis of some proposed hybrid electric vehicles indicates that they are also more costly to operate than an equivalent conventional vehicle, although by a smaller margin (25 cents/mile vs 21 cents/mile). The cost of oil saved by the use of hybrid vehicles is also lower ($95/bbl), although it is still much more than the projected cost of synthetic fuels. The key to improving the economics of the electric vehicle is to increase battery life or lower battery costs.

Graves, R.L.; West, C.D.; Fox, E.C.

1981-08-01T23:59:59.000Z

366

The future of electric two-wheelers and electric vehicles in China  

E-Print Network (OSTI)

2001. Life cycle assessment of electric bike application inSystems. Cherry, C. , 2007. Electric Two-Wheelers in China:2007. 2006 Analysis of Electric Bike Market (2006 China

Weinert, Jonathan X.; Ogden, Joan M.; Sperling, Dan; Burke, Andy

2008-01-01T23:59:59.000Z

367

Electric car: is it still the vehicle of the future  

DOE Green Energy (OSTI)

An analysis of electric and internal combustion engine (ICE) cars of equivalent performance shows that, even with advanced batteries, the electic vehicle would be much more costly to run (23 cents/mile vs 16 cents/mile) than the ICE car. The electric vehicle, of course, would not use gasoline, thus reducing the nation's dependence on imported oil; however, the cost of oil saved in this way would be about $190/bbl, and the same result could be achieved at about one-quarter the cost by manufacturing synfuels from domestic coal or oil shale. A similar analysis of some proposed hybrid electric vehicles indicates that they are also more costly to operate than an equivalent conventional vehicle, although by a smaller margin (25 cents/mile vs 21 cents/mile). The cost of oil saved by the use of hybrid vehicles is also lower ($95/bbl), although it is still much more than the projected cost of synthetic fuels. The key to improving the economics of the electric vehicle is to increase battery life or lower battery costs.

Graves, R.L.; West, C.D.; Fox, E.C.

1981-08-01T23:59:59.000Z

368

Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"  

E-Print Network (OSTI)

and lower costs: Combining renewable energy and energydeveloping renewable energy projects under traditional cost-in the levelized cost of renewable energy under the “build”

Cappers, Peter

2010-01-01T23:59:59.000Z

369

Alternative Trading Arrangements for Intermittent Renewable Power...  

Open Energy Info (EERE)

Trading Arrangements for Intermittent Renewable Power: A Centralised Renewables Market and Other Concepts Focus Area: Other Renewable Electricity Topics: Socio-Economic...

370

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

certificate market. In: Energy Policy, 31, 21-32. Lopez A. ,Early Assessment. In: Energy Policy, 31, 527-535. Martinot,Hamrin. 2005. “Renewable Energy Policies and Markets in the

Haas, Reinhard

2008-01-01T23:59:59.000Z

371

Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on  

E-Print Network (OSTI)

LBNL-45272 Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper under the emerging competitive electricity market structure.1 In so doing, the white papers build upon Commission (FERC) orders 888 and 889.2 The six white papers represent the final step prior to the preparation

372

Role of Renewable Energy in a Sustainable Generation Portfolio  

Science Conference Proceedings (OSTI)

This technical update report documents efforts to enhance and update the modeling of renewable generation options in EPRI's capacity expansion and dispatch financial model. Using this updated model, the possible effects on the U.S. electric sector of various scenarios for future federal renewable portfolio standard (RPS) and climate policies are evaluated and compared.

2008-01-30T23:59:59.000Z

373

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

penetrations on residential retail electricity rates andpresent the residential electricity retail rates resultingelectricity rates. Since G h,resPV , the residential PV

Barbose, Galen

2013-01-01T23:59:59.000Z

374

A distributed renewable energy system meeting 100% of electricity demand in Humboldt County: a feasibility study.  

E-Print Network (OSTI)

??A model of electricity supply and demand in Humboldt County, California over the course of one year is presented. Wind, ocean–wave, solar, and biomass electricity… (more)

Ross, Darrell Adam

2009-01-01T23:59:59.000Z

375

Reliability in future electricity mixes: the question of distributed and renewables sources  

E-Print Network (OSTI)

systems, with the development of distributed energy sources and the emergence of the smartgrid, thus encouraging the development of microgrids and smartgrids. With the development of distributed

Paris-Sud XI, Université de

376

The future of electric two-wheelers and electric vehicles in China  

E-Print Network (OSTI)

SAE Hybrid Vehicle Symposium, San Diego CA, 13–14 February.emissions from a plug-in hybrid vehicle (PHEV) in China has2008. Nissan’s Electric and Hybrid Electric Vehicle Program.

Weinert, Jonathan X.; Ogden, Joan M.; Sperling, Dan; Burke, Andy

2008-01-01T23:59:59.000Z

377

Strategic Renewal  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewal Renewal of the Advanced Photon Source Proposal for Approval to Proceed with Conceptual Design (CD-0) Submitted to the US Department of Energy Office of Basic Energy Sciences May 31, 2009 Advanced Photon Source A BS t R AC t This document proposes a coordinated upgrade of the accelerator, beamlines, and enabling technical infrastructure that will equip future users of the Advanced Photon Source (APS) to address key

378

Distributional and Efficiency Impacts of Clean and Renewable Energy Standards for Electricity  

E-Print Network (OSTI)

We examine the efficiency and distributional impacts of greenhouse gas policies directed toward the electricity

Rausch, Sebastian

2012-07-17T23:59:59.000Z

379

Renewable Energy Development in Regulated Markets, 2002  

Science Conference Proceedings (OSTI)

The slowdown in electricity market restructuring since 2000 has dramatically altered opportunities for marketing green energy to retail customers. Indeed, it has become less clear what role direct consumer demand for green energy may play in future renewable energy development. Currently, utilities, green energy activists, and marketers are pursuing a number of new concepts that may increase the scale of renewable energy development. This report evaluates the status and potential of these new green energ...

2003-02-24T23:59:59.000Z

380

RENEWABLE ENERGY IN THE SOUTH: A Policy Brief  

E-Print Network (OSTI)

This working paper assesses the economic potential of renewable electricity generation in the South under alternative policy scenarios. Using a customized version of the National Energy Modeling System (NEMS), we examine the impact of 1) expanded and updated estimates of renewable resources, 2) a Renewable Portfolio Standard (RPS), and 3) a Carbon-Constrained Future (CCF). Under the Expanded Renewables Scenario, renewable electricity generation doubles the output of the Reference forecast for the South. If a Federal RPS is imposed or the policies represented by our CCF scenario are implemented, we estimate that 15 % to 30 % of the South’s electricity could be generated from renewable sources. Among the renewable resources, wind, biomass, and hydro are anticipated to provide the most generation potential. As the integration of renewable sources expands through the modeled time horizon, wind gradually out-competes biomass in the renewable electricity market. Cost-effective customer-owned renewables could also contribute significantly to electricity generation by 2030 in the South, under supportive policies. 1

Marilyn A. Brown; Etan Gumerman; Youngsun Baek; Cullen Morris; Yu Wang

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Table 10.2c Renewable Energy Consumption: Electric Power Sector ...  

U.S. Energy Information Administration (EIA)

3 Solar thermal and photovoltaic (PV) electricity net generation (converted to Btu using the fossil-fuels heat rate-see Table A6). Notes: - The electric power sector ...

382

Prospects of Renewable Energy for Meeting Growing Electricity Demand in Pakistan  

Science Conference Proceedings (OSTI)

Pakistan is an energy deficit country. About half of the country's population has access to electricity and per capita supply is only 520 kWh. Majority of the country's population resides in rural areas and most of them are yet without electricity. Conventional electricity generation includes 66.8% thermal

Mohammad Aslam Uqaili; Khanji Harijan; Mujeebuddin Memon

2007-01-01T23:59:59.000Z

383

Electrical Characterization Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Characterization Electrical Characterization Laboratory may include: * Equipment manufacturers * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Energy Systems Integration Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Electrical Characterization Laboratory Electrical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on the detailed electrical characterization of components and systems. This laboratory allows researchers to test the ability of equipment to withstand high voltage surges and high current faults, including equipment using

384

Meeting the Challenges of Integrating Renewable Energy into Competitive Electricity Industries  

E-Print Network (OSTI)

Workshop hosted by the IEA in November 2006. This report does not however necessarily reflect the position of the IEA. *The opinions and views offered by Commissioner Kelly are her own and not necessarily those of the United States, the Federal Energy Regulatory Commission, individual Commissioners or members of the Commission staff. Renewable Energy and International Law (REIL) is an international policy and law network for clean

unknown authors

2007-01-01T23:59:59.000Z

385

Integration of Electric Energy Storage into Power Systems with Renewable Energy Resources  

E-Print Network (OSTI)

This dissertation investigates the distribution and transmission systems reliability and economic impact of energy storage and renewable energy integration. The reliability and economy evaluation framework is presented. Novel operation strategies of energy storage and renewable energy are proposed. The method for optimizing the energy storage sizing and operation strategy in order to achieve optimal reliability and economy level is developed. The objectives of the movement towards the smart grid include making the power systems more reliable and economically efficient. The rapid development of the large scale energy storage technology makes it an excellent candidate in achieving these goals. A novel Model Predictive Control (MPC)-based operation strategy is proposed to optimally manage the charging and discharging operation of energy storage in order to minimize the energy purchasing cost for a distribution system load aggregator in power markets. Different operation strategies of energy storage have different reliability and economic impact on power systems. Simulation results illustrate the importance of the energy storage operation strategies. A hybrid operation strategy which combines the MPC-based operation strategy and the standby backup operation strategy is proposed to flexibly adjust the reliability and economic improvement brought by energy storage. A particle swarm optimization approach is developed to determine the optimal energy storage sizing and operation strategy while maximizing reliability and economic improvement. A reliability and economy assessment framework based on sequential Monte Carlo method integrated with the operation strategies is proposed. The impact on the transmission systems reliability brought by energy storage and renewable energy with the proposed operation strategies is investigated. Case studies are conducted to demonstrate the effectiveness of the proposed operation strategies, optimization approach, and the reliability and economy evaluation framework. Insights into how energy storage and renewable energy affect power system reliability and economy are obtained.

Xu, Yixing 1985-

2012-12-01T23:59:59.000Z

386

EIA Energy Kids - Electricity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The energy sources we use to make electricity can be renewable or non-renewable, but electricity itself is neither renewable nor non-renewable.

387

Table 10.2c Renewable Energy Consumption: Electric Power Sector...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption: Electric Power Sector, 1949-2011" " (Billion Btu)" "Year",,,"Geothermal 2",,"SolarPV 3",,"Wind 4",,"Biomass",,,,,,"Total" ,"Hydroelectric" ,"Power...

388

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Electric Vehicle Handbook Plug-In Electric Vehicle Handbook for Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation

389

Preparing the U.S. Foundation for Future Electric Energy Systems  

E-Print Network (OSTI)

Preparing the U.S. Foundation for Future Electric Energy Systems: A Strong Power and Energy Engineering Workforce U.S. Power and Energy Engineering Workforce Collaborative Prepared by the Management Steering Committee of the U.S. Power and Energy Engineering Workforce Collaborative Endorsed

390

Predicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study  

E-Print Network (OSTI)

(e.g., HVAC) for a specific building, optimizing control systems and strategies for a buildingPredicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study Richard building energy modeling suffers from several factors, in- cluding the large number of inputs required

Tennessee, University of

391

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Charging Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation deployment initiative . It is supported

392

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

natural gas prices, the period of PTC extension, and the potential impact of future carbon regulations.natural gas and wholesale electric prices, the period of PTC extension, and the potential impact of future carbon regulations.regulations, may make renewable generation less economic than when renewable energy is presumed to compete with natural gas;

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

393

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

certification procedure for wind turbines as early as 1978electricity from onshore wind turbines between 2003 and 2005from abroad, may own wind turbines in Denmark. At the end of

Haas, Reinhard

2008-01-01T23:59:59.000Z

394

Smart buildings with electric vehicle interconnection as buffer for local renewables?  

E-Print Network (OSTI)

Energy Technologies Division Building / tariffs electricityOptions, Tariffs, and Building Analyzed Environmental Energyenergy management more effective stationary storage will be charged by PV, mobile only marginally results will depend on the considered region and tariff

Stadler, Michael

2012-01-01T23:59:59.000Z

395

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

biomass fraction of MSW, conventional geothermal). Maximum priceprice. Electricity generation [GWh/year] Wind onshore Hydro small-scale Solid biomassbiomass st Federal: The Royal Decree of 10 July 2002 (operational from 1 of July 2003) sets minimum prices (

Haas, Reinhard

2008-01-01T23:59:59.000Z

396

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

encouraging 3,000 MW of new solar PV systems through a long-Wind on- & offshore, PV, Solar thermal electricity, Biomass,38.3 €/MWh (premium); Solar thermal & PV 28 : 229.8-440.4 €/

Haas, Reinhard

2008-01-01T23:59:59.000Z

397

Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"  

E-Print Network (OSTI)

efficiency into a sustainable energy portfolio standard. Theperspective. Renewable & Sustainable Energy Reviews 13:100-

Cappers, Peter

2010-01-01T23:59:59.000Z

398

Renewable Energy Economic Development  

E-Print Network (OSTI)

: · Renewable energy / Smart grid · Electric/hybrid vehicles 38 Proprietary & Confidential Global utility ­ Who Are We? · Industry leader in planning, architecture, engineering, procurement, construction

399

Illinois Solar Energy Association - Renewable Energy Credit Aggregation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Solar Energy Association - Renewable Energy Credit Illinois Solar Energy Association - Renewable Energy Credit Aggregation Program Illinois Solar Energy Association - Renewable Energy Credit Aggregation Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate $105/MWh) Program Info Start Date 01/01/2010 State Illinois Program Type Performance-Based Incentive Rebate Amount $105/MWh '''''RECAP is not currently accepting applications. The most recent solicitation closed April 30th, 2013. Check the program web site for information regarding future solicitations. ''''' The Illinois Solar Energy Association offers the Renewable Energy Credit Aggregation Program (RECAP) to Illinois solar photovoltaic (PV) system

400

Renewable Energy Technology Guide  

Science Conference Proceedings (OSTI)

First published in 2000 as the Renewable Energy Technical Assessment GuideTAG-RE, the Electric Power Research Institute's (EPRI's) annual Renewable Energy Technology Guide provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. These technologies include wind, solar photovoltaic (PV), solar thermal, biomass, municipal solid waste, geothermal, and emerging ocean energy conversion technologies.

2011-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Renewable energy and telecommunications  

E-Print Network (OSTI)

Renewable energy and telecommunications Case study: Energy Systems Week When AK Erlang first used fossil fuels and switch to renewable energy sources. But the unlikely convergence of the two fields lay to be able to deal with. "If we integrate renewable energies, such as wind power, in the electricity grid

402

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

operated by the Alliance for Sustainable Energy, LLC. STEP 1 Assess the Local Industry and Resource Potential STEP 2 Identify Challenges to Local Development STEP 3 Evaluate Current Policy STEP 4 Consider Policy Options STEP 5 Implement Policies Increased Development Policymakers' Guidebook for Geothermal Electricity Generation This document identifies and describes five steps for implementing geothermal policies that may reduce barriers and result in deployment and implementation of geothermal technologies that can be used for electricity generation, such as conventional hydrothermal, enhanced geothermal systems (EGS), geopressured, co-production, and low temperature geothermal resources. Step 1: Assess the Local Industry and Resource Potential Increasing the use of geothermal

403

An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios  

E-Print Network (OSTI)

chains and emission factors for the generation, transmission and distribution portions of the electricityAn Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios Joe Marriott Submitted in Partial Fulfillment of the Requirements

404

Effect of real-time electricity pricing on renewable generators and system emissions  

E-Print Network (OSTI)

Real-time retail pricing (RTP) of electricity, in which the retail price is allowed to vary with very little time delay in response to changes in the marginal cost of generation, offers expected short-run and long-run ...

Connolly, Jeremiah P. (Jeremiah Peter)

2008-01-01T23:59:59.000Z

405

Clean Cities Now, Vol. 15, No. 1, April 2011: Plugging In, Cities are planning for electric vehicle infrastructure (Brochure), Energy Efficiency & Renewable Energy (EERE)  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 April 2011 Clean Cities TV to Broadcast Coalition Successes Keeping Trash from Going to Waste with Renewable Natural Gas Renewable Fuels in New Jersey Raleigh, NC Los Angeles, CA Houston, TX Oregon Cities are planning for electric vehicle infrastructure Plugging In Dear Readers, In preparation for the widespread adoption of all-electric and plug-in hybrid electric vehicles, city officials, utility companies, and local leaders are working together to speed up permitting processes for installing home charging equipment. To help cities navigate this new territory, Clean Cities devel- oped case studies detailing the experiences of four electric vehicle pacesetters-the state of Oregon, Houston, Los Angeles, and Raleigh, North Carolina-that are leading the charge. Our feature article on

406

Renewables for sustainable village power  

DOE Green Energy (OSTI)

It is estimated that two billion people live without electricity and its services. In addition, there is a sizeable number of rural villages that have limited electrical service, with either part-day operation by diesel gen-sets or partial electrification (local school or community center and several nearby houses). For many villages connected to the grid, power is often sporadically available and of poor quality. The U.S. National Renewable Energy Laboratory (NREL) in Golden, Colorado, has initiated a program to address these potential electricity opportunities in rural villages through the application of renewable energy (RE) technologies. The objective of this program is to develop and implement applications that demonstrate the technical performance, economic competitiveness, operational viability, and environmental benefits of renewable rural electric solutions, compared to the conventional options of line extension and isolated diesel mini-grids. These four attributes foster sustainability; therefore, the program is entitled Renewables for Sustainable Village Power (RSVP). The RSVP program is a multi-technology, multi-application program composed of six activities, including village applications development, computer model development, systems analysis, pilot project development, technical assistance, and Internet-based village power project data base. While the current program emphasizes wind, photovoltaics (PV), and their hybrids with diesel gen-sets, micro-hydro and micro-biomass technologies may be integrated in the future. NREL`s RSVP team is currently involved in rural electricity projects in thirteen countries, with U.S., foreign, and internationally based agencies and institutions. The integration of the technology developments, institutional experiences, and the financial solutions for the implementation of renewables in the main line rural electrification processes in both the developing world and remote regions of the developed world is the goal.

Flowers, L.

1997-03-01T23:59:59.000Z

407

Today in Energy - Most states have Renewable Portfolio ...  

U.S. Energy Information Administration (EIA)

Renewable portfolio standards (RPS), also referred to as renewable electricity standards (RES), are policies designed to increase generation of ...

408

NREL Helps Cool the Power Electronics in Electric Vehicles (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Helps Cool the Power Helps Cool the Power Electronics in Electric Vehicles Researchers at the National Renewable Energy Laboratory (NREL) are developing and demonstrating innovative heat-transfer technologies for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine Tube, Inc., NREL is using surface enhancements to dissipate heat more effectively, permitting a reduction in the size of power electronic systems and potentially reducing the overall costs of electric vehicles. Widespread use of advanced electric-drive vehicles-including electric vehicles (EVs) and hybrid electric vehicles (HEVs)-could revolutionize transportation and dramatically reduce U.S. oil consumption. Improving the cost and performance of these vehicles' electric-drive systems

409

FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

FutureGen FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production Office of Fossil Energy U. S. Department of Energy Washington, DC June 2, 2003 Lowell Miller, Director, Office of Coal & Power Systems 24-Jun-03 Slide 2 Office of Fossil Energy Presentation Agenda * FE Hydrogen Program * FutureGen * Carbon Sequestration Leadership Forum (CSLF) 24-Jun-03 Slide 3 Office of Fossil Energy Key Drivers * Decreasing domestic supply will lead to increased imports from less stable regions * Conventional petroleum is finite; production will peak and irreversibly decline due to continually increasing demand * Improving environmental quality - Meeting air emission regulations - Greenhouse gas emissions 0 2 4 6 8 10 12 14 16 18 20 1970 1975 1980 1985 1990 1995 2000 2005

410

Managing R&D Risk in Renewable Energy  

E-Print Network (OSTI)

from 2007. Table 6: Renewable Energy Costs, Transportationmegajoules. Table 7: Renewable Energy Costs, Electricity ($/1: DOE Renewable Energy Milestones cellulosic ethanol cost

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

411

Office of Energy Efficiency and Renewable Energy Fiscal Year...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Renewable Electricity Generation Office of Energy Efficiency and Renewable Energy Fiscal Year...

412

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

SciTech Connect

Electricity markets in the United States have witnessed unprecedented instability over the last few years, with substantial volatility in wholesale market prices, significant financial distress among major industry organizations, and unprecedented legal, regulatory and legislative activity. These events demonstrate the considerable risks that exist in the electricity industry. Recent industry instability also illustrates the need for thoughtful resource planning to balance the cost, reliability, and risk of the electricity supplied to end-use customers. In balancing different supply options, utilities, regulators, and other resource planners must consider the unique risk profiles of each generating source. This paper evaluates the relative risk profiles of renewable and natural gas generating plants. The risks that exist in the electricity industry depend in part on the technologies that are used to generate electricity. Natural gas has become the fuel of choice for new power plant additions in the United States. To some, this emphasis on a single fuel source signals the potential for increased risk. Renewable generation sources, on the other hand, are frequently cited as a potent source of socially beneficial risk reduction relative to natural gas-fired generation. Renewable generation is not risk free, however, and also imposes certain costs on the electricity sector. This paper specifically compares the allocation and mitigation of risks in long-term natural gas-fired electricity contracts with the allocation and mitigation of these same risks in long-term renewable energy contracts. This comparison highlights some of the key differences between renewable and natural gas generation that decision makers should consider when making electricity investment and contracting decisions. Our assessment is relevant in both regulated and restructured markets. In still-regulated markets, the audience for this report clearly includes regulators and the utilities they regulate. In restructured markets, the role of regulatory oversight of resource planning is more limited. Nonetheless, even in restructured markets, it is increasingly recognized that regulators have a critical role to play in directing the resource planning of providers of last resort--electric suppliers that provide service to those customers who choose not to switch to a competitive supplier. Our review of electricity contracts may also have educational value for those unfamiliar with the typical contents of these agreements. Details of our findings are provided in the body of the paper, but this summary is written to provide a concise alternative to reading the full report.

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-03-12T23:59:59.000Z

413

RENEWABLE ENERGY RESEARCH August 2010  

E-Print Network (OSTI)

RENEWABLE ENERGY RESEARCH August 2010 CERTS Smart Grid Demonstration with Renewable Energy Integration PIER Renewable Energy Research The Issue Researchers at the Santa Rita Jail, in Dublin, California will be demonstated. This demonstration will enable future applications under a Renewable-Based Energy Secure

414

Duke Energy - Solar Renewable Energy Credits Program (Ohio) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy - Solar Renewable Energy Credits Program (Ohio) Duke Energy - Solar Renewable Energy Credits Program (Ohio) Duke Energy - Solar Renewable Energy Credits Program (Ohio) < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Program Info State Ohio Program Type Performance-Based Incentive Rebate Amount RECs produced in 2010: $300/REC Future RECs will be based on market conditions Provider Duke Energy '''''Note: In order to participate in this program, customers must have signed an agreement by December 31, 2012. Check the program web site above for information regarding future solicitations. ''''' Duke Energy Ohio offers the Solar Renewable Energy Credits program to residential customers in Ohio that install solar photovoltaic (PV) systems on their homes. One solar renewable energy credit (SREC) is created when a

415

Renewable energy perspectives in the  

E-Print Network (OSTI)

Renewable energy perspectives in the mediterranean countries - the Mediterranean Solar Plan Dr 600 800 1000 1200 1400 1990 2009 CS2030 PS2030 Mtoe Renewables & Waste Hydro Nuclear Gas Oil Coal #12 - hydro Renewables Hydro Nuclear Gas Oil Coal 2009 2030 PS2030 CS #12;RENEWABLE ELECTRICITY GENERATION 0

Canet, Léonie

416

2008 Renewable Energy Data Book  

DOE Green Energy (OSTI)

This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

Not Available

2009-07-01T23:59:59.000Z

417

SC e-journals, Renewable Energy  

Office of Scientific and Technical Information (OSTI)

Renewable Energy Agricultural & Forest Meteorology Biomass & Bioenergy BioEnergy Research Electricity Journal, The Journal of Renewable and Sustainable Energy Process Biochemistry...

418

Batteries for electric drive vehicles: Evaluation of future characteristics and costs through a Delphi study  

SciTech Connect

Uncertainty about future costs and operating attributes of electric drive vehicles (EVs and HEVs) has contributed to considerable debate regarding the market viability of such vehicles. One way to deal with such uncertainty, common to most emerging technologies, is to pool the judgments of experts in the field. Data from a two-stage Delphi study are used to project the future costs and operating characteristics of electric drive vehicles. The experts projected basic vehicle characteristics for EVs and HEVs for the period 2000-2020. They projected the mean EV range at 179 km in 2000, 270 km in 2010, and 358 km in 2020. The mean HEV range on battery power was projected as 145 km in 2000, 212 km in 2010, and 244 km in 2020. Experts` opinions on 10 battery technologies are analyzed and characteristics of initial battery packs for the mean power requirements are presented. A procedure to compute the cost of replacement battery packs is described, and the resulting replacement costs are presented. Projected vehicle purchase prices and fuel and maintenance costs are also presented. The vehicle purchase price and curb weight predictions would be difficult to achieve with the mean battery characteristics. With the battery replacement costs added to the fuel and maintenance costs, the conventional ICE vehicle is projected to have a clear advantage over electric drive vehicles through the projection period.

Vyas, A.D.; Ng, H.K.; Anderson, J.L.; Santini, D.J.

1997-07-01T23:59:59.000Z

419

Renewable Energy for Sustainable Rural Village Power  

DOE Green Energy (OSTI)

It is estimated that two billion people live without electricity and its services worldwide. In addition, there is a sizeable number of rural villages that have limited electrical service, with either part-day operation by diesel generator or partial electrification. For many villages connected to the grid, power is often sporadically available and of poor quality. The US National Renewable Energy Laboratory (NREL) in Golden, Colorado, has initiated a program that involves hybrid systems, to address these potential electricity opportunities in rural villages through the application of renewable energy technologies.1 The objective of this program is to develop and implement applications that demonstrate the technical performance, economic competitiveness, operational viability, and environmental benefits of renewable rural electric solutions, compared to the conventional options of line extension and isolated diesel mini-grids. Hybrid systems are multi-disciplinary, multi-technology, multi-application programs composed of six activities, including village applications development, computer model development, systems analysis, pilot project development, technical assistance, and Internet-based village power project data base. While the current program emphasizes wind, photovoltaics (PV), and their hybrids with diesel generator, micro-hydro and micro-biomass technologies may be integrated in the future. Thirteen countries are actively engaged in hybrid systems for rural and remote applications and another dozen countries have requested assistance in exploring wind/PV hybrid systems within their territories. At present rural/remote site application of renewable technologies is the fastest growing aspect of renewable energy worldwide.

Touryan, J. O. V.; Touryan, K. J.

1999-08-05T23:59:59.000Z

420

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

owner might have to low electricity rates is fairly limited,to lower than retail electricity rates is imperative forsupplemental grid electricity rates. Sources 1. “Renewable

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Renewable Portfolio Standard (Hawaii) | Open Energy Information  

Open Energy Info (EERE)

Portfolio Standard (RPS), each electric utility company that sells electricity for consumption in Hawaii must establish the following percentages of "renewable electrical energy"...

422

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply Rosborne318 Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Posted by: Rosborne318 2 Dec 2013 - 11:06 The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. Tags: pv land use, Solar, solar land use, Solar Power LShapton Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT Posted by: LShapton 28 Aug 2013 - 15:09 Portland General Electric has issued an RFP for marketing and supply for

423

LBNL-41098 UC-1321 Primer on Electricity Futures and Other Derivatives  

E-Print Network (OSTI)

The work described in this study was funded by the Assistant Secretary of Energy Efficiency and Renewable Energy,

S. Stoft; T. Belden; C. Goldman; S. Pickle

1998-01-01T23:59:59.000Z

424

Assessment of Future Vehicle Transportation Options and Their Impact on the Electric Grid  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Vehicle Future Vehicle Transportation Options and Their Impact on the Electric Grid January 10, 2011 DOE/NETL-2010/1466 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

425

An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios  

E-Print Network (OSTI)

the Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License. You are free to copy and distribute-free Future? IGCC and Wind in 2040 80 4.2 Limits of Disaggregation 84 4.3 Research Questions and Contributions Commission Net System Power 24 Table 3: Electricity Mixes for top 10 electricity importers 25 Table 4

426

Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy The WIPP Site Holds Promise as an Ideal Source of Renewable Energy Encompassing 16 square miles of open Chihuahuan desert with abundant sunshine and minimal surface roughness, the WIPP site is ideal for either solar- or wind-generated electricity production, demonstration or testing. In fact, WIPP is striving to take advantage of its abundance of sunshine and wind. The Department of Energy's Office of Environmental Management has created what is being called the Energy Park Initiative (EPI). This initiative's goal is to convert DOE facilities into assets by focusing on providing solutions for renewable energy technologies. WIPP, which has always been a DOE leader in terms of safety, has set the additional goal of trying to become the first DOE site operating with 100 percent clean energy. A team, consisting of representatives from CBFO, WTS, Sandia National Laboratories, Los Alamos National Laboratory, New Mexico State University, Texas Tech, the Carlsbad community and area utilities, have come up with several potential solutions. Members of the team are continuing to look into these solutions.

427

Renewables Portfolio Standard Overview  

DOE Green Energy (OSTI)

A Renewables Portfolio Standard (RPS) is a requirement on electric utilities and other electric suppliers to supply a minimum percentage or amount of their load with eligible sources of renewable energy. The RPS has become increasingly popular because of its benefits and the public benefits of renewable energy. A well-designed state RPS can effectively deliver a renewable energy supply and associated benefits, at a low cost or even with consumer savings. This fact sheet provides an overview of an effective RPS design.

Not Available

2005-02-01T23:59:59.000Z

428

NREL: Learning - Using Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Renewable Energy We know that renewable energy technologies can help contribute to a clean and secure energy future for our nation and the world. But what does it mean to...

429

Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy1354608000000Renewable EnergySome of these resources are LANL-only and will require Remote Access.No Renewable Energy Some of these resources are...

430

Guam- Renewable Energy Portfolio Goal  

Energy.gov (U.S. Department of Energy (DOE))

Guam Bill 166, enacted in March 2008, established a renewable energy portfolio goal of 25% renewable energy by 2035.* Under this law, each utility that sells electricity for consumption on Guam...

431

Renewable Energy andRenewable Energy and Distributed PowerDistributed Power  

E-Print Network (OSTI)

Government Intervention, Use of Renewable Energyof Renewable Energy #12;Brief US History of Electric PowerBrief US HistoryRenewable Energy andRenewable Energy and Distributed PowerDistributed Power GenerationGeneration PHistorical Perspectives DG FundamentalsDG Fundamentals Renewable Energy and DistributedRenewable Energy and Distributed

432

Xcel Energy - Renewable Development Fund Grants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Renewable Development Fund Grants - Renewable Development Fund Grants Xcel Energy - Renewable Development Fund Grants < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Maximum Rebate Varies by RFP details Program Info Start Date 1999 State Minnesota Program Type Utility Grant Program Rebate Amount Varies Provider Xcel Energy '''''Note: Xcel is not currently accepting proposals for this program. The most recent application deadline was April 1, 2013. See the program web site for information regarding future solicitations. '''''

433

Waste as a Renewable Source of Energy  

E-Print Network (OSTI)

Waste as a Renewable Source of Energy Karsten Millrath and N.J. Themelis Columbia University) Overview · Waste-To-Energy · Municipal Solid Waste Management · Status of Renewable · Current and Future renewable resources> Millrath 9 MSW as Renewable Energy Source · Broader definition of renewable energy

Columbia University

434

Energy Conservation Renewable Energy  

E-Print Network (OSTI)

Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

Delgado, Mauricio

435

National Renewable Energy Laboratory 2002 Research Review (Booklet)  

SciTech Connect

America is making a long transition to a future in which conventional, fossil fuel technologies will be displaced by new renewable energy and energy efficiency technologies. This first biannual research review describes NREL's R&D in seven technology areas--biorefineries, transportation, hydrogen, solar electricity, distributed energy, energy-efficient buildings, and low-wind-speed turbines.

Cook, G.; Epstein, K.; Brown, H.

2002-07-01T23:59:59.000Z

436

Renewable Energy in Alaska  

SciTech Connect

This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

Not Available

2013-03-01T23:59:59.000Z

437

Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation  

E-Print Network (OSTI)

Associates, citing NYMEX natural gas bid-offer spreadAnalysis of the Market for Natural Gas Futures. ” The EnergyProfiles of Renewable and Natural Gas Electricity Contracts:

Bolinger, Mark; Wiser, Ryan; Golove, William

2003-01-01T23:59:59.000Z

438

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

batteries and ultracapacitors for electric vehicles. EVS24Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumpublications on electric and hybrid vehicle technology and

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

439

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

Energy Storage in Hybrid- Electric Vehicles: Present Statusmarketing of hybrid-electric vehicles of various types arefor various types of hybrid-electric vehicles Type of hybrid

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

440

Current conflicts in U.S. Electric transmission planning, cost allocation and renewable energy policies: More heat than light?  

Science Conference Proceedings (OSTI)

To surmount obstacles to expanding and upgrading the nation's transmission system that are impeding development of the renewables sector, it is critical that these issues be resolved quickly and on a consistent rather than ad hoc basis. (author)

Bloom, David; Forrester, J. Paul; Klugman, Nadav

2010-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables Portfolio Standard Renewables Portfolio Standard Renewables Portfolio Standard < Back Eligibility Investor-Owned Utility Municipal Utility Retail Supplier Savings Category Other Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info State Connecticut Program Type Renewables Portfolio Standard Provider Connecticut Public Utilities Regulatory Authority Established in 1998 and subsequently revised several times, Connecticut's renewables portfolio standard (RPS) requires each electric supplier and each electric distribution company wholesale supplier to obtain at least 23% of its retail load by using renewable energy by January 1, 2020. The RPS also requires each electric supplier and each electric distribution

442

Selection of power plant elements for future reactor space electric power systems  

DOE Green Energy (OSTI)

Various types of reactor designs, electric power conversion equipment, and reject-heat systems to be used in nuclear reactor power plants for future space missions were studied. The designs included gas-cooled, liquid-cooled, and heat-pipe reactors. For the power converters, passive types such as thermoelectric and thermionic converters and dynamic types such as Brayton, potassium Rankine, and Stirling cycles were considered. For the radiators, heat pipes for transfer and radiating surface, pumped fluid for heat transfer with fins as the radiating surface, and pumped fluid for heat transfer with heat pipes as the radiating surface were considered. After careful consideration of weights, sizes, reliabilities, safety, and development cost and time, a heat-pipe reactor design, thermoelectric converters, and a heat-pipe radiator for an experimental program were selected.

Buden, D.; Bennett, G.A.; Copper, K.

1979-09-01T23:59:59.000Z

443

This report, Scenarios for a Clean Energy Future, was commissioned by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. It was produced by the Interlaboratory Working  

E-Print Network (OSTI)

PREFACE This report, Scenarios for a Clean Energy Future, was commissioned by the U.S. Department to cut U.S. greenhouse gas emissions. In reviewing the study's results, however, it is important of Energy's Office of Energy Efficiency and Renewable Energy. It was produced by the Interlaboratory Working

444

renewables | OpenEI Community  

Open Energy Info (EERE)

(TCDB) advanced vehicles electric generation NREL OpenEI renewables tcdb This new web application collects cost and performance estimates and makes it available to everyone...

445

NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Reveals Links Among Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that "preconditioning" a vehicle- achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term. One of the most significant barriers to widespread deployment of electric vehicles is range anxiety-a driver's uncertainty about the vehicle's ability to reach a destination before fully

446

Renewable Energy Goal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Goal Renewable Energy Goal Renewable Energy Goal < Back Eligibility Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Energy Sources Solar Home Weatherization Wind Program Info State Oklahoma Program Type Renewables Portfolio Standard Provider Oklahoma Corporation Commission In May 2010, Oklahoma established a renewable energy goal for electric utilities operating in the state. The goal calls for 15% of the total installed generation capacity in Oklahoma to be derived from renewable sources by 2015. There are no interim targets, and the goal does not extend past 2015. Eligible renewable energy resources include wind, solar, hydropower, hydrogen, geothermal, biomass, and other renewable energy

447

Renewable Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Portfolio Standard Renewable Portfolio Standard < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Bioenergy Biofuels Alternative Fuel Vehicles Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Heating Water Heating Wind Program Info State Hawaii Program Type Renewables Portfolio Standard Provider Hawaii Public Utilities Commission Under Hawaii's Renewable Portfolio Standard (RPS), each electric utility company that sells electricity for consumption in Hawaii must establish the following percentages of "renewable electrical energy" sales: * 10% of its net electricity sales by December 31, 2010;

448

Renewable Energy Technology Guide - 2012  

Science Conference Proceedings (OSTI)

First published in 2000 as the Renewable Energy Technical Assessment Guide—TAG-RE, the Electric Power Research Institute’s (EPRI’s) annual Renewable Energy Technology Guide provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. These technologies include wind, solar photovoltaic (PV), solar thermal, biomass, municipal solid waste, geothermal, and emerging ocean energy conversion ...

2012-12-20T23:59:59.000Z

449

Renewable Portfolio Standard MARK JACCARD  

E-Print Network (OSTI)

Renewable Portfolio Standard MARK JACCARD Simon Fraser University Vancouver, British Columbia feed-in tariff An offer by government or a utility to purchase electricity from renewables producers at a fixed price, regardless of the producers' costs of production. green (renewables) certificate

450

Renewable Energy Technology Guide: 2010  

Science Conference Proceedings (OSTI)

First published in 2000 as the Renewable Energy Technical Assessment GuideTAG-RE, the annual Electric Power Research Institute (EPRI) Renewable Energy Technology Guide provides a consistent basis for evaluating the economic feasibility of renewable generation technologies, including wind, solar photovoltaic (PV), solar thermal, biomass, geothermal, and emerging ocean energy conversion technologies.

2010-12-31T23:59:59.000Z

451

Purchasing Renewable Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies » Renewable Energy » Purchasing Renewable Power Technologies » Renewable Energy » Purchasing Renewable Power Purchasing Renewable Power October 7, 2013 - 9:43am Addthis Federal agencies can purchase renewable power or renewable energy certificates (RECs) from a utility or other organization to meet Federal renewable energy requirements. Renewable power and RECs are good choices for facilities where on-site projects may be difficult or capital budgets are limited. There are three methods for purchasing renewable power that's not generated on a Federal site: Renewable Energy Certificates: Also known as renewable energy credits, green certificates, green tags, or tradable renewable certificates, RECs represent the environmental attributes of the power produced from renewable energy projects and are sold separately from commodity electricity. RECs

452

Renewable Energy Grant Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Grant Programs Renewable Energy Grant Programs Renewable Energy Grant Programs < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Bioenergy Buying & Making Electricity Solar Heating & Cooling Water Heating Wind Maximum Rebate 2013 RFP Biomass: $500,000 Biogas: $500,000 Geothermal Technologies: $200,000 Solar PV: $100,000 Solar Thermal: $100,000 Wind: $100,000 All technologies: 40% of eligible project costs Program Info Funding Source Focus On Energy Program Start Date 2012 State Wisconsin Program Type State Grant Program Rebate Amount 10-40% of eligible project costs Minimum award of $5,000 '''''Note: This program is no longer accepting applications. See the program web site for information regarding future solicitations. '''''

453

Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables Portfolio Standard Renewables Portfolio Standard Renewables Portfolio Standard < Back Eligibility Investor-Owned Utility Retail Supplier Rural Electric Cooperative Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Wind Solar Home Weatherization Heating & Cooling Heating Water Heating Program Info State New Hampshire Program Type Renewables Portfolio Standard Provider New Hampshire Public Utilities Commission New Hampshire's renewable portfolio standard (RPS), established in May 2007, requires the state's electricity providers -- with the exception of municipal utilities -- to acquire by 2025 renewable energy certificates (RECs) equivalent to 24.8% of retail electricity sold to end-use customers.

454

Abstract-The Chilean electricity regulation introduced in 2008 an obligation to contract 10% of renewable energy,  

E-Print Network (OSTI)

energy in Chile, according to the National Energy Commission. Solar energy is not quantified given.000 Mini Hydro 2.600 Solar - Total 11.600 Table 1. Renewable energy estimated potential (National Energy energy, especially in mini hydro and wind farms, and in some degree of solar energy, especially

Catholic University of Chile (Universidad Católica de Chile)

455

The future impact of the current electricity crisis on Sasol South Africa.  

E-Print Network (OSTI)

??Towards the end of 2007, South Africa started experiencing widespread rolling electricity blackouts as the electricity demand exceeded the supply from energy giant Eskom. The… (more)

Terblanche, Michelle

2008-01-01T23:59:59.000Z

456

Renewable Energy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Renewable Energy Watch as these fourth grade students go from learning about electricity to making their own electricity with their solar-powered...

457

Solar thermal electricity in 1998: An IEA/SolarPACES summary of status and future prospects  

DOE Green Energy (OSTI)

Research and development activities sponsored by countries within the International Energy Agency`s solar thermal working group. SolarPACES, have helped reduce the cost of solar thermal systems to one-fifth that of the early pilot plants. Continued technological improvements are currently being proven in next-generation demonstration plants. These advances, along with cost reductions made possible by scale-up to larger production and construction of a succession of power plants, have made solar thermal systems the lowest-cost solar energy in the world and promise cost-competitiveness with fossil-fuel plants in the future. Solar thermal technologies are appropriate for a wide range of applications, including dispatchable central-station power plants where they can meet peak-load to near-base-load needs of a utility, and distributed, modular power plants for both remote and grid-connected applications. In this paper, the authors present the collective position of the SolarPACES community on solar electricity-generating technology. They discuss the current status of the technology and likely near-term improvements; the needs of target markets; and important technical and financial issues that must be resolved for success in near-term global markets.

Tyner, C.E.; Kolb, G.J. [Sandia National Labs., Albuquerque, NM (United States); Meinecke, W. [Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany); Trieb, F. [Deutsches Zentrum fuer Luft- und Raumfahrt, Stuttgart (Germany)

1998-07-01T23:59:59.000Z

458

Abstract--It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of  

E-Print Network (OSTI)

,000) could be replaced by electrical car by the year 2025 [8]. It is predicted that EVs will make 641 Abstract-- It is expected that a lot of the new light vehicles in the future will be electrical into account. Index Terms-- Electrical vehicle, smart charging, spot electricity price. I. INTRODUCTION HE

Mahat, Pukar

459

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

Feed-in Tariffs and Regulation Concerning Renewable Energytariff policy under its new (2005) national renewable energyTariffs to Promote Renewable Electricity in European Countries. The Energy

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

460

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

Competitiveness in the Renewable Energy Sector: The Case ofand Regulation Concerning Renewable Energy ElectricityIndustrial Policy and Renewable Energy Technology.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Recharging U.S. Energy Policy: Advocating for a National Renewable Portfolio Standard  

E-Print Network (OSTI)

Advocating for a National Renewable Portfolio Standard RobinCongress has yet to pass a renewable portfolio standard (RPS). Renewable portfolio standards require an electricity

Lunt, Robin J.

2007-01-01T23:59:59.000Z

462

Renewables Portfolio Standards: A Factual Introduction to Experience from the United States  

E-Print Network (OSTI)

include the trading of renewable energy certificates.Emerging Markets for Renewable Energy: The Role of StateDesigning Effective Renewable Markets. ” The Electricity

Wiser, R.; Namovicz, C.; Gielecki, M.; Smith, R.

2008-01-01T23:59:59.000Z

463

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

Energy Efficiency and Renewable Energy (Office of Planning,I. Introduction Markets for renewable electricity have grownRisk: The Treatment of Renewable Energy in Western Utility

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

464

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

and Competitiveness in the Renewable Energy Sector: The CaseMechanisms to Incentive Renewable Alternative Energy Sourcesand Regulation Concerning Renewable Energy Electricity

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

465

The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios  

E-Print Network (OSTI)

Impact of a 15-Percent Renewable Portfolio Standard, EnergyAlternatives for Competitive Renewable Energy Zones inU.S. Electric Supply, National Renewable Energy Laboratory.

Nicolosi, Marco

2011-01-01T23:59:59.000Z

466

The potential impact of renewable energy deployment on natural gas prices in New England  

E-Print Network (OSTI)

The Potential Impact of Renewable Energy Deployment onand in New England. Renewable energy (RE) technologies cangeneration with fixed-price renewable electricity supply. In

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

467

Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)  

DOE Green Energy (OSTI)

In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

Not Available

2010-03-01T23:59:59.000Z

468

Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

regulations, may make renewable generation less economic than when renewable energy is presumed to compete with natural gas;natural gas and/or wholesale electric prices that have not been modeled in many of the studies; The potential for future carbon regulations,

Chen, Cliff

2009-01-01T23:59:59.000Z

469

Electricity 101 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources » Electricity 101 Resources » Electricity 101 Electricity 101 FREQUENTLY ASKED QUESTIONS: Why do other countries use different shaped plugs? Why do outlets have three holes? Why do we have AC electricity? Can we harness lightning as an energy source? Can we have wireless transmission of electricity? SYSTEM: What is electricity? Where does electricity come from? What is the "grid"? How much electricity does a typical household use? How did the electric system evolve? What does the future look like? PEOPLE: Who owns the electric system? Who runs the grid? Who uses electricity? Where can I find out more about potential careers? How can I improve my energy use? POLICY: How is electricity regulated? Where can I find out about State incentives for renewables? What is a national corridor?

470

Waste as a Renewable Source of Energy  

E-Print Network (OSTI)

Waste as a Renewable Source of Energy Dr. Karsten Millrath Columbia University / Waste-To-Energy Waste Management · Status of Renewable · Current and Future Practices · The Waste-To-Energy Research management practices renewable resources> Millrath 10 #12;MSW as Renewable Energy Source · Broader

Columbia University

471

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

make the case for renewable energy based on cost alone. OfThe use of renewable energy can avoid these costs and risks.measures, the cost of renewable energy supply has declined,

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

472

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

requirements might be. non-renewable energy. Our analysis ofpercent of the DWR's non-renewable energy is under fixed-45% of the DWR's non-renewable energy under contract)

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

473

Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 167 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the

474

Renewable Fuels Module This  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Module Fuels Module This page inTenTionally lefT blank 175 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve

475

Green Power Network: Renewable Energy Certificates (RECs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Retail Products Table of Retail Products Table of Commercial Certificate Marketers List of REC Marketers REC Prices National Renewable Energy Certificate Tracking Systems Map Carbon Offsets State Policies Renewable Energy Certificates (RECs) Renewable energy certificates (RECs), also known as renewable energy credits, green certificates, green tags, or tradable renewable certificates, represent the environmental attributes of the power produced from renewable energy projects and are sold separate from commodity electricity. Customers can buy green certificates whether or not they have access to green power through their local utility or a competitive electricity marketer. And they can purchase green certificates without having to switch electricity suppliers. Table of Retail Products

476

Renewable Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Portfolio Standard Renewable Portfolio Standard Renewable Portfolio Standard < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Home Weatherization Heating & Cooling Water Heating Wind Program Info State Wisconsin Program Type Renewables Portfolio Standard Provider Public Service Commission of Wisconsin In 1998 Wisconsin enacted Act 204, requiring regulated utilities in eastern Wisconsin to install to an aggregate total of 50 MW of new renewable-based electric capacity by December 31, 2000. In October 1999 Wisconsin enacted Act 9, becoming the first state to enact a renewable portfolio standard

477

OECD/IEA 2013 World Renewable Energy  

E-Print Network (OSTI)

© OECD/IEA 2013 World Renewable Energy Outlook 2030-2050 Paolo Frankl Head, Renewable Energy'humanité CNRS ­ Ademe ­ Unesco, Paris, 3 octobre 2013 #12;© OECD/IEA 2013 Current share of renewables% Electricity Transport Industry Buildings Other sectors Non-OECD solid biomass Bioenergy Other renewables Non

Canet, Léonie

478

2012 Renewable Energy Data Book (Book)  

DOE Green Energy (OSTI)

This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

Gelman, R.

2013-10-01T23:59:59.000Z

479

2011 Renewable Energy Data Book (Book)  

DOE Green Energy (OSTI)

This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

Gelman, R.

2012-10-01T23:59:59.000Z

480

2010 Renewable Energy Data Book (Book)  

DOE Green Energy (OSTI)

This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

Gelman, R.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

2009 Renewable Energy Data Book, August 2010  

DOE Green Energy (OSTI)

This Renewable Energy Data Book for 2009 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

Not Available

2010-08-01T23:59:59.000Z

482

Incorporating operational flexibility into electric generation planning : impacts and methods for system design and policy analysis  

E-Print Network (OSTI)

This dissertation demonstrates how flexibility in hourly electricity operations can impact long-term planning and analysis for future power systems, particularly those with substantial variable renewables (e.g., wind) or ...

Palmintier, Bryan S. (Bryan Stephen)

2013-01-01T23:59:59.000Z

483

Renewable RFI (Generic)  

Open Energy Info (EERE)

for Information for Information Renewable Energy Generation/Production Shreveport Airport Authority SHV AND DTN Shreveport, LA The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. The Authority is particularly interested in solar photovoltaic generation but other technically and economically feasible technologies may also be included. The Airport Authority will provide airport land, at both Shreveport Regional (SHV) and Shreveport Downtown Airports (DTN), for a renewable energy generation system, or systems, to be developed, constructed, owned, operated and maintained by a private entity under a lease agreement for fair market value of the land (currently appraised at

484

Most states have Renewable Portfolio Standards | U.S. Energy ...  

U.S. Energy Information Administration (EIA)

tags: AEO2012 (Annual Energy Outlook 2012) biomass California electricity geothermal policy renewable RPS (Renewable Portfolio Standards) solar states wind wood

485

Response to several FOIA requests - Renewable Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOIA requests - Renewable Energy Response to several FOIA requests - Renewable Energy, Electricity Price and Supply Pattern, nepdg50015250.pdf Response to several FOIA...

486

Renewable portfolio standard: an analysis of design and implementation issues.  

E-Print Network (OSTI)

??The Renewable Portfolio Standard (RPS) is a policy tool that requires a certain percentage of renewable energy to be included in the portfolio of electricity… (more)

Parvanyan, Tigran

2005-01-01T23:59:59.000Z

487

Tax Credits for Renewable Energy Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credits for Renewable Energy Facilities Tax Credits for Renewable Energy Facilities Eligibility Commercial Savings For Bioenergy Water Buying & Making Electricity Solar...

488

Smartgrids and distributed generation: the future electricity networks of the European union  

Science Conference Proceedings (OSTI)

A new concept for the European electrical system is emerging where a portion of the electricity generated by large conventional plants will be displaced by a great number of small generators disseminated throughout the territory. In this scenario, each ... Keywords: distributed generation, electrical distribution systems, energy and environment

Francesco Muzi

2008-02-01T23:59:59.000Z

489

Review of International Experience with Renewable Energy Obligation Support Mechanisms  

E-Print Network (OSTI)

surcharge on retail electricity rates, totaling over $300impact on retail electricity rates. The result has been thatlower VAT rates for renewable electricity, and exemption of

Wiser, R.

2005-01-01T23:59:59.000Z

490

Review of International Experience with Renewable Energy Obligation Support Mechanisms  

E-Print Network (OSTI)

energikällor‘ [‘Trade with electricity certificates - a newtrade ; trade of TRECs or renewable electricity betweento small electricity consumers 26 . Trade in certificates is

Wiser, R.

2005-01-01T23:59:59.000Z

491

Federal Energy Management Program: Purchasing Renewable Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Purchasing Renewable Power Purchasing Renewable Power Federal agencies can purchase renewable power or renewable energy certificates (RECs) from a utility or other organization to meet Federal renewable energy requirements. Renewable power and RECs are good choices for facilities where on-site projects may be difficult or capital budgets are limited. There are three methods for purchasing renewable power that's not generated on a Federal site: Renewable Energy Certificates: Also known as renewable energy credits, green certificates, green tags, or tradable renewable certificates, RECs represent the environmental attributes of the power produced from renewable energy projects and are sold separately from commodity electricity. RECs are an attractive option for Federal facilities located where renewable power is not readily available.

492

Renewable Energy  

U.S. Energy Information Administration (EIA)

Renewable energy sources including biomass, hydropower, geothermal, wind, and solar provide 8% of the energy used in the United States.

493

Intelligent decision-making system with green pervasive computing for renewable energy business in electricity markets on smart grid  

Science Conference Proceedings (OSTI)

This paper is about the intelligent decision-making system for the smart grid based electricity market which requires distributed decision making on the competitive environments composed of many players and components. It is very important to consider ...

Dong-Joo Kang; Jong Hyuk Park; Sang-Soo Yeo

2009-02-01T23:59:59.000Z

494

Hydrogen: Fueling the Future  

DOE Green Energy (OSTI)

As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen storage will be highlighted in this seminar.

Leisch, Jennifer

2007-02-27T23:59:59.000Z

495

Current and future developments of batteries for electric cars - an analysis.  

E-Print Network (OSTI)

??To make battery electric vehicles (BEVs) energetically, environmentally and economically competitive to internal combustion engine vehicles (ICEVs), batteries play an important role. In this study,… (more)

Gondelach, S.J.

2010-01-01T23:59:59.000Z

496

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

Capacitors as Energy Storage in Hybrid- Electric Vehicles:uncertainty regarding the energy storage technologies.Whether a particular energy storage technology is suitable

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

497

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationssupervises testing in the Hybrid Vehicle Propulsion Systems

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

498

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

499

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard  

Gasoline and Diesel Fuel Update (EIA)

3 3 ERRATA Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard July 2001 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Contacts This report was prepared by the Office of Integrated Analysis and Forecasting, Energy Information Adminis- tration. General questions concerning the report may be directed to Mary J. Hutzler (202/586-2222, mhutzler @eia.doe.gov), Director of the Office of Integrated Analysis and Forecasting, Scott B. Sitzer (202/586-2308,

500

TEAM Renewable Energy Projects at NREL  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity from renewable sources on a Federal site, the project will exceed the Energy Policy Act (EPACT)TEAM goal of using renewable energy to meet 7.5% of the site's...