Powered by Deep Web Technologies
Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Renewable Energy Consumption and Electricity Preliminary ...  

U.S. Energy Information Administration (EIA)

Renewable Energy Consumption and Electricity Preliminary Statistics 2010 June 2011 ... and Job Creation Act of 2010 (H.R. 4853) was signed in December

2

Trends in Renewable Energy Consumption and Electricity  

Reports and Publications (EIA)

Presents a summary of the nations renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and State. The report covers the period from 2006 through 2010.

2012-12-11T23:59:59.000Z

3

Annual Renewable Electricity Consumption by Country (2005 - 2009...  

Open Energy Info (EERE)

Renewable Electricity Consumption by Country (2005 - 2009) Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as...

4

Renewable Energy Consumption for Electricity Generation by Energy Use  

Open Energy Info (EERE)

Electricity Generation by Energy Use Electricity Generation by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by energy source (e.g. biomass, geothermal, etc.) This data was compiled and published by the Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords biomass Commercial Electric Power Electricity Generation geothermal Industrial PV Renewable Energy Consumption solar wind Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Elec_.Gen_EIA.Aug_.2010.xls (xls, 19.5 KiB) Quality Metrics Level of Review Some Review

5

Renewable Energy Trends in Consumption and Electricity  

U.S. Energy Information Administration (EIA)

ireds112 _fnt1 _fnt2 _fnt3 _fntref1 _fntref2 _fntref3 Total Renewable Total Biomass Waste Landfill Gas Geothermal Hydroelectric Conventional Solar Thermal/PV

6

Table 10.2c Renewable Energy Consumption: Electric Power Sector ...  

U.S. Energy Information Administration (EIA)

Table 10.2c Renewable Energy Consumption: Electric Power Sector, 1949-2011 ... Through 2000, also includes non-renewable waste (municipal solid waste from

7

Renewable energy for domestic electricity production and prediction of short-time electric consumption  

Science Conference Proceedings (OSTI)

Modern interest in renewable energy development is linked to concerns about exhaustion of fossil fuels and environmental, social and political risks of extensive use of fossil fuels and nuclear energy. It is a form of energy development with a focus ... Keywords: Kohonen Self-Organizing Maps, Photovoltaic Solar Cells, Short-Time Electric Consumption, Time Series, Windmills

Stphane Grieu; Frdrik Thiery; Adama Traor; Monique Polit

2007-06-01T23:59:59.000Z

8

Renewable Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

9

Table 10.2c Renewable Energy Consumption: Electric Power Sector...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption: Electric Power Sector, 1949-2011" " (Billion Btu)" "Year",,,"Geothermal 2",,"SolarPV 3",,"Wind 4",,"Biomass",,,,,,"Total" ,"Hydroelectric" ,"Power...

10

renewable electricity | OpenEI  

Open Energy Info (EERE)

electricity electricity Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

11

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

12

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

13

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

14

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

15

Table 10.2c Renewable Energy Consumption: Electric Power Sector ...  

U.S. Energy Information Administration (EIA)

3 Solar thermal and photovoltaic (PV) electricity net generation (converted to Btu using the fossil-fuels heat rate-see Table A6). Notes: - The electric power sector ...

16

Electricity Consumption Electricity Consumption EIA Electricity Consumption Estimates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumption Consumption Electricity Consumption EIA Electricity Consumption Estimates (million kWh) National Petroleum Council Assumption: The definition of electricity con- sumption and sales used in the NPC 1999 study is the equivalent ofwhat EIA calls "sales by utilities" plus "retail wheeling by power marketers." This A nn u al Gro wth total could also be called "sales through the distribution grid," 2o 99 99 to Sales by Utilities -012% #N/A Two other categories of electricity consumption tracked by EIA cover on site Retail Wheeling Sales by generation for host use. The first, "nonutility onsite direct use," covers the Power Marketen 212.25% #N/A traditional generation/cogeneration facilities owned by industrial or large All Sales Through Distribution

17

EIA Renewable Energy- The Role of Renewable Energy Consumption in ...  

U.S. Energy Information Administration (EIA)

Pie graph and bar graph showing the percentage of renewable energy consumption in the Nation's overall energy supply

18

How much of world energy consumption and electricity generation is ...  

U.S. Energy Information Administration (EIA)

How much of world energy consumption and electricity generation is from renewable energy? EIA estimates that about 10% of world marketed energy consumption is from ...

19

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

Mai, T.

2012-08-01T23:59:59.000Z

20

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

Mai, T.

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

Hand, M.; Mai, T.

2012-08-01T23:59:59.000Z

22

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

Hand, M.

2012-10-01T23:59:59.000Z

23

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

Hand, M. M.

2012-08-01T23:59:59.000Z

24

Guide to Purchasing Green Power: Renewable Electricity, Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates and On-Site Renewable Generation Title Guide to Purchasing Green Power: Renewable Electricity,...

25

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

Hand, M. M.

2012-08-01T23:59:59.000Z

26

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

DeMeo, E.

2012-08-01T23:59:59.000Z

27

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

Mai, T.

2012-08-01T23:59:59.000Z

28

EERE: Renewable Electricity Generation - Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy Search Search Search Help | A-Z Subject Index EERE Geothermal Renewable Electricity Generation EERE plays a key role in advancing America's "all...

29

Renewable Electricity Generation (Fact Sheet)  

DOE Green Energy (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

Not Available

2012-09-01T23:59:59.000Z

30

Renewable Energy Consumption for Nonelectric Use by Energy Use...  

Open Energy Info (EERE)

Renewable Energy Consumption for Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 This dataset provides annual renewable energy consumption (in quadrillion Btu)...

31

Historical Renewable Energy Consumption by Energy Use Sector...  

Open Energy Info (EERE)

Historical Renewable Energy Consumption by Energy Use Sector and Energy Source, 1989-2008 Provides annual renewable energy consumption by source and end use between 1989 and 2008....

32

OpenEI - Renewable Energy Consumption  

Open Energy Info (EERE)

Jul 2011 18:05:28 +0000 Meredith1219 758 at http:en.openei.orgdatasets EIA Data: 2009 United States Renewable Energy Consumption by Sector and Source http:en.openei.org...

33

How much of world energy consumption and electricity ...  

U.S. Energy Information Administration (EIA)

How much of world energy consumption and electricity generation is from renewable energy? EIA estimates that about 10% of world marketed energy ...

34

Renewable energy consumption and economic efficiency: Evidence from European countries  

Science Conference Proceedings (OSTI)

This paper examines the relationship between renewable energy consumption and economic efficiency. For this reason

2013-01-01T23:59:59.000Z

35

Electrical appliance energy consumption control methods and ...  

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy ...

36

EERE: Renewable Electricity Generation - Solar  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Renewable Electricity Generation EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to...

37

Consumer Behaviour in Renewable Electricity.  

E-Print Network (OSTI)

?? A higher percentage of energy from renewable resources is an important goal on many sustainable development agendas. In liberalized electricity markets, an increase in (more)

Hanimann, Raphael

2013-01-01T23:59:59.000Z

38

State Renewable Electricity Profiles 2010  

U.S. Energy Information Administration (EIA)

State Renewable Electricity Profiles 2010. March 2012 Independent Statistics & Analysis . www.eia.gov . U.S. Department of Energy . Washington, DC 20585

39

Renewable Electricity Purchases: History and Recent Developments  

Reports and Publications (EIA)

This article presents an analysis of prices of renewable-based electricity that utilities have paid to nonutilities, the primary generators of renewable electricity.

Information Center

1999-02-01T23:59:59.000Z

40

Mohave Electric Cooperative - Renewable Energy Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Mohave Electric Cooperative - Renewable Energy Incentive Program Mohave Electric Cooperative - Renewable Energy Incentive Program...

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Renewable Electricity Generation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Generation Renewable Electricity Generation Geothermal Read more Solar Read more Water Read more Wind Read more Our nation has abundant solar, water, wind,...

42

Renewable Electricity Generation  

Energy.gov (U.S. Department of Energy (DOE))

Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems....

43

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes the details of purchasing green power. Discussion covers topics like renewable electricity, renewable energy certificates, and on-site renewable generation.

44

OpenEI - Electricity Consumption  

Open Energy Info (EERE)

Annual Electricity Annual Electricity Consumption (1980 - 2009) http://en.openei.org/datasets/node/877 Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA). License

Type of License:  Other (please specify below)
Source of data

45

Electricity Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA Electricity Electricity Consumption world Data text/csv icon total_electricity_net_consumption_1980_2009billion_kwh.csv (csv, 50.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

46

Table 10.1 Renewable Energy Production and Consumption by ...  

U.S. Energy Information Administration (EIA)

1 Production equals consumption for all renewable energy sources except biofuels. 9 Wood and wood-derived fuels. 2 Total biomass inputs to the ...

47

Historical Renewable Energy Consumption by Energy Use Sector and Energy  

Open Energy Info (EERE)

Historical Renewable Energy Consumption by Energy Use Sector and Energy Historical Renewable Energy Consumption by Energy Use Sector and Energy Source, 1989-2008 Dataset Summary Description Provides annual renewable energy consumption by source and end use between 1989 and 2008. This data was published and compiled by the Energy Information Administration. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords annual energy consumption consumption EIA renewable energy Data application/vnd.ms-excel icon historical_renewable_energy_consumption_by_sector_and_energy_source_1989-2008.xls (xls, 41 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 1989-2008 License License Creative Commons CCZero Comment Rate this dataset

48

How much U.S. energy consumption and electricity generation comes ...  

U.S. Energy Information Administration (EIA)

In 2012, renewable sources of energy accounted for about 9% of total U.S. energy consumption and 12% of electricity generation. 1. Learn more:

49

Guide to Purchasing Green Power: Renewable Electricity, Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

generated from a subset of renewable resources, including solar, wind, geothermal, biogas, biomass, and low-impact hydroelectric sources. These electricity sources are derived...

50

Renewable and Efficient Electric Power Systems  

E-Print Network (OSTI)

.8.1 Ideal Transformers 37 1.8.2 Magnetization Losses 40 Problems 44 2 Fundamentals of Electric Power 51 2Renewable and Efficient Electric Power Systems Gilbert M. Masters Stanford University A JOHN WILEY & SONS, INC., PUBLICATION #12;#12;Renewable and Efficient Electric Power Systems #12;#12;Renewable

Kammen, Daniel M.

51

NREL: Learning - Renewable Energy for Electricity Providers  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy for Electricity Providers Photo of wind turbines. The Ponnequin Wind Farm in Colorado generates electricity for 6,000 customers. You'll find many renewable energy...

52

Tribal Renewable Energy Foundational Course: Electricity Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar...

53

AEO2011: Renewable Energy Consumption by Sector and Source | OpenEI  

Open Energy Info (EERE)

Consumption by Sector and Source Consumption by Sector and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed

54

Figure 10.1 Renewable Energy Consumption (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Figure 10.1 Renewable Energy Consumption (Quadrillion Btu) Total and Major Sources, 19492012 By Source, 2012 By Sector, 2012 Compared With Other Resources, 19492012

55

Renewable Electricity Generation (Fact Sheet), Office of Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet),...

56

Renewable Electricity Generation in the United States  

E-Print Network (OSTI)

This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

Schmalensee, Richard

57

Renewable Electricity Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Standard Renewable Electricity Standard Renewable Electricity Standard < Back Eligibility Investor-Owned Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Missouri Program Type Renewables Portfolio Standard Provider Missouri Public Service Commission In November 2008, voters in Missouri enacted Proposition C, a ballot initiative that repealed the state's existing voluntary renewable energy and energy efficiency objective and replaced it with an expanded, mandatory renewable electricity standard of 15% by 2021. The standard also contains a solar electricity carve-out of 2% of each interim portfolio requirement meaning that by 2021, 0.3% of retail electricity sales must be derived from

58

Energy Consumption and Renewable Energy Development Potential on Indian Lands  

Reports and Publications (EIA)

Includes information on the electricity use and needs of Indian households and tribes, the comparative electricity rates that Indian households are paying, and the potential for renewable resources development of Indian lands.

Fred Mayes

2000-04-01T23:59:59.000Z

59

Table 6a. Total Electricity Consumption per Effective Occupied...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

60

Electricity from Renewables: Status, Prospects, and Impediments  

E-Print Network (OSTI)

Electricity from Renewables: Status, Prospects, and Impediments America's Energy Future Study Panel on Electricity from Renewables K. John Holmes, National Research Council, Study Director (jholmes@nas.edu) #12, Carnegie Mellon University ·James J. Markowsky***, American Electric Power (Ret.) ·Richard A. Meserve

Kammen, Daniel M.

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Renewable Electricity Futures Study: Executive Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Executive Summary Executive Summary NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report)

62

Renewable Electricity Purchases: History and Recent Developments  

U.S. Energy Information Administration (EIA)

Energy Information Administration/ Renewable Energy Annual 1998 Issues and Trends 1 1 For a broader understanding of electric power industry restructuring, see Energy ...

63

Renewable Electricity Facility Tax Credit (Personal) (Kansas...  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Renewable Electricity Facility Tax Credit (Personal) (Kansas) This is the approved revision of this page,...

64

Renewable Electricity Facility Tax Credit (Corporate) (Kansas...  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Renewable Electricity Facility Tax Credit (Corporate) (Kansas) This is the approved revision of this...

65

Trends in Utility Scale Renewable Electricity  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Trends in Utility Scale Renewable Electricity for ReTech 2012

66

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents (OSTI)

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2008-09-02T23:59:59.000Z

67

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents (OSTI)

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2006-03-07T23:59:59.000Z

68

Renewable Electricity Futures: Exploration of Up to 80% Renewable Electricity Penetration in the United States (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M.; DeMeo, E.; Hostick, D.; Mai, T.; Schlosser, C. A.

2013-04-01T23:59:59.000Z

69

Renewable Electricity Futures Study. Executive Summary  

Science Conference Proceedings (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

2012-12-01T23:59:59.000Z

70

Annual Electricity Consumption (1980 - 2009) Total annual electricity  

Open Energy Info (EERE)

Consumption (1980 - 2009) Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA).
...

71

Renewable Electricity Generation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Generation Renewable Electricity Generation Renewable Electricity Generation Geothermal Read more Solar Read more Water Read more Wind Read more Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE) leads a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost competitive with traditional sources of energy. Working with our national laboratories and through these partnerships, we are catalyzing the transformation of the nation's energy system and building on a tradition of U.S. leadership in science and

72

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Generation Renewable Electricity Generation and Storage Technologies Volume 2 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable

73

Renewable Energy Consumption by Energy Use Sector and Energy Source, 2004 -  

Open Energy Info (EERE)

by Energy Use Sector and Energy Source, 2004 - by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

74

California Energy Commission - Electricity Consumption by Utility  

Open Energy Info (EERE)

Utility (1990-2009) Electricity consumption by Utility company for Commercial, Residential, Ag & Water Pump, Streetlight, Industry, Mining & Construction and Total...

75

California Energy Commission - Electricity Consumption by Planning...  

Open Energy Info (EERE)

Planning Area (1990-2009) Electricity consumption data from the California Energy Commission by planning area for Commercial, Residential, Ag & Water Pump, Streetlight,...

76

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate PV: $8,000 Solar Water Heaters: $1,000 Solar Water Wells: $750 Wind-electric: $6,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount PV: $2.00/watt Solar Water Heaters: $1,000/unit Solar Water Wells: $750/unit Wind-electric: $1.00/watt Provider Guadalupe Valley Electric Cooperative '''''The $1.5 million budget cap for PV rebates in 2013 has been met. No additional applications for PV rebates will be accepted. '''''

77

2014 Electricity Forms Reclearance: Renewable Electricity  

U.S. Energy Information Administration (EIA)

... CSP, Geothermal Could also be collected for non-renewable generators Unclear how to handle arrays/wind farms with multiple manufacturers ...

78

Renewable Power Options for Electricity Generation on Kaua'i...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

79

Farmers Electric Cooperative (Kalona) - Renewable Energy Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Renewable Energy Rebates Farmers Electric Cooperative (Kalona) - Renewable Energy Rebates Farmers Electric Cooperative (Kalona) - Renewable Energy Rebates < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Wind Maximum Rebate $5,000 per site $20,000 per total system per year Rebate is capped at wattage that meets 25% of customer's annual kWhr use Program Info State Iowa Program Type Utility Rebate Program Rebate Amount $1,000 per peak kW Provider Farmers Electric Cooperative Farmer's Electric Cooperative (Kalona) offers rebates for the installation of small wind and solar photovoltaic (PV) systems to its member customers. The amount of the rebate is set at $1,000 per peak kilowatt (kW) for both technologies, with a maximum rebate of $5,000. It is only available for

80

The renewable electric plant information system  

DOE Green Energy (OSTI)

This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

Sinclair, K.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NREL: Energy Analysis - Renewable Electricity Futures Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Futures Study Renewable Electricity Futures Study RE Futures Visualizations These visualizations are based on RE Futures modeling and represent the transformation of the U.S. electric system to a high renewable system from 2010 to 2050 and the hourly operation and transmission flow of that system in 2050. Transformation of the Electric Sector (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display the transformation of the electric sector in 2010 through 2050 Hourly Operation in 2050 (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display hourly operation in 2010 through 2050 Power Flow in 2050 (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display power flow in 2010 through 2050

82

Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures  

DOE Green Energy (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

2012-06-01T23:59:59.000Z

83

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

DOE Green Energy (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

2012-06-01T23:59:59.000Z

84

Renewable Energy Consumption for Nonelectric Use by Energy Use Sector and  

Open Energy Info (EERE)

Nonelectric Use by Energy Use Sector and Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description This dataset provides annual renewable energy consumption (in quadrillion Btu) for nonelectric use in the United States by energy use sector and energy source between 2004 and 2008. The data was compiled and published by EIA; the spreadsheet provides more details about specific sources for data used in the analysis. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Nonelectric Renewable Energy Consumption Residential transportation Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Non-Elec.Gen_EIA.Aug_.2010.xls (xls, 27.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

85

New Electric Grid Technologies for Renewable Integration  

E-Print Network (OSTI)

and changing electric loads that are becoming part of the "orchestra" · Dealing with economic and public policy & Intelligent Agent (temporal power flow control) · Solar and Wind Forecasting Tools · Generator and LoadNew Electric Grid Technologies for Renewable Integration - The Need for Being Smarter - Presented

Islam, M. Saif

86

Renewable electricity, Feed-in-Tariff, Renewable Obligation  

E-Print Network (OSTI)

Keywords JEL Classification The aim of this paper is to look at the UKs renewable energy policy in the context of its overall decarbonisation and energy policies. This will allow us to explore the precise nature of the failure of UK renewables policy and to suggest policy changes which might be appropriate in light of the UKs institutional and resource endowments. Our focus is on the electricity sector both in terms of renewable generation and to a lesser extent the facilitating role of electricity distribution and transmission networks. We will suggest that the precise nature of the failure of UK policy is rather more to do with societal preferences and the available mechanisms for encouraging social acceptability than it is to do with financial support mechanisms. Radical changes to current policy are required, but they must be careful to be institutionally appropriate to the UK. What we suggest is that current policies exhibit an unnecessarily low benefit to cost ratio, and that new policies for renewable deployment must pay close attention to cost effectiveness.

Michael G. Pollitt; Michael G. Pollitt

2010-01-01T23:59:59.000Z

87

Empowering Variable Renewables: Options for Flexible Electricity Systems |  

Open Energy Info (EERE)

Empowering Variable Renewables: Options for Flexible Electricity Systems Empowering Variable Renewables: Options for Flexible Electricity Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Empowering Variable Renewables: Options for Flexible Electricity Systems Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Renewable Energy Topics: Market analysis, Technology characterizations Resource Type: Publications Website: www.iea.org/g8/2008/Empowering_Variable_Renewables.pdf Empowering Variable Renewables: Options for Flexible Electricity Systems Screenshot References: Empowering Variable Renewables: Options for Flexible Electricity Systems[1] Summary "Increasing the share of renewables in energy portfolios is a key tool in the drive to reduce anthropogenic carbon dioxide emissions, as well as

88

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Northwest Power Pool Area Northwest Power Pool Area Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 118, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. This dataset contains data for the northwest power pool area of the U.S. Western Electricity Coordinating Council (WECC). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Northwest Power Pool Area Renewable Energy Generation WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Northwest Power Pool Area - Reference (xls, 119.3 KiB)

89

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Southwest Southwest Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 116, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Southwest Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Southwest (xls, 119.1 KiB) Quality Metrics Level of Review Peer Reviewed

90

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

California California Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 117, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO California EIA Renewable Energy Generation Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / California (xls, 119.2 KiB) Quality Metrics Level of Review Peer Reviewed

91

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purchasing Green Power Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation DOE/EE-0307 This guide can be downloaded from: www1.eere.energy.gov/femp/technologies/renewable_purchasingpower.html www.epa.gov/greenpower/ www.wri.org/publications www.resource-solutions.org/publications.php Office of Air (6202J) EPA430-K-04-015 www.epa.gov/greenpower March 2010 ISBN: 1-56973-577-8 Guide to Purchasing Green Power i Table of Contents Summary ........................................................................................................................................................1 Chapter 1: Introduction ....................................................................................................................................2

92

Power Systems Engineering Research Center Renewable Electricity Futures  

E-Print Network (OSTI)

Power Systems Engineering Research Center Renewable Electricity Futures Trieu Mai Electricity of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity

Van Veen, Barry D.

93

California Energy Commission - Electricity Consumption by County  

Open Energy Info (EERE)

County (2006-2009) Electricity consumption data from the California Energy Commission sorted by County for Residential and Non-residential from 2006 to 2009.


...

94

Visualization of United States Renewable Consumption | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Visualization of United States Renewable Consumption Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Visualization of United States Renewable Consumption Agency/Company /Organization: Energy Information Administration Sector: Energy Resource Type: Software/modeling tools User Interface: Website Website: en.openei.org/wiki/Visualization_of_United_States_Renewable_Consumptio Country: United States Cost: Free OpenEI Keyword(s): Community Generated UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Renewable Electricity Futures Study. Volume 1: Exploration of...  

NLE Websites -- All DOE Office Websites (Extended Search)

of High-Penetration Renewable Electricity Futures D-7 Jay Caspary Southwest Power Pool Lynn Coles National Renewable Energy Laboratory Brendan Kirby Consult Kirby Trieu Mai...

96

Renewable Resources in the U.S. Electricity Supply  

Reports and Publications (EIA)

Provides an overview of current and long term forecasted uses of renewable resources in the Nation's electricity marketplace, the largest domestic application of renewable resources today.

Information Center

1993-02-01T23:59:59.000Z

97

Renewable Resource Electricity in the Changing Regulatory Environment  

Reports and Publications (EIA)

This article surveys in the development of renewable resource electricity recent actions and proposals and summarizes their implications for the renewables industry.

Information Center

1995-12-01T23:59:59.000Z

98

Electricity generation from non-hydro renewable sources varies ...  

U.S. Energy Information Administration (EIA)

May 2, 2012 Electricity generation from non-hydro renewable sources varies by state. Wind accounted for most non-hydro renewable generation in 2011, but sources of ...

99

NREL: Education Programs - NREL to Showcase Renewable Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

two mobile renewable electricity generation systems and three advanced vehicles-a Toyota Highlander fuel cell electric vehicle, a plug-in Toyota Prius hybrid electric vehicle,...

100

Renewable Energy Trends in Consumption and Electricity  

U.S. Energy Information Administration (EIA)

Solar Thermal/PV 575,155 550,294 507,706 611,793 ... Form EIA-923, "Power Plant Operations Report," and predecessor forms: Form EIA-906, "Power Plant Report ...

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Renewable Energy Consumption and Electricity Preliminary 2007 ...  

U.S. Energy Information Administration (EIA)

Nevada generated from central station solar power for the first time in 2007 with the opening of the 64 MW Nevada Solar One plant in Boulder City.

102

Renewable Energy Trends in Consumption and Electricity  

U.S. Energy Information Administration (EIA)

ireds113 _fnt1 _fnt2 _fnt3 _fntref1 _fntref2 _fntref3 Total New England -Middle Atlantic East North Central

103

Industrial Biomass Energy Consumption and Electricity Net Generation...  

Open Energy Info (EERE)

Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Biomass energy consumption and electricity net generation in the industrial...

104

Electricity Generation and Consumption by State (2008 ) Provides...  

Open Energy Info (EERE)

Electricity Generation and Consumption by State (2008 ) Provides total annual electricity consumption by sector (residential, commercial and industrial) for all states in 2008,...

105

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Rockies Rockies Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 119, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. The dataset contains data for the Rockies region of WECC. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Rockies WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Rockies- Reference Case (xls, 119 KiB)

106

State Policies Provide Critical Support for Renewable Electricity  

E-Print Network (OSTI)

it can compete against other renewable resource options.Critical Support for Renewable Electricity Galen Barbose,July 15, 2008 Growth in renewable energy in the U.S. over

Barbose, Galen

2009-01-01T23:59:59.000Z

107

Environmental effects of interstate power trading on electricity consumption mixes  

SciTech Connect

Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. The authors create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these 'consumption mixes' can provide a more accurate assessment of electricity use in life-cycle analyses. It is concluded that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy - such as resource extraction and material processing sectors - are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses. 16 refs., 7 figs., 2 tabs.

Joe Marriott; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Department of Civil and Environmental Engineering

2005-11-15T23:59:59.000Z

108

THE IMPACTS OF RENEWABLE ENERGY POLICIES ON RENEWABLE ENERGY SOURCES FOR ELECTRICITY GENERATING CAPACITY .  

E-Print Network (OSTI)

??Electricity generation from non-hydro renewable sources has increased rapidly in the last decade. For example, Renewable Energy Sources for Electricity (RES-E) generating capacity in the (more)

[No author

2011-01-01T23:59:59.000Z

109

The Easy Way to Use Renewables: Buy Clean Electricity | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Easy Way to Use Renewables: Buy Clean Electricity The Easy Way to Use Renewables: Buy Clean Electricity November 17, 2009 - 8:45pm Addthis John Lippert Clean air means a lot to...

110

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

111

Table 2a. Electricity Consumption and Electricity Intensities, per Square  

U.S. Energy Information Administration (EIA) Indexed Site

assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Commercial Buildings Home > Sq Ft Tables > Table 2a. Electricity Consumption per Sq Ft Table 2a. Electricity Consumption and Electricity Intensities, per Square Foot, Specific to Occupied and Vacant Floorspace, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption (trillion Btu) Electricity Intensities (thousand Btu) In Total Floor space In Occupied Floor space In Vacant Floor space Per Square Foot Per Occupied Square Foot Per Vacant Square Foot All Buildings 4,590 2,600 2,563 37 39 42 8 Building Floorspace (Square Feet) 1,001 to 5,000 2,532 334 331 3 48 51 6 5,001 to 10,000 946 250 247 3 36 38 6 10,001 to 25,000

112

Electricity Net Generation From Renewable Energy by Energy Use...  

Open Energy Info (EERE)

Electricity Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Provides annual net electricity generation (thousand kilowatt-hours) from...

113

Table 10.1 Renewable Energy Production and Consumption by Source ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review September 2013 137 Table 10.1 Renewable Energy Production and Consumption by Source

114

Electrical energy consumption control apparatuses and electrical energy consumption control methods  

DOE Patents (OSTI)

Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

Hammerstrom, Donald J.

2012-09-04T23:59:59.000Z

115

202-328-5000 www.rff.orgDesigning Renewable Electricity Policies to Reduce Emissions  

E-Print Network (OSTI)

A variety of renewable electricity policies to promote investment in wind, solar, and other types of renewable generators exist across the United States. The federal renewable energy investment tax credit, the federal renewable energy production tax credit, and state renewable portfolio standards are among the most notable. Whether the benefits of promoting new technology and reducing pollution emissions from the power sector justify these policies costs has been the subject of considerable debate. We argue in this paper that the debate is misguided because it does not consider two important interactions between renewable electricity generators and the rest of the power system. First, the value of electricity from a renewable generators depends on the generation and investment it displaces. Second, a large increase in renewable generation can reduce electricity prices, increasing consumption and emissions from fossil generators, and offsetting some of the environmental benefits of the policies. Two policy conclusions follow. First, existing renewable electricity policies can be redesigned to promote investment in the highest-value generators, which can greatly reduce the cost of achieving a given emissions reduction. Second, subsidies financed out of general tax revenue reduce emissions less than subsidies financed by charges to electricity consumers.

Reduce Emissions; Harrison Fell; Joshua Linn; Clayton Munnings

2012-01-01T23:59:59.000Z

116

NREL: Vehicles and Fuels Research - NREL to Showcase Renewable Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL to Showcase Renewable Electricity Generation Systems and Advanced NREL to Showcase Renewable Electricity Generation Systems and Advanced Vehicles at Denver Earth Day Fair April 18, 2013 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will showcase two mobile renewable electricity generation systems and three advanced vehicles-a Toyota Highlander fuel cell electric vehicle, a plug-in Toyota Prius hybrid electric vehicle, and a Mitsubishi i-MiEV electric vehicle-at the Denver Earth Day Fair on April 22. The larger of NREL's two renewable electricity generation systems features a 12 kilowatt biodiesel-powered back-up generator as well as a 1.8 kilowatt photovoltaic array that taps into energy from the sun to produce renewable electricity, which will power the fair. The smaller system includes a 384

117

Purifying mixed-use electrical consumption data  

SciTech Connect

This paper describes several analytical techniques for obtaining pure end-use load information from mixed end-use consumption data. This process is frequently necessary to make metered data useful to those involved in electric utility load forecasting and conservation assessment. Analyses based on traditional thermal models can be greatly augmented by these data sets if the measured entities correspond to those for which modeled estimates are necessary. We present two scenarios in which greater end-use resolution was needed than was available in existing data. The first involves segregating measured total HVAC consumption data into its heating, cooling, and ventilation constituents. The second discusses a technique to separate measurements of mixed equipment consumption into equipment type categories. These techniques were successfully applied to a large number of metered commercial buildings. We conclude with suggestions for extending these techniques to applications involving high-time-resolution building total data. 3 refs., 8 figs.

Taylor, Z.T.; Pratt, R.G.

1990-09-01T23:59:59.000Z

118

Renewable electricity production grows in Texas - Today in ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency. ... electric power plant emissions.

119

The effectiveness of the policies on renewable electricity in China  

E-Print Network (OSTI)

After the legislation of the Renewable Energy Law, China's government established a series of policies to promote renewable energy source electricity (RES-e) from 2005-2012. The effectiveness of the policies varies depending ...

Xiao, Qing S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

120

Procurement Options for New Renewable Electricity Supply | Open Energy  

Open Energy Info (EERE)

Procurement Options for New Renewable Electricity Supply Procurement Options for New Renewable Electricity Supply Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Procurement Options for New Renewable Electricity Supply Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy Phase: Evaluate Options Topics: Finance, Low emission development planning, -LEDS Resource Type: Case studies/examples, Lessons learned/best practices, Technical report Website: nrelpubs.nrel.gov/Webtop/ws/nich/www/public/Record?rpp=25&upp=0&m=1&w= Cost: Free OpenEI Keyword(s): feed-in tariffs, renewable portfolio standards, FITs, FIT, RPS, renewable energy, procurement UN Region: Northern America Language: English Tool Overview "State renewable portfolio standard (RPS) policies require utilities and

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

El Paso Electric Company - Small and Medium System Renewable...  

Open Energy Info (EERE)

Place New Mexico Name El Paso Electric Company - Small and Medium System Renewable Energy Certificate Purchase Program Incentive Type Performance-Based Incentive Applicable...

122

Figure 8. Renewable energy share of U.S. electricity ...  

U.S. Energy Information Administration (EIA)

Title: Figure 8. Renewable energy share of U.S. electricity generation in four cases, 2000-2040 (percent) Subject: Annual Energy Outlook 2013 Author

123

Figure 15. Renewable electricity generation in three cases ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 15. Renewable electricity generation in three cases, 2005-2040 (billion kilowatthours) Extended Policies No Sunset ...

124

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council Northwest Power Pool Area This...

125

Communication and Control of Electric Vehicles Supporting Renewables: Preprint  

DOE Green Energy (OSTI)

Discusses the technologies needed, potential scenarios, limitations, and opportunities for using grid-connected renewable energy to fuel the electric vehicles of the future.

Markel, T.; Kuss, M.; Denholm, P.

2009-08-01T23:59:59.000Z

126

Factors affecting adoption of renewable and other electricity ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Factors affecting adoption of renewable and other electricity generation technologies

127

Annual Renewable Electricity Net Generation by Country (1980...  

Open Energy Info (EERE)

Net Generation by Country (1980 - 2009) Total annual renewable electricity net generation by country, 1980 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu)....

128

Renewable Energy for Electricity Generation in Latin America...  

Open Energy Info (EERE)

America: Market, Technologies, and Outlook (Webinar) Focus Area: Water power Topics: Market Analysis Website: www.leonardo-energy.orgwebinar-renewable-energy-electricity-gene...

129

Renewable energy shows strongest growth in global electric ...  

U.S. Energy Information Administration (EIA)

The U.S. Energy Information Administration's International Energy Outlook 2011 (IEO2011) projects that the amount of global hydroelectric and other renewable electric ...

130

CASE STUDY -ELECTRIC UTILITY RESTRUCTURING -MASSACHUSETTS RENEWABLE ENERGY TRUST FUND  

E-Print Network (OSTI)

CASE STUDY - ELECTRIC UTILITY RESTRUCTURING - MASSACHUSETTS RENEWABLE ENERGY TRUST FUND John A or not WTE will be considered a "renewable energy" source with respect to mandated fractions of state. This discussion will provide a brief history of the Massachusetts, Renewable Energy Trust Fund (RETF), delineate

Columbia University

131

Analysis of Two Proposed Renewable Electricity Standards  

Gasoline and Diesel Fuel Update (EIA)

4 4 Impacts of a 25-Percent Renewable Electricity Standard as Proposed in the American Clean Energy and Security Act Discussion Draft April 2009 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by

132

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

schemes in the European electricity market. Scheer H. , ThePromoting electricity from renewable energy sources 2001 on the promotion of electricity produced from renewable

Haas, Reinhard

2008-01-01T23:59:59.000Z

133

Table 10.2b Renewable Energy Consumption: Industrial and ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. ... Through 2000, also includes non-renewable waste (municipal solid waste from

134

Nearest neighbor technique and artificial neural networks for short-term electric consumptions forecast  

Science Conference Proceedings (OSTI)

Promoting both energy savings and renewable energy development are two objectives of the actual and national French energy policy. In this sense, the present work takes part in a global development of various tools allowing managing energy demand. So, ... Keywords: Kohonen Self-Organizing Map, Multi-Layer Perceptron, Short-Term Electric Consumption, The Nearest Neighbor Technique, Virtual Power Plant

Van Giang Tran; Stphane Grieu; Monique Polit

2008-07-01T23:59:59.000Z

135

Electric resonance-rectifier circuit for renewable energy conversion  

Science Conference Proceedings (OSTI)

Variable speed generators are used more frequently for converting the energy from renewable energy sources to electric energy. The power production form a variable speed generator is dependent on the electrical damping of the generator. In this paper

C. Bostrm; B. Ekergrd; M. Leijon

2012-01-01T23:59:59.000Z

136

Renewable Portfolio Standard (Hawaii) | Open Energy Information  

Open Energy Info (EERE)

Portfolio Standard (RPS), each electric utility company that sells electricity for consumption in Hawaii must establish the following percentages of "renewable electrical energy"...

137

Renewable Energy for Electricity Generation in Latin America: Market,  

Open Energy Info (EERE)

for Electricity Generation in Latin America: Market, for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Focus Area: Water power Topics: Market Analysis Website: www.leonardo-energy.org/webinar-renewable-energy-electricity-generatio Equivalent URI: cleanenergysolutions.org/content/renewable-energy-electricity-generati Language: English Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation This video teaches the viewer about the current status and future

138

Response to several FOIA requests - Renewable Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to several FOIA requests - Renewable Energy, Electricity Consumption Estimates (million kWh)National Petroleum Council Assumption: The definition of electricity consumption and...

139

Contracting Issues with Renewable Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contracting Issues with Renewable Electricity Contracting Issues with Renewable Electricity Contracting Issues with Renewable Electricity October 16, 2013 - 5:08pm Addthis For many Federal agencies integrating renewable energy into a construction project, the technical and contracting issues associated with generating power at the facility are new. This page summarizes the various contracting issues that result from having on-site power generation that is actively interconnected with the power grid instead of using only a back-up generator. Many of these agreements depend on the ownership structure of the renewable energy system. Common agreements associated with a renewable electricity-generation facility include: An interconnection agreement covers the safe connection of the system to the power grid, including provisions for safe design, connection,

140

Long Island Power Authority - Renewable Electricity Goal | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Goal Renewable Electricity Goal Long Island Power Authority - Renewable Electricity Goal < Back Eligibility Municipal Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State New York Program Type Renewables Portfolio Standard Provider Long Island Power Authority As a municipal utility, the Long Island Power Authority (LIPA) is not obligated to comply with the [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... New York Renewable Portfolio Standard (RPS)]. The LIPA Board of Trustees has nevertheless decided to make their own renewable energy commitment mirroring the requirements for New York's investor owned utilities. The initiative is outlined in LIPA's 2004-2013 Energy Plan, approved in June

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Artificial neural networks for electricity consumption forecasting considering climatic factors  

Science Conference Proceedings (OSTI)

This work develops Artificial Neural Networks (ANN) models applied to predict the consumption forecasting considering climatic factors. It is intended to verify the influence of climatic factors on the electricity consumption forecasting through the ... Keywords: artificial neural networks, electricity consumption forecasting

Francisco David Moya Chaves

2010-06-01T23:59:59.000Z

142

AEO2011: Renewable Energy Consumption by Sector and Source This...  

Open Energy Info (EERE)

Consumption by Sector and Source This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset...

143

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. The dataset contains data for the Rockies region...

144

Modeling the Impact of Summer Temperatures on National Electricity Consumption  

Science Conference Proceedings (OSTI)

National population-weighted weekly degree day totals, which have been used to model and assess temperature-related natural gas consumption, are compared with summertime electricity consumption. A very close relationship between national cooling ...

Douglas M. Le Comte; Henry E. Warren

1981-12-01T23:59:59.000Z

145

Mongolia Renewable Energy and Rural Electricity Access Project | Open  

Open Energy Info (EERE)

Mongolia Renewable Energy and Rural Electricity Access Project Mongolia Renewable Energy and Rural Electricity Access Project Jump to: navigation, search Name of project Mongolia Renewable Energy and Rural Electricity Access Project Location of project Mongolia Energy Services Lighting, Cooking and water heating, Space heating, Cooling, Earning a living Year initiated 2006 Organization World Bank Website http://documents.worldbank.org Coordinates 46.862496°, 103.846656° References The World Bank[1] The objective of the Renewable Energy and Rural Electricity Access Project is to increase access to electricity and improve reliability of electricity service among the herder population and in off-grid soum centers by: (i) assisting the development of institutions and delivery mechanisms; (ii) facilitating herders' investments in Solar Home Systems (SHSs) and small

146

Policies for Renewable Electricity Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policies for Renewable Electricity Use Policies for Renewable Electricity Use Policies for Renewable Electricity Use October 16, 2013 - 5:12pm Addthis The renewable energy screening should include an assessment of several key utility policies at the facility site. In addition to financial incentives, states and local governments have adopted policies to remove barriers to the use of renewable energy and to facilitate the use of these technologies in a safe and fair manner. These policies are focused on electric-generating technologies and enabling the economic use of on-site power generation at a customer's site. The screening needs to outline the key provisions at the facility site and assess the impact on the use of these technologies at the site under review. Key policies include: Interconnection

147

Broad Initiatives/Sharp Focus- Cuts Electricity Consumption 15%  

E-Print Network (OSTI)

Analysis of electrical consumption can payout in reduced energy costs. Continuous monitoring of electrical usage coupled with improvements and optimization in system(s) operations can have a favorable impact on annual operating expenditures. Further, participation in local utility rebate programs to reduce electrical consumption will enhance funding of energy efficient programs.

Gialanella, V.

1998-04-01T23:59:59.000Z

148

Presentation to EAC: Renewable Electricity Futures Activities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Office of Electricity Delivery & Energy Reliability Search form Search Office of Electricity Delivery & Energy Reliability Services Electricity...

149

Commercial Building Electricity Consumption: The Role of Structure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Electricity Consumption: The Role of Structure Quality, Management, and Contract Incentives Secondary menu About us Press room Contact Us Portfolio Manager...

150

2001 Consumption and Expenditures -- Electric Air-Conditioning ...  

U.S. Energy Information Administration (EIA)

CE3-1c. Electric Air-Conditioning Energy Consumption in U.S. Households by Climate Zone, 2001 : 2: CE3-2c. ...

151

On Minimizing the Energy Consumption of an Electrical Vehicle  

E-Print Network (OSTI)

Apr 20, 2011 ... The problem that we focus on, is the minimization of the energy consumption of an electrical vehicle achievable on a given driving cycle.

152

World Net Electricity Consumption, by Region, 1990-2020  

U.S. Energy Information Administration (EIA)

Electricity consumption worldwide increases by 76 percent in the reference case, from 12 trillion kilowatthours in 1997 to 22 trillion kilowatthours in 2020.

153

UK Electricity Consumption at LLSOA level (2007 - 2008)  

Open Energy Info (EERE)

Change (DECC) released experimental statistics on domestic electricity and gas consumption (and number of meters) at the Lower Layer Super Output Authority level (LLSOA) for...

154

Household activities through various lenses: crossing surveys, diaries and electric consumption  

E-Print Network (OSTI)

comparison between electricity consumption and behavioralK. 2013. Domestic energy consumption-What role do comfort,residential electricity consumption Energy Policy, 42(2012)

Durand-Daubin, Mathieu

2013-01-01T23:59:59.000Z

155

Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Wind Maximum Rebate Payment limited to 25% of customers monthly kWh usage Program Info State Iowa Program Type Performance-Based Incentive Rebate Amount $0.20/kWh Provider Farmers Electric Cooperative Farmers Electric Cooperative offers a production incentive to members that install qualifying wind and solar electricity generating systems. Qualifying grid-tied solar and wind energy systems are eligible for a $0.20 per kilowatt-hour (kWh) production incentive for up to 10 years for energy production that offsets up to 25% of monthly energy usage.

156

Electricity, Renewables and Climate Change Draft Final Report  

E-Print Network (OSTI)

the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion. They have not necessarily undergone formal peer review or editorial treatment. Electricity, Renewables and Climate Change Karen Palmer and Dallas Burtraw The electricity sector is a major source of carbon dioxide emissions that contribute to global climate change. Switching from fossil fuels to renewable fuels such as geothermal, biomass or wind would help to reduce carbon emissions from electricity generation. This research analyzes the costs and carbon emission consequences of three policies to promote the use of renewables to generate electricity: (1) a renewable portfolio standard (RPS) set at various levels between 5 and 20%, (2) a renewable energy production credit (REPC) in the form of a tax credit for wind and biomass and (3) a climate policy, which allocates carbon emission allowances to electricity generators, including renewables, on the basis of electricity generation. We find that the RPS raises electricity prices, lowers total generation, reduces gas-fired generation and lowers carbon emissions, with the size of these effects growing in the stringency of the portfolio standard. The regional effects of the RPS depend on the stringency of the policy. The REPC policy produces a large increase in renewables generation, but also produces a lower electricity price, which limits its effectiveness in reducing carbon emissions. The RPS policy appears to be more cost-effective than the REPC with respect to achieving both an increase in renewables generation and a drop in carbon emissions. However, depending on how emission allowances are allocated, a climate policy can be cost-effective at achieving reductions in carbon emissions and promoting renewables.

Karen Palmer; Dallas Burtraw

2004-01-01T23:59:59.000Z

157

Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cumberland Valley Electric Cooperative - Energy Efficiency and Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation: $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Insulation: $20 for every 1000 BTU offset Geothermal Heat Pump: $100 Provider Cumberland Valley Electric Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps,

158

Presentation to EAC: Renewable Electricity Futures Activities & Status, October 29, 2010  

Energy.gov (U.S. Department of Energy (DOE))

Presentation to the Electricity Advisory Committee, October 29, 2010,on Renewable Electricity Futures Activities & Status. The presentation provides a high-level overview of the Renewable...

159

TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN  

E-Print Network (OSTI)

relative to increases in its consumption at a higher rate than all but two states (in part because California is the lowest user of electricity per capita and per dollar of gross state product in the west). Annual WSCC consumption increased 64% from 1977 to 1998, but California's consumption grew by only 44

California at Berkeley. University of

160

Nuclear-renewables energy system for hydrogen and electricity production  

E-Print Network (OSTI)

Climate change concerns and expensive oil call for a different mix of energy technologies. Nuclear and renewables attract attention because of their ability to produce electricity while cutting carbon emissions. However ...

Haratyk, Geoffrey

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Transmission Pricing Issues for Electricity Generation From Renewable Resources  

Reports and Publications (EIA)

This article discusses how the resolution of transmission pricing issues which have arisen under the Federal Energy Regulatory Commission's (FERC) open access environment may affect the prospects for renewable-based electricity.

Information Center

1999-02-01T23:59:59.000Z

162

Evaluating Policies to Increase Electricity Generation from Renewable Energy  

E-Print Network (OSTI)

Building on a review of experience in the United States and the European Union, this article advances four main propositions concerning policies aimed at increasing electricity generation from renewable energy. First, who ...

Schmalensee, Richard

163

Procurement Options for New Renewable Electricity Supply  

DOE Green Energy (OSTI)

State renewable portfolio standard (RPS) policies require utilities and load-serving entities (LSEs) to procure renewable energy generation. Utility procurement options may be a function of state policy and regulatory preferences, and in some cases, may be dictated by legislative authority. Utilities and LSEs commonly use competitive solicitations or bilateral contracting to procure renewable energy supply to meet RPS mandates. However, policymakers and regulators in several states are beginning to explore the use of alternatives, namely feed-in tariffs (FITs) and auctions to procure renewable energy supply. This report evaluates four procurement strategies (competitive solicitations, bilateral contracting, FITs, and auctions) against four main criteria: (1) pricing; (2) complexity and efficiency of the procurement process; (3) impacts on developers access to markets; and (4) ability to complement utility decision-making processes. These criteria were chosen because they take into account the perspective of each group of stakeholders: ratepayers, regulators, utilities, investors, and developers.

Kreycik, C. E.; Couture, T. D.; Cory, K. S.

2011-12-01T23:59:59.000Z

164

La Plata Electric Association - Renewable Generation Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

La Plata Electric Association - Renewable Generation Rebate Program La Plata Electric Association - Renewable Generation Rebate Program La Plata Electric Association - Renewable Generation Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Wind Maximum Rebate PV 10 kW or smaller: $4,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount PV 10 kW-DC or smaller: Upfront incentive of $0.40 per watt DC PV greater than 10 kW-DC: Performance-based incentive of $44.91/MWh ($0.04491/kWh) paid every 6 months for 10 years Provider La Plata Electric Association La Plata Electric Association (LPEA) offers a one-time rebate, not to exceed the cost of the system, to residential and small commercial customers who install a photovoltaic (PV), wind or hydropower facility. To

165

Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

DOE Green Energy (OSTI)

To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

2005-09-01T23:59:59.000Z

166

Fuzzy wavelet neural network for prediction of electricity consumption  

Science Conference Proceedings (OSTI)

The development of a fuzzy wavelet neural network (FWNN) for the prediction of electricity consumption is presented. The fuzzy rules that contain wavelets are constructed. Based on these rules, the structure of FWNN-based system is described. The FWNN ... Keywords: Fuzzy Wavelet Neural Network, Neurofuzzy Modeling, Prediction of Electricity Consumption, Time Series Prediction, Wavelet Network

Rahib h. Abiyev

2009-05-01T23:59:59.000Z

167

Table 10.2a Renewable Energy Consumption: Residential and ...  

U.S. Energy Information Administration (EIA)

Includes distributed solar thermal and PV energy used in the commercial, industrial, and electric power sectors. R=Revised. P=Preliminary. NA=Not available.

168

Role of Renewable Energy in Sustainable Electricity Generation Portfolios  

Science Conference Proceedings (OSTI)

The future electric power system is likely to use far more renewable energy, including biomass, geothermal, small hydro, and intermittent renewable resources such as wind and solar power, than today (3.4% of U.S. primary energy and 2.3% of electricity during 2004, U.S. Energy Information Agency). Exogenous factors such as global climate change and high fossil fuel prices are leading policymakers and energy companies to seek more sustainable energy futures. But how much can renewable energy contribute? Th...

2006-03-30T23:59:59.000Z

169

Electricity Generation and Consumption by State (2008 ) | OpenEI  

Open Energy Info (EERE)

Generation and Consumption by State (2008 ) Generation and Consumption by State (2008 ) Dataset Summary Description Provides total annual electricity consumption by sector (residential, commercial and industrial) for all states in 2008, reported in GWh, and total electricity generation by sector (e.g. wind, solar, nuclear, coal) for all states in 2008, reported in GWh. Source NREL Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords EIA Electricity Consumption Electricity Generation States Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon 2008 State Electricity Generation and Consumption (format: xls) (xlsx, 56.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Other or unspecified, see optional comment below

170

Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Bulk Electric Power Systems: Bulk Electric Power Systems: Operations and Transmission Planning Volume 4 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable

171

Grid-Based Renewable Electricity and Hydrogen Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Renewable Electricity and Hydrogen Integration Carolyn Elam Senior Project Leader - Hydrogen Production Electric & Hydrogen Technologies & Systems Center National Renewable Energy Laboratory Goals for Electrolysis in Hydrogen Fuel Supply * Goal is to supply hydrogen fuel for 20% of the light- duty vehicle fleet - 12 million short tons of hydrogen annually - 450 TWh per year * Must be competitive - With gasoline, assuming FCV will have twice the efficiency of an ICE - With other hydrogen production methods * Net zero impact or reduction in GHG emissions - Compared to Gasoline ICE - 31% reduction in carbon emissions from the current electricity mix - Compared to Natural Gas-Derived Hydrogen - 65% reduction in carbon emissions from the current electricity mix Goals for Electrolysis (cont.)

172

Role of Energy Storage with Renewable Electricity Generation  

DOE Green Energy (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-01-01T23:59:59.000Z

173

1 The Price Elasticity of Supply of Renewable Electricity Generation  

E-Print Network (OSTI)

Many states have adopted policies aimed at promoting the growth of renewable electricity within their state. The most salient of these policies is a renewable portfolio standard (RPS) which mandates that retail electricity providers purchase a predetermined fraction of their electricity from renewable sources. Renewable portfolio standards are a policy tool likely to persist for many decades due to the long term goals of many state RPSs and the likely creation of a federal RPS alongside any comprehensive climate change bill. However, there is little empirical evidence about the costs of these RPS policies. I take an instrumental variables approach to estimate the long-run price elasticity of supply of renewable generation. To instrument for the price paid to renewable generators I use the phased-in implementation of RPSs over time. Using this IV strategy, my preferred estimate of the supply elasticity is 2.7. This parameter allows me to measure the costs of carbon abatement in the electricity sector and to compare those costs with the costs of a broader based policy. Using my parameter estimates, I find that a policy to reduce the CO2 emissions in the northeastern US electricity sector by 2.5 % using only an RPS would cost at least six times more than the regional cap-and-trade system (Regional Greenhouse Gas Initiative). The marginal cost of CO2 abatement is $12 using the most optimistic assumptions for an RPS compared to a marginal cost of abatement of $2 in the Regional Greenhouse Gas Initiative.

Erik Johnson; Erik Johnson

2010-01-01T23:59:59.000Z

174

Ranking of renewable energy and nuclear energy use varies by ...  

U.S. Energy Information Administration (EIA)

Renewable energy consumption encompasses more than just electric power generation from hydro, wind, solar, and geothermal sources.

175

Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning  

DOE Green Energy (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

2012-06-01T23:59:59.000Z

176

Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand  

DOE Green Energy (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

2012-06-01T23:59:59.000Z

177

Comparative Analysis of Three Proposed Federal Renewable Electricity Standards  

SciTech Connect

This paper analyzes potential impacts of proposed national renewable electricity standard (RES) legislation. An RES is a mandate requiring certain electricity retailers to provide a minimum share of their electricity sales from qualifying renewable power generation. The analysis focuses on draft bills introduced individually by Senator Jeff Bingaman and Representative Edward Markey, and jointly by Representative Henry Waxman and Markey. The analysis uses NREL's Regional Energy Deployment System (ReEDS) model to evaluate the impacts of the proposed RES requirements on the U.S. energy sector in four scenarios.

Sullivan, P.; Logan, J.; Bird, L.; Short, W.

2009-05-01T23:59:59.000Z

178

Comparative Analysis of Three Proposed Federal Renewable Electricity Standards  

SciTech Connect

This paper analyzes potential impacts of proposed national renewable electricity standard (RES) legislation. An RES is a mandate requiring certain electricity retailers to provide a minimum share of their electricity sales from qualifying renewable power generation. The analysis focuses on draft bills introduced individually by Senator Jeff Bingaman and Representative Edward Markey, and jointly by Representative Henry Waxman and Markey. The analysis uses NREL's Regional Energy Deployment System (ReEDS) model to evaluate the impacts of the proposed RES requirements on the U.S. energy sector in four scenarios.

Sullivan, P.; Logan, J.; Bird, L.; Short, W.

2009-05-01T23:59:59.000Z

179

Renewable Electricity Production Tax Credit (PTC) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Electricity Production Tax Credit (PTC) Renewable Electricity Production Tax Credit (PTC) < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Water Home Weatherization Wind Program Info Program Type Corporate Tax Credit Rebate Amount 2.3¢/kWh for wind, geothermal, closed-loop biomass; 1.1¢/kWh for other eligible technologies. Generally applies to first 10 years of operation. Provider U.S. Internal Revenue Service '''''Note: The American Recovery and Reinvestment Act of 2009 allows taxpayers eligible for the federal renewable electricity production tax credit (PTC) to take the federal business energy investment tax credit (ITC) instead of taking the PTC for new installations.'''''

180

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption.
2011-07-25T20:15:39Z...

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The dubuque electricity portal: evaluation of a city-scale residential electricity consumption feedback system  

Science Conference Proceedings (OSTI)

This paper describes the Dubuque Electricity Portal, a city-scale system aimed at supporting voluntary reductions of electricity consumption. The Portal provided each household with fine-grained feedback on its electricity use, as well as using incentives, ... Keywords: behavior change, consumption feedback systems, ecf, electricity, smart meters, social comparison, sustainability

Thomas Erickson; Ming Li; Younghun Kim; Ajay Deshpande; Sambit Sahu; Tian Chao; Piyawadee Sukaviriya; Milind Naphade

2013-04-01T23:59:59.000Z

182

ELECTRICITY CONSUMPTION TO INFORM DATA-DRIVEN ENERGY EFFICIENCY  

E-Print Network (OSTI)

Abstract. Effective demand-side energy efficiency policies are needed to reduce residential electricity consumption and its harmful effects on the environment. The first step to devise such polices is to quantify the potential for energy efficiency by analyzing the factors that impact consumption. This paper proposes a novel approach to analyze large data sets of residential electricity consumption to derive insights for policy making and energy efficiency programming. In this method, underlying behavioral determinants that impact residential electricity consumption are identified using Factor Analysis. A distinction is made between long-term and short-term determinants of consumption by developing separate models for daily maximum and daily minimum consumption and analyzing their differences. Finally, the set of determinants are ranked by their impact on electricity consumption, using a stepwise regression model. This approach is then applied on a large data set of smart meter data and household information as a case example. The results of the models show that weather, location, floor area, and number of refrigerators are the most significant determinants of daily minimum (or idle) electricity consumption in residential buildings,

Amir Kavousian; Ram Rajagopal; Martin Fischer; Amir Kavousian; Ram Rajagopal; Martin Fischer

2012-01-01T23:59:59.000Z

183

Comparative Analysis of Three Proposed Federal Renewable Electricity Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

77 77 May 2009 Comparative Analysis of Three Proposed Federal Renewable Electricity Standards Patrick Sullivan, Jeffrey Logan, Lori Bird, and Walter Short National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-45877 May 2009 Comparative Analysis of Three Proposed Federal Renewable Electricity Standards Patrick Sullivan, Jeffrey Logan, Lori Bird, and Walter Short Prepared under Task No. SAO7.9C50 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

184

The Role of Energy Storage with Renewable Electricity Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

87 87 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-47187 January 2010 The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan Prepared under Task No. WER8.5005 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

185

Highly Efficient Electric Motor Systems - National Renewable ...  

Electric Motor Systems ... savings. Conical hubs Matching axial field poles. Issued Patents on Motor Geometry. 7 NREL Energy Forum November 2009 www.novatorque.com.

186

Role of Renewable Energy in Sustainable Electricity Generation Portfolios  

Science Conference Proceedings (OSTI)

This Technical Update describes the use of energy system and capacity planning models and alternative scenarios of the future to evaluate the potential role of renewable energy in a sustainable electricity generation portfolio. Base case runs of the three models considered in this study all forecast growing contributions from renewables over a range of scenarios, but predictions vary widely due to differing modeling approaches and differing assumptions about future market, policy, technology, and other c...

2007-01-31T23:59:59.000Z

187

Willingness to pay for electricity from renewable energy  

SciTech Connect

National polls reveal widespread public preference and willingness to pay more for renewables. ``Green pricing`` programs attempt to capitalize on these preferences and on an expressed willingness to pay more for environmental protection. This report explores the utility option of green pricing as a method of aggregating public preferences for renewables. It summarizes national data on public preferences for renewables and willingness to pay (WTP) for electricity from renewable energy sources; examines utility market studies on WTP for renewables and green-pricing program features; critiques utility market research on green pricing; and discusses experiences with selected green-pricing programs. The report draws inferences for program design and future research. Given the limited experiences with the programs so far, the evidence suggests that programs in which customers pay a monthly premium for a specific renewable electricity product elicit a higher monthly financial commitment per customer than programs asking for contributions to unspecified future actions involving renewables. The experience with green-pricing programs is summarized and factors likely to affect customer participation are identified.

Farhar, B.C.; Houston, A.H.

1996-09-01T23:59:59.000Z

188

Optimization of Electric Energy Consumption in Marginal California Oilfields  

Science Conference Proceedings (OSTI)

This report documents a pilot study of electricity consumption in California oilfields that found significant potential for reducing costs through energy efficiency improvements. It offers suggestions for reducing electricity consumption that, if implemented, could result in a system-wide demand reduction and reduce the need for additional generation and power infrastructure capacity. Moreover, reducing oilfield energy costs would reduce the overall cost of oil production, helping marginal wells remain a...

2003-01-17T23:59:59.000Z

189

Smart Metering for Smart Electricity Consumption.  

E-Print Network (OSTI)

??In recent years, the demand for electricity has increased in households with the use of different appliances. This raises a concern to many developed and (more)

Vadda, Praveen

2013-01-01T23:59:59.000Z

190

Electric Power Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA)

... electric power price data are for regulated ... Gas volumes delivered for use as vehicle fuel are included in the State annual totals through 2010 but not in ...

191

State Policies Provide Critical Support for Renewable Electricity  

DOE Green Energy (OSTI)

Growth in renewable energy in the U.S. over the past decade has been propelled by a number of forces, including rising fossil fuel prices, environmental concerns, and policy support at the state and federal levels. In this article, we review and discuss what are arguably the two most important types of state policies for supporting electricity generation from geothermal and other forms of renewable energy: renewables portfolio standards and utility integrated resource planning requirements. Within the Western U.S., where the vast majority of the nation's readily-accessible geothermal resource potential resides, these two types of state policies have been critical to the growth of renewable energy, and both promise to continue to play a fundamental role for the foreseeable future. In its essence, a renewables portfolio standard (RPS) requires utilities and other retail electricity suppliers to produce or purchase a minimum quantity or percentage of their generation supply from renewable resources. RPS purchase obligations generally increase over time, and retail suppliers typically must demonstrate compliance on an annual basis. Mandatory RPS policies are backed by various types of compliance enforcement mechanisms, although most states have incorporated some type of cost-containment provision, such as a cost cap or a cap on retail rate impacts, which could conceivably allow utilities to avoid (full) compliance with their RPS target. Currently, 27 states and the District of Columbia have mandatory RPS requirements. Within the eleven states of the contiguous Western U.S., all but three (Idaho, Utah, and Wyoming) now have a mandatory RPS legislation (Utah has a more-voluntary renewable energy goal), covering almost 80% of retail electricity sales in the region. Although many of these state policies have only recently been established, their impact is already evident: almost 1800 MW of new renewable capacity has been installed in Western states following the implementation of RPS policies. To date, wind energy has been the primary beneficiary of state RPS policies, representing approximately 83% of RPS-driven renewable capacity growth in the West through 2007. Geothermal energy occupies a distant second place, providing 7% of RPS-driven new renewable capacity in the West since the late 1990s, though geothermal's contribution on an energy (MWh) basis is higher. Looking to the future, a sizable quantity of renewable capacity beyond pre-RPS levels will be needed to meet state RPS mandates: about 25,000 MW by 2025 within the Western U.S. Geothermal energy is beginning to provide an increasingly significant contribution, as evidenced by the spate of new projects recently announced to meet state RPS requirements. Most of this activity has been driven by the RPS policies in California and Nevada, where the Geothermal Energy Association has identified 47 new geothermal projects, totaling more than 2,100 MW, in various stages of development. Additional geothermal projects in Arizona, New Mexico, Oregon, and Washington are also under development to meet those states RPS requirements. The other major state policy driver for renewable electricity growth, particularly in the West, is integrated resource planning (IRP). IRP was first formalized as a practice in the 1980s, but the practice was suspended in some states as electricity restructuring efforts began. A renewed interest in IRP has emerged in the past several years, however, with several Western states (California, Montana, and New Mexico) reestablishing IRP and others developing new rules to strengthen their existing processes. In its barest form, IRP simply requires that utilities periodically submit long-term resource procurement plans in which they evaluate alternative strategies for meeting their resource needs over the following ten to twenty years. However, many states have developed specific requirements for the IRP process that directly or indirectly support renewable energy. The most general of these is an explicit requirement that utilities evaluate renewables, and that

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-07-15T23:59:59.000Z

192

State Policies Provide Critical Support for Renewable Electricity  

SciTech Connect

Growth in renewable energy in the U.S. over the past decade has been propelled by a number of forces, including rising fossil fuel prices, environmental concerns, and policy support at the state and federal levels. In this article, we review and discuss what are arguably the two most important types of state policies for supporting electricity generation from geothermal and other forms of renewable energy: renewables portfolio standards and utility integrated resource planning requirements. Within the Western U.S., where the vast majority of the nation's readily-accessible geothermal resource potential resides, these two types of state policies have been critical to the growth of renewable energy, and both promise to continue to play a fundamental role for the foreseeable future. In its essence, a renewables portfolio standard (RPS) requires utilities and other retail electricity suppliers to produce or purchase a minimum quantity or percentage of their generation supply from renewable resources. RPS purchase obligations generally increase over time, and retail suppliers typically must demonstrate compliance on an annual basis. Mandatory RPS policies are backed by various types of compliance enforcement mechanisms, although most states have incorporated some type of cost-containment provision, such as a cost cap or a cap on retail rate impacts, which could conceivably allow utilities to avoid (full) compliance with their RPS target. Currently, 27 states and the District of Columbia have mandatory RPS requirements. Within the eleven states of the contiguous Western U.S., all but three (Idaho, Utah, and Wyoming) now have a mandatory RPS legislation (Utah has a more-voluntary renewable energy goal), covering almost 80% of retail electricity sales in the region. Although many of these state policies have only recently been established, their impact is already evident: almost 1800 MW of new renewable capacity has been installed in Western states following the implementation of RPS policies. To date, wind energy has been the primary beneficiary of state RPS policies, representing approximately 83% of RPS-driven renewable capacity growth in the West through 2007. Geothermal energy occupies a distant second place, providing 7% of RPS-driven new renewable capacity in the West since the late 1990s, though geothermal's contribution on an energy (MWh) basis is higher. Looking to the future, a sizable quantity of renewable capacity beyond pre-RPS levels will be needed to meet state RPS mandates: about 25,000 MW by 2025 within the Western U.S. Geothermal energy is beginning to provide an increasingly significant contribution, as evidenced by the spate of new projects recently announced to meet state RPS requirements. Most of this activity has been driven by the RPS policies in California and Nevada, where the Geothermal Energy Association has identified 47 new geothermal projects, totaling more than 2,100 MW, in various stages of development. Additional geothermal projects in Arizona, New Mexico, Oregon, and Washington are also under development to meet those states RPS requirements. The other major state policy driver for renewable electricity growth, particularly in the West, is integrated resource planning (IRP). IRP was first formalized as a practice in the 1980s, but the practice was suspended in some states as electricity restructuring efforts began. A renewed interest in IRP has emerged in the past several years, however, with several Western states (California, Montana, and New Mexico) reestablishing IRP and others developing new rules to strengthen their existing processes. In its barest form, IRP simply requires that utilities periodically submit long-term resource procurement plans in which they evaluate alternative strategies for meeting their resource needs over the following ten to twenty years. However, many states have developed specific requirements for the IRP process that directly or indirectly support renewable energy. The most general of these is an explicit requirement that utilities evaluate renewables

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-07-15T23:59:59.000Z

193

Guam- Renewable Energy Portfolio Goal  

Energy.gov (U.S. Department of Energy (DOE))

Guam Bill 166, enacted in March 2008, established a renewable energy portfolio goal of 25% renewable energy by 2035.* Under this law, each utility that sells electricity for consumption on Guam...

194

Industrial Biomass Energy Consumption and Electricity Net Generation by  

Open Energy Info (EERE)

47 47 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281847 Varnish cache server Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB)

195

Is It Going to Happen? Regulatory Change and Renewable Electricity  

E-Print Network (OSTI)

to unilaterally alter the terms of a voluntary agreement to the disadvantage of wind turbine owners. In contrast of capacity (kW) or the amount of renewable electricity (kWh) added by the policy. One would also argue of how this problem has affected the wind policy in Denmark see Agnolucci (2004a). 2 This problem

Watson, Andrew

196

Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles  

E-Print Network (OSTI)

.S. roads alone by 2015. PEVs-- either plug-in hybrid electric vehicles (PHEVs) or pure electric vehicles (EVs)--adopt similar drivetrain configurations as hybrid electric vehicles (HEVs) [21 Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles Di Wu, Student

Tesfatsion, Leigh

197

Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.  

SciTech Connect

Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

Wu, M.; Peng, J. (Energy Systems); ( NE)

2011-02-24T23:59:59.000Z

198

Financial Impact of Energy Efficiency under a Federal Renewable Electricity  

Open Energy Info (EERE)

Financial Impact of Energy Efficiency under a Federal Renewable Electricity Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas 'Super-Utility' Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "Super-Utility" Focus Area: Energy Efficiency Topics: Potentials & Scenarios Website: eetd.lbl.gov/ea/ems/reports/lbnl-2924e.pdf Equivalent URI: cleanenergysolutions.org/content/financial-impact-energy-efficiency-un Language: English Policies: Regulations Regulations: "Utility/Electricity Service Costs,Mandates/Targets" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

199

Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"  

E-Print Network (OSTI)

Impacts of a 25-Percent Renewable Electricity Standard asand lower costs: Combining renewable energy and energyand I. Horowitz. 2009. Renewable portfolio standards and

Cappers, Peter

2010-01-01T23:59:59.000Z

200

Table 11.5c Emissions From Energy Consumption for Electricity ...  

U.S. Energy Information Administration (EIA)

Notes: Data are for emissions from energy consumption for electricity generation and useful thermal output.

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Operational water consumption and withdrawal factors for electricity  

Open Energy Info (EERE)

4047 4047 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142254047 Varnish cache server Operational water consumption and withdrawal factors for electricity generating technologies Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The water factors presented may be useful in modeling and policy analyses where reliable power plant level data are not available.

202

El Paso Electric Company - Small and Medium System Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

El Paso Electric Company - Small and Medium System Renewable Energy El Paso Electric Company - Small and Medium System Renewable Energy Certificate Purchase Program El Paso Electric Company - Small and Medium System Renewable Energy Certificate Purchase Program < Back Eligibility Commercial Fed. Government Industrial Nonprofit Residential State Government Savings Category Energy Sources Buying & Making Electricity Solar Wind Program Info Start Date 3/1/2009 State New Mexico Program Type Performance-Based Incentive Rebate Amount Systems 10 kW or less: PV: $0.04/kWh for RECs produced for a period of 8 years Wind: $0.03 /kWh for RECs produced for a period of 8 years Systems greater than 10 kW and up to 100 kW: PV: $0.04/kWh for RECs produced for a period of 8 years Wind: $0.02 /kWh for RECs produced for a period of 8 years Systems greater than 100 kW and up to 1,000 kW:

203

Lifestyle Factors in U.S. Residential Electricity Consumption  

Science Conference Proceedings (OSTI)

A multivariate statistical approach to lifestyle analysis of residential electricity consumption is described and illustrated. Factor analysis of selected variables from the 2005 U.S. Residential Energy Consumption Survey (RECS) identified five lifestyle factors reflecting social and behavioral choices associated with air conditioning, laundry usage, personal computer usage, climate zone of residence, and TV use. These factors were also estimated for 2001 RECS data. Multiple regression analysis using the lifestyle factors yields solutions accounting for approximately 40% of the variance in electricity consumption for both years. By adding the associated household and market characteristics of income, local electricity price and access to natural gas, variance accounted for is increased to approximately 54%. Income contributed only {approx}1% unique variance to the 2005 and 2001 models, indicating that lifestyle factors reflecting social and behavioral choices better account for consumption differences than income. This was not surprising given the 4-fold range of energy use at differing income levels. Geographic segmentation of factor scores is illustrated, and shows distinct clusters of consumption and lifestyle factors, particularly in suburban locations. The implications for tailored policy and planning interventions are discussed in relation to lifestyle issues.

Sanquist, Thomas F.; Orr, Heather M.; Shui, Bin; Bittner, Alvah C.

2012-03-30T23:59:59.000Z

204

Impact of Energy Policy Act of 2005 Section 206 Rebates on Consumers and Renewable Energy Consumption, With Projections to 2010  

Reports and Publications (EIA)

The Energy Information Administration (EIA), with the agreement of the Department, interpreted section 206(d) as calling for a listing of the types of renewable fuels available today, and a listing of those that will be available in the future based on the incentives provided in section 206(d). This report provides that information, and also provides information concerning renewable energy equipment and renewable energy consumption.

Information Center

2006-02-01T23:59:59.000Z

205

Renewable Energy Consumption for Electricity Generation by Energy...  

Open Energy Info (EERE)

following specific sources: U.S. Energy Information Administration, Form EIA-923, "Power Plant Operations Report," and predecessor forms: Form EIA-906, "Power Plant Report," and...

206

Effects of feedback on residential electricity consumption: A literature review  

SciTech Connect

This report reviews 17 studies assessing the effect of information feedback on residential electricity consumption. Most of the studies were conducted in experimental or quasi-experimental conditions. The studies reviewed used (1) both feedback and incentives, (2) goal setting, (3) cost information feedback, and (4) displays. The study findings, taken together, provide some evidence that feedback is effective in reducing electricity consumption, although questions remain concerning the conditions under which feedback can best be provided. Reductions in consumption found in most of the studies ranged from 5% to 20%. Utility companies are the most likely source of feedback information for residential customers. Three of the studies investigated utility feedback projects. The report discusses the policy implications of these as well as the other studies. The report also lists questions remaining to be researched. 13 refs., 1 tab.

Farhar, B.C.; Fitzpatrick, C.

1989-01-01T23:59:59.000Z

207

Distributed Generation and Renewable Energy in the Electric Cooperative Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation and Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero Cooperative Research Network (CRN) National Rural Electric Cooperative Association September 22, 2004 Co-op Basics  Customer owned  Serve 35 million people in 47 states  75 percent of nation's area  2.3 million miles of line is close to half of nation's total  Growth rate twice that of IOU Electrics  Six customers per line-mile vs 33 for IOU  Co-ops view DP as a needed solution; not as a "problem" Broad Range of Technologies Chugach EA 1-MW Fuel Cell Installation Post Office in Anchorage, AK Chugach EA Microturbine Demo Unit at Alaska Village Electric Co-op CRN Transportable 200kW Fuel Cell at Delta- Montrose EA in Durango, CO Plug Power Fuel Cell at Fort Jackson, SC

208

Intelligence in Electricity Networks for Embedding Renewables and Distributed Generation  

E-Print Network (OSTI)

Abstract Over the course of the 20 th century, the electrical power systems of industrialized economies have become one of the most complex systems created by mankind. In the same period, electricity made a transition from a novelty, to a convenience, to an advantage, and finally to an absolute necessity. World-wide electricity use has been ever-growing. The electricity infrastructure consists of two highlyinterrelated and complex subsystems for commodity trade and physical delivery. To ensure the infrastructure is up and running in the first place, the increasing electricity demand poses a serious threat. Additionally, there are a number of other trends that are forcing a change in infrastructure management. Firstly, there is a shift to intermittent sources: a larger share of renewables in the energy mix means a higher influence of weather patterns on generation. At the same time, introducing more combined heat and power generation (CHP) couples electricity production to heat demand patterns. Secondly, the location of electricity generation relative to the load centers is changing. Large-scale generation from wind is migrating towards and into the seas and oceans, away from the locations of high electricity demand. On

J. K. Kok; M. J. J. Scheepers; I. G. Kamphuis; J. K. Kok; M. J. J. Scheepers; I. G. Kamphuis

2010-01-01T23:59:59.000Z

209

Table 2.1f Electric Power Sector Energy Consumption, 1949-2011 ...  

U.S. Energy Information Administration (EIA)

Table 2.1f Electric Power Sector Energy Consumption, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Fossil Fuels: Nuclear

210

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout … Renewable Electricity Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 30, 2013 April 30, 2013 Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Renewable Electricity Generation 2 EERE's National Mission To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 3 Why Clean Energy Matters To America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation * Enhancing energy security by reducing our dependence on foreign oil and gas * Saving money by cutting energy costs for American families and businesses * Protecting health and safety by mitigating the impact

211

Modelling renewable electric resources: A case study of wind  

DOE Green Energy (OSTI)

The central issue facing renewables in the integrated resource planning process is the appropriate assessment of the value of renewables to utility systems. This includes their impact on both energy and capacity costs (avoided costs), and on emissions and environmental impacts, taking account of the reliability, system characteristics, interactions (in dispatch), seasonality, and other characteristics and costs of the technologies. These are system-specific considerations whose relationships may have some generic implications. In this report, we focus on the reliability contribution of wind electric generating systems, measured as the amount of fossil capacity they can displace while meeting the system reliability criterion. We examine this issue for a case study system at different wind characteristics and penetration, for different years, with different system characteristics, and with different modelling techniques. In an accompanying analysis we also examine the economics of wind electric generation, as well as its emissions and social costs, for the case study system. This report was undertaken for the {open_quotes}Innovative IRP{close_quotes} program of the U.S. Department of Energy, and is based on work by both Union of Concerned Scientists (UCS) and Tellus Institute, including America`s Energy Choices and the UCS Midwest Renewables Project.

Bernow, S.; Biewald, B.; Hall, J.; Singh, D. [Tellus Institute, Boston, MA (United States)

1994-07-01T23:59:59.000Z

212

Table 2b. Relative Standard Errors for Electricity Consumption and  

U.S. Energy Information Administration (EIA) Indexed Site

2b. Relative Standard Errors for Electricity 2b. Relative Standard Errors for Electricity Table 2b. Relative Standard Errors for Electricity Consumption and Electricity Intensities, per Square Foot, Specific to Occupied and Vacant Floorspace, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption (trillion Btu) Electricity Intensities (thousand Btu) In Total Floor- space In Occupied Floor- space In Vacant Floor- space Per Square Foot Per Occupied Square Foot Per Vacant Square Foot All Buildings 4 5 5 9 4 4 4 Building Floorspace (Square Feet) 1,001 to 5,000 5 6 6 12 6 6 9 5,001 to 10,000 4 9 9 13 9 9 9 10,001 to 25,000 5 7 7 14 5 5 7 25,001 to 50,000 7 10 10 21 10 10 11 50,001 to 100,000 7 12 12 15 8 8 10 100,001 to 200,000 9 13 13 24 10 11 10 200,001 to 500,000 10 13 13 19 11 11 10 Over 500,000 26 18 18 34

213

An Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of Hydrogen An Analysis of Hydrogen Production from Renewable Electricity Sources Preprint J.I. Levene, M.K. Mann, R. Margolis, and A. Milbrandt National Renewable Energy Laboratory Prepared for ISES 2005 Solar World Congress Orlando, Florida August 6-12, 2005 Conference Paper NREL/CP-560-37612 September 2005 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

214

Realisable Scenarios for a Future Electricity Supply based 100% on Renewable Energies  

E-Print Network (OSTI)

Realisable Scenarios for a Future Electricity Supply based 100% on Renewable Energies Gregor Czisch that we must transform our energy system into one using only renewable energies. But questions arise how. These questions were the focus of a study which investigated the cost optimum of a future renewable electricity

215

Model for electric energy consumption in eastern Saudi Arabia  

Science Conference Proceedings (OSTI)

Electrical energy consumption in the eastern province of Saudi Arabia is modeled as a function of weather data, global solar radiation, population, and gross domestic product per capita. Five years of data have been used to develop the energy consumption model. Variable selection in the regression model is carried out by using the general stepping-regression technique. Model adequacy is determined from a residual analysis technique. Model validation aims to determine if the model will function successfully in its intended operating field. In this regard, new energy consumption data for a sixth year are collected, and the results predicted by the regression model are compared with the new data set. Finally, the sensitivity of the model is examined. It is found that the model is strongly influenced by the ambient temperature.

Al-Garni, A.Z.; Al-Nassar, Y.N.; Zubair, S.M.; Al-Shehri, A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

1997-05-01T23:59:59.000Z

216

Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy,  

E-Print Network (OSTI)

of Energy Efficiency, Renewable Energy, and Small-Scale Cogeneration from electricity generation. Renewable energy, energy efficiency, and energy, where performance is measured relative to three objectives: energy production

217

The Easy Way to Use Renewables: Buy Clean Electricity | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Easy Way to Use Renewables: Buy Clean Electricity The Easy Way to Use Renewables: Buy Clean Electricity The Easy Way to Use Renewables: Buy Clean Electricity November 17, 2009 - 8:45pm Addthis John Lippert Clean air means a lot to me. My wife and I had a small solar electric system installed on the roof of our house that produces about 2% of the annual electricity consumed by our all-electric house. We don't have a large south-facing roof, so we couldn't easily install a larger system. But what about the remaining 98% electricity that we need to buy? About half a dozen years ago we signed up for 100% wind electricity after our state deregulated its electricity industry. We didn't have much of a choice to purchase "green" electricity. Only two utility companies offered electricity produced by renewable energy to residents of Maryland where I

218

Electricity for Millions: Developing Renewable Energy in China (Revised)  

DOE Green Energy (OSTI)

This two page fact sheet describes NREL's work developing renewable energy in China. Renewable focus areas include rural energy development, wind energy development, geothermal energy development, renewable energy business development and policy and planning.

Not Available

2006-04-01T23:59:59.000Z

219

Electricity for Millions: Developing Renewable Energy in China (Revised)  

SciTech Connect

This two page fact sheet describes NREL's work developing renewable energy in China. Renewable focus areas include rural energy development, wind energy development, geothermal energy development, renewable energy business development and policy and planning.

2006-04-01T23:59:59.000Z

220

Table 11.5c Emissions From Energy Consumption for Electricity ...  

U.S. Energy Information Administration (EIA)

Notes: - Data are for emissions from energy consumption for electricity generation and useful thermal output. - See Table 11.5b for electric power sector data.

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table 8.4b Consumption for Electricity Generation by Energy ...  

U.S. Energy Information Administration (EIA)

Table 8.4b Consumption for Electricity Generation by Energy Source: Electric Power Sector, 1949-2011 (Subset of Table 8.4a; Trillion Btu)

222

Table 8.7b Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

Table 8.7b Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2011 (Subset of Table ...

223

Table 8.5c Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

Table 8.5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.5b)

224

A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation  

Science Conference Proceedings (OSTI)

This paper presents a hybrid adaptive network based fuzzy inference system (ANFIS), computer simulation and time series algorithm to estimate and predict electricity consumption estimation. The difficulty with electricity consumption estimation modeling ... Keywords: Adaptive network based fuzzy inference system, Computer simulation, Electricity consumption, Hybrid, Improvement, Time series

A. Azadeh; M. Saberi; A. Gitiforouz; Z. Saberi

2009-10-01T23:59:59.000Z

225

Shares of electricity generation from renewable energy sources ...  

U.S. Energy Information Administration (EIA)

Non-hydroelectric renewable generation has increased in many states over the past decade. In 2011, Maine had the highest percentage of non-hydroelectric renewable ...

226

Renewable technologies for energy security: institutions and investment in Fiji's electricity sector .  

E-Print Network (OSTI)

??Renewable energy technologies have been advocated in Fiji's electricity sector on the basis that they improve energy security and serve as a risk-mitigation measure against (more)

Dornan, Matthew

2013-01-01T23:59:59.000Z

227

Support for solar power and renewable electricity generation at the U.S. Environmental Protection Agency.  

E-Print Network (OSTI)

?? The United States Environmental Protection Agency (EPA) is poised to play an important role in supporting national plans for renewable electricity generation. As distributed (more)

Krausz, Brian

2009-01-01T23:59:59.000Z

228

Impacts of Renewable Fuel and Electricity Standards on State Economies (Poster)  

SciTech Connect

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, discusses the impacts of renewable fuel and electricity standards on state economies.

Brown, E.; Cory, K.; Brown, J.; Bird, L.; Sweezey, B.

2006-10-03T23:59:59.000Z

229

Wind Energy and Production of Hydrogen and Electricity -- Opportunities for Renewable Hydrogen: Preprint  

DOE Green Energy (OSTI)

An assessment of options for wind/hydrogen/electricity systems at both central and distributed scales provides insight into opportunities for renewable hydrogen.

Levene, J.; Kroposki, B.; Sverdrup, G.

2006-03-01T23:59:59.000Z

230

Comparing the Risk Profiles of Renewable and Natural Gas Electricity Contracts  

E-Print Network (OSTI)

Comparing the Risk Profiles of Renewable and Natural Gas Electricity Contracts: A Summary.............................................................................20 B. Natural Gas Tolling Contracts.............................................................................24 B. Natural Gas Tolling Contracts

Kammen, Daniel M.

231

Power to the Plug: An Introduction to Energy, Electricity, Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

more crude oil deposits in a short time. Renewable energy sources include biomass, geothermal energy, hydropower, solar energy, and wind energy. They are called renewable because...

232

Table 8.5c Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

biomass. Through 2000, also includes non-renewable waste ... Data also include a small number of electric utility combined-heat-and-power (CHP) ...

233

New Zealand Energy Data: Electricity Demand and Consumption | OpenEI  

Open Energy Info (EERE)

Electricity Demand and Consumption Electricity Demand and Consumption Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). The sectors included are: agriculture, forestry and fishing; industrial (mining, food processing, wood and paper, chemicals, basic metals, other minor sectors); commercial; and residential. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago)

234

Smart buildings with electric vehicle interconnection as buffer for local renewables?  

E-Print Network (OSTI)

Smart buildings with electric vehicle interconnection as buffer for local renewables? Michael, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement and partly by NEC Laboratories America Inc. Smart buildings with electric vehicle interconnection as buffer

235

Fuel Consumption for Electricity Generation, All Sectors United States  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption for Electricity Generation, All Sectors Fuel Consumption for Electricity Generation, All Sectors United States Coal (thousand st/d) .................... 2,361 2,207 2,586 2,287 2,421 2,237 2,720 2,365 2,391 2,174 2,622 2,286 2,361 2,437 2,369 Natural Gas (million cf/d) ............. 20,952 21,902 28,751 21,535 20,291 22,193 28,174 20,227 20,829 22,857 29,506 21,248 23,302 22,736 23,627 Petroleum (thousand b/d) ........... 128 127 144 127 135 128 135 119 131 124 134 117 131 129 127 Residual Fuel Oil ...................... 38 28 36 29 30 31 33 29 31 30 34 27 33 31 30 Distillate Fuel Oil ....................... 26 24 27 28 35 30 30 26 31 26 28 25 26 30 28 Petroleum Coke (a) .................. 59 72 78 66 63 63 66 59 62 63 67 60 69 63 63 Other Petroleum Liquids (b) ..... 5 3 4 4 7 5 5 5 7 5 5 5 4 6 6 Northeast Census Region Coal (thousand st/d) ....................

236

Renewable Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Portfolio Standard Renewable Portfolio Standard < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Bioenergy Biofuels Alternative Fuel Vehicles Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Heating Water Heating Wind Program Info State Hawaii Program Type Renewables Portfolio Standard Provider Hawaii Public Utilities Commission Under Hawaii's Renewable Portfolio Standard (RPS), each electric utility company that sells electricity for consumption in Hawaii must establish the following percentages of "renewable electrical energy" sales: * 10% of its net electricity sales by December 31, 2010;

237

consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 32.3 KiB)

238

Modelling the future development of renewable energy technologies in the European electricity sector using agent-based simulation.  

E-Print Network (OSTI)

??Increasing the share of renewable energy sources in final energy consumption forms an important part of the EU's energy and climate strategy. An agent-based simulation (more)

Held, Anne Mirjam

2010-01-01T23:59:59.000Z

239

Renewable Power Options for Electricity Generation on Kaua'i: Economics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Power Options for Electricity Generation on Kaua'i: Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. 52076.pdf More Documents & Publications Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

240

Analysis of electricity consumption profiles in public buildings with dimensionality reduction techniques  

Science Conference Proceedings (OSTI)

The analysis of the daily electricity consumption profile of a building and its correlation with environmental factors makes it possible to examine and estimate its electricity demand. As an alternative to the traditional correlation analysis, a new ... Keywords: Dimensionality reduction, Electricity consumption profiles, Energy efficiency, Information visualization

Antonio MorN, Juan J. Fuertes, Miguel A. Prada, SerafN Alonso, Pablo Barrientos, Ignacio DAz, Manuel DomNguez

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Smart Beijing: Correlation of Urban Electrical Energy Consumption with Urban Environmental Sensing for Optimizing Distribution Planning  

E-Print Network (OSTI)

Smart Beijing: Correlation of Urban Electrical Energy Consumption with Urban Environmental Sensing and investigates the environmental impact of the electrical energy consumer (transportation, buildings, street will be trained to recognize important city events and dynamics which will affect electrical power consumption

Beigl, Michael

242

Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols  

SciTech Connect

Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteriaare genetically engineered to convert the formic acid into liquid fuelin this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLAs electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

2010-07-01T23:59:59.000Z

243

Renewable Generation and Interconnection to the Electrical Grid in Southern California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SOUTHERN CALIFORNIA EDISON® SOUTHERN CALIFORNIA EDISON® SM 1 Federal Utility Partnership Working Group Providence, Rhode Island April 15, 2010 Renewable Generation and Interconnection to the Electrical Grid in Southern California Daniel Tunnicliff, P.E. Manager, Government & Institutions SOUTHERN CALIFORNIA EDISON® SM 2 Overview * SCE Overview * SCE Procurement Objectives * Renewable Procurement * Challenges to Meeting Renewable Goals in California * Interconnection Processes * Lessons Learned SOUTHERN CALIFORNIA EDISON® SM 3 SCE Overview * Large system  13 million residents  4.8 million customer accounts  50,000-square-mile service area * Nation's leader in environmental solutions  Energy efficiency  Renewable energy procurement  Electric transportation  Advanced meters  Smart grid

244

Promotion of electricity from renewable energy sources in Finland.  

E-Print Network (OSTI)

??The main purpose of this case was to study the development of energy projects from renewable energy sources and green energy promotion in Finland. A (more)

Pozdnyakova, Liudmila

2009-01-01T23:59:59.000Z

245

Renewable Energy For Electric Utilities (New Mexico) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

distribution cooperatives must offer their retail customers a voluntary renewable energy tariff to the extent that their suppliers under their all-requirements contracts...

246

Shares of electricity generation from renewable energy sources ...  

U.S. Energy Information Administration (EIA)

In 2011, the states with the largest shares of generation coming from renewables, including hydro, were: Idaho (93%), Washington (82%), and Oregon ...

247

Natural gas, renewables dominate electric capacity additions in ...  

U.S. Energy Information Administration (EIA)

Of the ten states with the highest levels of capacity additions, most of the new capacity uses natural gas or renewable energy sources.

248

Renewable Power Options for Electricity Generation on Kauai...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

coming from renewable energy by 2023. vii List of Acronyms Btu British thermal unit CSP concentrating solar power DER distributed energy resource DG distributed generation DOE...

249

Renewable utility-scale electricity production differs by fuel ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... For non-hydro renewables, the 2011 generation share ranges from less than 1% in Alaska, Ohio, Alabama, and Kentucky, ...

250

Modeling renewable portfolio standards for the annual energy outlook 1998 - electricity market module  

SciTech Connect

The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Load and Demand-Side Management (LDSM) Submodule. For the Annual Energy Outlook 1998 (AEO98), the EMM has been modified to represent Renewable Portfolio Standards (RPS), which are included in many of the Federal and state proposals for deregulating the electric power industry. A RPS specifies that electricity suppliers must produce a minimum level of generation using renewable technologies. Producers with insufficient renewable generating capacity can either build new plants or purchase {open_quotes}credits{close_quotes} from other suppliers with excess renewable generation. The representation of a RPS involves revisions to the ECP, EFD, and the EFP. The ECP projects capacity additions required to meet the minimum renewable generation levels in future years. The EFD determines the sales and purchases of renewable credits for the current year. The EFP incorporates the cost of building capacity and trading credits into the price of electricity.

1998-02-01T23:59:59.000Z

251

Table CE3-6.1u. Electric Air-Conditioning Energy Consumption and ...  

U.S. Energy Information Administration (EIA)

Table CE3-6.1u. Electric Air-Conditioning Energy Consumption and Expenditures by Household Member and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

252

Table CE3-6.2u. Electric Air-Conditioning Energy Consumption and ...  

U.S. Energy Information Administration (EIA)

Table CE3-6.2u. Electric Air-Conditioning Energy Consumption and Expenditures by Square Feet and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

253

Table 8.7c Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

Table 8.7c Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2011 (Subset of ...

254

Table 8.7a Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

Table 8.7a Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2011 (Sum of ...

255

Table 8.4c Consumption for Electricity Generation by Energy ...  

U.S. Energy Information Administration (EIA)

Table 8.4c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.4a; Trillion ...

256

U.S. natural gas consumption for electric power tops industrial ...  

U.S. Energy Information Administration (EIA)

tags: consumption demand electricity generation industrial natural gas. Email Updates. RSS Feeds. Facebook. Twitter. YouTube. Add us to your site.

257

End-Use Consumption of Electricity by End Use and Appliance  

U.S. Energy Information Administration (EIA)

Home > Residential Home > Special Topics > Figure 1. Percent of Total Electricity Consumption in U.S. Housing Units, 2001 . Contact. Chip Berry

258

Table 8.7c Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

Table 8.7c Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2011 ...

259

Table 2.1f Electric Power Sector Energy Consumption, 1949-2011 ...  

U.S. Energy Information Administration (EIA)

1 See "Primary Energy Consumption" in Glossary. 9 Wind electricity net generation (converted to Btu using the fossil-fuels heat ratesee Table A6).

260

Household activities through various lenses: crossing surveys, diaries and electric consumption  

E-Print Network (OSTI)

changes differ from one appliance to another. Referencespeople activities, appliances use, and electric consumption.of use of the three appliances studied. However, variations

Durand-Daubin, Mathieu

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Empowering Minds to Engineer the Future Electric Energy System Challenges in Integrating g Renewable Technologies into an Electric Power  

E-Print Network (OSTI)

Presented by WIRES- a national coalition of investor- and publicly-owned transmission providers customers, renewable energy developers, and technology and service companies dedicated to promoting investment in strong, well-planned, and beneficial high voltage electric transmission infrastructure

Dennis Ray

2010-01-01T23:59:59.000Z

262

Integrating High Levels of Renewables in to the Lanai Electric Grid  

DOE Green Energy (OSTI)

The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Sandia National Laboratory (Sandia) to assess the economic and technical feasibility of increasing the contribution of renewable energy sources on the island of Lanai with a stated goal of reaching 100% renewable energy. NREL and Sandia partnered with Castle & Cooke, Maui Electric Company (MECO), and SRA International to perform the assessment.

Kroposki, B.; Burman, K.; Keller, J.; Kandt, A.; Glassmire, J.; Lilienthal, P.

2012-06-01T23:59:59.000Z

263

Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation), National Renewable Energy Laboratory (NREL)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration for Electric Vehicle Grid Integration for Sustainable Military Installations NDIA Joint Service Power Expo Mike Simpson Mike.Simpson@NREL.gov 5 May 2011 NREL/PR-5400-51519 NATIONAL RENEWABLE ENERGY LABORATORY Agenda 2 1. NREL Transportation Research 2. Net Zero Energy Installations (NZEI) 3. Fort Carson as a Case Study - Vehicles On-Site - Utility Operations - Vehicle Charge Management 4. Full Fleet Simulation 5. Continuing Work NATIONAL RENEWABLE ENERGY LABORATORY NREL is the only national laboratory solely dedicated to advancing renewable energy and energy efficiency. Our employees are committed to building a cleaner, sustainable world. Photo Credits: NREL 3 NATIONAL RENEWABLE ENERGY LABORATORY What is Electric Vehicle Grid Integration (EVGI)? 4 Cross Cutting Enablers Grid / Renewables

264

Table 8.7b Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

Table 8.7b Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2011 (Subset of Table 8.7a) ...

265

Table 11.5b Emissions From Energy Consumption for Electricity ...  

U.S. Energy Information Administration (EIA)

Table 11.5b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a ...

266

Oconee Electrical Component Integrated Plant Assessment and Time Limited Aging Analyses for License Renewal: Revision 1  

Science Conference Proceedings (OSTI)

Duke Power Co. and Baltimore Gas and Electric Co. were the first two utilities to apply for and obtain license renewal for their nuclear units. This report is one in a series of EPRI reports providing the technical basis for the Oconee and Calvert Cliffs License Renewal Applications.

2000-08-10T23:59:59.000Z

267

Renewable energy annual 1997. Volume 1  

SciTech Connect

This report presents information on renewable energy consumption, capacity, and electricity generation data, as well as data on US solar thermal and photovoltaic collector manufacturing activities. The renewable energy resources included in the report are: biomass (wood, ethanol, and biodiesel); municipal solid waste; geothermal; wind; and solar (solar thermal and photovoltaic). The first chapter of the report provides an overview of renewable energy use and capability from 1992 through 1996. It contains renewable energy consumption, capacity, and electricity generation data, as well as descriptive text. Chapter 2 presents current (through 1996) information on the US solar energy industry. A glossary of renewable energy terms is also included. 15 figs., 42 tabs.

1998-02-01T23:59:59.000Z

268

On Minimizing the Energy Consumption of an Electrical Vehicle  

E-Print Network (OSTI)

Abstract. The electrical vehicle energy management can be expressed ... Electrical vehicle uses an electrical energy source for its displacement which can.

269

Integrating High Levels of Renewables into the Lanai Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

4.3 Wind Power Options There are two options for adding wind power to the renewable energy mix. As is shown in Figure 4-3, Option A would connect the large wind farm on the...

270

Forecast of the electricity consumption by aggregation of specialized experts; application to Slovakian and French  

E-Print Network (OSTI)

Forecast of the electricity consumption by aggregation of specialized experts; application-term forecast of electricity consumption based on ensemble methods. That is, we use several possibly independent base forecasters and design meta-forecasters which combine the base predictions that are output by them

271

Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling  

DOE Green Energy (OSTI)

The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid.

Burman, K.; Keller, J.; Kroposki, B.; Lilienthal, P.; Slaughter, R.; Glassmire, J.

2011-11-01T23:59:59.000Z

272

Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)  

DOE Green Energy (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-03-01T23:59:59.000Z

273

Electricity Net Generation From Renewable Energy by Energy Use Sector and  

Open Energy Info (EERE)

Net Generation From Renewable Energy by Energy Use Sector and Net Generation From Renewable Energy by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual net electricity generation (thousand kilowatt-hours) from renewable energy in the United States by energy use sector (commercial, industrial, electric power) and by energy source (e.g. biomas, solar thermal/pv). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords 2004 2008 Electricity net generation renewable energy Data application/vnd.ms-excel icon 2008_RE.net_.generation_EIA.Aug_.2010.xls (xls, 16.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 - 2008 License License Other or unspecified, see optional comment below Comment Rate this dataset

274

NREL Helps Cool the Power Electronics in Electric Vehicles (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Helps Cool the Power Helps Cool the Power Electronics in Electric Vehicles Researchers at the National Renewable Energy Laboratory (NREL) are developing and demonstrating innovative heat-transfer technologies for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine Tube, Inc., NREL is using surface enhancements to dissipate heat more effectively, permitting a reduction in the size of power electronic systems and potentially reducing the overall costs of electric vehicles. Widespread use of advanced electric-drive vehicles-including electric vehicles (EVs) and hybrid electric vehicles (HEVs)-could revolutionize transportation and dramatically reduce U.S. oil consumption. Improving the cost and performance of these vehicles' electric-drive systems

275

Consumption of Coal for Electricity Generation by State by Sector...  

Open Energy Info (EERE)

Coal for Electricity Generation by State by Sector, January 2011 and 2010 This dataset contains state by state comparisons of coal for electricity generation in the United States....

276

Consumption of Natural Gas for Electricity Generation by State...  

Open Energy Info (EERE)

Natural Gas for Electricity Generation by State by Sector, January 2011 and 2010 This dataset contains state by state comparisons of natural gas for electricity generation in the...

277

Willingness to Pay for Electricity from Renewable Resources:...  

NLE Websites -- All DOE Office Websites (Extended Search)

C-2 Willingness to Subscribe to Product with Different Levels of Environmentally Friendly Electricity at Various Price Increases . . . . . . . . . . . . . . . . . . . . . . . . . ....

278

Shares of electricity generation from renewable energy sources up ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... imports and exports, production, prices, sales. Electricity.

279

Technological impact of Non-Conventional Renewable Energy in the Chilean Electricity System  

E-Print Network (OSTI)

Technological impact of Non-Conventional Renewable Energy in the Chilean Electricity System Juan D of methodology and analysis of the energy sector, considering whether they are simulation models. Molina C. GSM Victor J. Martinez A. GSM Hugh Rudnick, Fellow Department of Electrical Engineering

Rudnick, Hugh

280

Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies  

DOE Green Energy (OSTI)

Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption  

E-Print Network (OSTI)

: Engineering-industry, secondary: Econometrics. 1 Introduction The electric power mid-term loads forecasting: Estimated annual temperature sensitive electricity load components 3 Mid-term load forecasting StatisticalAir-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption

Paris-Sud XI, Université de

282

A Preliminary Examination of the Supply and Demand Balance for Renewable Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

A Preliminary Examination A Preliminary Examination of the Supply and Demand Balance for Renewable Electricity Blair Swezey, Jørn Aabakken, and Lori Bird Technical Report NREL/TP-670-42266 October 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 A Preliminary Examination of the Supply and Demand Balance for Renewable Electricity Blair Swezey, Jørn Aabakken, and Lori Bird Prepared under Task No. WF6N.1015 Technical Report NREL/TP-670-42266 October 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

283

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan National Renewable Energy Laboratory National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov The Joint Institute for Strategic Energy Analysis 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.jisea.org Technical Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan

284

Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

258 258 May 2010 Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector Lori Bird, Caroline Chapman, Jeff Logan, Jenny Sumner, and Walter Short National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-48258 May 2010 Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector Lori Bird, Caroline Chapman, Jeff Logan, Jenny Sumner, and Walter Short Prepared under Task No. SAO9.2038 NOTICE

285

Preliminary Examination of the Supply and Demand Balance for Renewable Electricity  

SciTech Connect

In recent years, the demand for renewable electricity has accelerated as a consequence of state and federal policies and the growth of voluntary green power purchase markets, along with the generally improving economics of renewable energy development. This paper reports on a preliminary examination of the supply and demand balance for renewable electricity in the United States, with a focus on renewable energy projects that meet the generally accepted definition of "new" for voluntary market purposes, i.e., projects installed on or after January 1, 1997. After estimating current supply and demand, this paper presents projections of the supply and demand balance out to 2010 and describe a number of key market uncertainties.

Swezey, B.; Aabakken, J.; Bird, L.

2007-10-01T23:59:59.000Z

286

202-328-5000 www.rff.orgFederal Policies for Renewable Electricity: Impacts and Interactions  

E-Print Network (OSTI)

Three types of policies that are prominent in the federal debate over addressing greenhouse gas emissions in the United States are a cap-and-trade program (CTP) on emissions, a renewable portfolio standard (RPS) for electricity production, and tax credits for renewable electricity producers. Each of these policies would have different consequences, and combinations of these policies could induce interactions yielding a whole that is not the sum of its parts. This paper utilizes the Haiku electricity market model to evaluate the economic and technology outcomes, climate benefits, and cost-effectiveness of three such policies and all possible combinations of the policies. A central finding is that the carbon dioxide (CO2) emissions reductions from CTP can be significantly greater than those from the other policies, even for similar levels of renewable electricity production, since of the three policies, CTP is the only one that distinguishes electricity generated by coal and natural gas. It follows that CTP is the most cost-effective among these approaches at reducing CO2 emissions. An alternative compliance payment mechanism in an RPS program could substantially affect renewables penetration, and the electricity price effects of the policies hinge partly on the regulatory structure of electricity markets, which varies across the country.

Karen Palmer; Anthony Paul; Matt Woerman; Karen Palmer; Anthony Paul; Matt Woerman

2011-01-01T23:59:59.000Z

287

Enabling Renewable Energy and the Future Grid with Advanced Electricity Storage  

DOE Green Energy (OSTI)

Environmental concerns about using fossil fuels and their resource constrains, along with that on energy security, have spurred great interests in generating electrical energy from renewable sources such as wind and solar. The variable and stochastic nature of renewable sources however makes solar and wind power difficult to manage, especially at high levels of penetration. To effectively use the intermittent renewable energy and enable its delivery demand electrical energy storage (EES) that can also improve the reliability, stability, and efficiency of the electrical grid, which is expected to support plug-in electrical vehicles; enable real-time, two-way communication to balance demand and supply. While EES has gained wide attention for hybrid and electrical vehicle (e.g. plug-in-hybrid electrical) needs, public awareness and understanding of the critical challenges in energy storage for renewable integration and the future grid is relatively lacking. This paper examines the benefits and challenges of EES, in particular electrochemical storage or battery technologies, and discusses the fundamental principles, economics, and feasibility of the storage technologies. It intends to provide an understanding of the needs and challenges of electrical storage technologies for the stationary applications and offer general directions of research and development to the materials community.

Yang, Zhenguo; Liu, Jun; Baskaran, Suresh; Imhoff, Carl H.; Holladay, Jamelyn D.

2010-08-06T23:59:59.000Z

288

El Paso Electric Company - Small and Medium System Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential State Government Savings Category Energy Sources Buying & Making Electricity Solar Wind Program Info Start Date 312009 State New Mexico Program Type...

289

Austin Energy Offers 100% Renewable Electrical Vehicle Charging ...  

Austin area electric vehicle drivers can purchase pre-paid Plug-in EVerywhere network cards for $25 each, which allows unlimited public station charging for six months.

290

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Western Electricity Coordinating Council California This dataset comes from the Energy Information Administration (EIA),...

291

Renewable electricity production grows in Texas - Today in ...  

U.S. Energy Information Administration (EIA)

... the warmest month on record in the state, there were severe spikes in wholesale electric prices as well as emergency actions taken by the grid ...

292

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

293

The integration of renewable energy sources into electric power transmission systems  

DOE Green Energy (OSTI)

Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L. [Oak Ridge National Lab., TN (United States); Lawler, J.S. [Univ. of Tennessee, Knoxville, TN (United States)

1995-07-01T23:59:59.000Z

294

Impact of 1980 scheduled capacity additions on electric-utility oil consumption  

SciTech Connect

The electric-utility sector currently consumes approximately 8% of the total oil used in the Nation. This oil represented about 15% of total fuel consumed by electric utilities in 1979. Two important factors that affect the level of utility oil consumption in 1980 are the substantial increase in coal-fired generating capacity and the uncertainty surrounding nuclear-plant licensing. With particular emphasis on these considerations, this report analyzes the potential for changes in electric-utility oil consumption in 1980 relative to the 1979 level. Plant conversions, oil to coal, for example, that may occur in 1980 are not considered in this analysis. Only the potential reduction in oil consumption resulting from new generating-capacity additions is analyzed. Changes in electric-utility oil consumption depend on, among other factors, regional-electricity-demand growth and generating-plant mix. Five cases are presented using various electricity-demand-growth rate assumptions, fuel-displacement strategies, and nuclear-plant-licensing assumptions. In general, it is likely that there will be a reduction in electric-utility oil consumption in 1980. Using the two reference cases of the report, this reduction is projected to amount to a 2 to 5% decrease from the 1979 oil-consumption level; 7% reduction is the largest reduction projected.

Gielecki, M.; Clark, G.; Roberts, B.

1980-08-01T23:59:59.000Z

295

Fleet Renewal with Electric Vehicles at La Poste  

Science Conference Proceedings (OSTI)

We provide a decision model for La Poste, the French national postal operator, to address its adoption of electric vehicles (EVs) for mail and parcel distribution. Two competing technologies are availableinternal combustion vehicles (ICVs) and ... Keywords: decision making under uncertainty, electric vehicles, equipment replacement, real options

Paul R. Kleindorfer; Andrei Neboian; Alain Roset; Stefan Spinler

2012-09-01T23:59:59.000Z

296

Persuading consumers to reduce their consumption of electricity in the home  

Science Conference Proceedings (OSTI)

Previous work has identified that providing real time feedback or interventions to consumers can persuade consumers to change behaviour and reduce domestic electricity consumption. However, little work has investigated what exactly those feedback mechanisms ...

Alan F. Smeaton, Aiden R. Doherty

2013-04-01T23:59:59.000Z

297

Table CE3-4c. Electric Air-Conditioning Energy Consumption in U.S ...  

U.S. Energy Information Administration (EIA)

Table CE3-4c. Electric Air-Conditioning Energy Consumption in U.S. Households by Type of Housing Unit, 2001 RSE Column Factor: Total Type of Housing Unit

298

Table CE3-1c. Electric Air-Conditioning Energy Consumption in U.S ...  

U.S. Energy Information Administration (EIA)

Table CE3-1c. Electric Air-Conditioning Energy Consumption in U.S. Households by Climate Zone, 2001 RSE Column Factor: Total Climate Zone1 RSE Row

299

Table 11.5a Emissions From Energy Consumption for Electricity ...  

U.S. Energy Information Administration (EIA)

Table 11.5a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and ...

300

As Global energy consumption rises, more research is being conducted towards alternative renewable  

E-Print Network (OSTI)

the combustion properties of each fatty acid in biodiesel. Simulating methyl oleate as 100% biodiesel would allow renewable fuels. · Combustion modeling is being used to simulate biodiesel combustion in diesel engines. · Simulating biodiesel combustion to obtain combustion data relevant to real world applications, can be very

Hutcheon, James M.

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Portland General Electric Company Renewable Energy RFP , Deadline Sept 28, 2001  

NLE Websites -- All DOE Office Websites (Extended Search)

Portland General Electric Company Portland General Electric Company REQUEST FOR PROPOSALS Issued: August 22, 2001 INTRODUCTION Portland General Electric Company (PGE) is requesting bid proposals for retail marketing services and renewable power or tradable renewable credits (TRCs) sufficient to meet the needs of PGE customer enrollments for the period from March 1, 2002 to December 31, 2003. Proposals are due by 5:00 p.m. on September 28, 2001. Pursuant to the Oregon Public Utility Commission (OPUC) adoption of Portfolio Options contained in ORS 757.603(2), OAR 860-038-0220 (refer to OPUC Order 01-337 at http://www.puc.state.or.us/orders/2001ords/01-337.pdf.) PGE is seeking to purchase Marketing Services and Renewable Energy or TRCs in support of the Company's portfolio option offers of

302

Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission  

Science Conference Proceedings (OSTI)

The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.

Mosey, G.; Vimmerstedt, L.

2009-07-01T23:59:59.000Z

303

Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector  

SciTech Connect

This report examines the impact of various renewable portfolio standards (RPS) and cap-and-trade policy options on the U.S. electricity sector, focusing mainly on renewable energy generation. The analysis uses the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that simulates the least-cost expansion of electricity generation capacity and transmission in the United States to examine the impact of an emissions cap--similar to that proposed in the Waxman-Markey bill (H.R. 2454)--as well as lower and higher cap scenarios. It also examines the effects of combining various RPS targets with the emissions caps. The generation mix, carbon emissions, and electricity price are examined for various policy combinations to simulate the effect of implementing policies simultaneously.

Bird, L.; Chapman, C.; Logan, J.; Sumner, J.; Short, W.

2010-05-01T23:59:59.000Z

304

Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE))

Renewable energy leveraged from natural, renewable resources delivers electricity, heating, cooling, and other applications to Federal facilities and fleets. By using renewable energy, Federal agencies increase national security, conserve natural resources, and meet regulatory requirements and goals.

305

The Integration of Renewable Energy Sources into Electric Power Distribution Systems  

Science Conference Proceedings (OSTI)

Renewable energy technologies such as photovoltaic, solar thermal electricity, and wind turbine power are environmentally beneficial sources of electric power generation. The integration of renewable energy sources into electric power distribution systems can provide additional economic benefits because of a reduction in the losses associated with transmission and distribution lines. Benefits associated with the deferment of transmission and distribution investment may also be possible for cases where there is a high correlation between peak circuit load and renewable energy electric generation, such as photovoltaic systems in the Southwest. Case studies were conducted with actual power distribution system data for seven electric utilities with the participation of those utilities. Integrating renewable energy systems into electric power distribution systems increased the value of the benefits by about 20 to 55% above central station benefits in the national regional assessment. In the case studies presented in Vol. II, the range was larger: from a few percent to near 80% for a case where costly investments were deferred. In general, additional savings of at least 10 to 20% can be expected by integrating at the distribution level. Wind energy systems were found to be economical in good wind resource regions, whereas photovoltaic systems costs are presently a factor of 2.5 too expensive under the most favorable conditions.

Barnes, P.R.

1994-01-01T23:59:59.000Z

306

Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy, and Small-?Scale Cogeneration.  

E-Print Network (OSTI)

??There is growing interest in reducing the environmental and human-?health impacts resulting from electricity generation. Renewable energy, energy efficiency, and energy conservation are all commonly (more)

Siler-Evans, Kyle

2012-01-01T23:59:59.000Z

307

The future role of renewable energy sources in European electricity supply : A model-based analysis for the EU-15.  

E-Print Network (OSTI)

??Ambitious targets for the use of renewable electricity (RES-E) have been formulated by the EU Commission and the EU Member States. Taking into account technical, (more)

Rosen, Johannes

2008-01-01T23:59:59.000Z

308

Optimization of Electric Energy Consumption in Marginal California Oilfields: Oilfields Energy Consumption Optimization  

Science Conference Proceedings (OSTI)

High electrical cost has always constituted a major expense item in the operation of oilfields. Such high costs are particularly critical to small oil and gas operators. There are opportunities that can substantially reduce electric cost and improve energy usage efficiency. For small operators, this could mean a difference between premature abandonment and continued recovery. Energy reduction in oil production supports the need for energy reduction across all industries brought on by recent electrical en...

2001-10-18T23:59:59.000Z

309

Communication and Control of Electric Vehicles Supporting Renewables...  

NLE Websites -- All DOE Office Websites (Extended Search)

current state of charge, is the RT energy available in the battery pack, and is the base price of electricity, representing the cost originally paid to get the energy into the...

310

Role of Renewable Energy in a Sustainable Electric Generation ...  

U.S. Energy Information Administration (EIA)

Plug-in Hybrid Electric Vehicles (PHEV) Widely Available and Deployed After 2020 None Carbon Capture and Storage (CCS) Nuclear Generation 12.5 GWe by 2030 64 GWe by 2030

311

Tribal Renewable Energy Foundational Course: Electricity Grid Basics  

Energy.gov (U.S. Department of Energy (DOE))

Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on electricity grid basics by clicking on the .swf link below. You can also download the PowerPoint slides...

312

An Integrated Geovisual Analytics Framework for Analysis of Energy Consumption Data and Renewable Energy Potentials  

SciTech Connect

We present an integrated geovisual analytics framework for utility consumers to interactively analyze and benchmark their energy consumption. The framework uses energy and property data already available with the utility companies and county governments respectively. The motivation for the developed framework is the need for citizens to go beyond the conventional utility bills in understanding the patterns in their energy consumption. There is also a need for citizens to go beyond one-time improvements that are often not monitored and measured over time. Some of the features of the framework include the ability for citizens to visualize their historical energy consumption data along with weather data in their location. The quantity of historical energy data available is significantly more than what is available from utility bills. An overlay of the weather data provides users with a visual correlation between weather patterns and their energy consumption patterns. Another feature of the framework is the ability for citizens to compare their consumption on an aggregated basis to that of their peers other citizens living in houses of similar size and age and within the same or different geographical boundaries, such as subdivision, zip code, or county. The users could also compare their consumption to others based on the size of their family and other attributes. This feature could help citizens determine if they are among the best in class . The framework can also be used by the utility companies to better understand their customers and to plan their services. To make the framework easily accessible, it is developed to be compatible with mobile consumer electronics devices.

Omitaomu, Olufemi A [ORNL; Maness, Christopher S [ORNL; Kramer, Ian S [ORNL; Kodysh, Jeffrey B [ORNL; Bhaduri, Budhendra L [ORNL; Steed, Chad A [ORNL; Karthik, Rajasekar [ORNL; Nugent, Philip J [ORNL; Myers, Aaron T [ORNL

2012-01-01T23:59:59.000Z

313

Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management  

DOE Green Energy (OSTI)

The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

A. David Lester

2008-10-17T23:59:59.000Z

314

Consumption  

E-Print Network (OSTI)

www.eia.gov Annual Energy Outlook 2013 projections to 2040 Growth in energy production outstrips consumption growth Crude oil production rises sharply over the next decade Motor gasoline consumption reflects more stringent fuel economy standards The U.S. becomes a net exporter of natural gas in the early 2020s U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040

Adam Sieminski Administrator; Adam Sieminski; Adam Sieminski; Adam Sieminski; Adam Sieminski

2013-01-01T23:59:59.000Z

315

How much of world energy consumption and electricity generation is ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. Coal. ... tariff, and demand charge data? How is electricity used in U.S. homes?

316

Can I generate and sell electricity to an electric utility? - FAQ ...  

U.S. Energy Information Administration (EIA)

How many alternative fuel and hybrid vehicles are there in the U.S.? How much U.S. energy consumption and electricity generation comes from renewable sources?

317

Economics of Nuclear and Renewable Electricity Energy Science Coalition  

E-Print Network (OSTI)

Nuclear energy arose as a spin-off from nuclear weapons. Its use grew rapidly during the 1960s, nurtured by huge subsidies and the belief that nuclear electricity would soon become too cheap to meter. According to the International Atomic Energy Agency, at the end of 2009 there were 438 operating nuclear power reactors in the world, total

Dr Mark Diesendorf

2010-01-01T23:59:59.000Z

318

Development of renewable energy Challenges for the electrical grids  

E-Print Network (OSTI)

Energy Association : 450 member companies · Representing 10 billion Euros turnover and 80 000 jobs · Multi-industry : Wind, Photovoltaïcs, hydroelectricity, Biomass, Marine Energy, Thermal solar ­ 5 400 MW solar PV ­ 2 300 MW Biomass ­ ... · Significant change of the electricity production scheme

Canet, Léonie

319

Software system for calculation and analysis of electrical power, derived from renewable energy sources  

Science Conference Proceedings (OSTI)

The software system for modeling and analysis of the processes of electric power conversion of renewable energy sources (solar radiation and wind velocity) is described. The characteristics of the generators and specific climatic conditions of the geographical ... Keywords: graphical dependences, photovoltaics and wind turbine generators, programme models

Katerina Gabrovska; Nicolay Mihailov

2003-06-01T23:59:59.000Z

320

Investigating optimal configuration of a prospective renewable-based electricity supply sector  

Science Conference Proceedings (OSTI)

Proposed emission reduction targets as well as the scarcity of fossil fuel resources make a transition of the energy system towards a carbon free electricity supply necessary. Promising energy resources are solar and wind energy. The high temporal and ... Keywords: energy system model, geographic information system (GIS), linear optimization, power supply, renewable energy, simulation, supergrid

Tino Aboumahboub; Katrin Schaber; Peter Tzscheutschler; Thomas Hamacher

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Optimization of the utilization of renewable energy sources in the electricity sector  

Science Conference Proceedings (OSTI)

Emission reduction targets as well as the scarcity of fossil resources make a transition of the energy system towards a carbon free electricity supply necessary. Promising energy resources are solar and wind energy. The challenging characteristics of ... Keywords: energy system model, geographic information system (GIS), linear optimization, power supply, renewable energy, simulation, supergrid

Tino Aboumahboub; Katrin Schaber; Peter Tzscheutschler; Thomas Hamacher

2010-02-01T23:59:59.000Z

322

Evaluating Policies to Increase the Generation of Electricity from Renewable Energy  

E-Print Network (OSTI)

Focusing on the U.S. and the E.U., this essay seeks to advance four main propositions. First, the incidence of the short-run costs of programs to subsidize the generation of electricity from renewable sources varies with ...

Schmalensee, Richard

323

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

Ways to Switch America to Renewable Electricity. Cambridge,Dioxide, and Mercury and a Renewable Portfolio Standard.associated with the use of renewable and natural gas-fired

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

324

Large Scale Deployment of Renewables for Electricity Generation  

E-Print Network (OSTI)

-cellulose material. Anaerobic digestion or gasification of biomass produces gas that can be used in similar applications to natural gas. Small-scale biogas production is now a well-established technology and large-scale application is in the advanced stages... of development. The possibility of using biogas in fuel cells exists, but there are a number of technical difficulties that remain to be overcome in this area. Source: www.britishbiogen.co.uk and WEA (2000). 5 All figures refer to electricity.Where necessary...

Neuhoff, Karsten

2006-03-14T23:59:59.000Z

325

Integrating Renewable Energy Using Data Analytics Systems: Challenges and Opportunities  

E-Print Network (OSTI)

Integrating Renewable Energy Using Data Analytics Systems: Challenges and Opportunities Andrew and intermittent nature of many renewable energy sources makes integrating them into the electric grid challenging-following loads adjust their power consumption to match the avail- able renewable energy supply. We show Internet

California at Berkeley, University of

326

Electric Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Electric Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. electric vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find electric vehicle and infrastructure codes and standards in these categories:

327

Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)  

DOE Green Energy (OSTI)

As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

Not Available

2013-09-01T23:59:59.000Z

328

Electric Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dispensing Dispensing Infrastructure NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. CONTROLLING AUTHORITIES: State and Federal Energy Regulatory Commissions CONTROLLING AUTHORITIES: Local Building and Fire Departments CONTROLLING AUTHORITIES: DOT/NHTS Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for electric. Electric Vehicle and Infrastructure Codes and Standards Chart Institute of Electrical and Electronics Engineers, Inc. FERC Federal Energy

329

renewable energy | OpenEI  

Open Energy Info (EERE)

energy energy Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 32.3 KiB)

330

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures  

E-Print Network (OSTI)

and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Trieu Mai, Ph.D. 5th International Conference on Integration of Renewable and Distributed Energy Resources source. · To what extent can renewable energy technologies commercially available today meet the U

331

Biomass power and state renewable energy policies under electric industry restructuring  

DOE Green Energy (OSTI)

Several states are pursuing policies to foster renewable energy as part of efforts to restructure state electric power markets. The primary policies that states are pursuing for renewables are system benefits charges (SBCs) and renewable portfolio standards (RPSs). However, the eligibility of biomass under state RPS and SBC policies is in question in some states. Eligibility restrictions may make it difficult for biomass power companies to access these policies. Moreover, legislative language governing the eligibility of biomass power is sometimes vague and difficult to interpret. This paper provides an overview of state RPS and SBC policies and focuses on the eligibility of biomass power. For this paper, the authors define biomass power as using wood and agricultural residues and landfill methane, but not waste-to-energy, to produce energy.

Porter, K.; Wiser, R.

2000-08-01T23:59:59.000Z

332

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

incentives, TGC) PV feed in Renewable energy act Renewables Portfolio Standards Selected technologies Clean Energy

Haas, Reinhard

2008-01-01T23:59:59.000Z

333

Monitoring Electricity Consumption in the Tertiary Sector- A Project within the Intelligent Energy Europe Program  

E-Print Network (OSTI)

The electricity consumption in the tertiary sector in the EU is still increasing and a further increase is expected of more than 2 % per year during the next 15 years. This sector includes companies and institutions of public and private services with heterogeneous economic and energy-related characteristics. Building managers and decision-makers are not enough informed about the electricity consumption structure and electricity-saving potentials. Within the EU Intelligent Energy project EL-TERTIARY an overview of existing studies showed that the availability of disaggregated data on electricity consumption and its use by purpose (lighting, office equipment, ventilation, air conditioning, etc.) is poor. The methods of determining the types of end-uses are weak; most studies are based on calculations and estimations, only a few on measurement. In addition, many of the results are not published. EL-TERTIARY developed an internet-based methodology for monitoring electricity consumption. It was applied in more than 120 case studies in 12 EU countries. They cover various types of buildings: offices, schools, universities, kindergartens, hotels, supermarkets, and hospitals evaluating more than 900 technical systems. On the background of ongoing activities on EU level, such as directives, research and implementation projects the paper illustrates the concept of EL-TERTIARY, the newly developed methodology for the documentation of building audits and monitoring as well as selected results.

Plesser, S.; Fisch, M. N.; Gruber, E.; Schlomann, B.

2008-10-01T23:59:59.000Z

334

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

Science Conference Proceedings (OSTI)

The promotion of electricity generated from Renewable Energy Sources (RES) has recently gained high priority in the energy policy strategies of many countries in response to concerns about global climate change, energy security and other reasons. This chapter compares and contrasts the experience of a number of countries in Europe, states in the US as well as Japan in promoting RES, identifying what appear to be the most successful policy measures. Clearly, a wide range of policy instruments have been tried and are in place in different parts of the world to promote renewable energy technologies. The design and performance of these schemes varies from place to place, requiring further research to determine their effectiveness in delivering the desired results. The main conclusions that can be drawn from the present analysis are: (1) Generally speaking, promotional schemes that are properly designed within a stable framework and offer long-term investment continuity produce better results. Credibility and continuity reduce risks thus leading to lower profit requirements by investors. (2) Despite their significant growth in absolute terms in a number of key markets, the near-term prognosis for renewables is one of modest success if measured in terms of the percentage of the total energy provided by renewables on a world-wide basis. This is a significant challenge, suggesting that renewables have to grow at an even faster pace if we expect them to contribute on a significant scale to the world's energy mix.

Haas, Reinhard; Meyer, Niels I.; Held, Anne; Finon, Dominique; Lorenzoni, Arturo; Wiser, Ryan; Nishio, Ken-ichiro

2007-06-01T23:59:59.000Z

335

Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience  

DOE Green Energy (OSTI)

Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.

Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

2012-04-01T23:59:59.000Z

336

Evolutionary Tuning of Building Models to Monthly Electrical Consumption  

SciTech Connect

Building energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Calibrating models is costly because it is currently an art which requires significant manual effort by an experienced and skilled professional. An automated methodology could significantly decrease this cost and facilitate greater adoption of energy simulation capabilities into the marketplace. The Autotune project is a novel methodology which leverages supercomputing, large databases of simulation data, and machine learning to allow automatic calibration of simulations to match measured experimental data on commodity hardware. This paper shares initial results from the automated methodology applied to the calibration of building energy models (BEM) for EnergyPlus (E+) to reproduce measured monthly electrical data.

Garrett, Aaron [Jacksonville State University; New, Joshua Ryan [ORNL; Chandler, Theodore [Jacksonville State University

2013-01-01T23:59:59.000Z

337

iREED 2008 Renewable Energies and Eco-Design in Electrical Engineering, 10-11 December 2008 ECO-DESIGN OF ELECTRO-MECHANICAL ENERGY CONVERTERS  

E-Print Network (OSTI)

iREED 2008 Renewable Energies and Eco-Design in Electrical Engineering, 10-11 December 2008 ECO Author manuscript, published in "Conference on Renewable Energies and Eco-Design in Electrical Engineering 2008, MONTPELLIER : France (2008)" #12;iREED 2008 Renewable Energies and Eco-Design in Electrical

Paris-Sud XI, Université de

338

UK Electricity Consumption and Number of Meters at MLSOA level (2008) |  

Open Energy Info (EERE)

8) 8) Dataset Summary Description The UK Department of Energy and Climate Change (DECC) releases annual statistics on domestic and non-domestic electricity and gas consumption (and number of meters) at the Middle Layer Super Output Authority (MLSOA) and Intermediate Geography Zone (IGZ) level (there are over 950 of these subregions throughout England, Scotland and Wales). Both MLSOAs (England and Wales) and IGZs (Scotland) include a minimum of approximately 2,000 households. The electricity consumption data data is split by ordinary electricity and economy7 electricity usage. All data in this set are classified as UK National Statistics. Related socio-economic data for MLSOA and IGZ levels can be accessed: http://decc.gov.uk/assets/decc/Statistics/regional/mlsoa2008/181-mlsoa-i...

339

Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows  

DOE Green Energy (OSTI)

The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

NONE

1996-11-01T23:59:59.000Z

340

Non-powered Dams: An untapped source of renewable electricity in the USA  

Science Conference Proceedings (OSTI)

Hydropower has been a source of clean, renewable electricity in the USA for more than 100 years. Today, approximately 2500 US dams provide 78 GW of conventional and 22 GW of pumped-storage hydropower. In contrast, another approximately 80 000 dams in the USA do not include hydraulic turbine equipment and provide non-energy related services, such as flood control, water supply, navigation, and recreation.

Hadjerioua, Boualem [ORNL; Kao, Shih-Chieh [ORNL; Wei, Yaxing [ORNL; Battey, Hoyt [Department of Energy; Smith, Brennan T [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption  

E-Print Network (OSTI)

and less costly than older coal-fired power plants. In addition, technological advances in electricity, supply, trans- mission, and consumption is developed. The model is sufficiently general to handle the economics of power production. For example, new gas-fired combined cycle power plants are more effi- cient

Nagurney, Anna

342

Predicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study  

E-Print Network (OSTI)

(e.g., HVAC) for a specific building, optimizing control systems and strategies for a buildingPredicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study Richard building energy modeling suffers from several factors, in- cluding the large number of inputs required

Tennessee, University of

343

Analysis of end-use electricity consumption during two Pacific Northwest cold snaps  

SciTech Connect

The Pacific Northwest has experienced unusually cold weather during two recent heating seasons. Hourly end-use load data was collected from a sample of residential and commercial buildings during both cold snaps. Earlier work documented the changes in end-use load shapes as outdoor temperature became colder. This paper extends analysis of cold snap load shapes by comparing results from both cold snaps, exploring the variability of electricity consumption between sites, and describing the use of load shapes in simulating system load. Load shapes from the first cold snap showed that hot water use shifted to later in the morning during extremely cold weather. This shift in load also occurred during the second cold snap and is similar to the shift observed on a typical weekend. Electricity consumption averaged across many sites can mask widely varying behavior at individual sites. For example, electricity consumption for space heat varies greatly between homes, especially when many homes are able to burn wood. Electricity consumption for space heat is compared between a group of energy-efficient homes and a group of older homes.

Sands, R.D.

1992-10-01T23:59:59.000Z

344

Analysis of end-use electricity consumption during two Pacific Northwest cold snaps  

SciTech Connect

The Pacific Northwest has experienced unusually cold weather during two recent heating seasons. Hourly end-use load data was collected from a sample of residential and commercial buildings during both cold snaps. Earlier work documented the changes in end-use load shapes as outdoor temperature became colder. This paper extends analysis of cold snap load shapes by comparing results from both cold snaps, exploring the variability of electricity consumption between sites, and describing the use of load shapes in simulating system load. Load shapes from the first cold snap showed that hot water use shifted to later in the morning during extremely cold weather. This shift in load also occurred during the second cold snap and is similar to the shift observed on a typical weekend. Electricity consumption averaged across many sites can mask widely varying behavior at individual sites. For example, electricity consumption for space heat varies greatly between homes, especially when many homes are able to burn wood. Electricity consumption for space heat is compared between a group of energy-efficient homes and a group of older homes.

Sands, R.D.

1992-01-01T23:59:59.000Z

345

Electric Vehicle Handbook: Electrical Contractors (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electrical Electrical Contractors Plug-In Electric Vehicle Handbook for Electrical Contractors 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Installing and Maintaining EVSE . . . . . . . 9 EVSE Training for Electrical Contractors . . . . . . . . . . . . . . . . 18 Electrifying the Future . . . . . . . . . . . . . . . 19 Clean Cities Helps Deploy PEV Charging Infrastructure Installing plug-in electric vehicle (PEV) charg- ing infrastructure requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Depart- ment of Energy's flagship alternative-transportation deployment initiative . It is supported by a diverse and capable team of stakeholders from private companies, utilities, government agencies, vehicle

346

The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments  

Science Conference Proceedings (OSTI)

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C. [Zaininger Engineering Co., San Jose, CA (United States)

1994-06-01T23:59:59.000Z

347

Oconee Electrical Component Integrated Plant Assessment and Time Limited Aging Analyses for License Renewal: Parts 1 and 2  

Science Conference Proceedings (OSTI)

Duke Power Co. and Baltimore Gas and Electric Co. are the first two utilities to apply for license renewal of their nuclear units. This report is one in a series of EPRI reports providing the technical basis for the Oconee and Calvert Cliffs License Renewal Applications.

1998-11-30T23:59:59.000Z

348

Program Plan for Renewable Energy generation of electricity. Response to Section 2111 of the Energy Policy Act of 1992  

SciTech Connect

A 5-Year Program Plan for providing cost-effective options for generating electricity from renewable energy sources is presented by the US Department of Energy Office of Energy Efficiency and Renewable Energy. The document covers the Utility-Sector situation, scope of the program, specific generating technologies, and implementation of the program plan.

1994-12-01T23:59:59.000Z

349

Biomass power and state renewable energy policies under electric industry restructuring  

E-Print Network (OSTI)

BIOMASS POWER AND STATE RENEWABLE ENERGY POLICIES UNDERBIOMASS PROVISIONS IN STATE RENEWABLE ENERGY POLICIES Ofthe 17 states that have adopted renewable energy policy

Porter, Kevin; Wiser, Ryan

2000-01-01T23:59:59.000Z

350

Biomass power and state renewable energy policies under electric industry restructuring  

E-Print Network (OSTI)

POWER AND STATE RENEWABLE ENERGY POLICIES UNDER ELECTRICKevin Porter National Renewable Energy Laboratory 901 Dpolicies to foster renewable energy as part of efforts to

Porter, Kevin; Wiser, Ryan

2000-01-01T23:59:59.000Z

351

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

and J. Hamrin. 2005. Renewable Energy Policies and Marketsexperience with renewable energy obligation supportM. (2001): REBUS: Renewable Energy Burden Sharing (Main

Haas, Reinhard

2008-01-01T23:59:59.000Z

352

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

San Francisco, CA, 2010 (6) National Renewable EnergyLaboratory (NREL), Renewable Resource Data Center, Website:Impact of Increased Renewable Energy Penetrations on

Barbose, Galen

2013-01-01T23:59:59.000Z

353

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

and J. Hamrin. 2005. Renewable Energy Policies and Marketspromoting the development of renewable energy". In: Energyand optimisation of renewable support schemes in the

Haas, Reinhard

2008-01-01T23:59:59.000Z

354

Table 6b. Relative Standard Errors for Total Electricity Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

b. Relative Standard Errors for Total Electricity Consumption per b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption (trillion Btu) Electricity Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 4 5 4 4 Building Floorspace (Square Feet) 1,001 to 5,000 5 6 6 6 5,001 to 10,000 4 9 9 9 10,001 to 25,000 5 7 5 5 25,001 to 50,000 7 10 10 10 50,001 to 100,000 7 12 8 8 100,001 to 200,000 9 13 10 10 200,001 to 500,000 10 13 11 11 Over 500,000 26 18 18 21 Principal Building Activity Education 8 9 6 6 Food Sales and Service 8 9 8 7 Health Care 14 12 12 9 Lodging 11 22 16 16 Mercantile and Service 5 7 7 7 Office 6 10 7 6 Public Assembly 7 12 28 30 Public Order and Safety 18 29 18 18 Religious Worship 10 10 11 11 Warehouse and Storage

355

The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments  

SciTech Connect

Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: the local solar insolation and/or wind characteristics, renewable energy source penetration level, whether battery or other energy storage systems are applied, and local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kW-scale applications may be connected to three+phase secondaries, and larger hundred-kW and y-scale applications, such as MW-scale windfarms, or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. In any case, the installation of small, distributed renewable energy sources is expected to have a significant impact on local utility distribution primary and secondary system economics. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications. The following utility- and site-specific conditions that may affect the economic viability of distributed renewable energy sources were considered: distribution system characteristics, and design standards, and voltage levels; load density, reliability, and power quality; solar insolation and wind resource levels; utility generation characteristics and load profiles; and investor-owned and publicly owned utilities, size, and financial assumptions.

Zaininger, H.W.

1994-01-01T23:59:59.000Z

356

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

3 3 U.S. Electricity Generation Input Fuel Consumption (Quadrillion Btu) Renewables Growth Rate Hydro. Oth(2) Total Nuclear Other (3) Total 2010-Year 1980 2.87 0.06 2.92 2.74 (1) 24.32 1981 2.72 0.06 2.79 3.01 (1) 24.49 1982 3.23 0.05 3.29 3.13 (1) 23.95 1983 3.49 0.07 3.56 3.20 (1) 24.60 1984 3.35 0.09 3.44 3.55 (1) 25.59 1985 2.94 0.11 3.05 4.08 (1) 26.09 1986 3.04 0.12 3.16 4.38 (1) 26.22 1987 2.60 0.13 2.73 4.75 (1) 26.94 1988 2.30 0.12 2.43 5.59 (1) 28.27 1989 2.81 0.41 3.22 5.60 (1) 29.88 1990 3.01 0.51 3.52 6.10 (1) 30.51 1991 2.98 0.56 3.54 6.42 (1) 30.87 1992 2.59 0.60 3.19 6.48 (1) 30.74 1993 2.86 0.62 3.48 6.41 (1) 31.86 1994 2.62 0.63 3.26 6.69 (1) 32.41 1995 3.15 0.60 3.75 7.08 (1) 33.50 1996 3.53 0.63 4.15 7.09 (1) 34.50 1997 3.58 0.64 4.22 6.60 (1) 34.90 1998 3.24 0.63 3.87 7.07 (1) 36.24 1999 3.22 0.66 3.87 7.61 (1) 36.99 2000 2.77 0.66 3.43 7.86 (1) 38.08 2001 2.21 0.55 2.76 8.03 (1) 37.25

357

Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers  

DOE Green Energy (OSTI)

Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

2012-04-01T23:59:59.000Z

358

Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector  

Science Conference Proceedings (OSTI)

The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary, as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute electric power in the state from 10 Colorado generation development areas (GDAs) that have the capacity for more than 96,000 megawatts (MW) of wind generation and 26,000 MW of solar generation. The SB07-91 Report recognized that only a small fraction of these large capacity opportunities are destined to be developed. As a rough comparison, 13,964 MW of installed nameplate capacity was available in Colorado in 2008. The legislature did not direct the SB07-91 task force to examine several issues that are addressed in the REDI report. These issues include topics such as transmission, regulation, wildlife, land use, permitting, electricity demand, and the roles that different combinations of supply-side resources, demand-side resources, and transmission can play to meet a CO{sub 2} emissions reduction goal. This report, which expands upon research from a wide array of sources, serves as a sequel to the SB07-91 Report. Reports and research on renewable energy and transmission abound. This report builds on the work of many, including professionals who have dedicated their careers to these topics. A bibliography of information resources is provided, along with many citations to the work of others. The REDI Project was designed to present baseline information regarding the current status of Colorado's generation and transmission infrastructure. The report discusses proposals to expand the infrastructure, and identifies opportunities to make further improvements in the state's regulatory and policy environment. The report offers a variety of options for consideration as Colorado seeks pathways to meet the 20 x 20 goal. The primary goal of the report is to foster broader discussion regarding how the 20 x 20 goal interacts with electric resource portfolio choices, particularly the expansion of utility-scale renewable energy and the high-voltage transmission infrastructure. The report also is intended to serve as a resource when identifying opportunities stemming from the American Recovery and Reinvestment Act of 2009.

None

2009-12-31T23:59:59.000Z

359

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

LCA can help determine environmental burdens from "cradle LCA can help determine environmental burdens from "cradle to grave" and facilitate more consistent comparisons of energy technologies. Figure 1. Generalized life cycle stages for energy technologies Source: Sathaye et al. (2011) Life cycle GHG emissions from renewable electricity generation technologies are generally less than those from fossil fuel-based technologies, based on evidence assembled by this project. Further, the proportion of GHG emissions from each life cycle stage differs by technology. For fossil-fueled technologies, fuel combustion during operation of the facility emits the vast majority of GHGs. For nuclear and renewable energy technologies, the majority of GHG emissions occur upstream of operation. LCA of Energy Systems

360

Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature  

Open Energy Info (EERE)

content has been downloaded from IOPscience. Please scroll down to see the full text. content has been downloaded from IOPscience. Please scroll down to see the full text. Download details: IP Address: 192.174.37.50 This content was downloaded on 04/11/2013 at 23:01 Please note that terms and conditions apply. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature View the table of contents for this issue, or go to the journal homepage for more 2012 Environ. Res. Lett. 7 045802 (http://iopscience.iop.org/1748-9326/7/4/045802) Home Search Collections Journals About Contact us My IOPscience IOP PUBLISHING ENVIRONMENTAL RESEARCH LETTERS Environ. Res. Lett. 7 (2012) 045802 (10pp) doi:10.1088/1748-9326/7/4/045802 Operational water consumption and withdrawal factors for electricity generating technologies:

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Production Tax Credit for Renewable Electricity Generation (released in AEO2005)  

Reports and Publications (EIA)

In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the Federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10-percent Federal tax credit on new investment in capital-intensive wind and solar generation technologies.

Information Center

2005-04-01T23:59:59.000Z

362

Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Primary Factors that Impact the Fuel Consumption of Plug-In Hybrid Electric Vehicles RICHARD BARNEY CARLSON, MATTHEW G. SHIRK Idaho National Laboratory 2525 N. Fremont Ave., Idaho Falls, ID 83415, USA richard.carlson@inl.gov Abstract Plug-in Hybrid Electric Vehicles (PHEV) have proven to significantly reduce petroleum consumption as compared to conventional internal combustion engine vehicles (ICE) by utilizing electrical energy for propulsion. Through extensive testing of PHEVs, analysis has shown that the fuel consumption of PHEVs is more significantly affected than conventional vehicles by either the drivers input or by the environmental inputs around the vehicle. Six primary factors have been identified that significantly affect the fuel consumption of PHEVs. In this paper, these primary factors are analyzed from on-road driving and charging data from over 200 PHEVs throughout North America that include Hymotion Prius conversions and Hybrids Plus Escape conversions. The Idaho National Laboratory (INL) tests plug-in hybrid electric (PHEV) vehicles as part of its conduct of DOEs Advanced Vehicle Testing Activity (AVTA). In collaboration with its 75 testing partners located in 23 states and Canada, INL has collected data on 191 PHEVs, comprised of 12 different PHEV models (by battery manufacturer). With more than 1 million PHEV test miles accumulated to date, the PHEVs are fleet, track, and dynamometer tested. Six Primary Factors The six primary factors that significantly impact PHEV fuel consumption are listed below. Some of the factors are unique to plug-in vehicles while others are common for all types of vehicles. 1. Usable Electrical Energy is dictated by battery capacity, rate of depletion as well as when the vehicle was last plugged-in. With less electrical energy available the powertrain must use more petroleum to generate the required power output. 2. Driver Aggressiveness impacts the fuel consumption of nearly all vehicles but this impact is greater for high efficiency powertrains. 3. Accessory Utilization like air conditioner systems or defroster systems can use a significant amount of additional energy that is not contributing to the propulsion of the vehicle. 4. Route Type such as city, highway or mountainous driving can affect the fuel consumption since it can involve stop and go driving or ascending a step grade. 5. Cold Start / Key On includes control strategies to improve cold start emissions as well as control routines to quickly supply cabin heat. These control strategies are necessary for consumer acceptance even though fuel consumption is negatively impacted. 6. Ambient Temperature can reduce the efficiency of many powertrain components by significantly increasing fluid viscosity. For vehicles that utilize battery energy storage systems, the temperature of the battery system can greatly affect the power output capability therefore reducing its system effectiveness. The analysis of the six primary factors that impact fuel economy of PHEVs helped to identify areas of potential further development as well as may assist in informing drivers of these effects in an effort to modify driving behavior to reduce petroleum consumption.

Richard "Barney" Carlson; Matthew G. Shirk; Benjamin M. Geller

2001-11-01T23:59:59.000Z

363

Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

renewable energy companies compete in a rapidly renewable energy companies compete in a rapidly growing, highly competitive global market worth hundreds of billions of dollars per year[7], a market projected to grow to $460 billion per year by 2030[1]. Due in part to a highly skilled workforce and a growing energy education system, American businesses, workers, and their communities are uniquely positioned to take advantage of this opportunity. Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE), part of the U.S. Department of Energy (DOE), plays a key role in advancing America's "all of the

364

Overview of the Electrical Energy Segment of the Energy Information Administration/ Manufacturing Consumption Report  

E-Print Network (OSTI)

At the end of 1997, The Energy Information Administration (EIA) published a report titled What Took Place in the Economic Environment Between 1991 and 1994 That Affected the Energy Manufacturers Used? This report contains information gathered from Manufacturing Energy Consumption Surveys (MECS), representing a sampling of over 250,000 manufacturing establishments in 52 industries and nine geographical Census divisions. Although the report covers natural gas, distillate fuel oil, residual fuel oil, liquefied petroleum gas, coke and breeze, coal, and electricity, only the electricity segment is overviewed. Along with pure electrical energy consumption information, newly available data covers methods that manufacturers used to purchase and modify electric motor systems. The report also introduces the US Department of Energy's Motor Challenge Program and the US Environmental Protection Agency's Green Lights and Energy Star Programs. Topics such as changes in the electricity market, technology improvements, price disparities, and lessons learned from the natural gas restructuring as related to the electric utility deregulation relate the changes that are impacting the industrial environment. Although the report details information from many industries, the four major energy consumers in the manufacturing sector are: * Petroleum and Coal Products (SIC 29) * Chemicals and Allied Products (SIC 28) * Paper and Allied Partners (SIC 26) * Primary Metal Industries (SIC 33) These industries are also very proactive in their attempts to promote energy efficiency in all areas, including electrical. For example, the IEEE-841 Standard motor is a result of the work of some of these industries. The impact on the industrial Maintenance, Repair, and Operations (MRO) suppliers and Original Equipment Manufacturers (OEM) markets show the need for increasing awareness in all aspects of electrical energy, especially in light of the implementation of the Energy Policy Act and the deregulation of the utility industry.

Lockhead, S.

1999-05-01T23:59:59.000Z

365

Technology R&D Needs for Integrating High Penetrations of Variable Utility-Scale Renewable Power Sources into the Electric Power Inf rastructure  

Science Conference Proceedings (OSTI)

While the North American electric energy resource portfolio continues to evolve, integrating large-scale renewable resources into the electric power infrastructure presents significant challenges. This is particularly true of variable renewable resources, such as wind and solar, which represent two of the most rapidly growing renewable resources being deployed. The root of this challenge lies in the inherent variability of wind and solar resources, which differentiates these from other renewable resource...

2008-05-15T23:59:59.000Z

366

UK Electricity Consumption and Number of Meters at MLSOA level (2005 -  

Open Energy Info (EERE)

5 - 5 - 2007) Dataset Summary Description The UK Department of Energy and Climate Change (DECC) releases annual statistics on domestic and industrial/commercial electricity and gas consumption (and number of meters) at the Middle Layer Super Output Authority (MLSOA) and Intermediate Geography Zone (IGZ) level (there are over 950 of these subregions throughout England, Scotland and Wales). Both MLSOAs (England and Wales) and IGZs (Scotland) include a minimum of approximately 2,000 households. The domestic electricity consumption data data is split by ordinary electricity and economy7 electricity usage. These data are classified as UK National Statistics. Note about spreadsheets: separate tabs exist for each local authority (LA), but the tabs are hidden. To view data, simply 'unhide' the appropriate tab(s). You do not need to "enable macros" to view the data. Related socio-economic data for MLSOA and IGZ levels can be accessed: http://decc.gov.uk/assets/decc/Statistics/regional/mlsoa2008/181-mlsoa-i...

367

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

most renewable energy technologies currently are at a costRenewable energy advocates argue that RES deserve similar subsidies to overcome their current cost-costs while and minimizing the financial subsidies; and Ensure sustainable growth of the renewable energy

Haas, Reinhard

2008-01-01T23:59:59.000Z

368

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

the costs of renewable energy procurement, the costs of theRE is the total costs of renewable energy procurement, r resThough the total costs of renewable energy procurement ( C

Barbose, Galen

2013-01-01T23:59:59.000Z

369

If the shoe FITs: using feed-in tariffs to meet U.S. Renewable electricity targets  

SciTech Connect

Experiences in Europe have demonstrated that well-designed FITs can drive rapid and dramatic growth in renewable electricity markets, promote strong manufacturing industries, and create thousands of new jobs in a cost-effective manner. If properly structured, FIT-inspired mechanisms in the U.S. have the potential to jumpstart rapid renewable energy market growth that could reshape the country's energy landscape. (author)

Rickerson, Wilson H.; Sawin, Janet L.; Grace, Robert C.

2007-05-15T23:59:59.000Z

370

RENEWABLE ENERGY AT WHAT COST? ASSESSING THE EFFECT OF FEED-IN TARIFF POLICIES ON CONSUMER ELECTRICITY PRICES IN THE EUROPEAN UNION.  

E-Print Network (OSTI)

??In the last two decades, feed-in tariffs (FIT) have emerged as the dominant policy instrument for supporting electricity from renewable sources in the European Union. (more)

Klein, Christopher A.

2012-01-01T23:59:59.000Z

371

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

CEC). 2000. California Natural Gas Analysis and Issues.2002. Average Price of Natural Gas Sold to Electric Utilityfor investments in natural gas and renewables to complement

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

372

Map Data: State Consumption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumption Map Data: State Consumption stateconsumptionpc2009.csv More Documents & Publications Map Data: Renewable Production Map Data: State Spending...

373

Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint  

SciTech Connect

The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

Simpson, M.; Markel, T.

2012-08-01T23:59:59.000Z

374

EIA - Assumptions to the Annual Energy Outlook 2009 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2009 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind1. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy.

375

Assumptions to the Annual Energy Outlook 2002 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).117 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

376

Assumptions to the Annual Energy Outlook 2001 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

377

Decarbonizing the Electric Sector: Combining Renewable and Nuclear Energy using Thermal Storage  

Science Conference Proceedings (OSTI)

Both renewable and nuclear energy can provide significant contributions to decarbonizing the electric sector. However, a grid employing large amounts of wind and solar energy requires the balance of the system to be highly flexible to respond to the increased variability of the net load. This makes deployment of conventional nuclear power challenging both due to the technical challenges of plant cycling and economic limits of reduced capacity factor. In the United States nuclear power plants generally provide constant, base load power and are most economic when operated at constant power levels. Operating nuclear power plants in load-following modes decreases the plants' annual energy output and increases the levelized cost of energy, decreasing economic competitiveness. One possible solution is to couple thermal energy storage to nuclear power plants. This would enable the reactor to remain at nearly constant output, while cycling the electrical generator in response to the variability of the net load. This paper conceptually explores combinations of wind, solar, and nuclear that can provide a large fraction of a system's electricity, assuming the use of thermal energy storage that would allow nuclear power to provide load following and cycling duty while operating at a constant reactor power output.

Denholm, P.; King, J.; Kutscher, C.; Wilson, P.

2012-05-01T23:59:59.000Z

378

The impact of thermostat performance on energy consumption and occupant comfort in residential electric heating systems  

SciTech Connect

A digital computer simulation was used to compare the energy consumption and comfort of an electric baseboard heating system using high performance thermostats (low droop, fast cycling) to that of the same system using poorer performing thermostats (high droop, slow cycling, such as many line voltage types). Since a thermostat which allows the controlled temperature to fall below the setpoint will obviously cause less energy consumption than a thermostat which maintains the controlled temperature closer to the setpoint, the key hypothesis of this study was that the user will reset the thermostat setpoint in some fashion during the heating season to obtain acceptable conditions for all heating loads. The major assumption of this study, therefore, was the mode of this ''user-thermostat interaction''. For every case in which the simulated ''user'' could intervene, the energy consumption using high performance thermostats was found to be less, while a greater degree of comfort was maintained, than systems using poorer performing thermostats. Energy savings ranged from 2% to 18% depending upon the mode of user interaction simulated. Where energy savings were small, the ''user'' was resetting the poorly performing thermostat as often as twice a day; i.e., the ''user'' was performing the function of a better performing thermostat.

Benton, R.

1982-01-01T23:59:59.000Z

379

Examination of the Regional Supply and Demand Balance for Renewable Electricity in the United States through 2015: Projecting from 2009 through 2015 (Revised)  

SciTech Connect

This report examines the balance between the demand and supply of new renewable electricity in the United States on a regional basis through 2015. It expands on a 2007 NREL study that assessed the supply and demand balance on a national basis. As with the earlier study, this analysis relies on estimates of renewable energy supplies compared to demand for renewable energy generation needed to meet existing state renewable portfolio standard (RPS) policies in 28 states, as well as demand by consumers who voluntarily purchase renewable energy. However, it does not address demand by utilities that may procure cost-effective renewables through an integrated resource planning process or otherwise.

Bird, L.; Hurlbut, D.; Donohoo, P.; Cory, K.; Kreycik, C.

2010-06-01T23:59:59.000Z

380

EIA Energy Kids - Electricity  

U.S. Energy Information Administration (EIA)

The energy sources we use to make electricity can be renewable or non-renewable, but electricity itself is neither renewable nor non-renewable.

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Predicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study  

Science Conference Proceedings (OSTI)

Whole building input models for energy simulation programs are frequently created in order to evaluate specific energy savings potentials. They are also often utilized to maximize cost-effective retrofits for existing buildings as well as to estimate the impact of policy changes toward meeting energy savings goals. Traditional energy modeling suffers from several factors, including the large number of inputs required to characterize the building, the specificity required to accurately model building materials and components, simplifying assumptions made by underlying simulation algorithms, and the gap between the as-designed and as-built building. Prior works have attempted to mitigate these concerns by using sensor-based machine learning approaches to model energy consumption. However, a majority of these prior works focus only on commercial buildings. The works that focus on modeling residential buildings primarily predict monthly electrical consumption, while commercial models predict hourly consumption. This means there is not a clear indicator of which techniques best model residential consumption, since these methods are only evaluated using low-resolution data. We address this issue by testing seven different machine learning algorithms on a unique residential data set, which contains 140 different sensors measurements, collected every 15 minutes. In addition, we validate each learner's correctness on the ASHRAE Great Energy Prediction Shootout, using the original competition metrics. Our validation results confirm existing conclusions that Neural Network-based methods perform best on commercial buildings. However, the results from testing our residential data set show that Feed Forward Neural Networks, Support Vector Regression (SVR), and Linear Regression methods perform poorly, and that Hierarchical Mixture of Experts (HME) with Least Squares Support Vector Machines (LS-SVM) performs best - a technique not previously applied to this domain.

Edwards, Richard E [ORNL; New, Joshua Ryan [ORNL; Parker, Lynne Edwards [ORNL

2012-01-01T23:59:59.000Z

382

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

that procure electricity objectively analyze the trade-offselectricity in the last several years (CEC 2002b; California Technology, Trade &electricity is derived from renewable sources. The D W R ' s contracting decisions undoubtedly involved trade-

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

383

THE INFLUENCE OF STATE-LEVEL RENEWABLE ENERGY POLICY INSTRUMENTS ON ELECTRICITY GENERATION IN THE UNITED STATES: A CROSS-SECTIONAL TIME SERIES ANALYSIS.  

E-Print Network (OSTI)

??Since the late 1990s, state governments in the U.S. have diversified policy instruments for encouraging the electric power industry to deploy renewable sources for electricity (more)

Park, Sunjoo

2013-01-01T23:59:59.000Z

384

Consumption strategies and tariff coordination for cooperative consumers in a deregulated electricity market  

E-Print Network (OSTI)

As the trend in electricity markets is strongly towards deregulation, new players, new rules and new behaviors will continue to emerge. One of the new phenomena that are developing on the demand side is the purchase by a coalition of agents. When it is worth, a coalition will be constituted. One of the energy needs, especially important in Nordic countries such as Finland, is electrical space heating. We consider here the consumption strategies of individual electricity buyers within a coalition. The decision problem each consumer faces is to find the optimal use of his space heating system with respect to change in electricity price and to his tolerance to indoor temperature variation. A mathematical model for this problem is defined. Physical parameters of example houses were gathered from an experimental field test conducted in Helsinki during the winter 1996. The coalition buys in the market at marginal cost. However, as marginal cost pricing may not always fulfill metering and communication needs of the members of the coalition, we consider Time-Of-Use (TOU) pricing within the coalition. Different groups of consumer behaviour are constructed to simulate this coalition. Optimal marginal tariff is used as a reference point to estimate the nearest TOU tariff within the coalition.

Raimo P. Hmlinen; Juha Mntysaari; Jukka Ruusunen; Pierre-olivier Pineau

1999-01-01T23:59:59.000Z

385

Renewable Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Energy Sources Renewable Energy Renewable Energy Watch as these fourth grade students go from learning about electricity to making their own electricity...

386

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

Renewable Energy Policies and Markets in the United States. Prepared for the Energy Foundations China

Haas, Reinhard

2008-01-01T23:59:59.000Z

387

Review of International Experience with Renewable Energy Obligation Support Mechanisms  

E-Print Network (OSTI)

electricity production from renewable energy (approx. 15-25electricity production from renewable energy sources andthe production of electricity from renewable energy sources

Wiser, R.

2005-01-01T23:59:59.000Z

388

Review of International Experience with Renewable Energy Obligation Support Mechanisms  

E-Print Network (OSTI)

sikt? [How apt is the renewable electricity certificatesupply of electricity from renewable energy sources in theenergiteknik [The renewable electricity certificate system

Wiser, R.

2005-01-01T23:59:59.000Z

389

Renewable & Appropriate Energy Laboratory Energy & Resources Group  

E-Print Network (OSTI)

's forecasted electrical demand is met through a combination of renewable resources, T&D grid upgrades, energy dash line represents the Base consumption, the solid line shows the load forecast in the presence the load forecast if energy efficiency measures were to be adopted countywide. We have adopted

Kammen, Daniel M.

390

Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Interim Report 2  

DOE Green Energy (OSTI)

Electricity consumption in the Southeastern US, not including Florida, is approximately 24% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient long distant transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. It shows that development of wind resources will depend not only on available transmission capacity but also on electricity supply and demand factors.

Hadley, Stanton W [ORNL; Key, Thomas S [Electric Power Research Institute (EPRI); Deb, Rajat [LCG Consulting

2009-05-01T23:59:59.000Z

391

The state of energy storage in electric utility systems and its effect on renewable energy resources  

DOE Green Energy (OSTI)

This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

Rau, N.S.

1994-08-01T23:59:59.000Z

392

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

and wind energy plants at favourable locations, most renewable energy technologies currently are at a costwind energy are tax free. Deduction of 15% investment costs

Haas, Reinhard

2008-01-01T23:59:59.000Z

393

Biomass power and state renewable energy policies under electric industry restructuring  

E-Print Network (OSTI)

BIOMASS POWER AND STATE RENEWABLE ENERGY POLICIES UNDERHowever, the eligibility of biomass under state RPS and SBCmay make it difficult for biomass power companies to access

Porter, Kevin; Wiser, Ryan

2000-01-01T23:59:59.000Z

394

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

Wind, Biomass, Small hydro, for Energy and Competitivenesshalf of the non-hydro renewable energy capacity additionsshore wind 50, hydro: 50, solar energy: 150, biomass: 20

Haas, Reinhard

2008-01-01T23:59:59.000Z

395

Renewables for TransportationTransportation  

E-Print Network (OSTI)

thermal biomass Tank to Wheel Example renewable fuel options: Biofuels biogas Process heat/steam: Solar)) Biofuels, biogas Renewable electricity Renewable H2 sequestration (CCS)) Electricity: solar PV, wind

California at Davis, University of

396

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

1) Borenstein, S. , Electricity Rate Structures and thes underlying retail electricity rate through net metering.turn impact retail electricity rates, particularly as retail

Barbose, Galen

2013-01-01T23:59:59.000Z

397

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

Penetrations on Electricity Bill Savings from ResidentialPENETRATIONS ON ELECTRICITY BILL SAVINGS FROM RESIDENTIALBill Savings In this paper, we have chosen two compensation mechanisms for electricity

Barbose, Galen

2013-01-01T23:59:59.000Z

398

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

4 4 U.S. Electricity Net Generation, by Plant Type (Billion kWh) Renewables Growth Rate Hydr(1) Oth(2) Total CHP (3) Tot.(4) 2010-year 1980 276 6 282 N.A. 1981 261 6 267 N.A. 1982 309 5 314 N.A. 1983 332 6 339 N.A. 1984 321 9 330 N.A. 1985 281 11 292 N.A. 1986 291 12 302 N.A. 1987 250 12 262 N.A. 1988 223 12 235 N.A. 1989 269 28 297 42 1990 290 35 324 61 1991 286 38 324 72 1992 250 40 290 91 1993 278 42 320 108 1994 254 42 296 123 1995 305 39 345 141 1996 341 41 382 147 1997 351 41 392 148 1998 318 42 360 154 1999 315 44 359 155 2000 271 45 316 165 2001 214 39 253 170 2002 260 44 304 194 2003 272 45 317 196 2004 265 49 314 184 2005 267 53 320 180 2006 286 62 349 165 2007 246 71 317 177 2008 253 94 347 167 2009 272 113 384 159 2010 289 100 390 165 2011 296 172 468 159 2012 296 148 444 161 2013 297 172 469 158 2014 297 186 483 161 2015 297 197 494 160 2016 297 207 504 160 2017 297 212 510 161 2018 298 224 522 161 2019 298 230 528 161 2020 298 246 544 161 2021

399

Load forecasting framework of electricity consumptions for an Intelligent Energy Management System in the user-side  

Science Conference Proceedings (OSTI)

This work presents an electricity consumption-forecasting framework configured automatically and based on an Adaptative Neural Network Inference System (ANFIS). This framework is aimed to be implemented in industrial plants, such as automotive factories, ... Keywords: ANFIS, Forecasting, Genetic algorithm, Intelligent EMS, Modelling

Juan J. Crdenas; Luis Romeral; Antonio Garcia; Fabio Andrade

2012-04-01T23:59:59.000Z

400

A new "In-Use Energy consumption" indicator for the design of energy efficient electr(on)ics  

E-Print Network (OSTI)

A new "In-Use Energy consumption" indicator for the design of energy efficient electr(on)ics Lucie(on)ic industry is the development of energy efficient products during their use. Indeed, regulations, standards energy efficiency more effectively during the design process. The indicator combines the power

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Table 7.3a Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

combustion plant use of petroleum. ... and other biomass. Through 2000, also includes non-renewable waste (municipal solid waste from non-biogenic sources, and

402

Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"  

E-Print Network (OSTI)

and lower costs: Combining renewable energy and energydeveloping renewable energy projects under traditional cost-in the levelized cost of renewable energy under the build

Cappers, Peter

2010-01-01T23:59:59.000Z

403

Alternative Trading Arrangements for Intermittent Renewable Power...  

Open Energy Info (EERE)

Trading Arrangements for Intermittent Renewable Power: A Centralised Renewables Market and Other Concepts Focus Area: Other Renewable Electricity Topics: Socio-Economic...

404

NREL: Continuum Magazine - More than a Dream-a Renewable Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

decades in the future. Will renewable energy technologies play a dominant role in U.S. power generation? And if this is to be more than a mere academic exercise, what must we do...

405

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

certificate market. In: Energy Policy, 31, 21-32. Lopez A. ,Early Assessment. In: Energy Policy, 31, 527-535. Martinot,Hamrin. 2005. Renewable Energy Policies and Markets in the

Haas, Reinhard

2008-01-01T23:59:59.000Z

406

Renewable Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portfolio Standard Portfolio Standard Renewable Portfolio Standard < Back Eligibility Investor-Owned Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Heating & Cooling Water Heating Wind Program Info State New York Program Type Renewables Portfolio Standard Provider New York State Energy Research and Development Authority The New York Public Service Commission (PSC) adopted a renewable portfolio standard (RPS) in September 2004 and issued implementation rules in April 2005. As originally designed, New York's RPS had a renewables target of 25% of state electricity consumption by 2013, but was expanded in January 2010 to 30% by 2015 by order of the PSC. Of this 30%, approximately 20.7% of the

407

Renewable Energy Working Group Meeting Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

and has a stated purpose of information sharing. 2010 Preliminary Figures on Federal Renewable Energy Goal: - The Federal Government met the renewable energy consumption goal by...

408

Map Data: Renewable Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Production Map Data: Renewable Production renewprod2009.csv More Documents & Publications Map Data: Total Production Map Data: State Consumption Directory of Potential...

409

The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems  

E-Print Network (OSTI)

penetrations on residential retail electricity rates andpresent the residential electricity retail rates resultingelectricity rates. Since G h,resPV , the residential PV

Barbose, Galen

2013-01-01T23:59:59.000Z

410

A distributed renewable energy system meeting 100% of electricity demand in Humboldt County: a feasibility study.  

E-Print Network (OSTI)

??A model of electricity supply and demand in Humboldt County, California over the course of one year is presented. Wind, oceanwave, solar, and biomass electricity (more)

Ross, Darrell Adam

2009-01-01T23:59:59.000Z

411

Colorado's Prospects for Interstate Commerce in Renewable Power  

DOE Green Energy (OSTI)

Colorado has more renewable energy potential than it is ever likely to need for its own in-state electricity consumption. Such abundance may suggest an opportunity for the state to sell renewable power elsewhere, but Colorado faces considerable competition from other western states that may have better resources and easier access to key markets on the West Coast. This report examines factors that will be important to the development of interstate commerce for electricity generated from renewable resources. It examines market fundamentals in a regional context, and then looks at the implications for Colorado.

Hurlbut, D. J.

2009-12-01T23:59:59.000Z

412

The Effect on Electricity Consumption of the Commonwealth Edison Customer Applications Program: Phase 2 Final Analysis  

Science Conference Proceedings (OSTI)

This report describes the final Phase 2 analysis of the effects on residential customers' energy consumption patterns of Commonwealth Edison's (ComEd's) Customer Application Program (CAP).

2011-10-20T23:59:59.000Z

413

Residential Energy Consumption Survey (RECS) - Energy Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumption Survey (RECS) - U.S. Energy Information Consumption Survey (RECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

414

Distributional and Efficiency Impacts of Clean and Renewable Energy Standards for Electricity  

E-Print Network (OSTI)

We examine the efficiency and distributional impacts of greenhouse gas policies directed toward the electricity

Rausch, Sebastian

2012-07-17T23:59:59.000Z

415

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

1 1 Buildings Share of U.S. Electricity Consumption/Sales (Percent) Buildings Delivered Total | Total Industry Transportation Total (10^15 Btu) 1980 | 60.9% 38.9% 0.2% 100% | 7.15 1981 | 61.4% 38.5% 0.1% 100% | 7.33 1982 | 64.1% 35.7% 0.2% 100% | 7.12 1983 | 63.8% 36.1% 0.2% 100% | 7.34 1984 | 63.2% 36.7% 0.2% 100% | 7.80 1985 | 63.8% 36.0% 0.2% 100% | 7.93 1986 | 64.8% 35.1% 0.2% 100% | 8.08 1987 | 64.9% 34.9% 0.2% 100% | 8.38 1988 | 65.0% 34.8% 0.2% 100% | 8.80 1989 | 64.8% 35.0% 0.2% 100% | 9.03 1990 | 65.0% 34.9% 0.2% 100% | 9.26 1991 | 65.6% 34.3% 0.2% 100% | 9.42 1992 | 64.6% 35.2% 0.2% 100% | 9.43 1993 | 65.7% 34.1% 0.2% 100% | 9.76 1994 | 65.5% 34.3% 0.2% 100% | 10.01 1995 | 66.2% 33.6% 0.2% 100% | 10.28 1996 | 66.5% 33.3% 0.2% 100% | 10.58 1997 | 66.8% 33.0% 0.2% 100% | 10.73 1998 | 67.6% 32.2% 0.2% 100% | 11.14 1999 | 67.9% 32.0% 0.2% 100% | 11.30 2000 | 68.7% 31.1% 0.2% 100% | 11.67 2001 | 70.5% 29.4% 0.2% 100% |

416

A regression approach to infer electricity consumption of legacy telecom equipment  

E-Print Network (OSTI)

estimate current or future power consumption of telecommunication networks, or that evaluate power.idzikowski@tu-berlin.de, firstname.lastname@orange.com Abstract--Reasonably accurate reference power consumption values are required for any work that evaluates power consump- tion in telecommunication networks. Many existing works pro

Greenberg, Albert

417

Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement  

E-Print Network (OSTI)

The 9th International Electric Vehicle symposium, EVS88-072,10th International of Electric Vehicle Symposium, pp.154-International in of Electric Vehicle Symposium, pp.401-410,

Wang, Quanlu; Delucchi, Mark A.

1991-01-01T23:59:59.000Z

418

Assumptions to the Annual Energy Outlook - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumption to the Annual Energy Outlook Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).109 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

419

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

2 2 U.S. Electricity Generation Input Fuel Shares (Percent) Renewables Natural Gas Petroleum Coal Hydro. Oth(2) Total Nuclear Other (3) Total 1980 15.7% 10.8% 50.2% 11.8% 0.2% 12.1% 11.3% (1) 100% 1981 15.4% 9.0% 51.8% 11.2% 0.3% 11.4% 12.3% (1) 100% 1982 13.9% 6.6% 52.6% 13.6% 0.2% 13.8% 13.1% (1) 100% 1983 12.2% 6.3% 53.9% 14.3% 0.3% 14.6% 13.1% (1) 100% 1984 12.6% 5.1% 54.9% 13.2% 0.4% 13.5% 14.0% (1) 100% 1985 12.1% 4.2% 56.2% 11.3% 0.4% 11.8% 15.7% (1) 100% 1986 10.2% 5.6% 55.3% 11.7% 0.5% 12.1% 16.8% (1) 100% 1987 10.9% 4.7% 56.5% 9.7% 0.5% 10.2% 17.8% (1) 100% 1988 9.5% 5.6% 56.5% 8.2% 0.4% 8.6% 19.9% (1) 100% 1989 10.5% 5.7% 54.2% 9.4% 1.4% 10.8% 18.8% (1) 100% 1990 10.7% 4.2% 53.4% 9.9% 1.7% 11.6% 20.0% (1) 100% 1991 11.0% 3.9% 52.8% 9.7% 1.8% 11.5% 20.9% (1) 100% 1992 11.5% 3.2% 53.7% 8.4% 2.0% 10.4% 21.1% (1) 100% 1993 11.1% 3.5% 54.2% 9.0% 2.0% 11.0% 20.2% (1) 100% 1994 12.4% 3.3% 53.5%

420

Renewable energy annual 1996  

DOE Green Energy (OSTI)

This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

NONE

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Global Climate Change Electric Power Industry  

E-Print Network (OSTI)

-binding national targets have been set for the consumption of electricity from renewable sources and for biofuels - The United States - Developing nations · Biofuels targets · Biofuels policy overview by region - The European renewable fuels targets (gallons bn), 2006-2012 · Biofuels energy targets · Biofuel policy overview

Ford, Andrew

422

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

6 6 U.S. Renewable Electric Utility and Nonutility Net Summer Electricity Generation Capacity (GW) Conv. Hydropower Geothermal Municipal Solid Waste Biomass Solar Thermal Solar PV Wind 1980 81.7 0.9 0.0 0.1 0.0 N.A. N.A. 1981 82.4 0.9 0.0 0.1 0.0 N.A. 0.0 1982 83.0 1.0 0.0 0.1 0.0 N.A. 0.0 1983 83.9 1.2 0.0 0.2 0.0 N.A. 0.0 1984 85.3 1.2 0.0 0.3 0.0 N.A. 0.0 1985 88.9 1.6 0.2 0.2 0.0 N.A. 0.0 1986 89.3 1.6 0.2 0.2 0.0 N.A. 0.0 1987 89.7 1.5 0.2 0.2 0.0 N.A. 0.0 1988 90.3 1.7 0.2 0.2 0.0 N.A. 0.0 1989 73.6 2.6 1.7 1.1 0.2 N.A. 1.5 1990 73.3 2.7 2.1 1.2 0.3 N.A. 1.8 1991 75.4 2.6 2.5 1.3 0.3 N.A. 1.9 1992 74.2 2.9 2.5 1.4 0.3 N.A. 1.8 1993 76.8 2.9 2.6 1.5 0.3 N.A. 1.8 1994 76.9 3.0 2.7 1.7 0.3 N.A. 1.7 1995 77.4 3.0 3.0 1.8 0.3 N.A. 1.7 1996 75.3 2.9 2.9 1.7 0.3 N.A. 1.7 1997 78.3 2.9 2.9 1.8 0.3 N.A. 1.6 1998 78.0 2.9 3.0 1.8 0.3 N.A. 1.7 1999 78.3 2.8 3.0 1.8 0.4 N.A. 2.3 2000 78.2 2.8 3.3 1.7 0.4 N.A. 2.4 2001 77.9 2.2

423

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network (OSTI)

Architecture for Localized Electrical Energy Reduction, Generation, and Sharing) [46] is the smart-grid

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

424

Prospects of Renewable Energy for Meeting Growing Electricity Demand in Pakistan  

Science Conference Proceedings (OSTI)

Pakistan is an energy deficit country. About half of the country's population has access to electricity and per capita supply is only 520 kWh. Majority of the country's population resides in rural areas and most of them are yet without electricity. Conventional electricity generation includes 66.8% thermal

Mohammad Aslam Uqaili; Khanji Harijan; Mujeebuddin Memon

2007-01-01T23:59:59.000Z

425

Electrical Characterization Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Characterization Electrical Characterization Laboratory may include: * Equipment manufacturers * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Energy Systems Integration Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Electrical Characterization Laboratory Electrical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on the detailed electrical characterization of components and systems. This laboratory allows researchers to test the ability of equipment to withstand high voltage surges and high current faults, including equipment using

426

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network (OSTI)

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks

McGaughey, Alan

427

Meeting the Challenges of Integrating Renewable Energy into Competitive Electricity Industries  

E-Print Network (OSTI)

Workshop hosted by the IEA in November 2006. This report does not however necessarily reflect the position of the IEA. *The opinions and views offered by Commissioner Kelly are her own and not necessarily those of the United States, the Federal Energy Regulatory Commission, individual Commissioners or members of the Commission staff. Renewable Energy and International Law (REIL) is an international policy and law network for clean

unknown authors

2007-01-01T23:59:59.000Z

428

Integration of Electric Energy Storage into Power Systems with Renewable Energy Resources  

E-Print Network (OSTI)

This dissertation investigates the distribution and transmission systems reliability and economic impact of energy storage and renewable energy integration. The reliability and economy evaluation framework is presented. Novel operation strategies of energy storage and renewable energy are proposed. The method for optimizing the energy storage sizing and operation strategy in order to achieve optimal reliability and economy level is developed. The objectives of the movement towards the smart grid include making the power systems more reliable and economically efficient. The rapid development of the large scale energy storage technology makes it an excellent candidate in achieving these goals. A novel Model Predictive Control (MPC)-based operation strategy is proposed to optimally manage the charging and discharging operation of energy storage in order to minimize the energy purchasing cost for a distribution system load aggregator in power markets. Different operation strategies of energy storage have different reliability and economic impact on power systems. Simulation results illustrate the importance of the energy storage operation strategies. A hybrid operation strategy which combines the MPC-based operation strategy and the standby backup operation strategy is proposed to flexibly adjust the reliability and economic improvement brought by energy storage. A particle swarm optimization approach is developed to determine the optimal energy storage sizing and operation strategy while maximizing reliability and economic improvement. A reliability and economy assessment framework based on sequential Monte Carlo method integrated with the operation strategies is proposed. The impact on the transmission systems reliability brought by energy storage and renewable energy with the proposed operation strategies is investigated. Case studies are conducted to demonstrate the effectiveness of the proposed operation strategies, optimization approach, and the reliability and economy evaluation framework. Insights into how energy storage and renewable energy affect power system reliability and economy are obtained.

Xu, Yixing 1985-

2012-12-01T23:59:59.000Z

429

EIA Energy Kids - Electricity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The energy sources we use to make electricity can be renewable or non-renewable, but electricity itself is neither renewable nor non-renewable.

430

END?USERS TOOLS TOWARDS AN EFFICIENT ELECTRICITY CONSUMPTION: THE DYNAMIC SMART GRID  

Science Conference Proceedings (OSTI)

Growing uncontrolled electrical demands have caused increased supply requirements. This causes volatile electrical markets and has detrimental unsustainable environmental impacts. The market is presently characterized by regular daily peak demand conditions associated with high electricity prices. A demand?side response system can limit peak demands to an acceptable level. The proposed scheme is based on energy demand and price information which is available online. An online server is used to communicate the information of electricity suppliers to users

Fouad Kamel; Alexander A. Kist

2010-01-01T23:59:59.000Z

431

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Consumption & Efficiency. Energy use in homes, commercial buildings, ... State Energy Data System: Noncombustible Renewable Energy for 2011 ...

432

California Energy and Consumption Projections 2005-2050  

E-Print Network (OSTI)

US Gas/Diesel Foreign Gas/Diesel Biomass-Ethanol, Bio. D, H2 Solar - H2 Wind - H2 Geothermal - H2 3 Natural Gas - Heating Natural Gas - Electrical Generation Gas/Diesel Coal Non-Fossil Fuels Nuclear Large Hydro Renewable Energy Biomass Solar Wind Geothermal #12;Model Energy Consumption in Quads Take the 2005

Keller, Arturo A.

433

The Department of Energy's Renewable Energy Efforts, OAS-M-12-04  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Efforts Renewable Energy Efforts OAS-M-12-04 April 2012 Department of Energy Washington, DC 20585 April 30, 2012 MEMORANDUM FOR THE ASSISTANT SECRETARY FOR ENERGY EFFICIENCY AND RENEWABLE ENERGY FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Renewable Energy Efforts" BACKGROUND In an effort to promote generation of renewable energy, the Energy Policy Act of 2005 (EPAct) requires that by Fiscal Year (FY) 2013 at least 7.5 percent of a Federal agency's annual electricity consumption be from renewable sources. Renewable sources include wind, solar, geothermal, hydropower, and various forms of biomass. Agencies can obtain renewable energy

434

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

certification procedure for wind turbines as early as 1978electricity from onshore wind turbines between 2003 and 2005from abroad, may own wind turbines in Denmark. At the end of

Haas, Reinhard

2008-01-01T23:59:59.000Z

435

Smart buildings with electric vehicle interconnection as buffer for local renewables?  

E-Print Network (OSTI)

Energy Technologies Division Building / tariffs electricityOptions, Tariffs, and Building Analyzed Environmental Energyenergy management more effective stationary storage will be charged by PV, mobile only marginally results will depend on the considered region and tariff

Stadler, Michael

2012-01-01T23:59:59.000Z

436

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

biomass fraction of MSW, conventional geothermal). Maximum priceprice. Electricity generation [GWh/year] Wind onshore Hydro small-scale Solid biomassbiomass st Federal: The Royal Decree of 10 July 2002 (operational from 1 of July 2003) sets minimum prices (

Haas, Reinhard

2008-01-01T23:59:59.000Z

437

Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan  

E-Print Network (OSTI)

encouraging 3,000 MW of new solar PV systems through a long-Wind on- & offshore, PV, Solar thermal electricity, Biomass,38.3 /MWh (premium); Solar thermal & PV 28 : 229.8-440.4 /

Haas, Reinhard

2008-01-01T23:59:59.000Z

438

Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"  

E-Print Network (OSTI)

efficiency into a sustainable energy portfolio standard. Theperspective. Renewable & Sustainable Energy Reviews 13:100-

Cappers, Peter

2010-01-01T23:59:59.000Z

439

Renewable Energy Economic Development  

E-Print Network (OSTI)

: · Renewable energy / Smart grid · Electric/hybrid vehicles 38 Proprietary & Confidential Global utility ­ Who Are We? · Industry leader in planning, architecture, engineering, procurement, construction

440

Table 7.4b Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

and Useful Thermal Output: Electric Power Sector (Subset of Table 7.4a) Coala Petroleum Natural Gasf Other Gasesg Biomass Otherj Distillate Fuel Oilb Residual Fuel Oilc

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Data Visualization for Quality-Check Purposes of Monitored Electricity Consumption in All Office Buildings in the ESL Database  

E-Print Network (OSTI)

This report comprises an effort to visualize the monitored electricity consumption in all office buildings (not including the office buildings comprising other functions as classrooms and laboratories, for instance) in the ESL database. This data visualization, basically long-term and short-term time series plots serves as a preliminary quality check of the data available. A preliminary inspection of the data was performed, by viewing the channels to provide a clear identification of creep, missing data gaps, turned-off periods, and sudden big changes that suggest changes in the building operation or an addition to the building.

Sreshthaputra, A.; Abushakra, B.; Haberl, J. S.; Claridge, D. E.

2000-01-01T23:59:59.000Z

442

Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply  

E-Print Network (OSTI)

Spatio-temporal generation patterns for wind and solar photovoltaic power in Europe are used to investigate the future rise in transmission needs with an increasing penetration of these variable renewable energy sources (VRES) on the pan-European electricity system. VRES growth predictions according to the official National Renewable Energy Action Plans of the EU countries are used and extrapolated logistically up to a fully VRES-supplied power system. We find that keeping today's international net transfer capacities (NTCs) fixed over the next forty years reduces the final need for backup energy by 13% when compared to the situation with no NTCs. An overall doubling of today's NTCs will lead to a 26% reduction, and an overall quadrupling to a 33% reduction. The remaining need for backup energy is due to correlations in the generation patterns, and cannot be further reduced by transmission. The main investments in transmission lines are due during the ramp-up of VRES from 15% (as planned for 2020) to 80%. Add...

Becker, Sarah; Andresen, Gorm B; Schramm, Stefan; Greiner, Martin

2013-01-01T23:59:59.000Z

443

End-Use Consumption of Electricity by End Use and Appliance  

U.S. Energy Information Administration (EIA)

Furnace Fan: 76.3 . 500 g . 38.2. 3.3. Dishwasher: 56.7 . 512 l. 29.0. 2.5. Electric Range Top c: 59.7 . 536 g . 32.0. 2.8. Electric Oven d: 47.8 . 440 g . 21.0. 1.8 ...

444

Renewable Energy Technology Guide  

Science Conference Proceedings (OSTI)

First published in 2000 as the Renewable Energy Technical Assessment GuideTAG-RE, the Electric Power Research Institute's (EPRI's) annual Renewable Energy Technology Guide provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. These technologies include wind, solar photovoltaic (PV), solar thermal, biomass, municipal solid waste, geothermal, and emerging ocean energy conversion technologies.

2011-12-22T23:59:59.000Z

445

Renewable energy and telecommunications  

E-Print Network (OSTI)

Renewable energy and telecommunications Case study: Energy Systems Week When AK Erlang first used fossil fuels and switch to renewable energy sources. But the unlikely convergence of the two fields lay to be able to deal with. "If we integrate renewable energies, such as wind power, in the electricity grid

446

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

operated by the Alliance for Sustainable Energy, LLC. STEP 1 Assess the Local Industry and Resource Potential STEP 2 Identify Challenges to Local Development STEP 3 Evaluate Current Policy STEP 4 Consider Policy Options STEP 5 Implement Policies Increased Development Policymakers' Guidebook for Geothermal Electricity Generation This document identifies and describes five steps for implementing geothermal policies that may reduce barriers and result in deployment and implementation of geothermal technologies that can be used for electricity generation, such as conventional hydrothermal, enhanced geothermal systems (EGS), geopressured, co-production, and low temperature geothermal resources. Step 1: Assess the Local Industry and Resource Potential Increasing the use of geothermal

447

Effect of real-time electricity pricing on renewable generators and system emissions  

E-Print Network (OSTI)

Real-time retail pricing (RTP) of electricity, in which the retail price is allowed to vary with very little time delay in response to changes in the marginal cost of generation, offers expected short-run and long-run ...

Connolly, Jeremiah P. (Jeremiah Peter)

2008-01-01T23:59:59.000Z

448

EIA - Assumptions to the Annual Energy Outlook 2008 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2008 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind1. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon the availability of low-cost energy storage systems.

449

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network (OSTI)

3 System Architecture 3.1 Building as a2.1 Energy Flows in Buildings . . . . . . . . 2.1.1 Electric2.3.2 Networking . . . . . . . . . . . . 2.4 Building Energy

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

450

The Energy Box : comparing locally automated control strategies of residential electricity consumption under uncertainty  

E-Print Network (OSTI)

The Energy Box is an always-on background processor automating the temporal management of one's home or small business electrical energy usage. Cost savings are achieved in a variety of environments, ranging from at pricing ...

Livengood, Daniel James

2011-01-01T23:59:59.000Z

451

Modeling Water Withdrawal and Consumption for Electricity Generation in the United States  

E-Print Network (OSTI)

Water withdrawals for thermoelectric cooling account for a significant portion of total water use in the United States. Any change in electrical energy generation policy and technologies has the potential to have a major ...

Strzepek, Kenneth M.

2012-06-15T23:59:59.000Z

452

Table 8.4a Consumption for Electricity Generation by Energy Source ...  

U.S. Energy Information Administration (EIA)

8 Solar thermal and photovoltaic (PV) energy. Sources: - 1949-1988-Table 8.4b for electric power sector, and Tables 8.1 and A6 for industrial sector.

453

Effect of automotive electrical system changes on fuel consumption using incremental efficiency methodology  

E-Print Network (OSTI)

There has been a continuous increase in automotive electric power usage. Future projections show no sign of it decreasing. Therefore, the automotive industry has a need to either improve the current 12 Volt automotive ...

Hardin, Christopher William

2004-01-01T23:59:59.000Z

454

Table 8.7a Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

Total 5: Wood 8: Waste 9: Thousand ... electric utility data also include a small amount of fuel oil no. 4. 10 ... and other manufactured and waste gases derived from ...

455

Adapting state and national electricity consumption forecasting methods to utility service areas. Final report  

SciTech Connect

This report summarizes the experiences of six utilities (Florida Power and Light Co., Municipal Electric Authority of Georgia, Philadelphia Electric Co., Public Service Co. of Colorado, Sacramento Municipal Utility District, and TVA) in adapting to their service territories models that were developed for forecasting loads on a national or regional basis. The models examined were of both end-use and econometric design and included the three major customer classes: residential, commercial, and industrial.

Swift, M.A.

1984-07-01T23:59:59.000Z

456

Clean Cities Now, Vol. 15, No. 1, April 2011: Plugging In, Cities are planning for electric vehicle infrastructure (Brochure), Energy Efficiency & Renewable Energy (EERE)  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 April 2011 Clean Cities TV to Broadcast Coalition Successes Keeping Trash from Going to Waste with Renewable Natural Gas Renewable Fuels in New Jersey Raleigh, NC Los Angeles, CA Houston, TX Oregon Cities are planning for electric vehicle infrastructure Plugging In Dear Readers, In preparation for the widespread adoption of all-electric and plug-in hybrid electric vehicles, city officials, utility companies, and local leaders are working together to speed up permitting processes for installing home charging equipment. To help cities navigate this new territory, Clean Cities devel- oped case studies detailing the experiences of four electric vehicle pacesetters-the state of Oregon, Houston, Los Angeles, and Raleigh, North Carolina-that are leading the charge. Our feature article on

457

Today in Energy - Most states have Renewable Portfolio ...  

U.S. Energy Information Administration (EIA)

Renewable portfolio standards (RPS), also referred to as renewable electricity standards (RES), are policies designed to increase generation of ...

458

Managing R&D Risk in Renewable Energy  

E-Print Network (OSTI)

from 2007. Table 6: Renewable Energy Costs, Transportationmegajoules. Table 7: Renewable Energy Costs, Electricity ($/1: DOE Renewable Energy Milestones cellulosic ethanol cost

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

459

Office of Energy Efficiency and Renewable Energy Fiscal Year...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Renewable Electricity Generation Office of Energy Efficiency and Renewable Energy Fiscal Year...

460

Electricity - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Find statistics on electric power plants, capacity, generation, fuel Find statistics on electric power plants, capacity, generation, fuel consumption, sales, prices and customers. + EXPAND ALL Summary Additional formats Summary electricity statistics 2001-2011 › XLS Supply and disposition of electricity 2002-2011 › XLS Electricity overview › Generation, retail sales, electricity trade, losses PDF XLS Consumption for electricity generation › Fossil and renewable fuel consumption for electricity generation PDF XLS Generating capacity › Electric net summer capacity by specific energy source more on electricity PDF XLS Monthly electricity overview - back to 1973 CSV PDF XLS Latest month total electric power industry summary statistics › Overview XLS Year-to-date total electric power industry summary statistics ›

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Consumption Strategies and Tariff Coordination for Cooperative Consumers in a Deregulated Electricity Market  

Science Conference Proceedings (OSTI)

As the trend in electricity markets is strongly towards deregulation, new players, new rules and new behaviors will continue to emerge. One of the new phenomena that are developing on the demand side is the purchase by a coalition of agents. When it ...

Juha Mntysaari; Pierre-Olivier Pineau

1999-01-01T23:59:59.000Z

462

Leaking electricity: Standby and off-mode power consumption in consumer electronics and household appliances  

Science Conference Proceedings (OSTI)

This report assesses ``leaking`` electricity from consumer electronics and small household appliances when they are in standby mode or turned off, and examines the impacts of these losses. The report identifies trends in relevant product industries and gives technical and policy options for reducing standby and off-mode power loss.

Thorne, J.; Suozzo, M.

1998-12-31T23:59:59.000Z

463

The Effect on Electricity Consumption of the Commonwealth Edison Customer Application Program Pilot: Phase 1, Appendices  

Science Conference Proceedings (OSTI)

This report provides appendices that support Electric Power Research Institute (EPRI) report 1022703, which describes the Phase 1 analysis of some aspects of residential customers' response to Commonwealth Edison's Customer Application Plan (CAP). This report contains technical materials that describe in detail all of the methods employed in conducting the Phase 1 analysis and presents the results of the application of those methods.

2011-04-29T23:59:59.000Z

464

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

SciTech Connect

Electricity markets in the United States have witnessed unprecedented instability over the last few years, with substantial volatility in wholesale market prices, significant financial distress among major industry organizations, and unprecedented legal, regulatory and legislative activity. These events demonstrate the considerable risks that exist in the electricity industry. Recent industry instability also illustrates the need for thoughtful resource planning to balance the cost, reliability, and risk of the electricity supplied to end-use customers. In balancing different supply options, utilities, regulators, and other resource planners must consider the unique risk profiles of each generating source. This paper evaluates the relative risk profiles of renewable and natural gas generating plants. The risks that exist in the electricity industry depend in part on the technologies that are used to generate electricity. Natural gas has become the fuel of choice for new power plant additions in the United States. To some, this emphasis on a single fuel source signals the potential for increased risk. Renewable generation sources, on the other hand, are frequently cited as a potent source of socially beneficial risk reduction relative to natural gas-fired generation. Renewable generation is not risk free, however, and also imposes certain costs on the electricity sector. This paper specifically compares the allocation and mitigation of risks in long-term natural gas-fired electricity contracts with the allocation and mitigation of these same risks in long-term renewable energy contracts. This comparison highlights some of the key differences between renewable and natural gas generation that decision makers should consider when making electricity investment and contracting decisions. Our assessment is relevant in both regulated and restructured markets. In still-regulated markets, the audience for this report clearly includes regulators and the utilities they regulate. In restructured markets, the role of regulatory oversight of resource planning is more limited. Nonetheless, even in restructured markets, it is increasingly recognized that regulators have a critical role to play in directing the resource planning of providers of last resort--electric suppliers that provide service to those customers who choose not to switch to a competitive supplier. Our review of electricity contracts may also have educational value for those unfamiliar with the typical contents of these agreements. Details of our findings are provided in the body of the paper, but this summary is written to provide a concise alternative to reading the full report.

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-03-12T23:59:59.000Z

465

Non-Space Heating Electrical Consumption in Manufactured Homes: Residential Construction Demonstration Project Cycle II : Final Report.  

SciTech Connect

This report summarizes submeter data of the non-space heating electrical energy use in a sample of manufactured homes. These homes were built to Super Good Cents insulation standards in 1988 and 1989 under the auspices of RCDP Cycle 2 of the Bonneville Power Administration. They were designed to incorporate innovations in insulation and manufacturing techniques developed to encourage energy conservation in this important housing type. Domestic water heating (DWH) and other non-space heat energy consumption, however, were not generally affected by RCDP specifications. The purpose of this study is to establish a baseline for energy conservation in these areas and to present a method for estimating total energy saving benefits associated with these end uses. The information used in this summary was drawn from occupant-read submeters and manufacturersupplied specifications of building shell components, appliances and water heaters. Information was also drawn from a field review of ventilation systems and building characteristics. The occupant survey included a census of appliances and occupant behavior in these manufactured homes. A total of 150 manufactured homes were built under this program by eight manufacturers. An additional 35 homes were recruited as a control group. Of the original 185 houses, approximately 150 had some usable submeter data for domestic hot water and 126 had usable submeter data for all other nonheating consumption. These samples were used as the basis for all consumption analysis. The energy use characteristics of these manufactured homes were compared with that of a similar sample of RCDP site-built homes. In general, the manufactured homes were somewhat smaller and had fewer occupants than the site-built homes. The degree to which seasonal variations were present in non-space heat uses was reviewed.

Onisko, Stephen A.; Roos, Carolyn; Baylon, David

1993-06-01T23:59:59.000Z

466

Hydrogen Fuel Cell Electric Vehicles (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

nations around the world pursue a variety of sustainable nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs are important to our nation's future because they can: * Play an important role in our portfolio of sustainable transportation options * Provide a cost-competitive, appealing alternative for drivers * Reduce dependence on imported oil and diversify energy sources for transportation * Enable global economic leadership and job growth. Offering a Sustainable Transportation Option Americans have tremendous freedom to travel wherever and whenever they want. Ninety percent of travel in the United States is achieved by automobiles that refuel quickly

467

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

7 7 U.S. Electric Power Sector Cumulative Power Plant Additions Needed to Meet Future Electricity Demand (1) Typical New Number of New Power Plants to Meet Demand Electric Generator Plant Capacity (MW) 2015 2020 2025 2030 2035 Coal Steam 1,300 7 8 8 8 8 Combined Cycle 540 28 29 43 79 130 Combustion Turbine/Diesel 148 62 105 174 250 284 Nuclear Power 2,236 1 3 3 3 4 Pumped Storage 147 (2) 0 0 0 0 0 Fuel Cells 10 0 0 0 0 0 Conventional Hydropower 20 (2) 20 47 81 125 185 Geothermal 50 9 26 41 62 81 Municipal Solid Waste 50 1 1 1 1 1 Wood and Other Biomass 50 5 5 5 5 6 Solar Thermal 100 9 9 9 9 9 Solar Photovoltaic 150 11 11 13 23 52 Wind 100 123 124 153 182 262 Total 277 372 538 760 1,041 Distributed Generation 148 (3) Note(s): Source(s): 1) Cumulative additions after Dec. 31, 2010. 2) Based on current stock average capacity. 3) Combustion turbine/diesel data used.

468

Renewable energy perspectives in the  

E-Print Network (OSTI)

Renewable energy perspectives in the mediterranean countries - the Mediterranean Solar Plan Dr 600 800 1000 1200 1400 1990 2009 CS2030 PS2030 Mtoe Renewables & Waste Hydro Nuclear Gas Oil Coal #12 - hydro Renewables Hydro Nuclear Gas Oil Coal 2009 2030 PS2030 CS #12;RENEWABLE ELECTRICITY GENERATION 0

Canet, Léonie

469

2008 Renewable Energy Data Book  

DOE Green Energy (OSTI)

This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

Not Available

2009-07-01T23:59:59.000Z

470

SC e-journals, Renewable Energy  

Office of Scientific and Technical Information (OSTI)

Renewable Energy Agricultural & Forest Meteorology Biomass & Bioenergy BioEnergy Research Electricity Journal, The Journal of Renewable and Sustainable Energy Process Biochemistry...

471

Profiling Real-Time Electricity Consumption Data for Process Monitoring and Control  

Science Conference Proceedings (OSTI)

Today, smart meters serve as key assets to utilities and their customers because they are capable of recording and communicating real-time energy usage data; thus, enabling better understanding of energy usage patterns. Other potential benefits of smart meters data include the ability to improve customer experience, grid reliability, outage management, and operational efficiency. Despite these tangible benefits, many utilities are inundated by data and remain uncertain about how to extract additional value from these deployed assets outside of billing operations. One way to overcome this challenge is the development of new metrics for classifying utility customers. Traditionally, utilities classified their customers based on their business nature (residential, commercial, and industrial) and/or their total annual consumption. While this classification is useful for some operational functions, it is too limited for designing effective monitoring and control strategies. In this paper, a data mining methodology is proposed for clustering and profiling smart meters data in order to form unique classes of customers exhibiting similar usage patterns. The developed clusters could help utilities in identifying opportunities for achieving some of the benefits of smart meters data.

Omitaomu, Olufemi A [ORNL

2013-01-01T23:59:59.000Z

472

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

owner might have to low electricity rates is fairly limited,to lower than retail electricity rates is imperative forsupplemental grid electricity rates. Sources 1. Renewable

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

473

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9) 9) June 2011 State Energy Consumption Estimates 1960 Through 2009 2009 Consumption Summary Tables Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity/ Losses f Net Electricity Imports Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,906.8 631.0 473.9 583.9 1,688.8 415.4 272.9 -470.3 0.0 383.2 266.0 788.5 469.2 Alaska 630.4 14.5 344.0 255.7 614.1 0.0 16.3 0.0 (s) 53.4 61.0 325.4 190.6 Arizona 1,454.3 413.3 376.7 520.8 1,310.8 320.7 103.5 -279.9 -0.8 400.8 352.1 207.8 493.6 Arkansas 1,054.8 264.1 248.1 343.1 855.3 158.7 126.5 -85.7 0.0 226.3 167.0 372.5

474

Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy The WIPP Site Holds Promise as an Ideal Source of Renewable Energy Encompassing 16 square miles of open Chihuahuan desert with abundant sunshine and minimal surface roughness, the WIPP site is ideal for either solar- or wind-generated electricity production, demonstration or testing. In fact, WIPP is striving to take advantage of its abundance of sunshine and wind. The Department of Energy's Office of Environmental Management has created what is being called the Energy Park Initiative (EPI). This initiative's goal is to convert DOE facilities into assets by focusing on providing solutions for renewable energy technologies. WIPP, which has always been a DOE leader in terms of safety, has set the additional goal of trying to become the first DOE site operating with 100 percent clean energy. A team, consisting of representatives from CBFO, WTS, Sandia National Laboratories, Los Alamos National Laboratory, New Mexico State University, Texas Tech, the Carlsbad community and area utilities, have come up with several potential solutions. Members of the team are continuing to look into these solutions.

475

Renewables Portfolio Standard Overview  

DOE Green Energy (OSTI)

A Renewables Portfolio Standard (RPS) is a requirement on electric utilities and other electric suppliers to supply a minimum percentage or amount of their load with eligible sources of renewable energy. The RPS has become increasingly popular because of its benefits and the public benefits of renewable energy. A well-designed state RPS can effectively deliver a renewable energy supply and associated benefits, at a low cost or even with consumer savings. This fact sheet provides an overview of an effective RPS design.

Not Available

2005-02-01T23:59:59.000Z

476

Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy1354608000000Renewable EnergySome of these resources are LANL-only and will require Remote Access.No Renewable Energy Some of these resources are...

477

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book (EERE)

5 5 U.S. Electric Utility and Nonutility Net Summer Electricity Generation Capacity (GW) Coal Steam Other Fossil Combine Cycle Combustion Turbine Nuclear Pumped Total 1980 0.0 1981 0.0 1982 0.0 1983 0.0 1984 0.0 1985 0.0 1986 0.0 1987 0.0 1988 0.0 1989 18.1 1990 19.5 1991 18.4 1992 21.2 1993 21.1 1994 21.2 1995 21.4 1996 21.1 1997 19.3 1998 19.5 1999 19.6 2000 19.5 2001 19.7 2002 20.4 2003 20.5 2004 20.8 2005 21.3 2006 21.5 2007 21.9 2008 21.9 2009 22.2 2010 22.2 2011 22.2 2012 22.2 2013 22.2 2014 22.2 2015 22.2 2016 22.2 2017 22.2 2018 22.2 2019 22.2 2020 22.2 2021 22.2 2022 22.2 2023 22.2 2024 22.2 2025 22.2 2026 22.2 2027 22.2 2028 22.2 2029 22.2 285.6 87.9 211.3 161.19 114.7 882.9 285.6 87.9 205.3 159.30 114.7 875.0 285.6 88.6 201.8 159.01 114.7 871.8 285.6 88.9 199.6 158.22 114.7 869.2 285.6 89.0 194.5 154.88 114.7 860.8 285.6 89.0 191.9 153.01 113.9 855.6 285.6 89.0 189.2 150.00 113.2

478

Review of Operational Water Consumption and Withdrawal Factors...  

NLE Websites -- All DOE Office Websites (Extended Search)

have the highest water consumption values when using a recirculating cooling system. Non-thermal renewables, such as photovoltaics (PV) and wind, have the lowest water consumption...

479

Renewable Energy andRenewable Energy and Distributed PowerDistributed Power  

E-Print Network (OSTI)

Government Intervention, Use of Renewable Energyof Renewable Energy #12;Brief US History of Electric PowerBrief US HistoryRenewable Energy andRenewable Energy and Distributed PowerDistributed Power GenerationGeneration PHistorical Perspectives DG FundamentalsDG Fundamentals Renewable Energy and DistributedRenewable Energy and Distributed

480

Relationships between consumers' attitudes and knowledge and the effect of time-of-use rate structures on electricity consumption: North Carolina  

SciTech Connect

The North Carolina Time-of-Use (TOU) Rate Demonstration Project examined the effects of various TOU rate schedules on residential consumers' electrical usage, including both total usage and temporal patterns of electricity consumption. This report summarizes the findings of a series of secondary analyses of the data derived from this demonstration project. These secondary analyses focused on the effects of consumers' knowledge of, and attitudes toward, the TOU rate structure to which they were assigned on both total electricity usage and temporal patterns of consumption. These analyses were made possible by the provision of an extensive exit interview, which was administered to all participants at the completion of the one year demonstration project. In addition, data on electricity usage, the dependent variable for these analyses, was collected throughout the duration of the demonstration project. After describing the general features of the demonstration project, this report presents the findings of secondary analyses undertaken to determine participants' knowledge of the TOU rate structures to which they were assigned, their attitudes toward TOU rate structures, and the relationships between these attitude and knowledge measures and electricity consumption. Findings are presented separately for the Carolina Power and Light Company (CP and L) and the Blue Ridge Municipal Electric Company.

1981-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable electricity consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Final Report  

Science Conference Proceedings (OSTI)

Electricity consumption in the Southeastern US, including Florida, is approximately 32% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. We found that significant wind energy transfers, at the level of 30-60 GW, are expected to be economic in case of federal RPC or CO2 policy. Development of wind resources will depend not only on the available transmission capacity and required balancing resources, but also on electricity supply and demand factors.

Key, Thomas S [Electric Power Research Institute (EPRI); Hadley, Stanton W [ORNL; Deb, Rajat [LCG Consulting

2010-02-01T23:59:59.000Z

482

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

to predict blower motor electrical power consumption for thegives the blower motor electrical power consumption. BE =the blower motor electrical power consumption. The following

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

483

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network (OSTI)

4 and 5, the distributions of electricity consumption among01 Figure 4 Distribution of Electricity Consumption AmongSample Figure 5 - Distribution of Electricity Consumption

Kelsven, Phillip

2013-01-01T23:59:59.000Z

484

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

AdministrationHousehold Vehicles Energy Consumption 1994 110 Electricity: See Main Heating Fuel. Energy Used in the Home: For electricity or natural gas, the quantity is the...

485

Renewable energy has political support, room to grow  

Science Conference Proceedings (OSTI)

Renewable energy sources enjoy growing political support and have plenty of room to grow in the worldwide energy mix. And grow they will, according to most projections. The US Energy Information Administration`s (EIA`s) International Energy Outlook 1997 says consumption of hydroelectricity and other renewables will increase by 56% during 1995--2015. The renewable share of the total energy mix will remain at about current levels, however. The EIA projection includes only renewable fuels used in the generation of electricity. It therefore excludes most biomass energy. Despite the importance of biomass energy, data on consumption of it are sparse. IEA estimates that in the industrialized world, the biomass share of primary energy consumption amounts to 3.5%. Also excluded from EIA`s projection because of insufficiency of data are dispersed renewables, a category that includes energy consumed at the site of production, such as solar panels used for water heating. This paper discusses regional trends, North American activity, Western Europe, Asian developments, and the rest of the world.

NONE

1997-08-11T23:59:59.000Z

486

Assumptions to the Annual Energy Outlook 1999 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

renewable.gif (4875 bytes) renewable.gif (4875 bytes) The NEMS Renewable Fuels Module (RFM) consists of five distinct submodules that represent the major renewable energy technologies. Although it is described here, conventional hydroelectric is included in the Electricity Market Module (EMM) and is not part of the RFM. Similarly, ethanol modeling is included in the Petroleum Market Module (PMM). Some renewables, such as municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not require the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using wind, solar, and geothermal energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittence, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

487

Investigation and Analysis of Energy Consumption and Cost of Electric Air Conditioning Systems in Civil Buildings in Changsha  

E-Print Network (OSTI)

We investigated 40 typical air conditioned buildings in Changsha in 2005, including 15 hotel buildings, 6 commercial buildings, 5 office buildings, 6 hospital buildings and 8 synthesis buildings. On this basis we analyze the relation between types of cold and heat sources and the HVAC area of the buildings. Meanwhile the economical and feasible types of cold and heat sources are pointed out, i.e., oil boilers and gas boilers for heat source, and centrifugal and screw water chillers for cold source based on the electric refrigeration. Among the heat sources, the prospect of gas boilers is better. In addition, the air source heat pump depends heavily on whether some crucial issues such as frost can be solved during its application. The water-source heat pump will likely be applied. Based on the analysis of energy consumption and energy bills, we determine the feasible measures for energy conservation including the aspects of design, operation and management. Among them, special attention should be paid to energy metering and running time of air conditioning systems in civil buildings in Changsha.

Xie, D.; Chen, J.; Zhang, G.; Zhang, Q.

2006-01-01T23:59:59.000Z

488

Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management (Poster), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management Mike Simpson, Tony Markel, and Michael O'Keefe National Renewable Energy Laboratory INTRODUCTION OPPORTUNITY National Renewable Energy Laboratory Presented at the 4th International Conference on Integration of Renewable & Distributed Energy Resources, December 6-10 , 2010 * Albuquerque, New Mexico U.S. military bases, such as Fort Carson, are interested in opportunities to lower energy consumption and use renewable resources. l Electricity GCV Micro-Grid The Smith Electric Newton all-electric truck Fort Carson Photovoltaic Installation NREL PIX 17631 NREL PIX # 17394 Natural Gas Renewable Energy Truck Fleet Diesel Generators

489

Optimal endogenous carbon taxes for electric power supply chains with power plants  

Science Conference Proceedings (OSTI)

In this paper, we develop a modeling and computational framework that allows for the determination of optimal carbon taxes applied to electric power plants in the context of electric power supply chain (generation/distribution/consumption) networks. ... Keywords: Carbon taxes, Electric power, Environmental policies, Network equilibria, Renewable energy, Supply chains, Variational inequalities

Anna Nagurney; Zugang Liu; Trisha Woolley

2006-11-01T23:59:59.000Z

490

Renewable Energy Technology Characterizations  

Science Conference Proceedings (OSTI)

Renewable energy technologies span the range from developmental to commercially available. Some can make significant contributions now to electricity supply with zero or reduced environmental emissions. This report describes the technical and economic status of the major emerging renewable options and offers projections for their future performance and cost.

1997-12-30T23:59:59.000Z

491

Renewable Energy in Alaska  

SciTech Connect

This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

Not Available

2013-03-01T23:59:59.000Z

492

Current conflicts in U.S. Electric transmission planning, cost allocation and renewable energy policies: More heat than light?  

Science Conference Proceedings (OSTI)

To surmount obstacles to expanding and upgrading the nation's transmission system that are impeding development of the renewables sector, it is critical that these issues be resolved quickly and on a consistent rather than ad hoc basis. (author)

Bloom, David; Forrester, J. Paul; Klugman, Nadav

2010-12-15T23:59:59.000Z

493

Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables Portfolio Standard Renewables Portfolio Standard Renewables Portfolio Standard < Back Eligibility Investor-Owned Utility Municipal Utility Retail Supplier Savings Category Other Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info State Connecticut Program Type Renewables Portfolio Standard Provider Connecticut Public Utilities Regulatory Authority Established in 1998 and subsequently revised several times, Connecticut's renewables portfolio standard (RPS) requires each electric supplier and each electric distribution company wholesale supplier to obtain at least 23% of its retail load by using renewable energy by January 1, 2020. The RPS also requires each electric supplier and each electric distribution

494

The Future of Electricity (and Gas) Regulation  

E-Print Network (OSTI)

is less than 20% of final energy consumption, even if other sectors managed to achieve a highly ambitious 10% renewables target, electricity would be required to acheive around a 35% renewable share to meet the overall target (see DUKES Table 1... analyses of how current and future policy can achieve this in the context of the UK. 3 Note climate change concern could be relatively greater than or less than actual climate change. 2 countries who operate within the context of EU energy...

Pollitt, Michael G.

495

renewables | OpenEI Community  

Open Energy Info (EERE)

(TCDB) advanced vehicles electric generation NREL OpenEI renewables tcdb This new web application collects cost and performance estimates and makes it available to everyone...

496

Reduces electric energy consumption  

E-Print Network (OSTI)

implementation of the assessment recommendations is estimated to be $843,000 with a total implementation cost. Manufacturing at the facility includes both casting and extrusion processes. Process equipment, air compressors productivity. As a result, facility production costs can be reduced and profits can be increased. August 2001

497

Modelling household electricity consumption.  

E-Print Network (OSTI)

??A number of conclusions are drawn, however given the limited and non-representative na- ture of the data on which the model is calibrated, these can (more)

de la Rue, Philip Martin

2010-01-01T23:59:59.000Z

498

Fault Detection of Hourly Measurements in District Heat and Electricity Consumption; Feldetektion av Timinsamlade Mtvrden i Fjrrvrme- och Elfrbrukning.  

E-Print Network (OSTI)

?? Within the next years, the amount of consumption data will increase rapidly as old meters will be exchanged in favor of meters with hourly (more)

Johansson, Andreas

2005-01-01T23:59:59.000Z

499

NREL Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Reveals Links Among Reveals Links Among Climate Control, Battery Life, and Electric Vehicle Range Researchers at the National Renewable Energy Laboratory (NREL) are providing new insights into the relationships between the climate-control systems of plug-in electric vehicles and the distances these vehicles can travel on a single charge. In particular, NREL research has determined that "preconditioning" a vehicle- achieving a comfortable cabin temperature and preheating or precooling the battery while the vehicle is still plugged in-can extend its driving range and improve battery life over the long term. One of the most significant barriers to widespread deployment of electric vehicles is range anxiety-a driver's uncertainty about the vehicle's ability to reach a destination before fully

500

Renewable Energy Goal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Goal Renewable Energy Goal Renewable Energy Goal < Back Eligibility Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Energy Sources Solar Home Weatherization Wind Program Info State Oklahoma Program Type Renewables Portfolio Standard Provider Oklahoma Corporation Commission In May 2010, Oklahoma established a renewable energy goal for electric utilities operating in the state. The goal calls for 15% of the total installed generation capacity in Oklahoma to be derived from renewable sources by 2015. There are no interim targets, and the goal does not extend past 2015. Eligible renewable energy resources include wind, solar, hydropower, hydrogen, geothermal, biomass, and other renewable energy