Sample records for renewable distributed generation

  1. Distributed Generation and Renewable Energy in

    E-Print Network [OSTI]

    Distributed Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero Cooperative Research Network (CRN) National Rural Electric Cooperative Association September 22, 2004 #12 in Durango, CO Plug Power Fuel Cell at Fort Jackson, SC LoganEnergy #12;Power Supply Program Distributed

  2. Distributed Renewable Energy Generation and Landscape Architecture: A Critical Review.

    E-Print Network [OSTI]

    Beck, Osmer DeVon

    2010-01-01T23:59:59.000Z

    ??Governments and utility organizations around the world have mandated and provided incentives for new distributed renewable energy generation (DREG) capacity, and market projections indicate strong… (more)

  3. Smoothing the Eects of Renewable Generation on the Distribution Grid

    E-Print Network [OSTI]

    Naud, Paul S.

    2014-01-01T23:59:59.000Z

    to Grid by Paul Naud Renewable electrical power sourcessystem based on various renewable energy resources. InCRUZ Smoothing the Effects of Renewable Generation on the

  4. Renewable Energy: Distributed Generation Policies and Programs...

    Broader source: Energy.gov (indexed) [DOE]

    resources. Net Metering State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price, which creates an...

  5. Renewable Energy: Distributed Generation Policies and Programs | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments on NBPSitingPresentation Remy:Renewable13423Departmentofof

  6. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid...

  7. Developing and Implementing the Foundation for a Renewable Energy-Based "Distribution Generation Micro-grid": A California Energy Commission Public Interest Energy Research Co-Funded Program

    E-Print Network [OSTI]

    Lilly, P.; Sebold, F. D.; Carpenter, M.; Kitto, W.

    The California Energy Commission has been implementing its Public Interest Energy Research (PIER) and Renewable Energy Programs since early 1998. In the last two years, the demand for renewable distributed generation systems has increased rapidly...

  8. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  9. Distributional and Efficiency Impacts of Clean and Renewable Energy Standards

    E-Print Network [OSTI]

    supply and demand, including renewable energy resources and generating technologies, while representingDistributional and Efficiency Impacts of Clean and Renewable Energy Standards for Electricity on recycled paper #12;Distributional and Efficiency Impacts of Clean and Renewable Energy Standards

  10. Renewable Generation Requirement

    Broader source: Energy.gov [DOE]

    In 1999 the Public Utility Commission of Texas (PUCT) adopted rules for the state's Renewable Energy Mandate, establishing a renewable portfolio standard (RPS), a renewable-energy credit (REC)...

  11. Figure 1. Nonhydroelectric renewable generation

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Nonhydroelectric renewable generation" " (billion kilowatthours)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,...

  12. Impact of Renewable Distributed Generation on Power Systems M. Begovi, A. Pregelj, A. Rohatgi D. Novosel

    E-Print Network [OSTI]

    emissions, defer capital cost, reduce maintenance investments and improve the distribution feeder voltage, eliminating the unnecessary transmission and distribution costs. In addition, it can reduce fossil fuel that the knowledge of total penetration of small PV systems is sufficient to estimate the effects of DG on the feeder

  13. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain...

  14. Renewable Energy Co-Location of Distribution Facilities (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation applies to distribution facilities, which include poles and wires, cables, pipelines, or other underground conduits by which a renewable generator is able to (i) supply electricity...

  15. Eastern Renewable Generation Integration Study (Presentation)

    SciTech Connect (OSTI)

    Bloom, A.

    2014-05-01T23:59:59.000Z

    This presentation provides a high-level overview of the Eastern Renewable Generation Integration Study process, scenarios, tools, and goals.

  16. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect (OSTI)

    None

    2012-02-11T23:59:59.000Z

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframes—incentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales —making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  17. Renewable Electricity Generation in the United States

    E-Print Network [OSTI]

    Schmalensee, Richard

    This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

  18. Renewable Electricity Generation (Fact Sheet), Office of Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet),...

  19. Eastern Renewable Generation Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    This one-page, two-sided fact sheet provides an overview of the Eastern Renewable Generation and Integration Study process.

  20. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    integration of energy efficiency, distributed generation, renewable energy resources and energy storage technologies, both locally and globally, to maximize the value of the...

  1. Renewable Energy Generation Zone Property Tax Abatement

    Broader source: Energy.gov [DOE]

    Local areas in Mimssouri can be designated as Renewable Energy Generation Zones and receive property tax abatements as part of the Enhanced Enterprise Zone program. Legislation (H.B. 737) enacted...

  2. Renewable Power Options for Electricity Generation on Kaua'i...

    Office of Environmental Management (EM)

    Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

  3. A reliability assessment methodology for distribution systems with distributed generation

    E-Print Network [OSTI]

    Duttagupta, Suchismita Sujaya

    2006-08-16T23:59:59.000Z

    Reliability assessment is of primary importance in designing and planning distribution systems that operate in an economic manner with minimal interruption of customer loads. With the advances in renewable energy sources, Distributed Generation (DG...

  4. CONSULTANT REPORT DISTRIBUTED GENERATION

    E-Print Network [OSTI]

    CONSULTANT REPORT DISTRIBUTED GENERATION INTEGRATION COST STUDY Analytical Framework energy development, or distributed generation, in California. In May 2012, Southern California Edison Southern California Edison's approach to evaluating distributed generation impacts, and to conduct

  5. Request for Information Renewable Energy Generation/Production...

    Open Energy Info (EERE)

    Renewable Energy GenerationProduction Shreveport Airport Authority - Response Deadline 2 January 2014 Home > Groups > Renewable Energy RFPs Rosborne318's picture Submitted by...

  6. Complete Automation of Future Grid for Optimal Real-Time Distribution of Renewables

    E-Print Network [OSTI]

    Loudon, Catherine

    Complete Automation of Future Grid for Optimal Real-Time Distribution of Renewables Kiyoshi integrates tie-set graph theory with an intelligent agent system, is presented to distribute renewable energy and renewable generation is highly variable and unpredictable. Simulation results on a one hundred-node network

  7. Distributed Reforming of Renewable Liquids via Water Splitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation) Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport...

  8. Integrating Renewable Energy into the Transmission and Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Kari Burman, Dan Olis, Vahan Gevorgian, Adam Warren, and Robert Butt National Renewable...

  9. Optimal Integration of Renewable Energy Resources in Data Centers with Behind-the-Meter Renewable Generator

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    1 Optimal Integration of Renewable Energy Resources in Data Centers with Behind-the-Meter Renewable-- Renewable energy resources, such as wind and solar power, are rapidly becoming generation technologies-temporal variations, the integration of renewable energy resources is usually very challenging. Some of the previously

  10. A Valuation-Based Framework for Considering Distributed Generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Valuation-Based Framework for Considering Distributed Generation Photovoltaic Tariff Design Preprint Owen R. Zinaman National Renewable Energy Laboratory Nam R. Darghouth...

  11. Renewable Generation and Interconnection to the Electrical Grid...

    Broader source: Energy.gov (indexed) [DOE]

    Generation and Interconnection to the Electrical Grid in Southern California Renewable Generation and Interconnection to the Electrical Grid in Southern California Presentation...

  12. City of San Marcos- Distributed Generation Rebate Program (Texas)

    Broader source: Energy.gov [DOE]

    The City of San Marcos offers a Distributed Generation Rebate Program for the installation of grid-tied renewable energy systems. The Distributed Generation Rebate Program is offered on a first...

  13. BATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION

    E-Print Network [OSTI]

    pro- duction to come from renewable resources. In the 2011 State of the Union Address, President ObamaBATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION By Shengyuan (Mike) Chen, Emilie-626-7370 URL: http://www.ima.umn.edu #12;Battery Storage Control for Steadying Renewable Power Generation

  14. Holy Cross Energy- WE CARE Renewable Energy Generation Rebate Program

    Broader source: Energy.gov [DOE]

    Holy Cross Energy's WE CARE (With Efficiency, Conservation And Renewable Energy) Program offers a $1.50-per-watt DC incentive for renewable energy generation using wind, hydroelectric, photovoltaic...

  15. Quantifying avoided emissions from renewable generation

    E-Print Network [OSTI]

    Gomez, Gabriel R. (Gabriel Rodriguez)

    2009-01-01T23:59:59.000Z

    Quantifying the reduced emissions due to renewable power integration and providing increasingly accurate emissions analysis has become more important for policy makers in the age of renewable portfolio standards (RPS) and ...

  16. Renewable Energy for Electricity Generation in Latin America...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Focus...

  17. High Performance, Low Cost Hydrogen Generation from Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    Performance, Low Cost Hydrogen Generation from Renewable Energy 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

  18. Message passing for integrating and assessing renewable generation in a redundant power grid

    SciTech Connect (OSTI)

    Zdeborova, Lenka [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R {le} D of these consumers to other generators. The lines are switchable so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of 'firm' generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch sellings where no generator is overloaded.

  19. Software Based Barriers To Integration Of Renewables To The Future Distribution Grid

    E-Print Network [OSTI]

    Stewart, Emma

    2014-01-01T23:59:59.000Z

    To  Integration  of   Renewables  To  The  Future  TO INTEGRATION OF RENEWABLES TO THE FUTURE DISTRIBUTION GRIDto the integration of renewables to the distribution grid.

  20. Eastern Renewable Generation Integration Study: Initial Results (Poster)

    SciTech Connect (OSTI)

    Bloom, A.; Townsend, A.; Hummon, M.; Weekley, A.; Clark, K.; King, J.

    2013-10-01T23:59:59.000Z

    This poster presents an overview of the Eastern Renewable Generation Integration Study, which aims to answer critical questions about the future of the Eastern Interconnection under high levels of solar and wind generation penetration.

  1. Towards a Policy of Renewable and Distributed Energy Resources

    E-Print Network [OSTI]

    Grid 2020 Towards a Policy of Renewable and Distributed Energy Resources September 2012 Resnick W. California Blvd. MC 132-80 Pasadena, CA. 91125 USA + #12;GRID 2020: Towards a Policy of Renewable in the Resnick Insti- tute's Managing Uncertainty: Incorporating Intermittent Renewable Energy Into the Power

  2. Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations

    E-Print Network [OSTI]

    Wong, Vincent

    Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations Woongsup between electric vehicle charging stations (EVCSs) with renewable electricity generation facilities (REGFs electricity generation [1]. Therefore, renewable power generation will play a significant role in smart grid

  3. Worst Case Scenario for Large Distribution Networks with Distributed Generation

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    , tides, and geothermal heat, is the best choice as alternative source of energy. The interconnection and distribution networks, finally to the electric energy consumers. The life style of a nation is measured of these renewable energy sources and other forms of small generation such as combined heat and power (CHP) units

  4. Insertion of Distributed Generation into Rural Feeders , R. MORENO+

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    -generating technologies with new technologies that pollute less. Therefore, the use of renewable energies in the worldwide of renewable energy distributed generators (DG) to radial feeders is assessed. Often, the long distance between, however, are not usually designed to receive energy at the consumer end. This problem intensifies

  5. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  6. Eastern Renewable Generation Integration Study Solar Dataset (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01T23:59:59.000Z

    The National Renewable Energy Laboratory produced solar power production data for the Eastern Renewable Generation Integration Study (ERGIS) including "real time" 5-minute interval data, "four hour ahead forecast" 60-minute interval data, and "day-ahead forecast" 60-minute interval data for the year 2006. This presentation provides a brief overview of the three solar power datasets.

  7. Evaluating Policies to Increase Electricity Generation from Renewable Energy

    E-Print Network [OSTI]

    Schmalensee, Richard

    Building on a review of experience in the United States and the European Union, this article advances four main propositions concerning policies aimed at increasing electricity generation from renewable energy. First, who ...

  8. NASA/FPL Renewable Project Case Study: Space Coast Next Generation...

    Broader source: Energy.gov (indexed) [DOE]

    NASAFPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center NASAFPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center...

  9. Abstract--This paper proposes a distributed generator (DG) placement methodology based on newly defined term reactive

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    . Index Terms--Distributed generator (DG), reactive power loadability, solar, voltage regulation, wind generator. I. INTRODUCTION istributed generation based on renewable energy sources offers a promising

  10. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01T23:59:59.000Z

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  11. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    SciTech Connect (OSTI)

    A. David Lester

    2008-10-17T23:59:59.000Z

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  12. Renewable Electricity Generation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartmentEnergyFrequency | Department ofMayJoin over 800AsRenewable

  13. AEO Early Release 2013 - renewable generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL341AACEiiRenewables account

  14. NV Energy- RenewableGenerations Rebate Program

    Broader source: Energy.gov [DOE]

    '''''Note: The WindGenerations Program and elements of the SolarGenerations Program are currently closed. AB 428 (2013) made several changes to this program, and tasked the Public Utilities...

  15. Demonstration of Security Benefits of Renewable Generation at FE Warren Air Force Base

    SciTech Connect (OSTI)

    Warwick, William M.; Myers, Kurt; Seifert, Gary

    2010-12-31T23:59:59.000Z

    Report detailing field demonstration of security benefits of renewable generation at FE Warren Air Force Base.

  16. Arnold Schwarzenegger DISTRIBUTED GENERATION DRIVETRAIN

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor DISTRIBUTED GENERATION DRIVETRAIN FOR WINDPOWER APPLICATION Prepared GENERATION DRIVETRAIN FOR WINDPOWER APPLICATION EISG AWARDEE Dehlsen Associates, LLC 7985 Armas Canyon Road

  17. Tax Credits and Renewable Generation (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    Tax incentives have been an important factor in the growth of renewable generation over the past decade, and they could continue to be important in the future. The Energy Tax Act of 1978 (Public Law 95-618) established ITCs for wind, and EPACT92 established the Renewable Electricity Production Credit (more commonly called the PTC) as an incentive to promote certain kinds of renewable generation beyond wind on the basis of production levels. Specifically, the PTC provided an inflation-adjusted tax credit of 1.5 cents per kilowatthour for generation sold from qualifying facilities during the first 10 years of operation. The credit was available initially to wind plants and facilities that used closed-loop biomass fuels and were placed in service after passage of the Act and before June 1999.

  18. Predicting the Power Output of Distributed Renewable Energy Resources within a Broad Geographical Region

    E-Print Network [OSTI]

    Chalkiadakis, Georgios

    Predicting the Power Output of Distributed Renewable Energy Resources within a Broad Geographical potentially dis- tributed renewable energy resources (su years, estimating the power output of in- herently intermittent and potentially distributed renewable

  19. DISTRIBUTED GENERATION AND COGENERATION POLICY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION DISTRIBUTED GENERATION AND COGENERATION POLICY ROADMAP FOR CALIFORNIA to the development of this report by the Energy Commission's Distributed Generation Policy Advisory Team; Melissa;ABSTRACT This report defines a year 2020 policy vision for distributed generation and cogeneration

  20. Modeling Operational Constraints imposed by Renewable Generation

    E-Print Network [OSTI]

    Daniels, Thomas E.

    4 #12;Operational effects into NETPLAN G LX L T R 5 #12;Effect of Wind on Load Following 10 min, that include: Regulation, Intra-hour and inter-hour load following, Contingency reserves, Generation cycling

  1. Renewable Electricity Generation Success Stories | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Read more water success stories Wind February 18, 2015 Mapping the Frontier of New Wind Power Potential June 17, 2014 Enhanced Efficiency of Wind-Diesel Power Generation in...

  2. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01T23:59:59.000Z

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  3. Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)

    E-Print Network [OSTI]

    Suo, Zhigang

    Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

  4. Sandia National Laboratories: renewable energy power generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremoving the highlypower generation Hoboken

  5. Renewable and Distributed Systems Integration Peer Review

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport #StudyRenewable Energy andEnergy Energy4

  6. COMMISSION REPORT DEVELOPING RENEWABLE

    E-Print Network [OSTI]

    , state properties, photovoltaic, wind, biomass, geothermal, small hydro, storage, distributed renewable distributed generation ­ onsite or small energy systems located close to where

  7. Integrated High Speed Intelligent Utility Tie Unit for Disbursed/Renewable Generation Facilities Worakarn Wongsaichua, Wei-Jen Lee Soontorn Oraintara Chiman Kwan Frank Zhang

    E-Print Network [OSTI]

    Oraintara, Soontorn

    Integrated High Speed Intelligent Utility Tie Unit for Disbursed/Renewable Generation Facilities is to rejuvenate the idea of integrated resource planning and promote the distributed generation via traditional or renewable generation facilities for the deregulated utility systems. Fuel cell and photovoltaic are the most

  8. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect (OSTI)

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C. [Zaininger Engineering Co., San Jose, CA (United States)

    1994-06-01T23:59:59.000Z

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  9. Integrating Renewable Energy into the Transmission and Distribution System of the U. S. Virgin Islands

    SciTech Connect (OSTI)

    Burman, K.; Olis, D.; Gevorgian, V.; Warren, A.; Butt, R.; Lilienthal, P.; Glassmire, J.

    2011-09-01T23:59:59.000Z

    This report focuses on the economic and technical feasibility of integrating renewable energy technologies into the U.S. Virgin Islands transmission and distribution systems. The report includes three main areas of analysis: 1) the economics of deploying utility-scale renewable energy technologies on St. Thomas/St. John and St. Croix; 2) potential sites for installing roof- and ground-mount PV systems and wind turbines and the impact renewable generation will have on the electrical subtransmission and distribution infrastructure, and 3) the feasibility of a 100- to 200-megawatt power interconnection of the Puerto Rico Electric Power Authority (PREPA), Virgin Islands Water and Power Authority (WAPA), and British Virgin Islands (BVI) grids via a submarine cable system.

  10. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect (OSTI)

    Jensen, Kevin

    2014-09-30T23:59:59.000Z

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

  11. The value of schedule update frequency on distributed energy storage performance in renewable energy

    E-Print Network [OSTI]

    Boyer, Edmond

    The value of schedule update frequency on distributed energy storage performance in renewable of Distributed Energy Storage devices for Renewable Energy integration. The primary objective is to describe scheduling on the storage performance in renewable energy integration. Optimal schedules of Distributed

  12. Renewable generation and storage project industry and laboratory recommendations

    SciTech Connect (OSTI)

    Clark, N.H.; Butler, P.C.; Cameron, C.P.

    1998-03-01T23:59:59.000Z

    The US Department of Energy Office of Utility Technologies is planning a series of related projects that will seek to improve the integration of renewable energy generation with energy storage in modular systems. The Energy Storage Systems Program and the Photovoltaics Program at Sandia National Laboratories conducted meetings to solicit industry guidance and to create a set of recommendations for the proposed projects. Five possible projects were identified and a three pronged approach was recommended. The recommended approach includes preparing a storage technology handbook, analyzing data from currently fielded systems, and defining future user needs and application requirements.

  13. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Document covers the Regulatory...

  14. Renewable Power Options for Electricity Generation on Kauai...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7% renewable energy installed in their system. Their strategic plan calls for 50% of electricity from renewable energy by 2023. KIUC is well on their way to achieving this goal...

  15. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    SciTech Connect (OSTI)

    Mosey, G.; Heimiller, D.; Dahle, D.; Vimmerstedt, L.; Brady-Sabeff, L.

    2007-10-01T23:59:59.000Z

    This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

  16. NASA/FPL Renewable Project Case Study: Space Coast Next Generation...

    Broader source: Energy.gov (indexed) [DOE]

    NASAFPL Renewable Project: Space Coast Next Generation Solar Energy Center Biloxi, MS - FUPWG April 5-6. 2009 Gene Beck Corporate Manager, Governmental Accounts Mark Hillman...

  17. FEMP Offers Training on Distributed-Scale Renewable Energy Projects...

    Energy Savers [EERE]

    be able to: Plan facility renewable energy projects using available screening tools for renewable energy resources, savings to investment ratio analysis, and feasibility studies...

  18. Distributed generation and demand side management : applications to transmission system operation 

    E-Print Network [OSTI]

    Hayes, Barry Patrick

    2013-07-01T23:59:59.000Z

    Electricity networks are undergoing a period of rapid change and transformation, with increased penetration levels of renewable-based distributed generation, and new influences on electricity end-use patterns from ...

  19. Software Based Barriers To Integration Of Renewables To The Future Distribution Grid

    SciTech Connect (OSTI)

    Stewart, Emma; Kiliccote, Sila

    2014-06-01T23:59:59.000Z

    The future distribution grid has complex analysis needs, which may not be met with the existing processes and tools. In addition there is a growing number of measured and grid model data sources becoming available. For these sources to be useful they must be accurate, and interpreted correctly. Data accuracy is a key barrier to the growth of the future distribution grid. A key goal for California, and the United States, is increasing the renewable penetration on the distribution grid. To increase this penetration measured and modeled representations of generation must be accurate and validated, giving distribution planners and operators confidence in their performance. This study will review the current state of these software and modeling barriers and opportunities for the future distribution grid.

  20. Dynamic equivalencing of distribution network with embedded generation 

    E-Print Network [OSTI]

    Feng, Xiaodan Selina

    2012-06-25T23:59:59.000Z

    Renewable energy generation will play an important role in solving the climate change problem. With renewable electricity generation increasing, there will be some significant changes in electric power systems, ...

  1. Variable Renewable Generation Impact on Operating Reserves (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.

    2011-05-01T23:59:59.000Z

    This presentation describes some of NREL's latest research on grid integration of renewables, and also describes some of the tools used for these analyses.

  2. Impact of Dynamic PHEVs Load on Renewable Sources based Distribution System

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Impact of Dynamic PHEVs Load on Renewable Sources based Distribution System F. R. Islam, H. R. Pota.Roy@student.adfa.edu.au Abstract--In this paper, charging effect of dynamic Plug in Hybrid Electric Vehicle (PHEV) is presented in a renewable energy based electricity distribution system. For planning and designing a distribution system

  3. Risk implications of the deployment of renewables for investments in electricity generation

    E-Print Network [OSTI]

    Sisternes, Fernando J. de (Fernando José de Sisternes Jiménez)

    2014-01-01T23:59:59.000Z

    This thesis explores the potential risk implications that a large penetration of intermittent renewable electricity generation -such as wind and solar power- may have on the future electricity generation technology mix, ...

  4. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    of Variable Renewable Generation The report is accompaniedit Relates to Wind-Powered Generation. LBNL-XXXX. Berkeley:with Increased Wind Generation. LBNL-XXXX. Berkeley:

  5. Second Generation Renewable Fuels Blue-Green Seminar

    E-Print Network [OSTI]

    Eustice, Ryan

    will help to bridge the gap between current energy usage and a more sustainable energy future footprint will require commercialization of industrial processes that transform renewable lignocellulosic. In the meantime, technology for renewable fuels must be made ready to facilitate build-out of a new industry

  6. Renewable Energy 32 (2007) 12431257 Methane generation in landfills

    E-Print Network [OSTI]

    Columbia University

    . Some of the modern regulated landfills attempt to capture and utilize landfill biogas, a renewable collecting landfill biogas worldwide. The landfills that capture biogas in the US collect about 2.6 million. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

  7. NREL: Technology Deployment - Distributed Generation Interconnection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Generation Interconnection Collaborative Become a Member DGIC members are included in quarterly informational meetings and discussions related to distributed PV...

  8. ReRack: Power Simulation for Data Centers with Renewable Energy Generation

    E-Print Network [OSTI]

    Renau, Jose

    - cause it should consider different energy sources (wind, solar), stor- age alternatives (batteries, grid ratio of renewable energy sources for a given location and workload. 1. INTRODUCTION Building a dataReRack: Power Simulation for Data Centers with Renewable Energy Generation Michael Brown and Jose

  9. Integrating Renewable Energy into the Transmission and Distribution...

    Energy Savers [EERE]

    report describes one area in which islands may lead: integrating a high percentage of renewable energy resources into an isolated grid. In addition, it explores the challenges,...

  10. Distributed-scale Renewable Energy Projects (Smaller than 10...

    Energy Savers [EERE]

    locations for further study. Multi-site preliminary screenings are often based on maps of renewable energy resources, prevailing utility rates, and incentives. Screenings A more...

  11. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  12. Impact of unit commitment constraints on generation expansion planning with renewables

    E-Print Network [OSTI]

    Palmintier, Bryan Stephen

    Growing use of renewables pushes thermal generators against operating constraints - e.g. ramping, minimum output, and operating reserves - that are traditionally ignored in expansion planning models. We show how including ...

  13. Producing methane from electrical current generated using renewable energy sources using

    E-Print Network [OSTI]

    Producing methane from electrical current generated using renewable energy sources using power production (33% efficient power plants) (Does not include solar and geothermal energy sources) 3 #12;New Energy Sources Available using Microbial Electrochemical Technologies (METs) · Wastewater

  14. Renewable Generation and Interconnection to the Electrical Grid in Southern California

    Broader source: Energy.gov [DOE]

    Presentation covers the topic of "Renewable Generation and Interconnection to the Electrical Grid in Southern California," given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  15. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, Renewable...

  16. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Renewable Electricity Generation and Storage Technologies for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable;Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  17. Large Scale Deployment of Renewables for Electricity Generation

    E-Print Network [OSTI]

    Neuhoff, Karsten

    2006-03-14T23:59:59.000Z

    ).38 The small scale of renewable energy projects multiplies the relative costs incurred through multiple administrative processes. For example, biogas plants in Germany require several parallel permit processes designed to address issues such as EU... -cellulose material. Anaerobic digestion or gasification of biomass produces gas that can be used in similar applications to natural gas. Small-scale biogas production is now a well-established technology and large-scale application is in the advanced stages...

  18. EERE FY 2016 Budget Overview -- Renewable Electricity Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & Power DeploymentYouDepartment of Energy Renewable

  19. Distributed Generation Operational Reliability and Availability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability and Availability Database, Final Report, January 2004 Distributed Generation Operational Reliability and Availability Database, Final Report, January 2004 This final...

  20. Picking up the PACE : a new tool for financing energy efficiency and distributed renewable energy

    E-Print Network [OSTI]

    Dadakis, Jacquelyn (Jacquelyn MacKenzie)

    2010-01-01T23:59:59.000Z

    This thesis describes the potential of new legislation in Louisiana to provide municipal financing for energy efficient building retrofits and distributed renewable energy. First, the thesis identifies how energy efficiency ...

  1. Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |RebeccaRegionalReliability andEnergy byand Renewable

  2. ReEDS Modeling of the President's 2020 U.S. Renewable Electricity Generation Goal (Presentation)

    SciTech Connect (OSTI)

    Zinaman, O.; Mai, T.; Lantz, E.; Gelman, R.; Porro, G.

    2014-05-01T23:59:59.000Z

    President Obama announced in 2012 an Administration Goal for the United States to double aggregate renewable electricity generation from wind, solar, and geothermal sources by 2020. This analysis, using the Regional Energy Deployment System (ReEDS) model, explores a full range of future renewable deployment scenarios out to 2020 to assess progress and outlook toward this goal. Under all modeled conditions, consisting of 21 scenarios, the Administration Goal is met before 2020, and as early as 2015.

  3. Renewables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories » Removing nuclear waste, one shipmentRenewables

  4. A Game-Theoretic Framework for Control of Distributed Renewable-Based Energy Resources in Smart Grids

    E-Print Network [OSTI]

    Liberzon, Daniel

    A Game-Theoretic Framework for Control of Distributed Renewable-Based Energy Resources in Smart¸ar Abstract-- Renewable energy plays an important role in distributed energy resources in smart grid systems. Deployment and integration of renewable energy resources require an intelligent management to optimize

  5. Topic 5: Renewable Power 1Networking and Distributed Systems

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    in Smart Grid 3 · We are interested in power plants with low carbon footprint: · Both CO2 and CH4 in Smart Grid 5 · Carbon footprint is also defined for power plants: · Conventional coal combustion has. · Desired choices (Renewable Sources): · Marine: Wave and Tidal · PV: Solar · Wind · Hydro #12;Carbon Tax Dr

  6. Report on Distributed Generation Penetration Study

    SciTech Connect (OSTI)

    Miller, N.; Ye, Z.

    2003-08-01T23:59:59.000Z

    This report documents part of a multiyear research program dedicated to the development of requirements to support the definition, design, and demonstration of a distributed generation-electric power system interconnection interface concept. The report focuses on the dynamic behavior of power systems when a significant portion of the total energy resource is distributed generation. It also focuses on the near-term reality that the majority of new DG relies on rotating synchronous generators for energy conversion.

  7. Utility Integrated Resource Planning: An Emerging Driver of New Renewable Generation in the Western United States

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    in their treatment of renewable resources and the costs andtowards that portfolio. Renewable resources were once rarelyobjectively evaluate renewable resources. Planned Renewable

  8. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    SciTech Connect (OSTI)

    Ayers, Katherine [Proton OnSite] [Proton OnSite; Dalton, Luke [Proton OnSite] [Proton OnSite; Roemer, Andy [Proton OnSite] [Proton OnSite; Carter, Blake [Proton OnSite] [Proton OnSite; Niedzwiecki, Mike [Proton OnSite] [Proton OnSite; Manco, Judith [Proton OnSite] [Proton OnSite; Anderson, Everett [Proton OnSite] [Proton OnSite; Capuano, Chris [Proton OnSite] [Proton OnSite; Wang, Chao-Yang [Penn State University] [Penn State University; Zhao, Wei [Penn State University] [Penn State University

    2014-02-05T23:59:59.000Z

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  9. Distributed Generation Lead-by-Example Resources

    Broader source: Energy.gov [DOE]

    State governments can lead by example by promoting renewable energy programs and policies. Efforts to lead by example include using renewable energy resources (including alternative fuel for...

  10. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01T23:59:59.000Z

    option on natural gas generation, which increases in valueL ABORATORY Distributed Generation Investment by a MicrogridORMMES’06 Distributed Generation Investment by a Microgrid

  11. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    LBNL-54447. Distributed Generation Dispatch OptimizationA Business Case for On-Site Generation: The BD Biosciencesrelated work. Distributed Generation Dispatch Optimization

  12. Distributed generation - the fuel processing example

    SciTech Connect (OSTI)

    Victor, R.A. [Praxair, Inc., Tonawanda, NY (United States); Farris, P.J.; Maston, V. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31T23:59:59.000Z

    The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

  13. Voltage Management of Networks with Distributed Generation

    E-Print Network [OSTI]

    O'Donnell, James

    2008-01-01T23:59:59.000Z

    At present there is much debate about the impacts and benefits of increasing the amount of generation connected to the low voltage areas of the electricity distribution network. The UK government is under political ...

  14. Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-03-01T23:59:59.000Z

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  15. Bidding strategies for renewable energy generation with non stationary statistics

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    of optimizing energy bids for a photovoltaic (PV) power producer taking part into a competitive electricity]. In a market where penalties are applied whenever the delivered power deviates from the schedule, the optimal) and hydro are characterized by remark- able seasonal variations of power generation and exhibit

  16. Evaluating Policies to Increase the Generation of Electricity from Renewable Energy

    E-Print Network [OSTI]

    Schmalensee, Richard

    Focusing on the U.S. and the E.U., this essay seeks to advance four main propositions. First, the incidence of the short-run costs of programs to subsidize the generation of electricity from renewable sources varies with ...

  17. Load-shedding probabilities with hybrid renewable power generation and energy storage

    E-Print Network [OSTI]

    Xu , Huan

    Load-shedding probabilities with hybrid renewable power generation and energy storage Huan Xu, Ufuk to the intermittency in the power output. These difficulties can be alleviated by effectively utilizing energy storage turbines, supplemented with energy storage. We use a simple storage model alongside a combination

  18. The significance of energy storage for renewable energy generation and the role of instrumentation and measurement.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 The significance of energy storage for renewable energy generation and the role and Alternative Energies Commission INES: National Institute For Solar Energy ENERGY STORAGE: FROM PRESENT TO EMERGING TECHNOLOGIES Energy storage is not a new concept but is currently getting increasing importance

  19. Renewable Energy Requirements for Future Building Codes: Energy Generation and Economic Analysis

    SciTech Connect (OSTI)

    Russo, Bryan J.; Weimar, Mark R.; Dillon, Heather E.

    2011-09-30T23:59:59.000Z

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, installation of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including the building envelope, mechanical systems, and lighting, have been maximized at the most cost-effective limit.

  20. RELATING TO LOCAL GOVERNMENT; ENACTING THE RENEWABLE ENERGY FINANCING DISTRICT ACT; AUTHORIZING MUNICIPALITIES AND

    E-Print Network [OSTI]

    Kammen, Daniel M.

    TO LOCAL GOVERNMENT; ENACTING THE RENEWABLE ENERGY FINANCING DISTRICT ACT; AUTHORIZING MUNICIPALITIES to encourage the development of distributed generation renewable energy sources and the installation. the creation and administration of renewable energy financing districts to facilitate the development

  1. Program Plan for Renewable Energy generation of electricity. Response to Section 2111 of the Energy Policy Act of 1992

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    A 5-Year Program Plan for providing cost-effective options for generating electricity from renewable energy sources is presented by the US Department of Energy Office of Energy Efficiency and Renewable Energy. The document covers the Utility-Sector situation, scope of the program, specific generating technologies, and implementation of the program plan.

  2. Production Tax Credit for Renewable Electricity Generation (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

  3. Community Renewable Resources

    Broader source: Energy.gov [DOE]

    Community renewable programs provide community members with a renewable alternative to conventional energy sources in the form of power and/or financial benefit generated by renewable energy...

  4. Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

  5. Utility Integrated Resource Planning: An Emerging Driver of New Renewable Generation in the Western United States

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    towards that portfolio. Renewable resources were once rarelyobjectively evaluate renewable resources. Planned Renewableamount of planned renewable resource additions. In the case

  6. Distributed Generation Study/Patterson Farms CHP System Using Renewable

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,Discount PowerEmerling FarmMatlink FarmBiogas |

  7. Integration of Demand Side Management, Distributed Generation, Renewable

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie,InfieldInstalledResearchEnergy Sources, and

  8. Integration of Demand Side Management, Distributed Generation, Renewable

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie,InfieldInstalledResearchEnergy Sources,

  9. The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners

    E-Print Network [OSTI]

    Vine, Edward

    2007-01-01T23:59:59.000Z

    distributed generation facilities that have received ratepayer incentives toward the utility’distributed generation system owners to retain 100% of their renewable energy credits (RECs), and that utilities

  10. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    utility experience with RTP tariffs is described in 3. Distributed GenerationUtilities Commission, Division of Ratepayer Advocates have also provided support on related work. Distributed Generation

  11. Fuel Cell Comparison of Distributed Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power...

  12. The Potential Benefits of Distributed Generation and the Rate...

    Broader source: Energy.gov (indexed) [DOE]

    The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related...

  13. Reliability in future electricity mixes: the question of distributed and renewables sources

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Reliability in future electricity mixes: the question of distributed and renewables sources of the electricity industry. In this paper, we are interested in the level of reliability of future electricity mixes and whether or not these changes will impact the level of reliability. Consequently, we propose a methodology

  14. Assessment of Distributed Generation Potential in JapaneseBuildings

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida,Masaru

    2005-05-25T23:59:59.000Z

    To meet growing energy demands, energy efficiency, renewable energy, and on-site generation coupled with effective utilization of exhaust heat will all be required. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems (or microgrids). This research investigates a method of choosing economically optimal DER, expanding on prior studies at the Berkeley Lab using the DER design optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM finds the optimal combination of installed equipment from available DER technologies, given prevailing utility tariffs, site electrical and thermal loads, and a menu of available equipment. It provides a global optimization, albeit idealized, that shows how the site energy loads can be served at minimum cost by selection and operation of on-site generation, heat recovery, and cooling. Five prototype Japanese commercial buildings are examined and DER-CAM applied to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Based on the optimization results, energy and emission reductions are evaluated. Furthermore, a Japan-U.S. comparison study of policy, technology, and utility tariffs relevant to DER installation is presented. Significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the DER-CAM results. Savings were most noticeable in the sports facility (a very favourable CHP site), followed by the hospital, hotel, and office building.

  15. DISTRIBUTED GENERATION USE AND CONTROL IN BUILDINGS

    E-Print Network [OSTI]

    Mease, Kenneth D.

    CONTROLS DISTRIBUTED GENERATION USE AND CONTROL IN BUILDINGS ABSTRACT The increasing commercial is designed to continuously minimize energy costs by monitoring utility prices and building demand, while.g., thermal energy storage) have been developed. Measurements of building electrical and thermal demand were

  16. Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle BatteryofDisabilityDistributed

  17. Renewable Auction Mechanism (RAM) (California)

    Broader source: Energy.gov [DOE]

    The Renewable Auction Mechanism (RAM), approved by the California Public Utilities Commission (CPUC) in December 2010, is expected to result in 1,299 megawatts (MW) of new distributed generation...

  18. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    utility electricity and natural gas purchases, amortized capital and maintenance costs for distributed generation (

  19. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    time of use United States Postal Service v Distributed Generation Dispatch Optimization Under Various Electricity Tariffs

  20. Renewable build-up pathways for the US: Generation costs are not system costs

    E-Print Network [OSTI]

    Becker, Sarah; Andresen, Gorm B; Jacobson, Mark Z; Schramm, Stefan; Greiner, Martin

    2014-01-01T23:59:59.000Z

    The transition to a future electricity system based primarily on wind and solar PV is examined for all regions in the contiguous US. We present optimized pathways for the build-up of wind and solar power for least backup energy needs as well as for least cost obtained with a simplified, lightweight model based on long-term high resolution weather-determined generation data. In the absence of storage, the pathway which achieves the best match of generation and load, thus resulting in the least backup energy requirements, generally favors a combination of both technologies, with a wind/solar PV energy mix of about 80/20 in a fully renewable scenario. The least cost development is seen to start with 100% of the technology with the lowest average generation costs first, but with increasing renewable installations, economically unfavorable excess generation pushes it toward the minimal backup pathway. Surplus generation and the entailed costs can be reduced significantly by combining wind and solar power, and/or a...

  1. Dispersed power and renewables

    SciTech Connect (OSTI)

    O`Sullivan, J.B.

    1995-12-31T23:59:59.000Z

    Distributed power generation and renewable energy sources are discussed: The following topics are discussed: distributed resources, distributed generation, commercialization requirements, biomass power, location of existing biomass feedstocks, biomass business plan components, North Carolina BGCC partnership, New York biomass co-firing project, alfalfa for power and feed, Hawaii Pioneer Mill LOI project, next steps for biomass, wind power activity, photovoltaic modules and arrays, lead-acid batteries, superconducting magnetic energy storage, fuel cells, and electric power industry trends.

  2. IMPACT OF FUEL CELL BASED HYBRID DISTRIBUTED GENERATION IN AN ELECTRICAL DISTRIBUTION

    E-Print Network [OSTI]

    unknown authors

    Recent developments in distributed generation technologies have enabled new options for supplying electrical energy in remote and off-grid areas. The importance of fuel cells has increased during the past decade due to the extensive use of fossil fuels for electrical power has resulted in many negative consequences. Fuel cells are now closer to commercialization than past and they have the ability to fulfill all of the global power needs while meeting the economic and environmental expectations..The objective of this paper is to study the economic performance and operation of a fuel cell distributed generation and to provide an assessment of the economic issues associated in electrical network. In this study, with HOMER (Hybrid Optimization Model for Electric Renewables) software, NREL’s micro power optimization model performed a range of equipment options over varying constraints and sensitivities to optimize small power distribution systems. Its flexibility makes it useful in the evaluation of design issues in the planning and early decision-making phase of rural electrification projects. This study concludes that fuel cell systems appear competitive today if is connected with proposed hybrid DG in an AC distribution grid. The overall energy management strategy for coordinating the power flows among the different energy sources is presented with cost-effective approach.

  3. Design of Micro-grid System Based on Renewable Power Generation Units

    E-Print Network [OSTI]

    Dr. K. Ravich; M. Manasa; Mr. P. Yohan Babu; G. V. P. Anjaneyulu

    Abstract- Micro-grid system is currently a conceptual solution to fulfill the commitment of reliable power delivery for future power systems. Renewable power sources such as wind and hydro offer the best potential for emission free power for future micro-grid systems. This paper presents a micro-grid system based on wind and hydro power sources and addresses issues related to operation, control, and stability of the system. The micro-grid system investigated in this paper represents a case study in Newfoundland, Canada. It consists of a small hydro generation unit and a wind farm that contains nine variable- speed, double-fed induction generator based wind turbines. Using Matlab/Simulink, the system is modeled and simulated to identify the technical issues involved in the operation of a micro-grid system based on renewable power generation units. The operational modes, technical challenges and a brief outline of conceptual approaches to addressing some of the technical issues are presented for further investigation.

  4. Distributed Generation: Challenges and Opportunities, 7. edition

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    The report is a comprehensive study of the Distributed Generation (DG) industry. The report takes a wide-ranging look at the current and future state of DG and both individually and collectively addresses the technologies of Microturbines, Reciprocating Engines, Stirling Engines, Fuel Cells, Photovoltaics, Concentrating Solar, Wind, and Microgrids. Topics covered include: the key technologies being used or planned for DG; the uses of DG from utility, energy service provider, and customer viewpoints; the economics of DG; the benefits of DG from multiple perspectives; the barriers that exist to implementing DG; the government programs supporting the DG industry; and, an analysis of DG interconnection and net metering rules.

  5. Distributed Generation Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has Type TermOpenDistributed Generation Systems

  6. Short-Term Load Forecasting Error Distributions and Implications for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2013-01-01T23:59:59.000Z

    Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of the day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.

  7. Distributed multicast tree generation with dynamic group membership Frank Adelsteina

    E-Print Network [OSTI]

    Richard III, Golden G.

    Distributed multicast tree generation with dynamic group membership Frank Adelsteina , Golden G. Another distinguishing character- istic for tree generation algorithms is centralized versus distributed, efficient network utilization becomes a growing concern. Multicast transmission may use network bandwidth

  8. Investment and Upgrade in Distributed Generation under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    utility tari?s, the electricity price may be revised only Investment and Upgrade in Distributed Generation

  9. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

  10. Decision-Support Software for Grid Operators: Transmission Topology Control for Infrastructure Resilience to the Integration of Renewable Generation

    SciTech Connect (OSTI)

    None

    2012-03-16T23:59:59.000Z

    GENI Project: The CRA team is developing control technology to help grid operators more actively manage power flows and integrate renewables by optimally turning on and off entire power lines in coordination with traditional control of generation and load resources. The control technology being developed would provide grid operators with tools to help manage transmission congestion by identifying the facilities whose on/off status must change to lower generation costs, increase utilization of renewable resources and improve system reliability. The technology is based on fast optimization algorithms for the near to real-time change in the on/off status of transmission facilities and their software implementation.

  11. A Distributed Generation Control Architecture for Islanded AC Microgrids

    E-Print Network [OSTI]

    Dominguez-Garcia, Alejandro

    1 A Distributed Generation Control Architecture for Islanded AC Microgrids Stanton T. Cady, Student Member, IEEE Abstract In this paper, we propose a distributed architecture for generation control in islanded ac microgrids with both synchronous generators and inverter-interfaced power supplies. Although

  12. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Generating Renewable Energy for New Student

    E-Print Network [OSTI]

    into Generating Renewable Energy for New Student Union Building Using Solar Cells Muhammad Usman Rizwan, Malihsa are jobs that promote environmental solutions to problems. These jobs for solar cells include will provide enough solar energy to power the SUB as long as a proper storage unit is installed as well. Also

  13. Abstract--The integration of variable renewable generation sources continues to be a significant area of focus for power

    E-Print Network [OSTI]

    sources like wind and solar tend to be highly variable in nature. To counter the energy imbalance caused the dependency on foreign energy sources drive much of the deployment. Unfortunately, renewable energy generation. This paper investigates a regulation-services-based battery charging method on a population of plug-in hybrid

  14. DRAFT COMMITTEE REPORT RENEWABLE ENERGY PROGRAM

    E-Print Network [OSTI]

    , Senate Bill 1, Consumer Education Program, renewable energy, solar thermal, photovoltaic, biomass, fuel cell, geothermal, wind, distributed generation Please use the following citation for this report: Chong ...................................................................................................................... 1 Legislative History

  15. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    of fossil fuel sources of waste heat and other lossesthat this is only the waste heat from fossil generation,an estimate of the total waste heat from fossil generation

  16. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    L, editor. 11 th Annual Real Options Conference, Berkeley,from its utility. Using the real options approach, we find aDistributed Generation; Real Options; Optimal Investment;

  17. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01T23:59:59.000Z

    utility. Using the real options approach, we find naturalDistributed Generation; Real Options; Optimal Investment. 1.based microgrid via the real options approach to determine

  18. Distributed Generation and Virtual Power Plants: Barriers and Solutions.

    E-Print Network [OSTI]

    Olejniczak, T.

    2011-01-01T23:59:59.000Z

    ??The present technological and regulatory power system needs to adapt to the increase in the share of distributed generation. This research focuses on the applicability… (more)

  19. Distributed Generation Study/Patterson Farms CHP System Using...

    Open Energy Info (EERE)

    Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Field Test Technology Internal Combustion...

  20. Nonlinear DSTATCOM controller design for distribution network with distributed generation to enhance voltage stability

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Nonlinear DSTATCOM controller design for distribution network with distributed generation Accepted 19 June 2013 Keywords: Distributed generation Distribution network DSATACOM Partial feedback linearization Voltage control a b s t r a c t This paper presents a nonlinear controller design for a DSTATCOM

  1. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Sy Ali; Bob Moritz

    2001-09-01T23:59:59.000Z

    This report is produced in under Contract DE-FC26-00NT40914, awarded in accordance with U.S. Department of Energy solicitation DE-PS26-00FT40759, ''Development of Technologies and Capabilities for Fossil Energy-Wide Coal, Natural Gas and Oil R&D Programs'', area of interest 7, ''Advanced Turbines and Engines.'' As a result of ten years of collaborative fuel cell systems studies with U.S. fuel cell manufacturers, initiated to evaluate the gas turbine opportunities likely to result from this technology, Rolls-Royce in Indianapolis has established a clear need for the creation of a turbogenerator to a specification that cannot be met by available units. Many of the required qualities are approached, but not fully met, by microturbines, which tend to be too small and low in pressure ratio. Market evaluation suggests a 1 MW fuel cell hybrid, incorporating a turbogenerator of about 250 kW, is a good market entry product (large enough to spread the costs of a relatively complex plant, but small enough to be acceptable to early adopters). The fuel cell stack occupies the position of a combustor in the turbogenerator, but delivers relatively low turbine entry temperature (1600 F [870 C]). If fitted with a conventional combustor and run stand-alone at full uncooled turbine temperature (1800 F [980 C]), the turbogenerator will develop more power. The power can be further enhanced if the turbogenerator is designed to have flow margin in its fuel cell role (by running faster). This margin can be realized by running at full speed and it is found that power can be increased to the 0.7 to 1.0 MW range, depending on initial fuel cell stack flow demand. The fuel cell hybrid applications require increased pressure ratio (at least 6 rather than the 3-4 of microturbines) and very long life for a small machine. The outcome is a turbogenerator that is very attractive for stand-alone operation and has been the subject of unsolicited enthusiasm from potential users who see an application in grid support. The machine is consistent with 21st century power generation objectives. It will be more efficient than a microturbine and also more cost effective because it does not require an expensive recuperator. It will produce ultra-low emissions because it has a low combustor delivery temperature. It will also avoid producing hazardous waste because it requires no lube system. These qualities are obtained by combining, and in some instances extending, the best of available technologies rather than breaking wholly new ground. Limited ''barrier technology'' rig tests of bearing systems and alternator configuration are proposed to support the extension of technology. Low combustion temperature also has merit in handling alternative fuels with minimum emissions and minimum materials degradation. Program continuation is proposed that will simultaneously provide technology support to a SECA fuel cell hybrid system and a distributed generation turbogenerator. This technology program will be led by a Rolls-Royce team based in Indianapolis with access to extensive small turbogenerator experience gathered in DOE (and other) programs by Allison Mobile Power Systems. It is intended that subsequent production will be in the U.S., but the products may have substantial export potential.

  2. Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-07-17T23:59:59.000Z

    Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

  3. Renewable Power Options for Electricity Generation on Kaua’i: Economics and Performance Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii.

  4. Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables

    SciTech Connect (OSTI)

    Hurlbut, D. J.; Haase, S.; Turchi, C. S.; Burman, K.

    2012-06-01T23:59:59.000Z

    In January 2012, the National Renewable Energy Laboratory delivered to the Department of the Interior the first part of a study on Navajo Generating Station (Navajo GS) and the likely impacts of BART compliance options. That document establishes a comprehensive baseline for the analysis of clean energy alternatives, and their ability to achieve benefits similar to those that Navajo GS currently provides. This analysis is a supplement to NREL's January 2012 study. It provides a high level examination of several clean energy alternatives, based on the previous analysis. Each has particular characteristics affecting its relevance as an alternative to Navajo GS. It is assumed that the development of any alternative resource (or portfolio of resources) to replace all or a portion of Navajo GS would occur at the end of a staged transition plan designed to reduce economic disruption. We assume that replacing the federal government's 24.3% share of Navajo GS would be a cooperative responsibility of both the U.S. Bureau of Reclamation (USBR) and the Central Arizona Water Conservation District (CAWCD).

  5. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    2007. Integration of Renewable Resources. Transmissionfor integrating renewable resources on the California ISO-assess the level of renewable resources that can be reliably

  6. Distributed Generation in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The Annual Energy Outlook 2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

  7. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    power generation with combined heat and power applications,”of carbon tax on combined heat and power adoption by a131(1), 2-25. US Combined Heat and Power Association (

  8. Renewable Power Options for Electrical Generation on Kaua'i: Economics and Performance Modeling

    SciTech Connect (OSTI)

    Burman, K.; Keller, J.; Kroposki, B.; Lilienthal, P.; Slaughter, R.; Glassmire, J.

    2011-11-01T23:59:59.000Z

    The Hawaii Clean Energy Initiative (HCEI) is working with a team led by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess the economic and technical feasibility of increasing the contribution of renewable energy in Hawaii. This part of the HCEI project focuses on working with Kaua'i Island Utility Cooperative (KIUC) to understand how to integrate higher levels of renewable energy into the electric power system of the island of Kaua'i. NREL partnered with KIUC to perform an economic and technical analysis and discussed how to model PV inverters in the electrical grid.

  9. Operation of Distributed Generation Under Stochastic Prices

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris

    2005-11-30T23:59:59.000Z

    We model the operating decisions of a commercial enterprisethatneeds to satisfy its periodic electricity demand with either on-sitedistributed generation (DG) or purchases from the wholesale market. Whilethe former option involves electricity generation at relatively high andpossibly stochastic costs from a set of capacity-constrained DGtechnologies, the latter implies unlimited open-market transactions atstochastic prices. A stochastic dynamic programme (SDP) is used to solvethe resulting optimisation problem. By solving the SDP with and withoutthe availability of DG units, the implied option values of the DG unitsare obtained.

  10. Investigation into the potential of energy storage to tackle intermittency in renewable energy generation 

    E-Print Network [OSTI]

    Barbour, Edward

    2013-11-28T23:59:59.000Z

    Renewable Energy is by nature intermittent and matching the supply of energy to specific time dependent demand poses huge challenges. Energy storage is a useful tool in handling this temporal disparity, although except ...

  11. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Sulc, Petr; Backhaus, Scott; Chertkov, Michael

    2010-01-01T23:59:59.000Z

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

  12. Other Distributed Generation Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLC Place: Reno, Nevada Sector:Generation

  13. Ris Energy Report 4 Distributed generation 1 What is distributed generation?

    E-Print Network [OSTI]

    generation (DG) refers to an emerging evolu- tion of the electric power generation systems, in which all electricity generation it is obviously understood as consisting of small size generation units only, but when referred to as large-scale electricity generation it is usually understood as containing a high proportion

  14. Communication Systems for Grid Integration of Renewable Energy Resources

    E-Print Network [OSTI]

    Yu, F Richard; Xiao, Weidong; Choudhury, Paul

    2011-01-01T23:59:59.000Z

    There is growing interest in renewable energy around the world. Since most renewable sources are intermittent in nature, it is a challenging task to integrate renewable energy resources into the power grid infrastructure. In this grid integration, communication systems are crucial technologies, which enable the accommodation of distributed renewable energy generation and play extremely important role in monitoring, operating, and protecting both renewable energy generators and power systems. In this paper, we review some communication technologies available for grid integration of renewable energy resources. Then, we present the communication systems used in a real renewable energy project, Bear Mountain Wind Farm (BMW) in British Columbia, Canada. In addition, we present the communication systems used in Photovoltaic Power Systems (PPS). Finally, we outline some research challenges and possible solutions about the communication systems for grid integration of renewable energy resources.

  15. Investment and Upgrade in Distributed Generation under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    ment of uncertainty via real options increases the value of2007) and the 2007 Real Options Conference in Berkeley, CA,distributed generation, real options JEL Codes: D81, Q40

  16. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    purchase abs. cooling offset electric supply (kW) hourTariffs electric supply (kW) abs. cooling offset purchasecooling offset Distributed Generation Dispatch Optimization Under Various Electricity Tariffs electric supply (

  17. Fault Current Issues for Market Driven Power Systems with Distributed Generation

    E-Print Network [OSTI]

    1 Fault Current Issues for Market Driven Power Systems with Distributed Generation Natthaphob of installing distributed generation (DG) to electric power systems. The proliferation of new generators creates Terms--Distributed / dispersed generation, power distri- bution, power system protection, fault

  18. Local Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

    2010-01-01T23:59:59.000Z

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

  19. PLANNING FOR OPTIMAL ACCOMMODATION OF DISPERSED GENERATION IN DISTRIBUTION NETWORKS

    E-Print Network [OSTI]

    Harrison, Gareth

    and consequently threaten the achievement of Government renewable energy targets. In this paper, techniques Renewables Directive and national incentives such as the UK Renewables Obligation [1] are encouraging the development of renewable energy resources, in particular, wind. These resources are located in areas with low

  20. Low-cost distributed solar-thermal-electric power generation

    E-Print Network [OSTI]

    Sanders, Seth

    Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

  1. Cogeneration and Distributed Generation1 This appendix describes cogeneration and distributed generating resources. Also provided is an

    E-Print Network [OSTI]

    reinforcement, remote loads more economically served by small-scale generation than by distribution system. · Reliability upgrade for systems susceptible to outages. · Alternative to the expansion of transmission

  2. Fuels generated from renewable energy: a possible solution for large scale energy storage

    E-Print Network [OSTI]

    Franssen, Michael

    (CSP)Concentrating solar power (CSP) Light electricity Photovoltaic conversion (PV) #12;4/22/2012 4 Energy System Gas (or fossil) Plant Sun or Wind Energy Plant Sun Fossil Wind Water Liquid fuels or raw #12;4/22/2012 9 Electricity grid Indirect Towards the Renewable Energy System Gas (or fossil) Plant

  3. Western Renewable Energy Zones (Presentation)

    SciTech Connect (OSTI)

    Hein, J.

    2011-06-01T23:59:59.000Z

    This presentation summarizes recent developments and trends pertaining to competitive renewable energy zones, transmission planning and the integration of renewable generation resources.

  4. Voltage Control of Distribution Networks with Distributed Generation using Reactive Power

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Voltage Control of Distribution Networks with Distributed Generation using Reactive Power to control voltage of distribution networks with DG using reactive power compensation approach. In this paper profile within the specified limits, it is essential to regulate the reactive power of the compensators

  5. A Study of Distributed Generation System Characteristics and Protective Load Control Strategy

    E-Print Network [OSTI]

    Chen, Zhe

    different type of WTs are integrated into a DGS, the DGS presents different properties. Therefore Turbines (WT) have attracted significant attentions. A DGS with renewable sources such as WTs and solar panels is distinct from a conventional power system. The renewable generation units make a DGS

  6. Office of Energy Efficiency and Renewable Energy Fiscal Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Renewable Electricity Generation Office of Energy Efficiency and...

  7. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Keller, J.

    2012-06-01T23:59:59.000Z

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  8. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Petr Sulc; Konstantin Turitsyn; Scott Backhaus; Michael Chertkov

    2010-08-04T23:59:59.000Z

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

  9. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-10-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  10. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-11-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  11. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2013-04-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  12. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-09-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  13. Real-Time Deferrable Load Control: Handling the Uncertainties of Renewable Generation

    E-Print Network [OSTI]

    Low, Steven H.

    - ables are not only intermittent but also difficult to predict. For example, wind generation prediction

  14. A planning scheme for penetrating embedded generation in power distribution grids

    E-Print Network [OSTI]

    Wang, Jiankang, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Penetrating Embedded Generation, or Distributed Generation (DG), in power distribution grids presents great benefits and substantial positive social impacts to utilities, system operators and electricity consumers. Existing ...

  15. Renewable Energy to be Half of Global Generation Increase to 2035: IEA |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments on NBPSitingPresentation Remy:Renewable13423Department of

  16. Real-Time Deferrable Load Control: Handling the Uncertainties of Renewable Generation

    E-Print Network [OSTI]

    Low, Steven H.

    are difficult to predict. For example, wind generation pre- diction has a root-mean-square error of around 18

  17. WindTurbineGenerator Introduction of the Renewable Micro-Grid Test-Bed

    E-Print Network [OSTI]

    Johnson, Eric E.

    Simulator Wind Turbine: PMSM, 3kW, 8.3A Wind Generator: PMSM, 3kW, 8.3A 3 AC/DC Converter & DC/AC Inverter Wind Turbine: Torque or Speed Control Wind Generator: PQ Control Cubicle #4: Energy Storage Generator #1 3kW, 8.3A Wind Turbine #1 3kW, 8.3A Wind Turbine #2 3kW Wind Generator #2 3kW RS232

  18. Parton distributions and event generators Stefano Carrazza, Stefano Forte

    E-Print Network [OSTI]

    Heller, Barbara

    Parton distributions and event generators Stefano Carrazza, Stefano Forte Dipartimento di Fisica ingredient in achieving all of these goals is the integration of parton distri- butions within Monte Carlo, and data collected in an experimental fiducial region. Whereas next-to-leading (NLO) order Monte Carlo

  19. Centralized and Distributed Generated Power Systems -A Comparison Approach

    E-Print Network [OSTI]

    Energy System #12;Centralized and Distributed Generated Power Systems - A Comparison Approach Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U.S. Department of Energy Robert Saint National Rural Electric Cooperative Association PSERC Publication 12-08 June 2012 #12;For

  20. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect (OSTI)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31T23:59:59.000Z

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  1. OPF evaluation of distribution network capacity for the connection of distributed generation

    E-Print Network [OSTI]

    Harrison, Gareth

    threaten the achievement of renewable energy targets. One means of addressing this risk is to encourage the network. #12;3 1. Introduction The European Union Renewables Directive and national incentives such as the UK Renewables Obligations [1]-[2] are encouraging the development of renewable energy resources

  2. Distributed Generation Investment by a Microgrid UnderUncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Marnay, Chris

    2006-06-16T23:59:59.000Z

    This paper examines a California-based microgrid s decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generating cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generating cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit.

  3. Distributed Generation Investment by a Microgrid under Uncertainty

    SciTech Connect (OSTI)

    Marnay, Chris; Siddiqui, Afzal; Marnay, Chris

    2008-08-11T23:59:59.000Z

    This paper examines a California-based microgrid?s decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist.

  4. Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007

    SciTech Connect (OSTI)

    Davis, M. W.; Broadwater, R.; Hambrick, J.

    2007-07-01T23:59:59.000Z

    This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

  5. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    SciTech Connect (OSTI)

    Palchak, D.; Denholm, P.

    2014-07-01T23:59:59.000Z

    Flexibility of traditional generators plays an important role in accommodating the increased variability and uncertainty of wind and solar on the electric power system. Increased flexibility can be achieved with changes to operational practices or upgrades to existing generation. One challenge is in understanding the value of increasing flexibility, and how this value may change given higher levels of variable generation. This study uses a commercial production cost model to measure the impact of generator flexibility on the integration of wind and solar generators. We use a system that is based on two balancing areas in the Western United States with a range of wind and solar penetrations between 15% and 60%, where instantaneous penetration of wind and solar is limited to 80%.

  6. Laboratories for the 21st Century Best Practices: Onsite Distributed Generation Systems For Laboratories

    Broader source: Energy.gov [DOE]

    Guide describes general information on implementing onsite distributed generation systems in laboratory environments.

  7. A Multi-State Model for the Reliability Assessment of a Distributed Generation System via Universal Generating Function

    E-Print Network [OSTI]

    Boyer, Edmond

    , Milan, Italy, Dipartimento di Energia Enrico.zio@polimi.it Abstract The current and future developments renewable technology (e.g. wind or solar, etc.) whose behavior is described by a binary state, working assessment, multi-state modeling, universal generating function #12;2 Notations Solar irradiance Total number

  8. Distributional and Efficiency Impacts of Clean and Renewable Energy Standards for Electricity

    E-Print Network [OSTI]

    Rausch, Sebastian

    2012-07-17T23:59:59.000Z

    We examine the efficiency and distributional impacts of greenhouse gas policies directed toward the electricity

  9. Renewable Energy Standard

    Broader source: Energy.gov [DOE]

    Rhode Island's Renewable Energy Standard (RES), established in June 2004, requires the state's retail electricity providers -- including non-regulated power producers and distribution companies --...

  10. COMMISSION GUIDEBOOK RENEWABLES PORTFOLIO

    E-Print Network [OSTI]

    , conduit hydroelectric, digester gas, electrolysis, eligibility, fuel cell, gasification, geothermal, Renewables Portfolio Standard, repowered, retail sales, small hydroelectric, SelfGeneration Incentive

  11. Renewable Energy System Exemption

    Broader source: Energy.gov [DOE]

    In March 2010, South Dakota established a new property tax incentive that replaced two existing property tax incentives for renewable energy. Facilities that generate electricity using wind, solar,...

  12. Abstract Microgrids are a new concept for future energy dis-tribution systems that enable renewable energy integration and

    E-Print Network [OSTI]

    Collins, Emmanuel

    distributed generators (DGs) that are usually integrated via power-electronic inverters. In order to enhance generators (DGs) has been significantly improved. Inverter-interfaced DGs can be flexibly deployed in power1 Abstract ­ Microgrids are a new concept for future energy dis- tribution systems that enable

  13. Reliability Improvement Programs in Steam Distribution and Power Generation Systems

    E-Print Network [OSTI]

    Petto, S.

    RELIABILITY IIIPROVEfWlT PROGRAMS IN STEAM DISTRIBUTION AND POVER GENERATION SYSTEItS Steve Petto Tech/Serv Corporation Blue Bell, PA Abstract This paper will present alternatives to costly corrective maintenance of the steam trap... In the reliability and efficiency of the system. Recent studies have shownt hat more than 40% of all In stalled steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems In condensate return...

  14. A Bio-Based Fuel Cell for Distributed Energy Generation

    SciTech Connect (OSTI)

    Anthony Terrinoni; Sean Gifford

    2008-06-30T23:59:59.000Z

    The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

  15. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08T23:59:59.000Z

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  16. A policy letter. DG-GRID Improving distribution network regulation for enhancing the share of sustainable distributed generation in Europe

    E-Print Network [OSTI]

    A policy letter. DG-GRID Improving distribution network regulation for enhancing the share-generation of electricity and heat (CHP). This drives the growth of distributed generation (DG) ­ generators connected to the distribution network ­ to significant levels. The DG-GRID project1 carried out by nine European universities

  17. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

    2012-01-01T23:59:59.000Z

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  18. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.

    2014-09-01T23:59:59.000Z

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  19. Effect of real-time electricity pricing on renewable generators and system emissions

    E-Print Network [OSTI]

    Connolly, Jeremiah P. (Jeremiah Peter)

    2008-01-01T23:59:59.000Z

    Real-time retail pricing (RTP) of electricity, in which the retail price is allowed to vary with very little time delay in response to changes in the marginal cost of generation, offers expected short-run and long-run ...

  20. Effective Renewable Energy Policy: Leave It to the States?

    E-Print Network [OSTI]

    Weissman, Steven

    2011-01-01T23:59:59.000Z

    Berkeley Effective Renewable Energy Policy: Leave It to therealities related to renewable energy policy suggest thatof a new energy policy—using renewable electric generation

  1. Reburning renewable biomass for emissions control and ash deposition effects in power generation

    E-Print Network [OSTI]

    Oh, Hyuk Jin

    2009-05-15T23:59:59.000Z

    ) ..................................................... 87 5.1.4 Size Distribution of Fuel Particles.................................................. 90 5.1.5 Characteristics of Oxidation and Pyrolysis .................................... 94 5.2 Fuel-Nitrogen (N) Analysis... ........................................................ 98 5.8 Oxidation results for various particle sizes of TXLC using air on a dry basis: (a) Results as a function of time and (b) Results as a function of temperature..... 99 5.9 Pyrolysis results for various particle sizes of LASSDB using N...

  2. Value of storage with increased renewable penetration.

    SciTech Connect (OSTI)

    Brainard, James Robert; Roach, Jesse Dillon

    2010-10-01T23:59:59.000Z

    The problem statement for this project is: (1) Renewable energy portfolio standards - (a) high penetration of intermittent and variable renewable generation on the grid, (b) utilities constrained by NERC Control Performance Standards, (c) requires additional resources to match generation with load; and (2) mitigation of impacts with energy storage - at what level of renewable penetration does energy storage become an attractive value proposition. Use a simplified, yet robust dispatch model that: (a) incorporates New Mexico Balance Area load and wind generation data, (b) distributes the load among a suite of generators, (c) quantifies increased generation costs with increased penetration of intermittent and variable renewable generation - fuel, startup, shut down, ramping, standby, etc., (d) tracks and quantifies NERC pentalties and violations, and (e) quantifies storage costs. Dispatch model has been constructed and it: (a) accurately distributes a load among a suite of generators, (b) quantifies duty cycle metrics for each of the generators - cumulative energy production, ramping and non ramping duration, spinning reserves, number of start-ups, and shut down durations, etc., (c) quantifies energy exchanges - cumulative exchanges, duration, and number of exchanges, (d) tracks ACE violations.

  3. The Value of Distributed Generation under Different TariffStructures

    SciTech Connect (OSTI)

    Firestone, Ryan; Magnus Maribu, Karl; Marnay, Chris

    2006-05-31T23:59:59.000Z

    Distributed generation (DG) may play a key role in a modern energy system because it can improve energy efficiency. Reductions in the energy bill, and therefore DG attractiveness, depend on the electricity tariff structure; a system created before widespread adoption of distributed generation. Tariffs have been designed to recover costs equitably amongst customers with similar consumption patterns. Recently, electric utilities began to question the equity of this electricity pricing structure for standby service. In particular, the utilities do not feel that DG customers are paying their fair share of transmission and distribution costs - traditionally recovered through a volumetric($/kWh) mechanism - under existing tariff structures. In response, new tariff structures with higher fixed costs for DG have been implemented in New York and in California. This work analyzes the effects of different electricity tariff structures on DG adoption. First, the effects of the new standby tariffs in New York are analyzed in different regions. Next generalized tariffs are constructed, and the sensitivity to varying levels of the volumetric and the demand ($/kW, i.e. maximum rate) charge component are analyzed on New York's standard and standby tariff as well as California's standby tariff. As expected, DG profitability is reduced with standby tariffs, but often marginally. The new standby structures tend to promote smaller base load systems. The amount of time-of-day variability of volumetric pricing seems to have little effect on DG economics.

  4. 1 Control Challenges of Fuel Cell-Driven Distributed Generation

    E-Print Network [OSTI]

    Valery Knyazkin; Lennart Söder; Claudio Canizares

    Abstract — This paper discusses the load following capability of fuel cell-driven power plants. A linear model of a Solid Oxide Fuel Cell power plant is obtained and utilized for the design of robust controllers which enhance tracking response of the plant and reject disturbances originating from the distribution grid. Two robust controllers are synthesized applying the H? mixed-sensitivity optimization and their performance is validated by means of nonlinear time-domain simulations. The obtained results indicate that the disturbances can be successfully attenuated; however, the tracking response cannot be significantly improved without a modification of the design of the fuel cell power plant. The paper is concluded by a brief discussion on the physical limitations on the fuel cell output power ramp and possible solutions are outlined. Index Terms — Distributed generation, Solid Oxide Fuel Cells, robust control, H ? controller design, disturbance rejection.

  5. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    Faress Rahman; Nguyen Minh

    2004-01-04T23:59:59.000Z

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  6. Distributed Generation Systems Inc DISGEN | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has Type TermOpenDistributed Generation Systems

  7. Emissions Benefits of Distributed Generation in the Texas Market

    SciTech Connect (OSTI)

    Hadley, SW

    2005-06-16T23:59:59.000Z

    One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

  8. State Renewable Electricity Profiles

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Presents a summary of current and recent historical data for the renewable electric power industry. The data focuses on net summer capacity and net generation for each type of renewable generator, as well as fossil-fired and nuclear power plant types, for the period 2006 through 2010.

  9. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2012-10-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  10. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    SciTech Connect (OSTI)

    Eto, Joseph H.; Undrill, John; Mackin, Peter; Daschmans, Ron; Williams, Ben; Haney, Brian; Hunt, Randall; Ellis, Jeff; Illian, Howard; Martinez, Carlos; O'Malley, Mark; Coughlin, Katie; LaCommare, Kristina Hamachi

    2010-12-20T23:59:59.000Z

    An interconnected electric power system is a complex system that must be operated within a safe frequency range in order to reliably maintain the instantaneous balance between generation and load. This is accomplished by ensuring that adequate resources are available to respond to expected and unexpected imbalances and restoring frequency to its scheduled value in order to ensure uninterrupted electric service to customers. Electrical systems must be flexible enough to reliably operate under a variety of"change" scenarios. System planners and operators must understand how other parts of the system change in response to the initial change, and need tools to manage such changes to ensure reliable operation within the scheduled frequency range. This report presents a systematic approach to identifying metrics that are useful for operating and planning a reliable system with increased amounts of variable renewable generation which builds on existing industry practices for frequency control after unexpected loss of a large amount of generation. The report introduces a set of metrics or tools for measuring the adequacy of frequency response within an interconnection. Based on the concept of the frequency nadir, these metrics take advantage of new information gathering and processing capabilities that system operators are developing for wide-area situational awareness. Primary frequency response is the leading metric that will be used by this report to assess the adequacy of primary frequency control reserves necessary to ensure reliable operation. It measures what is needed to arrest frequency decline (i.e., to establish frequency nadir) at a frequency higher than the highest set point for under-frequency load shedding within an interconnection. These metrics can be used to guide the reliable operation of an interconnection under changing circumstances.

  11. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect (OSTI)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14T23:59:59.000Z

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  12. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

    2013-01-01T23:59:59.000Z

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

  13. Midwest Renewable Energy Tracking System (Multiple States)

    Broader source: Energy.gov [DOE]

    The Midwest Renewable Energy Tracking System (M-RETS®) tracks renewable energy generation in participating States and Provinces and assists in verifying compliance with individual state/provincial...

  14. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith (Opal RT Technologies, Montreal, Quebec, Canada); Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01T23:59:59.000Z

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  15. LO Generation and Distribution for 60GHz Phased Array Transceivers

    E-Print Network [OSTI]

    Marcu, Cristian

    2011-01-01T23:59:59.000Z

    goal of the LO distribution network design was minimizing7. Given a distribution impedance, Z o , design an input5. LO DISTRIBUTION Mixer LO Buffer Design Methodology The

  16. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01T23:59:59.000Z

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  17. 1170 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 2, MAY 2013 Independent Distributed Generation Planning

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Generation Planning to Profit Both Utility and DG Investors H. A. Hejazi, Ali R. Araghi, Behrooz Vahidi, S. H-scale electric generation facilities to participate in distributed generation (DG) with few requirements on power Terms--Distributed generation, investment incentives, op- timal location, price allocation, size

  18. Renewable Systems Interconnection: Executive Summary

    SciTech Connect (OSTI)

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01T23:59:59.000Z

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  19. Renewable Energy Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    Utah exempts the purchase or lease of equipment used to generate electricity from renewable resources from the state sales tax. Eligible purchases or leases must be made for or by a renewable...

  20. Investment and Upgrade in Distributed Generation under Uncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Maribu, Karl

    2008-08-18T23:59:59.000Z

    The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplatingthe installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find that the microgrid prefers a direct investment strategy for low levels of volatility and a sequential one for higher levels of volatility.

  1. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10T23:59:59.000Z

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  2. Regulatory Review and Barriers for the Electricity Supply System for Distributed

    E-Print Network [OSTI]

    , Technology assessment. I. INTRODUCTION In recent years, distributed generation (DG) has received increasing from renewable energy sources (RES) and combined heat and power (CHP) should be considered

  3. Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-01-01T23:59:59.000Z

    Profiles of Renewable and Natural Gas Electricity Contracts:Price Risk: Using Forward Natural Gas Prices Instead of Gas2001). “Which way the natural gas price: an attempt to

  4. Renewable energy generation sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORV 15051SoilWind Energy WindIndustrialenergy

  5. Central power generation versus distributed generation e An air quality assessment in the South Coast Air Basin of California

    E-Print Network [OSTI]

    Dabdub, Donald

    Keywords: Distributed generation Central generation Air quality modeling Reactivity a b s t r a c by the widespread installation of many stationary power generators close to the point of electricity use within from which electricity must be transmitted to end users. However, increasing electricity demand

  6. Air Quality Impact of Distributed Generation of Electricity

    E-Print Network [OSTI]

    Jing, Qiguo

    2011-01-01T23:59:59.000Z

    of the near source air quality impact of distributedDabdub, D. , 2003. Urban Air quality impacts of distributedDabdub, D. , 2004. Urban Air quality impacts of distributed

  7. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewal Individual Permit Renewal Application The Permit expires March 31, 2014 and existing permit conditions will be in effect until a new permit is issued. The Permittees...

  8. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    Cost of Natural Gas Generation, p Figure 6. Normalised NetCost of Natural Gas Generation, p Figure 7. Wait InvestCost of Natural Gas Generation (US$/kWh e ), C Figure 8.

  9. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  10. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  11. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  12. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  13. Method and apparatus for anti-islanding protection of distributed generations

    DOE Patents [OSTI]

    Ye, Zhihong; John, Vinod; Wang, Changyong; Garces, Luis Jose; Zhou, Rui; Li, Lei; Walling, Reigh Allen; Premerlani, William James; Sanza, Peter Claudius; Liu, Yan; Dame, Mark Edward

    2006-03-21T23:59:59.000Z

    An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.

  14. Fuel cell power plants in a distributed generator application

    SciTech Connect (OSTI)

    Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31T23:59:59.000Z

    ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

  15. Index for the Evaluation of Distributed Generation Impacts on Distribution System Luis F. Ochoa (1,2)

    E-Print Network [OSTI]

    Harrison, Gareth

    Index for the Evaluation of Distributed Generation Impacts on Distribution System Protection Luis F and distribution systems, in addition to the presence of customers with energy exportation capabilities a special attention since they may weaken the reliability of the system [2]-[3]. In this work, the impacts

  16. HYBRID CONTROL OF DISTRIBUTED GENERATORS CONNECTED TO WEAK RURAL NETWORKS TO MITIGATE VOLTAGE VARIATION

    E-Print Network [OSTI]

    Harrison, Gareth

    thermal power plants will increase the total and proportion of capacity of Distributed Generation (DG@iee.org; Robin.Wallace@ed.ac.uk ABSTRACT Distributed generators are normally operated in automatic power factor-constrained bi- directional power flow may cause unacceptable voltage fluctuations that would cause generator

  17. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    North America Dynamic Wind Generator Modeling Update, Basedperformed by the WECC Wind Generator Modeling Group and theand in particular, wind generators are the primary resources

  18. Renewable Portfolio Standard

    E-Print Network [OSTI]

    Hydroelectric Project as its original baseline eligible renewable energy resource project, and MID also hydroelectric unit, the Stone Drop Electric Generation Station (the Stone Drop Station). The Stone Drop

  19. Renewable Energy Goal

    Broader source: Energy.gov [DOE]

    In May 2010, Oklahoma established a renewable energy goal for electric utilities operating in the state. The goal calls for 15% of the total installed generation capacity in Oklahoma to be derived...

  20. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15T23:59:59.000Z

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and not only by PV during sunny on-peak hours.

  1. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13T23:59:59.000Z

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

  2. Dynamic Analysis of Hybrid Energy Systems under Flexible Operation and Variable Renewable Generation -- Part I: Dynamic Performance Analysis and Part II: Dynamic Cost

    SciTech Connect (OSTI)

    Humberto E. Garcia; Amit Mohanty; Wen-Chiao Lin; Robert S. Cherry

    2013-04-01T23:59:59.000Z

    Dynamic analysis of hybrid energy systems (HES) under flexible operation and variable renewable generation is considered in order to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Unique consequences are addressed by devising advanced HES solutions in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. Dynamic models of various unit operations are developed and integrated within two different HES options. One HES option, termed traditional, produces electricity only and consists of a primary heat generator (PHG) (e.g., a small modular reactor), a steam turbine generator, a wind farm, and a battery storage. The other HES option, termed advanced, includes not only the components present in the traditional option but also a chemical plant complex to repurpose excess energy for non-electricity services, such as for the production of chemical goods (e.g., transportation fuel). In either case, a given HES is connected to the power grid at a point of common coupling and requested to deliver a certain electricity generation profile as dictated by a regional power grid operator based on a predicted demand curve. Dynamic analysis of these highly-coupled HES are performed to identify their key dynamical properties and limitations and to prescribe solutions for best managing and mitigating the high variability introduced from incorporating renewable energy into the energy mix. A comparative dynamic cost analysis is also conducted to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance (O&M) and overnight capital costs, and also variable operational costs, such as cost of variability, variable O&M cost, and cost of environmental impact, together with revenues. Assuming different options for implementing PHG (e.g., natural gas, coal, nuclear), preliminary results identify the level of renewable penetration at which a given advanced HES option (e.g., a nuclear hybrid) becomes increasingly more economical than a traditional electricity-only generation solution. Conditions are also revealed under which carbon resources may be better utilized as carbon sources for chemical production rather than as combustion material for electricity generation.

  3. Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Putting renewables and energy efficiency to work: How many jobs can the clean energy industry employment Energy efficiency employment a b s t r a c t An analytical job creation model for the US power energy (RE), energy efficiency (EE), carbon capture and storage (CCS) and nuclear power. The paper

  4. Distributed Power Generation: Requirements and Recommendations for an ICT Architecture

    E-Print Network [OSTI]

    Appelrath, Hans-Jürgen

    . Some of these are sustainable (wind and hydroelectric power plants, solar cells), some are controllable), distrib- uted generation, energy management systems (EMS) , IEC standards 1 Power Generation possible to generate energy efficiently in large-scale power plants, a complex infrastructure is needed

  5. Software-Based Challenges of Developing the Future Distribution Grid

    E-Print Network [OSTI]

    Stewart, Emma

    2014-01-01T23:59:59.000Z

    Golden  CO:  National  Renewable  Energy  Laboratory  energy  resources.  IET   Renewable  Power  Generation,  Golden  CO:  National  Renewable  Energy  Laboratory  

  6. Methodology The electricity generation and distribution network in the Western United States is

    E-Print Network [OSTI]

    Hall, Sharon J.

    Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

  7. Micro-grid operation of inverter based distributed generation with voltage and frequency dependent loads

    E-Print Network [OSTI]

    Zeineldin, H. H.

    Distribution systems are experiencing increasing penetration of distributed generation (DG). One attractive option is to use the available DG capacity during utility outages by forming planned micro-grids. Load sharing ...

  8. Power marketing and renewable energy

    SciTech Connect (OSTI)

    Fang, J.M.

    1997-09-01T23:59:59.000Z

    Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

  9. Solar Renewable Energy Credits (SRECs)

    Broader source: Energy.gov [DOE]

    In May 2008, Ohio enacted broad electric industry restructuring legislation (S.B. 221) containing advanced energy and renewable energy generation and procurement requirements for the state's...

  10. Role of solid oxide fuel cell distributed generation for stationary power application.

    E-Print Network [OSTI]

    Li, Yonghui.

    2008-01-01T23:59:59.000Z

    ??Based on an availabe fuel cell dyanmical model, an inportant concept feasible operating area is introduced. Fuel cell based distributed generator is studied to solve… (more)

  11. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01T23:59:59.000Z

    Approach for Generating Renewable Energy with SimultaneousCombining Recovery of Renewable Energy with Geologic Storage

  12. Weighing the Costs and Benefits of State Renewables Portfolio Standards in the United States: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff

    2009-01-01T23:59:59.000Z

    analysis. That growth in renewable energy generation maypurchasing renewable energy or RECs. Load growth: Reflects

  13. Most Viewed Documents for Power Generation and Distribution:...

    Office of Scientific and Technical Information (OSTI)

    Methods for Power Distribution Systems: Final Report Tom McDermott (2010) 34 Industrial Power Factor Analysis Guidebook. Electrotek Concepts. (1995) 29 Recovery of Water from...

  14. Future of Distributed Generation and IEEE 1547 (Presentation...

    Office of Scientific and Technical Information (OSTI)

    new boundary issues and requirements, islanding issues, and how it impacts distributed wind. times redirected to final destination ShortURL Code Published Current state Most...

  15. Future of Distributed Generation and IEEE 1547 (Presentation)

    SciTech Connect (OSTI)

    Preus, R.

    2014-06-01T23:59:59.000Z

    This presentation discusses the background on IEEE 1547, including its purpose, changes, new boundary issues and requirements, islanding issues, and how it impacts distributed wind.

  16. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01T23:59:59.000Z

    DG) and combined heat and power (CHP) applications matchedpower generation with combined heat and power applications,tax on microgrid combined heat and power adoption, Journal

  17. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01T23:59:59.000Z

    electricity markets , PhD thesis, University of California, Berkeley, CA, USA,USA, 1994. Joskow PL, Productivity growth and technical change in the generation of electricity,

  18. Community Renewable Energy Success Stories Webinar: Renewable...

    Office of Environmental Management (EM)

    Community Renewable Energy Success Stories Webinar: Renewable Energy Parks (text version) Community Renewable Energy Success Stories Webinar: Renewable Energy Parks (text version)...

  19. Human dimensions perspectives on the impacts of coastal zone marine renewable energy

    E-Print Network [OSTI]

    Pomeroy, Caroline; Conway, Flaxen; Hall-Arber, Madeleine

    2013-01-01T23:59:59.000Z

    coastal zone marine renewable energy generation. REFERENCESOuter Continental Shelf Renewable Energy Space-Use ConflictsOF COASTAL ZONE MARINE RENEWABLE ENERGY Caroline Pomeroy,

  20. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    legality of state renewable energy policies, see Ferrey (in-state renewable generation? ” Energy Policy. 38: 1140-the development of renewable energy. ” Energy Policy. 31(8):

  1. Human dimensions perspectives on the impacts of coastal zone marine renewable energy

    E-Print Network [OSTI]

    Pomeroy, Caroline; Conway, Flaxen; Hall-Arber, Madeleine

    2013-01-01T23:59:59.000Z

    between offshore renewable energy and existing uses on thecoastal zone marine renewable energy generation. REFERENCESOuter Continental Shelf Renewable Energy Space-Use Conflicts

  2. A SURVEY OF STATE-LEVEL COST ESTIMATES OF RENEWABLES PORTFOLIO STANDARDS

    E-Print Network [OSTI]

    Barbose, Galen

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Renewable Energy (Solar TechnologiesRPS costs, per unit of renewable energy generation, rangedFlores-Espino National Renewable Energy Laboratory 15013

  3. Reactive power management of distribution networks with wind generation for improving voltage stability

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    -loadability Reactive power margin Wind turbine a b s t r a c t This paper proposes static and dynamic VAR planningReactive power management of distribution networks with wind generation for improving voltage February 2013 Available online Keywords: Composite load Distributed generation D-STATCOM Q

  4. Efficiency and Air Quality Implications of Distributed Generation and Combined Heat

    E-Print Network [OSTI]

    in a manner that recovers waste heat for heating and/or cooling--called combined heat and power-- negativeEfficiency and Air Quality Implications of Distributed Generation and Combined Heat and Power environmental impacts can be decreased. Distributed generation/combined heat and power has been identified

  5. Integrating Small Scale Distributed Generation into a Deregulated Market: Control Strategies and Price Feedback

    E-Print Network [OSTI]

    Judith Cardell; Marija Ili?; Richard D. Tabors

    1997-01-01T23:59:59.000Z

    Small scale power generating technologies, such as gas turbines, small hydro turbines, photovoltaics, wind turbines and fuel cells, are gradually replacing conventional generating technologies, for various applications, in the electric power system. The industry restructuring process in the United States is exposing the power sector to market forces, which is creating competitive structures for generation and alternative regulatory structures for the transmission and distribution systems. The potentially conflicting economic and technical demands of the new, independent generators introduce a set of significant uncertainties. What balance between market forces and centralized control will be found to coordinate distribution system operations? How will the siting of numerous small scale generators in distribution feeders impact the technical operations and control of the distribution system? Who will provide ancillary services (such as voltage support and spinning reserves) in the new competitive environment? This project investigates both the engineering and market integration of distributed generators into the distribution system. On the technical side, this project investigates the frequency performance of a distribution system that has multiple small scale generators. Using IEEE sample distribution systems and new dynamic generator models, this project develops general methods for

  6. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01T23:59:59.000Z

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  7. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    power generation with combined heat and power applications.tax on microgrid combined heat and power adoption. JournalCHP Application Center. Combined heat and power in a dairy.

  8. Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation

    E-Print Network [OSTI]

    Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

    2005-01-01T23:59:59.000Z

    2: L A City, DWP Valley Generating 1: Hunters Point 2: PG &E Co, Hunters Point Power 1: SDG & E Co/Kearny Mesa GT 2:Angeles ST(4) BF(2) Hunters Point San Francisco NG, Diesel

  9. Renewal-anomalous-heterogeneous files

    E-Print Network [OSTI]

    Ophir Flomenbom

    2010-08-13T23:59:59.000Z

    Renewal-anomalous-heterogeneous files are solved. A simple file is made of Brownian hard spheres that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the spheres' diffusion coefficients are distributed and the initial spheres' density is non-uniform. In renewal-anomalous files, the distribution of waiting times for individual jumps is exponential as in Brownian files, yet obeys: {\\psi}_{\\alpha} (t)~t^(-1-{\\alpha}), 0renewal as all the particles attempt to jump at the same time. It is shown that the mean square displacement (MSD) in a renewal-anomalous-heterogeneous file, , obeys, ~[_{nrml}]^{\\alpha}, where _{nrml} is the MSD in the corresponding Brownian file. This scaling is an outcome of an exact relation (derived here) connecting probability density functions of Brownian files and renewal-anomalous files. It is also shown that non-renewal-anomalous files are slower than the corresponding renewal ones.

  10. Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost

    E-Print Network [OSTI]

    Pedram, Massoud

    Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue- ple users cooperate to perform load demand scheduling in order to minimize the electricity generation between electricity consumption and generation. On the consumption side, electric demand ramps up

  11. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  12. Distributed State Space Generation of Discrete-State Stochastic Models

    E-Print Network [OSTI]

    Ciardo, Gianfranco

    of the numerical approach, since the size of the state space can easily be orders of magnitude larger than the main charts [17], and ad hoc textual languages [14], the correct logical behavior can, in principle--it makes sense to distribute the state-space principally when one has to in order to avoid paging overhead

  13. OPTIMAL DISTRIBUTED POWER GENERATION UNDER NETWORK LOAD CONSTRAINTS,

    E-Print Network [OSTI]

    Frank, Jason

    -producers. Decentralized Power Generation (DPG) refers to an electric power source such as solar, wind or combined heat (the approach used in the traditional electric power paradigm), DPG systems employ numerous, but small¨EL BLOEMHOF, JOOST BOSMAN§, DAAN CROMMELIN¶, JASON FRANK , AND GUANGYUAN YANG Abstract. In electrical power

  14. Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui

    E-Print Network [OSTI]

    Guillas, Serge

    , CA 94720-8163, USA, c_marnay@lbl.gov ABSTRACT. This paper examines a California-based microgrid-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold

  15. Distributed Generation Dispatch Optimization under VariousElectricity Tariffs

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2007-05-01T23:59:59.000Z

    The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

  16. Optimal distributed power generation under network load constraints

    E-Print Network [OSTI]

    Utrecht, Universiteit

    wind turbines and heat pumps). This gives rise to the question how many units of each type (solar panel, mainly because of the development of novel components for decentral power generation (solar panels, small (DPG) refers to an electric power source such as solar, wind or combined heat power (CHP) connected

  17. Fact #840: September 29, 2014 World Renewable Electricity Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    40: September 29, 2014 World Renewable Electricity Consumption is Growing Fact 840: September 29, 2014 World Renewable Electricity Consumption is Growing Electricity generated...

  18. From Tragedy to Triumph - Rebuilding with Renewable Energy after...

    Energy Savers [EERE]

    green" with renewable energy. Renewable Energy Benefits * Generates electricity from the sun or wind * Heats and cools quietly and naturally * Grants tax credits to building owners...

  19. SmartGridCityTM: Plugging renewables into the

    E-Print Network [OSTI]

    - Wisconsin 3.4 million electricity customers 1.9 million natural gas customers Traditionally regulated #12 response Limited real-time data Reactive outage management system #12;5 How it works: Adding Renewable Widespread distributed generation Plug-in hybrid electric vehicles #12;6 Longer-term hypotheses Can we

  20. Distributed Generation System Characteristics and Costs in the Buildings Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation oftheAmperometricEnergy AnalysisDistributed

  1. Distributed Generation Study/Emerling Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,Discount PowerEmerling Farm < Distributed

  2. Novel Control of PV Solar and Wind Farm Inverters as STATCOM for Increasing Connectivity of Distributed Generators.

    E-Print Network [OSTI]

    AC, Mahendra

    2013-01-01T23:59:59.000Z

    ??The integration of distributed generators (DGs) such as wind farms and PV solar farms in distribution networks is getting severely constrained due to problems of… (more)

  3. Study and Development of Anti-Islanding Control for Synchronous Machine-Based Distributed Generators: November 2001--March 2004

    SciTech Connect (OSTI)

    Ye, Z.

    2006-03-01T23:59:59.000Z

    This report summarizes the study and development of new active anti-islanding control schemes for synchronous machine-based distributed generators, including engine generators and gas turbines.

  4. Applying epoch-era analysis for homeowner selection of distributed generation power systems

    E-Print Network [OSTI]

    Piña, Alexander L

    2014-01-01T23:59:59.000Z

    The current shift from centralized energy generation to a more distributed model has opened a number of choices for homeowners to provide their own power. While there are a number of systems to purchase, there are no tools ...

  5. Investigation of anti-islanding schemes for utility interconnection of distributed fuel cell powered generations

    E-Print Network [OSTI]

    Jeraputra, Chuttchaval

    2006-04-12T23:59:59.000Z

    The rapid emergence of distributed fuel cell powered generations (DFPGs) operating in parallel with utility has brought a number of technical concerns as more DFPGs are connected to utility grid. One of the most challenging problems is known...

  6. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets

    E-Print Network [OSTI]

    Rastler, D. M.

    in evolving electric markets and will review both current and emerging distributed generation technologies aimed at retail industrial, commercial and residential markets. This paper will draw upon several Electric Power Research Institute’s (EPRI) and member...

  7. Renewable Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Diesel Paraffinic (C 13 -C 18 ) No Oxygen No Double Bonds In Heart of Diesel Fuel (C 10 -C 22 ) High Cetane Feedstock Independent Cold Flow...

  8. US Renewable Futures in the GCAM

    SciTech Connect (OSTI)

    Smith, Steven J.; Mizrahi, Andrew H.; Karas, Joseph F.; Nathan, Mayda

    2011-10-06T23:59:59.000Z

    This project examines renewable energy deployment in the United States using a version of the GCAM integrated assessment model with detailed a representation of renewables, the GCAM-RE. Electricity generation was modeled in four generation segments and 12-subregions. This level of regional and sectoral detail allows a more explicit representation of renewable energy generation. Wind, solar thermal power, and central solar PV plants are implemented in explicit resource classes with new intermittency parameterizations appropriate for each technology. A scenario analysis examines a range of assumptions for technology characteristics, climate policy, and long-distance transmission. We find that renewable generation levels grow over the century in all scenarios. As expected, renewable generation increases with lower renewable technology costs, more stringent climate policy, and if alternative low-carbon technology are not available. The availability of long distance transmission lowers policy costs and changes the renewable generation mix.

  9. Renewable Energy Standard (Nova Scotia, Canada)

    Broader source: Energy.gov [DOE]

    On February 1, 2007, Nova Scotia's new Renewable Energy Standards took effect. By 2013, Nova Scotia will generate at least 18.5% of the Province's electricity through renewable energy -- wind,...

  10. Recovery Act: Beneficial CO{sub 2} Capture in an Integrated Algal Biorefinery for Renewable Generation and Transportation Fuels

    SciTech Connect (OSTI)

    Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid; Kessler, Ben; Moats, Kenneth; Park, Jonathan; Schwenk, Jacob; White, Nicholas; Bakhit, Anis; Bargiel, Jeff; Allnutt, F.C.

    2014-03-31T23:59:59.000Z

    DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycal’s pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawai’i. Phycal’s algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal mass culturing, heterotrophic reactors for the Heteroboost™ process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.

  11. A forward microphysical model to predict the size-distribution parameters of laboratory generated (mimic)

    E-Print Network [OSTI]

    Oxford, University of

    A forward microphysical model to predict the size- distribution parameters of laboratory generated Interactions ­ Condensational Growth and Coagulation, Submitted for Indian Aerosol Science and Technology Microphysical Model for the UTLS (FAMMUS) is applied to predict the size-distribution parameters of laboratory

  12. Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    generated from renewable resources (USDOE 2008). 1 Thesethe requisite amount of renewable resources under cost-of-commercially-developed renewable resources or alternatively

  13. An Analysis of the Costs, Benefits, and Implications of Different Approaches to Capturing the Value of Renewable Energy Tax Incentives

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01T23:59:59.000Z

    Issue Brief: Reassessing Renewable Energy Subsidies. Marchupdate: PTC resurrection” Renewable Energy-Research Note,and Public Economics of Renewable Electricity Generation. ”

  14. The Impact of Distributed Generation on Power Transmission Grid Dynamics D. E. Newman B. A. Carreras M. Kirchner I. Dobson

    E-Print Network [OSTI]

    Dobson, Ian

    distributed generation if not done carefully. 1. Introduction With the increased utilization of local, oftenThe Impact of Distributed Generation on Power Transmission Grid Dynamics D. E. Newman B. A@engr.wisc.edu Abstract In this paper we investigate the impact of the introduction of distributed generation

  15. Onsite Backup Generation and Interruption Insurance for Electricity Distribution Author(s): Joseph A. Doucet and Shmuel S. Oren

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Onsite Backup Generation and Interruption Insurance for Electricity Distribution Author(s): Joseph customerownedonsitebackupdecisionswillpre-emptthe utility'splan to mitigatecompensationpaymentsbyprovidingonsitebackup generation access to The Energy Journal. http://www.jstor.org #12;Onsite Backup Generation and Interruption

  16. A bio-inspired molecular water oxidation catalyst for renewable hydrogen generation: An examination of salt effects

    E-Print Network [OSTI]

    Lawson, Catherine L.

    , purification, and/or burning processes. The generation of hydrogen using solar energy to split water, ideally. Swiegersc , Leone Spicciaa * a School of Chemistry, Monash University, Clayton, Victoria 3800, Australia b, University of Wollongong, Wollongong, NSW 2522, Australia ABSTRACT Most transport fuels are derived from

  17. A Stochastic Unit Commitment Model for Integrating Renewable Supply

    E-Print Network [OSTI]

    Oren, Shmuel S.

    -optimization of generation and demand by the system operator, demand bids and coupling renewable resources with deferrable-optimizes the dispatch of demand- side resources, renewable supplies and generators. This is unrealistic in practice is coupling the operations of renewable resources with deferrable demand. The motivation of coupling renewable

  18. Why Do States Adopt Renewable Portfolio Standards?: An Empirical Investigation

    E-Print Network [OSTI]

    Lyon, Thomas P.

    131 Why Do States Adopt Renewable Portfolio Standards?: An Empirical Investigation Thomas P. Lyon* and Haitao Yin** Renewable portfolio standards (RPSs) for electricity generation are politically popularU.S.stategovernments of Renewable Portfolio Standards (RPSs) as a policy tool for promoting renewable electricity generation. An RPS

  19. Please cite this article in press as: Hughes L, Meeting residential space heating demand with wind-generated electricity, Renewable Energy (2009), doi:10.1016/j.renene.2009.11.014

    E-Print Network [OSTI]

    Hughes, Larry

    , or compressed air (Blarke and Lund 2008). Energy suppliers are forced to go to these lengths when integrating. The benefits as well as the limitations of the approach are discussed in detail. Keywords: Energy storage- generated electricity, Renewable Energy (2009), doi:10.1016/j.renene.2009.11.014 ERG/200909 Meeting

  20. Key factors affecting voltage oscillations of distribution networks with distributed generation and induction motor loads

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    of distributed energy sources such as, combined heat and power (CHP), wind, solar, and fuel cells, are expected and IT, The University of New South Wales, Canberra, ACT 2600, Australia b Future Grid Research Centre, The University of Melbourne, Parkville, VIC 3010, Australia c Griffith School of Engineering, Griffith University

  1. Renewable Mongolia

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2005-12-07T23:59:59.000Z

    Broadcast Transcript: As China's economy booms, its demand for energy grows. With oil prices up and coal-fired power plants choking Chinese cities and people, the government is aggressively developing renewable energy sources, particularly wind...

  2. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation oftheAmperometricEnergy Analysis EnergyUntapped

  3. Renewable Electricity Futures: Exploration of Up to 80% Renewable Electricity Penetration in the United States (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; DeMeo, E.; Hostick, D.; Mai, T.; Schlosser, C. A.

    2013-04-01T23:59:59.000Z

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  4. Optimal foraging of renewable resources

    E-Print Network [OSTI]

    Enright, John J.

    Consider a team of agents in the plane searching for and visiting target points that appear in a bounded environment, according to a stochastic renewal process with a known absolutely continuous spatial distribution. Agents ...

  5. Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01T23:59:59.000Z

    and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.Renewable Energy, Office of Geothermal Technologies, of the

  6. Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01T23:59:59.000Z

    Brown, D. A Hot Dry Rock Geothermal Energy Concept Utilizingand Renewable Energy, Office of Geothermal Technologies, ofThe resource base for geothermal energy is enormous, but

  7. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-01-01T23:59:59.000Z

    Renewable Energy. ” Proceedings of WINDPOWER 1992. Seattle,for the proceedings of WINDPOWER 2002 and ACEEE 2002 Summerseminar participants at WINDPOWER 2002, ACEEE 2002 Summer

  8. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    DeMeo, E.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  9. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01T23:59:59.000Z

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  10. Green Power Renewable Electricity, Renewable

    E-Print Network [OSTI]

    of Air (6202J) EPA430-K-04-015 www.epa.gov/greenpower March 2010 ISBN: 1-56973-577-8 #12;Guide................................................................................................9 Renewable Electricity Products ..................................................18 Developing Criteria for Screening Suppliers and Products

  11. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01T23:59:59.000Z

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  12. Renewable Liquid Fuels Reforming | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Liquid Fuels Reforming The Program anticipates that distributed reforming of biomass-derived liquid fuels could be commercial during the transition to hydrogen and used...

  13. Renewable Energy Production Tax Credits (Corporate)

    Broader source: Energy.gov [DOE]

    In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify...

  14. Community Renewable Energy Deployment Provides Replicable Examples...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    million in funding from DOE for an integrated renewable energy deployment plan using a biogas generation facility and solar photovoltaics (PV) to provide heating, cooling, and...

  15. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify...

  16. Optimized Energy Management for Large Organizations Utilizing an On-Site PHEV fleet, Storage Devices and Renewable Electricity Generation

    SciTech Connect (OSTI)

    Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL

    2012-01-01T23:59:59.000Z

    Abstract This paper focuses on the daily electricity management problem for organizations with a large number of employees working within a relatively small geographic location. The organization manages its electric grid including limited on-site energy generation facilities, energy storage facilities, and plug-in hybrid electric vehicle (PHEV) charging stations installed in the parking lots. A mixed integer linear program (MILP) is modeled and implemented to assist the organization in determining the temporal allocation of available resources that will minimize energy costs. We consider two cost compensation strategies for PHEV owners: (1) cost equivalent battery replacement reimbursement for utilizing vehicle to grid (V2G) services from PHEVs; (2) gasoline equivalent cost for undercharging of PHEV batteries. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results and substantiates the importance of controlled PHEV fleet charging as opposed to uncontrolled charging methods. We further established the importance of realizing V2G capabilities provided by PHEVs in terms of significantly reducing energy costs for the organization.

  17. Renewable energy annual 1997. Volume 1

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    This report presents information on renewable energy consumption, capacity, and electricity generation data, as well as data on US solar thermal and photovoltaic collector manufacturing activities. The renewable energy resources included in the report are: biomass (wood, ethanol, and biodiesel); municipal solid waste; geothermal; wind; and solar (solar thermal and photovoltaic). The first chapter of the report provides an overview of renewable energy use and capability from 1992 through 1996. It contains renewable energy consumption, capacity, and electricity generation data, as well as descriptive text. Chapter 2 presents current (through 1996) information on the US solar energy industry. A glossary of renewable energy terms is also included. 15 figs., 42 tabs.

  18. Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units with

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    of virtual impedance parameters and (ii) higher accuracy in reactive power flow calculation. The improved With larger portion of growing electricity demand which is being fed through distributed generation (DG, in order to decouple real and reactive power, to increase the stability margin and also to improve

  19. Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study

    E-Print Network [OSTI]

    Li, Baochun

    Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study Zhi Zhou1 Fangming Liu of fuel cell energy in cloud computing, yet it is unclear what and how much benefit it may bring. This paper, for the first time, attempts to quantitatively examine the benefits brought by fuel cell

  20. Published in IET Generation, Transmission & Distribution Received on 5th October 2012

    E-Print Network [OSTI]

    Qu, Zhihua

    , and the system reliability is improved. The simulation results verify the effectiveness of the proposed secondary networks reduce the system reliability. More reliable and sparse communication networks can be accommodated of multiple photovoltaic generators in a power distribution system [16]. Networked multi-agent systems have

  1. Agent-Based Simulation of Distribution Systems with High Penetration of Photovoltaic Generation

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    of strategic trading in restructured wholesale power markets with congestion managed by locational marginal when coupled with increased price-sensitivity of demand as realized through demand response, demand dispatch, and/or price-sensitive demand bidding. Index Terms--Distributed power generation, multiagent sys

  2. Renewal Credit Matrix CERTIFICATE RENEWAL PLAN

    E-Print Network [OSTI]

    Kunkle, Tom

    Renewal Credit Matrix CERTIFICATE RENEWAL PLAN PROFESSIONAL DEVELOPMENT OPTIONS FOR SOUTH CAROLINA are restricted to Options 1 and 2 in the matrix. CERTIFICATE RENEWAL OPTION ELIGIBILITY CRITERIA RENEWAL CREDITS to 120 renewal credits may be earned via this option during the five-year validity period

  3. Renewable Energy Powers Renewable Energy Lab, Employees

    E-Print Network [OSTI]

    Renewable Energy Powers Renewable Energy Lab, Employees The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) does more than just research renewable energy. It runs on it into PSC's grid. But this is the first time the lab--or any DOE lab--has drawn, or used, renewable energy

  4. This document is a preprint version of the final paper: M. Soshinskaya, W. H. J. Graus, J. M. Guerrero, and J. C. Vasquez, "Microgrids: experiences, barriers and success factors," Renewable and Sustainable Energy Reviews, 2014 Elsevier.

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    and Sustainable Energy Reviews, 2014 ­ Elsevier. Microgrids: experiences, barriers and success factors Mariya of Sustainable Development, Utrecht University, The Netherlands b Department of Energy Technology, Aalborg; Renewable Energy; Islanding; Distributed Generation; Energy Storage; Barriers Acronyms greenhouse gas (GHG

  5. The Political economy of environmental policy with overlapping generations

    E-Print Network [OSTI]

    Karp, Larry; Rezai, Amon

    2012-01-01T23:59:59.000Z

    Transfers with a Renewable Resource,” Land Economics,generations model with renewable resources,” Journal ofthe economics of renewable resources. Mourmouras (1993)

  6. Competitive Bidding Process for Electric Distribution Companies’ Procurement of Default and Back-up Electric Generation Services (Connecticut)

    Broader source: Energy.gov [DOE]

    Electric distribution companies shall utilize a competitive bidding process for electric generation services. The Department of Public Utility Control will be responsible for setting the criteria...

  7. Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation oftheAmperometricEnergyDISTRIBUTED SOLAR

  8. Supplying Renewable Energy to Deferrable Loads: Algorithms and Economic Analysis

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Supplying Renewable Energy to Deferrable Loads: Algorithms and Economic Analysis Anthony compares to price responsive demand in terms capacity gains and energy market revenues for renewable to renewable generation. I. INTRODUCTION Renewable power is emerging as a mainstream source of energy supply

  9. Renewable Energies program (6 credit hour) Option A: 11

    E-Print Network [OSTI]

    Simaan, Nabil

    Renewable Energies program (6 credit hour) Option A: 11 Option B: The program is organized by t Spanish Institute and the Asso program on renewable energy will provide students with advanced knowledge. opportunities: option A- two renewable energies; option B include on-site visits to renewable energy generation

  10. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    Renewable Energy Center 58 Wind: Development Potential ­ Geyserville · Potential to collocate wind Renewable Energy Center Assessment of Co-located Renewable Generation Potential #12;California Renewable (Task 2, L.A. Basin) and regions (Task 5) with co-located resources · Assess resource potential

  11. Trends in Renewable Energy Consumption and Electricity

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Presents a summary of the nation’s renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and state. The report covers the period from 2006 through 2010.

  12. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable Energy Office Valerie Hall Deputy Director Efficiency, Renewables, and Demand Analysis Division #12;These

  13. On-Site Renewable Power Purchase Agreements for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    An on-site renewable power purchase agreement (PPA) enables Federal agencies to fund a renewable energy project by contracting to purchase the power generated by the system. The renewable energy equipment is installed and owned by a developer but located on-site at the agency facility.

  14. Renewable Energy 101 (Presentation)

    SciTech Connect (OSTI)

    Walker, A.

    2012-03-01T23:59:59.000Z

    Presentation given at the 2012 Department of Homeland Security Renewable Energy Roundtable as an introduction to renewable technologies and applications.

  15. OECD/IEA 2013 World Renewable Energy

    E-Print Network [OSTI]

    Canet, Léonie

    % Electricity Transport Industry Buildings Other sectors Non-OECD solid biomass Bioenergy Other renewables Non 2016 2018 2020 TWh Hydropower Bioenergy Onshore wind Offshore wind Solar PV CSP Geothermal Ocean-fired generation 2016 Nuclear generation 2016 Source: Medium-Term Renewables Market Report 2013 #12;© OECD/IEA 2013

  16. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Exploration of High-Penetration Renewable Electricity Futures PDF Volume 4 PDF #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory. (2012

  17. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    SciTech Connect (OSTI)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11T23:59:59.000Z

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  18. Abstract--Recently, there is an increasing interest in using distributed generators (DGs) not only to inject power into the

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    1 1 Abstract--Recently, there is an increasing interest in using distributed generators (DGs, it is well-known that the Distributed Generators (DGs) often consist of a prime mover connected through-frame control method for voltage unbalance compensation in an islanded microgrid is proposed. This method

  19. Abstract --With the increasing acceptance, micro-grid, combined with distributed generation (DG), may be operated in

    E-Print Network [OSTI]

    Chen, Zhe

    Abstract --With the increasing acceptance, micro-grid, combined with distributed generation (DG generation (DG) technology [1-3]. DG units may be located in distribution network or on the local load side), may be operated in two modes: grid-connected mode and island mode. In grid connected mode, energy

  20. Soil water and particle size distribution influence laboratory-generated PM10 Nicholaus M. Madden a,*, Randal J. Southard a

    E-Print Network [OSTI]

    Ahmad, Sajjad

    on gravimetric soil water content (GWC) and soil texture. A mechanical laboratory dust generator was used to testSoil water and particle size distribution influence laboratory-generated PM10 Nicholaus M. Madden a Soil particle size distribution Soil water content a b s t r a c t Management of soils to reduce

  1. Methodology for the optimal design of PEV charging systems with multiple chargers and distributed resources

    E-Print Network [OSTI]

    Gunter, Samantha Joellyn

    Increased penetration of plug-in electric vehicles (PEVs) will necessitate deployment of numerous PEV chargers. Pairing these chargers with renewable distributed generation (DG) and storage can potentially alleviate negative ...

  2. Optimal Design of Grid-Connected PEV Charging Systems With Integrated Distributed Resources

    E-Print Network [OSTI]

    Perreault, David J.

    The penetration of plug-in electric vehicles and renewable distributed generation is expected to increase over the next few decades. Large scale unregulated deployment of either technology can have a detrimental impact on ...

  3. RenewableS 2011 GLOBAL STATUS REPORT

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    __20112011 RenewableS 2011 GLOBAL STATUS REPORT Full Report at: http://www.ren21.net/Portals/97/documents/GSR/REN21_GSR2011.pdf #12;11 Changes in renewable energy markets, investments, industries, and policies have been so rapid in recent years that perceptions of the status of renewable energy can lag

  4. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01T23:59:59.000Z

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from condensation of vaporized material and subsequent rapid formation of aggregates. Particles of larger size, resulting from ejection of melted material or fragments from the cutting zone, were also observed. This study presents data regarding the metal cutting rate, particle size distribution, and their generation rate, while using different cutting tools and metals. The study shows that respirable particles constitute only a small fraction of the released kerf.

  5. Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint

    SciTech Connect (OSTI)

    Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

    2007-06-01T23:59:59.000Z

    This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

  6. Concentrated Solar Power Generation.

    E-Print Network [OSTI]

    Jin, Zhilei

    2013-01-01T23:59:59.000Z

    ??Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a… (more)

  7. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

    2012-01-01T23:59:59.000Z

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  8. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORV 15051Soil VaporRenewable

  9. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORV 15051Soil VaporRenewable! Activities for II

  10. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORV 15051Soil VaporRenewable! Activities for

  11. Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint

    SciTech Connect (OSTI)

    Urquhart, B.; Sengupta, M.; Keller, J.

    2012-09-01T23:59:59.000Z

    A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

  12. IEEE TRANSACTIONS ON SMART GRID 1 Optimal, Nonlinear, and Distributed Designs of

    E-Print Network [OSTI]

    Qu, Zhihua

    and utilizing alternative energy sources. Of special interest are renewable energy sources such as solar- neering for Accelerated Renewable Energy Deployment program), and by US Department of Energy's Solar of optimal voltage and power regulation is formulated for distributed generators (DGs) in DC microgrids

  13. Large Industrial Renewable Energy Purchase Program (New Brunswick)

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2012 the Large Industrial Renewable Energy Purchase Program allows NB Power to purchase renewable energy generated by its largest customers at a rate of $95/MWh. This...

  14. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

  15. Renewable Energy | Department of Energy

    Office of Environmental Management (EM)

    Technologies Renewable Energy Renewable Energy Renewable energy increases energy security, creates jobs, and powers our clean energy economy. Renewable energy increases energy...

  16. CONSULTANT REPORT EUROPEAN RENEWABLE DISTRIBUTED

    E-Print Network [OSTI]

    Corfee, KEMA Inc., Project Manager David Korinek, KEMA Inc. Christian Hewicker, KEMA Inc. Jorg Zillmer

  17. Decoding the `Nature Encoded' Messages for Distributed Energy Generation Control in Microgrid

    E-Print Network [OSTI]

    Gong, Shuping; Lai, Lifeng; Qiu, Robert C

    2010-01-01T23:59:59.000Z

    The communication for the control of distributed energy generation (DEG) in microgrid is discussed. Due to the requirement of realtime transmission, weak or no explicit channel coding is used for the message of system state. To protect the reliability of the uncoded or weakly encoded messages, the system dynamics are considered as a `nature encoding' similar to convolution code, due to its redundancy in time. For systems with or without explicit channel coding, two decoding procedures based on Kalman filtering and Pearl's Belief Propagation, in a similar manner to Turbo processing in traditional data communication systems, are proposed. Numerical simulations have demonstrated the validity of the schemes, using a linear model of electric generator dynamic system.

  18. Renewable Energy Opportunities at Fort Hood, Texas

    SciTech Connect (OSTI)

    Chvala, William D.; Warwick, William M.; Dixon, Douglas R.; Solana, Amy E.; Weimar, Mark R.; States, Jennifer C.; Reilly, Raymond W.

    2008-06-30T23:59:59.000Z

    The document provides an overview of renewable resource potential at Fort Hood based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewables Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps for heating and cooling buildings, as directed by IMCOM.

  19. Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

  20. Innovations in Voluntary Renewable Energy Procurement: Methods for Expanding Access and Lowering Cost for Communities, Governments, and Businesses (Technical Report)

    SciTech Connect (OSTI)

    Heeter, J.; McLaren, J.

    2012-09-01T23:59:59.000Z

    This guide explores five innovative options for voluntarily procuring renewable energy generation or systems.

  1. NEW RENEWABLE FACILITIES PROGRAM

    E-Print Network [OSTI]

    's electricity from renewable resources by 2010. The Guidebook outlines eligibility and legal requirementsCALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION

  2. Reliable, Low-Cost Distributed Generator/Utility System Interconnect: Final Subcontract Report, November 2001-March 2004

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.; Li, L.; Zhou, R.; Garces, L.; Dame, M.

    2006-03-01T23:59:59.000Z

    This report summarizes the detailed study and development of new GE anti-islanding controls for two classes of distributed generation. One is inverter-interfaced, while the other is synchronous machine interfaced.

  3. Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection

    E-Print Network [OSTI]

    Bing Qi; Pavel Lougovski; Raphael Pooser; Warren Grice; Miljko Bobrek

    2015-03-02T23:59:59.000Z

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and also limit the potential applications of CV-QKD. In this paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme which enables reliable coherent detection using a "locally" generated LO. Using two independent commercial laser sources and a spool of 25 km optical fiber, we construct a coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad^2), which is small enough to enable secure key distribution. This technology also opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent (MDI) CV-QKD where independent light sources are employed by different users.

  4. Renewable Electricity Futures for the United States

    SciTech Connect (OSTI)

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.; Wiser , Ryan; Brinkman, G.; Denholm, Paul; Arent, Doug; Porro, Gian; Sandor, Debra; Hostick, Donna J.; Milligan, Michael; DeMeo, Ed; Bazilian, Morgan

    2014-04-14T23:59:59.000Z

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.

  5. renewable energy | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    renewable energy renewable energy Leads No leads are available at this time. Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F+ Ions. Abstract:...

  6. COMMISSION GUIDEBOOK RENEWABLES PORTFOLIO

    E-Print Network [OSTI]

    , certificates, certification, conduit hydroelectric, digester gas, electrolysis, eligibility, fuel cell, renewable energy credits, Renewables Portfolio Standard, repowered, retail sales, small hydroelectric, Self

  7. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    Under Hawaii's Renewable Portfolio Standard (RPS), each electric utility company that sells electricity for consumption in Hawaii must establish the following percentages of "renewable electrical...

  8. Renewable Energy Renaissance Zones

    Broader source: Energy.gov [DOE]

    In 2006, Michigan enacted legislation allowing for the creation of Renewable Energy Renaissance Zones (RERZ). Renaissance zones -- renewable energy renaissance zones are just one type -- offer...

  9. Renewable energy 1998: Issues and trends

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    This report presents the following five papers: Renewable electricity purchases: History and recent developments; Transmission pricing issues for electricity generation from renewable resources; Analysis of geothermal heat pump manufacturers survey data; A view of the forest products industry from a wood energy perspective; and Wind energy developments: Incentives in selected countries. A glossary is included. 19 figs., 27 tabs.

  10. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect (OSTI)

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01T23:59:59.000Z

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  11. Electronic copy available at: http://ssrn.com/abstract=2014738 Published: J. M. Pearce, "Expanding Photovoltaic Penetration with Residential Distributed Generation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Photovoltaic Penetration with Residential Distributed Generation from Hybrid Solar Photovoltaic + Combined Heat.08.012 Expanding Photovoltaic Penetration with Residential Distributed Generation from Hybrid Solar Photovoltaic and power (CHP) systems has provided the opportunity for inhouse power backup of residentialscale

  12. The RenewElec Project: Variable Renewable Energy and the Power System

    SciTech Connect (OSTI)

    Apt, Jay

    2014-02-14T23:59:59.000Z

    Variable energy resources, such as wind power, now produce about 4% of U.S. electricity. They can play a significantly expanded role if the U.S. adopts a systems approach that considers affordability, security and reliability. Reaching a 20-30% renewable portfolio standard goal is possible, but not without changes in the management and regulation of the power system, including accurately assessing and preparing for the operational effects of renewable generation. The RenewElec project will help the nation make the transition to the use of significant amounts of electric generation from variable and intermittent sources of renewable power.

  13. Study of the longitudinal distribution of power generated in a random distributed feedback Raman fibre laser with unidirectional pumping

    SciTech Connect (OSTI)

    Churkin, D V; El-Taher, A E; Vatnik, I D; Babin, Sergei A

    2012-09-30T23:59:59.000Z

    The longitudinal distribution of the Stokes-component power in a Raman fibre laser with a random distributed feedback and unidirectional pumping is measured. The fibre parameters (linear loss and Rayleigh backscattering coefficient) are calculated based on the distributions obtained. A numerical model is developed to describe the lasing power distribution. The simulation results are in good agreement with the experimental data. (optical fibres, lasers and amplifiers. properties and applications)

  14. Panel on Microgrids Systems International Conference on System of Systems Engineering, April 16-18, 2007 San Antonio Abstract--Application of individual distributed generators can

    E-Print Network [OSTI]

    are included. Keywords: CHP, UPS, distributed generation, intentional islanding, inverters, microgrid, power vs-18, 2007 San Antonio Abstract--Application of individual distributed generators can cause as many problems as it may solve. A better way to realize the emerging potential of distributed generation is to take

  15. Renewable Electricity Futures Study. Executive Summary

    SciTech Connect (OSTI)

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  16. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    SciTech Connect (OSTI)

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Bolte, N. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Marsili, P. [Department of Physics, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Roche, T. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Wessel, F. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2010-10-15T23:59:59.000Z

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  17. Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation

    SciTech Connect (OSTI)

    Torrey, David A.

    2006-05-26T23:59:59.000Z

    Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

  18. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  19. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Executive Summary NREL is a national laboratory of the U for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF #12;Renewable Electricity Futures. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report

  20. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Bulk Electric Power Systems: Operations and Transmission by the Alliance for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  1. Purchasing Renewable Power

    Broader source: Energy.gov [DOE]

    Federal agencies can purchase renewable power or renewable energy certificates (RECs) from a utility or other organization to meet Federal renewable energy requirements. Renewable power and RECs are good choices for facilities where on-site projects may be difficult or capital budgets are limited.

  2. PUEBLO OF ZIA RENEWABLE ENERGY DEVELOPMENT FEASIBILITY STUDY

    SciTech Connect (OSTI)

    Pino, Peter M. [Tribal Administrator (Ret.), Pueblo of Zia; Lakshman, Jai [Project Manager (NDA) for Pueblo of Zia; Toole, G. Loren [Principal Investigator, Los Alamos National Laboratory - Energy Analysis Team/ CCS-3, D-4; Hand, Dan [P.E., Sustainable Enginerring; Witcher, James; Emerson, Michael A. [Senior V.P., ARES Corporation; Turner, Jeremy [Executive Director, NM Renewable Energy Transmission Authority; Sandidge, Wendy [Director of Operations, NM Community Capital

    2014-06-30T23:59:59.000Z

    The Pueblo of Zia will conduct a comprehensive feasibility study for best-use application(s) for development of renewable energy resources on its tribally held TRUST lands (i.e., Trust Lands of Zia Indian Reservation). The feasibility study is essential for determining the technical and economic viability of a future renewable project(s) on Zia tribal lands, including the potential economic and environmental benefits for the Tribe. Project Objectives: The feasibility study is essential for determining the technical and economic viability of future renewable project(s) on Zia tribal lands, including the potential economic and environmental benefits for the Tribe to: 1. Provide a balanced local renewable power supply for Zia Pueblo, its members, tribal offices, schools and buildings, and businesses on tribal lands 2. Provide a firm power supply for export and commercial market distribution 3. Provide economic development for the Tribe and its members, including job training and creation, each in accordance with the goals and objectives as conveyed by the Pueblo of Zia Tribal Council, Tribal Administration, and outlined in The Pueblo of Zia Comprehensive Plan and Pueblo of Zia — Zia Enterprise Zone Master Plan. A key goal of the study is to analyze the integrated development of solar, geothermal, and wind renewable energy resources at Zia Pueblo, with added potential to combine gas-fired generation to accomplish energy firming. Geothermal offers a base load source of energy, providing power continuously for end users. Wind and solar offer intermediate and peaking sources of energy, which can be harvested throughout the day, with periods of variable but predicable output. Variability will be managed in an integrated manner, using Zia Pueblo's combined renewable resources to generate high-quality power. Tasks are intended to collect, catalog, map, and analyze existing data on Zia Pueblo's renewable energy resource base and then match resource attributes with the most suitable renewable technologies for tribal energy consumption and needs. Also, key impacts on cultural and social values of Zia Pueblo will be addressed. Selected most favorable uses and technologies will be further investigated to determine initial feasibility and market for business development for up to six sites located on tribal land. The anticipated result will be the recommended development of sites that have sufficient background study completed to warrant a business plan, detailed engineering feasibility, and acquisition of project financing. Valuable technical and economic information will accrue from this study that may be applied to scale up or down the various power technology potential on Zia Pueblo for maximum benefit and best area(s) of application, project phasing and potential for future replicability and expansion.

  3. Renewable Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit provides a tax credit against the corporate income tax of one cent per kilowatt-hour for companies that generate electricity...

  4. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit provides a tax credit against the personal income tax of one cent per kilowatt-hour for companies that generate electricity...

  5. Diagnostic probes for particle and molecule distributions in laser-generated plumes

    SciTech Connect (OSTI)

    Kimbrell, S.M.

    1990-10-17T23:59:59.000Z

    Laser microprobe analysis (LMA) offers good spatial and depth resolution for solid sampling of virtually any material. Coupled with numerous optical spectroscopic and mass spectrometric detection methods, LMA is a powerful analytical tool. Yet, fundamental understanding of the interaction between the laser and the sample surface leading to the formation of the high temperature plasma (plume) is far from complete. To better understand the process of plume formation, an imaging method based on acousto-optic laser beam deflection has been coupled with light scattering methods and absorption methods to record temporal and spatial maps of the particle and molecule distributions in the plume with good resolution. Because particles can make up a major fraction of the vaporized material under certain operating conditions, they can reflect a large loss of atomic signal for elemental analysis, even when using auxiliary excitation to further vaporized the particles. Characterization of the particle size distributions in plumes should provide insight into the vaporization process and information necessary for studies of efficient particle transfer. Light scattering methods for particle size analysis based on the Mie Theory are used to determine the size of particles in single laser-generated plumes. The methods used, polarization ratio method and dissymmetry ratio method, provide good estimates of particle size with good spatial and temporal resolution for this highly transient system. Large particles, on the order of 0.02-0.2{mu}m in radius, were observed arising directly from the sample surface and from condensation.

  6. Quadratic Control of Stochastic Hybrid Systems with Renewal Transitions

    E-Print Network [OSTI]

    Hespanha, João Pedro

    Quadratic Control of Stochastic Hybrid Systems with Renewal Transitions Farshad R. Pour Safaei a, semi-Markov processes, optimal control, stochastic hybrid systems, renewal transitions 1 Introduction probability distributions other than the exponential. We consider a Stochastic Hybrid System with renewal

  7. Matthew Martin Degree studying/studied: MSc Renewable

    E-Print Network [OSTI]

    Mottram, Nigel

    of distributed energy resources - a key challenge in helping the development and growth of renewable energy. HowMatthew Martin Degree studying/studied: MSc Renewable Energy Systems and the Environment Year to any area of engineering, with those focusing on renewable and sustainability. I feel

  8. Renewable Energy Microgrid Testbed at NASA Ames Research

    E-Print Network [OSTI]

    Lee, Herbie

    Renewable Energy Microgrid Testbed at NASA Ames Research Center Joel Kubby, Dan O'Leary, Zachary #12;Goals · Set-up a unique microgrid test-bed for renewable energy generation, monitoring and storage · Use the facility for testing systems integration, optimization and control of new renewable energy

  9. 38 renewable energy focus July/August 2009 Feature article

    E-Print Network [OSTI]

    Hampshire, Damian

    38 renewable energy focus July/August 2009 Feature article Compact electrical generators.: Illustration shows magnified view of high temperature superconductor cable. #12;renewable energy focus July/August 2009 39 Renewable energy/infrastructure there has been excitement about superconductivity. The sting

  10. Renewable Energy Scenarios for the Kingdom of Saudi Arabia

    E-Print Network [OSTI]

    Watson, Andrew

    Renewable Energy Scenarios for the Kingdom of Saudi Arabia Yasser Al-Saleh, Paul Upham and Khaleel Malik October 2008 Tyndall Centre for Climate Change Research Working Paper 125 #12;Renewable Energy compromising those of future generations. Renewable energy technologies, in particular, are becoming

  11. Feasibility Study of Economics and Performance of Biomass Power Generation at the Former Farmland Industries Site in Lawrence, Kansas. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Tomberlin, G.; Mosey, G.

    2013-03-01T23:59:59.000Z

    Under the RE-Powering America's Land initiative, the U.S. Environmental Protection Agency (EPA) provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of biomass renewable energy generation at the former Farmland Industries site in Lawrence, Kansas. Feasibility assessment team members conducted a site assessment to gather information integral to this feasibility study. Information such as biomass resources, transmission availability, on-site uses for heat and power, community acceptance, and ground conditions were considered.

  12. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    SciTech Connect (OSTI)

    Meliopoulos, Sakis; Cokkinides, George; Fardanesh, Bruce; Hedrington, Clinton

    2013-12-31T23:59:59.000Z

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based transient stability monitoring opens up new ways to protect the power grid, better manage disturbances, confine their impact and in general improve the reliability and security of the system. Finally, as a by-product of the proposed research project, the developed system is able to “play back” disturbances by a click of a mouse. The importance of this by-product is evident by considering the tremendous effort exerted after the August 2003 blackout to piece together all the disturbance recordings, align them and recreate the sequence of events. This project has moved the state of art from fault recording by individual devices to system wide disturbance recording with “play back” capability.

  13. Integrating renewables moves to center stage

    SciTech Connect (OSTI)

    NONE

    2010-01-15T23:59:59.000Z

    A number of governments around the world, including India and China, have identified green and renewable energy technologies as future engines of growth and job creation worthy of significant subsidies. In a number of countries, renewable resources will be the dominant form of new generation for the foreseeable future. In 2008, the U.S. Department of Energy published a study that concluded that the U.S. could conceivably meet 20 percent of its electricity generation by 2030 from wind alone.

  14. "Renewing" UBC Renew Building Full Cost Assessment into

    E-Print Network [OSTI]

    "Renewing" UBC Renew Building Full Cost Assessment into Renovate vs. Rebuild Decisions at UBC, 2006 #12;`Renewing' UBC Renew 2 Table of Contents Summary 3 List of Acronyms 5 1. Aspirations: `Renewing' UBC Renew 6 1.1 UBC Renew: Background 6 1.2 Moving Forward: Implementing UBC's Vision

  15. Renewable Energy: Utility-Scale Policies and Programs | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lines to access renewable resources are significant, consumers benefit from the lower energy production costs of solar and wind over conventional generation. In addition,...

  16. Renewable Energy World Conference and Expo North America

    Broader source: Energy.gov [DOE]

    Renewable Energy World Conference & Expo North America will be co-located with Power Generation Week, providing networking opportunities with 20,000+ professionals and key decision makers.

  17. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew D.

    2014-01-01T23:59:59.000Z

    and public economics of renewable electricity generation.CP-550-48247, National Renewable Energy Laboratory, Golden,decisions in the Western Renewable Energy Zone initiative.

  18. Informational and Causal Architecture of Discrete-Time Renewal Processes

    E-Print Network [OSTI]

    Sarah Marzen; James P. Crutchfield

    2014-11-09T23:59:59.000Z

    Renewal processes are broadly used to model stochastic behavior consisting of isolated events separated by periods of quiescence, whose durations are specified by a given probability law. Here, we identify the minimal sufficient statistic for their prediction (the set of causal states), calculate the historical memory capacity required to store those states (statistical complexity), delineate what information is predictable (excess entropy), and decompose the entropy of a single measurement into that shared with the past, future, or both. The causal state equivalence relation defines a new subclass of renewal processes with a finite number of causal states despite having an unbounded interevent count distribution. We use these formulae to analyze the output of the parametrized Simple Nonunifilar Source, generated by a simple two-state hidden Markov model, but with an infinite-state epsilon-machine presentation. All in all, the results lay the groundwork for analyzing processes with infinite statistical complexity and infinite excess entropy.

  19. Natural Innovative Renewable Energy formerly Northwest Iowa Renewable...

    Open Energy Info (EERE)

    Natural Innovative Renewable Energy formerly Northwest Iowa Renewable Energy Jump to: navigation, search Name: Natural Innovative Renewable Energy (formerly Northwest Iowa...

  20. Recharging U.S. Energy Policy: Advocating for a National Renewable Portfolio Standard

    E-Print Network [OSTI]

    Lunt, Robin J.

    2007-01-01T23:59:59.000Z

    electricity generated from the following sources qualifies as renewable energy: "solar thermal electric, photovoltaics, landfill gas, wind, biomass, geothermal

  1. Distributed Generation Potential of the U.S. CommercialSector

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

    2005-06-01T23:59:59.000Z

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

  2. Renewable energy annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

  3. FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES

    SciTech Connect (OSTI)

    Chen, Li-Jin [Idesta Quantum Electronics, LLC

    2014-03-31T23:59:59.000Z

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the technology to market.

  4. DISTRIBUTED BEST PRACTICES

    E-Print Network [OSTI]

    Delaware, University of

    POLICY APPROACHES TO SUPPORT DISTRIBUTED RENEWABLE ENERGY: BEST PRACTICES AMONG U.S. STATES FINAL REPORT A Renewable Energy Applications for Delaware Yearly (READY) Project Center for Energy, state, federal and international agencies and nonprofit organizations. The Center is composed

  5. Who Owns Renewable Energy Certificates?

    E-Print Network [OSTI]

    Holt, Edward; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    construction of new renewable resources, and not to pay morefurther investment in renewable resources. Because the risksfor RECs from existing renewable resources that already sell

  6. Renewable Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Topics Renewable Energy Renewable Energy he Office of Energy Efficiency and Renewable Energy (EERE) 2014 Postdoctoral Research Awards are sponsored by: Solar Energy...

  7. STAFF REPORT RENEWABLE POWER IN

    E-Print Network [OSTI]

    Transmission Initiative, renewable net short, Renewable Portfolio Standard, small hydroelectric, smart grid, financing, geothermal, greenhouse gas emissions, renewable integration, interconnection, land use planning

  8. THE NEXT GENERATION ATLAS OF QUASAR SPECTRAL ENERGY DISTRIBUTIONS FROM RADIO TO X-RAYS

    SciTech Connect (OSTI)

    Shang Zhaohui; Li Jun; Xie Yanxia [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Brotherton, Michael S.; Cales, Sabrina L.; Dale, Daniel A.; Runnoe, Jessie C.; Kelly, Benjamin J. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Wills, Beverley J.; Wills, D. [Department of Astronomy, University of Texas at Austin, 1 University Station, C1400 Austin, TX 78712 (United States); Green, Richard F. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Nemmen, Rodrigo S. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gallagher, Sarah C. [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Ganguly, Rajib [Department of Computer Science, Engineering, and Physics, University of Michigan-Flint, 213 Murchie Science Building, 303 Kearsley Street, Flint, MI 48502 (United States); Hines, Dean C. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Kriss, Gerard A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Tang, Baitian, E-mail: zshang@gmail.com [Department of Physics, 1245 Webster Hall, Washington State University, Pullman, WA 99164-2814 (United States)

    2011-09-01T23:59:59.000Z

    We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. by using high-quality data obtained with several space- and ground-based telescopes, including NASA's Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared Infrared Spectrograph spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite SEDs for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar overall shapes, but our improved spectral resolution reveals more detailed features, especially in the mid- and near-infrared.

  9. Generation of Initial Kinetic Distributions for Simulation of Long-Pulse Charged Particle Beams with High Space-Charge intensity

    SciTech Connect (OSTI)

    Lund, Steven M.; Kikuchi, Takashi; Davidson, Ronald C.

    2007-04-03T23:59:59.000Z

    Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel--both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  10. Generation of initial Vlasov distributions for simulation of charged particle beams with high space-charge intensity

    SciTech Connect (OSTI)

    Lund, S M; Kikuchi, T; Davidson, R C

    2007-04-12T23:59:59.000Z

    Self-consistent Vlasov simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel, both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of distributions commonly in use as initial Vlasov distributions in simulations of beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  11. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  12. ENERGY GENERATION RESEARCH PIER Energy Generation Research

    E-Print Network [OSTI]

    ENERGY GENERATION RESEARCH PIER Energy Generation Research www.energy.ca.gov/research/ renewable/ November 2010 Sonoma County RESCO A Local Level Approach to Renewable Energy Portfolios. The Issue To address energy usage that contributes to climate change, California has enacted legislation to guide

  13. The Renewable Energy Footprint

    E-Print Network [OSTI]

    Outka, Uma

    2011-01-01T23:59:59.000Z

    With the shift toward renewable energy comes the potential for staggering land impacts – many millions of acres may be consumed to meet demand for electricity and fuel over the next 20 years. To conservationists’ dismay, the more renewable energy we...

  14. Renewable Resource Standard

    Broader source: Energy.gov [DOE]

    Montana’s renewable portfolio standard (RPS), enacted in April 2005 as part of the Montana Renewable Power Production and Rural Economic Development Act, requires public utilities and competitive...

  15. Estimating Renewable Energy Costs

    Broader source: Energy.gov [DOE]

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  16. Renewables and Sector Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Community Renewable Energy Success Stories Webinar series presentation by Susanna Sutherland, City of Knoxville, Tennessee, on financing solar energy systems.

  17. Assessing Renewable Energy Options

    Broader source: Energy.gov [DOE]

    Federal agencies should assess renewable energy options for each specific project when integrating renewable energy in new building construction or major renovations. This section covers the preliminary screening, screening, feasibility study, and sizing and designing systems phases.

  18. State Renewable Energy Requirements and Goals: Update Through 2003 (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    As of the end of 2003, 15 states had legislated programs to encourage the development of renewable energy for electricity generation. Of the 17 programs (two states have multiple programs), 9 are renewable portfolio standards (RPS), 4 are renewable energy mandates, and 4 are renewable energy goals.

  19. Evaluating shortfalls in mixed-integer programming approaches for the optimal design and dispatch of distributed generation systems

    E-Print Network [OSTI]

    associated with volatile utility pricing and potentially high system capital costs. Energy technology and boilers), and/or thermal energy storage (e.g., hot water). For some markets, volatile utility pricing heat and power Fuel cells Building energy a b s t r a c t The distributed generation (DG) of combined

  20. Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed photovoltaic generation in the

    E-Print Network [OSTI]

    Sandiford, Mike

    Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed, the depression in wholesale prices has significant value. c 5 GW of solar generation would have saved $1.8 billion in the market over two years. c The depression of wholesale prices offsets the cost of support

  1. INFORMATION FOR RENEWABLE ENERGY

    E-Print Network [OSTI]

    ENHANCING INFORMATION FOR RENEWABLE ENERGY TECHNOLOGY DEPLOYMENT IN BRAZIL, CHINA, AND SOUTH AFRICA UNITEDNATIONSENERGYPROGRAMME #12;#12;Enhancing Information for Renewable Energy Technology Deployment in Brazil, China Palmer, JL Van Niekerk, Center for Renewable and Sustainable Energy Studies (CRSES) in South Africa E

  2. Renewable energy and telecommunications

    E-Print Network [OSTI]

    Renewable energy and telecommunications Case study: Energy Systems Week When AK Erlang first used fossil fuels and switch to renewable energy sources. But the unlikely convergence of the two fields lay to be able to deal with. "If we integrate renewable energies, such as wind power, in the electricity grid

  3. Renewable Energy Economic Development

    E-Print Network [OSTI]

    Renewable Energy Economic Development Dick Sheehy & Nate Monosoff, CH2M HILL March, 2010 #12;Contents 1. Who is CH2M HILL? 2. Why Do We Need Renewables? 3. Where Is The Wind Blowing? 4. Where Is The Sun Shining? 5. How To Catch Some Rays? 6. Renewable Related 2 Proprietary & Confidential #12;Where

  4. COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM

    E-Print Network [OSTI]

    ), which has a goal of obtaining 33 percent of the state's electricity from renewable resources by 2020COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK Fourth Edition Manager Renewable Energy Office G. William Pennington Acting Deputy Director Efficiency and Renewable

  5. The strategic use of renewables to achieve demand-side management impact

    SciTech Connect (OSTI)

    Carlisle, N.; Hauser, S.; Potter, T.; Westby, R.

    1992-11-01T23:59:59.000Z

    According to both the Electric Power Research Institute (EPRI) and the Edison Electric Institute (EEI), utilities in the United States are now spending about $2 billion per year on demand-side management (DSM) activities. By the year 2000, EPRI and EEI predict that utilities will be spending $10 to $15 billion per year on DSM. If this expenditure is matched by consumers, total expenditures -- $30 billion a year -- will equal what the nation spent on power plant construction during the peak 1970s power plant building era. Historically, DSM programs at utilities utilize technologies that reduce the demand for electricity and energy used by their customers. This is accomplished primarily by increasing the efficacy of lighting, improving the conversion efficiency of heating, cooling, and process equipment, and reducing thermal losses through the building envelope. A broader definition of DSM -- one that incorporates renewable energy resources -- will greatly enhance the opportunity to impact customer loads. Renewable energy technologies use resources that are not depleted, such as heat and light from the sun, the force of winds, falling water, biomass, and geothermal heat from the earth. As related to utility systems, renewable technologies can contribute in three main ways: (1) the more traditional ``supply-side`` role as central generating plants or independent power producers, (2) as distributed generation (supply-side variation), and (3) as demand-side options. Distributed generation is being seriously studied by several utilities as a means of serving remote loads and reducing transmission and distribution costs, but is not discussed further in this paper. Demand-side renewable technologies (DSR) are technologies that utilize renewable energy to reduce the end-use load of a customer. In this paper we will describe specific DSR options, characterize their potential load impact, and recommend a method for effectively integrating them into current DSM programs.

  6. Generation of lower hybrid and whistler waves by an ion velocity ring distribution

    SciTech Connect (OSTI)

    Winske, D.; Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-15T23:59:59.000Z

    Using fully kinetic simulations in two and three spatial dimensions, we consider the generation and nonlinear evolution of lower hybrid waves produced by a cold ion ring velocity distribution in a low beta plasma. We show that the initial development of the instability is very similar in two and three dimensions and not significantly modified by electromagnetic effects, consistent with linear theory. At saturation, the level of electric field fluctuations is a small fraction of the background thermal energy; the electric field and corresponding density fluctuations consist of long, field-aligned striations. Energy extracted from the ring goes primarily into heating the background ions and the electrons at comparable rates. The initial growth and saturation of the magnetic components of the lower hybrid waves are related to the electric field components, consistent with linear theory. As the growing electric field fluctuations saturate, parallel propagating whistler waves develop by the interaction of two lower hybrid waves. At later times, these whistlers are replaced by longer wavelength, parallel propagating whistlers that grow through the decay of the lower hybrid fluctuations. Wave matching conditions demonstrate these conversion processes of lower hybrid waves to whistler waves. The conversion efficiency (=ratio of the whistler wave energy to the energy in the saturated lower hybrid waves) is computed and found to be significant ({approx}15%) for the parameters of the three-dimensional simulation (and even larger in the two-dimensional simulation), although when normalized in terms of the initial kinetic energy in the ring ions the overall efficiency is very small (<10{sup -4}). The results are compared with relevant linear and nonlinear theory.

  7. THE GALACTIC SPATIAL DISTRIBUTION OF OB ASSOCIATIONS AND THEIR SURROUNDING SUPERNOVA-GENERATED SUPERBUBBLES

    SciTech Connect (OSTI)

    Higdon, J. C. [W. M. Keck Science Center, Claremont Colleges, Claremont, CA 91711-5916 (United States); Lingenfelter, R. E., E-mail: jhigdon@kecksci.claremont.edu, E-mail: rlingenfelter@ucsd.edu [Center for Astrophysics and Space Sciences, University of California San Diego, La Jolla, CA 92093 (United States)

    2013-10-01T23:59:59.000Z

    The Galactic spatial distribution of OB associations and their surrounding superbubbles (SBs) reflect the distribution of a wide range of important processes in our Galaxy. In particular, it can provide a three-dimensional measure not only of the major source distribution of Galactic cosmic rays, but also the Galactic star formation distribution, the Lyman continuum ionizing radiation distribution, the core-collapse supernova distribution, the neutron star and stellar black hole production distribution, and the principal source distribution of freshly synthesized elements. Thus, we construct a three-dimensional spatial model of the massive-star distribution based primarily on the emission of the H II envelopes that surround the giant SBs and are maintained by the ionizing radiation of the embedded O stars. The Galactic longitudinal distribution of the 205 ?m N II radiation, emitted by these H II envelopes, is used to infer the spatial distribution of SBs. We find that the Galactic SB distribution is dominated by the contribution of massive-star clusters residing in the spiral arms.

  8. Renewable Energy Opportunities at Fort Polk, Louisiana

    SciTech Connect (OSTI)

    Solana, Amy E.; Boyd, Brian K.; Horner, Jacob A.; Gorrissen, Willy J.; Orrell, Alice C.; Weimar, Mark R.; Hand, James R.; Russo, Bryan J.; Williamson, Jennifer L.

    2010-11-17T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Polk, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Polk took place on February 16, 2010.

  9. Renewable Energy Opportunities at Fort Sill, Oklahoma

    SciTech Connect (OSTI)

    Boyd, Brian K.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

    2011-03-31T23:59:59.000Z

    This document provides an overview of renewable resource potential at Fort Sill, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Sill took place on June 10, 2010.

  10. Proposal for the award of a contract for the supply and maintenance of six 380 V 50 Hz diesel generators for the LEP electrical distribution system

    E-Print Network [OSTI]

    1986-01-01T23:59:59.000Z

    Proposal for the award of a contract for the supply and maintenance of six 380 V 50 Hz diesel generators for the LEP electrical distribution system

  11. China rationalizes its renewable energy policy

    SciTech Connect (OSTI)

    Su, Jack H.; Hui, Simone S.; Tsen, Kevin H.

    2010-04-15T23:59:59.000Z

    China's over-reliance on thermal power generation, especially coal-fired power stations, is well-documented. While nuclear power continues as an option to coal, China's strides in renewable energy are unprecedented. Recent amendments to the Renewable Energy Law, first promulgated in 2006, attempt to rationalize the regulatory regime governing wind, solar, hydropower and biomass projects in China, currently fraught with inadequate interconnection and tariff shock issues. (author)

  12. The renewable electric plant information system

    SciTech Connect (OSTI)

    Sinclair, K.

    1995-12-01T23:59:59.000Z

    This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

  13. Renewable energy annual 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  14. TVA- Mid-Sized Renewable Standard Offer Program

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) now compliments the small generation Green Power Providers Program by providing incentives for mid-sized renewable energy generators between 50kW and 20MW to...

  15. transmission april may 2003 re-gen56 Privately-owned distributed generation

    E-Print Network [OSTI]

    Harrison, Gareth

    overhead line circuits (known as radial feeders) extending out to consumers at the most rural edges distribution networks. Historically, the networks in these areas were designed to supply demand that tended Historically, distribution networks were designed to convey electrical energy from the high voltage

  16. 3D phase-differentiated GDL microstructure generation with binder and PTFE distributions

    E-Print Network [OSTI]

    Kandlikar, Satish

    December 2011 Keywords: PEM fuel cell Gas diffusion layer Stochastic generation a b s t r a c exchange membrane fuel cells (PEMFCs) are an attractive alternative for electrical power generation, partic) digital 3D micro- structures in a cost- and time-effective manner for the first time. The results

  17. Research in Energy Systems Integration at the National Renewable Energy Laboratory

    E-Print Network [OSTI]

    , renewable energy, and distributed energy resources. These efforts have started new industriesResearch in Energy Systems Integration at the National Renewable Energy Laboratory Speaker: Dr Renewable Energy Laboratory in Golden, CO, where he leads a group that performs research in distributed

  18. Performance Analysis of Positive-feedback-based Active Anti-islanding Schemes for Inverter-Based Distributed Generators

    SciTech Connect (OSTI)

    Du, Pengwei; Aponte, Erick E.; Nelson, J. Keith

    2010-06-14T23:59:59.000Z

    Recently proposed positive-feedback-based anti-islanding schemes (AI) are highly effective in preventing islanding without causing any degradation in power quality. This paper aims to analyze the performance of these schemes quantitatively in the context of the dynamic models of inverter-based distributed generators (DG). In this study, the characteristics of these active anti-islanding methods are discussed and design guidelines are derived.

  19. Utility Grid-Connected Distributed Power Systems National Solar Energy Conference

    E-Print Network [OSTI]

    Utility Grid-Connected Distributed Power Systems National Solar Energy Conference ASES Solar 96 at least half of its energy obtained from energy efficiency and renewable resources by the year 2000. Solar energy, distributed generation resource. Investments made in solar power today are expected to provide

  20. Chapter 7. Renewal Phenomena Renewal is life reborn.

    E-Print Network [OSTI]

    Chen, Kani

    51 Chapter 7. Renewal Phenomena Renewal is life reborn. 7.1. Definitions and basic concepts. 7. Then, N(t) : t 0, is a renewal process. A mathematical definition: N(t) = max{n : n i=0 Xi t, } where, ...} or continuous: [0, ). Obviously, the path of a renewal process is non-decreasing. The renewal literally means

  1. Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2013-11-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power system at the site.

  2. Differentiation Self-renewal

    E-Print Network [OSTI]

    Glyde, Henry R.

    Off state Ras Ras­GAP PI3K ERK1 ERK2 Differentiation SC1 SC1 Self-renewal Ras On state GDP GTP N NN the kinase enzyme Figure 1 | Chemically induced stem-cell self-renewal. Chen et al.2 have discovered, which promotes stem-cell self-renewal. Activated Ras also switches on the enzymes ERK1 and ERK2, which

  3. Photon Science for Renewable Energy

    SciTech Connect (OSTI)

    Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

    2010-03-31T23:59:59.000Z

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

  4. The relationship between policy choice and the size of the policy region: Why small jurisdictions may prefer renewable energy policies to reduce CO2 emissions

    E-Print Network [OSTI]

    Accordino, Megan H.; Rajagopal, Deepak

    2012-01-01T23:59:59.000Z

    natural gas, renewable resources, and a fourth category,the market, e.g. renewable resources and nuclear power. Ifbe generated by quali?ed renewable resources. In the U.S. ,

  5. The relationship between policy choice and the size of the policy region: Why small jurisdictions may prefer renewable energy policies to reduce CO2 emissions

    E-Print Network [OSTI]

    Accordino, Megan H.; Rajagopal, Deepak

    2012-01-01T23:59:59.000Z

    be generated by quali?ed renewable resources. In the U.S. ,production from renewable resources, the cost of reducing COrenewable and non-renewable resources. Burtraw et al. (2012)

  6. EMSL - renewable energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    renewable-energy en Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F+ Ions. http:www.emsl.pnl.govemslwebpublicationsmicrostructure-and-cs...

  7. Conservation and Renewables Timeline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONSERVATION, RENEWABLES & RECs FY 2009 FY 2010 FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 1012008 1012009 1012010 1012011 1012012 1012013 1012014 1012015 By June 1,...

  8. Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    In February 2009, the District Department of the Environment (DDOE) introduced the Renewable Energy Incentive Program (REIP), a rebate for solar photovoltaic (PV) systems. In April 2012, solar...

  9. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    Scale Renewable Energy Integration . . . . . . . . . . .Impacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

  10. Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy,

    E-Print Network [OSTI]

    of Energy Efficiency, Renewable Energy, and Small-Scale Cogeneration from electricity generation. Renewable energy, energy efficiency, and energy, where performance is measured relative to three objectives: energy production

  11. ELECTRIFICATION OF ISOLATED AREAS BY INTERCONNECTING DIFFERENT RENEWABLE SOURCES OF ENERGY: A SUSTANAIBLE APPROACH

    E-Print Network [OSTI]

    development integration of different aspects: > human > social > technical > economic > environmental FirstELECTRIFICATION OF ISOLATED AREAS BY INTERCONNECTING DIFFERENT RENEWABLE SOURCES OF ENERGY intend to join their efforts to develop a technique to generate electricity from primary renewable

  12. Renewables Intermittency: Operational Limits and Implications for Long-Term Energy System Models

    E-Print Network [OSTI]

    Delarue, E.

    In several regions of the world, the share of intermittent renewables (such as wind and solar PV) in electricity generation is rapidly increasing. The current share of these renewable energy sources (RES) can still more ...

  13. Procurement Options for New Renewable Electricity Supply

    SciTech Connect (OSTI)

    Kreycik, C. E.; Couture, T. D.; Cory, K. S.

    2011-12-01T23:59:59.000Z

    State renewable portfolio standard (RPS) policies require utilities and load-serving entities (LSEs) to procure renewable energy generation. Utility procurement options may be a function of state policy and regulatory preferences, and in some cases, may be dictated by legislative authority. Utilities and LSEs commonly use competitive solicitations or bilateral contracting to procure renewable energy supply to meet RPS mandates. However, policymakers and regulators in several states are beginning to explore the use of alternatives, namely feed-in tariffs (FITs) and auctions to procure renewable energy supply. This report evaluates four procurement strategies (competitive solicitations, bilateral contracting, FITs, and auctions) against four main criteria: (1) pricing; (2) complexity and efficiency of the procurement process; (3) impacts on developers access to markets; and (4) ability to complement utility decision-making processes. These criteria were chosen because they take into account the perspective of each group of stakeholders: ratepayers, regulators, utilities, investors, and developers.

  14. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15T23:59:59.000Z

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively use

  15. Replace / Renewal BUDGET ZZ106

    E-Print Network [OSTI]

    Replace / Renewal BUDGET ZZ106 FUND: 126 CERTIFIED FOOD MANAGER CERTIFICATE RENEWAL Certificate Replacement Reason for Application: Replacement $15.00 Certificate Renewal Reason for Application: [Renewal application may be submitted up to 60 days prior to expiration.] Renewal - $10.00 Please Note: All

  16. Renewable Energy Act (Prince Edward Island, Canada)

    Broader source: Energy.gov [DOE]

    The Renewable Energy Act outlines the renewable portfolio goals, permitting for renewable projects, regulatory authority, net metering system regulations, purchase price regulations, and renewable...

  17. Integrating Variable Renewable Energy: Challenges and Solutions

    SciTech Connect (OSTI)

    Bird, L.; Milligan, M.; Lew, D.

    2013-09-01T23:59:59.000Z

    In the U.S., a number of utilities are adopting higher penetrations of renewables, driven in part by state policies. While power systems have been designed to handle the variable nature of loads, the additional supply-side variability and uncertainty can pose new challenges for utilities and system operators. However, a variety of operational and technical solutions exist to help integrate higher penetrations of wind and solar generation. This paper explores renewable energy integration challenges and mitigation strategies that have been implemented in the U.S. and internationally, including forecasting, demand response, flexible generation, larger balancing areas or balancing area cooperation, and operational practices such as fast scheduling and dispatch.

  18. Renewable Energy Opportunties at Dugway Proving Ground, Utah

    SciTech Connect (OSTI)

    Orrell, Alice C.; Kora, Angela R.; Russo, Bryan J.; Horner, Jacob A.; Williamson, Jennifer L.; Weimar, Mark R.; Gorrissen, Willy J.; Nesse, Ronald J.; Dixon, Douglas R.

    2010-05-31T23:59:59.000Z

    This document provides an overview of renewable resource potential at Dugway Proving Ground, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and ground source heat pumps (GSHPs). The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment.

  19. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30T23:59:59.000Z

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  20. Renewable Portfolio Standard

    Broader source: Energy.gov [DOE]

    As part of the Oregon Renewable Energy Act of 2007 ([http://www.leg.state.or.us/07reg/measpdf/sb0800.dir/sb0838.en.pdf Senate Bill 838]), the state of Oregon established a renewable portfolio...

  1. Offshore Renewable Energy Solutions

    E-Print Network [OSTI]

    power ­ to meet its target of achieving 15% of energy consumption from renewable sources by 2020. CefasOffshore Renewable Energy Solutions #12;Cefas: meeting complex requirements The Centre and maximise resource input on field and lab-based studies ­ saving you time and money.Recognised expertise

  2. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Energy Efficiency & Renewable Energy Source: US DOE 10/2010 Hydrogen and Fuel Cell Technologies ­ Upcoming Workshops & Solicitations Source: US DOE 10/2010 2 #12; Double Renewable Energy Capacity by 2012 Update Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program Fuel

  3. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Energy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Richard Farmer Hydrogen Business Council September 14, 2010 #12; Double Renewable Energy Capacity by 2012 Invest $150 Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy Mountain States

  4. Renewable Energy in Alaska

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  5. Energy Conservation Renewable Energy

    E-Print Network [OSTI]

    Delgado, Mauricio

    Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

  6. Renewable Energy Annual

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Presents five chapters covering various aspects of the renewable energy marketplace, along with detailed data tables and graphics. Particular focus is given to renewable energy trends in consumption and electricity; manufacturing activities of solar thermal collectors, solar photovoltaic cells/modules, and geothermal heat pumps; and green pricing and net metering programs. The Department of Energy provides detailed offshore

  7. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Energy Efficiency & Renewable Energy 2009 FUEL CELL MARKET REPORT NOVEMBER 2010 #12;Authors of Energy's Fuel Cell Technologies Program for their support and guidance in the preparation of this report-Jerram of Fuel Cell Today Consulting, Rachel Gelman of the National Renewable Energy Laboratory, Jennifer Gangi

  8. c " .RENEWABLE ENERGY

    E-Print Network [OSTI]

    c " .RENEWABLE ENERGY PROGRAM RENEWABLES PORTFOLIO STANDARD ELIGIBILITY GUIDEBOOK CALIFORNIA ENERGY COMMISSION ~ o o m w c -::J C) MAY 2004 500-04-002F , Arnold Schwarzenegger, Governor #12;DC j \\\\\\\\\\\\\\\\\\\\\\\\\\\\~~~\\\\~\\~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 00005121 CALIFORNIA ENERGY COMMISSION William J. Keese

  9. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Energy Efficiency & Renewable Energy AUGUST 2010 2009 WIND TECHNOLOGIES MARKET REPORT EXECUTIVE (Berkeley Lab) Kevin Porter and Sari Fink (Exeter Associates) Suzanne Tegen (National Renewable Energy relatively high levels of wind energy penetration in their electricity grids: end-of-2009 wind power capacity

  10. Renewables for Energy Conservation

    E-Print Network [OSTI]

    Banerjee, Rangan

    ;Renewable Energy Options Wind Solar Small Hydro Biomass Tidal Energy Wave Energy Ocean Thermal Energy SolarRenewables for Energy Conservation Rangan Banerjee Energy Systems Engineering IIT Bombay National Conference on "Energy Efficiency", Pune , 28th June2005 #12;ENERGY FLOW DIAGRAM PRIMARY ENERGY ENERGY

  11. Renewable Energy Projections as Published in the National Renewable...

    Open Energy Info (EERE)

    Projections as Published in the National Renewable Energy Action Plans of the European Member States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy...

  12. Renewable and Non-Renewable Resources Tariff RNR-7 (Georgia)

    Broader source: Energy.gov [DOE]

    The Renewable and Non-Renewable Resource tariff is authorized by the Georgia Public Service Commission (PSC), which requires that the investor owned utility, Georgia Power Company, purchase...

  13. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

    2012-07-06T23:59:59.000Z

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  14. Abstract--Distributed generation (DG) has brought great attention from the power community, especially

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    /distribution losses, reliability and power quality, especially when they are associated to stochastic or partially power flow, Reliability, Line losses I. INTRODUCTION RADITIONAL power grids are based on large and sun (photovoltaic) also falls into the DG classification, but they are more variable and can

  15. Self-triggered Communication Enabled Control of Distributed Generation in Microgrids

    E-Print Network [OSTI]

    Mazumder, Sudip K.

    Tahir Member, IEEE Dept. of Elect. Eng. and Al-Khwarizmi Institute of Comp. Science University. System reliability for secondary control in microgrids can be improved by using a distributed cooperative control approach. For realizing the cooperative control of multiple DGs in smart-grid, a multi-agent based

  16. Dynamically generated electric charge distributions in Abelian projected SU(2) lattice gauge theories

    E-Print Network [OSTI]

    A. Hart; R. W. Haymaker; Y. Sasai

    1998-08-28T23:59:59.000Z

    We show in the maximal Abelian gauge the dynamical electric charge density generated by the coset fields, gauge fixing and ghosts shows antiscreening as in the case of the non-Abelian charge. We verify that with the completion of the ghost term all contributions to flux are accounted for in an exact lattice Ehrenfest relation.

  17. Published in IET Generation, Transmission & Distribution Received on 20th July 2011

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    interfaces is the current trend, many directly connected induction-generator-based wind turbines are still the requirements of grid code to connect wind turbines, considerable advances in the control of this system regulation and transient stability enhancement for wind turbines equipped with fixed-speed induction

  18. COMMISSION REPORT RENEWABLE ENERGY PROGRAM

    E-Print Network [OSTI]

    COMMISSION REPORT RENEWABLE ENERGY PROGRAM 2011 ANNUAL REPORT Authors Lorraine Gonzalez Madeleine Meade Project Manager Tony Gonçalves Office Manager Renewable Energy Office Panama Bartholomy Deputy Director Energy Efficiency and Renewables Division Robert Oglesby

  19. Optimal Foraging of Renewable Resources

    E-Print Network [OSTI]

    Enright, John J

    2011-01-01T23:59:59.000Z

    Consider a team of agents in the plane searching for and visiting target points that appear in a bounded environment according to a stochastic renewal process with a known absolutely continuous spatial distribution. Agents must detect targets with limited-range onboard sensors. It is desired to minimize the expected waiting time between the appearance of a target point, and the instant it is visited. When the sensing radius is small, the system time is dominated by time spent searching, and it is shown that the optimal policy requires the agents to search a region at a relative frequency proportional to the square root of its renewal rate. On the other hand, when targets appear frequently, the system time is dominated by time spent servicing known targets, and it is shown that the optimal policy requires the agents to service a region at a relative frequency proportional to the cube root of its renewal rate. Furthermore, the presented algorithms in this case recover the optimal performance achieved by agents ...

  20. Power generation using solar power plant.

    E-Print Network [OSTI]

    Amin, Parth

    2010-01-01T23:59:59.000Z

    ??Pursuing the commitment of California State to generate at least 20 percent of total generated energy from the renewable source by the year 2010 rather… (more)