Powered by Deep Web Technologies
Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Compositional and Agronomic Evaluation of Sorghum Biomass as a Potential Feedstock for Renewable Fuels  

DOE Green Energy (OSTI)

One goal of the Biomass Research and Development Technical Advisory Committee was to replace 30% of current U.S. petroleum consumption with biofuels by 2030. This will take mixtures of various feedstocks; an annual biomass feedstock such as sorghum will play an important role in meeting this goal. Commercial forage sorghum samples collected from field trials grown in Bushland, TX in 2007 were evaluated for both agronomic and compositional traits. Biomass compositional analysis of the samples was performed at the National Renewable Energy Lab in Golden, CO following NREL Laboratory Analytical Procedures. Depending on the specific cultivar, several additional years of yield data for this location were considered in establishing agronomic potential. Results confirm that sorghum forages can produce high biomass yields over multiple years and varied growing conditions. In addition, the composition of sorghum shows significant variation, as would be expected for most crops. Using theoretical estimates for ethanol production, the sorghum commercial forages examined in this study could produce an average of 6147 L ha{sup -1} of renewable fuels. Given its genetic variability, a known genomic sequence, a robust seed industry, and biomass composition, sorghum will be an important annual feedstock to meet the alternative fuel production goals legislated by the US Energy Security Act of 2007.

Dahlberg, J.; Wolfrum, E.; Bean, B.; Rooney, W. L.

2011-12-01T23:59:59.000Z

2

Renewable Fuels Limited RFL | Open Energy Information  

Open Energy Info (EERE)

RFL Jump to: navigation, search Name Renewable Fuels Limited (RFL) Place York, United Kingdom Zip YO19 6ET Sector Biomass Product Supplies various biomass fuels and offers...

3

Renewable Fuels Module This  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Module Fuels Module This page inTenTionally lefT blank 175 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve

4

Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 167 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the

5

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on biomass renewable...

6

Renewable Fuels Module  

Annual Energy Outlook 2012 (EIA)

The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics,...

7

Renewable Fuels Module This  

Gasoline and Diesel Fuel Update (EIA)

The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics,...

8

Producing Clean, Renewable Diesel from Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Producing Clean, Renewable Diesel from Biomass Producing Clean, Renewable Diesel from Biomass Producing Clean, Renewable Diesel from Biomass November 30, 2011 - 12:08pm Addthis ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy After a rigorous testing process, Energy Department project partners at ThermoChem Recovery International (TRI) have validated a process that converts wood waste and forest residue into clean, renewable fuel. Pilot validation is a key milestone for biofuels companies like TRI. With

9

Renewable Fuel Standard Schedule | Open Energy Information  

Open Energy Info (EERE)

Standard Schedule Standard Schedule Jump to: navigation, search Name Renewable Fuel Standard Schedule Sector Liquid Transportation Fuels Spatial Resolution National Geographic Scope United States Temporal Resolution Annual The United States Environmental Protection Agency, under the National Renewable Fuel Standard program and as required by the Energy Independence and Security Act of 2007 (EISA), periodically revises the volumetric standards for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel that must be used in transportation fuel each year. The table below lists the current RFS2 schedule in billions of gallons: Year Renewable Biofuel Advanced Biofuel Cellulosic Biofuel Biomass-based Diesel Undifferentiated Total 2008 9 9

10

List of Fuel Cells using Renewable Fuels Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Cells using Renewable Fuels Incentives Fuel Cells using Renewable Fuels Incentives Jump to: navigation, search The following contains the list of 192 Fuel Cells using Renewable Fuels Incentives. CSV (rows 1 - 192) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls

11

Engine fuels from biomass  

SciTech Connect

Methods discussed for the conversion of biomass to engine fuels include the production of producer gas, anaerobic fermentation to give biogas, fermentation of sugars and starches to give EtOH, and the production of synthesis gas for conversion to MeOH or hydrocarbons. Also discussed are the suitability of these fuels for particular engines, biomass availability, and the economics of biomass-derived engine fuels.

Parker, H.W.

1982-01-01T23:59:59.000Z

12

Vanadium catalysts break down biomass for fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. Get Expertise Researcher Susan Hanson Inorganic Isotope & Actinide Chem Email Researcher Ruilian Wu Bioenergy & Environmental Science Email Researcher Louis "Pete" Silks Bioenergy & Environmental Science Email Vanadium is an inexpensive, earth-abundant metal that is well suited for promoting oxidations in air. Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is

13

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

14

Biodiesel and Other Renewable Diesel Fuels  

DOE Green Energy (OSTI)

Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

Not Available

2006-11-01T23:59:59.000Z

15

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

16

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

17

Renewable Fuels | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Renewable Fuels Jump to: navigation, search TODO: Add description List of Renewable Fuels...

18

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

19

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

20

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

22

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

23

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

24

Renewable Fuels Module  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

Chris Namovicz

2013-07-03T23:59:59.000Z

25

Property:RenewableFuelStandard/RenewableBiofuel | Open Energy Information  

Open Energy Info (EERE)

RenewableBiofuel RenewableBiofuel Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/RenewableBiofuel" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 12.6 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 13.2 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 13.8 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 14.4 + Renewable Fuel Standard Schedule + 9 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 10.5 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 12 +

26

Minimally refined biomass fuel  

DOE Patents (OSTI)

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

27

EIA - Assumptions to the Annual Energy Outlook 2009 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2009 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind1. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy.

28

Savannah River's Biomass Steam Plant Success with Clean and Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy In order to meet the...

29

Savannah River's Biomass Steam Plant Success with Clean and Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River's Biomass Steam Plant Success with Clean and Renewable Energy Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy In order to meet the federal energy...

30

Superheater Corrosion Produced By Biomass Fuels  

Science Conference Proceedings (OSTI)

About 90% of the world's bioenergy is produced by burning renewable biomass fuels. Low-cost biomass fuels such as agricultural wastes typically contain more alkali metals and chlorine than conventional fuels. Although the efficiency of a boiler's steam cycle can be increased by raising its maximum steam temperature, alkali metals and chlorine released in biofuel boilers cause accelerated corrosion and fouling at high superheater steam temperatures. Most alloys that resist high temperature corrosion protect themselves with a surface layer of Cr{sub 2}O{sub 3}. However, this Cr{sub 2}O{sub 3} can be fluxed away by reactions that form alkali chromates or volatilized as chromic acid. This paper reviews recent research on superheater corrosion mechanisms and superheater alloy performance in biomass boilers firing black liquor, biomass fuels, blends of biomass with fossil fuels and municipal waste.

Sharp, William (Sandy) [SharpConsultant; Singbeil, Douglas [FPInnovations; Keiser, James R [ORNL

2012-01-01T23:59:59.000Z

31

Tribal Renewable Energy Curriculum Foundational Course: Biomass  

Energy.gov (U.S. Department of Energy (DOE))

Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on biomass renewable energy by clicking on the .swf link below. You can also download the PowerPoint slides...

32

Assumptions to the Annual Energy Outlook 2002 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).117 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

33

Assumptions to the Annual Energy Outlook 2001 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

34

Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

Not Available

2012-03-01T23:59:59.000Z

35

Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. The Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to

36

Property:RenewableFuelStandard/Year | Open Energy Information  

Open Energy Info (EERE)

RenewableFuelStandard/Year RenewableFuelStandard/Year Jump to: navigation, search This is a property of type Date. Pages using the property "RenewableFuelStandard/Year" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 2022 + Renewable Fuel Standard Schedule + 2016 + Renewable Fuel Standard Schedule + 2010 + Renewable Fuel Standard Schedule + 2017 + Renewable Fuel Standard Schedule + 2011 + Renewable Fuel Standard Schedule + 2018 + Renewable Fuel Standard Schedule + 2012 + Renewable Fuel Standard Schedule + 2019 + Renewable Fuel Standard Schedule + 2013 + Renewable Fuel Standard Schedule + 2020 + Renewable Fuel Standard Schedule + 2014 + Renewable Fuel Standard Schedule + 2008 + Renewable Fuel Standard Schedule + 2021 + Renewable Fuel Standard Schedule + 2015 +

37

Renewable & Alternative Fuels - U.S. Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Renewable & Alternative Fuels Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative Transportation Fuels All Renewable & Alternative Fuels Data Reports Analysis & Projections Most Requested Alternative Fuels Capacity and Generation Consumption Environment Industry Characteristics Prices Production Projections Renewable Energy Type All Reports Don't miss: EIA's Alternative Fuel Vehicle Data. Including two interactive data viewers that provide custom data views of Alternative Fuel Vehicle data for both User & Fuel Data and Supplier Data. EIA's latest Short-Term Energy Outlook for renewables › chart showing U.S. renewable energy supply Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly.

38

Nanostructured Basic Catalysts: Opportunities for Renewable Fuels  

SciTech Connect

This research studied and developed novel basic catalysts for production of renewable chemicals and fuels from biomass. We focused on the development of unique porous structural-base catalysts zeolites. These catalysts were compared to conventional solid base materials for aldol condensation, that were being commercialized for production of fuels from biomass and would be pivotal in future biomass conversion to fuels and chemicals. Specifically, we had studied the aldolpyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our research has indicated that the base strength of framework nitrogen in nitrogen substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

Conner, William C; Huber, George; Auerbach, Scott

2009-06-30T23:59:59.000Z

39

Mild, Nontoxic Production of Fuels and Chemicals from Biomass  

Fossil fuel resources supply almost 90 percent of the worlds energy and the vast majority of its organic chemicals. This dependency is insupportable in light of rising emissions, demand and diminishing access. Abundant, renewable biomass is an ...

40

Renewable Fuel Supply Ltd RFSL | Open Energy Information  

Open Energy Info (EERE)

Supply Ltd RFSL Supply Ltd RFSL Jump to: navigation, search Name Renewable Fuel Supply Ltd (RFSL) Place United Kingdom Zip W1J 5EN Sector Biomass Product UKâ€(tm)s largest supplier of biomass to the UK co-firing power stations. References Renewable Fuel Supply Ltd (RFSL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Fuel Supply Ltd (RFSL) is a company located in United Kingdom . References ↑ "[fsl@@Pikefsl@@Renewablefsl@@generationfsl@@sub*-Utilityfsl@@Photovoltanicsfsl@@Fuelfsl@@Wind-Poerfsl@@/ Renewable Fuel Supply Ltd (RFSL)" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Fuel_Supply_Ltd_RFSL&oldid=350339" Categories:

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Evaluation of Methods for Characterization of Biomass Fuels  

Science Conference Proceedings (OSTI)

Biomass is a fuel source that coal-fired utility or industrial boilers can easily switch to in order to generate renewable energy. The increased use of biomass in electric generating systems and the potential for greatly increased biomass use in the future warrants a standard methodology for characterizing biomass physical and chemical properties, which would be similar to measurement standards already developed in Europe and within various other industries. Currently, there is no universally ...

2012-09-28T23:59:59.000Z

42

Conservation of Biomass Fuel, Firewood (Minnesota) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation of Biomass Fuel, Firewood (Minnesota) Conservation of Biomass Fuel, Firewood (Minnesota) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned...

43

Calgren Renewable Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Fuels LLC Place Newport Beach, California Zip 92660 Product Developer of bio-ethanol plants in US, particularly California. References Calgren Renewable Fuels LLC1...

44

Assumptions to the Annual Energy Outlook - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumption to the Annual Energy Outlook Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).109 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

45

Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Promulgation of Promulgation of Renewable Fuel Storage Tank Regulations to someone by E-mail Share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Facebook Tweet about Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Twitter Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Google Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Delicious Rank Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Digg Find More places to share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on AddThis.com... More in this section... Federal

46

Alternative Fuels Data Center: Renewable Identification Numbers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Renewable Identification Numbers to someone by E-mail Share Alternative Fuels Data Center: Renewable Identification Numbers on Facebook Tweet about Alternative Fuels Data Center: Renewable Identification Numbers on Twitter Bookmark Alternative Fuels Data Center: Renewable Identification Numbers on Google Bookmark Alternative Fuels Data Center: Renewable Identification Numbers on Delicious Rank Alternative Fuels Data Center: Renewable Identification Numbers on Digg Find More places to share Alternative Fuels Data Center: Renewable Identification Numbers on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Identification Numbers RIN Format EPA uses the following format to determine RINs for each physical gallon of

47

Consider upgrading pyrolysis oils into renewable fuels  

Science Conference Proceedings (OSTI)

New research is identifying processing routes to convert cellulosic biomass into transportation fuels

Elliott, Douglas C.; Holmgren, Jennifer; Marinangelli, Richard; nair, Prabhakar; Bain, Richard

2008-09-01T23:59:59.000Z

48

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

DOE Green Energy (OSTI)

The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

Not Available

2009-01-01T23:59:59.000Z

49

Ris Energy Report 5 Biomass biomass is one of few non-fluctuating renewable energy  

E-Print Network (OSTI)

Risø Energy Report 5 Biomass 6.2 biomass is one of few non-fluctuating renewable energy resources- tem. Alongside stored hydro and geothermal, this sets biomass apart from most other renewables such as wind power, which must be used when available. A proportion of biomass is therefore attractive

50

EIA - Assumptions to the Annual Energy Outlook 2008 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2008 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind1. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon the availability of low-cost energy storage systems.

51

sector Renewable Energy Non renewable Energy Biomass Buildings Commercial  

Open Energy Info (EERE)

user interface valueType text user interface valueType text sector valueType text abstract valueType text website valueType text openei tool keyword valueType text openei tool uri valueType text items label Calculator user interface Spreadsheet Website sector Renewable Energy Non renewable Energy Biomass Buildings Commercial Buildings Residential Economic Development Gateway Geothermal Greenhouse Gas Multi model Integration Multi sector Impact Evaluation Gateway Solar Wind energy website https www gov uk pathways analysis openei tool keyword calculator greenhouse gas emissions GHG low carbon energy planning energy data emissions data openei tool uri http calculator tool decc gov uk pathways primary energy chart uri http en openei org w index php title Calculator type Tools label AGI

52

Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Sales Renewable Fuel Sales Volume Goals to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Sales Volume Goals The Wisconsin Legislature sets goals for minimum annual renewable fuel

53

List of Renewable Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 97 Renewable Fuels Incentives. CSV (rows 1 - 97) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial

54

Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard (RFS) Program to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard (RFS) Program The national RFS Program was developed to increase the volume of renewable

55

Biomass Fuels Ltd BFL | Open Energy Information  

Open Energy Info (EERE)

BFL BFL Jump to: navigation, search Name Biomass Fuels Ltd (BFL) Place London, United Kingdom Zip EC1Y 2BJ Sector Renewable Energy Product London-based company that secures fuels for emerging markets in the renewable fuels sector. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network (OSTI)

comparison of fuel policies: Renewable fuel mandate, fuelcomparison of fuel policies: Renewable fuel mandate, fuel121, 2011. C. Fischer. Renewable Portfolio Standards: When

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

57

Alternative Fuels Data Center: Renewable Fuel Retailer Tax Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Retailer Tax Incentive to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Retailer Tax Incentive on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Retailer Tax Incentive on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Retailer Tax Incentive on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Retailer Tax Incentive on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Retailer Tax Incentive on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Retailer Tax Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Retailer Tax Incentive A licensed retail motor fuel dealer may receive a quarterly incentive for

58

8. Biomass-Derived Liquid Fuels  

U.S. Energy Information Administration (EIA)

8. Biomass-Derived Liquid Fuels B. Fuel Ethanol Production and Market Conditions Ethanol is consumed as fuel in the United States primarily as "gasohol"--a blend ...

59

Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Infrastructure Tax Credit A tax credit is available for 25% of the cost to install or retrofit

60

Alternative Fuels Data Center: Renewable Fuel Production Facility Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Production Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Production Facility Tax Credit

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Renewable Fuel Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Labeling Requirement Biodiesel and ethanol blend dispensers must be affixed with decals

62

NREL: Computational Science - Enzymatic Conversion of Biomass to Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Enzymatic Conversion of Biomass to Fuels Enzymatic Conversion of Biomass to Fuels Scientists in the Computational Science Center at the National Renewable Energy Laboratory (NREL) and their partners use the latest terascale high-performance computers to probe the complex enzymatic cellulose depolymerization (i.e., breakdown) at the molecular level as biomass is converted to fuels. For a sustainable and economically viable liquid-fuel economy, America needs a carbon-neutral alternative to fossil fuels. Lignocellulosic biomass (i.e., agricultural residues, energy crops, and wood) could serve as the dominant feedstock for biofuels, if it can be efficiently and economically converted to its component sugars for microbial fermentation. One major obstacle to the use of biomass is the high resistance of crystalline

63

Alternative Fuels Data Center: Biodiesel and Renewable Fuel Definitions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Biodiesel and Renewable Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Renewable Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Renewable Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Renewable Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Biodiesel and Renewable Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Biodiesel and Renewable Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Renewable Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel and Renewable Fuel Definitions Biodiesel is defined as a renewable, biodegradable, mono alkyl ester

64

and Office of Biomass Programs Energy Efficiency and Renewable Energy  

E-Print Network (OSTI)

Subcontract 4000006704The energy balance calculation for corn ethanol has been a controversial and often distorted subject in the political arena. Congress is now in the process of crafting a comprehensive energy bill, and the ongoing debate over policies to increase fuel ethanol use has raised the publics awareness of the energy balance issue. The Senate version of the energy bill includes a Renewable Fuels Standard (RFS) provision for motor fuels that would increase the amount of fuel derived from biomass sources from 2.3 billion gallons in 2004 to 5 billion gallons by 2012. Last year (2001), the U.S. produced 1.77 billion gallons of ethanol from biomass sources. It is expected that most of the RFS requirement will be met by ethanol, with biodiesel making up the remainder. Almost all the fuel ethanol used in the U.S. today is derived from corn, but a small amount is also produced from other grains such as wheat and sorghum. Corn Ethanol Energy Balances In the early eighties, some studies concluded that the energy inputs for producing corn ethanol were greater than or about equal to the energy contained in the ethanol product. In the last twenty years, significant advances in farming techniques and improvements in ethanol production have occurred, and recent studies have concluded that the energy balances are now

David Andress

2002-01-01T23:59:59.000Z

65

Los Alamos scientists advance biomass fuel production  

NLE Websites -- All DOE Office Websites (Extended Search)

Issues submit Los Alamos scientists advance biomass fuel production Adapting biomass waste molecules for energy production May 1, 2013 Lab research can yield energy from...

66

Renewable Fuel Vehicles | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Renewable Fuel Vehicles Jump to: navigation, search TODO: Add description List of Renewable...

67

Alternative Fuels Data Center: Renewable Energy Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Energy Renewable Energy Grants to someone by E-mail Share Alternative Fuels Data Center: Renewable Energy Grants on Facebook Tweet about Alternative Fuels Data Center: Renewable Energy Grants on Twitter Bookmark Alternative Fuels Data Center: Renewable Energy Grants on Google Bookmark Alternative Fuels Data Center: Renewable Energy Grants on Delicious Rank Alternative Fuels Data Center: Renewable Energy Grants on Digg Find More places to share Alternative Fuels Data Center: Renewable Energy Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Energy Grants The Renewable Energy and Energy-Efficient Technologies Grants Program and Farm to Fuel Grants Program provide matching grants for demonstration,

68

Alternative Fuels Data Center: Renewable Fuel Producer Excise Tax and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Producer Excise Tax and Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Producer Excise Tax and Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Producer Excise Tax and Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Producer Excise Tax and Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Producer Excise Tax and Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Producer Excise Tax and Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Producer Excise Tax and Inspection Exemption on AddThis.com...

69

Alternative Fuels Data Center: Provision for Renewable Fuels Investment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Provision for Provision for Renewable Fuels Investment to someone by E-mail Share Alternative Fuels Data Center: Provision for Renewable Fuels Investment on Facebook Tweet about Alternative Fuels Data Center: Provision for Renewable Fuels Investment on Twitter Bookmark Alternative Fuels Data Center: Provision for Renewable Fuels Investment on Google Bookmark Alternative Fuels Data Center: Provision for Renewable Fuels Investment on Delicious Rank Alternative Fuels Data Center: Provision for Renewable Fuels Investment on Digg Find More places to share Alternative Fuels Data Center: Provision for Renewable Fuels Investment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Provision for Renewable Fuels Investment To create jobs and improve the state's general infrastructure, the Florida

70

Transportation fuels from biomass via fast pyrolysis and hydroprocessing  

SciTech Connect

Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

Elliott, Douglas C.

2013-09-21T23:59:59.000Z

71

Introduction to Renewable Energy Biomass Captured solar energy from biological systems currently plays a large role in  

E-Print Network (OSTI)

Introduction to Renewable Energy ­ Biomass Captured solar energy from biological systems currently of biomass for large-scale energy services could help reduce the greenhouse gas intensity of the energy be processed and utilized in a similar manner to fossil fuels with lower net emissions of CO2. Biomass energy

Nur, Amos

72

Biomass fuels: a national plan  

SciTech Connect

The options and potentials of biomass fuel production for the U.S. are reviewed. The following options are discussed: plant or vegetable oils, direct combustion of wood, production of biogas, and alcohol fuels. It is considered essential that a national planning model is developed to integrate the biofuel requirements for arable land and commercial forests with those for food and other traditional uses. (Refs. 32)

Mitchell, T.E.; Schroer, B.J.; Ziemke, M.C.; Peters, J.F.

1983-04-01T23:59:59.000Z

73

Renewable & Alternative Fuels - Pub - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Renewable & Alternative Fuels Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative Transportation Fuels All Renewable & Alternative Fuels Data Reports Analysis & Projections Most Requested Alternative Fuels Capacity and Generation Consumption Environment Industry Characteristics Prices Production Projections Renewable Energy Type All Reports Biofuels Workshops Workshop on Biofuels Projections in the AEO The U.S. Energy Information Administration's Office of Petroleum, Natural Gas, and Biofuels Analysis held a workshop on biofuels projections in the Annual Energy Outlook (AEO). The objective of the workshop was to explore the opportunities and challenges of representing advanced (cellulosic) biofuels in our AEO2013 long term forecast. The workshop focused on the

74

Missouri Renewable Fuel Standard Brochure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

The Missouri Renewable Fuel Standard The Missouri Renewable Fuel Standard requires ethanol in most gasoline beginning January 1, 2008. ARE YOU READY? TEN THINGS MISSOURI TANK OWNERS AND OPERATORS NEED TO KNOW ABOUT ETHANOL 1. Ethanol is a type of alcohol made usually from corn in Missouri and other states. 2. E10 is a blend of 10% ethanol and 90% unleaded gasoline. E85 is a blend of 75% to 85% fuel ethanol and 25% to 15% unleaded gasoline. Blends between E10 and E85 are not allowed to be sold at retail. 3. Any vehicle or small engine should run fine on E10, but only specially designed vehicles can use E85. 4. You are not required to label your dispensers disclosing the ethanol content if you are selling E10. However, you are required to label your dispensers if you are selling E85.

75

Property:RenewableFuelStandard/Total | Open Energy Information  

Open Energy Info (EERE)

Total Total Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/Total" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 13.95 + Renewable Fuel Standard Schedule + 26 + Renewable Fuel Standard Schedule + 15.2 + Renewable Fuel Standard Schedule + 28 + Renewable Fuel Standard Schedule + 16.55 + Renewable Fuel Standard Schedule + 30 + Renewable Fuel Standard Schedule + 18.15 + Renewable Fuel Standard Schedule + 9 + Renewable Fuel Standard Schedule + 33 + Renewable Fuel Standard Schedule + 20.5 + Renewable Fuel Standard Schedule + 11.1 + Renewable Fuel Standard Schedule + 36 + Renewable Fuel Standard Schedule + 22.25 + Renewable Fuel Standard Schedule + 12.95 + Renewable Fuel Standard Schedule + 24 +

76

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

report: 2009 Update. REN21 Renewable Energy Policy NetworkRecent Devel- opments in Renewable Technologies: R&Dobjective fuel policies: Renewable fuel standards versus

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

77

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biofuels produced from biomass provide a promising alternative to fossil fuels. Biomass is an inexpensive, readily available and renewable resource.

78

Biomass power and state renewable energy policies under electric industry restructuring  

E-Print Network (OSTI)

BIOMASS POWER AND STATE RENEWABLE ENERGY POLICIES UNDERHowever, the eligibility of biomass under state RPS and SBCmay make it difficult for biomass power companies to access

Porter, Kevin; Wiser, Ryan

2000-01-01T23:59:59.000Z

79

Strategic Analysis of Biomass and Waste Fuels for Electric Power Generation  

Science Conference Proceedings (OSTI)

Biomass, waste fuels, and power technologies based on advanced combustion and gasification show promise for renewable baseload generation. Utilities can use the results of this study to evaluate the potential performance and cost of biomass and waste fuel-fired power plants in their systems and examine fuel use in integrated resource plans.

1994-01-01T23:59:59.000Z

80

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Biomass power and state renewable energy policies under electric industry restructuring  

E-Print Network (OSTI)

BIOMASS POWER AND STATE RENEWABLE ENERGY POLICIES UNDERBIOMASS PROVISIONS IN STATE RENEWABLE ENERGY POLICIES Ofthe 17 states that have adopted renewable energy policy

Porter, Kevin; Wiser, Ryan

2000-01-01T23:59:59.000Z

82

Reliant Energy Renewables Atascosita Biomass Facility | Open Energy  

Open Energy Info (EERE)

Renewables Atascosita Biomass Facility Renewables Atascosita Biomass Facility Jump to: navigation, search Name Reliant Energy Renewables Atascosita Biomass Facility Facility Reliant Energy Renewables Atascosita Sector Biomass Facility Type Landfill Gas Location Harris County, Texas Coordinates 29.7751825°, -95.3102505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7751825,"lon":-95.3102505,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel | Open  

Open Energy Info (EERE)

UndifferentiatedAdvancedBiofuel UndifferentiatedAdvancedBiofuel Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/UndifferentiatedAdvancedBiofuel" Showing 14 pages using this property. R Renewable Fuel Standard Schedule + 0.5 + Renewable Fuel Standard Schedule + 4.5 + Renewable Fuel Standard Schedule + 1.75 + Renewable Fuel Standard Schedule + 4.5 + Renewable Fuel Standard Schedule + 2 + Renewable Fuel Standard Schedule + 4.5 + Renewable Fuel Standard Schedule + 2.5 + Renewable Fuel Standard Schedule + 0.1 + Renewable Fuel Standard Schedule + 5 + Renewable Fuel Standard Schedule + 3 + Renewable Fuel Standard Schedule + 0.2 + Renewable Fuel Standard Schedule + 3.5 + Renewable Fuel Standard Schedule + 0.3 + Renewable Fuel Standard Schedule + 4 +

84

On the Path to Low Cost Renewable Fuels, an Important Breakthrough |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough April 18, 2013 - 4:10pm Addthis NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. A researcher examines a strain of the fermentation microorganism Zymomonas mobilis on a culture plate. NREL has genetically engineered and patented its own strains of Zymomonas mobilis to more effectively ferment the multiple sugars found in biomass as part of the cellulosic ethanol-to-renewable fuel conversion process. | Photo by Dennis Schroeder, NREL.

85

EA-1887: Renewable Fuel Heat Plant Improvements at the National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOEEA-1573-S1) EA-1887: Renewable Fuel Heat Plant Improvements at the...

86

Liquid Transportation Fuels from Coal and Biomass  

E-Print Network (OSTI)

Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Katzer #12;CHARGE TO THE ALTF PANEL · Evaluate technologies for converting biomass and coal to liquid for liquid fuels produced from coal or biomass. · Evaluate environmental, economic, policy, and social

87

Los Alamos improves biomass-to-fuel process  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass-to-fuel Process Improved Biomass-to-fuel Process Improved Los Alamos improves biomass-to-fuel process Los Alamos scientists and collaborators published an article in the scientific journal Nature Chemistry this week that could offer a big step on the path to renewable energy. April 26, 2013 Los Alamos research better converts energy from fields into fuel tanks. Los Alamos research better converts energy from fields into fuel tanks. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email This work describes a completely new approach, an alternative route to convert this class of molecules to hydrocarbons that uses much less energy and has a very high degree of conversion to provide pure products. LOS ALAMOS, N.M., April 26, 2013-One of the more promising roads to energy independence leads away from crude oil and into the forests and

88

Fuel Cells using Renewable Fuels | Open Energy Information  

Open Energy Info (EERE)

Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Fuel Cells using Renewable Fuels Jump to: navigation, search TODO: Add description List of...

89

Renewable Fuels Consulting | Open Energy Information  

Open Energy Info (EERE)

Consulting Consulting Jump to: navigation, search Name Renewable Fuels Consulting Place Mason City, Iowa Sector Renewable Energy Product RFC specializes in providing technical solutions to renewable energy production plants. References Renewable Fuels Consulting[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Fuels Consulting is a company located in Mason City, Iowa . References ↑ "Renewable Fuels Consulting" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Fuels_Consulting&oldid=350341" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

90

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights Highlights Thermochemical conversion technologies convert biomass and its residues to fuels and chemicals using gasification and pyrolysis. Gasification entails heating biomass and results in a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis, which is heating biomass in the absence of oxygen, produces liquid pyrolysis oil. Both syngas and pyrolysis oil can be chemically converted into clean, renewable transportation fuels and chemicals. The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass. Thermochemical processes include gasification and pyrolysis-processes used to convert

91

Biomass to Energy Solutions - National Renewable Energy ...  

ZeroPoint Clean Tech, Inc. Biomass to Energy Solutions 21st NREL Industry Growth Forum Denver, Colorado. October 30, 2008

92

Renewable Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Renewable Transportation Fuels Jump to: navigation, search TODO: Add description List of...

93

Direct Conversion of Biomass into Transportation Fuels  

Direct Conversion of Biomass into Transportation Fuels . Return to Marketing Summary. Skip footer navigation to end of page. Contacts | Web Site Policies | U.S ...

94

EIA - The National Energy Modeling System: An Overview 2003-Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuelsl Module Renewable Fuelsl Module The National Energy Modeling System: An Overview 2003 Renewable Fuels Module Figure 11. Renewable Fuels Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Renewable Fuels Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The renewable fuels module (RFM) represents renewable energy resoures and large–scale technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (biomass, conventional hydroelectricity, geothermal, landfill gas, solar photovoltaics, solar thermal, and wind) are used to generate electricity, the RFM primarily interacts with the electricity market module (EMM). New renewable energy generating capacity is either model–determined or

95

NREL: Biomass Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

96

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

97

Grid-Connected Renewable Energy Generation Toolkit-Biomass | Open Energy  

Open Energy Info (EERE)

Grid-Connected Renewable Energy Generation Toolkit-Biomass Grid-Connected Renewable Energy Generation Toolkit-Biomass Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid-Connected Renewable Energy Generation Toolkit-Biomass Agency/Company /Organization: United States Agency for International Development Sector: Energy Focus Area: Biomass Resource Type: Training materials Website: www.energytoolbox.org/gcre/mod_2/index.shtml#update Grid-Connected Renewable Energy Generation Toolkit-Biomass Screenshot References: Grid-Connected Renewable Energy-Biomass[1] Logo: Grid-Connected Renewable Energy Generation Toolkit-Biomass Biomass Toolkit References ↑ "Grid-Connected Renewable Energy-Biomass" Retrieved from "http://en.openei.org/w/index.php?title=Grid-Connected_Renewable_Energy_Generation_Toolkit-Biomass&oldid=375080

98

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

under Low Carbon Fuel Standards? American Economic Journal:the Low Carbon Fuel Standard, Volume I Sta? Report: Initialpolicies: Renewable fuel standards versus Fuel greenhouse

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

99

Biomass Cofiring: A Renewable Alternative for Utilities (Fact sheet)  

DOE Green Energy (OSTI)

Cofiring refers to the practice of introducing biomass as a partial substitute fuel in high-efficiency coal boilers. This is the nearest term low-cost option for the efficient conversion of biomass to electricity. Cofiring has been practiced, tested, and evaluated for a variety of boiler technologies.

Craig, K.

1999-08-30T23:59:59.000Z

100

DOE Hydrogen and Fuel Cells Program: Energy Efficiency and Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Printable Version Energy Efficiency and Renewable Energy DOE's Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies...

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Renewable Fuels Module (RFM) - 2002 EIA Models Directory  

U.S. Energy Information Administration (EIA)

The RFM consists of five analytical submodules that represent major renewable energy resources landfill gas, wind energy, solar, biomass, and ...

102

Los Alamos improves biomass-to-fuel process  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass-to-fuel Process Improved Los Alamos improves biomass-to-fuel process Los Alamos scientists and collaborators published an article in the scientific journal Nature Chemistry...

103

Co-generation and Co-production Opportunities with Biomass and Waste Fuels  

Science Conference Proceedings (OSTI)

This report includes a status update on the use of gasification technologies for biomass and waste fuels, either in dedicated plants or as partial feedstocks in larger fossil fuel plants. Some specific projects that have used gasification and combustion of biomass and waste for power generation and the co-generation of power and district heat or process steam, particularly in Europe, are reviewed in more detail. Regulatory and tax incentives for renewable and biomass projects have been in place in most W...

2000-12-07T23:59:59.000Z

104

List of Renewable Fuel Vehicles Incentives | Open Energy Information  

Open Energy Info (EERE)

Vehicles Incentives Vehicles Incentives Jump to: navigation, search The following contains the list of 33 Renewable Fuel Vehicles Incentives. CSV (rows 1 - 33) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuel Vehicle Rebate (Colorado) State Rebate Program Colorado Schools Local Government State Government Renewable Fuel Vehicles No Alternative Fuel Vehicle Tax Credit (West Virginia) Personal Tax Credit West Virginia Residential Renewable Fuel Vehicles No

105

American Renewable Fuels | Open Energy Information  

Open Energy Info (EERE)

American Renewable Fuels American Renewable Fuels Place Dallas, Texas Zip TX 75201 Sector Renewable Energy Product Developer of commercial scale renewable fuels production plants and subsidiary of Australian Renewable Fuels Pty Ltd (ARF). Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Alternative Renewable Fuels 'Plus' Research and Development Fund...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Renewable Fuels &039;Plus&039; Research and Development Fund (Ontario, Canada) Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario, Canada)...

107

Alternative Fuels Data Center: Biomass and Biofuels Industry Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biomass and Biofuels Biomass and Biofuels Industry Development to someone by E-mail Share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Facebook Tweet about Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Twitter Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Google Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Delicious Rank Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Digg Find More places to share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biomass and Biofuels Industry Development

108

Alternative Fuels Data Center: Biomass Research and Development Initiative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biomass Research and Biomass Research and Development Initiative to someone by E-mail Share Alternative Fuels Data Center: Biomass Research and Development Initiative on Facebook Tweet about Alternative Fuels Data Center: Biomass Research and Development Initiative on Twitter Bookmark Alternative Fuels Data Center: Biomass Research and Development Initiative on Google Bookmark Alternative Fuels Data Center: Biomass Research and Development Initiative on Delicious Rank Alternative Fuels Data Center: Biomass Research and Development Initiative on Digg Find More places to share Alternative Fuels Data Center: Biomass Research and Development Initiative on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biomass Research and Development Initiative

109

State Clean Energy Practices: Renewable Fuel Standards  

SciTech Connect

The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, renewable fuel standards (RFS) policies are a mechanism for developing a market for renewable fuels in the transportation sector. This flexible market-based policy, when properly executed, can correct for market failures and promote growth of the renewable fuels industry better than a more command-oriented approach. The policy attempts to correct market failures such as embedded fossil fuel infrastructure and culture, risk associated with developing renewable fuels, consumer information gaps, and lack of quantification of the non-economic costs and benefits of both renewable and fossil-based fuels. This report focuses on renewable fuel standards policies, which are being analyzed as part of this project.

Mosey, G.; Kreycik, C.

2008-07-01T23:59:59.000Z

110

State Clean Energy Practices: Renewable Fuel Standards  

SciTech Connect

The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, renewable fuel standards (RFS) policies are a mechanism for developing a market for renewable fuels in the transportation sector. This flexible market-based policy, when properly executed, can correct for market failures and promote growth of the renewable fuels industry better than a more command-oriented approach. The policy attempts to correct market failures such as embedded fossil fuel infrastructure and culture, risk associated with developing renewable fuels, consumer information gaps, and lack of quantification of the non-economic costs and benefits of both renewable and fossil-based fuels. This report focuses on renewable fuel standards policies, which are being analyzed as part of this project.

Mosey, G.; Kreycik, C.

2008-07-01T23:59:59.000Z

111

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance  

E-Print Network (OSTI)

of Plant Biomass for Biological and Chemical Conversion toconversion of cellulosic biomass into fuels and chemicals.conversion of cellulosic biomass into renewable fuels and chemicals

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

112

Renewable utility-scale electricity production differs by fuel ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy.

113

RINs and RVOs are used to implement the Renewable Fuel ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ...

114

U.S. ethanol production and the Renewable Fuel Standard ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ...

115

Assumptions to the Annual Energy Outlook 1999 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

renewable.gif (4875 bytes) renewable.gif (4875 bytes) The NEMS Renewable Fuels Module (RFM) consists of five distinct submodules that represent the major renewable energy technologies. Although it is described here, conventional hydroelectric is included in the Electricity Market Module (EMM) and is not part of the RFM. Similarly, ethanol modeling is included in the Petroleum Market Module (PMM). Some renewables, such as municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not require the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using wind, solar, and geothermal energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittence, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

116

Grand Traverse Band Renewable Energy Feasibility Study in Wind, Biomass and Solar  

DOE Green Energy (OSTI)

Renewable Energy Feasibility Study for wind, biomass, solar on the Grand Traverse Band tribal lands from 2005 - 2008

Suzanne McSawby, Project Director

2008-12-31T23:59:59.000Z

117

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network (OSTI)

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

118

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff  

E-Print Network (OSTI)

Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

Hall, Sharon J.

119

EIA-Assumptions to the Annual Energy Outlook - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2007 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind.112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon the availability of low-cost energy storage systems.

120

Crop residues as feedstock for renewable fuels  

Science Conference Proceedings (OSTI)

Nutrient removal and net costs weigh on decisions to use crop residues as biofuel feedstocks. Crop residues as feedstock for renewable fuels Inform Magazine Biofuels and Bioproducts and Biodiesel Inform Archives Crop residues as feedstock for rene

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Renewable Hydrogen Generation and Fueling Project  

Science Conference Proceedings (OSTI)

In its efforts to promote hydrogen as an alternative transportation fuel, the New York Power Authority (NYPA) is implementing a renewable hydrogen fueling demonstration project. The project involves hydrogen production by electrolysis using NYPA's large renewable hydropower generating resources. An earlier EPRI report (1014383) provides background and results from a preliminary engineering and feasibility study. This report provides an update on the project and the refueling station bid and procurement p...

2008-03-27T23:59:59.000Z

122

First Renewables | Open Energy Information  

Open Energy Info (EERE)

development projects, ranging from wind to biomass using a variety of renewable fuel sources. Absorbed into EPR in 2002. References First Renewables1 LinkedIn Connections...

123

Alternative Fuels Data Center: Montana Laws and Incentives for Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Standard / Mandate to someone by E-mail Renewable Fuel Standard / Mandate to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Renewable Fuel Standard / Mandate on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Renewable Fuel Standard / Mandate on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Renewable Fuel Standard / Mandate on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Renewable Fuel Standard / Mandate on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Renewable Fuel Standard / Mandate on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Renewable Fuel Standard / Mandate on AddThis.com...

124

Alternative Fuels Data Center: Missouri Laws and Incentives for Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Standard / Mandate to someone by E-mail Renewable Fuel Standard / Mandate to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for Renewable Fuel Standard / Mandate on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for Renewable Fuel Standard / Mandate on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Renewable Fuel Standard / Mandate on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Renewable Fuel Standard / Mandate on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for Renewable Fuel Standard / Mandate on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for Renewable Fuel Standard / Mandate on AddThis.com...

125

Alternative Fuels Data Center: Oregon Laws and Incentives for Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Standard / Mandate to someone by E-mail Renewable Fuel Standard / Mandate to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Renewable Fuel Standard / Mandate on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Renewable Fuel Standard / Mandate on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Renewable Fuel Standard / Mandate on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Renewable Fuel Standard / Mandate on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Renewable Fuel Standard / Mandate on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Renewable Fuel Standard / Mandate on AddThis.com...

126

Alternative Fuels Data Center: Federal Laws and Incentives for Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Standard / Mandate to someone by E-mail Renewable Fuel Standard / Mandate to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Renewable Fuel Standard / Mandate on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Renewable Fuel Standard / Mandate on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Renewable Fuel Standard / Mandate on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Renewable Fuel Standard / Mandate on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Renewable Fuel Standard / Mandate on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Renewable Fuel Standard / Mandate on AddThis.com...

127

Alternative Fuels Data Center: Louisiana Laws and Incentives for Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Standard / Mandate to someone by E-mail Renewable Fuel Standard / Mandate to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Renewable Fuel Standard / Mandate on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Renewable Fuel Standard / Mandate on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Renewable Fuel Standard / Mandate on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Renewable Fuel Standard / Mandate on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Renewable Fuel Standard / Mandate on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Renewable Fuel Standard / Mandate on AddThis.com...

128

Alternative Fuels Data Center: Hawaii Laws and Incentives for Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Standard / Mandate to someone by E-mail Renewable Fuel Standard / Mandate to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Renewable Fuel Standard / Mandate on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Renewable Fuel Standard / Mandate on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Renewable Fuel Standard / Mandate on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Renewable Fuel Standard / Mandate on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Renewable Fuel Standard / Mandate on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Renewable Fuel Standard / Mandate on AddThis.com...

129

Alternative Fuels Data Center: Washington Laws and Incentives for Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Standard / Mandate to someone by E-mail Renewable Fuel Standard / Mandate to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Renewable Fuel Standard / Mandate on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Renewable Fuel Standard / Mandate on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Renewable Fuel Standard / Mandate on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Renewable Fuel Standard / Mandate on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Renewable Fuel Standard / Mandate on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Renewable Fuel Standard / Mandate on AddThis.com...

130

Alternative Fuels Data Center: Minnesota Laws and Incentives for Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Standard / Mandate to someone by E-mail Renewable Fuel Standard / Mandate to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for Renewable Fuel Standard / Mandate on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for Renewable Fuel Standard / Mandate on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Renewable Fuel Standard / Mandate on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Renewable Fuel Standard / Mandate on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for Renewable Fuel Standard / Mandate on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for Renewable Fuel Standard / Mandate on AddThis.com...

131

Alternative Fuels Data Center: California Laws and Incentives for Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Standard / Mandate to someone by E-mail Renewable Fuel Standard / Mandate to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Renewable Fuel Standard / Mandate on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Renewable Fuel Standard / Mandate on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Renewable Fuel Standard / Mandate on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Renewable Fuel Standard / Mandate on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Renewable Fuel Standard / Mandate on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Renewable Fuel Standard / Mandate on AddThis.com...

132

Fuel Cells & Renewable Portfolio Standards  

E-Print Network (OSTI)

.....................................................12 SOFC Battery Range Extender Auxiliary Power Unit (SOFC) as Military APU Replacements" (presentation, DOD-DOE Workshop on Fuel Cells in Aviation cell plasma lighting demonstration, a solid oxide fuel cell (SOFC) battery range extender APU

133

Autothermal Reforming of Renewable Fuels  

DOE Green Energy (OSTI)

The conversion of biomass into energy and chemicals is a major research and technology challenge of this century, comparable to petroleum processing in the last century. Recently we have successfully transformed both volatile liquids and nonvolatile liquids and solids into syngas with no carbon formation in autothermal catalytic reactors with residence times of ~10 milliseconds. In the proposed research program we explore the mechanisms of these processes and their extensions to other biomass sources and applications by examining different feeds, catalysts, flow conditions, and steam addition to maximize production of either syngas or chemicals. We will systematically study the catalytic partial oxidation in millisecond autothermal reactors of solid biomass and the liquid products formed by pyrolysis of solid biomass. We will examine alcohols, polyols, esters, solid carbohydrates, and lignocellulose to try to maximize formation of either hydrogen and syngas or olefins and oxygenated chemicals. We will explore molecules and mixtures of practical interest as well as surrogate molecules that contain the functional groups of biofuels but are simpler to analyze and interpret. We will examine spatial profiles within the catalyst and transient and periodic operation of these reactors at pressures up to 10 atm to obtain data from which to explore more detailed mechanistic models and optimize performance to produce a specific desired product. New experiments will examine the conversion of syngas into biofuels such as methanol and dimethyl ether to explore the entire process of producing biofuels from biomass in small distributed systems. Experiments and modeling will be integrated to probe and understand detailed reaction kinetics and the processes by which solid biomass particles are transformed into syngas and chemicals by reactive flash volatilization.

Schmidt, Lanny D

2009-05-01T23:59:59.000Z

134

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS  

E-Print Network (OSTI)

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

135

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents (OSTI)

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

136

SYNGAS FROM BIOMASS GASIFICATION AS FUEL FOR GENERATOR.  

E-Print Network (OSTI)

??The emergence of biomass based energy warrants the evaluation of syngas from biomass gasification as a fuel for personal power systems. The objectives of this (more)

Shah, Ajay

2009-01-01T23:59:59.000Z

137

Assumptions to the Annual Energy Outlook 2000 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module (RFM) consists of five distinct submodules that represent the major renewable energy technologies. Although it is described here, conventional hydroelectric is included in the Electricity Market Module (EMM) and is not part of the RFM. Similarly, ethanol modeling is included in the Petroleum Market Module (PMM). Some renewables, such as municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not require the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using wind, solar, and geothermal energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

138

Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources  

DOE Green Energy (OSTI)

This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

Donaldson, T.L.; Culberson, O.L.

1983-06-01T23:59:59.000Z

139

Renewable & Alternative Fuels | U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Unlike fossil fuels, which are exhaustible, renewable energy sources regenerate and can be sustained indefinitely. The five renewable sources used most often are ...

140

Patriot Renewable Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Fuels LLC Renewable Fuels LLC Jump to: navigation, search Name Patriot Renewable Fuels, LLC Place Geneseo, Illinois Zip 61254 Product An Illinois-based firm developing a 378m-litre (100m-gallon) per year ethanol plant near Annaway, Illinois. Coordinates 42.793381°, -77.81616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.793381,"lon":-77.81616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Renewable & Alternative Fuels - Analysis & Projections - U.S ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency. ... Biomass; Geothermal; Hydropower; Solar ...

142

Policies for Renewable Energies/Biomass in India | Open Energy Information  

Open Energy Info (EERE)

Policies for Renewable Energies/Biomass in India Policies for Renewable Energies/Biomass in India Jump to: navigation, search Name Policies for Renewable Energies/Biomass in India Agency/Company /Organization Government of India Sector Energy Focus Area Renewable Energy, Biomass Topics Policies/deployment programs Website http://www.nri.org/projects/bi Country India UN Region South-Eastern Asia References Policies for Renewable Energies/Biomass in India[1] Overview "India's search for new and renewable energy resources that would ensure sustainable development and energy security began in early 70's of the last century. Consequently, use of various renewable energy resources and efficient use of energy were identified as the two thrust areas of the sustainable development. Realising the need for concentrated efforts in

143

Second Generation Renewable Fuels Blue-Green Seminar  

E-Print Network (OSTI)

Abstract Second Generation Renewable Fuels Blue-Green Seminar at University of Michigan by Michael Ladisch Laboratory of Renewable Resources Engineering Purdue University Potter Engineering Center 500 footprint will require commercialization of industrial processes that transform renewable lignocellulosic

Eustice, Ryan

144

Alternative Fuels Data Center: Renewable Energy Property Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Energy Renewable Energy Property Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Renewable Energy Property Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Renewable Energy Property Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Renewable Energy Property Tax Credit on Google Bookmark Alternative Fuels Data Center: Renewable Energy Property Tax Credit on Delicious Rank Alternative Fuels Data Center: Renewable Energy Property Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Renewable Energy Property Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Energy Property Tax Credit Taxpayers who construct, purchase, or lease renewable energy property may

145

Los Alamos improves biomass-to-fuel process  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos improves biomass-to-fuel process Los Alamos improves biomass-to-fuel process Los Alamos scientists published an article in the scientific journal Nature Chemistry that...

146

Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions,  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Google Bookmark Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Delicious Rank Alternative Fuels Data Center: Biodiesel and Renewable Diesel Definitions, Registration, and Labeling Requirements on Digg

147

Bioethanol: A Renewable Transportation Fuel from Biomass  

SciTech Connect

Environmentally acceptable scenarios exist in which bioethanol is a major energy carrier for a sustainable transportation sector. Significant progress has been made in developing the new technologies needed but they remain to be proven at the commercial scale.

Riley, C. J.

2002-01-01T23:59:59.000Z

148

Fuel Cell Power Plants Renewable and Waste Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plants Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * Premier developer of stationary fuel Premier developer of stationary fuel cell technology - founded in 1969 * Over 50 installations in North America, Europe, and Asia * Industrial, commercial, utility products products * 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. g Product Line Based on Stack Building Block Cell Package and Stack Four-Stack Module DFC3000 Two 4-Stack Modules 2.8 MW Single-Stack Module Single Stack Module DFC1500 One 4-Stack Module 1.4 MW DFC300

149

Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel to someone by E-mail Share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Facebook Tweet about Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Twitter Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Google Bookmark Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Delicious Rank Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on Digg Find More places to share Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol

150

Biomass Cofiring Update 2002  

Science Conference Proceedings (OSTI)

Biomass is a renewable energy source. When cofired with coal in a plant that would normally fire 100% coal as the fuel, biomass becomes a renewable source of electricityfor that fraction of electricity that is generated from the biomass fraction of the heat in the fuel mix to the power plant. For electric power generation organizations that have coal-fired generation, cofiring biomass with coal will often be the lowest-cost form of renewable power.

2003-07-11T23:59:59.000Z

152

Deconst of lignocell biomass to fuels and chems, 2011.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

CH02CH06-Chundawat CH02CH06-Chundawat ARI 27 January 2011 20:20 R E V I E W S I N A D V A N C E Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals Shishir P. S. Chundawat, 1,2,∗ Gregg T. Beckham, 3,4,6,7,∗ Michael E. Himmel, 5,8 and Bruce E. Dale 1,2 1 Great Lakes Bioenergy Research Center, East Lansing, Michigan 48824; email: chundawa@msu.edu 2 Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824 3 National Bioenergy Center, 4 National Advanced Biofuels Consortium, and 5 Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401; email: gregg.beckham@nrel.gov 6 Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado 80401 7 Renewable and Sustainable Energy Institute, Boulder, Colorado 80309 8 Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee

153

Current Research on Thermochemical Conversion of Biomass at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

The thermochemical research platform at the National Bioenergy Center, National Renewable Energy Laboratory (NREL) is primarily focused on conversion of biomass to transportation fuels using non-biological techniques. Research is conducted in three general areas relating to fuels synthesis via thermochemical conversion by gasification: (1) Biomass gasification fundamentals, chemistry and mechanisms of tar formation; (2) Catalytic tar reforming and syngas cleaning; and (3) Syngas conversion to mixed alcohols. In addition, the platform supports activities in both technoeconomic analysis (TEA) and life cycle assessment (LCA) of thermochemical conversion processes. Results from the TEA and LCA are used to inform and guide laboratory research for alternative biomass-to-fuels strategies. Detailed process models are developed using the best available material and energy balance information and unit operations models created at NREL and elsewhere. These models are used to identify cost drivers which then form the basis for research programs aimed at reducing costs and improving process efficiency while maintaining sustainability and an overall net reduction in greenhouse gases.

Baldwin, R. M.; Magrini-Bair, K. A.; Nimlos, M. R.; Pepiot, P.; Donohoe, B. S.; Hensley, J. E.; Phillips, S. D.

2012-04-05T23:59:59.000Z

154

Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Resources Overview Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Darlene Steward, NREL Biogas and Fuel Cells Workshop Golden, CO June 11-13, 2012 2 Objective * Identify the primary opportunities and challenges for producing and utilizing methane from renewable resources o Biogas from digestion of: - Manure Management - Wastewater Treatment - Food Processing o Landfill gas 3 Bio-energy Pathways; Three Broad Categories of Products Biomass to liquid fuels pathways Source; EPA, NREL, State Bioenergy Primer, Sept. 15, 2009 Biomass to bioproducts pathways 4 Energy Product Pathway is the Focus of this Workshop Biomass to electricity and/or heat pathways Focus on * Landfill gas * Wastewater treatment sludge * Animal manure * Food processing Source; EPA, NREL, State Bioenergy Primer, Sept. 15, 2009

155

Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Fast Pyrolysis to Biomass Fast Pyrolysis to Transportation Fuels Mark M. Wright, Justinus A. Satrio, and Robert C. Brown Iowa State University Daren E. Daugaard ConocoPhillips Company David D. Hsu National Renewable Energy Laboratory Technical Report NREL/TP-6A20-46586 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels Mark M. Wright, Justinus A. Satrio, and Robert C. Brown Iowa State University

156

Minimally refined biomass fuels: an economic shortcut  

DOE Green Energy (OSTI)

An economic shortcut can be realized if the sugars from which ethanol is made are utilized directly as concentrated aqueous solutions for fuels rather than by further refining them through fermentation and distillation steps. Simple evaporation of carbohydrate solutions from sugar cane or sweet sorghum, or from hydrolysis of starch or cellulose content of many plants yield potential liquid fuels of energy contents (on a volume basis) comparable to highly refined liquid fuels like methanol and ethanol. The potential utilization of such minimally refined biomass derived fuels is discussed and the burning of sucrose-ethanol-water solutions in a small modified domestic burner is demonstrated. Other potential uses of sugar solutions or emulsion and microemulsions in fuel oils for use in diesel or turbine engines are proposed and discussed.

Pearson, R.K.; Hirschfeld, T.B.

1980-07-01T23:59:59.000Z

157

Fuel Cell Technologies Office: Delivering Renewable Hydrogen: A Focus on  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivering Renewable Delivering Renewable Hydrogen: A Focus on Near-Term Applications to someone by E-mail Share Fuel Cell Technologies Office: Delivering Renewable Hydrogen: A Focus on Near-Term Applications on Facebook Tweet about Fuel Cell Technologies Office: Delivering Renewable Hydrogen: A Focus on Near-Term Applications on Twitter Bookmark Fuel Cell Technologies Office: Delivering Renewable Hydrogen: A Focus on Near-Term Applications on Google Bookmark Fuel Cell Technologies Office: Delivering Renewable Hydrogen: A Focus on Near-Term Applications on Delicious Rank Fuel Cell Technologies Office: Delivering Renewable Hydrogen: A Focus on Near-Term Applications on Digg Find More places to share Fuel Cell Technologies Office: Delivering Renewable Hydrogen: A Focus on Near-Term Applications on AddThis.com...

158

Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Landfills Convert Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Google Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Delicious Rank Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on AddThis.com... May 25, 2013 Landfills Convert Biogas Into Renewable Natural Gas

159

Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Natural Gas Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Delicious Rank Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Digg Find More places to share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on AddThis.com... April 13, 2013

160

Renewables for TransportationTransportation  

E-Print Network (OSTI)

thermal biomass Tank to Wheel Example renewable fuel options: Biofuels biogas Process heat/steam: Solar)) Biofuels, biogas Renewable electricity Renewable H2 sequestration (CCS)) Electricity: solar PV, wind

California at Davis, University of

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature MarketProjected Biomass Utilization for Fuels and Power in a Mature Market  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy 2013 Prepared by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

162

Economics of producing fuel pellets from biomass  

SciTech Connect

An engineering economic analysis of a biomass pelleting process was performed for conditions in North America. The pelletization of biomass consists of a series of unit operations: drying, size reduction, densifying, cooling, screening, and warehousing. Capital and operating cost of the pelleting plant was estimated at several plant capacities. Pellet production cost for a base case plant capacity of 6 t/h was about $51/t of pellets. Raw material cost was the largest cost element of the total pellet production cost followed by personnel cost, drying cost, and pelleting mill cost. An increase in raw material cost substantially increased the pellet production cost. Pellet plants with a capacity of more than 10 t/h decreased the costs to roughly $40/t of pellets. Five different burner fuels - wet sawdust, dry sawdust, biomass pellets, natural gas, and coal were tested for their effect on the cost of pellet production. Wet sawdust and coal, the cheapest burner fuels, produced the lowest pellet production cost. The environmental impacts due to the potential emissions of these fuels during the combustion process require further investigation.

Mani, S.; Sokhansanj, S.; Bi, X.; Turhollow, A. [University of British Columbia, Vancouver, BC (Canada). Dept. of Biology & Chemical Engineering

2006-05-15T23:59:59.000Z

163

2012 Sino-US Symposium on Eco-agriculture and Biomass Energy Industry Renewable Energy Session  

E-Print Network (OSTI)

2012 Sino-US Symposium on Eco-agriculture and Biomass Energy Industry Renewable Energy Session and Biosystems Engineering, University of Minnesota. 9:05 am Overview of Renewable Energy and Environmental, Initiative for Renewable Energy and the Environment, A signature program of the Institute on the Environment

Minnesota, University of

164

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Fuel Cells Photo of...

165

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

166

A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels  

DOE Green Energy (OSTI)

Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can be produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.

Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.; Dai, Ziyu; Ramasamy, Karthikeyan K.; Zhu, Yunhua

2010-09-01T23:59:59.000Z

167

A new generation of renewable fuels is on the horizon  

Science Conference Proceedings (OSTI)

The lead inventor of a suite of technologies that can be used to convert triglyceride oils from camelina and other plants into renewable fuels and chemicals discusses two process schemes that are nearing commercialization. A new generation of renewable fue

168

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

Just. The welfare economics of a biofuel tax credit and theD. Zilberman. Challenge of biofuel: ?lling the tank withoutsuch as renewable fuel (biofuel) standards (RFS), fuel GHG

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

169

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

SciTech Connect

ABSTRACT The Texas Panhandle is regarded as the ??Cattle Feeding Capital of the World?, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO??s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco??the primary source of potable water for Waco??s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 ?? Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 ?? Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and Califor

John M. Sweeten, Kalyan Annamalai Brent Auvermann Saqib Mukhtar Sergio C. Capareda Cady Engler Wyatte Harman J.N. Reddy, Robert DeOtte David B. Parker Dr. B.A. Stewart

2012-05-03T23:59:59.000Z

170

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

SciTech Connect

The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling beh

Kalyan Annamalai, John M. Sweeten, Brent W. Auvermann, Saqib Mukhtar, Sergio Caperada Cady R. Engler, Wyatte Harman Reddy JN Robert Deotte

2012-05-03T23:59:59.000Z

171

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

Science Conference Proceedings (OSTI)

The Texas Panhandle is regarded as the â??Cattle Feeding Capital of the Worldâ?, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFOâ??s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Wacoâ??the primary source of potable water for Wacoâ??s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 â?? Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 â?? Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys a

John M. Sweeten, Kalyan Annamalai Brent Auvermann Saqib Mukhtar Sergio C. Capareda Cady Engler Wyatte Harman J.N. Reddy, Robert DeOtte David B. Parker Dr. B.A. Stewart

2012-05-02T23:59:59.000Z

172

The Impact of Biomass Fuels on Flame Structure and Pollutant Formation during Biomass Cofiring Combustion.  

E-Print Network (OSTI)

??Cofiring of biomass in pulverized coal boilers for large-scale power generation requires that current combustion standards of stability, reliability, emission and fuel conversion efficiency are (more)

Holtmeyer, Melissa Lauren

2012-01-01T23:59:59.000Z

173

State Grid Biomass Fuel and Combustion Technology Laboratory...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon State Grid Biomass Fuel and Combustion Technology Laboratory Jump to: navigation, search Name State Grid...

174

Biomass fuel systems: directory of sources and potential users  

DOE Green Energy (OSTI)

Sources and potential users of technical information on biomass fuel systems are identified. Organizations and individual contacts are listed in various production and conversion categories.

Henry, J.F.; Salo, D.J.; Schauffler, M.S.; Smith, B.T.

1978-08-01T23:59:59.000Z

175

Strengthening Sintering of Refractory Iron Ore with Biomass Fuel  

Science Conference Proceedings (OSTI)

Presentation Title, Strengthening Sintering of Refractory Iron Ore with Biomass Fuel. Author(s), Xiaohui Fan, Zhiyun Ji, Min Gan, Xuling Chen, Wenqi Li. On-Site

176

EPA finalizes Renewable Fuel Standard for 2013; additional ...  

U.S. Energy Information Administration (EIA)

... of producing significant volumes of non-ethanol advanced biofuels fuels such as biodiesel, renewable diesel, and biogas; Lacking foresight into EPA's future ...

177

RINs and RVOs are used to implement the Renewable Fuel ...  

U.S. Energy Information Administration (EIA)

To increase the amount of biofuels in gasoline, the Renewable Fuel Standard (RFS) administered by the Environmental Protection Agency (EPA) was enacted through laws ...

178

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council Northwest Power Pool Area This...

179

Light-Powered Microbial Fuel Cell Offering Clean, Renewable ...  

Light-Powered Microbial Fuel Cell Offering Clean, Renewable Hydrogen-Based Alternative Energy Source Inventors: Daniel Noguera, Timothy Donohue, Marc Anderson ...

180

EA-1887: Renewable Fuel Heat Plant Improvements at the National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of...

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Template:Set RenewableFuelStandard | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search TODO: Document Retrieved from "http:en.openei.orgwindex.php?titleTemplate:SetRenewableFuelStandard&oldid269035" Category: Articles with...

182

Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels  

E-Print Network (OSTI)

for Safety and Grid Interface Direct Fuel Cell Module: FuelCell Energy, the FuelCell Energy logo, Direct Fuel generation of combined heat andcombined heat and power ­Clean Power with natural gas f lfuel ­Renewable Power with biofuels ·Grid connected power generationgeneration ­High Efficiency Grid support

183

FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS  

DOE Green Energy (OSTI)

This final technical report describes research conducted between July 1, 2000, and June 30, 2002, for the project entitled ''Fuel Lean Biomass Reburning in Coal-Fired Boilers,'' DOE Award No. DE-FG26-00NT40811. Fuel Lean Biomass Reburning is a method of staging fuel within a coal-fired utility boiler to convert nitrogen oxides (NOx) to nitrogen by creating locally fuel-rich eddies, which favor the reduction of NOx, within an overall fuel lean boiler. These eddies are created by injecting a supplemental fuel source, designated as the reburn fuel, downstream of the primary combustion zone. Chopped biomass was the reburn fuel for this project. Four parameters were explored in this research: the initial oxygen concentration ranged between 1%-6%, the amount of biomass used as the reburn fuel ranged between from 0%-23% of the total % energy input, the types of biomass used were low nitrogen switchgrass and high nitrogen alfalfa, and the types of carrier gases used to inject the biomass (nitrogen and steam). Temperature profiles and final flue gas species concentrations are presented in this report. An economic evaluation of a potential full-scale installation of a Fuel-Lean Biomass Reburn system using biomass-water slurry was also performed.

Jeffrey J. Sweterlitsch; Robert C. Brown

2002-07-01T23:59:59.000Z

184

FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS  

SciTech Connect

This final technical report describes research conducted between July 1, 2000, and June 30, 2002, for the project entitled ''Fuel Lean Biomass Reburning in Coal-Fired Boilers,'' DOE Award No. DE-FG26-00NT40811. Fuel Lean Biomass Reburning is a method of staging fuel within a coal-fired utility boiler to convert nitrogen oxides (NOx) to nitrogen by creating locally fuel-rich eddies, which favor the reduction of NOx, within an overall fuel lean boiler. These eddies are created by injecting a supplemental fuel source, designated as the reburn fuel, downstream of the primary combustion zone. Chopped biomass was the reburn fuel for this project. Four parameters were explored in this research: the initial oxygen concentration ranged between 1%-6%, the amount of biomass used as the reburn fuel ranged between from 0%-23% of the total % energy input, the types of biomass used were low nitrogen switchgrass and high nitrogen alfalfa, and the types of carrier gases used to inject the biomass (nitrogen and steam). Temperature profiles and final flue gas species concentrations are presented in this report. An economic evaluation of a potential full-scale installation of a Fuel-Lean Biomass Reburn system using biomass-water slurry was also performed.

Jeffrey J. Sweterlitsch; Robert C. Brown

2002-07-01T23:59:59.000Z

185

Biomass power and state renewable energy policies under electric industry restructuring  

DOE Green Energy (OSTI)

Several states are pursuing policies to foster renewable energy as part of efforts to restructure state electric power markets. The primary policies that states are pursuing for renewables are system benefits charges (SBCs) and renewable portfolio standards (RPSs). However, the eligibility of biomass under state RPS and SBC policies is in question in some states. Eligibility restrictions may make it difficult for biomass power companies to access these policies. Moreover, legislative language governing the eligibility of biomass power is sometimes vague and difficult to interpret. This paper provides an overview of state RPS and SBC policies and focuses on the eligibility of biomass power. For this paper, the authors define biomass power as using wood and agricultural residues and landfill methane, but not waste-to-energy, to produce energy.

Porter, K.; Wiser, R.

2000-08-01T23:59:59.000Z

186

Assessment of Feasibility of Biomass Fuel Conversion in  

E-Print Network (OSTI)

Assessment of Feasibility of Biomass Fuel Conversion in Interior Villages #12;Is it feasible to convert diesel electrical systems in Interior Alaska villages to wood biomass systems? How would this type;Biomass Investment and Technology Boilers, wood gasification, or pyrolysis Existing combined heat

Ruess, Roger W.

187

LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS  

DOE Green Energy (OSTI)

Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

G. L. Hawkes; J. E. O'Brien; M. G. McKellar

2011-11-01T23:59:59.000Z

188

Renewable Energy: Solar Fuels GRC and GRS  

DOE Green Energy (OSTI)

This Gordon Research Conference seeks to bring together chemists, physicists, materials scientists and biologists to address perhaps the outstanding technical problem of the 21st Century - the efficient, and ultimately economical, storage of energy from carbon-neutral sources. Such an advance would deliver a renewable, environmentally benign energy source for the future. A great technological challenge facing our global future is energy. The generation of energy, the security of its supply, and the environmental consequences of its use are among the world's foremost geopolitical concerns. Fossil fuels - coal, natural gas, and petroleum - supply approximately 90% of the energy consumed today by industrialized nations. An increase in energy supply is vitally needed to bring electric power to the 25% of the world's population that lacks it, to support the industrialization of developing nations, and to sustain economic growth in developed countries. On the geopolitical front, insuring an adequate energy supply is a major security issue for the world, and its importance will grow in proportion to the singular dependence on oil as a primary energy source. Yet, the current approach to energy supply, that of increased fossil fuel exploration coupled with energy conservation, is not scaleable to meet future demands. Rising living standards of a growing world population will cause global energy consumption to increase significantly. Estimates indicate that energy consumption will increase at least two-fold, from our current burn rate of 12.8 TW to 28 - 35 TW by 2050. - U.N. projections indicate that meeting global energy demand in a sustainable fashion by the year 2050 will require a significant fraction of the energy supply to come carbon free sources to stabilize atmospheric carbon dioxide levels at twice the pre-anthropogenic levels. External factors of economy, environment, and security dictate that this global energy need be met by renewable and sustainable sources from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The 'grand challenge' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source. Speakers will discuss recent advances in homoogeneous and heterogeneous catalysis of multi-electron transfer processes of importance to solar fuel production, such as water oxidation and reduction, and carbon dioxide reduction. Speakers will also discuss advances in scaleably manufacturable systems for the capture and conversion of sunlight into electrical charges that can be readily coupled into, and utilized for, fuel production in an integrated system.

Nathan Lewis

2010-02-26T23:59:59.000Z

189

EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Fuel Heat Plant Improvements at the National Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1) EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1) Summary This EA evaluates the environmental impacts of a proposal to make improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of regional wood sources. DOE/EA-1887 supplements a prior EA (DOE/EA-1573, July 2007) and is also referred to as DOE/EA-1573-S1. Public Comment Opportunities None available at this time. Documents Available for Download April 9, 2012 EA-1887: Finding of No Significant Impact

190

Making Biofuel Renewable: Sustainable Phosphorus Recovery from Microbial Biomass McKay Gifford and Paul Westerhoff  

E-Print Network (OSTI)

Making Biofuel Renewable: Sustainable Phosphorus Recovery from Microbial Biomass McKay Gifford, BioresourceTechnology, 102(2), 1697-1703. Biomass Composition Biofuel Processing Anion Exchange Microwave depletion indicate that future energy must come from biofuel. Biodiesel from photosynthetic microorganisms

Hall, Sharon J.

191

BioFacts: Fueling a stronger economy, Thermochemical conversion of biomass  

DOE Green Energy (OSTI)

A primary mission of the US DOE is to stimulate the development, acceptance, and use of transportation fuels made from plants and wastes called biomass. Through the National Renewable Energy Laboratory (NREL), Doe is developing and array of biomass conversion technologies that can be easily integrated into existing fuel production and distribution systems. The variety of technology options being developed should enable individual fuel producers to select and implement the most cost-effective biomass conversion process suited to their individual needs. Current DOE biofuels research focuses on the separate and tandem uses of biochemical and thermochemical conversion processes. This overview specifically addresses NREL`s thermochemical conversion technologies, which are largely based on existing refining processes.

NONE

1994-12-01T23:59:59.000Z

192

Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Renewable Fuels 'Plus' Research and Alternative Renewable Fuels &#039;Plus&#039; Research and Development Fund (Ontario, Canada) Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario, Canada) < Back Eligibility Commercial State/Provincial Govt Industrial Local Government Schools Institutional Program Info State Ontario Program Type Grant Program Provider Ministry of Agriculture, Food, and Rural Affairs "Exploration of new markets and new uses for bioproducts, alternative renewable fuels and their co-products will contribute to the long term sustainability of Ontario's agri-food, energy and rural sectors. Investment in research will help position Ontario to take advantage of new technologies in these areas. The Alternative Renewable Fuels 'Plus' Research and Development Fund is a

193

Reburning renewable biomass for emissions control and ash deposition effects in power generation  

E-Print Network (OSTI)

Cattle biomass (CB) has been proposed as a renewable, supplementary fuel for co-firing and reburning. Reburning coal with CB has the potential to reduce NOx and Hg emissions from coal fired systems. The present research focuses on three areas of combustion: 1) Biomass reburning experiments are conducted to determine the optimum operating conditions for the NOx reduction using blends of coal and CB as reburn fuels. 2) Since CB contains higher ash contents compared to coals, the fouling behavior is also investigated under the transient and short-time operation. 3) Finally CB contains higher Cl compared to coals, which oxidizes Hg to HgCl2. To understand the Hg oxidation behavior, a fundamental study of Hg oxidation in coal combustion is conducted using a plug flow reactor (PFR). The main parameters investigated are types of the reburn fuel, reburn equivalence ratios (ERRBZ), O2 concentrations in the reburn gas, injection angles of the reburn fuel, cross-sectional geometries of the reburn nozzles, symmetric and asymmetric reburn injections, reburn heat inputs, baseline NOx concentrations, and presence and absence of the heat exchangers (HEX). The results of reburning show that CB is a very effective fuel in NOx reduction, and the extent of NOx reduction is strongly dependent to the ERRBZ. The optimum conditions of the boiler operation for biomass reburning are as follows: ERRBZ = 1.1, 45 upward circular reburn nozzles, 12.5% O2 in the reburn gas, symmetric injection, and presence of HEXs. To make an effective reburn process, the baseline NOx concentrations must be higher than 230 g/GJ (0.5 lb/mmBTU) and the reburn heat input higher than 20%. The results of ash fouling show the presence of ash in the hotter region of the furnace seems to promote heat radiation thus augmenting the heat transfer to the HEX. The growth of the layer of ash depositions over longer periods typically lowers overall heat transfer coefficients. The addition of HCl to Hg containing gases in the PFR significantly increases Hg oxidations. The addition of NO inhibited the overall reaction and shifted the reaction temperature higher while the addition of O2 promoted Hg oxidations and lowered the reaction temperature. For heterogeneous cases, the use of the VWT catalyst promotes the reduction of Hg0 and shifted the reaction temperatures lower than those for homogeneous cases.

Oh, Hyuk Jin

2008-08-01T23:59:59.000Z

194

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS  

DOE Green Energy (OSTI)

The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Order has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.

Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

2000-10-24T23:59:59.000Z

195

Biomass co-firing: A renewable alternative for utilities  

DOE Green Energy (OSTI)

Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

Shepherd, P.

2000-06-02T23:59:59.000Z

196

Biological production of liquid fuels from biomass  

DOE Green Energy (OSTI)

A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

Not Available

197

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Biomass to Fuels Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into fuels. February 7, 2013 Artist's conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the production of energy-dense fuels, so these linear chains can then be converted into alkanes used in gasoline and diesel fuel. Image by Josh Smith, Los Alamos National Laboratory. Artist's conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the

198

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Biomass to Fuels Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into fuels. February 7, 2013 Artist's conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the production of energy-dense fuels, so these linear chains can then be converted into alkanes used in gasoline and diesel fuel. Image by Josh Smith, Los Alamos National Laboratory. Artist's conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the

199

The National Energy Modeling System: An Overview 2000 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

renewable fuels module (RFM) consists of five submodules that represent the various types of renewable energy technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (wind, solar, and geothermal) are used to generate electricity, the interaction with the electricity market module (EMM) is important for modeling grid-connected renewable-electric applications. The penetration of grid-connected generation technologies, with the exception of municipal solid waste, is determined by EMM. Hydropower is included in EMM directly. renewable fuels module (RFM) consists of five submodules that represent the various types of renewable energy technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (wind, solar, and geothermal) are used to generate electricity, the interaction with the electricity market module (EMM) is important for modeling grid-connected renewable-electric applications. The penetration of grid-connected generation technologies, with the exception of municipal solid waste, is determined by EMM. Hydropower is included in EMM directly. Figure 11. Renewable Fuels Module Structure Each submodule of RFM is solved independently of the rest. Because variable operation and maintenance costs for renewable technologies are lower than for any other major generating technology and they produce almost no air pollution, all available renewable generating capacity is dispatched first by EMM.

200

Iowa Renewable Fuels Association IRFA | Open Energy Information  

Open Energy Info (EERE)

Renewable Fuels Association IRFA Renewable Fuels Association IRFA Jump to: navigation, search Name Iowa Renewable Fuels Association (IRFA) Place Johnston, Iowa Zip 50131-2948 Sector Renewable Energy Product Fosters the development and growth of renewable fuels industry through education, promotion and infrastructure development in Iowa. Coordinates 33.831879°, -81.800645° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.831879,"lon":-81.800645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS  

DOE Green Energy (OSTI)

CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in existing boilers, evaluation of these composite fuels to determine their applicability to the major combustor types, development of preliminary designs and economic projections for commercial facilities producing up to 200,000 tons per year of biomass/waste-containing fuels, and the development of dewatering technologies to reduce the moisture content of high-moisture biomass and waste materials during the pelletization process.

David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

2001-04-20T23:59:59.000Z

202

November 2011 Competition for biomass among  

E-Print Network (OSTI)

November 2011 Competition for biomass among renewable energy policies: Liquid fuels to 20% by marketing year 2020/21. All renewable energies (biomass, hydropower, wind, solar, geothermal/192020/21: Based on assumed technology patterns, biomass supplies respond faster than competing renewable energy

Noble, James S.

203

Energy Basics: Hydrogen and Fuel Cell Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen and Fuel Cell...

204

The implications of deregulation for biomass and renewable energy in California. Revision  

SciTech Connect

The California legislature took up electric utility deregulation legislation during 1996, culminating in AB 1890, California`s landmark restructuring legislation. The legislation created a transition funding program for renewables. No permanent program for the support of renewable energy production extending beyond the end of the transition period (2002) is included in AB 1890. AB 1890 assigned to the California Energy Commission (CEC) the task of determining how to allocate the renewables transition funds between existing and new renewable generating sources, and among the various renewable energy technologies that are available for deployment in California. The California Environmental Protection Agency (Cal/EPA) was assigned the task of reporting to the legislature about the specific benefits provided by biomass energy production in California, and about policies that could shift some of the cost of biomass energy production away from the electric ratepayer, on to beneficiaries of the environmental benefits of biomass energy production. This study describes the development of the CEC and Cal/EPA reports to the California legislature, and provides an analysis of the major issues that were encountered during the course of their development. The study concludes with a consideration of the future prospects for biomass and renewable energy production in the state.

Morris, G. [Future Resources Associates, Inc., Berkeley, CA (United States)

1998-08-01T23:59:59.000Z

205

Renewable hydrogen production for fossil fuel processing  

DOE Green Energy (OSTI)

The objective of this mission-oriented research program is the production of renewable hydrogen for fossil fuel processing. This program will build upon promising results that have been obtained in the Chemical Technology Division of Oak Ridge National Laboratory on the utilization of intact microalgae for photosynthetic water splitting. In this process, specially adapted algae are used to perform the light-activated cleavage of water into its elemental constituents, molecular hydrogen and oxygen. The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of their hydrogen-producing capability. These are: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the original development of an evacuated photobiological reactor for real-world engineering applications; (6) the potential for using modern methods of molecular biology and genetic engineering to maximize hydrogen production. The significance of each of these points in the context of a practical system for hydrogen production is discussed. This program will be enhanced by collaborative research between Oak Ridge National Laboratory and senior faculty members at Duke University, the University of Chicago, and Iowa State University. The special contribution that these organizations and faculty members will make is access to strains and mutants of unicellular algae that will potentially have useful properties for hydrogen production by microalgal water splitting.

Greenbaum, E.

1994-09-01T23:59:59.000Z

206

NREL: Renewable Resource Data Center - Biomass Resource Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Resource Information Photo of an NREL researcher checking the tubing of a small-scale bioreactor. Dr. PinChing Maness checks a bioreactor that produces hydrogen via the...

207

Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006  

DOE Green Energy (OSTI)

Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

Not Available

2006-10-01T23:59:59.000Z

208

AEO2011: Renewable Energy Generation by Fuel - Northeast Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council NYC-Westchester This dataset comes...

209

AEO2011: Renewable Energy Generation by Fuel - Southwest Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Southwest Power Pool South This dataset comes from the Energy Information...

210

AEO2011: Renewable Energy Generation by Fuel - Northeast Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council Northeast This dataset comes from...

211

AEO2011: Renewable Energy Generation by Fuel - Northeast Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council Long Island This dataset comes from...

212

AEO2011: Renewable Energy Generation by Fuel - Northeast Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council Upstate New York This dataset comes...

213

AEO2011: Renewable Energy Generation by Fuel - Southwest Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Southwest Power Pool North This dataset comes from the Energy Information...

214

Renewable Fuels Module, Appendix - Model Performance, Model Documentation  

Reports and Publications (EIA)

This appendix discusses performance aspects of the Renewable Fuels Module (RFM). It is intended to present the pattern of response of the RFM to typical changes in its major inputs from other NEMS modules.

Perry M. Lindstrom

1995-06-01T23:59:59.000Z

215

Southeast Renewable Fuels LLC SRF | Open Energy Information  

Open Energy Info (EERE)

Lauderdale, Florida Zip 33309 Product South Florida-based owner and developer of sweet sorghum-to-ethanol plants. References Southeast Renewable Fuels LLC (SRF)1 LinkedIn...

216

Hydrothermal processing of high-lipid biomass to fuels  

E-Print Network (OSTI)

High-lipid algae are potential sources of biofuels. Lipids in this biomass provide a straightforward chemical route to hydrocarbon-based high energy-density fuels needed for diesel and jet engines. However, current schemes ...

Johnson, Michael C., Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

217

Biomass 2008: Fueling Our Future Conference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference April 18, 2008 - 10:49am Addthis Remarks as Prepared for Delivery by Secretary of Energy Samuel Bodman Thank you and good afternoon. It's good to be with you. I want to thank John Mizroch for introducing me, and to congratulate him and all the folks at the Energy Department's biomass office for pulling together what appears to be a very successful event. Our national energy policy centers around one key idea: we must diversify our energy sources, our energy suppliers, and our energy supply routes. President Bush challenged us to move toward diversification at an aggressive rate when he announced his Advanced Energy Initiative or AEI. AEI provides for the development of energy alternatives to fossil fuels

218

Fuel Cell Technologies Office: Delivering Renewable Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Landill Gas to LNG Plant (PDF 432 KB), Steve Eckhardt, Linde Session 3: Hydrogen from Biogas Moderator: Marc Melaina, National Renewable Energy Laboratory Analysis of a Cluster...

219

Minimally refined biomass fuel. [carbohydrate-water-alcohol mixture  

DOE Patents (OSTI)

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water-solubilizes the carbohydrate; and the alcohol aids in the combustion of the carbohydrate and reduces the viscosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, R.K.; Hirschfeld, T.B.

1981-03-26T23:59:59.000Z

220

Alternative Fuels Data Center: New Mexico Laws and Incentives for Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Standard / Mandate to someone by E-mail Renewable Fuel Standard / Mandate to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for Renewable Fuel Standard / Mandate on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for Renewable Fuel Standard / Mandate on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Renewable Fuel Standard / Mandate on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Renewable Fuel Standard / Mandate on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for Renewable Fuel Standard / Mandate on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for Renewable Fuel Standard / Mandate on AddThis.com...

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Biomass Technologies  

Energy.gov (U.S. Department of Energy (DOE))

There are many types of biomassorganic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastesthat can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007.

222

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

February » February » Conversion of biomass to fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into fuels. February 7, 2013 Artist's conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the production of energy-dense fuels, so these linear chains can then be converted into alkanes used in gasoline and diesel fuel. Image by Josh Smith, Los Alamos National Laboratory. Artist's conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the

223

Community Based Renewable Energy Production Incentive (Pilot...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

eligible for incentives, a generating facility must be 51% locally owned, use renewable energy resources (solar, wind, hydro, certain biomass, fuel cells, and tidal), be no...

224

NREL: Vehicles and Fuels Research - NREL to Showcase Renewable Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL to Showcase Renewable Electricity Generation Systems and Advanced NREL to Showcase Renewable Electricity Generation Systems and Advanced Vehicles at Denver Earth Day Fair April 18, 2013 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will showcase two mobile renewable electricity generation systems and three advanced vehicles-a Toyota Highlander fuel cell electric vehicle, a plug-in Toyota Prius hybrid electric vehicle, and a Mitsubishi i-MiEV electric vehicle-at the Denver Earth Day Fair on April 22. The larger of NREL's two renewable electricity generation systems features a 12 kilowatt biodiesel-powered back-up generator as well as a 1.8 kilowatt photovoltaic array that taps into energy from the sun to produce renewable electricity, which will power the fair. The smaller system includes a 384

225

Production of New Biomass/Waste-Containing Solid Fuels  

DOE Green Energy (OSTI)

CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

Glenn A. Shirey; David J. Akers

2005-09-23T23:59:59.000Z

226

EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid...

227

Process of producing liquid hydrocarbon fuels from biomass  

DOE Patents (OSTI)

A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

Kuester, James L. (Scottsdale, AZ)

1987-07-07T23:59:59.000Z

228

Process of producing liquid hydrocarbon fuels from biomass  

DOE Patents (OSTI)

A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

Kuester, J.L.

1987-07-07T23:59:59.000Z

229

Elastomer Compatibility Testing of Renewable Diesel Fuels  

DOE Green Energy (OSTI)

In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

Frame, E.; McCormick, R. L.

2005-11-01T23:59:59.000Z

230

The implications of deregulation for biomass and renewable energy in California  

SciTech Connect

California has been leading the nation down the path of electric utility deregulation, beginning with the April 1994, California Public Utilities Commission`s (CPUC) Blue Book restructuring proposal. The road for renewable energy producers has been particularly rocky, leaving the future of renewable energy production very much in doubt. The original CPUC proposal provided for competition among generating sources on the basis of price alone, without regard for environmental considerations. The California legislature took up electric utility deregulation legislation during 1996, culminating in AB 1890, California`s landmark restructuring legislation, which was passed unanimously by the Senate and Assembly, and signed into law by the governor on September 28, 1996. AB 1890 assigned to the California Energy Commission (CEC) the task of determining how to allocate the renewables transition funds between existing and new renewable generating sources, and among the various renewable energy technologies that are available for deployment in California. The California Environmental Protection Agency (Cal/EPA) was assigned the task of reporting to the legislature about the specific benefits provided by biomass energy production in California, and about policies that could shift some of the cost of biomass energy production away from the electric ratepayer, on to beneficiaries of the environmental benefits of biomass energy production. This study describes the development of the CEC and Cal/EPA reports to the California legislature, and provides an analysis of the major issues that were encountered during the course of their development. The study concludes with a consideration of the future prospects for biomass and renewable energy production in the state.

Morris, G. [Future Resources Associates, Inc., Berkeley, CA (United States)

1998-07-01T23:59:59.000Z

231

Jet Fuel from Microalgal Lipids; National Renewable Energy Laboratory (NREL) Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Probably our most pressing energy need is Probably our most pressing energy need is to develop domestic, renewable substitutes for imported transportation fuel. Ethanol made from starch or sugar such as corn grain already displaces about 2% of gasoline and making it from cellulosic biomass will allow much greater displacement. Biodiesel made from oil crops such as soybeans can displace some of our diesel use. Unfortunately, neither of these biofuels can help supply jet fuel, for which energy density and low-temperature fuel properties are critical. Ethanol is not dense enough having only about half the energy per volume of jet fuel. Biodiesel has about 80% the energy density of kerosene, but can solidify at the low temperatures of high altitude flight. In

232

The Use of Biomass for Power Generation in the U.S  

Science Conference Proceedings (OSTI)

The report provides an overview of the renewed U.S. market interest in biomass-fueled power generation and a concise look at what's driving interest in biomass-fueled generation, the challenges faced in implementing biomass-fueled generation projects, and the current and future state of biomass-fueled generation. Topics covered include: an overview of biomass-fueled generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in biomass-fueled generation; an evaluation of the challenges that are hindering the implementation of biomass-fueled generation projects; a description of the various feedstocks that can be used for biomass-fueled generation; an evaluation of the biomass supply chain; a description of biomass-fueled generation technologies; a review of the economic drivers of biomass-fueled generation project success; and, profiles of major biomass-fueled generation developers.

NONE

2007-10-15T23:59:59.000Z

233

Bioenergy Technologies Office: Biomass Feedstocks  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the...

234

Clean Energy: Fuel Cells, Batteries, Renewables - Materials ...  

Science Conference Proceedings (OSTI)

Major areas of rapid advancement include fuel cells, wind, solar, and geothermal ... Hot Section Corrosion Issues in Microturbines Operating on B100 Bio-Diesel.

235

Baylor University - Renewable Aviation Fuels Development Center | Open  

Open Energy Info (EERE)

Renewable Aviation Fuels Development Center Renewable Aviation Fuels Development Center Jump to: navigation, search Name Baylor University - Renewable Aviation Fuels Development Center Address One Bear Place #97413 Place Waco, Texas Zip 76798 Region Texas Area Coordinates 31.496762°, -97.305664° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.496762,"lon":-97.305664,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Methanol production from biomass and natural gas as transportation fuel  

Science Conference Proceedings (OSTI)

Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (1) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the US, (2) minimizes emissions of criteria pollutants, (3) reduces greenhouse gas emissions from production and use, (4) is cost-competitive with petroleum fuel, and (5) is compatible with the emerging vehicle technologies, especially those powdered by fuel cells. The methanol yield, production cost, and potential for reduction of overall fuel-cycle CO{sub 2} emissions were evaluated and compared to those of reformulated gasoline. The results show that a process utilizing natural gas and biomass as cofeedstocks can meet the five requirements more effectively than individual processes utilizing those feedstocks separately. When end-use efficiencies are accounted for, the cost per vehicle mile traveled would be less than that of gasoline used in current vehicles. CO{sub 2} emissions from the vehicle fleet would be reduced 66% by methanol used in fuel cell vehicles and 8--36% in flexible-fuel or dedicated-methanol vehicles during the transition period. Methanol produced from natural gas and biomass, together in one process, and used in fuel cell vehicles would leverage petroleum displacement by a factor of about 5 and achieve twice the overall CO{sub 2} emission reduction obtainable from the use of biomass alone.

Borgwardt, R.H. [Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.

1998-09-01T23:59:59.000Z

237

Renewable biomass energy: Understanding regional scale environmental impacts  

DOE Green Energy (OSTI)

If biomass energy is to become a significant component of the US energy sector, millions of acres of farmland must be converted to energy crops. The environmental implications of this change in land use must be quantitatively evaluated. The land use changes will be largely driven by economic considerations. Farmers will grow energy crops when it is profitable to do so. Thus, models which purport to predict environmental changes induced by energy crop production must take into account those economic features which will influence land use change. In this paper, we present an approach for projecting the probable environmental impacts of growing energy crops at the regional scale. The approach takes into account both economic and environmental factors. We demonstrate the approach by analyzing, at a county-level the probable impact of switchgrass production on erosion, evapotranspiration, nitrate in runoff, and phosphorous fertilizer use in multi-county subregions within the Tennessee Valley Authority (TVA) region. Our results show that the adoption of switchgrass production will have different impacts in each subregion as a result of differences in the initial land use and soil conditions in the subregions. Erosion, evapotranspiration, and nitrate in runoff are projected to decrease in both subregions as switchgrass displaces the current crops. Phosphorous fertilizer applications are likely to increase in one subregion and decrease in the other due to initial differences in the types of conventional crops grown in each subregion. Overall these changes portend an improvement in water quality in the subregions with the increasing adoption of switchgrass.

Graham, R.L.; Downing, M.

1993-12-31T23:59:59.000Z

238

Catalytic Fast Pyrolysis of Biomass for the Production of Fuels and Chemicals.  

E-Print Network (OSTI)

??Due to its low cost and large availability lignocellulosic biomass is being studied worldwide as a feedstock for renewable liquid biofuels. Currently there are several (more)

Carlson, Torren Ryan

2010-01-01T23:59:59.000Z

239

Renewable Energy Technology Engineering and Economic Evaluation: Biomass Power Plants 2007  

Science Conference Proceedings (OSTI)

This study prepared an engineering and economic evaluation of 25-, 50-, and 100-MW biomass combustion power plants fired by 100% biomass fuel. The study estimated boiler efficiency, steam cycle heat rate, auxiliary power consumption, net plant heat rate, operation and maintenance (O&M) labor costs, maintenance materials, fuel needs, and raw material requirements. For both capital and annual O&M costs, the costs per kW or MWh are the lowest for 100-MW plants and the highest for 25-MW plants. Due to their ...

2008-03-31T23:59:59.000Z

240

Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS SRS Biomass Cogeneration Plant Tech Stage: Deployed (Operational) Energy Savings Performance Contract Project ID: Task Order No.-KL46299M The technical solution has been deployed to the A-Area at Savannah River Site. Page 1 of 2 Savannah River Site South Carolina Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy Challenge In order to meet the federal energy and environmental management requirements in Presidential Executive Order 13423, DOE Order 430.2B, and the Transformational Energy Action Management (TEAM) Initiative, DOE Secretary Samuel Bodman encouraged the DOE federal complex to utilize third party financing options like the Energy Savings Performance Contract (ESPC). Specifically, this innovative renewable steam plant meets two of the TEAM initiatives, which strengthens the federal requirements by requiring that DOE sites (1)

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Biomass Fuel Cell Systems - DOE Hydrogen and Fuel Cells Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilize ceramic microchannel reactor technology for * reforming of natural gas and biogas fuels for subsequent electrochemical oxidation within a solid-oxide fuel cell (SOFC)....

242

EA-1811: NewPage Corporation Wood Biomass to Liquid Fuel, Wisconsin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: NewPage Corporation Wood Biomass to Liquid Fuel, Wisconsin Rapids, Wisconsin EA-1811: NewPage Corporation Wood Biomass to Liquid Fuel, Wisconsin Rapids, Wisconsin Summary This...

243

EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah Summary This EA evaluates the...

244

Fueling America Through Renewable Resources Purdue extension  

E-Print Network (OSTI)

Streets Coalition www.cts.umn.edu/Education Common job titles: Bike planner Biofuels or low-carbon fuels biofuels for cold climates Evaluate environmental products and processes Maintain infrastructure to reduce Retailer or wholesaler Transportation consulting firm State or federal department of transportation What

245

Changing Biomass, Fossil, and Nuclear Fuel Cycles for Sustainability  

SciTech Connect

The energy and chemical industries face two great sustainability challenges: the need to avoid climate change and the need to replace crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically combining the fossil, biomass, and nuclear fuel cycles.

Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

246

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice  

DOE Green Energy (OSTI)

This Clean Cities Program fact sheet describes aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It discusses performance and lists additional resources.

Not Available

2007-05-01T23:59:59.000Z

247

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)  

Science Conference Proceedings (OSTI)

Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

Not Available

2010-03-01T23:59:59.000Z

248

Competitiveness of Biomass-Fueled Electrical Power Plants Bruce A. McCarl  

E-Print Network (OSTI)

Competitiveness of Biomass-Fueled Electrical Power Plants Bruce A. McCarl Professor Department with suggested rollbacks in greenhouse gas emissions is by employing power plant fueled with biomass. We examine the competitiveness of biomass-based fuel for electrical power as opposed to coal using a mathematical programming

McCarl, Bruce A.

249

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1  

E-Print Network (OSTI)

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1 Department; accepted 6 June 2000 Abstract This paper reviews literature on co-firing of coal with biomass fuels. Here of coal and biomass fuels are presented. Different classes of co-firing methods are identified

Wooldridge, Margaret S.

250

A Biennially Renewable Fuel Resource: Woodchips  

E-Print Network (OSTI)

Recent genetic improvements with some tree species has given us hybrids that have disease resistance, rapid growth, and the ability to regenerate from the stump after harvest. Grown intensively these hybrids are capable of producing and storing a usable 250 mBTU per acre per year on a biennial harvest of the total tree. Employing the best of today's silvicultural techniques and boiler equipment each tree can produce a little more than one boiler horsepower per year. Utilizing non-prime lands for the production of 'hybrid poplars' one acre can generate the wood fuel equivalent of 40 barrels of oil ($8/bbl) or 2500 therms of natural gas ($0.13/therm) per year and can be harvested every other year. Beyond the economic and environmental benefits there are additional merits to be realized by growing your own woodfuel. Like money in the bank, fuel may be withdrawn from the forest bank 'as needed' while the reserves accrue growth. The nutrient rich ash 'remains' can be utilized to sustain the yield of an energy plantation. Unlike other alternative sources of energy that are capital intensive, 'growing your own woodfuel' is labor intensive. You can also receive significant forestry tax incentives; and, above all, you can avoid any fuel 'cartel'.

Krantz, B.

1983-01-01T23:59:59.000Z

251

Overview of An Analysis Project for Renewable Biogas / Fuel Cell Technologies (Presentation)  

DOE Green Energy (OSTI)

Presentation on renewable biogas: as an opportunity for commercialization of fuel cells presented as part of a panel discussion at the 2009 Fuel Cell Seminar, Palm Springs, CA.

Jalalzadeh-Azar, A.

2009-11-19T23:59:59.000Z

252

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

DOE Green Energy (OSTI)

The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and Califor

John M. Sweeten, Kalyan Annamalai

2012-05-03T23:59:59.000Z

253

National Renewable Energy Laboratory (NREL) FY 2005 Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

residues, forest thinnings, energy crops, etc.). Expanding the biomass feedstocks is critical to developing a renewable alternative transportation fuel. The standard outdoor...

254

Table 10.1 Renewable Energy Production and Consumption by ...  

U.S. Energy Information Administration (EIA)

1 Production equals consumption for all renewable energy sources except biofuels. 9 Wood and wood-derived fuels. 2 Total biomass inputs to the ...

255

Large-Scale Renewable Energy Producers Property Tax Abatement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

up to 20 years for real and personal property used to generate electricity from renewable energy resources including solar, wind, biomass*, fuel cells, geothermal or hydro....

256

Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems  

SciTech Connect

The increased use of intermittent renewable power in the United States is forcing utilities to manage increasingly complex supply and demand interactions. This paper evaluates biomass pathways for hydrogen production and how they can be integrated with renewable resources to improve the efficiency, reliability, dispatchability, and cost of other renewable technologies. Two hybrid concepts were analyzed that involve co-production of gaseous hydrogen and electric power from thermochemical biorefineries. Both of the concepts analyzed share the basic idea of combining intermittent wind-generated electricity with a biomass gasification plant. The systems were studied in detail for process feasibility and economic performance. The best performing system was estimated to produce hydrogen at a cost of $1.67/kg. The proposed hybrid systems seek to either fill energy shortfalls by supplying hydrogen to a peaking natural gas turbine or to absorb excess renewable power during low-demand hours. Direct leveling of intermittent renewable electricity production is accomplished with either an indirectly heated biomass gasifier, or a directly heated biomass gasifier. The indirect gasification concepts studied were found to be cost competitive in cases where value is placed on controlling carbon emissions. A carbon tax in the range of $26-40 per metric ton of CO{sub 2} equivalent (CO{sub 2}e) emission makes the systems studied cost competitive with steam methane reforming (SMR) to produce hydrogen. However, some additional value must be placed on energy peaking or sinking for these plants to be economically viable. The direct gasification concept studied replaces the air separation unit (ASU) with an electrolyzer bank and is unlikely to be cost competitive in the near future. High electrolyzer costs and wind power requirements make the hybridization difficult to justify economically without downsizing the system. Based on a direct replacement of the ASU with electrolyzers, hydrogen can be produced for $0.27 premium per kilogram. Additionally, if a non-renewable, grid-mix electricity is used, the hybrid system is found to be a net CO{sub 2}e emitter.

Dean, J.; Braun, R.; Penev, M.; Kinchin, C.; Munoz, D.

2010-01-01T23:59:59.000Z

257

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network (OSTI)

Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester, Dominic Mc on recycled paper #12;1 Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation

258

Biomass Biorefinery for the production of Polymers and Fuels  

DOE Green Energy (OSTI)

The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nations dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the growers ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

Dr. Oliver P. Peoples

2008-05-05T23:59:59.000Z

259

EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50: Flambeau River BioFuels, Inc. Proposed Wood 50: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin Summary NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply

260

On-farm use of biomass fuels: market penetration potential during normal and fuel-emergency conditions  

Science Conference Proceedings (OSTI)

The potential for biomass fuels produced in decentralized facilities to replace the centrally produced fuels currently used in agriculture is examined. Two issues are examined. Will biomass fuels become cost-competitive relative to central fuels. And, what is the potential for biomass fuels to replace central fuels during emergency conditions when central fuels are unavailable. To answer these questions, descriptions of a range of currently available biomass technologies have been prepared and estimates made of current and projected agricultural fuel needs and biomass-feedstock availabilities. A variety of assumptions about future conditions have been adopted, the most important of which is that central fuel prices escalate at 7.5% annually relative to the commodities and inputs used to produce biomass fuel products. Under these assumptions, a number of biomass fuels will become cost-competitive during the 1980s, but most will do so late in the decade. Moreover, once these fuels become cost-competitive, penetration will occur gradually. Market forces thus will not markedly reduce the vulnerability of agriculture to energy-supply interruptions during this period. Biomass fuels could, however, play an important role during a fuel emergency. Estimates indicate they could replace up to about 60% of annual agricultural-sector fuel consumption by 1990, during the course of a fuel emergency of one year's duration.

Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.; Mills, J.B.; CHester, C.V.; Klepper, O.H.; Borkowski, R.J.; Nichols, J.; Rainey, J.A.

1982-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)  

DOE Green Energy (OSTI)

Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

Not Available

2008-06-01T23:59:59.000Z

262

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

263

Hot Corrosion of Nickel-Base Alloys in Biomass-Derived Fuel Simulated Atmosphere  

Science Conference Proceedings (OSTI)

Biomass fuels are considered to be a promising renewable source of energy. However, impurities present in the fuel may cause corrosion problems with the materials used in the hot sections of gas turbines and only limited data are available so far. As part of the Advanced Turbine Systems Program initiated by the U.S. Department of Energy, the present study provides initial data on the hot corrosion resistance of different nickel-base alloys against sodium sulfate-induced corrosion as a baseline, and against salt compositions simulating biomass-derived fuel deposits. Single crystal nickel-superalloy Rene N5, a cast NiCrAlY alloy, a NiCoCrAlY alloy representing industrially used overlay compositions, and a model {beta}NiAl+Hf alloy were tested in 1h thermal cycles at 950 C with different salt coatings deposited onto the surfaces. Whereas the NiCoCrAlY alloy exhibited reasonable resistance against pure sodium sulfate deposits, the NiCrAiY alloy and Rene N5 were attacked severely. Although considered to be an ideal alumina former in air and oxygen at higher temperatures, {beta}NiAl+Hf also suffered from rapid corrosion attack at 950 C when coated with sodium sulfate. The higher level of potassium present in biomass fuels compared with conventional fuels was addressed by testing a NiCoCrAlY alloy coated with salts of different K/Na atomic ratios. Starting at zero Na, the corrosion rate increased considerably when sodium was added to potassium sulfate. In an intermediate region the corrosion rate was initially insensitive to the K/Na ratio but accelerated when very Na-rich compositions were deposited. The key driver for corrosion of the NiCoCrAlY alloy was sodium sulfate rather than potassium sulfate, and no simple additive or synergistic effect of combining sodium and potassium was found.

Leyens, C.; Pint, B.A.; Wright, I.G.

1999-02-28T23:59:59.000Z

264

Impact study on the use of biomass-derived fuels in gas turbines for power generation  

DOE Green Energy (OSTI)

This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

Moses, C.A.; Bernstein, H. [Southwest Research Inst., San Antonio, TX (United States)

1994-01-01T23:59:59.000Z

265

EVermont Renewable Hydrogen Production and Transportation Fueling System  

DOE Green Energy (OSTI)

A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

Garabedian, Harold T.

2008-03-30T23:59:59.000Z

266

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS  

DOE Green Energy (OSTI)

Proposed activities for quarter 8 (3/15/2001--6/14/2002), Boiler Burner Simulation and Experiments: (1) Continue the parametric study of cofiring of pulverized coal and LB in the boiler burner, and determining the combustor performance and emissions of NO, CO, CO{sub 2}, PO{sub 2} and P{sub 4}O{sub 10}, etc. The air-fuel ratio, swirl number of the secondary air stream and moisture effects will also be investigated (Task 4). Gasification: (Task 3) (2) Measuring the temperature profile for chicken litter biomass under different operating conditions. (3) Product gas species for different operating conditions for different fuels. (4) Determining the bed ash composition for different fuels. (5) Determining the gasification efficiency for different operating conditions. Activities Achieved during quarter 8 (3/15/2001--6/14/2002), Boiler Burner Simulation and Experiments: (1) The evaporation and phosphorus combustion models have been incorporated into the PCGC-2 code. Mr. Wei has successfully defended his Ph.D. proposal on Coal: LB modeling studies (Task 4, Appendix C). (2) Reburn experiments with both low and high phosphorus feedlot biomass has been performed (Task 2, Appendix A). (3) Parametric studies on the effect of air-fuel ratio, swirl number of the secondary air stream and moisture effects have been investigated (Task 2, Appendix A). (4) Three abstracts have been submitted to the American Society of Agricultural Engineers Annual International meeting at Chicago in July 2002. Three part paper dealing with fuel properties, cofiring, large scale testing are still under review in the Journal of Fuel. Gasification: (Task 3, Appendix B) (5) Items No. 2, and 3 are 95% complete, with four more experiments yet to be performed with coal and chicken litter biomass blends. (6) Item No. 4, and 5 shall be performed after completion of all the experiments.

Unknown

2002-07-01T23:59:59.000Z

267

Powering Cell Phones with Fuel Cells Running on Renewable Fuels  

DOE Green Energy (OSTI)

The major goals of this project were to increase lifetime, increase energy density, and reduce material costs. The combination of identifying corrosion resistant materials and changing catalysts increased lifetimes. Work to increase the energy density included increasing the concentration of the formic acid fuel from 12M (ca. 50 wt%) to 22M (ca. 85 wt%) and decreasing the amount of fuel crossing over. The largest expense of the device is the cathode catalyst. At the beginning of the project Pt loading was over 8 mg/cm2 on our cathodes. Through optimization work we managed to bring down the cathode loading to approximately half of what we started with.

Dr. Ruiming Zhang

2007-01-31T23:59:59.000Z

268

Model documentation, Renewable Fuels Module of the National Energy Modeling System  

DOE Green Energy (OSTI)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook 1998 (AEO98) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. For AEO98, the RFM was modified in three principal ways, introducing capital cost elasticities of supply for new renewable energy technologies, modifying biomass supply curves, and revising assumptions for use of landfill gas from municipal solid waste (MSW). In addition, the RFM was modified in general to accommodate projections beyond 2015 through 2020. Two supply elasticities were introduced, the first reflecting short-term (annual) cost increases from manufacturing, siting, and installation bottlenecks incurred under conditions of rapid growth, and the second reflecting longer term natural resource, transmission and distribution upgrade, and market limitations increasing costs as more and more of the overall resource is used. Biomass supply curves were also modified, basing forest products supplies on production rather than on inventory, and expanding energy crop estimates to include states west of the Mississippi River using information developed by the Oak Ridge National Laboratory. Finally, for MSW, several assumptions for the use of landfill gas were revised and extended.

NONE

1998-01-01T23:59:59.000Z

269

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS  

DOE Green Energy (OSTI)

Reburn with animal waste yield NO{sub x} reduction of the order of 70-80%, which is much higher than those previously reported in the literature for natural gas, coal and agricultural biomass as reburn fuels. Further, the NO{sub x} reduction is almost independent of stoichiometry from stoichiometric to upto 10% deficient air in reburn zone. As a first step towards understanding the reburn process in a boiler burner, a simplified zero-dimensional model has been developed for estimating the NO{sub x} reduction in the reburn process using simulated animal waste based biomass volatiles. However the first model does not include the gradual heat up of reburn fuel particle, pyrolysis and char combustion. Hence there is a need for more rigorous treatment of the model with animal waste as reburn fuel. To address this issue, an improved zero-dimensional model is being developed which can handle any solid reburn fuel, along with more detailed heterogeneous char reactions and homogeneous global reactions. The model on ''NO{sub x} Reduction for Reburn Process using Feedlot Biomass,'' incorporates; (a) mixing between reburn fuel and main-burner gases, (b) gradual heat-up of reburn fuel accompanied by pyrolysis, oxidation of volatiles and char oxidation, (c) fuel-bound nitrogen (FBN) pyrolysis, and FBN including both forward and backward reactions, (d) prediction of NO{sub x} as a function of time in the reburn zone, and (e) gas phase and solid phase temperature as a function of time. The fuel bound nitrogen is assumed to be released to the gas phase by two processes, (a) FBN evolution to N{sub 2}, HCN, and NH{sub 3}, and (b) FBN oxidation to NO at the char surface. The formulation has been completed, code has been developed, and preliminary runs have been made to test the code. Note that, the current model does not incorporate the overfire air. The results of the simulation will be compared with the experimental results. During this quarter, three journal and four conference publications dealing with utilization of animal waste as fuel have been published. In addition a presentation was made to a utility company interested in the new reburn technology for NO{sub x} reduction.

Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Soyuz Priyadarsan (PhD)

2003-06-01T23:59:59.000Z

270

EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

573-S1: Proposed Renewable Fuel Heat Plant Improvements at the 573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO DOE's Golden Field Office has prepared a draft Supplemental Environmental Assessment (SEA) for proposed improvements to the Renewable Fuel Heat Plant (RFHP) at the National Renewable Energy Laboratory's South Table Mountain site. The SEA analyzes the potential environmental impacts associated with the proposed improvements tot he RFHP consisting of construction and operation of an onsite woodchip fuel storage silo and an expansion of woodchip fuel sources to a regional scale.

271

TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS  

DOE Green Energy (OSTI)

With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easily processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined less by the needs of the plant than by the availability in the soil solution; in addition to occurring naturally, Cl is present in excess as the anion complement in K fertilizer applications. An analysis was performed on existing data for switchgrass samples from ten different farms in the south-central portion of Iowa, with the goal of determining correlations between switchgrass elemental composition and geographical and seasonal changes so as to identify factors that influence the elemental composition of biomass. The most important factors in determining levels of various chemical compounds were found to be seasonal and geographical differences related to soil conditions. Combustion testing was performed to obtain deposits typical of boiler fouling and slagging conditions as well as fly ash. Analysis methods using computer-controlled scanning electron microscopy and chemical fractionation were applied to determine the composition and association of inorganic materials in the biomass samples. Modified sample preparation techniques and mineral quantification procedures using cluster analysis were developed to characterize the inorganic material in these samples. Each of the biomass types exhibited different inorganic associations in the fuel as well as in the deposits and fly ash. Morphological analyses of the wheat straw show elongated 10-30-{micro}m amorphous silica particles or phytoliths in the wheat straw structure. Alkali such as potassium, calcium, and sodium is organically bound and dispersed in the organic structure of the biomass materials. Combustion test results showed that the blends fed quite evenly, with good burnout. Significant slag deposit formation was observed for the 100% wheat straw, compared to bituminous and subbituminous coals burned under similar conditions. Although growing rapidly, the fouling deposits of the biomass and coal-biomass blends were significantly weaker than those of the coals. Fouling was only slightly worse for the 100% wheat straw fuel compared to the coals. The wheat straw ash was found to show the greatest similar

Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands; Melanie D. Hetland; Mark A. Musich; Charlene R. Crocker; Jonas Dahl; Stacie Laducer

2001-08-01T23:59:59.000Z

272

An atlas of thermal data for biomass and other fuels  

DOE Green Energy (OSTI)

Biomass is recognized as a major source of renewable energy. In order to convert biomass energy to more useful forms, it is necessary to have accurate scientific data on the thermal properties of biomass. This Atlas has been written to supply a uniform source of that information. In the last few decades Thermal analysis (TA) tools such as thermogravimetry, differential thermal analysis, thermo mechanical analysis, etc. have become more important. The data obtained from these techniques can provide useful information in terms of reaction mechanism, kinetic parameters, thermal stability, phase transformation, heat of reaction, etc. for gas-solid and gas-liquid systems. Unfortunately, there are no ASTM standards set for the collection of these types of data using TA techniques and therefore, different investigators use different conditions which suit their requirements for measuring this thermal data. As a result, the information obtained from different laboratories is not comparable. This Atlas provides the ability to compare new laboratory results with a wide variety of related data available in the literature and helps ensure consistency in using these data.

Gaur, S.; Reed, T.B. [Colorado School of Mines, Golden, CO (United States)

1995-06-01T23:59:59.000Z

273

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable  

E-Print Network (OSTI)

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable fuels be used annually by 2022, which allows continued

274

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Northwest Power Pool Area Northwest Power Pool Area Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 118, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. This dataset contains data for the northwest power pool area of the U.S. Western Electricity Coordinating Council (WECC). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Northwest Power Pool Area Renewable Energy Generation WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Northwest Power Pool Area - Reference (xls, 119.3 KiB)

275

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Long Island Long Island Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 104, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Long Island Renewable Energy Generation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Long Island- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment

276

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Upstate New York Upstate New York Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 105, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Upstate New York Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Upstate New York- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed

277

AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation  

Open Energy Info (EERE)

Delta Delta Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 109, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Delta EIA Renewable Energy Generation SERC Reliability Corporation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation / Delta- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment

278

AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation  

Open Energy Info (EERE)

Virginia-Carolina Virginia-Carolina Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 113, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Carolina EIA Renewable Energy Generation SERC Reliability Corporation Virginia Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation / Virginia-Carolina- Reference Case (xls, 118.9 KiB) Quality Metrics

279

AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation  

Open Energy Info (EERE)

Southeastern Southeastern Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 111, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation SERC Reliability Corporation Southeastern Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation / Southeastern- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed

280

AEO2011: Renewable Energy Generation by Fuel - Reliability First  

Open Energy Info (EERE)

East East Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 106, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released July 25th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO East EIA Renewable Energy Generation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Reliability First Corporation / East- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Southwest Southwest Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 116, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Southwest Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Southwest (xls, 119.1 KiB) Quality Metrics Level of Review Peer Reviewed

282

AEO2011: Renewable Energy Generation by Fuel - Reliability First  

Open Energy Info (EERE)

Michigan Michigan Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 107, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Michigan Reliability First Corporation Renewable Energy Generation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Reliability First Corporation / Michigan- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed

283

AEO2011: Renewable Energy Generation by Fuel - Reliability First  

Open Energy Info (EERE)

West West Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 108, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Reliability First Corporation Renewable Energy Generation West Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Reliability First Corporation / West- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed Comment

284

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Rockies Rockies Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 119, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. The dataset contains data for the Rockies region of WECC. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Rockies WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Rockies- Reference Case (xls, 119 KiB)

285

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

California California Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 117, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO California EIA Renewable Energy Generation Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / California (xls, 119.2 KiB) Quality Metrics Level of Review Peer Reviewed

286

Renewable Energy Goal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Goal Renewable Energy Goal Renewable Energy Goal < Back Eligibility Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Energy Sources Solar Home Weatherization Wind Program Info State Oklahoma Program Type Renewables Portfolio Standard Provider Oklahoma Corporation Commission In May 2010, Oklahoma established a renewable energy goal for electric utilities operating in the state. The goal calls for 15% of the total installed generation capacity in Oklahoma to be derived from renewable sources by 2015. There are no interim targets, and the goal does not extend past 2015. Eligible renewable energy resources include wind, solar, hydropower, hydrogen, geothermal, biomass, and other renewable energy

287

ATOM-ECONOMICAL PATHWAYS TO METHANOL FUEL CELL FROM BIOMASS  

DOE Green Energy (OSTI)

An economical production of alcohol fuels from biomass, a feedstock low in carbon and high in water content, is of interest. At Brookhaven National Laboratory (BNL), a Liquid Phase Low Temperature (LPLT) concept is under development to improve the economics by maximizing the conversion of energy carrier atoms (C,H) into energy liquids (fuel). So far, the LPLT concept has been successfully applied to obtain highly efficient methanol synthesis. This synthesis was achieved with specifically designed soluble catalysts, at temperatures < 150 C. A subsequent study at BNL yielded a water-gas-shift (WGS) catalyst for the production of hydrogen from a feedstock of carbon monoxide and H{sub 2}O at temperatures < 120 C. With these LPLT technologies as a background, this paper extends the discussion of the LPLT concept to include methanol decomposition into 3 moles of H{sub 2} per mole of methanol. The implication of these technologies for the atom-economical pathways to methanol fuel cell from biomass is discussed.

MAHAJAN,D.; WEGRZYN,J.E.

1999-03-01T23:59:59.000Z

288

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS  

DOE Green Energy (OSTI)

The following are proposed activities for quarter 2 (9/15/00-12/14/00): (1) Conduct TGA and fuel characterization studies--Task 1; (2) Perform re-burn experiments--Task 2; (3) Fabricate fixed bed gasifier/combustor--Task 3; and (4) Modify the 3D combustion modeling code for feedlot and litter fuels--Task 4. The following were achieved During Quarter 2 (9/15/00-12/14/00): (1) The chicken litter has been obtained from Sanderson farms in Denton, after being treated with a cyclonic dryer. The litter was then placed into steel barrels and shipped to California to be pulverized in preparation for firing. Litter samples have also been sent for ultimate/proximate laboratory analyses.--Task 1; (2) Reburn-experiments have been conducted on coal, as a base case for comparison to litter biomass. Results will be reported along with litter biomass as reburn fuel in the next report--Task 2; (3) Student has not yet been hired to perform task 3. Plans are ahead to hire him or her during quarter No. 3; and (4) Conducted a general mixture fraction model for possible incorporation in the code.

Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

2001-02-05T23:59:59.000Z

289

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS  

DOE Green Energy (OSTI)

The following are proposed activities for quarter 3 (12/15/00-3/14/01): (1) Conduct TGA and fuel characterization studies - Task 1; (2) Continue to perform re-burn experiments. - Task 2; (3) Design fixed bed combustor. - Task 3; and (4) Modify the PCGC2 code to include moisture evaporation model - Task 4. The following were achieved During Quarter 3 (12/15/0-3/14/01): (1) Conducted TGA and Fuel Characterization studies (Appendix I). A comparison of -fuel properties, TGA traces etc is given in Appendix I. Litter has 3 and 6 times more N compared to coal on mass and heat basis. The P of litter is almost 2 % (Task 1). Both litter biomass (LB) and feedlot biomass (FB) have been pulverized. The size distributions are similar for both litter and FB in that 75 % pass through 150 {micro}m sieve while for coal 75 % pass through 60 {micro}m sieve. Rosin Rammler curve parameters are given. The TGA characteristics of FB and LB are similar and pyrolysis starts at 100 C below that of coal; (2) Reburn experiments with litter and with FB have been performed (Appendix II) -Task 2. Litter is almost twice effective (almost 70--90 % reduction) compared to coal in reducing the NOx possibly due to presence of N in the form of NH{sub 3}; (3) Designed fixed bed gasifier/combustor (Appendix III) - Task 3; and (4) Modified PCGC2 to include moisture evaporation model in coal and biomass particles. (Appendix IV) - Task 4.

Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

2001-05-10T23:59:59.000Z

290

Estimating externalities of biomass fuel cycles, Report 7  

DOE Green Energy (OSTI)

This report documents the analysis of the biomass fuel cycle, in which biomass is combusted to produce electricity. The major objectives of this study were: (1) to implement the methodological concepts which were developed in the Background Document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles, and by so doing, to demonstrate their application to the biomass fuel cycle; (2) to develop, given the time and resources, a range of estimates of marginal (i.e., the additional or incremental) damages and benefits associated with selected impact-pathways from a new wood-fired power plant, using a representative benchmark technology, at two reference sites in the US; and (3) to assess the state of the information available to support energy decision making and the estimation of externalities, and by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The demonstration of methods, modeling procedures, and use of scientific information was the most important objective of this study. It provides an illustrative example for those who will, in the future, undertake studies of actual energy options and sites. As in most studies, a more comprehensive analysis could have been completed had budget constraints not been as severe. Particularly affected were the air and water transport modeling, estimation of ecological impacts, and economic valuation. However, the most important objective of the study was to demonstrate methods, as a detailed example for future studies. Thus, having severe budget constraints was appropriate from the standpoint that these studies could also face similar constraints. Consequently, an important result of this study is an indication of what can be done in such studies, rather than the specific numerical estimates themselves.

Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

1998-01-01T23:59:59.000Z

291

Catalytic Tri-reforming of Biomass-Derived Syngas to Produce Desired H2:CO Ratios for Fuel Applications.  

E-Print Network (OSTI)

??This study focuses on upgrading biomass derived syngas for the synthesis of liquid fuels using Fischer-Tropsch synthesis (FTS). The process includes novel gasification of biomass (more)

Walker, Devin Mason

2012-01-01T23:59:59.000Z

292

AEO2011: Renewable Energy Generation by Fuel - Midwest Reliability Council  

Open Energy Info (EERE)

West West Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 101, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel midwest Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Midwest Reliability Council / West- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

293

AEO2011: Renewable Energy Generation by Fuel - Texas Regional Entity |  

Open Energy Info (EERE)

Texas Regional Entity Texas Regional Entity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 98, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel Texas Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Texas Regional Entity- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

294

AEO2011: Renewable Energy Generation by Fuel - Midwest Reliability Council  

Open Energy Info (EERE)

East East Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 100, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel midwest Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Midwest Reliability Council / East- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

295

AEO2011: Renewable Energy Generation by Fuel - Florida Reliability  

Open Energy Info (EERE)

Florida Reliability Florida Reliability Coordinating Council Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 99, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released July 20th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Florida Fuel Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Florida Reliability Coordinating Council- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed

296

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

NYC-Westchester NYC-Westchester Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 103, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel Westchester Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / NYC-Westchester- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment

297

Economic implications for the generation of electricity from biomass fuel sources.  

E-Print Network (OSTI)

??This study examines the economic theory, geographical implications, and relevant legislative history impacting the use of biomass fuel sources within the electric utility industry. Research (more)

Curtis, Thomas Wayne

2003-01-01T23:59:59.000Z

298

World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard  

Science Conference Proceedings (OSTI)

This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

Sastri, B.; Lee, A.

2008-09-15T23:59:59.000Z

299

Impacts of Renewable Fuel and Electricity Standards on State Economies (Poster)  

SciTech Connect

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, discusses the impacts of renewable fuel and electricity standards on state economies.

Brown, E.; Cory, K.; Brown, J.; Bird, L.; Sweezey, B.

2006-10-03T23:59:59.000Z

300

Impacts of renewable fuel regulation and production on agriculture, energy, and welfare.  

E-Print Network (OSTI)

??The purpose of this dissertation is to study the impact of U.S. federal renewable fuel regulations on energy and agriculture commodity markets and welfare. We (more)

Mcphail, Lihong Lu

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Impact of Renewable Fuels Standard/MTBE Provisions of S. 517 Requested by Sens. Daschle & Murkowski  

Reports and Publications (EIA)

Additional analysis of the impact of the Renewable Fuels Standard (RFS) and methyl tertiary butyl ether (MTBE) ban provisions of S. 517.

Information Center

2002-04-01T23:59:59.000Z

302

Impact of Renewable Fuels Standard/MTBE Provisions of S.1766  

U.S. Energy Information Administration (EIA)

SR/OIAF/2002-06 Release date: March 2002 This report analyzes the Renewable Fuels Standard (RFS)/methyl tertiary butyl ether (MTBE) provisions of S. 1766.

303

Renewable energy annual 1995  

DOE Green Energy (OSTI)

The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

NONE

1995-12-01T23:59:59.000Z

304

Biomass power and state renewable energy policies under electric industry restructuring  

E-Print Network (OSTI)

POWER AND STATE RENEWABLE ENERGY POLICIES UNDER ELECTRICKevin Porter National Renewable Energy Laboratory 901 Dpolicies to foster renewable energy as part of efforts to

Porter, Kevin; Wiser, Ryan

2000-01-01T23:59:59.000Z

305

FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION  

SciTech Connect

PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to alkaline hydrolysis may be beneficial in removing hemicellulose and lignin from the feedstock. In addition, alkaline hydrolysis has been shown to remove a significant portion of the hemicellulose and lignin. The resulting cellulose can be exposed to a finishing step with wet alkaline oxidation to remove the remaining lignin. The final product is a highly pure cellulose fraction containing less than 1% of the native lignin with an overall yield in excess of 85% of the native cellulose. This report summarizes the results from the first year's effort to move the technology to commercialization.

F.D. Guffey; R.C. Wingerson

2002-10-01T23:59:59.000Z

306

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

with the more-polluting fossil fuels being consumed abroaddomestic fuel consumers and fossil fuel suppliers. Numericalequivalent quantity of fossil fuel but may replace more or

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

307

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

of Renewable and Natural Gas Electricity Contracts: Afor Fuel Price Risk: Using Forward Natural Gas PricesInstead of Gas Price Forecasts to Compare Renewable to Gas-

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

308

Catalytic Fast Pyrolysis of Furan Over Zsm-5 Catalysts: A Model Biomass Conversion Reaction.  

E-Print Network (OSTI)

??Due to its low cost and availability, lignocellulosic biomass is receiving significant attention worldwide as a feedstock for renewable liquid bio-fuels. We have recently shown (more)

Cheng, Yu-Ting

2012-01-01T23:59:59.000Z

309

Chemical and Structural Features of Plants That Contribute to Biomass Recalcitrance.  

E-Print Network (OSTI)

??Currently, the primary barrier to low cost biological conversion of cellulosic biomass to renewable fuels is a plant's recalcitrance to sugar release. The energy-intensive pretreatments (more)

DeMartini, Jaclyn Diana

2011-01-01T23:59:59.000Z

310

Coverage impacts biomass composition, conversion to ethanol yields and microbial communities during storage.  

E-Print Network (OSTI)

??Increased mandates for the production of transportation fuels from renewable resources have thrust the conversion of lignocellulosic biomass, e.g., energy crops and agricultural residues, to (more)

Rigdon, Anne R.

2013-01-01T23:59:59.000Z

311

Review of the Research Strategy for Biomass-Derived Transportation Fuels  

SciTech Connect

The report is a review of the R and D strategy for the production of transportation fuel from biomass. Its focus is on ethanol and biodiesel. Its review includes the DG's Office of Fuels Program Development Program.

1999-11-16T23:59:59.000Z

312

Oak Ridge National Laboratory to be Fueled by Biomass | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory to be Fueled by Biomass Oak Ridge National Laboratory to be Fueled by Biomass Oak Ridge National Laboratory to be Fueled by Biomass May 27, 2010 - 12:59pm Addthis When construction is complete in 2011, Oak Ridge National Laboratory’s biomass steam plant will be fueled by roughly 50,000 tons of waste wood per year. | Illustration Courtesy of Oak Ridge National Laboratory When construction is complete in 2011, Oak Ridge National Laboratory's biomass steam plant will be fueled by roughly 50,000 tons of waste wood per year. | Illustration Courtesy of Oak Ridge National Laboratory Lindsay Gsell Oak Ridge National Laboratory (ORNL) will be saving nearly $4 million a year by switching a portion of their current natural gas-fueled steam plant for one powered by biofuel. The move is part of an Energy Savings

313

Oak Ridge National Laboratory to be Fueled by Biomass | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ridge National Laboratory to be Fueled by Biomass Ridge National Laboratory to be Fueled by Biomass Oak Ridge National Laboratory to be Fueled by Biomass May 27, 2010 - 12:59pm Addthis When construction is complete in 2011, Oak Ridge National Laboratory’s biomass steam plant will be fueled by roughly 50,000 tons of waste wood per year. | Illustration Courtesy of Oak Ridge National Laboratory When construction is complete in 2011, Oak Ridge National Laboratory's biomass steam plant will be fueled by roughly 50,000 tons of waste wood per year. | Illustration Courtesy of Oak Ridge National Laboratory Lindsay Gsell Oak Ridge National Laboratory (ORNL) will be saving nearly $4 million a year by switching a portion of their current natural gas-fueled steam plant for one powered by biofuel. The move is part of an Energy Savings

314

2007-No54-BoilingPoint Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel  

E-Print Network (OSTI)

2007-No54-BoilingPoint Theme Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel Energy nations. In sub-Saharan Africa (SSA), biomass provides more than 90% of household energy needs in many nations. The combustion of biomass emits pollutants that currently cause over 1.6 million annual deaths

Kammen, Daniel M.

315

Renewable Energy  

U.S. Energy Information Administration (EIA)

Renewable energy sources including biomass, hydropower, geothermal, wind, and solar provide 8% of the energy used in the United States.

316

NEW SOLID FUELS FROM COAL AND BIOMASS WASTE  

DOE Green Energy (OSTI)

Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

Hamid Farzan

2001-09-24T23:59:59.000Z

317

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation  

E-Print Network (OSTI)

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation Bruce A. Mc Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation Today society faces important prevalent greenhouse gas (carbon dioxide - CO2), it is important in the total picture. According

McCarl, Bruce A.

318

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials, APPENDIX A: Energy Use and Emissions from the Lifecycle of Diesel-Like Fuels Derived From Biomass  

E-Print Network (OSTI)

LIKE FUELS DERIVED FROM BIOMASS An Appendix to the Report, LIKE FUELS DERIVED FROM BIOMASS An Appendix to the Report AFUEL Transesterified, biomass-derived oil or biodiesel can

Delucchi, Mark; Lipman, Timothy

2003-01-01T23:59:59.000Z

319

Climate policy and the airline industry : emissions trading and renewable jet fuel  

E-Print Network (OSTI)

In this thesis, I assess the impact of the current EU Emissions Trading Scheme and a hypothetical renewable jet fuel mandate on US airlines. I find that both the EU Scheme up until 2020 and a renewable jet fuel mandate of ...

McConnachie, D. (Dominic Alistair)

2012-01-01T23:59:59.000Z

320

AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation  

Open Energy Info (EERE)

Central Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 112, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords undefined Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation / Central- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Northeast Northeast Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 102, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Northeast Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Northeast- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

322

AEO2011: Renewable Energy Generation by Fuel - SERC Reliability Corporation  

Open Energy Info (EERE)

Gateway Gateway Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 110, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Gateway Reliability First Corporation SERC Reliability Corporation Data application/vnd.ms-excel icon AEO2011:Renewable Energy Generation by Fuel - SERC Reliability Corporation / Gateway- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed

323

Development of biomass as an alternative fuel for gas turbines  

DOE Green Energy (OSTI)

A program to develop biomass as an alternative fuel for gas turbines was started at Aerospace Research Corporation in 1980. The research culminated in construction and installation of a power generation system using an Allison T-56 gas turbine at Red Boiling Springs, Tennessee. The system has been successfully operated with delivery of power to the Tennessee Valley Authority (TVA). Emissions from the system meet or exceed EPA requirements. No erosion of the turbine has been detected in over 760 hours of operation, 106 of which were on line generating power for the TVA. It was necessary to limit the turbine inlet temperature to 1450{degrees}F to control the rate of ash deposition on the turbine blades and stators and facilitate periodic cleaning of these components. Results of tests by researchers at Battelle Memorial Institute -- Columbus Division, give promise that deposits on the turbine blades, which must be periodically removed with milled walnut hulls, can be eliminated with addition of lime to the fuel. Operational problems, which are centered primarily around the feed system and engine configuration, have been adequately identified and can be corrected in an upgraded design. The system is now ready for development of a commercial version. The US Department of Energy (DOE) provided support only for the evaluation of wood as an alternative fuel for gas turbines. However, the system appears to have high potential for integration into a hybrid system for the production of ethanol from sorghum or sugar cane. 7 refs., 23 figs., 18 tabs.

Hamrick, J T [Aerospace Research Corp., Roanoke, VA (USA)

1991-04-01T23:59:59.000Z

324

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS  

DOE Green Energy (OSTI)

Proposed activities for quarter 7 (12/15/01-3/14/2002): (1) Incorporation of moisture model into PCGC2 code. Parametric study of moisture effects on flame structure and pollutants emissions in cofiring of coal and Liter Biomass (LB) (Task 4); (2) Use the ash tracer method to determine the combustion efficiency and comparison it to results from gas analysis (Task 2); (3) Effect of swirl on combustion performance (Task 2); (4) Completion of the proposed modifications to the gasifier setup (Task 3); (5) Calibration of the Gas Chromatograph (GC) used for measuring the product gas species (Task 3); and (6) To obtain temperature profiles for different fuels under different operating conditions in the fixed bed gasifier (Task 3).

Unknown

2002-03-31T23:59:59.000Z

325

Conversion system overview assessment. Volume III. Solar thermal/coal or biomass derived fuels  

SciTech Connect

The three volumes of this report cover three distinct areas of solar energy research: solar thermoelectrics, solar-wind hybrid systems, and synthetic fuels derived with solar thermal energy. Volume III deals with the conversion of synthetic fuels with solar thermal heat. The method is a hybrid combination of solar energy with either coal or biomass. A preliminary assessment of this technology is made by calculating the cost of fuel produced as a function of the cost of coal and biomass. It is shown that within the projected ranges of coal, biomass, and solar thermal costs, there are conditions when solar synthetic fuels with solar thermal heat will become cost-competitive.

Copeland, R. J.

1980-02-01T23:59:59.000Z

326

Overview of biomass thermochemical conversion activities funded by the biomass energy systems branch of DOE  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is actively involved in the development of renewable energy sources through research and development programs sponsored by the Biomass Energy Systems Branch. The overall objective of the thermochemical conversion element of the Biomass Energy Systems Program is to develop competitive processes for the conversion of renewable biomass resources into clean fuels and chemical feedstocks which can supplement fuels from conventional sources. An overview of biomass thermochemical conversion projects sponsored by the Biomass Energy Systems Branch is presented in this paper.

Schiefelbein, G.F.; Sealock, L.J. Jr.; Ergun, S.

1979-01-01T23:59:59.000Z

327

Coal/biomass fuels and the gas turbine: Utilization of solid fuels and their derivatives  

Science Conference Proceedings (OSTI)

This paper discusses key design and development issues in utilizing coal and other solid fuels in gas turbines. These fuels may be burned in raw form or processed to produce liquids or gases in more or less refined forms. The use of such fuels in gas turbines requires resolution of technology issues which are of little or no consequence for conventional natural gas and refined oil fuels. For coal, these issues are primarily related to the solid form in which coal is naturally found and its high ash and contaminant levels. Biomass presents another set of issues similar to those of coal. Among the key areas discussed are effects of ash and contaminant level on deposition, corrosion, and erosion of turbine hot parts, with particular emphasis on deposition effects.

DeCorso, M. [Power Tech Associates, Inc., Paramus, NJ (United States); Newby, R. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Anson, D. [Battelle, Columbus, OH (United States); Wenglarz, R. [Allison Engine Co., Indianapolis, IN (United States); Wright, I. [Oak Ridge National Lab., TN (United States)

1996-06-01T23:59:59.000Z

328

Indirect thermal liquefaction process for producing liquid fuels from biomass  

DOE Green Energy (OSTI)

A progress report on an indirect liquefaction process to convert biomass type materials to quality liquid hydrocarbon fuels by gasification followed by catalytic liquid fuels synthesis has been presented. A wide variety of feedstocks can be processed through the gasification system to a gas with a heating value of 500 + Btu/SCF. Some feedstocks are more attractive than others with regard to producing a high olefin content. This appears to be related to hydrocarbon content of the material. The H/sub 2//CO ratio can be manipulated over a wide range in the gasification system with steam addition. Some feedstocks require the aid of a water-gas shift catalyst while others appear to exhibit an auto-catalytic effect to achieve the conversion. H/sub 2/S content (beyond the gasification system wet scrubber) is negligible for the feedstocks surveyed. The water gas shift reaction appears to be enhanced with an increase in pyrolysis reactor temperature over the range of 1300 to 1700/sup 0/F. Reactor temperature in the Fischer-Tropsch step is a significant factor with regard to manipulating product composition analysis. The optimum temperature however will probably correspond to maximum conversion to liquid hydrocarbons in the C/sub 5/ - C/sub 17/ range. Continuing research includes integrated system performance assessment, alternative feedstock characterization (through gasification) and factor studies for gasification (e.g., catalyst usage, alternate heat transfer media, steam usage, recycle effects, residence time study) and liquefaction (e.g., improved catalysts, catalyst activity characterization).

Kuester, J.L.

1980-01-01T23:59:59.000Z

329

Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols  

SciTech Connect

Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteriaare genetically engineered to convert the formic acid into liquid fuelin this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLAs electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

2010-07-01T23:59:59.000Z

330

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents (OSTI)

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2011-01-18T23:59:59.000Z

331

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents (OSTI)

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D.; Dumesic, James A.

2013-04-02T23:59:59.000Z

332

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents (OSTI)

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2012-04-10T23:59:59.000Z

333

Technician's Perspective on an Ever-Changing Research Environment: Catalytic Conversion of Biomass to Fuels  

SciTech Connect

The biomass thermochemical conversion platform at the National Renewable Energy Laboratory (NREL) develops and demonstrates processes for the conversion of biomass to fuels and chemicals including gasification, pyrolysis, syngas clean-up, and catalytic synthesis of alcohol and hydrocarbon fuels. In this talk, I will discuss the challenges of being a technician in this type of research environment, including handling and working with catalytic materials and hazardous chemicals, building systems without being given all of the necessary specifications, pushing the limits of the systems through ever-changing experiments, and achieving two-way communication with engineers and supervisors. I will do this by way of two examples from recent research. First, I will describe a unique operate-to-failure experiment in the gasification of chicken litter that resulted in the formation of a solid plug in the gasifier, requiring several technicians to chisel the material out. Second, I will compare and contrast bench scale and pilot scale catalyst research, including instances where both are conducted simultaneously from common upstream equipment. By way of example, I hope to illustrate the importance of researchers 1) understanding the technicians' perspective on tasks, 2) openly communicating among all team members, and 3) knowing when to voice opinions. I believe the examples in this talk will highlight the crucial role of a technical staff: skills attained by years of experience to build and operate research and production systems. The talk will also showcase the responsibilities of NREL technicians and highlight some interesting behind-the-scenes work that makes data generation from NREL's thermochemical process development unit possible.

Thibodeaux, J.; Hensley, J.

2013-01-01T23:59:59.000Z

334

Annual Report on Biomass Cofiring Program 2001  

Science Conference Proceedings (OSTI)

Cofiring renewable biomass fuels with coal in existing coal-fired plants represents one of the lowest cost ways to increase the renewable component of the electricity supply and reduce net greenhouse gas emissions. This report documents nine years of EPRI / U.S. Department of Energy (DOE) / industry engineering analysis and field testing regarding wood and other biomass fuels cofired with coal in utility coal-fired boilers. These activities have propelled cofiring significantly towards the objective of b...

2001-12-14T23:59:59.000Z

335

Renewable Energy RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

Request for Proposal October 15, 2003 Renewable Energy Today For a Cleaner Tomorrow Biomass Group, LLC - Renewable Energy Request for Proposal, October 15, 2003 Renewable Energy...

336

Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News  

E-Print Network (OSTI)

Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News TUESDAY 25 MAY, 2010 | | Solar Power To Help Convert Carbon Dioxide Into Fuel by Energy Matters Microbiologist Derek Lovley dioxide into transportation fuels, with the help of special micro-organisms and solar power. The team

Lovley, Derek

337

CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS  

DOE Green Energy (OSTI)

Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising result as the levels of N are higher in the biomass fuel than in coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process to reduce NO{sub x} emissions. Since crushing costs of biomass fuels may be prohibitive, stoker firing may be cost effective; in order simulate such a firing, future work will investigate the performance of a gasifier when fired with larger sized coal and biomass. It will be a fixed bed gasifier, and will evaluate blends, coal, and biomass. Computer simulations were performed using the PCGC-2 code supplied by BYU and modified by A&M with three mixture fractions for handling animal based biomass fuels in order to include an improved moisture model for handling wet fuels and phosphorus oxidation. Finally the results of the economic analysis show that considerable savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings will be reduced, due to increased transportation costs. A spreadsheet program was created to analyze the fuel savings for a variety of different moisture levels, ash levels, and power plant operating parameters.

Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

2002-01-15T23:59:59.000Z

338

Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

339

Table 8.5d Consumption of Combustible Fuels for ...  

U.S. Energy Information Administration (EIA)

biomass. Through 2000, also includes non-renewable waste ... (CHP) and commercial electricity-only plants. 4 Jet fuel, kerosene, other petroleum ...

340

Fischer-Tropsch Fuels from Coal and Biomass Thomas G. Kreutz, Eric D. Larson, Guangjian Liu, Robert H. Williams  

E-Print Network (OSTI)

Pyrolysis Processes. Developments in Thermochemical Biomass Conversion", Eds. Bridgwater, A.V. and BoocockHydrogen from Biomass for Urban Transportation Y. D. Yeboah (PI), K. B. Bota and Z. Wang Clark amounts of fossil-derived CO2 are released to the atmosphere. Renewable biomass is an attractive

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Biotechnology for producing fuels and chemicals from biomass: recommendations for R and D. Volume I. Synopsis and executive summary  

DOE Green Energy (OSTI)

Areas of research and development judged to be crucial for establishing a biotechnology of biomass processing are identified. Two general avenues are recommended for R and D: (1) in the near term, revival of the older fermentation technology and improvement of processing efficiencies; and (2) in the longer term, the development of novel biotechnological processes, such as for the conversion of lignocellulosic biomass to fuels and chemicals. Recommended R and D ranges from work in moleular genetics to biochemical engineering aspects of plant design. It is recommended that the R and D strategy be designed as an integration of three disciplines: biochemical engineering, microbial genetics, and biochemistry. Applcations of gene-transfer methodology and developments in continuous fermentation should be pursued. Currently, economic incentive for the use of biological conversion processes for producing fuels and chemical feedstocks from biomass is marginal. But as the imported fraction of US oil supply grows and hydrocarbon costs mount, the market is beginning to motivate a quest for substitutes. The commercial potential for biotechnology for establishing a renewable resources chemicals industry appears similar to the potential of the computer and microelectronics field several decades ago.

Villet, R

1979-12-01T23:59:59.000Z

342

Implementation of the Renewable Fuel Standard (RFS) in the ...  

U.S. Energy Information Administration (EIA)

Biomass-based diesel In the LFMM linear program, RFS requirements are modeled as system-wide constraints, with the possibility of waiver purchases

343

Biomass Support for the China Renewable Energy Law: Final Report, December 2005  

DOE Green Energy (OSTI)

Final subcontractor report giving an overview of the biomass power generation technologies used in China. Report covers resources, technologies, foreign technologies and resources for comparison purposes, biomass potential in China, and finally government policies in China that support/hinder development of the using biomass in China for power generation.

Not Available

2006-10-01T23:59:59.000Z

344

American Ref-Fuel of SE CT Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

American Ref-Fuel of SE CT Biomass Facility American Ref-Fuel of SE CT Biomass Facility Jump to: navigation, search Name American Ref-Fuel of SE CT Biomass Facility Facility American Ref-Fuel of SE CT Sector Biomass Facility Type Municipal Solid Waste Location New London County, Connecticut Coordinates 41.5185189°, -72.0468164° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5185189,"lon":-72.0468164,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

FOREST MANAGEMENT, BIOMASS FUELS, AND EMISSIONS OF CO2 TO THE...  

NLE Websites -- All DOE Office Websites (Extended Search)

Management, Biomass Fuels, and CO2 Emissions to the Atmosphere papers by Gregg Marland and Bernhard Schlamadinger Fax: +1 (865) 574-2232 E-mail: marlandgh@ornl.gov Email:...

346

Fossil Fuel and Biomass Burning Effect on ClimateHeating or Cooling?  

Science Conference Proceedings (OSTI)

Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate chaw. Emitted trace gases heat the atmosphere through their greenhouse effect, while ...

Yoram J. Kaufman; Robert S. Fraser; Robert L. Mahoney

1991-06-01T23:59:59.000Z

347

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network (OSTI)

The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines of meeting this goal ...

Winchester, N.

348

What Has the Federal Renewable Fuels Standard Accomplished - A National Perspective (Presentation)  

SciTech Connect

This presentation provides an overview of the nation's biofuels industry accomplishments and a perspective on the challenges and implications of reaching goals set in the Renewable Fuel Standard (RFS).

Schwab, A.

2013-04-01T23:59:59.000Z

349

A techno-economic and environmental assessment of hydroprocessed renewable distillate fuels  

E-Print Network (OSTI)

This thesis presents a model to quantify the economic costs and environmental impacts of producing fuels from hydroprocessed renewable oils (HRO) process. Aspen Plus was used to model bio-refinery operations and supporting ...

Pearlson, Matthew Noah

2011-01-01T23:59:59.000Z

350

What Has the Federal Renewable Fuels Standard Accomplished - A National Perspective (Presentation)  

SciTech Connect

This presentation provides an overview of the nation's biofuels industry accomplishments and a perspective on the challenges and implications of reaching goals set in the Renewable Fuel Standard (RFS).

Schwab, A.

2013-04-01T23:59:59.000Z

351

Clean energy for development and economic growth: Biomass and other renewable options to meet energy and development needs in poor nations  

SciTech Connect

The document explores the linkages between renewable energy, poverty alleviation, sustainable development, and climate change in developing countries. In particular, the paper places emphasis on biomass-based energy systems. Biomass energy has a number of unique attributes that make it particularly suitable to climate change mitigation and community development applications.

Lilley, Art; Pandey, Bikash; Karstad, Elsen; Owen, Matthew; Bailis, Robert; Ribot, Jesse; Masera, Omar; Diaz, Rodolpho; Benallou, Abdelahanine; Lahbabi, Abdelmourhit

2012-10-01T23:59:59.000Z

352

The cultivation and harvesting of micro-algal biomass from the Hartbeespoort Dam for the production of biodiesel / Jacobus Petrus Brink.  

E-Print Network (OSTI)

??Renewable energy sources such as biomass are becoming more and more important as alternative to fossil fuels. One of the most exciting new sources of (more)

Brink, Jacobus Petrus

2011-01-01T23:59:59.000Z

353

NREL: Hydrogen and Fuel Cells Research - NREL to Showcase Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Search More Search Options Site Map Printable Version NREL to Showcase Renewable Electricity Generation Systems and Advanced Vehicles at Denver Earth Day Fair April 18,...

354

Renewable utility-scale electricity production differs by fuel ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... For non-hydro renewables, the 2011 generation share ranges from less than 1% in Alaska, Ohio, Alabama, and Kentucky, ...

355

16th North American Waste to Energy Conference-May 2008 CO2 Enhanced Steam Gasification of Biomass Fuels  

E-Print Network (OSTI)

16th North American Waste to Energy Conference-May 2008 CO2 Enhanced Steam Gasification of Biomass of the decomposition of various biomass feedstocks and their conversion to gaseous fuels such as hydrogen. The steam temperatures: above 500o C for the herbaceous and non-wood samples and above 650o C for the wood biomass fuels

356

The Use of Biomass for Power Generation in the U.S.  

Science Conference Proceedings (OSTI)

Historically, biomass has been man's principal source of energy, mainly used in the form of wood for cooking and heating. With the industrial revolution and the introduction of motorized transportation and electricity, fossil fuels became the dominant source of energy. Today, biomass is the largest domestic source of renewable energy providing over 3% of total U.S. energy consumption, and surpassing hydropower. Yet, recent increases in the price and volatility of fossil fuel supplies and the financial impacts from a number of financially distressed investments in natural gas combined cycle power plants have led to a renewed interest in electricity generation from biomass. The biomass-fueled generation market is a dynamic one that is forecast to show significant growth over the next two decades as environmental drivers are increasingly supported by commercial ones. The most significant change is likely to come from increases in energy prices, as decreasing supply and growing demand increase the costs of fossil fuel-generated electricity and improve the competitive position of biomass as a power source. The report provides an overview of the renewed U.S. market interest in biomass-fueled power generation and gives a concise look at what's driving interest in biomass-fueled generation, the challenges faced in implementing biomass-fueled generation projects, and the current and future state of biomass-fueled generation. Topics covered in the report include: an overview of biomass-fueled generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in biomass-fueled generation; an analysis of the challenges that are hindering the implementation of biomass-fueled generation projects; a description of the various feedstocks that can be used for biomass-fueled generation; an evaluation of the biomass supply chain; a description of biomass-fueled generation technologies; and, a review of the economic drivers of biomass-fueled generation project success.

none

2006-07-15T23:59:59.000Z

357

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

DOE Green Energy (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

358

Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report  

DOE Green Energy (OSTI)

This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

NONE

1996-01-01T23:59:59.000Z

359

Breaking the ties that bind: New hope for biomass fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

viable process for making biofuels from cellulosic biomass," adds Langan, director of the biofuels project. Funding for the project comes from Laboratory-Directed Research and...

360

Conservation of Biomass Fuel, Firewood (Minnesota) | Open Energy...  

Open Energy Info (EERE)

Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies BiomassBiogas Active Policy Yes Implementing Sector StateProvince Program Administrator...

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biomass potential for heat, electricity and vehicle fuel in Sweden.  

E-Print Network (OSTI)

??The main objective of this thesis was to determine how far a biomass quantity, equal to the potential produced within the Swedish borders, could cover (more)

Hagstrm, Peter

2006-01-01T23:59:59.000Z

362

Renewable & Alternative Fuels - Analysis & Projections - U.S ...  

U.S. Energy Information Administration (EIA)

... (formerly shown in Table 5) was obtained from the Alternative Fuels Data Center (http://www.eere.energy.gov/afdc/fuels/stations_counts.html). ...

363

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS  

E-Print Network (OSTI)

to the National Renewable Energy Lab (NREL) for analytical pyrolysis. Biomass Analysis. All biomass samples were Technol 42: 649­661. 44. Evans RJ, Milne TA (1987) Molecular characterization of the pyrolysis of biomass fuels from lignocel- lulosic biomass is a plant's recalcitrance to releasing sugars bound in the cell

364

A Survey of State Clean Energy Fund Support for Biomass August 2004  

E-Print Network (OSTI)

energy technologies, two of which involved biomass projects: · Tier 1 (biomass, waste tire and solar" and defines renewable energy as "solar energy, wind, ocean thermal energy, wave or tidal energy, fuel cells combustion. Support for Biomass Projects Projects involving biomass (as well as wind or solar energy

365

Understanding and Informing the Policy Environment: State-Level Renewable Fuels Standards  

SciTech Connect

Renewable fuels standard (RFS) policies are becoming a popular public policy mechanism for developing the market for renewable fuels in the transportation sector. During the past decade, U.S. states and several countries began implementing these more market-based (less command and control) policies to support increased biofuels production and use. This paper presents an overview of current and proposed U.S. state-level policies, as well as selected electric sector policies and international fuel standard policies. Current U.S. state-level renewable fuel policies list drivers including an improved economy and environment, as well as fuel self-sufficiency. Best practices and experience from an evaluation of renewable portfolio standards (RPS) in the United States and international RFS policies can inform U.S. state-level policy by illustrating the importance of policy flexibility, binding targets, effective cost caps, and tradable permits. Understanding and building on the experiences from these previous policies can improve the policy mechanism and further develop a market for renewable fuels to meet the goals of improved economy, environment, and fuel self-sufficiency.

Brown, E.; Cory, K.; Arent, D.

2007-01-01T23:59:59.000Z

366

Biomass Program Perspectives on Anaerobic Digestion and Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Recycling and Renewable Energy Facility And Recycles the Organics Quality Compost Effluent Liquid Fertilizer Landfill Daily Cover Retail Products Bio- remediation And...

367

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

abroad while greater quantity of crude oil will be consumedoil (oilsands) and biofuel respectively. p denotes the fuel price, q the quantity,

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

368

Renewable Energy Strategies for Sustainable Development Henrik Lund*  

E-Print Network (OSTI)

Renewable Energy Strategies for Sustainable Development Henrik Lund* Department of Development of renewable energy (wind, solar, wave and biomass) in the making of strategies for a sustainable development improvements in the energy production, and replacement of fossil fuels by various sources of renewable energy

Hansen, René Rydhof

369

Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Renewable Energy Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Renewable Energy is energy obtained from sources which are practically inexhaustible.[1] Prominent examples include solar energy, wind energy, and geothermal energy. The table below lists some of the conversion technologies that are used to harness the energy from these resources[2] . Renewable Resource Energy Conversion Technology Biomass, solid fuels Combustion (direct-fired, cofiring with coal); Gasification/Pyrolysis Biomass, gas and liquid fuels Fuel Cells Geothermal Dry steam electric; Flash electric; Binary cycle electric; Direct use; Geothermal heat pumps Solar Photovoltaics (PV); Concentrating solar thermal electric (parabolic trough, parabolic trough, power tower); Thermal water heating; Absorption chilling

370

Bio Diesel Oil of Mustard: Small Diesel a Renewable Alternative Fuel  

Science Conference Proceedings (OSTI)

This paper represents the mustard oil is a kind of renewable energy and alternative fuel of the future. In order to cope with the current situation of load shedding, and reduce dependence on imported fuels, the Bangladesh government to encourage the ... Keywords: Calorific Value, Ester Exchange Reaction, Keywords: Biodiesel, Mustard Oil, Pyrolysis, Viscosity

Liu Hongcong

2013-01-01T23:59:59.000Z

371

Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System  

E-Print Network (OSTI)

Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System by Alvin Peter Cell System by Alvin Peter Bergen B.A.Sc., University of Victoria, 1994 M.Sc., University of University, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability

Victoria, University of

372

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation  

E-Print Network (OSTI)

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation Uwe A. Schneider Words): Use of biofuels diminishes fossil fuel combustion thereby also reducing net greenhouse gas. To explore the economic potential of biofuels in a greenhouse gas mitigation market, we incorporate data

McCarl, Bruce A.

373

MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas  

DOE Green Energy (OSTI)

This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

John Frey

2009-02-22T23:59:59.000Z

374

Road Map for Renewables Rangan Banerjee  

E-Print Network (OSTI)

FERMENTATIONDIGESTION BIOGAS ETHANOL Duel Fuel SIPGE Gas Turbines BIOMASS CONVERSION ROUTES #12;PVThermal Low Temp. 100 for Solar power #12;Small Hydro Power Classification - based on Capacity -Micro less than 100 kW -Mini 100 kW for Storage, Additional Cost #12;Renewable Energy Options Wind Solar Small Hydro Biomass Tidal Energy Wave

Banerjee, Rangan

375

Sweet Smell of Renewable Fuel | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Sweet Smell Sweet Smell of Renewable Fuel News Featured Articles 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 12.06.11 Sweet Smell of Renewable Fuel Office of Science researchers borrowed from a fir tree to create a fuel that could leave diesel in the dust. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Tractor trailer driving down road flanked by fields Department of Transportation Commercial trucks in the U.S. burned approximately 22 billion gallons of diesel fuel in 2010. Replacing diesel with a clean, green and renewable biofuel could substantially reduce the industry's carbon footprint.

376

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS  

DOE Green Energy (OSTI)

Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process. Computer simulations for coal: LB blends were performed by modifying an existing computer code to include the drying and phosphorus (P) oxidation models. The gasification studies revealed that there is bed agglomeration in the case of chicken litter biomass due to its higher alkaline oxide content in the ash. Finally, the results of the economic analysis show that considerable fuel cost savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings is reduced.

Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

2003-08-28T23:59:59.000Z

377

Process Modeling Results of Bio-Syntrolysis: Converting Biomass to Liquid Fuel with High Temperature Steam Electrolysis  

SciTech Connect

A new process called Bio-Syntrolysis is being researched at the Idaho National Laboratory (INL) investigating syngas production from renewable biomass that is assisted with high temperature steam electrolysis (HTSE). The INL is the world leader in researching HTSE and has recently produced hydrogen from high temperature solid oxide cells running in the electrolysis mode setting several world records along the way. A high temperature (~800C) heat source is necessary to heat the steam as it goes into the electrolytic cells. Biomass provides the heat source and the carbon source for this process. Syngas, a mixture of hydrogen and carbon monoxide, can be used for the production of synthetic liquid fuels via Fischer-Tropsch processes. This concept, coupled with fossil-free electricity, provides a possible path to reduced greenhouse gas emissions and increased energy independence, without the major infrastructure shift that would be required for a purely hydrogen-based transportation system. Furthermore, since the carbon source is obtained from recyclable biomass, the entire concept is carbon-neutral

G. L. Hawkes; M. G. McKellar; R. Wood; M. M. Plum

2010-06-01T23:59:59.000Z

378

Biomass as a feedstock for highway vehicle fuels: a resource and availability survey  

DOE Green Energy (OSTI)

The study was initiated because of the recognized need to compile a concise description of biomass as an energy base for liquid transportation fuels (namely alcohols) for highway vehicles. The aim is to provide a brief familiarization of biomass-related terminology to those with limited technical background and to present a summary assessment of the potential that biomass can provide as a resource base for liquid transportation fuels. Biomass may play a significant role in supplying liquid fuels for transportation (indeed, for other sectors, as well), however, there are fundamental limitations imposed by the size of the biomass, resource, production and distribution economics, and the difficulty of ensuring sustained availability for an extended period of time. Bioconversion is one of a number of developing energy options that individually, may make relatively small contributions but in the aggregate, are likely to be significant. Thus, research and development related to fuels from biomass and their utilization continue to be major areas of activity sponsored by the Department of Energy.

Not Available

1979-12-01T23:59:59.000Z

379

Biofacts: Fueling a stronger economy. Renewable fuel solutions for petroleum refineries  

DOE Green Energy (OSTI)

The DOE Biofuels Program is investigating processes to condition synthesis gas (syngas) produced from the gasification of biomass, coke, waste oils, and other inexpensive feedstocks and low-cost by-products. Syngas technologies offer refiners economical, flexible solutions to the challenges presented by today`s market forces and regulatory environment, such as: increasingly stringent environmental regulations that dictate the composition of petroleum products; increasingly sour crudes; increased coke production and hydrogen use resulting from heavier crude; increased disposal cost for coke and residuals oils; and decreasing hydrogen supply resulting from decreased catalytic reforming severity--a necessity to comply with requirements for reduced aromatic content. Most importantly, refiners can use the DOE syngas processes to upgrade refinery residuals and coke, which minimizes environmental problems and maximizes profitability. DOE`s solution also offers refiners the flexibility to economically supplement petroleum feedstocks with a wide variety of locally available renewable feedstocks that can be fed into the gasifier--feedstocks such as energy crops, municipal solid wastes, many industrial wastes, and agricultural by-products.

NONE

1995-07-01T23:59:59.000Z

380

American Ref-Fuel of Essex Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Essex Biomass Facility Essex Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Essex Biomass Facility Facility American Ref-Fuel of Essex Sector Biomass Facility Type Municipal Solid Waste Location Essex County, New Jersey Coordinates 40.7947466°, -74.2648829° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7947466,"lon":-74.2648829,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

American Ref-Fuel of Niagara Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Niagara Biomass Facility Niagara Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Niagara Biomass Facility Facility American Ref-Fuel of Niagara Sector Biomass Facility Type Municipal Solid Waste Location Niagara County, New York Coordinates 43.3119496°, -78.7476208° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3119496,"lon":-78.7476208,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

American Ref-Fuel of Delaware Valley Biomass Facility | Open Energy  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Delaware Valley Biomass Facility Facility American Ref-Fuel of Delaware Valley Sector Biomass Facility Type Municipal Solid Waste Location Delaware County, Pennsylvania Coordinates 39.907793°, -75.3878525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.907793,"lon":-75.3878525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

W. Golove (2003). Accounting for Fuel Price Risk: UsingForward Natural Gas Prices Insteadof Gas Price Forecasts to Compare Renewable to Gas-Fired

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

384

Thermophilic Gram-Positive Biocatalysts for Biomass Conversion to Ethanol  

DOE Green Energy (OSTI)

These new second generation biocatalysts have the potential to reduce the cost of SSF by minimizing the amount of fungal cellulases, a significant cost component in the use of biomass as a renewable resource for production of fuels and chemicals.

Shanmugam, K.T.; Ingram, L.O.; Maupin-Furlow, J.A.; Preston, J.F.; Aldrich, H.C.

2003-12-01T23:59:59.000Z

385

Review of the Regional Biomass Energy Program: Technical projects  

Science Conference Proceedings (OSTI)

This article summarizes technical projects of the regional Biomass Energy Program. Projects included are as follows: economic impact studies for renewable energy resources; alternative liquid fuels; Wood pellets fuels forum; residential fuel wood consumption; waste to energy decision-makers guide; fuel assessment for cogeneration facilities; municipal solid waste combustion characteristics.

Lusk, P.

1994-12-31T23:59:59.000Z

386

Biomass Resources  

Energy.gov (U.S. Department of Energy (DOE))

Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks.

387

EPA issues proposed rule for the 2014 Renewable Fuel Standard ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... power plants, fuel use, stocks, generation, trade, demand ... What is shale gas and why is it ...

388

Overview of Renewable Energies in Colombia: Advances in Biomass Power Cogeneration  

Science Conference Proceedings (OSTI)

This paper presents a theoretical review related to the contributions of technology development in the search for optimal solutions at the local level to face the renewable energies challenge. This, considering that those processes of promoting the development ...

D. Ortiz; M. Gualteros; E. Hurtado

2012-11-01T23:59:59.000Z

389

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market  

DOE Green Energy (OSTI)

The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

2013-03-01T23:59:59.000Z

390

American Ref-Fuel of Hempstead Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

American Ref-Fuel of Hempstead Biomass Facility American Ref-Fuel of Hempstead Biomass Facility Facility American Ref-Fuel of Hempstead Sector Biomass Facility Type Municipal Solid Waste Location Nassau County, New York Coordinates 40.6546145°, -73.5594128° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6546145,"lon":-73.5594128,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Renewable Energy Technologies Renewable energy...

392

Biomass-based alcohol fuels: the near-term potential for use with gasoline  

DOE Green Energy (OSTI)

This report serves as an introduction to the requirements and prospects for a nationwide alcohol-gasoline fuel system based on alcohols derived from biomass resources. Technological and economic factors of the production and use of biomass-based methanol and ethanol fuels are evaluated relative to achieving 5 or 10 percent alcohol-gasoline blends by 1990. It is concluded the maximum attainable is a nationwide 5 percent methanol or ethanol-gasoline system replacing gasoline by 1990. Relative to existing gasoline systems, costs of alcohol-gasoline systems will be substantial.

Park, W.; Price, G.; Salo, D.

1978-08-01T23:59:59.000Z

393

Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass  

SciTech Connect

This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation?s urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

Huffman, Gerald

2012-12-31T23:59:59.000Z

394

Advanced Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Jump to: navigation, search Name Advanced Renewable Energy Place Italy Sector Biomass, Renewable Energy, Wind energy Product Advanced Renewable Energy Ltd combines...

395

Other Biomass | OpenEI  

Open Energy Info (EERE)

Other Biomass Other Biomass Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

396

Liberia-NREL Biomass Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

Liberia-NREL Biomass Resource Assessment Liberia-NREL Biomass Resource Assessment Jump to: navigation, search Logo: Liberia Biomass Resource Assessment Name Liberia Biomass Resource Assessment Agency/Company /Organization National Renewable Energy Laboratory Partner U.S. Agency for International Development Sector Energy Focus Area Biomass Topics Resource assessment, Background analysis Resource Type Dataset, Maps, Software/modeling tools Website http://www.nrel.gov/docs/fy09o Country Liberia Western Africa References Assessment of Biomass Resources in Liberia [1] Abstract This study was conducted to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels

397

2011 RENEWABLE ENERGY: SOLAR FUELS GORDON RESEARCH CONFERENCE  

DOE Green Energy (OSTI)

The conference will present and discuss current science that underlies solar fuels production, and will focus on direct production pathways for production. Thus, recent advances in design and understanding of molecular systems and materials for light capture and conversion of relevance for solar fuels will be discussed. An important set of topics will be homogeneous, heterogeneous and biological catalysts for the multi-electron processes of water oxidation, hydrogen production and carbon dioxide reduction to useful fuels. Also, progress towards integrated and scalable systems will be presented. Attached is a copy of the formal schedule and speaker program and the poster program.

Joseph Hupp

2011-01-21T23:59:59.000Z

398

From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass Stories of Discovery & Innovation From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass Enlarge Photo Image by Eric Steen, JBEI Once E. coli have secreted oil, they sequester themselves from the droplets as shown by this optical image, thereby facilitating oil recovery. Currently, biochemical processing of cellulosic biomass requires costly enzymes for sugar liberation. By giving the E. coli the capacity to ferment both cellulose and hemicellulose without the 03.28.11 From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass A microbe that can produce an advanced biofuel directly from biomass was developed by researchers with the U.S. Department of Energy's Joint BioEnergy

399

NREL: Learning About Renewable Energy Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Student Resources - For high school and college students who want to learn more about how renewable energy can help create a brighter energy future for all of us. More Student Resources - For high school and college students who want to learn more about how renewable energy can help create a brighter energy future for all of us. More Renewable energy and energy efficiency technologies are key to creating a clean energy future for not only the nation, but the world. This Web site describes NREL's research in renewable energy technologies, and also provides information on energy efficiency and various applications of renewable energy. Renewable Energy Learn about renewable energy technologies including: Biomass Power Geothermal Power Solar Power Wind Energy Advanced Vehicles & Fuels Learn the basics about advanced vehicle technologies and alternative fuels. Find out how they contribute to fuel efficiency, reduce harmful air

400

Renewable & Alternative Fuels - User - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Vehicle Type 2003 2004 2005 2006 2007 2008 2009 2010 2011; Automobiles (Compact) Total Vehicles: Total Fuel Consumed: 8,953 681 14,208 1,015 20,965 ...

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

COMPACTING BIOMASS AND MUNICIPAL SOLID WASTES TO FORM AND UPGRADED FUEL  

DOE Green Energy (OSTI)

Biomass waste materials exist in large quantity in every city and in numerous industrial plants such as wood processing plants and waste paper collection centers. Through minimum processing, such waste materials can be turned into a solid fuel for combustion at existing coal-fired power plants. Use of such biomass fuel reduces the amount of coal used, and hence reduces the greenhouse effect and global warming, while at the same time it reduces the use of land for landfill and the associated problems. The carbon-dioxide resulting from burning biomass fuel is recycled through plant growth and hence does not contribute to global warming. Biomass fuel also contains little sulfur and hence does not contribute to acid rain problems. Notwithstanding the environmental desirability of using biomass waste materials, not much of them are used currently due to the need to densify the waste materials and the high cost of conventional methods of densification such as pelletizing and briquetting. The purpose of this project was to test a unique new method of biomass densification developed from recent research in coal log pipeline (CLP). The new method can produce large agglomerates of biomass materials called ''biomass logs'' which are more than 100 times larger and 30% denser than conventional ''pellets'' or ''briquettes''. The Phase I project was to perform extensive laboratory tests and an economic analysis to determine the technical and economic feasibility of the biomass log fuel (BLF). A variety of biomass waste materials, including wood processing residues such as sawdust, mulch and chips of various types of wood, combustibles that are found in municipal solid waste stream such as paper, plastics and textiles, energy crops including willows and switch grass, and yard waste including tree trimmings, fallen leaves, and lawn grass, were tested by using this new compaction technology developed at Capsule Pipeline Research Center (CPRC), University of Missouri-Columbia (MU). The compaction conditions, including compaction pressure, pressure holding time, back pressure, moisture content, particle size and shape, piston and mold geometry and roughness, and binder for the materials were studied and optimized. The properties of the compacted products--biomass logs--were evaluated in terms of physical, mechanical, and combustion characteristics. An economic analysis of this technology for anticipated future commercial operations was performed. It was found that the compaction pressure and the moisture content of the biomass materials are critical for producing high-quality biomass logs. For most biomass materials, dense and strong logs can be produced under room temperature without binder and at a pressure of 70 MPa (10,000 psi), approximately. A few types of the materials tested such as sawdust and grass need a minimum pressure of 100 MPa (15,000 psi) in order to produce good logs. The appropriate moisture range for compacting waste paper into good logs is 5-20%, and the optimum moisture is in the neighborhood of 13%. For the woody materials and yard waste, the appropriate moisture range is narrower: 5-13%, and the optimum is 8-9%. The compacted logs have a dry density of 0.8 to 1.0 g/cm{sup 3}, corresponding to a wet density of 0.9 to 1.1 g/cm{sup 3}, approximately. The logs have high strength and high resistance to impact and abrasion, but are feeble to water and hence need to be protected from water or rain. They also have good long-term performance under normal environmental conditions, and can be stored for a long time without significant deterioration. Such high-density and high-strength logs not only facilitate handling, transportation, and storage, but also increase the energy content of biomass per unit volume. After being transported to power plants and crushed, the biomass logs can be co-fired with coal to generate electricity.

Henry Liu; Yadong Li

2000-11-01T23:59:59.000Z

402

The Investment Plan for the Alternative and Renewable Fuel and Vehicle Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

The Investment Plan The Investment Plan for the The Alternative and Renewable Fuel and Vehicle Technology Program Webcast for the Natural Gas Vehicle Technology Forum January 14, 2009 Peter F. Ward California Energy Commission C A L I F O R N I A E N E R G Y C O M M I S S I O N Program Purpose and Objectives - AB 118 Program Purpose: "develop and deploy innovative technologies that transform California's fuel and vehicle types to help attain the state's climate change policies" - Creating a Framework for Sustainability: "establish sustainability goals to ensure that alternative and renewable fuel and vehicle development projects, on a full fuel- cycle assessment basis, will not adversely impact natural resources, especially state and federal lands"

403

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS  

DOE Green Energy (OSTI)

It has been observed from the review that very limited experimental study has been conducted on using FB as re-burn fuel and there exists no model using FB as re-burn fuel. The objective of the current research is to develop a simplified numerical model for NOx reduction process with FB volatiles as the re-burn fuel and compare results with experimental data. In order to satisfy the objective, the proposed work has been divided into 4 tasks. (1) Modeling the combustion process involving the main fuel, ammonia mixture in the main burner. (2) Developing of a simple mixing model of main gases with reburn jet. (3) Selection of a suitable overall global mechanism of reactions for the re-burn fuels, coupling the reaction model with the mixing model and thereby developing the complete re-burn model. (4) Comparing the simulation results with the experimental results obtained from TAMU combustion facility.

Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Saqib Mukhtar; Soyuz Priyadarsan, Ph.D.; Arunvel Thangamani, ME

2003-01-01T23:59:59.000Z

404

EIA Energy Kids - Renewable  

U.S. Energy Information Administration (EIA)

Renewable energy sources including biomass, hydropower, geothermal, wind, and solar provide 8% of the energy used in the United States. Most renewable energy goes to ...

405

An Open-Ended Renewables RFP in Minnesota Funds Biomass and  

E-Print Network (OSTI)

THIS CASE STUDY SERIES A number of U.S. states have recently established clean energy funds to support of Energy Efficiency and Renewable Energy of the U.S. Department of Energy under Contract No. DE-AC03- 76SF ­ for initiating this work. We also thank Larry Mansueti and Jack Cadogan of the U.S. Department of Energy

406

Current Renewable Energy Technologies and Future Projections  

SciTech Connect

The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

2007-05-01T23:59:59.000Z

407

Status of Process Development for Pyrolysis of Biomass for Liquid Fuels and Chemicals Production.  

Science Conference Proceedings (OSTI)

Pyrolysis is one of several thermochemical conversion strategies to produce useful fuels from biomass material . The goal of fast pyrolysis is to maximize liquid product yield. Fast pyrolysis is accomplished by the thermal treatment of the biomass in an air-free environment. Very short heat up and cool-down is a requirement for fast pyrolysis. The typical residence time in the pyrolysis reactor is 1 second. In order to accomplish the fast heatup, grinding the biomass to a small particle size in the range of 1 mm is typical and pre-drying of the biomass to less than 10 weight percent moisture is considered the standard. Recovery of the product liquid, called bio-oil, is accomplished by a variety of methods all of which require a quick quench of the product vapor. A definition of fast pyrolysis bio-oil is provided for the CAS # RN 1207435-39-9 recently issued by ChemAbstracts Services.

Elliott, Douglas C.

2010-06-01T23:59:59.000Z

408

Permitting Guidance for Biomass Power Plants  

Science Conference Proceedings (OSTI)

Biomass power plants could contribute significantly to reaching U.S. targets for renewable energy and greenhouse gas emissions reduction. Achieving these goals will require the construction of many new biomass-fired units, as well as the conversion of existing coal-fired units to biomass combustion or co-fired units. New biomass units will require air, water use, wastewater, and, in some cases, solid waste permits. Existing fossil fuel-fired units that will be converted to dedicated biomass-fired units o...

2011-05-12T23:59:59.000Z

409

Model documentation Renewable Fuels Module of the National Energy Modeling System  

DOE Green Energy (OSTI)

This report documents the objectives, analaytical approach and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1996 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described.

NONE

1996-01-01T23:59:59.000Z

410

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities  

E-Print Network (OSTI)

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

411

EERC Center for Biomass Utilization 2005  

DOE Green Energy (OSTI)

Biomass utilization is one solution to our nations addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nations reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.

Zygarlicke, C.J.; Schmidt, D.D.; Olson, E.S.; Leroux, K.M.; Wocken, C.A.; Aulich, T.A.; WIlliams, K.D.

2008-07-28T23:59:59.000Z

412

National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure  

E-Print Network (OSTI)

cold start analysis: 2001 ­ Fuel cell hybrid electric vehicles: 1999 (in collaboration with VATech) ­ H funding from the DOE Hydrogen Program (now HFCIT), with some funding coming from PBA and OFCVT #12;History analysis, electric grid/hydrogen interaction ­ Johanna Ivy: Electrolysis, H2A, programming ­ Maggie Mann

413

Treatment of Biomass Emissions the Same as Fossil Fuel Emissions  

E-Print Network (OSTI)

This summary of research on life cycle carbon accounting with implications for bioenergy was prepared for the National Alliance of Forest Owners by researchers working with the Consortium for Research on Renewable Industrial Materials (CORRIM), an independent non-profit corporation of 17 research institutions. The conclusions in the summary are those of the authors only based on publications produced for and by CORRIM and do not necessarily reflect the views of CORRIM's other researchers, member institutions, donors or grantors. The full body of work described in this summary will be

Elaine Oneil; Elaine Oneil

2010-01-01T23:59:59.000Z

414

The Role of Co-firing Biomass Fuels With Coal on Deactivation of Catalyst for Selective Catalytic Reduction NOx Control  

Science Conference Proceedings (OSTI)

The use of biomass fuel is considered an important option for mitigating the production of carbon dioxide (CO2) emissions from generating units designed to fire conventional fossil fuels. The key attraction of biomass fuels is that they are carbon neutralthe CO2 released by combustion was fixed or removed from the atmosphere by photosynthesis, so its return does not provide a net carbon addition.

2010-03-19T23:59:59.000Z

415

Stationary and Portable Fuel Cell Systems Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Stationary and Portable Fuel Cell Systems Codes and Standards Citations This document lists codes and standards typically used for Stationary and Portable Fuel Cell Systems projects. To determine which codes and standards apply to a specific project, you need to identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique applicable ordinances or regulations. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find Stationary and Portable Fuel Cell Systems codes and standards in these categories:

416

renewable sources of power. Demand for fossil fuels surely will overrun supply s  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And they will be forced to embrace energy efficiencies - those that are within our reach today, and those that will be developed tomorrow. Precisely when they come lo grips with that reality - this year, 10 years from now, or 20 years from now - will determine bow smooth the transition will be for consumers and industry alike.

417

Straw pellets as fuel in biomass combustion units  

DOE Green Energy (OSTI)

In order to estimate the suitability of straw pellets as fuel in small combustion units, the Danish Technological Institute accomplished a project including a number of combustion tests in the energy laboratory. The project was part of the effort to reduce the use of fuel oil. The aim of the project was primarily to test straw pellets in small combustion units, including the following: ash/slag conditions when burning straw pellets; emission conditions; other operational consequences; and necessary work performance when using straw pellets. Five types of straw and wood pellets made with different binders and antislag agents were tested as fuel in five different types of boilers in test firings at 50% and 100% nominal boiler output.

Andreasen, P.; Larsen, M.G. [Danish Technological Inst., Aarhus (Denmark)

1996-12-31T23:59:59.000Z

418

Analysis of Two Biomass Gasification/Fuel Cell Scenarios for Small-Scale Power Generation  

DOE Green Energy (OSTI)

Two scenarios were examined for small-scale electricity production from biomass using a gasifier/fuel cell system. In one case, a stand-alone BCL/FERC gasifier is used to produce synthesis gas that is reformed and distributed through a pipeline network to individual phosphoric acid fuel cells. In the second design, the gasifier is integrated with a molten carbonate fuel cell stack and a steam bottoming cycle. In both cases, the gasifiers are fed the same amount of material, with the integrated system producing 4 MW of electricity, and the stand-alone design generating 2 MW of electricity.

Amos, W. A.

1999-01-12T23:59:59.000Z

419

National Renewable Energy Laboratory  

National Renewable Energy Laboratory Technology Transfer Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Biomass Cogeneration

420

Model documentation renewable fuels module of the National Energy Modeling System  

Science Conference Proceedings (OSTI)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources--wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

NONE

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Environmental Life Cycle Implications of Fuel Oxygenate Production from California Biomass  

SciTech Connect

Historically, more than 90% of the excess agricultural residue produced in California (approximately 10 million dry metric tons per year) has been disposed through open-field burning. Concerns about air quality have prompted federal, state, and local air quality agencies to tighten regulations related to this burning and to look at disposal alternatives. One use of this biomass is as an oxygenated fuel. This report focuses on quantifying and comparing the comprehensive environmental flows over the life cycles of two disposal scenarios: (1) burning the biomass, plus producing and using MTBE; and (2) converting and using ETBE.

Kadam, K. L. (National Renewable Energy Laboratory); Camobreco, V. J.; Glazebrook, B. E. (Ecobalance Inc.); Forrest, L. H.; Jacobson, W. A. (TSS Consultants); Simeroth, D. C. (California Air Resources Board); Blackburn, W. J. (California Energy Commission); Nehoda, K. C. (California Department of Forestry and Fire Protection)

1999-05-20T23:59:59.000Z

422

Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Conversion Technology Biomass, solid fuels Combustion (direct-fired, cofiring with coal); GasificationPyrolysis Biomass, gas and liquid fuels Fuel Cells Geothermal Dry...

423

Conversion of Biomass-Derived Furans into Hydrocarbon Fuels  

Science Conference Proceedings (OSTI)

One of the most studied chemical transformations of carbohydrates is their thermocatalytic dehydration to form furans. Cellulose-derived glucose is thereby converted into 5-hydroxymethylfurfuraldehyde (5-HMF), while the hemicellulose-derived pentoses (e.g., xylose, arabinose) form furfuraldehyde. Our objective is to identify new pathways to convert furfuryl alcohol into a mixture of aliphatic hydrocarbons that can be used as drop-in fuels for diesel (C10-20) and jet fuel (C9-16) blends. Furfuryl alcohol is produced commercially through hydrogenation of furfuraldehyde that is derived from hemicellulose-derived pentoses via acid-catalyzed dehydration. The steps that we are currently pursuing to convert furfuryl alcohol into hydrocarbons are 1) oligomerization of furfuryl alcohol to form dimers (C10) and trimers (C15), and 2) hydrotreatment of the dimers and trimers to produce a mixture of linear hydrocarbons with carbon chain lengths in the range of diesel and jet fuels. This presentation will discuss our progress in the development of this pathway.

Moens, L.; Johnson, D. K.

2013-01-01T23:59:59.000Z

424

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network (OSTI)

of Energy National Renewable Energy Laboratory Dieseland Specifications. Renewable and Sustainable Energy Reviewstheir Reduction Approaches. Renewable and Sustainable Energy

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

425

Biomass Fuel Characterization : Testing and Evaluating the Combustion Characteristics of Selected Biomass Fuels : Final Report May 1, 1988-July, 1989.  

DOE Green Energy (OSTI)

Results show that two very important measures of combustion efficiency (gas temperature and carbon dioxide based efficiency) varied by only 5.2 and 5.4 percent respectively. This indicates that all nine different wood fuel pellet types behave very similarly under the prescribed range of operating parameters. The overall mean efficiency for all tests was 82.1 percent and the overall mean temperature was 1420 1{degree}F. Particulate (fly ash) ad combustible (in fly ash) data should the greatest variability. There was evidence of a relationship between maximum values for both particulate and combustible and the percentages of ash and chlorine in the pellet fuel. The greater the percentage of ash and chlorine (salt), the greater was the fly ash problem, also, combustion efficiency was decreased by combustible losses (unburned hydrocarbons) in the fly ash. Carbon monoxide and Oxides of Nitrogen showed the next greatest variability, but neither had data values greater than 215.0 parts per million (215.0 ppm is a very small quantity, i.e. 1 ppm = .001 grams/liter = 6.2E-5 1bm/ft{sup 3}). Visual evidence indicates that pellets fuels produced from salt laden material are corrosive, produce the largest quantities of ash, and form the only slag or clinker formations of all nine fuels. The corrosion is directly attributable to salt content (or more specifically, chloride ions and compounds formed during combustion). 45 refs., 23 figs., 19 tabs.

Bushnell, Dwight J.; Haluzok, Charles; Dadkhah-Nikoo, Abbas

1990-04-01T23:59:59.000Z

426

Aquatic biomass as a source of fuels and chemicals  

DOE Green Energy (OSTI)

The Aquatic Species Program (ASP) addresses the development of technologies that produce and utilize plant biomass species which naturally inhabit wetlands or submerged areas. Processes being developed through this program take advantage of the rapid growth rates, high yields, and extraordinary chemical compositions inherently associated with aquatic species. Emphasis is placed on salt tolerant species for cultivation on poorly utilized, low-value lands, where conventional agriculture is not economic. Candidate species are identified from: (1) microalgae-unicellular plants that are natural factories for converting sunlight into high quality oils; (2) macroalgae-large, chemically unique plants that can be easily fermented to methane gas or alcohols; and (3) emergents-plants that grow rooted in waterways and bogs, but are partially exposed above water. Within the next five years, the conditions and resources necessary for sustained systems operations are to be defined, design parameters examined, and experimental facilities developed. Succeeding years are planned to focus on resolving major technical hurdles in systems operations, integration, and component performance. This paper updates the technical progress in this program, describes several aspects of evolving systems concepts, and attempts to provide some perspectives based on potential economics. 16 references, 4 figures, 4 tables.

Raymond, L.P.

1983-09-01T23:59:59.000Z

427

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

428

Biomass Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technology Basics Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007. Biomass technologies break down organic matter to release stored energy from the sun. The process used depends on the type of biomass and its

429

"Optimization of Zero Length Chromatographic System and Measuring Properties of Model Compounds from Biomass Pyrolysis"  

E-Print Network (OSTI)

on alternatives for fossil derived liquid transportation fuels. Biomass is considered a promising alternative due to its abundance and renewability. Various products from different biomass sources have been proposed interesting, second generation transportation fuel is pyrolysis oil, obtained by flash pyrolysis

Mountziaris, T. J.

430

Advanced Biomass: Technology Characteristics, Status and Lessons Learned  

Science Conference Proceedings (OSTI)

Biomass, primarily wood, is a significant source of heat and power in the U.S. Advances in fuel supplies and in conversion technology are needed to make renewable biomass a major source of grid-connected power. This report presents both the characteristics expected of advanced technology and some lessons learned from current wood-fired power generation.

1998-11-30T23:59:59.000Z

431

Land use and geospatial aspects in life cycle assessment of renewable energy  

Science Conference Proceedings (OSTI)

Renewable energy systems such as wind, solar and biomass are significantly more land intensive than traditional fossil fuels. Moreover, their environmental implications are highly geographically heterogeneous. Consequently, they present a significant ...

T. P. Seager; S. A. Miller; J. Kohn

2009-05-01T23:59:59.000Z

432

Model documentation: Renewable Fuels Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

Not Available

1994-04-01T23:59:59.000Z

433

EERE SBIR Case Study: Improving Hybrid Poplars as a Renewable Source of Ethanol Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GreenWood Resources to advance GreenWood Resources to advance scientific understanding of the ways chemical traits are inherited in hybrid poplars and the extent of variations in characteristics such as lignin content and forms of lignin-enabling the best traits to be developed and significantly advancing the potential of hybrid poplars to provide a substantial, renewable source of ethanol fuel. GreenWood Resources (Portland,

434

2010 Fuel Cell Technologies Market Report, June 2011, Energy Efficiency & Renewable Energy (EERE)  

NLE Websites -- All DOE Office Websites (Extended Search)

FUEL CELL TECHNOLOGIES FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2011 i Authors This report was a collaborative effort by staff of the Breakthrough Technologies Institute, Inc., in Washington, DC. Acknowledgement The authors relied upon the hard work and valuable contributions of many men and women in government and in the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance in the preparation of this report. The authors also wish to thank Lisa Callaghan- Jerram of Pike Research and Rachel Gelman of the National Renewable Energy Laboratory, and the many others who made this report possible. ii Contents List of Figures ............................................................................................................................................... iv

435

The Feasibility of Producing and Using Biomass-Based Diesel and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States A. Milbrandt, C. Kinchin, and R. McCormick National Renewable Energy Laboratory Technical...

436

DOE Thermochemical Users Facility: A Proving Ground for Biomass Technology  

DOE Green Energy (OSTI)

The National Bioenergy Center at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products, including electricity, high-value chemicals, and transportation fuels.

Not Available

2003-10-01T23:59:59.000Z

437

Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report  

SciTech Connect

Executive Summary The growing gap between petroleum production and demand, mounting environmental concerns, and increasing fuel prices have stimulated intense interest in research and development (R&D) of alternative fuels, both synthetic and bio-derived. Currently, the most technically defined thermochemical route for producing alternative fuels from lignocellulosic biomass involves gasification/reforming of biomass to produce syngas (carbon monoxide [CO] + hydrogen [H2]), followed by syngas cleaning, Fischer-Tropsch synthesis (FTS) or mixed alcohol synthesis, and some product upgrading via hydroprocessing or separation. A detailed techno-economic analysis of this type of process has recently been published [1] and it highlights the need for technical breakthroughs and technology demonstration for gas cleanup and fuel synthesis. The latter two technical barrier areas contribute 40% of the total thermochemical ethanol cost and 70% of the production cost, if feedstock costs are factored out. Developing and validating technologies that reduce the capital and operating costs of these unit operations will greatly reduce the risk for commercializing integrated biomass gasification/fuel synthesis processes for biofuel production. The objective of this project is to develop and demonstrate new catalysts and catalytic processes that can efficiently convert biomass-derived syngas into diesel fuel and C2-C4 alcohols. The goal is to improve the economics of the processes by improving the catalytic activity and product selectivity, which could lead to commercialization. The project was divided into 4 tasks: Task 1: Reactor Systems: Construction of three reactor systems was a project milestone. Construction of a fixed-bed microreactor (FBR), a continuous stirred tank reactor (CSTR), and a slurry bubble column reactor (SBCR) were completed to meet this milestone. Task 2: Iron Fischer-Tropsch (FT) Catalyst: An attrition resistant iron FT catalyst will be developed and tested. Task 3: Chemical Synthesis: Promising process routes will be identified for synthesis of selected chemicals from biomass-derived syngas. A project milestone was to select promising mixed alcohol catalysts and screen productivity and performance in a fixed bed micro-reactor using bottled syngas. This milestone was successfully completed in collaboration withour catalyst development partner. Task 4: Modeling, Engineering Evaluation, and Commercial Assessment: Mass and energy balances of conceptual commercial embodiment for FT and chemical synthesis were completed.

David C. Dayton

2010-03-24T23:59:59.000Z

438

Thermochemical conversion of biomass: an overview of R and D activities sponsored by the Biomass Energy Systems Branch of DOE  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is actively developing renewable energy sources through research and development programs sponsored by the Biomass Energy Systems Branch. The mission of the thermochemical conversion element of the Biomass Energy Systems Program is to develop competitive processes for the conversion of renewable biomass resources into clean fuels and chemical feedstocks which can supplement those produced from conventional sources. A description of thermochemical conversion program areas and an overview of specific thermochemical conversion projects sponsored by the Biomass Energy Systems Branch are presented in this paper.

Schiefelbein, G.F.; Sealock, L.J. Jr.; Ergun, S.

1979-10-01T23:59:59.000Z

439

Development of a pressurized fluidized-bed biomass gasifier to produce substitute fuels  

DOE Green Energy (OSTI)

The Institute of Gas Technology (IGT) is conducting a program to convert forest and crop residues to substitute fuel in a pressurized fluidized-bed biomass gasifier. The process is designed for operation at pressures up to 2.17 MPa (315 psia) and temperatures up to 1255 K (1800/sup 0/F). Various goals for synthesis or fuel gas processes are being pursued to develop an efficient process. Some of these goals are to maximize the throughput, the amount, and the quality of the gas, while minimizing both the amount of the feedstock preparation needed and the formation of condensible compounds that require by-product disposal and process wastewater treatment. The process development results obtained from fluidization, biomass devolatilization, and char gasification studies were used to design a 30.5-cm (12-inch) ID adiabatic fluidized-bed gasification process development unit (PDU), capable of handling up to 455 kg (1000 lb) of biomass per hour. The fluidized-bed gasifier performance is to be determined as a function of the standard operating parameters to develop a basis for recommending processes to produce either an industrial fuel gas for energy generation or a synthesis gas for methanol and ammonia production.

Babu, S P; Onischak, M; Kosowski, G

1982-01-01T23:59:59.000Z

440

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION  

DOE Green Energy (OSTI)

During the period January 1, 2001-March 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) finalized the engineering of the Willow Island cofiring project, completed the fuel characterizations for both the Willow Island and Albright Generating Station projects, and initiated construction of both projects. Allegheny and its contractor, Foster Wheeler, selected appropriate fuel blends and issued purchase orders for all processing and mechanical equipment to be installed at both sites. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The third quarter of the project involved completing the detailed designs for the Willow Island Designer Fuel project. It also included complete characterization of the coal and biomass fuels being burned, focusing upon the following characteristics: proximate and ultimate analysis; higher heating value; carbon 13 nuclear magnetic resonance testing for aromaticity, number of aromatic carbons per cluster, and the structural characteristics of oxygen in the fuel; drop tube reactor testing for high temperature devolatilization kinetics and generation of fuel chars; thermogravimetric analyses (TGA) for char oxidation kinetics; and related testing. The construction at both sites commenced during this quarter, and was largely completed at the Albright Generating Station site.

K. Payette; D. Tillman

2001-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewable biomass fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Statement by U.S. Secretary of Energy Samuel W. Bodman on EPA's Renewable Fuel Standard Waiver Announcement  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON -- The following is a statement from U.S. Secretary of Energy Samuel W. Bodman in response to the U.S. Environmental Protection Agency's (EPA) announcement on the Renewable Fuel Standard...

442

Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices  

E-Print Network (OSTI)

Fuel Price Risk: Using Forward Natural Gas Prices Insteadof Gas Price Forecasts to Compare Renewable to Gas-FiredWhich way the natural gas price: an attempt to predict the

Bolinger, Mark; Wiser, Ryan; Golove, William

2004-01-01T23:59:59.000Z

443

Process for the conversion of and aqueous biomass hydrolyzate into fuels or chemicals by the selective removal of fermentation inhibitors  

DOE Patents (OSTI)

A process of making a fuel or chemical from a biomass hydrolyzate is provided which comprises the steps of providing a biomass hydrolyzate, adjusting the pH of the hydrolyzate, contacting a metal oxide having an affinity for guaiacyl or syringyl functional groups, or both and the hydrolyzate for a time sufficient to form an adsorption complex; removing the complex wherein a sugar fraction is provided, and converting the sugar fraction to fuels or chemicals using a microorganism.

Hames, Bonnie R. (Westminster, CO); Sluiter, Amie D. (Arvada, CO); Hayward, Tammy K. (Broomfield, CO); Nagle, Nicholas J. (Broomfield, CO)

2004-05-18T23:59:59.000Z

444

Trends and outlook for biomass energy  

Science Conference Proceedings (OSTI)

Among renewable energy resources, biomass is one of the most promising, with the potential for providing electricity through combustion, gasification, and biochemical processes as well as supplying gaseous and liquid fuels that can compete with conventional energy sources in large-scale applications. The production of biomass for energy purposes can also offer environmental benefits. The most notable is the potential for providing energy with little or no net buildup of carbon dioxide in the atmosphere if the biomass is produced renewably. Biomass also has the potential to help revitalize the rural sector of the economy. A domestic natural resource, biomass can be grown and harvested, which requires labor. The biomass power industry can therefore create jobs in harvesting and transporting biomass and in the related industries of fertilizers, pesticides, and agricultural equipment. In the future, biomass facilities will be larger and more efficient and, as such, an important alternative for energy generators. This article summarizes the factors relating to the use of biomass as a fuel source, the technology options for power generation, and examines the trends and outlook for biomass energy generation in the United States.

Green, J.H. (Bechtel Group, Inc., San Francisco, CA (United States). Research and Development)

1994-01-01T23:59:59.000Z

445

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

446

Rough cost estimates of solar thermal/coal or biomass-derived fuels. [Hybrid approach: solar thermal plus either coal or biomass  

SciTech Connect

The production of a synthetic fuel from a solar thermal resource could provide a means of replacing critical liquid and gaseous fossil fuels. The solar thermal resource is large and economics favors a southwestern site. A synthetic fuel would provide a desirable product and a means of transporting solar thermal energy to large load centers outside the southwest. This paper presents cost data for one method of producing synthetic methane. A hybrid approach was chosen, a combination of solar thermal and either coal or biomass. The magnitude of the solar thermal resource is estimated as well as projected cost. Cost projections for coal and biomass are accumulated. The cost of synthetic gas from a hybrid and a conventional fuel source are compared.

Copeland, R. J.

1979-01-01T23:59:59.000Z

447

A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES  

SciTech Connect

Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

John T. Kelly; George Miller; Mehdi Namazian

2001-07-01T23:59:59.000Z

448

November 2011 Model documentation for biomass,  

E-Print Network (OSTI)

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

449

Renewable Power Procurement Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Procurement Policy Power Procurement Policy Renewable Power Procurement Policy < Back Eligibility State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Program Info State New York Program Type Green Power Purchasing Provider New York State Energy Research and Development Authority New York Governor George Pataki signed Executive Order No. 111 to promote "Green and Clean" State Buildings and Vehicles on June 10, 2001. The renewable-power procurement component of this order commits the state government to purchase a portion of its electric power from renewable energy resources -- at least 10% from resources such as wind, solar thermal, photovoltaics (solar electric), sustainably managed biomass,

450

Whites Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Whites Renewable Energy Jump to: navigation, search Name Whites Renewable Energy Place United Kingdom Zip YO8 8EF Sector Biomass, Renewable Energy Product UK based company...

451

Harvesting a renewable resource under uncertainty  

E-Print Network (OSTI)

Consider a valuable renewable resource whose biomass X2003. Harvesting a renewable resource under uncertainty,Harvesting a Renewable Resource under Uncertainty 1 (with

Saphores, Jean-Daniel M

2003-01-01T23:59:59.000Z

452

Best Practices for Biomass Handling in Wood Yard Operations  

Science Conference Proceedings (OSTI)

Utilities are beginning to add wood and other biomass fuels to fire their generating units to enable them to produce carbon-neutral electricity and participate in state or national renewable energy programs. However, because the material handling aspects of biomass differ from those of coal, firing at a significant scale requires new equipment to receive, store, and deliver the biomass to the flame front. This equipment is analogous in function to existing machinery but is quite different in detail, desi...

2011-08-29T23:59:59.000Z

453

Fuel cycle evaluations of biomass-ethanol and reformulated gasoline. Volume 1  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is using the total fuel cycle analysis (TFCA) methodology to evaluate energy choices. The National Energy Strategy (NES) identifies TFCA as a tool to describe and quantify the environmental, social, and economic costs and benefits associated with energy alternatives. A TFCA should quantify inputs and outputs, their impacts on society, and the value of those impacts that occur from each activity involved in producing and using fuels, cradle-to-grave. New fuels and energy technologies can be consistently evaluated and compared using TFCA, providing a sound basis for ranking policy options that expand the fuel choices available to consumers. This study is limited to creating an inventory of inputs and outputs for three transportation fuels: (1) reformulated gasoline (RFG) that meets the standards of the Clean Air Act Amendments of 1990 (CAAA) using methyl tertiary butyl ether (MTBE); (2) gasohol (E10), a mixture of 10% ethanol made from municipal solid waste (MSW) and 90% gasoline; and (3) E95, a mixture of 5% gasoline and 95% ethanol made from energy crops such as grasses and trees. The ethanol referred to in this study is produced from lignocellulosic material-trees, grass, and organic wastes -- called biomass. The biomass is converted to ethanol using an experimental technology described in more detail later. Corn-ethanol is not discussed in this report. This study is limited to estimating an inventory of inputs and outputs for each fuel cycle, similar to a mass balance study, for several reasons: (1) to manage the size of the project; (2) to provide the data required for others to conduct site-specific impact analysis on a case-by-case basis; (3) to reduce data requirements associated with projecting future environmental baselines and other variables that require an internally consistent scenario.

Tyson, K.S.

1993-11-01T23:59:59.000Z

454

Feasibility Study of Biomass Electrical Generation on Tribal Lands  

DOE Green Energy (OSTI)

The goals of the St. Croix Tribe are to develop economically viable energy production facilities using readily available renewable biomass fuel sources at an acceptable cost per kilowatt hour ($/kWh), to provide new and meaningful permanent employment, retain and expand existing employment (logging) and provide revenues for both producers and sellers of the finished product. This is a feasibility study including an assessment of available biomass fuel, technology assessment, site selection, economics viability given the foreseeable fuel and generation costs, as well as an assessment of the potential markets for renewable energy.

Tom Roche; Richard Hartmann; Joohn Luton; Warren Hudelson; Roger Blomguist; Jan Hacker; Colene Frye

2005-03-29T23:59:59.000Z

455

Flexible Fuel Vehicles: Powered by a Renewable U.S. Fuel  

Science Conference Proceedings (OSTI)

Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

Not Available

2007-03-01T23:59:59.000Z

456

AEO2011: Renewable Energy Generation by Fuel - Southwest Power Pool / South  

Open Energy Info (EERE)

South South Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 115, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO EIA Renewable Energy Generation South Southwest Power Pool Data application/vnd.ms-excel icon AEO2011: