Sample records for removed increased significantly

  1. DOE Steps Lead to Significant Increase in Compliance with Energy...

    Office of Environmental Management (EM)

    Steps Lead to Significant Increase in Compliance with Energy Efficiency Reporting Requirements DOE Steps Lead to Significant Increase in Compliance with Energy Efficiency Reporting...

  2. LEARNING FROM DAM REMOVAL MONITORING: CHALLENGES TO SELECTING EXPERIMENTAL DESIGN AND ESTABLISHING SIGNIFICANCE OF OUTCOMES

    E-Print Network [OSTI]

    Tullos, Desiree

    LEARNING FROM DAM REMOVAL MONITORING: CHALLENGES TO SELECTING EXPERIMENTAL DESIGN AND ESTABLISHING, California, USA ABSTRACT As the decommissioning of dams becomes a common restoration technique, decisions about dam removals must be based on sound predictions of expected outcomes. Results of past and ongoing

  3. Societal demand for increasing mineral resources Canada has made significant contributions

    E-Print Network [OSTI]

    Michelson, David G.

    Societal demand for increasing mineral resources Canada has made significant contributions. The discovery of new mineral resources requires increasing risk, increasing costs, and increasingly effective Vancouver has long been a global leader continue to affect society through aspects as varied as high metal

  4. Significant increase of Curie temperature in nano-scale BaTiO{sub 3}

    SciTech Connect (OSTI)

    Li, Yueliang; Liao, Zhenyu; Fang, Fang; Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084 (China); Wang, Xiaohui; Li, Longtu [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-11-03T23:59:59.000Z

    The low Curie temperature (T{sub c}?=?130?°C) of bulk BaTiO{sub 3} greatly limits its applications. In this work, the phase structures of BaTiO{sub 3} nanoparticles with sizes ranging from 2.5?nm to 10?nm were studied at various temperatures by using aberration-corrected transmission electron microscopy (TEM) equipped with an in-situ heating holder. The results implied that each BaTiO{sub 3} nanoparticle was composed of different phases, and the ferroelectric ones were observed in the shells due to the complicated surface structure. The ferroelectric phases in BaTiO{sub 3} nanoparticles remained at 600?°C, suggesting a significant increase of T{sub c}. Based on the in-situ TEM results and the data reported by others, temperature-size phase diagrams for BaTiO{sub 3} particles and ceramics were proposed, showing that the phase transition became diffused and the T{sub c} obviously increased with decreasing size. The present work sheds light on the design and fabrication of advanced devices for high temperature applications.

  5. Pharmaceutical manufacturers are facing significant changes. According to a prominent analyst they are encountering increased

    E-Print Network [OSTI]

    Fisher, Kathleen

    is to increase product innovation while also meeting high standards for process and data compliance. The company they are encountering increased competition from generic products; growing regulatory requirements; and pressure of the industry's leading companies need to revamp their long-standing "siloed" business operations and invent

  6. Juniper removal may not increase overall Klamath River Basin water yields

    E-Print Network [OSTI]

    Kuhn, Timothy J; Tate, Kenneth W; Cao, David; George, Melvin R.

    2007-01-01T23:59:59.000Z

    of demands. Regional water shortages could increase during2001, for example, water shortage forecasts i n the Klamath

  7. The demand for high performance computing research has been significantly increasing over the past few years. Various

    E-Print Network [OSTI]

    Akhmedov, Azer

    The demand for high performance computing research has been significantly increasing over the past to promote the effective use of High Performance Computing in the research environment. In addition facility has enabled cutting-edge computations material research, "Having a high-performance computing

  8. INCREASE

    ScienceCinema (OSTI)

    None

    2013-07-22T23:59:59.000Z

    The Interdisciplinary Consortium for Research and Educational Access in Science and Engineering (INCREASE), assists minority-serving institutions in gaining access to world-class research facilities.

  9. Combined heat and power has the potential to significantly increase energy production efficiency and thus reduce greenhouse gas emissions, however current market penetration

    E-Print Network [OSTI]

    Kammen, Daniel M.

    1 Combined heat and power has the potential to significantly increase energy production efficiency and thus reduce greenhouse gas emissions, however current market penetration analyses suggest that California will not reach the targets for combined heat and power set for it by the Air Resources Board (ARB

  10. Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01T23:59:59.000Z

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how hydrogen photoproduction activity in algal cultures can be improved dramatically by increasing the gas-phase to liquid-phase volume ratio of the photobioreactor. NREL, in partnership with subcontractors from the Institute of Basic Biological Problems in Pushchino, Russia, demonstrated that the hydrogen photoproduction rate in algal cultures always decreases exponentially with increasing hydrogen partial pressure above the culture. The inhibitory effect of high hydrogen concentrations in the photobioreactor gas phase on hydrogen photoproduction by algae is significant and comparable to the effect observed with some anaerobic bacteria.

  11. Nietzsche's Hermeneutic Significance

    E-Print Network [OSTI]

    Schrift, Alan D.

    Nietzsche's Hermeneutic Significance Alan D. Schrift Purdue University In the past half-century, philosophers on the European continent have, with increasing frequency, characterized their investigations as "hermeneutical." Both traditional... as a consequence of asking the wrong kinds of ques­ tions. Heidegger's hermeneutics arose out of his at­ tempt to re-think metaphysics and we find contemporary hermeneutics speaking of the move beyond epistemology. What this hermeneutic challenge...

  12. basal hay and grain diet with 90 g rumen degradable crude protein in the DM, was not significantly related to any increase in nitrogen accretion. Fish meal addition, on the other hand,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    basal hay and grain diet with 90 g rumen degradable crude protein in the DM, was not significantly.0 % crude fat in the DM respectively. All diets were given ad libitum. On a net energy basis, they were made/day : A = 2.152 ; B = 2.061 ; C = 2.027 ; s, = 0.114). Digestibility of all the main nutrients except crude

  13. Modeling Sustainable Agricultural Residue Removal at the Subfield Scale

    SciTech Connect (OSTI)

    Muth, D.J.; McCorkle, D.S.; Koch, J.B.; Bryden, K.M.

    2012-05-02T23:59:59.000Z

    This study developed a computational strategy that utilizes data inputs from multiple spatial scales to investigate how variability within individual fields can impact sustainable residue removal for bioenergy production. Sustainable use of agricultural residues for bioenergy production requires consideration of the important role that residues play in limiting soil erosion and maintaining soil C, health, and productivity. Increased availability of subfield-scale data sets such as grain yield data, high-fidelity digital elevation models, and soil characteristic data provides an opportunity to investigate the impacts of subfield-scale variability on sustainable agricultural residue removal. Using three representative fields in Iowa, this study contrasted the results of current NRCS conservation management planning analysis with subfield-scale analysis for rake-and-bale removal of agricultural residue. The results of the comparison show that the field-average assumptions used in NRCS conservation management planning may lead to unsustainable residue removal decisions for significant portions of some fields. This highlights the need for additional research on subfield-scale sustainable agricultural residue removal including the development of real-time variable removal technologies for agricultural residue.

  14. Multipollutant Removal with WOWClean® System

    E-Print Network [OSTI]

    Romero, M.

    2010-01-01T23:59:59.000Z

    such as petcoke, coal, wood, diesel and natural gas. In addition to significant removal of CO2, test results demonstrate the capability to reduce 99.5% SOx (from levels as high as 2200 ppm), 90% reduction of NOx, and > 90% heavy metals. The paper will include...

  15. A Multi-Factor Analysis of Sustainable Agricultural Residue Removal Potential

    SciTech Connect (OSTI)

    Jared Abodeely; David Muth; Paul Adler; Eleanor Campbell; Kenneth Mark Bryden

    2012-10-01T23:59:59.000Z

    Agricultural residues have significant potential as a near term source of cellulosic biomass for bioenergy production, but sustainable removal of agricultural residues requires consideration of the critical roles that residues play in the agronomic system. Previous work has developed an integrated model to evaluate sustainable agricultural residue removal potential considering soil erosion, soil organic carbon, greenhouse gas emission, and long-term yield impacts of residue removal practices. The integrated model couples the environmental process models WEPS, RUSLE2, SCI, and DAYCENT. This study uses the integrated model to investigate the impact of interval removal practices in Boone County, Iowa, US. Residue removal of 4.5 Mg/ha was performed annually, bi-annually, and tri-annually and were compared to no residue removal. The study is performed at the soil type scale using a national soil survey database assuming a continuous corn rotation with reduced tillage. Results are aggregated across soil types to provide county level estimates of soil organic carbon changes and individual soil type soil organic matter content if interval residue removal were implemented. Results show interval residue removal is possible while improving soil organic matter. Implementation of interval removal practices provide greater increases in soil organic matter while still providing substantial residue for bioenergy production.

  16. Rubber stopper remover

    DOE Patents [OSTI]

    Stitt, Robert R. (Arvada, CO)

    1994-01-01T23:59:59.000Z

    A device for removing a rubber stopper from a test tube is mountable to an upright wall, has a generally horizontal splash guard, and a lower plate spaced parallel to and below the splash guard. A slot in the lower plate has spaced-apart opposing edges that converge towards each other from the plate outer edge to a narrowed portion, the opposing edges shaped to make engagement between the bottom of the stopper flange and the top edge of the test tube to wedge therebetween and to grasp the stopper in the slot narrowed portion to hold the stopper as the test tube is manipulated downwardly and pulled from the stopper. The opposing edges extend inwardly to adjoin an opening having a diameter significantly larger than that of the stopper flange.

  17. Innovative DOE Technology Demonstrates Potential for Significant Increases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy Information forInjuryof Energy 3 DOEin

  18. Innovative DOE Technology Demonstrates Potential for Significant Increases

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReformManager (ISSM)Department ofin Safe and

  19. Oil removal from water via adsorption 

    E-Print Network [OSTI]

    Jacobs, William Edward

    1973-01-01T23:59:59.000Z

    . TABLE OF CONTENTS CHAPTER I. INTRODUCTION I I. LITERATURE REVIEW Significance of Oil Spill Proble. ". . s Growth of Marine Commerce Superport Oil Spills Oil Spills and the Law Oil Spill Control Methods Physical Removal of Oil III. MATERIALS... IV Table V Table VI Significant Facts about Major Oil Spills Viscosity of Test Oils Determined by Capillary Viscometer Percent of Oil Remaining in Water After Removal of Oil-Carrier Combination Maximum Oil Adsorption Capacity for Light Crude...

  20. Silica Scaling Removal Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sidestreams of cooling tower water by providing a substrate for the deposition and adsorption of silica. The removal of the silica prevents scaling deposition on heat transfer...

  1. INVESTIGATION OF IONIC CONTAMINATION REMOVAL FROM SILICON DIOXIDE SURFACES

    E-Print Network [OSTI]

    Suni, Ian Ivar

    INVESTIGATION OF IONIC CONTAMINATION REMOVAL FROM SILICON DIOXIDE SURFACES H. Lin, A. A. Busnaina, and I. I. Suni T he removal of ionic contaminants from silicon surfaces surface contamination level canM Communications L td. INTRODUCTION with increasing frequency and power, and decreases Contamination removal is one

  2. Removal of Headspace CO2 Increases Biological Hydrogen

    E-Print Network [OSTI]

    For biological hydrogen production by fermentation to be a useful method of hydrogen generation, molar yields loss of hydrogen to methanogenesis, hydrogen is still lost to acetic acid generation from hydrogen.4 to 2.0 mol of H2/mol of glucose). The soluble byproducts in all tests consisted primarily of acetate

  3. Reactor for removing ammonia

    DOE Patents [OSTI]

    Luo, Weifang (Livermore, CA); Stewart, Kenneth D. (Valley Springs, CA)

    2009-11-17T23:59:59.000Z

    Disclosed is a device for removing trace amounts of ammonia from a stream of gas, particularly hydrogen gas, prepared by a reformation apparatus. The apparatus is used to prevent PEM "poisoning" in a fuel cell receiving the incoming hydrogen stream.

  4. Continuous sulfur removal process

    DOE Patents [OSTI]

    Jalan, V.; Ryu, J.

    1994-04-26T23:59:59.000Z

    A continuous process for the removal of hydrogen sulfide from a gas stream using a membrane comprising a metal oxide deposited on a porous support is disclosed. 4 figures.

  5. Significant accomplishments General Highlights

    E-Print Network [OSTI]

    Rhode Island, University of

    ://www.uri.edu/advance/recruitment.html. Unsolicited calls to the office to present at search committees increase. Two presentations were given during, college all-faculty meetings, reminders to chairs, etc. The survey can be found at: http://www.surveymonkey.com/s.aspx?sm=GrhhOBPammsSc to include a link to Work-Life Resources and to the ADVANCE Work-Life-Family website. · The URI Lactation

  6. EXPLANATION OF SIGNIFICANT DIFFERENCES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet Update WinterEXPLANATION OF SIGNIFICANT

  7. Arsenic removal from water

    DOE Patents [OSTI]

    Moore, Robert C. (Edgewood, NM); Anderson, D. Richard (Albuquerque, NM)

    2007-07-24T23:59:59.000Z

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  8. Drum lid removal tool

    DOE Patents [OSTI]

    Pella, Bernard M. (Martinez, GA); Smith, Philip D. (North Augusta, SC)

    2010-08-24T23:59:59.000Z

    A tool for removing the lid of a metal drum wherein the lid is clamped over the drum rim without protruding edges, the tool having an elongated handle with a blade carried by an angularly positioned holder affixed to the midsection of the handle, the blade being of selected width to slice between lid lip and the drum rim and, when the blade is so positioned, upward motion of the blade handle will cause the blade to pry the lip from the rim and allow the lid to be removed.

  9. Removable feedwater sparger assembly

    DOE Patents [OSTI]

    Challberg, R.C.

    1994-10-04T23:59:59.000Z

    A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith. 8 figs.

  10. Significant Radionuclides Determination

    SciTech Connect (OSTI)

    Jo A. Ziegler

    2001-07-31T23:59:59.000Z

    The purpose of this calculation is to identify radionuclides that are significant to offsite doses from potential preclosure events for spent nuclear fuel (SNF) and high-level radioactive waste expected to be received at the potential Monitored Geologic Repository (MGR). In this calculation, high-level radioactive waste is included in references to DOE SNF. A previous document, ''DOE SNF DBE Offsite Dose Calculations'' (CRWMS M&O 1999b), calculated the source terms and offsite doses for Department of Energy (DOE) and Naval SNF for use in design basis event analyses. This calculation reproduces only DOE SNF work (i.e., no naval SNF work is included in this calculation) created in ''DOE SNF DBE Offsite Dose Calculations'' and expands the calculation to include DOE SNF expected to produce a high dose consequence (even though the quantity of the SNF is expected to be small) and SNF owned by commercial nuclear power producers. The calculation does not address any specific off-normal/DBE event scenarios for receiving, handling, or packaging of SNF. The results of this calculation are developed for comparative analysis to establish the important radionuclides and do not represent the final source terms to be used for license application. This calculation will be used as input to preclosure safety analyses and is performed in accordance with procedure AP-3.12Q, ''Calculations'', and is subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (DOE 2000) as determined by the activity evaluation contained in ''Technical Work Plan for: Preclosure Safety Analysis, TWP-MGR-SE-000010'' (CRWMS M&O 2000b) in accordance with procedure AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''.

  11. Condensate removal device

    DOE Patents [OSTI]

    Maddox, James W. (Newport News, VA); Berger, David D. (Alexandria, VA)

    1984-01-01T23:59:59.000Z

    A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

  12. Pneumatic soil removal tool

    DOE Patents [OSTI]

    Neuhaus, J.E.

    1992-10-13T23:59:59.000Z

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

  13. Pneumatic soil removal tool

    DOE Patents [OSTI]

    Neuhaus, John E. (Newport News, VA)

    1992-01-01T23:59:59.000Z

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

  14. KKG Group Paraffin Removal

    SciTech Connect (OSTI)

    Schulte, Ralph

    2001-12-01T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed a test of a paraffin removal system developed by the KKG Group utilizing the technology of two Russian scientists, Gennady Katzyn and Boris Koggi. The system consisting of chemical ''sticks'' that generate heat in-situ to melt the paraffin deposits in oilfield tubing. The melted paraffin is then brought to the surface utilizing the naturally flowing energy of the well.

  15. Removal of a Permanent IVC Filter

    SciTech Connect (OSTI)

    Kumar, Bangalore C. Anil [Queen's Medical Centre, Department of Radiology (United Kingdom)], E-mail: anil.kumar@doctors.org.uk; Chakraverty, Sam; Zealley, Ian [Ninewells Hospital, Department of Radiology (United Kingdom)

    2006-02-15T23:59:59.000Z

    Inferior vena cava (IVC) filters are increasingly used for prevention of life-threatening pulmonary emboli in patients who have contraindications to anticoagulation therapy. We report a case of the removal of a permanent IVC filter, which was inadvertently inserted due to an incorrect ultrasound report.

  16. Characterization of NO[sub 2] and SO[sub 2] removals in a spray dryer/baghouse system

    SciTech Connect (OSTI)

    O'Dowd, W.J.; Markussen, J.M.; Pennline, H.W. (Dept. of Energy, Pittsburgh, PA (United States)); Resnik, K.P. (Gilbert/Commonwealth, Inc., Library, PA (United States))

    1994-11-01T23:59:59.000Z

    Oxidation of NO to NO[sub 2] has been proposed as a method for enhancing NO[sub x] removals in conventional flue gas desulfurization (FGD) processes. This experimental investigation characterizes the removals of NO[sub 2] and SO[sub 2] in a 1.1 m[sup 3](standard)/min spray dryer/baghouse system. Flue gas was generated by burning a No. 2 fuel oil, which was subsequently spiked upstream of the spray dryer with NO[sub 2] or SO[sub 2] or both. Lime slurry was injected via a rotary atomizer into the spray dryer. Variables studied include the approach to the adiabatic saturation temperature, stoichiometric ratio, SO[sub 2] concentration, and NO[sub 2] concentration. Significant quantities of NO[sub 2] are scrubbed in this system, and over half of the total removal (at inlet NO[sub 2] > 400 ppm) occurs in the baghouse. Increasing NO[sub 2] concentrations enhance the amount of NO[sub x] removed in the system. Also, the presence of significant quantities of NO[sub 2] enhances the baghouse SO[sub 2] removal. Although up to 72% NO[sub 2] removals were obtained, concentrations of NO[sub 2] that exited the system were greater than 50 ppm for all conditions investigated.

  17. Heat recirculating cooler for fluid stream pollutant removal

    DOE Patents [OSTI]

    Richards, George A. (Morgantown, WV); Berry, David A. (Morgantown, WV)

    2008-10-28T23:59:59.000Z

    A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.

  18. Process for removing metals from water

    DOE Patents [OSTI]

    Napier, J.M.; Hancher, C.M.; Hackett, G.D.

    1987-06-29T23:59:59.000Z

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions. 2 tabs.

  19. Process for removing metals from water

    DOE Patents [OSTI]

    Napier, John M. (Oak Ridge, TN); Hancher, Charles M. (Oak Ridge, TN); Hackett, Gail D. (Knoxville, TN)

    1989-01-01T23:59:59.000Z

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a flocculating agent, separating precipitate-containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions.

  20. Geothermal hydrogen sulfide removal

    SciTech Connect (OSTI)

    Urban, P.

    1981-04-01T23:59:59.000Z

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  1. Oil removal from water via adsorption

    E-Print Network [OSTI]

    Jacobs, William Edward

    1973-01-01T23:59:59.000Z

    . Inorganic adsorbents, such as perlite and glass wool, do not have high oil adsorption capacities compared to organ- ics and the capacities are dependent on the viscosity of the oils. The inorganic adsorbents have higher oil adsorption capacities in more... IV Table V Table VI Significant Facts about Major Oil Spills Viscosity of Test Oils Determined by Capillary Viscometer Percent of Oil Remaining in Water After Removal of Oil-Carrier Combination Maximum Oil Adsorption Capacity for Light Crude...

  2. Removing Arsenic from Drinking Water

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

  3. Pentek metal coating removal system: Baseline report

    SciTech Connect (OSTI)

    NONE

    1997-07-31T23:59:59.000Z

    The Pentek coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek coating removal system consisted of the ROTO-PEEN Scaler, CORNER-CUTTER{reg_sign}, and VAC-PAC{reg_sign}. They are designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M Roto Peen tungsten carbide cutters while the CORNER-CUTTER{reg_sign} uses solid needles for descaling activities. These hand tools are used with the VAC-PAC{reg_sign} vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure minimal, but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  4. Littoral Fish Community Response to Smallmouth Bass Removal from an Adirondack Lake

    E-Print Network [OSTI]

    Kraft, Clifford E.

    Littoral Fish Community Response to Smallmouth Bass Removal from an Adirondack Lake BRIAN C. WEIDEL littoral fish abundance, we removed 47,682 smallmouth bass Micropterus dolomieu from a 271-ha Adirondack at decreasing smallmouth bass abundance and increasing native fish abundance, but removal must be conducted

  5. HAPs-Rx: Precombustion Removal of Hazardous Air Pollutant Precursors

    SciTech Connect (OSTI)

    David J. Akers; Clifford E. Raleigh

    1998-03-16T23:59:59.000Z

    CQ Inc. and its project team members--Howard University, PrepTech Inc., Fossil Fuel Sciences, the United States Geological Survey (USGS), and industry advisors--are applying mature coal cleaning and scientific principles to the new purpose of removing potentially hazardous air pollutants from coal. The team uniquely combines mineral processing, chemical engineering, and geochemical expertise. This project meets more than 11 goals of the U.S. Department of Energy (DOE), the National Energy Strategy, and the 1993 Climate Change Action Plan. During this project: (1) Equations were developed to predict the concentration of trace elements in as-mined and cleaned coals. These equations, which address both conventional and advanced cleaning processes, can be used to increase the removal of hazardous air pollutant precursors (HAPs) by existing cleaning plants and to improve the design of new cleaning plants. (2) A promising chemical method of removing mercury and other HAPs was developed. At bench-scale, mercury reductions of over 50 percent were achieved on coal that had already been cleaned by froth flotation. The processing cost of this technology is projected to be less than $3.00 per ton ($3.30 per tonne). (3) Projections were made of the average trace element concentration in cleaning plant solid waste streams from individual states. Average concentrations were found to be highly variable. (4) A significantly improved understanding of how trace elements occur in coal was gained, primarily through work at the USGS during the first systematic development of semiquantitative data for mode of occurrence. In addition, significant improvement was made in the laboratory protocol for mode of occurrence determination. (5) Team members developed a high-quality trace element washability database. For example, the poorest mass balance closure for the uncrushed size and washability data for mercury on all four coals is 8.44 percent and the best is 0.46 percent. This indicates an extremely high level of reproducibility of the data. In addition, a series of ''round-robin'' tests involving various laboratories was performed to assure analytical accuracy. (6) A comparison of the cost of lowering mercury emissions through the use of coal cleaning technologies versus the use of post-combustion control methods such as activated carbon injection indicates that, in many cases, coal cleaning may prove to be the lower-cost option. The most significant disadvantage for using coal cleaning for control of mercury emissions is that a reduction of 90 percent or greater from as-fired coal has not yet been demonstrated, even at laboratory-scale.

  6. A Taulation o£ Significant Changes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Source CAPS) Between February 1986 and March 1987 Martin Knott LS-92 5487 NOT FOR DISTRIBUTION FOR REFERENCE ONLY LS-92 5487 A Taulation o Significant Changes Made to the...

  7. Method of arsenic removal from water

    DOE Patents [OSTI]

    Gadgil, Ashok (El Cerrito, CA)

    2010-10-26T23:59:59.000Z

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  8. Acid treatment removes zinc sulfide scale restriction

    SciTech Connect (OSTI)

    Biggs, K. (Kerr McGee Corp., Lafayette, LA (US)); Allison, D. (Otis Engineering Corp., Lafayette, LA (US)); Ford, W.G.F. (Halliburton Co., Duncan, OK (United States))

    1992-08-31T23:59:59.000Z

    This paper reports that removal of zinc sulfide (ZnS) scale with acid restored an offshore Louisiana well's production to original rates. The zinc sulfide scale was determined to be in the near well bore area. The selected acid had been proven to control iron sulfide (FeS) scales in sour wells without causing harm to surface production equipment, tubing, and other downhole hardware. The successful removal of the blockage re-established previous production rates with a 105% increase in flowing tubing pressure. On production for a number of months, a high rate, high-pressure offshore well was experiencing unusually rapid pressure and rate declines. A small sample of the restrictive material was obtained during the wire line operations. The well was subsequently shut in while a laboratory analysis determined that zinc sulfide was the major component of the obstruction.

  9. Fluoride removal from water with spent catalyst

    SciTech Connect (OSTI)

    Lai, Y.D.; Liu, J.C. [National Taiwan Institute of Technology, Taipei (Taiwan, Province of China)

    1996-12-01T23:59:59.000Z

    The adsorption of fluoride from water with spent catalyst was studied. Adsorption density of fluoride decreased with increasing pH. Linear adsorption isotherm was utilized to describe the adsorption reaction. The adsorption was a first-order reaction, and the rate constant increased with decreasing surface loading. Adsorption reaction of fluoride onto spent catalyst was endothermic, and the reaction rate increased slightly with increasing temperature. Fluoro-alumino complex and free fluoride ion were involved in the adsorption reaction. It is proposed that both the silica and alumina fractions of spent catalyst contribute to the removal of fluoride from aqueous solution. Coulombic interaction is proposed as the major driving force of the adsorption reaction of fluoride onto spent catalyst.

  10. Multipollutant Removal with WOWClean® System 

    E-Print Network [OSTI]

    Romero, M.

    2010-01-01T23:59:59.000Z

    from the flue gas of a power plant and demonstrate the technology. The system integrates proven emission reduction techniques into a single, multi-pollutant reduction system and is designed to remove Mercury, SOx, NOx, particulates, heavy metals...

  11. Specific energy for laser removal of rocks.

    SciTech Connect (OSTI)

    Xu, Z.; Kornecki, G.; Reed, C. B.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.

    2001-08-16T23:59:59.000Z

    Application of advanced high power laser technology into oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling.

  12. Passive removal of manganese from acid mine drainage

    SciTech Connect (OSTI)

    Brant, D.L.; Ziemkiewicz, P.F. [West Virginia Univ., Morgantown, WV (United States)

    1997-12-31T23:59:59.000Z

    Removal of manganese (Mn) from mine drainage is difficult due to the abnormal chemistry of the element. The removal requires the oxidation of Mn(II) (the form found in mine drainage) to the more oxidized forms (Mn(III) or Mn(IV)). The more oxidized forms exist only as solids and will not return to Mn(II) spontaneously. Chemical treatment of Mn often requires a pH near 10 to initiate the oxidation quickly. A stabilized pH of 10 normally causes more harm to aquatic organisms than the Mn and is not desirable, making additional steps in the treatment necessary. Biological removal of Mn can be achieved at near neutral pH levels. The Shade Mining site in Somerset County, PA has been treating Mn to discharge limits since the early 1990`s (reducing Mn concentrations from 12 - 25 mg/L in the influent to <2 mg/L in the effluent). The treatment system consists of an anoxic limestone drain discharging into a wetland to remove iron, aluminum, and acidity, while increasing pH and alkalinity. The wetland effluent flows into two limestone beds (Mn removal). The limestone beds developed a black slime coating as the Mn removal increased. This system continues to remove Mn in all weather conditions and has not required chemical treatment since the black coating appeared on the limestone. A laboratory study was conducted using limestone collected from the Shade site to use the same naturally occurring Mn oxidizing microbes. The lab study compared W removal rates of microbial oxidation, MnO{sub 2} catalyzed limestone, and fresh uncoated limestone. The microbial removal performed the best (25 mg/L Mn reduced to <2 mg/L in 72 hours).

  13. The theoretical significance of G

    E-Print Network [OSTI]

    T. Damour

    1999-01-22T23:59:59.000Z

    The quantization of gravity, and its unification with the other interactions, is one of the greatest challenges of theoretical physics. Current ideas suggest that the value of G might be related to the other fundamental constants of physics, and that gravity might be richer than the standard Newton-Einstein description. This gives added significance to measurements of G and to Cavendish-type experiments.

  14. Large Component Removal/Disposal

    SciTech Connect (OSTI)

    Wheeler, D. M.

    2002-02-27T23:59:59.000Z

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  15. Removal of phosphorus from mud

    SciTech Connect (OSTI)

    Nield, M.A.; Robbins, B.N.

    1988-08-09T23:59:59.000Z

    This patent describes a method of processing an aqueous phosphorous-containing solids-containing waste material containing about 5 to about 75 wt.% of elemental phosphorus and which is phosphorus mud obtained as a by-product in the electrothermal production of elemental phosphorus by removing the water and phosphorus substantially completely therefrom, the improvement in the processing which consists essentially of the steps of: first boiling off the water from the waste material to effect the substantially-complete removal of water therefrom, next boiling-off yellow phosphorus from the waste material, and finally burning off residual phosphorus remaining from the boiling-off of yellow phosphorus from the waste material, whereby the boiling-off of yellow phosphorus and the burning-off of the residual phosphorus effects substantially complete removal of phosphorus from the waste material to produce a substantially phosphorus-free solid residue.

  16. Actinide removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01T23:59:59.000Z

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  17. Metals removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); Von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Brummond, William A. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01T23:59:59.000Z

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  18. Chesapeake Bay anoxia: origin, development, and significance

    SciTech Connect (OSTI)

    Officer, C.B.; Biggs, R.B.; Taft, J.L.; Cronin, L.E.; Tyler, M.A.; Boynton, W.R.

    1984-01-06T23:59:59.000Z

    Anoxia occurs annually in deeper waters of the central portion of the Chesapeake Bay and presently extends from Baltimore to the mouth of the Potomac estuary. This condition, which encompasses some 5 billion cubic meters of water and lasts from May to September, is the result of increased stratification of the water column in early spring, with consequent curtailment of reoxygenation of the bottom waters across the halocline, and benthic decay of organic detritus accumulated from plankton blooms of the previous summer and fall. The Chesapeake Bay anoxia appears to have had significant ecological effects on many marine species, including several of economic importance. 43 references, 7 figures, 1 table.

  19. Proceedings: Indoor Air 2005 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Proceedings: Indoor Air 2005 2366 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS P Zhao1,2 , JA Siegel1, Austin, Texas 78758, USA ABSTRACT HVAC filters have a significant influence on indoor air quality% for Filter #2 at a face velocity of 0.81 cm/s. The potential for HVAC filters to affect ozone concentrations

  20. DOE Steps Lead to Significant Increase in Compliance with Energy Efficiency

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »DepartmentLaboratory | DepartmentCoal Plantfor|

  1. DOE Steps Lead to Significant Increase in Compliance with Energy Efficiency

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly 29, 2013Savannah River Site2-94 March

  2. IDENTIFYING CANDIDATE PROTEIN FOR REMOVAL OF ENVIRONMENTALLY

    E-Print Network [OSTI]

    Uppsala Universitet

    IDENTIFYING CANDIDATE PROTEIN FOR REMOVAL OF ENVIRONMENTALLY HAZARDOUS SUBSTANCES Pharem Biotech products and technologies for removing environmental hazardous substances in our everyday life. The products can be applied in areas from the private customer up to the global corporate perspective

  3. Arsenic removal and stabilization by synthesized pyrite

    E-Print Network [OSTI]

    Song, Jin Kun

    2009-05-15T23:59:59.000Z

    hydride generation atomic absorption spectrometry method for measuring arsenic species (As(III), As(V)). The synthesized pyrite was applied to remove arsenic and its maximum capacity for arsenic removal was measured in batch adsorption experiments to be 3...

  4. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE

    SciTech Connect (OSTI)

    Pierce, R.; Pak, D.

    2011-08-10T23:59:59.000Z

    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current activities are concerned with the removal of the halide ions associated with plutonium trifluoride (PuF{sub 3}), plutonium tetrafluoride (PuF{sub 4}), calcium fluoride (CaF{sub 2}), and calcium chloride (CaCl{sub 2}). This report discusses non-radioactive testing of small-scale and pilot-scale systems and radioactive testing of a small-scale system. Experiments focused on demonstrating the chemistry for halide removal and addressing the primary engineering questions associated with a change in the process chemistry.

  5. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2014-09-02T23:59:59.000Z

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  6. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

    2008-10-14T23:59:59.000Z

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  7. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

    2012-05-01T23:59:59.000Z

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  8. Removal of impurities from dry scrubbed fluoride enriched alumina

    SciTech Connect (OSTI)

    Schuh, L. [ABB Corporate Research Center, Heidelberg (Germany); Wedde, G. [ABB Environmental, Oslo (Norway)

    1996-10-01T23:59:59.000Z

    The pot-gas from an aluminum electrolytic cell is cleaned by a dry scrubbing process using fresh alumina as a scrubbing agent. This alumina is enriched with fluorides and trace impurities in a closed loop system with the pots. The only significant removal of the impurities is due to metal tapping. An improved technique has been developed that is more effective than earlier stripper systems. The impurity-rich fine fraction (< 10 {micro}m) of the enriched alumina is partly attached to the coarser alumina. That attachment has to be broken. Selective impact milling under special moderate conditions and air classifying have shown to be a cost effective process for the removal of impurities. For iron (Fe) and phosphorus (P) about 30--70% can be removed by the separation of 0.5--1% of the alumina. Full scale tests have successfully confirmed these results.

  9. Automatic Eyeglasses Removal from Face Images

    E-Print Network [OSTI]

    Narasayya, Vivek

    Automatic Eyeglasses Removal from Face Images Chenyu Wu, Ce Liu, Heung-Yueng Shum, Member, IEEE an intelligent image editing and face synthesis system that automatically removes eyeglasses from an input frontal face image. Although conventional image editing tools can be used to remove eyeglasses by pixel

  10. Laser-based coatings removal

    SciTech Connect (OSTI)

    Freiwald, J.G.; Freiwald, D.

    1995-12-01T23:59:59.000Z

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D & D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building.

  11. Removing Stains from Washable Fabrics.

    E-Print Network [OSTI]

    Beard, Ann Vanderpoorten

    1988-01-01T23:59:59.000Z

    Page Numbers Stain Page Numbers Acne medicine Blueberry Special 9 Wet 8 Adhesive tape Dye 8 Special 9 Butter Alcoholic beverages Dry 8 Wet 8 Oil 8 Tannin 8 Calamine lotion Asphalt Combination 8 Combination 8 Dye 8 Dye 8 Candle wax Automotive... the most gentle to the most harsh, so always stop treatments as soon as the stain has been removed. Dry Type Stains Dissolve the stain with a grease solvent. Lubricate the stain with dry spotter, coconut oil or mineral oil (sold in health food...

  12. Increased efficiency of topping cycle PCFB power plants

    SciTech Connect (OSTI)

    Robertson, A.; Domeracki, W.; Horazak, D. [and others

    1996-05-01T23:59:59.000Z

    Pressurized circulating fluidized bed (PCFB) power plants offer the power industry significantly increased efficiencies with reduced costs of electricity and lower emissions. When topping combustion is incorporated in the plant, these advantages are enhanced. In the plant, coal is fed to a pressurized carbonizer that produces a low-Btu fuel gas and char. After passing through a cyclone and ceramic barrier filter to remove gas-entrained particulates and a packed bed of emathelite pellets to remove alkali vapors. the fuel gas is burned in a topping combustor to produce the energy required to drive a gas turbine. The gas turbine drives a generator combustor, and a fluidized bed heat exchanger (FBHE). The carbonizer char is burned in the PCFB and the exhaust gas passes through its own cyclone, ceramic barrier filter, and alkali getter and supports combustion of the fuel gas in the topping combustor. Steam generated in a heat-recovery steam generator (HRSG) downstream of the gas turbine and in the FBHE associated with the PCFB drives the steam turbine generator that furnishes the balance of electric power delivered by the plant.

  13. HIGH SO2 REMOVAL EFFICIENCY TESTING

    SciTech Connect (OSTI)

    Gary M. Blythe; James L. Phillips

    1997-10-15T23:59:59.000Z

    This final report describes the results of performance tests at six full-scale wet lime- and limestone-reagent flue gas desulfurization (FGD) systems. The objective of these tests was to evaluate the effectiveness of low capital cost sulfur dioxide (SO{sub 2}) removal upgrades for existing FGD systems as an option for complying with the provisions of the Clean Air Act Amendments of 1990. The upgrade options tested at the limestone-reagent systems included the use of organic acid additives (dibasic acid (DBA) and/or sodium formate) as well as increased reagent ratio (higher excess limestone levels in the recirculating slurry solids) and absorber liquid-to-gas ratio. One system also tested operating at higher flue gas velocities to allow the existing FGD system to treat flue gas from an adjacent, unscrubbed unit. Upgrade options for the one lime-based system tested included increased absorber venturi pressure drop and increased sulfite concentration in the recirculating slurry liquor.

  14. Tyrosinase-containing chitosan gels: A combined catalyst and sorbent for selective phenol removal

    SciTech Connect (OSTI)

    Sun, W.Q.; Payne, G.F. [Univ. of Maryland, Baltimore, MD (United States)] [Univ. of Maryland, Baltimore, MD (United States)

    1996-07-05T23:59:59.000Z

    There are a series of examples in which phenols appear as contaminants in process streams and their selective removal is required for waste minimization. For the selective removal of a phenol from a mixture, the authors are exploiting the substrate specificity of the enzyme tyrosinase to convert phenols into reactive o-quinones which are then adsorbed onto the amine-containing polymer chitosan. To effectively package the enzyme and sorbent, tyrosinase was immobilized between two chitosan gel films. The entrapment of tyrosinase between the films led to little loss of activity during immobilization, while tyrosinase leakage during incubation was limited. The chitosan gels rapidly adsorb the tyrosinase-generated product(s) of phenol oxidation while the capacity of the gels is substantially greater than the capacity of chitosan flakes. The performance of tyrosinase-containing chitosan gels significantly depends on the ratio of tyrosinase-to-chitosan. High tyrosinase-to-chitosan ratios result in less efficient use of tyrosinase, presumably due to suicide inactivation. However, the efficiency of chitosan use increases with increased tyrosinase-to-chitosan ratios.

  15. Influence of attrition scrubbing, ultrasonic treatment, and oxidant additions on uranium removal from contaminated soils

    SciTech Connect (OSTI)

    Timpson, M.E.; Elless, M.P.; Francis, C.W.

    1994-06-01T23:59:59.000Z

    As part of the Uranium in Soils Integrated Demonstration Project being conducted by the US Department of Energy, bench-scale investigations of selective leaching of uranium from soils at the Fernald Environmental Management Project site in Ohio were conducted at Oak Ridge National Laboratory. Two soils (storage pad soil and incinerator soil), representing the major contaminant sources at the site, were extracted using carbonate- and citric acid-based lixiviants. Physical and chemical processes were used in combination with the two extractants to increase the rate of uranium release from these soils. Attrition scrubbing and ultrasonic dispersion were the two physical processes utilized. Potassium permanganate was used as an oxidizing agent to transform tetravalent uranium to the hexavalent state. Hexavalent uranium is easily complexed in solution by the carbonate radical. Attrition scrubbing increased the rate of uranium release from both soils when compared with rotary shaking. At equivalent extraction times and solids loadings, however, attrition scrubbing proved effective only on the incinerator soil. Ultrasonic treatments on the incinerator soil removed 71% of the uranium contamination in a single extraction. Multiple extractions of the same sample removed up to 90% of the uranium. Additions of potassium permanganate to the carbonate extractant resulted in significant changes in the extractability of uranium from the incinerator soil but had no effect on the storage pad soil.

  16. Removal of long-lived {sup 222}Rn daughters by electropolishing thin layers of stainless steel

    SciTech Connect (OSTI)

    Schnee, R. W.; Bowles, M. A.; Bunker, R.; McCabe, K.; White, J. [Department of Physics, Syracuse University, Syracuse, NY 13244 (United States)] [Department of Physics, Syracuse University, Syracuse, NY 13244 (United States); Cushman, P.; Pepin, M. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)] [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Guiseppe, V. E. [University of South Dakota, Vermillion, South Dakota 57069 (United States)] [University of South Dakota, Vermillion, South Dakota 57069 (United States)

    2013-08-08T23:59:59.000Z

    Long-lived alpha and beta emitters in the {sup 222}Rn decay chain on detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double beta decay. Removal of tens of microns of material via electropolishing has been shown to be effective at removing radon daughters implanted into material surfaces. Some applications, however, require the removal of uniform and significantly smaller thicknesses. Here, we demonstrate that electropolishing < 1 ?m from stainless-steel plates reduces the contamination efficiently, by a factor > 100. Examination of electropolished wires with a scanning electron microscope confirms that the thickness removed is reproducible and reasonably uniform. Together, these tests demonstrate the effectiveness of removal of radon daughters for a proposed low-radiation, multi-wire proportional chamber (the BetaCage), without compromising the screener’s energy resolution. More generally, electropolishing thin layers of stainless steel may effectively remove radon daughters without compromising precision-machined parts.

  17. Removal of long-lived $^{222}$Rn daughters by electropolishing thin layers of stainless steel

    E-Print Network [OSTI]

    R. W. Schnee; M. A. Bowles; R. Bunker; K. McCabe; J. White; P. Cushman; M. Pepin; V. E. Guiseppe

    2014-04-23T23:59:59.000Z

    Long-lived alpha and beta emitters in the $^{222}$Rn decay chain on detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double-beta decay. Removal of tens of microns of material via electropolishing has been shown to be effective at removing radon daughters implanted into material surfaces. Some applications, however, require the removal of uniform and significantly smaller thicknesses. Here, we demonstrate that electropolishing steel plates reduces the contamination efficiently, by a factor > 100. Examination of electropolished wires with a scanning electron microscope confirms that the thickness removed is reproducible and reasonably uniform. Together, these tests demonstrate the effectiveness of removal of radon daughters for a proposed low-radiation, multi-wire proportional chamber (the BetaCage), without compromising the screener's energy resolution. More generally, electropolishing thin layers of stainless steel may effectively remove radon daughters without compromising precision-machined parts.

  18. Treatment Facility F: Accelerated Removal and Validation Project

    SciTech Connect (OSTI)

    Sweeney, J.J.; Buettner, M.H.; Carrigan, C.R. [and others

    1994-04-01T23:59:59.000Z

    The Accelerated Removal and Validation (ARV) phase of remediation at the Treatment Facility F (TFF) site at Lawrence Livermore National Laboratory (LLNL) was designed to accelerate removal of gasoline from the site when compared to normal, single shift, pump-and-treat operations. The intent was to take advantage of the in-place infrastructure plus the increased underground temperatures resulting from the Dynamic Underground Stripping Demonstration Project (DUSDP). Operations continued 24-hours (h) per day between October 4 and December 12, 1993. Three contaminant removal rate enhancement approaches were explored during the period of continuous operation. First, we tried several configurations of the vapor pumping system to maximize the contaminant removal rate. Second, we conducted two brief trials of air injection into the lower steam zone. Results were compared with computer models, and the process was assessed for contaminant removal rate enhancement. Third, we installed equipment to provide additional electrical heating of contaminated low-permeability soil. Four new electrodes were connected into the power system. Diagnostic capabilities at the TFF site were upgraded so that we could safely monitor electrical currents, soil temperatures, and water treatment system processes while approximately 300 kW of electrical energy was being applied to the subsurface.

  19. Evaluating the Conventional Wisdom in Clone Removal: A Genealogy-based Empirical Study

    E-Print Network [OSTI]

    Schneider, Kevin A.

    Evaluating the Conventional Wisdom in Clone Removal: A Genealogy-based Empirical Study Minhaz F study based on the clone genealogies from a significant num- ber of releases of six software systems

  20. Polymers with increased order

    DOE Patents [OSTI]

    Sawan, Samuel P. (Tyngsborough, MA); Talhi, Abdelhafid (Rochester, MI); Taylor, Craig M. (Jemez Springs, NM)

    1998-08-25T23:59:59.000Z

    The invention features polymers with increased order, and methods of making them featuring a dense gas.

  1. Overview of Contaminant Removal From Coal-Derived Syngas

    SciTech Connect (OSTI)

    Layne, A.W.; Alvin, M.A.; Granite, E.; Pennline, H.W.; Siriwardane, R.V.; Keairns, D.; Newby, R.A.

    2007-11-01T23:59:59.000Z

    Gasification is an important strategy for increasing the utilization of abundant domestic coal reserves. DOE envisions increased use of gasification in the United States during the next 20 years. As such, the DOE Gasification Technologies Program, including the FutureGen initiative, will strive to approach a near-zero emissions goal, with respect to multiple pollutants, such as sulfur, mercury, and nitrogen oxides. Since nearly one-third of anthropogenic carbon dioxide emissions are produced by coal-powered generation facilities, conventional coal-burning power plants, and advanced power generation plants, such as IGCC, present opportunities in which carbon can be removed and then permanently stored.
    Gas cleaning systems for IGCC power generation facilities have been effectively demonstrated and used in commercial operations for many years. These systems can reduce sulfur, mercury, and other contaminants in synthesis gas produced by gasifiers to the lowest level achievable in coal-based energy systems. Currently, DOE Fossil Energy's goals set for 2010 direct completion of R&D for advanced gasification combined cycle technology to produce electricity from coal at 45–50% plant efficiency. By 2012, completion of R&D to integrate this technology with carbon dioxide separation, capture, and sequestration into a zero-emissions configuration is targeted with a goal to provide electricity with less than a 10% increase in cost of electricity. By 2020, goals are set to develop zero-emissions plants that are fuel-flexible and capable of multi-product output and thermal efficiencies of over 60% with coal. These objectives dictate that it is essential to not only reduce contaminant emissions into the generated synthesis gas, but also to increase the process or system operating temperature to that of humid gas cleaning criteria conditions (150 to 370 °C), thus reducing the energy penalties that currently exist as a result of lowering process temperatures (?40 to 38 °C) with subsequent reheat to the required higher temperatures.
    From a historical perspective, the evolution of advanced syngas cleaning systems applied in IGCC and chemical and fuel synthesis plants has followed a path of configuring a series of individual cleaning steps, one for each syngas contaminant, each step controlled to its individual temperature and sorbent and catalyst needs. As the number of syngas contaminants of interest has increased (particulates, hydrogen sulfide, carbonyl sulfide, halides such as hydrogen chloride, ammonia, hydrogen cyanide, alkali metals, metal carbonyls, mercury, arsenic, selenium, and cadmium) and the degree of syngas cleaning has become more severe, the potential feasibility of advanced humid gas cleaning has diminished. A focus on multi-contaminant syngas cleaning is needed to enhance the potential cost savings, and performance of humid gas cleaning will focus on multi-contaminant syngas cleaning. Groups of several syngas contaminants to be removed simultaneously need to be considered, resulting in significant gas cleaning system intensification. Intensified, multi-contaminant cleaning processes need to be devised and their potential performance characteristics understood through small-scale testing, conceptual design evaluation, and scale-up assessment with integration into the power generation system. Results of a 1-year study undertaken by DOE/NETL are presented to define improved power plant configurations and technology for advanced multi-contaminant cleanup options.

  2. FROM STATISTICAL SIGNIFICANCE TO EFFECT ESTIMATION

    E-Print Network [OSTI]

    Burgman, Mark

    such as the American Psychological Association, and the absence of appropriate editorial pressure, statistical reformFROM STATISTICAL SIGNIFICANCE TO EFFECT ESTIMATION: STATISTICAL REFORM IN PSYCHOLOGY, MEDICINE ABSTRACT Compelling criticisms of statistical significance testing (or Null Hypothesis Significance Testing

  3. Melter Glass Removal and Dismantlement

    SciTech Connect (OSTI)

    Richardson, BS

    2000-10-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) has been using vitrification processes to convert high-level radioactive waste forms into a stable glass for disposal in waste repositories. Vitrification facilities at the Savannah River Site (SRS) and at the West Valley Demonstration Project (WVDP) are converting liquid high-level waste (HLW) by combining it with a glass-forming media to form a borosilicate glass, which will ensure safe long-term storage. Large, slurry fed melters, which are used for this process, were anticipated to have a finite life (on the order of two to three years) at which time they would have to be replaced using remote methods because of the high radiation fields. In actuality the melters useable life spans have, to date, exceeded original life-span estimates. Initial plans called for the removal of failed melters by placing the melter assembly into a container and storing the assembly in a concrete vault on the vitrification plant site pending size-reduction, segregation, containerization, and shipment to appropriate storage facilities. Separate facilities for the processing of the failed melters currently do not exist. Options for handling these melters include (1) locating a facility to conduct the size-reduction, characterization, and containerization as originally planned; (2) long-term storing or disposing of the complete melter assembly; and (3) attempting to refurbish the melter and to reuse the melter assembly. The focus of this report is to look at methods and issues pertinent to size-reduction and/or melter refurbishment in particular, removing the glass as a part of a refurbishment or to reduce contamination levels (thus allowing for disposal of a greater proportion of the melter as low level waste).

  4. Mercury removal in utility wet scrubber using a chelating agent

    DOE Patents [OSTI]

    Amrhein, Gerald T. (Louisville, OH)

    2001-01-01T23:59:59.000Z

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  5. The Clinical Significance of Hydration in Natural Rubber Latex Gloves

    E-Print Network [OSTI]

    Bennett, John K.

    The Clinical Significance of Hydration in Natural Rubber Latex Gloves J. K. Bennett Department performance of natural rubber latex gloves. ffl These effects potentially include increased conductivity [6], have resulted in a dramatic increase in the use of natural rubber latex (NRL) surgical

  6. Savannah River Site Waste Removal Program - Past, Present and Future

    SciTech Connect (OSTI)

    Saldivar, E.

    2002-02-25T23:59:59.000Z

    The Savannah River Site has fifty-one high level waste tanks in various phases of operation and closure. These tanks were originally constructed to receive, store, and treat the high level waste (HLW) created in support of the missions assigned by the Department of Energy (DOE). The Federal Facilities Agreement (FFA) requires the high level waste to be removed from the tanks and stabilized into a final waste form. Additionally, closure of the tanks following waste removal must be completed. The SRS HLW System Plan identifies the interfaces of safe storage, waste removal, and stabilization of the high level waste and the schedule for the closure of each tank. HLW results from the dissolution of irradiated fuel components. Desired nuclear materials are recovered and the byproducts are neutralized with NaOH and sent to the High Level Waste Tank Farms at the SRS. The HLW process waste clarifies in the tanks as the sludge settles, resulting in a layer of dense sludge with salt supernate settling above the sludge. Salt supernate is concentrated via evaporation into saltcake and NaOH liquor. This paper discusses the history of SRS waste removal systems, recent waste removal experiences, and the challenges facing future removal operations to enhance efficiency and cost effectiveness. Specifically, topics will include the evolution and efficiency of systems used in the 1960's which required large volumes of water to current systems of large centrifugal slurry pumps, with significant supporting infrastructure and safety measures. Interactions of this equipment with the waste tank farm operations requirements will also be discussed. The cost and time improvements associated with these present-day systems is a primary focus for the HLW Program.

  7. Hydrocarbon removal with constructed wetlands 

    E-Print Network [OSTI]

    Eke, Paul Emeka

    2008-01-01T23:59:59.000Z

    Wetlands have long played a significant role as natural purification systems, and have been effectively used to treat domestic, agricultural and industrial wastewater. However, very little is known about the biochemical ...

  8. Removal of metal ions from aqueous solution

    DOE Patents [OSTI]

    Jackson, Paul J. (both Los Alamos, NM); Delhaize, Emmanuel (both Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

    1990-11-13T23:59:59.000Z

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  9. Removal of metal ions from aqueous solution

    DOE Patents [OSTI]

    Jackson, Paul J. (Los Alamos, NM); Delhaize, Emmanuel (Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

    1990-01-01T23:59:59.000Z

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  10. The role of an interface on Ni film removal and surface roughness after irradiation by femtosecond laser pulses

    SciTech Connect (OSTI)

    Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-05-06T23:59:59.000Z

    We have observed thin film removal from glass substrates after the irradiation of Ni films with femtosecond laser pulses in air. It was found that the material removal threshold and laser-induced morphology are dependent on film thickness. With decreasing thickness, material removal transitions from intra-film separation to removal at the Ni-glass interface. The Gaussian energy distribution of the laser pulse allows for intra-film separation in the annular region of the crater and interface separation in the center. We propose a model to explain these data as well as the observed increased surface roughness in the interfacial removal regions.

  11. Method for removing contaminants from plastic resin

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2008-12-09T23:59:59.000Z

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  12. PRTR ion exchange vault water removal

    SciTech Connect (OSTI)

    Ham, J.E.

    1995-11-01T23:59:59.000Z

    This report documents the removal of radiologically contaminated water from the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. Approximately 57,000 liters (15,000 gallons) of water had accumulated in the vault due to the absence of a rain cover. The water was removed and the vault inspected for signs of leakage. No evidence of leakage was found. The removal and disposal of the radiologically contaminated water decreased the risk of environmental contamination.

  13. General Counsel Legal Interpretation Regarding Medical Removal...

    Energy Savers [EERE]

    Regarding Medical Removal Protection Benefits Pursuant to 10 CFR Part 850, Chronic Beryllium Disease Prevention Program General Counsel Legal Interpretation Regarding Medical...

  14. System for removing contaminants from plastic resin

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2010-11-23T23:59:59.000Z

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  15. Slag capture and removal during laser cutting

    DOE Patents [OSTI]

    Brown, Clyde O. (Newington, CT)

    1984-05-08T23:59:59.000Z

    Molten metal removed from a workpiece in a laser cutting operation is blown away from the cutting point by a gas jet and collected on an electromagnet.

  16. Novel Sorbent-Based Process for High Temperature Trace Metal Removal

    SciTech Connect (OSTI)

    Gokhan Alptekin

    2008-09-30T23:59:59.000Z

    The objective of this project was to demonstrate the efficacy of a novel sorbent can effectively remove trace metal contaminants (Hg, As, Se and Cd) from actual coal-derived synthesis gas streams at high temperature (above the dew point of the gas). The performance of TDA's sorbent has been evaluated in several field demonstrations using synthesis gas generated by laboratory and pilot-scale coal gasifiers in a state-of-the-art test skid that houses the absorbent and all auxiliary equipment for monitoring and data logging of critical operating parameters. The test skid was originally designed to treat 10,000 SCFH gas at 250 psig and 350 C, however, because of the limited gas handling capabilities of the test sites, the capacity was downsized to 500 SCFH gas flow. As part of the test program, we carried out four demonstrations at two different sites using the synthesis gas generated by the gasification of various lignites and a bituminous coal. Two of these tests were conducted at the Power Systems Demonstration Facility (PSDF) in Wilsonville, Alabama; a Falkirk (North Dakota) lignite and a high sodium lignite (the PSDF operator Southern Company did not disclose the source of this lignite) were used as the feedstock. We also carried out two other demonstrations in collaboration with the University of North Dakota Energy Environmental Research Center (UNDEERC) using synthesis gas slipstreams generated by the gasification of Sufco (Utah) bituminous coal and Oak Hills (Texas) lignite. In the PSDF tests, we showed successful operation of the test system at the conditions of interest and showed the efficacy of sorbent in removing the mercury from synthesis gas. In Test Campaign No.1, TDA sorbent reduced Hg concentration of the synthesis gas to less than 5 {micro}g/m{sup 3} and achieved over 99% Hg removal efficiency for the entire test duration. Unfortunately, due to the relatively low concentration of the trace metals in the lignite feed and as a result of the intermittent operation of the PSDF gasifier (due to the difficulties in the handling of the low quality lignite), only a small fraction of the sorbent capacity was utilized (we measured a mercury capacity of 3.27 mg/kg, which is only a fraction of the 680 mg/kg Hg capacity measured for the same sorbent used at our bench-scale evaluations at TDA). Post reaction examination of the sorbent by chemical analysis also indicated some removal As and Se (we did not detect any significant amounts of Cd in the synthesis gas or over the sorbent). The tests at UNDEERC was more successful and showed clearly that the TDA sorbent can effectively remove Hg and other trace metals (As and Se) at high temperature. The on-line gas measurements carried out by TDA and UNDEERC separately showed that TDA sorbent can achieve greater than 95% Hg removal efficiency at 260 C ({approx}200g sorbent treated more than 15,000 SCF synthesis gas). Chemical analysis conducted following the tests also showed modest amounts of As and Se accumulation in the sorbent bed (the test durations were still short to show higher capacities to these contaminants). We also evaluated the stability of the sorbent and the fate of mercury (the most volatile and unstable of the trace metal compounds). The Synthetic Ground Water Leaching Procedure Test carried out by an independent environmental laboratory showed that the mercury will remain on the sorbent once the sorbent is disposed. Based on a preliminary engineering and cost analysis, TDA estimated the cost of mercury removal from coal-derived synthesis gas as $2,995/lb (this analysis assumes that this cost also includes the cost of removal of all other trace metal contaminants). The projected cost will result in a small increase (less than 1%) in the cost of energy.

  17. Pentek metal coating removal system: Baseline report; Greenbook (chapter)

    SciTech Connect (OSTI)

    NONE

    1997-07-31T23:59:59.000Z

    The Pentek coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek coating removal system consisted of the ROTO-PEEN Scaler, CORNER-CUTTER{reg_sign}, and VAC-PAC{reg_sign}. They are designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M Roto Peen tungsten carbide cutters while the CORNER-CUTTER{reg_sign} uses solid needles for descaling activities. These hand tools are used with the VAC-PAC{reg_sign} vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure minimal, but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  18. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    SciTech Connect (OSTI)

    Wei Yanjie [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Communications, Tianjin Research Institute of Water Transport Engineering, Tianjin 300456 (China); Ji Min, E-mail: jmtju@yahoo.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Li Ruying [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Qin Feifei [Tianjin Tanggu Sino French Water Supply Co. Ltd., Tianjin 300450 (China)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.

  19. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2010-05-05T23:59:59.000Z

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

  20. The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-15T23:59:59.000Z

    In developing the new Ohio University procedure the thermodynamic limitations of the reactions for removal of both pyritic and organic sulfur from coal at 400--600{degrees}C were studied using copper as a very strong H{sub 2}S-acceptor. Copper serves as a catalyst for ethanol dehydrogenation to form nascent hydrogen. Copper also serves as a scavenger to form copper sulfide from the hydrogen sulfide evolved during the reaction. Copper sulfide in turn serves as a catalyst for organic sulfur hydrodesulfurization reactions. If the coal to be desulfurized contains pyrite (FeS{sub 2}) or FeS, the copper scavenger effect reduces any back reaction of hydrogen sulfide with the iron and increases the removal of sulfur from the carbonaceous material. The desired effect of using copper can be achieved by using copper or copper containing alloys as materials of construction or as liners for a regenerable reactor. During the time period that Ohio Coal Development Office supported this work, small scale (560 grams) laboratory experiments with coals containing about 3.5% sulfur have achieved up to 90% desulfurization at temperatures of 500{degrees}C when using a copper reactor. Results from the autoclave experiments have identified the nature of the chemical reactions taking place. Because the process removes both pyritic and organic sulfur in coal, the successful scale up of the process would have important economic significance to the coal industry. Even though this and other chemical processes may be relatively expensive and far from being commercial, the reason for further development is that this process may hold the promise of achieving much greater sulfur reduction and of producing a cleaner coal than other methods. This would be especially important for small or older power plants and industrial boilers.

  1. Method of removing contaminants from plastic resins

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2008-11-18T23:59:59.000Z

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  2. Method for removing contaminants from plastic resin

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2008-12-30T23:59:59.000Z

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  3. Method of removing contaminants from plastic resins

    DOE Patents [OSTI]

    Bohnert,George W. (Harrisonville, MO); Hand,Thomas E. (Lee's Summit, MO); Delaurentiis,Gary M. (Jamestown, CA)

    2007-08-07T23:59:59.000Z

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  4. Hydrogen Removal From Heating Oil of a Parabolic Trough Increases the Life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel CellFew-LayerGas Streamsof the Trough

  5. Finding of No Significant Impact: Proposed Radioactive Soil Removal From the Project Chariot Site at Cape Thompson.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ," POST 2,000LIST OFK I N

  6. Removal of field and embedded metal by spin spray etching

    DOE Patents [OSTI]

    Contolini, R.J.; Mayer, S.T.; Tarte, L.A.

    1996-01-23T23:59:59.000Z

    A process of removing both the field metal, such as copper, and a metal, such as copper, embedded into a dielectric or substrate at substantially the same rate by dripping or spraying a suitable metal etchant onto a spinning wafer to etch the metal evenly on the entire surface of the wafer. By this process the field metal is etched away completely while etching of the metal inside patterned features in the dielectric at the same or a lesser rate. This process is dependent on the type of chemical etchant used, the concentration and the temperature of the solution, and also the rate of spin speed of the wafer during the etching. The process substantially reduces the metal removal time compared to mechanical polishing, for example, and can be carried out using significantly less expensive equipment. 6 figs.

  7. Increasing productivity: Another approach

    SciTech Connect (OSTI)

    Norton, F.J.

    1996-06-10T23:59:59.000Z

    An engineering information (EI) and information technology (IT) organization that must improve its productivity should work to further its business goals. This paper explores a comprehensive model for increasing EI/IT productivity by supporting organizational objectives.

  8. Method for changing removable bearing for a wind turbine generator

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Scotia, NY); Gadre, Aniruddha Dattatraya (Rexford, NY)

    2008-04-22T23:59:59.000Z

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  9. Removable bearing arrangement for a wind turbine generator

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2010-06-15T23:59:59.000Z

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  10. Removal of fluoride from aqueous solution by using alum sludge

    SciTech Connect (OSTI)

    Sujana, M.G.; Thakur, R.S.; Rao, S.B. [CSIR, Bhubaneswar (India). Regional Research Lab.] [CSIR, Bhubaneswar (India). Regional Research Lab.

    1998-10-01T23:59:59.000Z

    The ability of treated alum sludge to remove fluoride from aqueous solution has been investigated. The studies were carried out as functions of contact time, concentration of adsorbent and adsorbate, temperature, pH, and effect of concentrations of other anions. The data indicate that treated alum sludge surface sites are heterogeneous in nature and that fits into a heterogeneous site binding model. The optimum pH for complete removal of fluoride from aqueous solution was found to be 6. The rate of adsorption was rapid during the initial 5 minutes, and equilibrium was attained within 240 minutes. The adsorption followed first-order rate kinetics. The present system followed the Langmuir adsorption isotherm model. The loading factor (i.e., the milligram of fluoride adsorbed per gram of alum sludge) increased with initial fluoride concentration, whereas a negative trend was observed with increasing temperature. The influence of addition of anions on fluoride removal depends on the relative affinity of the anions for the surface and the relative concentrations of the anions.

  11. Polymer formulation for removing hydrogen and liquid water from an enclosed space

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA)

    2006-02-21T23:59:59.000Z

    This invention describes a solution to the particular problem of liquid water formation in hydrogen getters exposed to quantities of oxygen. Water formation is usually desired because the recombination reaction removes hydrogen without affecting gettering capacity and the oxygen removal reduces the chances for a hydrogen explosion once free oxygen is essentially removed. The present invention describes a getter incorporating a polyacrylate compound that can absorb up to 500% of its own weight in liquid water without significantly affecting its hydrogen gettering/recombination properties, but that also is insensitive to water vapor.

  12. The Strategic Significance of Global InequalityThe Strategic Significance of Global InequalityThe Strategic Significance of Global InequalityThe Strategic Significance of Global InequalityThe Strategic Significance of Global Inequality By Jeffrey D. Sachs

    E-Print Network [OSTI]

    27 The Strategic Significance of Global InequalityThe Strategic Significance of Global InequalityThe Strategic Significance of Global InequalityThe Strategic Significance of Global InequalityThe Strategic

  13. Impact significance determination-Pushing the boundaries

    SciTech Connect (OSTI)

    Lawrence, David P. [P.O. Station A, Box 3475, Langley, B.C., V3A 4R8 (Canada)], E-mail: lawenv@telus.net

    2007-11-15T23:59:59.000Z

    Impact significance determination practice tends to be highly variable. Too often insufficient consideration is given to good practice insights. Also, impact significance determinations are frequently narrowly defined addressing, for example, only individual, negative impacts, focusing on bio-physical impacts, and not seeking to integrate either the Precautionary Principle or sustainability. This article seeks to extend the boundaries of impact significance determination practice by providing an overview of good general impact significance practices, together with stakeholder roles and potential methods for addressing significance determination challenges. Relevant thresholds, criteria, contextual considerations and support methods are also highlighted. The analysis is then extended to address how impact significance determination practices change for positive as compared with negative impacts, for cumulative as compared with individual impacts, for socio-economic as compared with bio-physical impacts, when the Precautionary Principle is integrated into the process, and when sustainability contributions drive the EIA process and related impact significance determinations. These refinements can assist EIA practitioners in ensuring that the scope and nature of impact significance determinations reflect the broadened scope of emerging EIA requirements and practices. Suggestions are included for further refining and testing of the proposed changes to impact significance determination practice.

  14. Apparatus and method for loading and unloading multiple digital tape cassettes utilizing a removable magazine

    DOE Patents [OSTI]

    Lindenmeyer, C.W.

    1993-01-26T23:59:59.000Z

    An apparatus and method to automate the handling of multiple digital tape cassettes for processing by commercially available cassette tape readers and recorders. A removable magazine rack stores a plurality of tape cassettes, and cooperates with a shuttle device that automatically inserts and removes cassettes from the magazine to the reader and vice-versa. Photocells are used to identify and index to the desired tape cassette. The apparatus allows digital information stored on multiple cassettes to be processed without significant operator intervention.

  15. In situ removal of contamination from soil

    DOE Patents [OSTI]

    Lindgren, Eric R. (Albuquerque, NM); Brady, Patrick V. (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.

  16. In situ removal of contamination from soil

    DOE Patents [OSTI]

    Lindgren, E.R.; Brady, P.V.

    1997-10-14T23:59:59.000Z

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.

  17. Performance of hydroclones for removing particles from viscous liquids

    SciTech Connect (OSTI)

    Talbot, J.B.

    1980-08-01T23:59:59.000Z

    The performance of a 1-cm diam, Dorr-Oliver hydroclone with slurries containing approx. 5 wt % solids in water-glycerin solutions was studied to evaluate the effects of fluid viscosity. Micron-sized particles of low-density solids (aluminum oxide, test dust, fly ash, or kaolin) were removed from solutions with viscosities ranging from 1 to 85 cP. Pressure drop across the hydroclone increased with increasing feed rate and viscosity. Gross and centrifugal efficiencies were found to increase with flow rate and decrease with viscosity. Liquid viscosities >10 cP had deleterious effects on the pressure drop and efficiency; thus useful separations were not attained. The particle diameter, corresponding to a point efficiency of 50%, decreased as the product of the inlet Reynolds number and the solid-to-liquid density ratio increased. The reduced efficiency curve was found to characterize the hydroclone performance.

  18. Missing transverse energy significance at CMS

    E-Print Network [OSTI]

    Nathan Mirman; Yimin Wang; James Alexander

    2014-09-10T23:59:59.000Z

    Missing transverse energy significance may be used to help distinguish real missing transverse energy due to undetected particles from spurious missing transverse energy due to resolution smearing. We present a description of the missing transverse energy significance variable, and assess its performance in Z$\\rightarrow\\mu\\mu$, dijet, and W$\\rightarrow e\

  19. Arsenic removal from gaseous streams

    SciTech Connect (OSTI)

    Russell, R.G.; Otey, M.G.

    1989-11-22T23:59:59.000Z

    Uranium feed materials, depending on the production process, have been found to contain arsenic (As) as a contaminant. Analyses show the As to be present as As pentafluoride (AsF{sub 5}) and/or hexafluoroarsenic acid (HAsF{sub 6}) and enter the enrichment cycle through contaminated hydrogen fluoride (HF). Problems related to corrosion of cylinder valves and plugging of feed lines and valves have been attributed to the As. Techniques to separate AsF{sub 5} from uranium hexafluoride (UF{sub 6}) using sodium fluoride (NaF) as a trapping media were successful and will be discussed. Procedures to significantly reduce (up to 97%) the level of As in HF will also be reported. 5 figs., 9 tabs.

  20. Method of removing polychlorinated biphenyl from oil

    DOE Patents [OSTI]

    Cook, G.T.; Holshouser, S.K.; Coleman, R.M.; Harless, C.E.; Whinnery, W.N. III

    1982-03-17T23:59:59.000Z

    Polychlorinated biphenyls are removed from oil by extracting the biphenyls into methanol. The mixture of methanol and extracted biphenyls is distilled to separate methanol therefrom, and the methanol is recycled for further use in extraction of biphenyls from oil.

  1. Install Removable Insulation on Valves and Fittings

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving the system using low-cost, proven practices and technologies.

  2. Part removal of 3D printed parts

    E-Print Network [OSTI]

    Peña Doll, Mateo

    2014-01-01T23:59:59.000Z

    An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

  3. Method of removing polychlorinated biphenyl from oil

    DOE Patents [OSTI]

    Cook, Gus T. (Paducah, KY); Holshouser, Stephen K. (Boaz, KY); Coleman, Richard M. (Paducah, KY); Harless, Charles E. (Smithland, KY); Whinnery, III, Walter N. (Paducah, KY)

    1983-01-01T23:59:59.000Z

    Polychlorinated biphenyls are removed from oil by extracting the biphenyls into methanol. The mixture of methanol and extracted biphenyls is distilled to separate methanol therefrom, and the methanol is recycled for further use in extraction of biphenyls from oil.

  4. Productivity increases in science

    SciTech Connect (OSTI)

    Danko, J.E. [ed.; Young, J.K.; Molton, P.M.; Dirks, J.A.

    1993-02-01T23:59:59.000Z

    The study quantifies the impact on the cost of experimentation of synergistic advancements in instrumentation, theory, and computation over the last two decades. The study finds that the productivity of experimental investigation (experimental results/$) is increasing as science is transformed from a linear, isolated approach to a hierarchical, multidisciplinary approach. Developments such as massively parallel processors coupled with instrumental systems with multiple probes and diverse data analysis capabilities will further this transformation and increase the productivity of scientific studies. The complexities and scale of today`s scientific challenges are much greater than in the past, however, so that the costs of research are increasing. Even though science is much more productive in terms of the experimental results, the challenges facing scientific investigators are increasing at an even faster pace. New approaches to infrastructure investments must capitalize on the changing dynamics of research and allow the scientific community to maximize gains in productivity so that complex problems can be attacked cost-effectively. Research strategies that include user facilities and coordinated experimental, computational, and theoretical research are needed.

  5. Productivity increases in science

    SciTech Connect (OSTI)

    Danko, J.E. (ed.); Young, J.K.; Molton, P.M.; Dirks, J.A.

    1993-02-01T23:59:59.000Z

    The study quantifies the impact on the cost of experimentation of synergistic advancements in instrumentation, theory, and computation over the last two decades. The study finds that the productivity of experimental investigation (experimental results/$) is increasing as science is transformed from a linear, isolated approach to a hierarchical, multidisciplinary approach. Developments such as massively parallel processors coupled with instrumental systems with multiple probes and diverse data analysis capabilities will further this transformation and increase the productivity of scientific studies. The complexities and scale of today's scientific challenges are much greater than in the past, however, so that the costs of research are increasing. Even though science is much more productive in terms of the experimental results, the challenges facing scientific investigators are increasing at an even faster pace. New approaches to infrastructure investments must capitalize on the changing dynamics of research and allow the scientific community to maximize gains in productivity so that complex problems can be attacked cost-effectively. Research strategies that include user facilities and coordinated experimental, computational, and theoretical research are needed.

  6. Laser removal of sludge from steam generators

    DOE Patents [OSTI]

    Nachbar, Henry D. (Ballston Lake, NY)

    1990-01-01T23:59:59.000Z

    A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

  7. Pentek metal coating removal system: Baseline report; Summary

    SciTech Connect (OSTI)

    NONE

    1997-07-31T23:59:59.000Z

    The Pentek metal coating removal system consists of the ROTO-PEEN Scaler, CORNER-CUTTER(R), and VAC-PAC(R). The system is designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M ROTO-PEEN tungsten carbide cutters, while the CORNER-CUTTER(R) uses solid needles for descaling activities. These are used with the VAC-PAC(R) vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure was minimal, but noise exposure was significant. Further testing for each exposure is recommended, since the outdoor environment where the testing demonstration took place may skew the results. It is feasible that dust and noise levels will be higher in an enclosed operating environment. Other areas of concern found were arm-hand vibration, whole-body vibration, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  8. Significantly reduce maintenance time Documents&Mediabecomesthekey

    E-Print Network [OSTI]

    Mullins, Dyche

    Significantly reduce maintenance time · Documents&Mediabecomesthekey contactforallmaintenanceneeds. · MajorpartsarestoredbyDocuments& MediaattheMissionCenter.Thisreduces thetimeneededtoorderpartsandresultsin&Mediaoffersthecampus communityaconvenientandeconomicsolution foritscopiers,multifunctiondevicesandprinter needs. Print Management Program advantages Reduce

  9. SLAG CHARACTERIZATION AND REMOVAL USING PULSE DETONATION TECHNOLOGY DURING COAL GASIFICATION

    SciTech Connect (OSTI)

    DR. DANIEL MEI; DR. JIANREN ZHOU; DR. PAUL O. BINEY; DR. ZIAUL HUQUE

    1998-07-30T23:59:59.000Z

    Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. Conventional slag removal methods including soot blowers and water lances have great difficulties in removing slags especially from the down stream areas of utility power plant boilers. The detonation wave technique, based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. A slight increase in the boiler efficiency, due to more effective ash/deposit removal and corresponding reduction in plant maintenance downtime and increased heat transfer efficiency, will save millions of dollars in operational costs. Reductions in toxic emissions will also be accomplished due to reduction in coal usage. Detonation waves have been demonstrated experimentally to have exceptionally high shearing capability, important to the task of removing slag and fouling deposits. The experimental results describe the parametric study of the input parameters in removing the different types of slag and operating condition. The experimental results show that both the single and multi shot detonation waves have high potential in effectively removing slag deposit from boiler heat transfer surfaces. The results obtained are encouraging and satisfactory. A good indication has also been obtained from the agreement with the preliminary computational fluid dynamics analysis that the wave impacts are more effective in removing slag deposits from tube bundles rather than single tube. This report presents results obtained in effectively removing three different types of slag (economizer, reheater, and air-heater) t a distance of up to 20 cm from the exit of the detonation tube. The experimental results show that the softer slags can be removed more easily. Also closer the slag to the exit of the detonation tube, the better are their removals. Side facing slags are found to shear off without breaking. Wave strength and slag orientation also has different effects on the chipping off of the slag. One of the most important results from this study is the observation that the pressure of the waves plays a vital role in removing slag. The wave frequency is also important after a threshold pressure level is attained.

  10. A high-speed photoresist removal process using multibubble microwave plasma under a mixture of multiphase plasma environment

    SciTech Connect (OSTI)

    Ishijima, Tatsuo [Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan)] [Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Nosaka, Kohei [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan)] [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Tanaka, Yasunori; Uesugi, Yoshihiko [Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan) [Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Goto, Yousuke; Horibe, Hideo [Department of Applied Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa 924-0838 (Japan)] [Department of Applied Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa 924-0838 (Japan)

    2013-09-30T23:59:59.000Z

    This paper proposes a photoresist removal process that uses multibubble microwave plasma produced in ultrapure water. A non-implanted photoresist and various kinds of ion-implanted photoresists such as B, P, and As were treated with a high ion dose of 5 × 10{sup 15} atoms/cm{sup 2} at an acceleration energy of 70 keV; this resulted in fast removal rates of more than 1 ?m/min. When the distance between multibubble microwave plasma and the photoresist film was increased by a few millimeters, the photoresist removal rates drastically decreased; this suggests that short-lived radicals such as OH affect high-speed photoresist removal.

  11. Disk Quota Increase Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering How Muscles Really Work Disk Quota Increase

  12. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil pricepropanepropane prices increase The

  13. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil pricepropanepropane prices increase

  14. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy University Managing Increased Charging

  15. Increasing Employee PEV Awareness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of theResponses to Public Increasing Employee

  16. Workers Remove Glove Boxes from Ventilation at Hanford's Plutonium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remove Glove Boxes from Ventilation at Hanford's Plutonium Finishing Plant Workers Remove Glove Boxes from Ventilation at Hanford's Plutonium Finishing Plant January 28, 2015 -...

  17. Functionalized Nanoporous Silica for Removal of Heavy Metals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoporous Silica for Removal of Heavy Metals from Biological Systems; Adsorption and Application. Functionalized Nanoporous Silica for Removal of Heavy Metals from Biological...

  18. Removing Barriers to Innovations: Related Codes and Standards...

    Energy Savers [EERE]

    Removing Barriers to Innovations: Related Codes and Standards CSI Team Removing Barriers to Innovations: Related Codes and Standards CSI Team This presentation was delivered at the...

  19. Y-12 Removes Nuclear Materials from Two Facilities to Reduce...

    National Nuclear Security Administration (NNSA)

    Home Field Offices Welcome to the NNSA Production Office NPO News Releases Y-12 Removes Nuclear Materials from Two Facilities ... Y-12 Removes Nuclear Materials from...

  20. Field Demonstration Of Permeable Reactive Barriers To Remove

    E-Print Network [OSTI]

    Field Demonstration Of Permeable Reactive Barriers To Remove Dissolved Uranium From Groundwater-001 November 2000 FIELD DEMONSTRATION OF PERMEABLE REACTIVE BARRIERS TO REMOVE DISSOLVED URANIUM FROM

  1. New Research Facility to Remove Hurdles to Offshore Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10,...

  2. Selective Removal of Lanthanides from Natural Waters, Acidic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Removal of Lanthanides from Natural Waters, Acidic Streams and Dialysate. Selective Removal of Lanthanides from Natural Waters, Acidic Streams and Dialysate. Abstract: The...

  3. Oak Ridge Removes Laboratory's Greatest Source of Groundwater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Removes Laboratory's Greatest Source of Groundwater Contamination Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination May 1, 2012 - 12:00pm Addthis Workers...

  4. United States, International Partners Remove Last Remaining Weapons...

    Broader source: Energy.gov (indexed) [DOE]

    removed HEU under this effort are Austria, Chile, Czech Republic, Libya, Mexico, Romania, Serbia, Taiwan, Turkey, Ukraine, and Vietnam. To date, the Department has removed or...

  5. System for increasing corona inception voltage of insulating oils

    DOE Patents [OSTI]

    Rohwein, G.J.

    1998-05-19T23:59:59.000Z

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil. 5 figs.

  6. Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines

    E-Print Network [OSTI]

    Minnesota, University of

    Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines Ethanol continuedOber 2013 Catalystcts.umn.edu Nearly all corn-based ethanol produced in the United States is anhydrous processes required to remove the water from ethanol consume a great deal of energy. Researchers from

  7. 241-AZ-101 pump removal trough analysis

    SciTech Connect (OSTI)

    Coverdell, B.L.

    1995-10-17T23:59:59.000Z

    As part of the current Hanford mission of environmental cleanup, various long length equipment must be removed from highly radioactive waste tanks. The removal of equipment will utilize portions of the Equipment Removal System for Project W320 (ERS-W320), specifically the 50 ton hydraulic trailer system. Because the ERS-W320 system was designed to accommodate much heavier equipment it is adequate to support the dead weight of the trough, carriage and related equipment for 241AZ101 pump removal project. However, the ERS-W320 components when combined with the trough and its` related components must also be analyzed for overturning due to wind loads. Two troughs were designed, one for the 20 in. diameter carriage and one for the 36 in. diameter carriage. A proposed 52 in. trough was not designed and, therefore is not included in this document. In order to fit in the ERS-W320 strongback the troughs were design with the same widths. Structurally, the only difference between the two troughs is that more material was removed from the stiffener plates on the 36 in trough. The reduction in stiffener plate material reduces the allowable load. Therefore, only the 36 in. trough was analyzed.

  8. System for removal of arsenic from water

    DOE Patents [OSTI]

    Moore, Robert C.; Anderson, D. Richard

    2004-11-23T23:59:59.000Z

    Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  9. Removal of uranium from aqueous HF solutions

    DOE Patents [OSTI]

    Pulley, Howard (West Paducah, KY); Seltzer, Steven F. (Paducah, KY)

    1980-01-01T23:59:59.000Z

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  10. Sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01T23:59:59.000Z

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  11. Heat treatment of exchangers to remove coke

    SciTech Connect (OSTI)

    Turner, J.D.

    1990-02-20T23:59:59.000Z

    This patent describes a process for preparing furfural coke for removal from metallic surfaces. It comprises: heating the furfural coke without causing an evolution of heat capable of undesirably altering metallurgical properties of the surfaces in the presence of a gas containing molecular oxygen at a sufficient temperature below 800{degrees}F (427{degrees}C) for a sufficient time to change the crush strength of the coke so as to permit removal with a water jet at a pressure of five thousand pounds per square inch.

  12. Social significance of community structure: Statistical view

    E-Print Network [OSTI]

    Li, Hui-Jia

    2015-01-01T23:59:59.000Z

    Community structure analysis is a powerful tool for social networks, which can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the significance of community structure partitioned is an urgent and important question. In this paper, integrating the specific characteristics of real society, we present a novel framework analyzing the significance of social community specially. The dynamics of social interactions are modeled by identifying social leaders and corresponding hierarchical structures. Instead of a direct comparison with the average outcome of a random model, we compute the similarity of a given node with the leader by the number of common neighbors. To determine the membership vector, an efficient community detection algorithm is proposed based on the position of nodes and their corresponding leaders. Then, using log-likelihood sco...

  13. SLUDGE BATCH 7 (SB7) WASHING DEMONSTRATION TO DETERMINE SULFATE/OXALATE REMOVAL EFFICIENCY AND SETTLING BEHAVIOR

    SciTech Connect (OSTI)

    Reboul, S.; Click, D.; Lambert, D.

    2010-12-10T23:59:59.000Z

    To support Sludge Batch 7 (SB7) washing, a demonstration of the proposed Tank Farm washing operation was performed utilizing a real-waste test slurry generated from Tank 4, 7, and 12 samples. The purpose of the demonstration was twofold: (1) to determine the settling time requirements and washing strategy needed to bring the SB7 slurry to the desired endpoint; and (2) to determine the impact of washing on the chemical and physical characteristics of the sludge, particularly those of sulfur content, oxalate content, and rheology. Seven wash cycles were conducted over a four month period to reduce the supernatant sodium concentration to approximately one molar. The long washing duration was due to the slow settling of the sludge and the limited compaction. Approximately 90% of the sulfur was removed through washing, and the vast majority of the sulfur was determined to be soluble from the start. In contrast, only about half of the oxalate was removed through washing, as most of the oxalate was initially insoluble and did not partition to the liquid phase until the latter washes. The final sulfur concentration was 0.45 wt% of the total solids, and the final oxalate concentration was 9,900 mg/kg slurry. More oxalate could have been removed through additional washing, although the washing would have reduced the supernatant sodium concentration.The yield stress of the final washed sludge (35 Pa) was an order of magnitude higher than that of the unwashed sludge ({approx}4 Pa) and was deemed potentially problematic. The high yield stress was related to the significant increase in insoluble solids that occurred ({approx}8 wt% to {approx}18 wt%) as soluble solids and water were removed from the slurry. Reduction of the insoluble solids concentration to {approx}14 wt% was needed to reduce the yield stress to an acceptable level. However, depending on the manner that the insoluble solids adjustment was performed, the final sodium concentration and extent of oxalate removal would be prone to change. As such, the strategy for completing the final wash cycle is integral to maintaining the proper balance of chemical and physical requirements.

  14. Recommendation 183: Preferred Alternative for the Removal of Hexavalent Chromium

    Broader source: Energy.gov [DOE]

    The ORSSAB Recommendation to DOE on the Preferred Alternative for the Removal of Hexavalent Chromium.

  15. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2014-08-19T23:59:59.000Z

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  16. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

    2010-11-09T23:59:59.000Z

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  17. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM

    SciTech Connect (OSTI)

    Unknown

    2000-09-15T23:59:59.000Z

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized.

  18. Removed Barriers: 3.32 Knowledge

    E-Print Network [OSTI]

    Fabrikant, Sara Irina

    Students Average Values from Entry and Exit Surveys for Participants in 2006 Workshops ENTRY 1 BarriersResults EXIT 2 Removed Barriers: 3.32 Knowledge 3.67 GIS 3.46 Data Access 3.68 Software Use 3

  19. Method of preparation of removable syntactic foam

    DOE Patents [OSTI]

    Arnold, Jr., Charles (Albuquerque, NM); Derzon, Dora K. (Albuquerque, NM); Nelson, Jill S. (Albuquerque, NM); Rand, Peter B. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications.

  20. Method of preparation of removable syntactic foam

    DOE Patents [OSTI]

    Arnold, C. Jr.; Derzon, D.K.; Nelson, J.S.; Rand, P.B.

    1995-07-11T23:59:59.000Z

    Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications. 1 fig.

  1. Bioreactors for Removing Methyl Bromide following Contained

    E-Print Network [OSTI]

    Bioreactors for Removing Methyl Bromide following Contained Fumigations L A U R E N C E G . M I L L contributes to the depletion of stratospheric ozone. A closed-system bioreactor consisting of 0.5 L recirculating air. Strain IMB-1 grew slowly to high cell densities in the bioreactor using MeBr as its sole

  2. Plastic bottles > Remove lids (not recyclable)

    E-Print Network [OSTI]

    Brierley, Andrew

    Plastic bottles Please: > Remove lids (not recyclable) > Empty bottles > Rinse milk bottles, & other bottles if possible > Squash bottles www.st-andrews.ac.uk/estates/environment All types of plastic bottle accepted Clear, opaque and coloured bottles Labels can remain on X No plastic bags X No plastics

  3. MODELING OF PARTICULATE REMOVAL IN MIXED MEDIA

    E-Print Network [OSTI]

    Clark, Shirley E.

    versus Downflow Modes DATA COLLECTION #12;4 UPFLOW CONTRUCTION #12;5 UPFLOW FILTRATION RESULTS · Drawback to downflow filtration is the need for pretreatment. Upflow filtration may remove need for pretreatment-specific, and transfer of data from lab-scale to field is not applicable. ACKNOWLEDGMENTS Anitha Balakrishnan, UAB Renee

  4. NNSA B-Roll: Fuel Removals

    SciTech Connect (OSTI)

    2010-05-21T23:59:59.000Z

    The National Nuclear Security Administration established the Global Threat Reduction Initiative (GTRI) to identify, secure, remove and/or facilitate the disposition of high risk vulnerable nuclear and radiological materials around the world, as quickly as possible, that pose a threat to the United States and the international community.

  5. ADVANCED OXIDATION PROCESSES FOR THE REMOVAL OF

    E-Print Network [OSTI]

    Boyer, Edmond

    ADVANCED OXIDATION PROCESSES FOR THE REMOVAL OF RESIDUAL NON-STEROIDAL ANTI- INFLAMMATORY. G. Esposito, PhD, MSc Associate Professor of Sanitary and Environmental Engineering University in Biogeochemistry University of Paris-Est Paris, France Prof. dr. ir P.N.L. Lens Professor of Biotechnology UNESCO

  6. Method of removing cesium from steam

    DOE Patents [OSTI]

    Carson, Jr., Neill J. (Clarendon Hills, IL); Noland, Robert A. (Oak Park, IL); Ruther, Westly E. (Skokie, IL)

    1991-01-01T23:59:59.000Z

    Method for removal of radioactive cesium from a hot vapor, such as high temperature steam, including the steps of passing input hot vapor containing radioactive cesium into a bed of silicate glass particles and chemically incorporating radioactive cesium in the silicate glass particles at a temperature of at least about 700.degree. F.

  7. Decontaminating Human Judgments by Removing Sequential Dependencies

    E-Print Network [OSTI]

    Mozer, Michael C.

    Decontaminating Human Judgments by Removing Sequential Dependencies Michael C. Mozer, Harold, and thereby decontaminate a series of ratings to obtain more meaningful human judgments. In our formulation, decontamination is fun- damentally a problem of inferring latent states (internal sensations) which, be- cause

  8. Forecast Technical Document Felling and Removals

    E-Print Network [OSTI]

    of local investment and business planning. Timber volume production will be estimated at sub. Planning of operations. Control of the growing stock. Wider reporting (under UKWAS). The calculation fellings and removals are handled in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan

  9. Document Number Q0029500 Significant Activities

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN RCDBaseline0419Significant

  10. Methods of removing a constituent from a feed stream using adsorption media

    DOE Patents [OSTI]

    Tranter, Troy J. (Idaho Falls, ID); Mann, Nicholas R. (Rigby, ID); Todd, Terry A. (Aberdeen, ID); Herbst, Ronald S. (Idaho Falls, ID)

    2011-05-24T23:59:59.000Z

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  11. Adding sodium hydroxide to study metal removal in a stream affected by acid mine drainage. Forest Service research paper

    SciTech Connect (OSTI)

    Amacher, M.C.; Brown, R.W.; Kotubi-Amacher, J.; Willis, A.

    1993-06-01T23:59:59.000Z

    Fisher Creek, a stream affected by acid mine drainage in the Beartooth Mountains of Montana, was studied to determine the extent to which copper and zinc would be removed from stream water when pH was increased by a pulse of sodium hydroxide. As stream pH increased, copper and zinc were rapidly and completely removed from stream water by adsorption or coprecipitation with freshly precipitated hydrous ferric oxide. In practice, the best way of increasing the pH of streams impacted by acid mine drainage would be to increase the alkalinity of tributaries by lining their channels with limestone rock.

  12. Hydraulic dredging, a sediment removal technique

    SciTech Connect (OSTI)

    Spotts, J.W.

    1980-12-01T23:59:59.000Z

    Sediment was successfully removed from a Peabody Coal Company pond near Macon, Missouri, by a Mud Cat Model SP-810 hydraulic dredge. Previous attempts using land-based equipment had been unsatisfactory. The hydraulic-powered auger and submerged pump easily removed 882 m/sup 3/ (1154 yd/sup 3/) and pumped the slurry a distance of 305 m (1000 ft) to a disposal area. The hydraulic dredge was more effective and cheaper to operate than land-based equipment. The dredge cost was $1.31/m/sup 3/ ($1.00/yd/sup 3/), the dragline cost was $6.54/m/sup 3/ ($5.00/yd/sup 3/) and the front-end loader cost was $15.70/m/sup 3/ ($12.00/yd/sup 3/), under optimum conditions.

  13. Removal of fluoride from aqueous nitric acid

    SciTech Connect (OSTI)

    Pruett, D.J.; Howerton, W.B.; Mailen, J.C.

    1981-06-01T23:59:59.000Z

    Several methods for removing fluoride from aqueous nitric acid were investigated and compared with the frequently used aluminum nitrate-calcium nitrate (Ca/sup 2 +/-Al/sup 3 +/) chemical trap-distillation system. Zirconium oxynitrate solutions were found to be superior in preventing volatilization of fluoride during distillation of the nitric acid, producing decontamination factors (DFs) on the order of 2 x 10/sup 3/ (vs approx. 500 for the Ca/sup 2 +/-Al/sup 3 +/ system). Several other metal nitrate systems were tested, but they were less effective. Alumina and zirconia columns proved highly effective in removing HF from HF-HNO/sub 3/ vapors distilled through the columns; fluoride DFs on the order of 10/sup 6/ and 10/sup 4/, respectively, were obtained. A silica gel column was very effective in adsorbing HF from HF-HNO/sub 3/ solutions, producing a fluoride DF of approx. 10/sup 4/.

  14. Fly ash enhanced metal removal process

    SciTech Connect (OSTI)

    Nonavinakere, S. [Plexus Scientific Corp., Annapolis, MD (United States); Reed, B.E. [West Virginia Univ., Morgantown, WV (United States). Dept. of Civil Engineering

    1995-12-31T23:59:59.000Z

    The primary objective of the study was to evaluate the effectiveness of fly ashes from local thermal power plants in the removal of cadmium, nickel, chromium, lead, and copper from aqueous waste streams. Physical and chemical characteristics of fly ashes were determined, batch isotherm studies were conducted. A practical application of using fly ash in treating spent electroless nickel (EN) plating baths by modified conventional precipitation or solid enhanced metal removal process (SEMR) was investigated. In addition to nickel the EN baths also contains completing agents such as ammonium citrate and succinic acid reducing agents such as phosphate and hypophosphite. SEMR experiments were conducted at different pHs, fly ash type and concentrations, and settling times.

  15. Photoacoustic removal of occlusions from blood vessels

    DOE Patents [OSTI]

    Visuri, Steven R. (Livermore, CA); Da Silva, Luiz B. (Danville, CA); Celliers, Peter M. (Berkeley, CA); London, Richard A. (Orinda, CA); Maitland, IV, Duncan J. (Lafayette, CA); Esch, Victor C. (San Francisco, CA)

    2002-01-01T23:59:59.000Z

    Partial or total occlusions of fluid passages within the human body are removed by positioning an array of optical fibers in the passage and directing treatment radiation pulses along the fibers, one at a time, to generate a shock wave and hydrodynamics flows that strike and emulsify the occlusions. A preferred application is the removal of blood clots (thrombin and embolic) from small cerebral vessels to reverse the effects of an ischemic stroke. The operating parameters and techniques are chosen to minimize the amount of heating of the fragile cerebral vessel walls occurring during this photo acoustic treatment. One such technique is the optical monitoring of the existence of hydrodynamics flow generating vapor bubbles when they are expected to occur and stopping the heat generating pulses propagated along an optical fiber that is not generating such bubbles.

  16. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, Tetsuo (Ames, IA); Squires, Thomas G. (Gilbert, IA); Venier, Clifford G. (Ames, IA)

    1985-02-05T23:59:59.000Z

    A process for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  17. REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN

    SciTech Connect (OSTI)

    Dunn, Kerry A. [Savannah River National Laboratory; Bellamy, J. Steve [Savannah River National Laboratory; Chandler, Greg T. [Savannah River National Laboratory; Iyer, Natraj C. [U.S. Department of Energy, National Nuclear Security Administration, Office of; Koenig, Rich E.; Leduc, D. [Savannah River National Laboratory; Hackney, B. [Savannah River National Laboratory; Leduc, Dan R. [Savannah River National Laboratory

    2013-08-18T23:59:59.000Z

    U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

  18. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, T.; Squires, T.G.; Venier, C.G.

    1983-08-11T23:59:59.000Z

    A process is disclosed for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  19. Removal of copper from ferrous scrap

    DOE Patents [OSTI]

    Blander, M.; Sinha, S.N.

    1987-07-30T23:59:59.000Z

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  20. Removal of copper from ferrous scrap

    DOE Patents [OSTI]

    Blander, M.; Sinha, S.N.

    1990-05-15T23:59:59.000Z

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  1. Removal of copper from ferrous scrap

    DOE Patents [OSTI]

    Blander, Milton (12833 S. 82nd Ct., Palos Park, IL 60464); Sinha, Shome N. (5748 Drexel, 2A, Chicago, IL 60637)

    1990-01-01T23:59:59.000Z

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  2. Abstract--The capacity of distributed generation (DG) is set to increase significantly with much of the plant connecting to

    E-Print Network [OSTI]

    Harrison, Gareth

    limiting network capability in absorbing new DG. Finally, it demonstrates the use of optimal power flow market. Index Terms-- distributed generation, optimal power flow, power distribution. I. INTRODUCTION O in England and Wales (18% in Scotland) is derived from renewable resources. With existing large hydro

  3. RCS pressure under reduced inventory conditions following a loss of residual heat removal

    SciTech Connect (OSTI)

    Palmrose, D.E.; Hughes, E.D.; Johnsen, G.W.

    1992-01-01T23:59:59.000Z

    The thermal-hydraulic response of a closed-reactor coolant system to loss of residual heat removal (RHR) cooling is investigated. The processes examined include: core coolant boiling and steam generator reflux condensation, pressure increase on the primary side, heat transfer mechanisms on the steam generator primary and secondary sides, and effects of noncondensible gas on heat transfer processes.

  4. RCS pressure under reduced inventory conditions following a loss of residual heat removal

    SciTech Connect (OSTI)

    Palmrose, D.E.; Hughes, E.D.; Johnsen, G.W.

    1992-08-01T23:59:59.000Z

    The thermal-hydraulic response of a closed-reactor coolant system to loss of residual heat removal (RHR) cooling is investigated. The processes examined include: core coolant boiling and steam generator reflux condensation, pressure increase on the primary side, heat transfer mechanisms on the steam generator primary and secondary sides, and effects of noncondensible gas on heat transfer processes.

  5. Sulfurization of a carbon surface for vapor phase mercury removal II: Sulfur forms and mercury uptake

    E-Print Network [OSTI]

    Borguet, Eric

    promote the formation of organic sulfur and the presence of H2S during the cooling process increased in the presence of H2S was very effective towards Hg uptake in nitrogen. Corre- lation of mercury uptake capacitySulfurization of a carbon surface for vapor phase mercury removal ­ II: Sulfur forms and mercury

  6. Increased

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News Community Connections:HAZARD ANALYSES OF GLINT

  7. Gradient Improvement by Removal of Identified Local Defects

    SciTech Connect (OSTI)

    R.L. Geng, W.A. Clemens, C.A. Cooper, H. Hayano, K. Watanabe

    2011-07-01T23:59:59.000Z

    Recent experience of ILC cavity processing and testing at Jefferson Lab has shown that some 9-cell cavities are quench limited at a gradient in the range of 15-25 MV/m. Further studies reveal that these quench limits are often correlated with sub-mm sized and highly localized geometrical defects at or near the equator weld. There are increasing evidence to show that these genetic defects have their origin in the material or in the electron beam welding process (for example due to weld irregularities or splatters on the RF surface and welding porosity underneath the surface). A local defect removal method has been proposed at Jefferson Lab by locally re-melting the niobium material. Several 1-cell cavities with known local defects have been treated by using the JLab local e-beam re-melting method, resulting in gradient and Q0 improvement. We also sent 9-cell cavities with known gradient limiting local defects to KEK for local grinding and to FNAL for global mechanical polishing. We report on the results of gradient improvements by removal of local defects in these cavities.

  8. Mixed waste removal from a hazardous waste storage tank

    SciTech Connect (OSTI)

    Geber, K.R.

    1993-06-01T23:59:59.000Z

    The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations.

  9. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOE Patents [OSTI]

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20T23:59:59.000Z

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  10. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOE Patents [OSTI]

    Googin, John M. (Oak Ridge, TN); Napier, John M. (Oak Ridge, TN); Travaglini, Michael A. (Oliver Springs, TN)

    1983-01-01T23:59:59.000Z

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  11. SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-07-03T23:59:59.000Z

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley Authority, and Dravo Lime, Inc. Sulfuric acid controls are becoming of increasing interest to power generators with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NO{sub x} control on many coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project previously tested the effectiveness of furnace injection of four different calcium-and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents were tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide byproduct slurry produced from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization system. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm the effectiveness of the sorbents tested over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP, Unit 3, and the second test was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant testing provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. This report presents the results from those long-term tests. The tests determined the effectiveness of injecting commercially available magnesium hydroxide slurry (Gavin Plant) and byproduct magnesium hydroxide slurry (both Gavin Plant and BMP) for sulfuric acid control. The results show that injecting either slurry could achieve up to 70 to 75% overall sulfuric acid removal. At BMP, this overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NOX control than at removing SO{sub 3} formed in the furnace. The long-term tests also determined balance-of-plant impacts from slurry injection during the two tests. These include impacts on boiler back-end temperatures and pressure drops, SCR catalyst properties, ESP performance, removal of other flue gas species, and flue gas opacity. For the most part the balance-of-plant impacts were neutral to positive, although adverse effects on ESP performance became an issue during the BMP test.

  12. Moab Mill Tailings Removal Project Celebrates 5 Years of Success...

    Office of Environmental Management (EM)

    Moab Mill Tailings Removal Project Celebrates 5 Years of Success Moab Mill Tailings Removal Project Celebrates 5 Years of Success October 3, 2012 - 12:00pm Addthis Pictured here is...

  13. Removing nuclear waste, one shipment at a time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories Removing nuclear waste, one shipment at a time Removing nuclear waste, one shipment at a time The Lab's 1,000th shipment of transuranic waste recently left Los Alamos,...

  14. Process for selected gas oxide removal by radiofrequency catalysts

    DOE Patents [OSTI]

    Cha, Chang Y. (3807 Reynolds St., Laramie, WY 82070)

    1993-01-01T23:59:59.000Z

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  15. Process for removing technetium from iron and other metals

    DOE Patents [OSTI]

    Leitnaker, James M. (Kingston, TN); Trowbridge, Lee D. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag.

  16. Process for removing technetium from iron and other metals

    DOE Patents [OSTI]

    Leitnaker, J.M.; Trowbridge, L.D.

    1999-03-23T23:59:59.000Z

    A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag. 4 figs.

  17. Method for removing cesium from a nuclear reactor coolant

    DOE Patents [OSTI]

    Colburn, R.P.

    1983-08-10T23:59:59.000Z

    A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium inventory thereof further into the carbon matrix while simultaneously redispersing a portion into the regeneration system for absorption at a reduced temperature by the secondary trap.

  18. Method for removing hydrogen sulfide from coke oven gas

    SciTech Connect (OSTI)

    Ritter, H.

    1982-08-03T23:59:59.000Z

    An improved sulfur-ammonia process is disclosed for removing hydrogen sulfide from coke oven gases. In the improved process, a concentrator formerly used for standby operation is used at all normal times as an ammonia scrubber to improve the efficiency of gas separation during normal operation and is used as a concentrator for its intended standby functions during the alternative operations. In its normal function, the concentrator/scrubber functions as a scrubber to strip ammonia gas from recirculating liquid streams and to permit introduction of an ammonia-rich gas into a hydrogen sulfide scrubber to increase the separation efficiency of that unit. In the standby operation, the same concentrator/scrubber serves as a concentrator to concentrate hydrogen sulfide in a ''strong liquor'' stream for separate recovery as a strong liquor.

  19. Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy Metals from Aqueous Systems with Thiol Functionalized Superparamagnetic Nanoparticles. Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized...

  20. Method for removing fluoride contamination from nitric acid

    SciTech Connect (OSTI)

    Howerton, W.B.; Pruett, D.J.

    1982-07-13T23:59:59.000Z

    Fluoride ions are removed from nitric acid solution by contacting the vaporized solution with alumina or zirconium.

  1. THE REMOVAL OF CARBON/BEUTERIUM FROM STAINLESS STEEL AND TUNGSTEN BY TRANSFERRED-ARC CLEANING

    SciTech Connect (OSTI)

    K. J. HOLLIS; R. G. CASTRO; ET AL

    2001-04-01T23:59:59.000Z

    Tungsten and stainless steel samples have been contaminated with deuterium and carbon to simulate deposited layers in magnetic-confinement fusion devices. Deuterium and carbon were co-deposited onto the sample surfaces using a deuterium plasma seeded with varying amounts of deuterated methane. Deuterium was also implanted into the samples in an accelerator to simulate hydrogen isotope ion implantation conditions in magnetic confinement fusion devices. Cathodic arc, or transferred-arc (TA) cleaning was employed to remove the deposits from the samples. The samples were characterized by ion beam analysis both before and after cleaning to determine deuterium and carbon concentrations present. The deuterium content was greatly reduced by the cleaning thus demonstrating the possibility of using the TA cleaning technique for removing deuterium and/or tritium from components exposed to D-T fuels. Removal of surface layers and significant reduction of subsurface carbon concentrations was also observed.

  2. Electrostatic Dust Detection and Removal for ITER

    SciTech Connect (OSTI)

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-09-01T23:59:59.000Z

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 ?m spacing is biased to 30 – 50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm² with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations.

  3. 9. Analysis a. Analysis tools for dam removal

    E-Print Network [OSTI]

    Tullos, Desiree

    (Randle 2003). Mechanical removal, or dredging, involves removing some or all of the reservoir sediment infrastructure and landowners, downstream confinement, presence of threatened and endangered species, and cost in stages) and type (fine or contaminated sediment can be removed through dredging prior to sediment release

  4. Ultracapacitor having residual water removed under vacuum

    DOE Patents [OSTI]

    Wei, Chang (Niskayuna, NY); Jerabek, Elihu Calvin (Glenmont, NY); Day, James (Scotia, NY)

    2002-10-15T23:59:59.000Z

    A multilayer cell is provided that comprises two solid, nonporous current collectors, two porous electrodes separating the current collectors, a porous separator between the electrodes and an electrolyte occupying pores in the electrodes and separator. The mutilayer cell is electrolyzed to disassociate water within the cell to oxygen gas and hydrogen gas. A vacuum is applied to the cell substantially at the same time as the electrolyzing step, to remove the oxygen gas and hydrogen gas. The cell is then sealed to form a ultracapacitor substantially free from water.

  5. TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 DF WASTE LINE REMOVAL, BNL

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-07-09T23:59:59.000Z

    5098-SR-02-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 DF WASTE LINE REMOVAL, BROOKHAVEN NATIONAL LABORATORY

  6. Saeltzer Dam Removal on Clear Creek 11 years later: An assessment of upstream channel changes since the dam's removal

    E-Print Network [OSTI]

    Simons, Crystal; Walker, Katelyn; Zimring, Mark

    2011-01-01T23:59:59.000Z

    Boulder BLDR Bedrock BDRK Dam Rubble DMRB Table B1. 2011pages. Brown, M. (n.d. ). Clear Creek—McCormick-Saeltzer DamRemoval: Dam removal re-opens spring run salmon habitat. US

  7. High efficiency pollutant removal with the Moving-Bed Copper Oxide Process

    SciTech Connect (OSTI)

    Pennline, H.W.; Hoffman, J.S.; Yeh, J.T. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Resnik, K.P.; Vore, P.A. [Gilbert Commonwealth, Inc., Pittsburgh, PA (United States)

    1995-12-31T23:59:59.000Z

    Dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. One such technique, the Moving-Bed Copper Oxide Process, is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. A parametric study of the process was conducted on a life-cycle test system. All process steps, including absorption and regeneration, were integrated into this life-cycle test system so that continuous, long-term operation of the total process cold be experimentally evaluated. The effects of absorption temperature, sorbent and gas residence times, and inlet SO{sub 2} and NO{sub x} concentration on removal efficiencies and overall operational performance are discussed.

  8. EA-1336: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    336: Finding of No Significant Impact EA-1336: Finding of No Significant Impact Ocean Sequestration of Carbon Dioxide Field Experiment This Finding of No Significant Impact is made...

  9. Tailoring hydrocarbon streams for asphaltene removal

    SciTech Connect (OSTI)

    Del Bianco, A.; Stroppa, F.; Bertero, L.

    1995-11-01T23:59:59.000Z

    Oilfield production is often hindered by asphaltene precipitation which tends to fill the pores of the reservoir rocks and plug the wellbore tubing as well as the other auxiliary equipment used during crude oil recovery. Several remedies to remove these deposits have been proposed and patented but the injection of aromatic solvents such as toluene and light petroleum distillates is normally preferred. Previous studies with a number of pure aromatic hydrocarbons have shown that the solvent capacity of these molecules may be very different and that the degree of condensation plays an important role. In this regard, tetralins and naphthalenes are superior to alkylbenzenes. However, because the use of pure compounds is not economically feasible, the authors examined various industrial streams and the authors correlated their chemical composition to the solvent capacity. This work allowed the identification of the pseudo-components whose relative concentration is crucial for evaluating the solvent performances. Based on these data, the authors were able to find new products with ideal characteristics. The efficiency of one of these products was confirmed by the analysis of the data obtained when using this new solvent to remove asphaltene in damaged wells of an Italian field.

  10. Process for removing polychlorinated biphenyls from soil

    DOE Patents [OSTI]

    Hancher, C.W.; Saunders, M.B.; Googin, J.M.

    1984-11-16T23:59:59.000Z

    The present invention relates to a method of removing polychlorinated biphenyls from soil. The polychlorinated biphenyls are extracted from the soil by employing a liquid organic solvent dispersed in water in the ratio of about 1:3 to 3:1. The organic solvent includes such materials as short-chain hydrocarbons including kerosene or gasoline which are immiscible with water and are nonpolar. The organic solvent has a greater affinity for the PCB's than the soil so as to extract the PCB's from the soil upon contact. The organic solvent phase is separated from the suspended soil and water phase and distilled for permitting the recycle of the organic solvent phase and the concentration of the PCB's in the remaining organic phase. The present process can be satisfactorily practiced with soil containing 10 to 20% petroleum-based oils and organic fluids such as used in transformers and cutting fluids, coolants and the like which contain PCB's. The subject method provides for the removal of a sufficient concentration of PCB's from the soil to provide the soil with a level of PCB's within the guidelines of the Environmental Protection Agency.

  11. Removal of arsenic compounds from petroliferous liquids

    DOE Patents [OSTI]

    Fish, R.H.

    1984-04-06T23:59:59.000Z

    The present invention in one aspect comprises a process for removing arsenic from petroliferous-derived liquids by contacting said liquid with a divinylbenzene-crosslinked polystyrene polymer (i.e. PS-DVB) having catechol ligands anchored to said polymer, said contacting being at an elevated temperature. In another aspect, the invention is a process for regenerating spent catecholated polystyrene polymer by removal of the arsenic bound to it from contacting petroliferous liquid in accordance with the aspect described above which regenerating process comprises: (a) treating said spent catecholated polystyrene polymer with an aqueous solution of at least one member selected from the group consisting of carbonates and bicarbonates of ammonium, alkali metals, and alkaline earth metals, said solution having a pH between about 8 and 10, and said treating being at a temperature in the range of about 20/sup 0/ to 100/sup 0/C; (b) separating the solids and liquids from each other. In a preferred embodiment the regeneration treatment is in two steps wherein step: (a) is carried out with an aqueous alcoholic carbonate solution which includes at least one lower alkyl alcohol, and, steps (c) and (d) are added. Steps (c) and (d) comprise: (c) treating the solids with an aqueous alcoholic solution of at least one ammonium, alkali or alkaline earth metal bicarbonate at a temperature in the range of about 20 to 100/sup 0/C; and (d) separating the solids from the liquids.

  12. EVOLVING EXPECTATIONS OF DAM REMOVAL OUTCOMES: DOWNSTREAM GEOMORPHIC EFFECTS FOLLOWING REMOVAL OF A SMALL, GRAVEL-FILLED DAM1

    E-Print Network [OSTI]

    Tullos, Desiree

    EVOLVING EXPECTATIONS OF DAM REMOVAL OUTCOMES: DOWNSTREAM GEOMORPHIC EFFECTS FOLLOWING REMOVAL OF A SMALL, GRAVEL-FILLED DAM1 Kelly Kibler, Desiree Tullos, and Mathias Kondolf 2 ABSTRACT: Dam removal is a promising river restoration technique, particularly for the vast number of rivers impounded by small dams

  13. Atrial natriuretic factor increases vascular permeability

    SciTech Connect (OSTI)

    Lockette, W.; Brennaman, B. (Wayne State Univ. School of Medicine, Detroit, MI (USA))

    1990-12-01T23:59:59.000Z

    An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). Since elevations in plasma ANF are found in clinical syndromes associated with edema, and since space motion sickness induced by microgravity is associated with an increase in central blood volume and facial edema, we determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of 125I-albumin and 14C-dextran of similar molecular size. Blood pressure was monitored and serial determinations of hematocrits were made. Animals infused with 1.0 micrograms.kg-1.min-1 ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of 125I-albumin, but not 14C-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness.

  14. Radiological Assessment of Steam Generator Removal and Replacement: Update and Revision

    SciTech Connect (OSTI)

    Hoenes, G. R.; Mueller, M. A.; McCormack, W. D.

    1980-12-01T23:59:59.000Z

    A previous analysis of the radiological impact of removing and replacing corroded steam generators has been updated based on experience gained during steam generator repairs at Surry Unit 2. Some estimates of occupational doses involved in the operation have been revised but are not significantly different from the earlier estimates. Estimates of occupational doses and radioactive effluents for new tasks have been added. Health physics concerns that arose at Surry included the number of persons involved in the operation, tne training of workers, the handling of quantitites.of low-level waste, and the application of the ALARA principle. A review of these problem areas may help in the planning of other similar operations. A variety of processes could be used to decontaminate steam generators. Research is needed to assess these techniques and their associated occupational doses and waste volumes. Contaminated steam generators can be stored or disposed of after removal without significant radiological problems. Onsite storage and intact shipment have the least impact. In-placing retubing, an alternative to steam generator removal, results in occupational doses and effluents similar to those from removal, but prior decontamination of the channel head is needed. The retubing option should be assessed further.

  15. Effect of chest physiotherapy on the removal of mucus in patients with cystic fibrosis

    SciTech Connect (OSTI)

    Rossman, C.M.; Waldes, R.; Sampson, D.; Newhouse, M.T.

    1982-07-01T23:59:59.000Z

    We studied the effectiveness of some of the components of a physiotherapy regimen on the removal of mucus from the lungs of 6 subjects with cystic fibrosis. On 5 randomized study days, after inhalation of a /sup 99/mTc-human serum albumin aerosol to label primarily the large airways, the removal of lung radioactivity was measured during 40 min of (a) spontaneous cough while at rest (control), (b) postural drainage, (c) postural drainage plus mechanical percussion, (d) combined maneuvers (postural drainage, deep breathing with vibrations, and percussion) administered by a physiotherapist, (e) directed vigorous cough. Measurements continued for an additional 2 h of quiet rest. Compared with the control day, all forms of intervention significantly improved the removal of mucus: cough (p less than 0.005), physiotherapy maneuvers (0.005 less than or equal to p less than 0.01), postural drainage (p less than 0.05), and postural drainage plus percussion (p less than 0.01). However, there was no significant difference between regimented cough alone and therapist-administered combined maneuvers, nor between postural drainage alone and with mechanical percussion. We conclude that in cystic fibrosis, vigorous, regimented cough sessions may be as effective as therapist-administered physiotherapy in removing pulmonary secretions. Postural drainage, although better than the control maneuver, was not as effective as cough and was not enhanced by mechanical percussion. Frequent, vigorous self-directed cough sessions are potentially as useful as more complex measures for effective bronchial toilet.

  16. Low-quality natural gas sulfur removal/recovery

    SciTech Connect (OSTI)

    K. Amo; R.W. Baker; V.D. Helm; T. Hofmann; K.A. Lokhandwala; I. Pinnau; M.B. Ringer; T.T. Su; L. Toy; J.G. Wijmans

    1998-01-29T23:59:59.000Z

    A significant fraction of U.S. natural gas reserves are subquality due to the presence of acid gases and nitrogen; 13% of existing reserves (19 trillion cubic feed) may be contaminated with hydrogen sulfide. For natural gas to be useful as fuel and feedstock, this hydrogen sulfide has to be removed to the pipeline specification of 4 ppm. The technology used to achieve these specifications has been amine, or similar chemical or physical solvent, absorption. Although mature and widely used in the gas industry, absorption processes are capital and energy-intensive and require constant supervision for proper operation. This makes these processes unsuitable for treating gas at low throughput, in remote locations, or with a high concentration of acid gases. The U.S. Department of Energy, recognizes that exploitation of smaller, more sub-quality resources will be necessary to meet demand as the large gas fields in the U.S. are depleted. In response to this need, Membrane Technology and Research, Inc. (MTR) has developed membranes and a membrane process for removing hydrogen sulfide from natural gas. During this project, high-performance polymeric thin-film composite membranes were brought from the research stage to field testing. The membranes have hydrogen sulfide/methane selectivities in the range 35 to 60, depending on the feed conditions, and have been scaled up to commercial-scale production. A large number of spiral-wound modules were manufactured, tested and optimized during this project, which culminated in a field test at a Shell facility in East Texas. The short field test showed that membrane module performance on an actual natural gas stream was close to that observed in the laboratory tests with cleaner streams. An extensive technical and economic analysis was performed to determine the best applications for the membrane process. Two areas were identified: the low-flow-rate, high-hydrogen-sulfide-content region and the high-flow-rate, high-hydrogen-sulfide-content region. In both regions the MTR membrane process will be combined with another process to provide the necessary hydrogen sulfide removal from the natural gas. In the first region the membrane process will be combined with the SulfaTreat fixed-bed absorption process, and in the second region the membrane process will be combined with a conventional absorption process. Economic analyses indicate that these hybrid processes provide 20-40% cost savings over stand-alone absorption technologies.

  17. Removal of Pu238 from Neptunium Solution by Anion Exchange

    SciTech Connect (OSTI)

    KYSER, EDWARD

    2003-12-01T23:59:59.000Z

    A new anion flowsheet for use in HB-Line was tested in the lab with Reillex{trademark} HPQ for removal of Pu{sup 238} contamination from Np. Significant rejection of Pu{sup 238} was observed by washing with 6 to 12 bed volumes (BV) of reductive wash containing reduced nitric acid concentration along with both ferrous sulfamate (FS) and hydrazine. A shortened-height column was utilized in these tests to match changes in the plant equipment. Lab experiments scaled to plant batch sizes of 1500 to 2200 g Np were observed with modest losses for up-flow washing. Down-flow washing was observed to have high losses. The following are recommended conditions for removing Pu{sup 238} from Np solutions by anion exchange in HB-Line: (1) Feed conditions: Up-flow 6.4-8 M HNO{sub 3}, 0.02 M hydrazine, 0.05 M excess FS, less than 5 days storage of solution after FS addition. (2) Reductive Wash conditions: Up-flow 6-12 BV of 6.4 M HNO{sub 3}, 0.05 M FS, 0.05 M hydrazine. 1.8 mL/min/cm{sup 2} flowrate. (3) Decontamination Wash conditions: Up-flow 1-2 BV of 6.4-8 M HNO{sub 3}, no FS, no hydrazine. (4) Elution conditions: Down-flow 0.17 M HNO{sub 3}, 0.05 M hydrazine, no FS.

  18. Apparatus for removing micronized coal from steam

    SciTech Connect (OSTI)

    Vlnaty, J.

    1981-12-15T23:59:59.000Z

    Micronized coal is removed from coal-bearing steam by spraying stabilized petroleum oil into the steam and directing the resultant stream at a separation surface on which a coal-oil slurry is deposited and collected. Apparatus includes conduits which direct the resultant stream downward into a housing and normal to a surface on which the slurry is deposited by impact forces. In additional apparatus disclosed, the resultant stream is directed from a horizontal conduit circumferentially along the interior wall of a horizontally disposed cylindrical chamber at the top of the chamber and the coal-oil slurry deposited on the wall by centrifugal force is collected in a trough situated below a longitudinal slot at the bottom of the chamber. In both types of apparatus, after separation of the slurry the velocity of the steam is reduced to settle out remaining oil droplets and is then discharged to the atmosphere.

  19. IMPROVED PROCESSES TO REMOVE NAPHTHENIC ACIDS

    SciTech Connect (OSTI)

    Aihua Zhang; Qisheng Ma; William A. Goddard; Yongchun Tang

    2004-04-28T23:59:59.000Z

    In the first year of this project, we have established our experimental and theoretical methodologies for studies of the catalytic decarboxylation process. We have developed both glass and stainless steel micro batch type reactors for the fast screening of various catalysts with reaction substrates of model carboxylic acid compounds and crude oil samples. We also developed novel product analysis methods such as GC analyses for organic acids and gaseous products; and TAN measurements for crude oil. Our research revealed the effectiveness of several solid catalysts such as NA-Cat-1 and NA-Cat-2 for the catalytic decarboxylation of model compounds; and NA-Cat-5{approx}NA-Cat-9 for the acid removal from crude oil. Our theoretical calculations propose a three-step concerted oxidative decarboxylation mechanism for the NA-Cat-1 catalyst.

  20. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1999-02-24T23:59:59.000Z

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  1. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1998-10-14T23:59:59.000Z

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  2. Removing sulphur oxides from a fluid stream

    DOE Patents [OSTI]

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08T23:59:59.000Z

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

  3. PRECOMBUSTION REMOVAL OF HAZARDOUS AIR POLLUTANT PRECURSORS

    SciTech Connect (OSTI)

    Unknown

    2000-10-09T23:59:59.000Z

    In response to growing environmental concerns reflected in the 1990 Clean Air Act Amendment (CAAA), the United States Department of Energy (DOE) sponsored several research and development projects in late 1995 as part of an initiative entitled Advanced Environmental Control Technologies for Coal-Based Power Systems. The program provided cost-shared support for research and development projects that could accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. Clean coal technologies developed under this program would serve as prototypes for later generations of technologies to be implemented in the industrial sector. In order to identify technologies with the greatest potential for commercial implementation, projects funded under Phase I of this program were subject to competitive review by DOE before being considered for continuation funding under Phase II. One of the primary topical areas identified under the DOE initiative relates to the development of improved technologies for reducing the emissions of air toxics. Previous studies have suggested that many of the potentially hazardous air pollutant precursors (HAPPs) occur as trace elements in the mineral matter of run-of-mine coals. As a result, these elements have the potential to be removed prior to combustion at the mine site by physical coal cleaning processes (i.e., coal preparation). Unfortunately, existing coal preparation plants are generally limited in their ability to remove HAPPs due to incomplete liberation of the mineral matter and high organic associations of some trace elements. In addition, existing physical coal cleaning plants are not specifically designed or optimized to ensure that high trace element rejections may be achieved.

  4. High SO2 Removal Efficiency Testing

    SciTech Connect (OSTI)

    Gary Blythe

    1997-02-12T23:59:59.000Z

    This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO Removal Testing," for 2 the time period 1 October through 31 December 1996. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems, to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO removal efficiency. The upgrades being 2 evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company?s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy?s Merom Station (Option I), Southwestern Electric Power Company?s Pirkey Station (Option II), PSI Energy?s Gibson Station (Option III), Duquesne Light?s Elrama Station (Option IV), and New York State Electric and Gas Corporation?s Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing has been planned at the Big Bend Station, and that testing commenced during the current quarter. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the first quarter of calendar year 1996. Section 5 contains a brief acknowledgment.

  5. High SO2 Removal Efficiency Testing

    SciTech Connect (OSTI)

    Gary Blythe

    1997-04-23T23:59:59.000Z

    This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO2 Removal Testing", for the time period 1 January through 31 March 1997. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems, to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO2 removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company?s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy?s Merom Station (Option I), Southwestern Electric Power Company?s Pirkey Station (Option II), PSI Energy?s Gibson Station (Option III), Duquesne Light?s Elrama Station (Option IV), and New York State Electric and Gas Corporation?s (NYSEG) Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing is planned at the Big Bend Station. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the second quarter of calendar year 1997. Section 5 contains a brief acknowledgement.

  6. High SO2 Removal Efficiency Testing

    SciTech Connect (OSTI)

    Gary Blythe

    1997-07-29T23:59:59.000Z

    This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO2 Removal Testing", for the time period 1 April through 30 June 1997. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO2 removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company?s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy?s Merom Station (Option I), Southwestern Electric Power Company?s Pirkey Station (Option II), PSI Energy?s Gibson Station (Option III), Duquesne Light?s Elrama Station (Option IV), and New York State Electric and Gas Corporation?s Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing is being conducted at the Big Bend Station. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the third quarter of calendar year 1997. Section 5 contains a brief acknowledgment.

  7. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect (OSTI)

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01T23:59:59.000Z

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  8. South African Hake Sales Increase

    E-Print Network [OSTI]

    South African Hake Sales Increase The Capeto\\\\ n Traw ler Com pan) Inin and J ohn~on. i e\\port1l1g

  9. co2removal | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    storage) (CCUS) is increasingly becoming a core supporting technology component of clean coal projects, such as coal gasification facilities, to reduce the overall environmental...

  10. Hydrogen removal from e-beam deposited alumina thin films by oxygen ion beam

    SciTech Connect (OSTI)

    Das, Arijeet, E-mail: arijeet@rrcat.gov.in; Mukharjee, C., E-mail: arijeet@rrcat.gov.in; Rajiv, K., E-mail: arijeet@rrcat.gov.in; Bose, Aniruddha, E-mail: arijeet@rrcat.gov.in; Singh, S. D., E-mail: arijeet@rrcat.gov.in; Rai, S. K.; Ganguli, Tapas; Joshi, S. C.; Deb, S. K. [Raja Ramanna Centre for Advanced Technology, Indore-452013 (India); Phase, D. M. [UGC-DAE Consortium for Scientific Research, Indore-452017 (India)

    2014-04-24T23:59:59.000Z

    Hydrogen interstitials and oxygen vacancies defects create energy levels in the band gap of alumina. This limits the application of alumina as a high-k dielectric. A low thermal budget method for removal of hydrogen from alumina is discussed. It is shown that bombardment of alumina films with low energy oxygen ion beam during electron beam evaporation deposition decreases the hydrogen concentration in the film significantly.

  11. Nitrate Removal in NITREXTM Permeable Reactive Barriers

    E-Print Network [OSTI]

    Vallino, Joseph J.

    Hole, Massachusetts 02543 USA #12;ABSTRACT Eutrophication from anthropogenic nutrient loading problems humans have caused is eutrophication by increasing the nutrient loads to these areas. Eutrophication can cause macro-algae and phytoplankton blooms, as well as increased epiphytes that grow

  12. PROCESS CHANGES TO DWPF TO INCREASE THROUGHPUT AND INCORPORATE SALT STREAMS

    SciTech Connect (OSTI)

    Herman, C; David Peeler, D; Tommy Edwards, T; Michael Stone, M; Michael02 Smith, M

    2007-06-13T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) has been vitrifying High Level Waste sludge since 1996. Sludge batch 1a, 1b, 2, and 3 have been successfully stabilized. In the last several years, the Savannah River National Laboratory (SRNL) has worked with DWPF to implement process and compositional changes to improve throughput. These changes allowed significant increases in waste throughput for processing of sludge batch 3 and will be necessary to maintain reasonable throughput for Sludge Batch 4 (SB4). SB4 processing was initiated in June 2007 and will be the first significantly HM-type sludge batch processed. This sludge is high in aluminum and other components troublesome to DWPF processing. In addition, coupled processing is scheduled to start in the next fiscal year, which will also impact throughput. Coupled processing will begin with the incorporation of waste streams from the Actinide Removal Process and the Modular Caustic Side Solvent Extraction Unit and will eventually transition to the feed from the larger scale Salt Waste Processing Facility. A discussion of the programs to improve throughput and implement salt processing will be provided.

  13. Removal of radioactive and other hazardous material from fluid waste

    DOE Patents [OSTI]

    Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

    2006-10-03T23:59:59.000Z

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  14. Thiacrown polymers for removal of mercury from waste streams

    DOE Patents [OSTI]

    Baumann, Theodore F.; Reynolds, John G.; Fox, Glenn A.

    2004-02-24T23:59:59.000Z

    Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.

  15. Thiacrown polymers for removal of mercury from waste streams

    DOE Patents [OSTI]

    Baumann, Theodore F. (Tracy, CA); Reynolds, John G. (San Ramon, CA); Fox, Glenn A. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.

  16. Organic removal from domestic wastewater by activated alumina adsorption

    E-Print Network [OSTI]

    Yang, Pe-Der

    1982-01-01T23:59:59.000Z

    of the major groups of pollutants in wastewaters. Adsorption by granular activated carbon, a non-polar adsorbent, is now the primary treatment process for removal of residual organics from biologically treated wastewater. The ability of activated alumina... to human health if they exist in the water supply at relatively high concentrations. A wide variety of treatment processes are available to remove organic matter from wastewater. Biological treatment is the most cost effective method for removing oxygen...

  17. Use, Maintenance, Removal, Inspections, and Safety of Dams (Iowa)

    Broader source: Energy.gov [DOE]

    This section describes operating plans for dams with movable structures, as well as procedures for raising or lowering of impoundment levels, dam removal, and dam safety inspections.

  18. actinide removal process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ... Xu, Xin, S.M. Massachusetts Institute of Technology...

  19. ammonium nitrogen removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ... Xu, Xin, S.M. Massachusetts Institute of Technology...

  20. autotrophic nitrogen removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ... Xu, Xin, S.M. Massachusetts Institute of...

  1. Annex IV Environmental Webinar: Effects of Energy Removal on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tidal energy from estuaries; and Jesse Roberts, Sandia National Laboratory - Modeling energy removal by wave energy extraction. Participant Instructions: Webinar Login: You may...

  2. Safety evaluation for packaging (onsite) product removal can containers

    SciTech Connect (OSTI)

    Boettger, J.S.

    1997-04-29T23:59:59.000Z

    This safety evaluation for packaging allows the transport of nine Product Removal (PR) Cans with their Containers from the PUREX Facility to the Plutonium Finishing Plant.

  3. active debris removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rebecca Bendick a , Kevin D. Hyde b March 2013 Keywords: Debris flow Frequency Magnitude Fire Forecasting debris flow hazard is challenging Montana, University of 110 Removing...

  4. REMOVAL OF THE CALIFORNIUM SOURCES FROM THE 222-S LABORATORY

    SciTech Connect (OSTI)

    LINSTRUM D; BAUNE HL

    2009-07-23T23:59:59.000Z

    This document develops a proposal for removal of 2-Californium sources from the 222-S Laboratory. Included in this document are assessments of shipping packages and decay calculations.

  5. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL); Johnson, Terry R. (Wheaton, IL)

    1994-01-01T23:59:59.000Z

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  6. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, J.P.; Johnson, T.R.

    1994-08-09T23:59:59.000Z

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig.

  7. NNSA's Global Threat Reduction Initiative Removes More Than One...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA's Global Threat Reduction Initiative Removes More ......

  8. Performance evaluation of organic emulsion liquid membrane on phenol removal

    E-Print Network [OSTI]

    Ng, Y S; Hashim, M A

    2014-01-01T23:59:59.000Z

    The percentage removal of phenol from aqueous solution by emulsion liquid membrane and emulsion leakage was investigated experimentally for various parameters such as membrane:internal phase ratio, membrane:external phase ratio, emulsification speed, emulsification time, carrier concentration, surfactant concentration and internal agent concentration. These parameters strongly influence the percentage removal of phenol and emulsion leakage. Under optimum membrane properties, the percentage removal of phenol was as high as 98.33%, with emulsion leakage of 1.25%. It was also found that the necessity of carrier for enhancing phenol removal was strongly dependent on the internal agent concentration.

  9. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, J.P.; Johnson, T.R.

    1992-01-01T23:59:59.000Z

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  10. Removal of carbon tetrachloride from a layered porous medium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon tetrachloride from a layered porous medium by means of soil vapor extraction enhanced by desiccation and water Removal of carbon tetrachloride from a layered porous medium...

  11. Removal of Carbon Tetrachloride from a Layered Porous Medium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Tetrachloride from a Layered Porous Medium by Means of Soil Vapor Extraction Enhanced by Desiccation and Water Removal of Carbon Tetrachloride from a Layered Porous Medium...

  12. Study of Alternative Approaches for Transite Panel Removal

    Broader source: Energy.gov [DOE]

    Bechtel Jacobs Company LLC (BJC) assembled an experienced team from both sites to evaluate both the manual and mechanical methods of transite panel removal.

  13. anesthesia optimizing removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de 7 Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization CERN Preprints Summary: Multiplicative noise (also known as speckle noise) models...

  14. Method of removal of sulfur from coal and petroleum products

    DOE Patents [OSTI]

    Verkade, John G. (Ames, IA); Mohan, Thyagarajan (Ames, IA); Angelici, Robert J. (Ames, IA)

    1995-01-01T23:59:59.000Z

    A method for the removal of sulfur from sulfur-bearing materials such as coal and petroleum products using organophosphine and organophosphite compounds is provided.

  15. EA-1542: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of No Significant Impact EA-1542: Finding of No Significant Impact Burleigh County Wind Energy Center, North Dakota Basin Electric Power Cooperative (Basin), on behalf of FPL...

  16. EA-1839: Final Environmental Assessment and Finding of No Significant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Final Environmental Assessment and Finding of No Significant Impact EA-1839: Final Environmental Assessment and Finding of No Significant Impact Department of Energy Loan...

  17. Tapping Landfill Gas to Provide Significant Energy Savings and...

    Office of Environmental Management (EM)

    Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 Tapping Landfill Gas to Provide Significant Energy Savings and...

  18. EO 13211: Regulations That Significantly Affect Energy Supply...

    Energy Savers [EERE]

    1: Regulations That Significantly Affect Energy Supply, Distribution, or Use EO 13211: Regulations That Significantly Affect Energy Supply, Distribution, or Use I am requiring that...

  19. EA-1665: Final Environmental Assessment and Finding of No Significant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Assessment and Finding of No Significant Impact EA-1665: Final Environmental Assessment and Finding of No Significant Impact Davis-Kingman Tap 69-kV...

  20. Research Led by Sandia Reveals Leading-Edge Erosion Significantly...

    Broader source: Energy.gov (indexed) [DOE]

    Research Led by Sandia Reveals Leading-Edge Erosion Significantly Reduces Wind Turbine Performance Research Led by Sandia Reveals Leading-Edge Erosion Significantly Reduces Wind...

  1. EA-1607: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    No Significant Impact EA-1607: Finding of No Significant Impact Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium DOE is proposing the...

  2. EA-1178: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Finding of No Significant Impact EA-1178: Finding of No Significant Impact 300 Area Steam Plant Replacement, Hanford Site, Richland, Washington Based on the analysis in the EA,...

  3. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    SciTech Connect (OSTI)

    Sullivan, Enid J [Los Alamos National Laboratory; Kwon, Soondong [UT-AUSTIN; Katz, Lynn [UT-AUSTIN; Kinney, Kerry [UT-AUSTIN

    2008-01-01T23:59:59.000Z

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ/MBR/RO system may be a feasible alternative to current methods for produced water treatment and disposal.

  4. Metagenomic analysis of phosphorus removing sludgecommunities

    SciTech Connect (OSTI)

    Garcia Martin, Hector; Ivanova, Natalia; Kunin, Victor; Warnecke,Falk; Barry, Kerrie; McHardy, Alice C.; Yeates, Christine; He, Shaomei; Salamov, Asaf; Szeto, Ernest; Dalin, Eileen; Putnam, Nik; Shapiro, HarrisJ.; Pangilinan, Jasmyn L.; Rigoutsos, Isidore; Kyrpides, Nikos C.; Blackall, Linda Louise; McMahon, Katherine D.; Hugenholtz, Philip

    2006-02-01T23:59:59.000Z

    Enhanced Biological Phosphorus Removal (EBPR) is not wellunderstood at the metabolic level despite being one of the best-studiedmicrobially-mediated industrial processes due to its ecological andeconomic relevance. Here we present a metagenomic analysis of twolab-scale EBPR sludges dominated by the uncultured bacterium, "CandidatusAccumulibacter phosphatis." This analysis resolves several controversiesin EBPR metabolic models and provides hypotheses explaining the dominanceof A. phosphatis in this habitat, its lifestyle outside EBPR and probablecultivation requirements. Comparison of the same species from differentEBPR sludges highlights recent evolutionary dynamics in the A. phosphatisgenome that could be linked to mechanisms for environmental adaptation.In spite of an apparent lack of phylogenetic overlap in the flankingcommunities of the two sludges studied, common functional themes werefound, at least one of them complementary to the inferred metabolism ofthe dominant organism. The present study provides a much-needed blueprintfor a systems-level understanding of EBPR and illustrates thatmetagenomics enables detailed, often novel, insights into evenwell-studied biological systems.

  5. Method of removing oxidized contaminants from water

    DOE Patents [OSTI]

    Amonette, J.E.; Fruchter, J.S.; Gorby, Y.A.; Cole, C.R.; Cantrell, K.J.; Kaplan, D.I.

    1998-07-21T23:59:59.000Z

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II). 8 figs.

  6. Improved Processes to Remove Naphthenic Acids

    SciTech Connect (OSTI)

    Aihua Zhang; Qisheng Ma; Kangshi Wang; Yongchun Tang; William A. Goddard

    2005-12-09T23:59:59.000Z

    In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorption experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.

  7. The washability of lignites for clay removal

    SciTech Connect (OSTI)

    Oteyaka, B.; Yamik, A.; Ucar, A.; Sahbaz, O.; Demir, U. [Dumlupinar University, Kutahya (Turkey). Dept. of Mining Engineering

    2008-07-01T23:59:59.000Z

    In the washability research of the Seyitomer Lignites (Kutahya-Turkey), with lower calorific value (1,863 kcal/kg) and high ash content (51.91%), by heavy medium separation, it was found out that middling clay in the coal had an effect to change the medium density. To prevent this problem, a trommel sieve with 18 and 5 mm aperture diameter was designed, and the clay in the coal was tried to be removed using it before the coal was released to heavy medium. Following that, the obtained coal in -100 + 18 mm and -18 + 5 mm fractions was subjected to sink and float test having 1.4 gcm{sup -3} and 1.7 gcm{sup -3} medium densities (-5 mm fraction will be evaluated in a separate work). Depending on the raw coal, with the floating of -100 + 18 mm and -18 + 5 mm size fraction in 1.4 gcm{sup -3} medium density, clean coal with 60.10% combustible matter recovery, 19.12% ash, and 3,150 kcal/kg was obtained. Also floating of the samples sinking in 1.4 gcm{sup -3} in the medium density (1.7 gcm{sup -3}), middling with 18.70% combustible matter recovery, 41.93% ash, 2,150 kcal/kg, and tailing having 78.31% ash were obtained.

  8. Prioritized risk reduction at a Superfund site: A non-time-critical removal action approach

    SciTech Connect (OSTI)

    Nelson, T.M. [Sverdrup Environmental, Inc., Maryland Heights, MO (United States)

    1994-12-31T23:59:59.000Z

    To speed hazardous waste site cleanup, the US Environmental Protection Agency (EPA) in 1992 instituted the Superfund Accelerated Cleanup Model (SACM). Investigation, evaluation, waste removal and documentation efforts at a smelter waste site near Midvale, Utah, have been compressed using SACM procedures and a Non-Time-Critical Removal Action approach. Twelve miles south of Salt Lake City, Utah, Midvale Slag Operable Unit 2 once was used for processing lead and copper ore. Baghouse dust, tailings, smelter building demolition debris, slag and calcine have contaminated soil and groundwater. Rapid area growth and the demand for useful land prompted the US EPA Region 8 and the Utah Department of Environmental Quality (UDEQ) to begin and complete site remediation on a fast-track schedule. The Engineering Evaluation/Cost Analysis (EE/CA) is a project approach which focuses on practical, fast-track alternatives. By using an EE/CA it has been possible to significantly cut the time usually needed for investigation and study. This paper presents a case study of the accelerated removal action approach at Midvale Slag. The EE/CA elements completed to date include site characterization, baseline risk assessment, and evaluation of removal alternatives. Assuming future industrial/commercial use, the US EPA and UDEQ were able to focus on practical alternatives to quickly move the site to acceptable cleanup levels.

  9. Silver ion mediated shape control of platinum nanoparticles: Removal of silver by selective etching leads to increased catalytic activity

    E-Print Network [OSTI]

    Grass, Michael E.

    2008-01-01T23:59:59.000Z

    AirGas, CP grade), hydrogen (Praxair, UHP, Reaction99.999%) and helium (Praxair, UHP, 99.999%) were used as-

  10. Large-scale treatment of high-salt, high-pH wastewater for {sup 137}Cs and {sup 90}Sr removal, using crystalline silicotitanate resin

    SciTech Connect (OSTI)

    Taylor, P.A.; Walker, J.F.; Lee, D.D.

    1998-04-01T23:59:59.000Z

    A full-scale demonstration of cesium removal technology has been conducted at Oak Ridge National Laboratory (ORNL). This demonstration utilized a modular, mobile ion-exchange system and existing facilities for the off-gas system, secondary containment, and utilities. The ion-exchange material, crystalline silicotitanate (CST), was selected on the basis of its effectiveness in laboratory tests. The CST, which was developed through a Cooperative Research and Development Agreement between DOE and private industry, is highly selective for removing cesium from solutions containing high concentrations of other contaminants, such as sodium and potassium. Approximately 116,000 liters of supernate was processed during the demonstration with {approximately} 1,142 Ci of {sup 137}Cs removed from the supernate and loaded onto 266 liters of the CST sorbent. The supernate processed had a high salt content, about 4 M NaNO{sub 3} and a pH of 12 to 13. The CST also loaded Ba, Pb, Sr, U and Zn. Analysis of the spent sorbent has shown that it is not hazardous under the Resource Conservation and Recovery Act (RCRA). The cesium breakthrough curves for the lab and full-scale columns agreed very well, suggesting that lab-scale tests can be used to predict the performance of larger systems. The cesium breakthrough curves for runs at different flowrates show that film diffusion is significant in controlling the mass transfer process. Operational factors that increase the effect of film diffusion include the small size and high porosity of the CST sorbent, and the relatively low liquid velocity through the sorbent.

  11. Lanthanum-promoted copper-based hydrotalcites derived mixed oxides for NO{sub x} adsorption, soot combustion and simultaneous NO{sub x}-soot removal

    SciTech Connect (OSTI)

    Wang, Zhongpeng [School of Resources and Environment, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Yan, Xiaotong; Bi, Xinlin; Wang, Liguo [School of Resources and Environment, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Zhang, Zhaoliang, E-mail: chm_zhangzl@ujn.edu.cn [School of Resources and Environment, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Jiang, Zheng; Xiao, Tiancun [Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Umar, Ahmad [Department of Chemistry, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Wang, Qiang, E-mail: qiang.wang.ox@gmail.com [College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083 (China)

    2014-03-01T23:59:59.000Z

    Graphical abstract: - Highlights: • The addition of La in Cu-based oxides increased the types of active oxygen. • NO{sub x} adsorption, soot oxidation and simultaneous NO{sub x}-soot removal were enhanced. • The possible catalytic mechanism was studied via in situ FTIR analysis. • Soot oxidation was promoted by the NO{sub 2} intermediate. - Abstract: La-promoted Cu-based hydrotalcites derived mixed oxides were prepared and their catalytic activities for NO{sub x} adsorption, soot oxidation, and simultaneous NO{sub x}-soot removal were investigated. The catalysts were characterized by XRD, DTG, BET, FTIR, H2-TPR, TPD and TPO techniques. The oxides catalysts exhibited mesoporous properties with specific surface area of 45–160 m{sup 2}/g. The incorporation of La and Cu decreased the amount of basic sites due to the large decrease in surface areas. Under O{sub 2} atmosphere, La incorporation is dominant for soot oxidation activity, while Cu favors high selectivity to CO{sub 2} formation. A synergetic effect between La and Cu for catalyzed soot oxidation lies in the improved redox property and suitable basicity. The presence of NO in O{sub 2} significantly promoted soot oxidation on the catalysts with the ignition temperature decreased to about 300 °C. In O{sub 2}/NO atmosphere, NO{sub 2} acts as an intermediate which oxidizes soot to CO{sub 2} at a lower temperature with itself reduced to NO or N{sub 2}, contributing to the high catalytic performance in simultaneous removal of NO{sub x} and soot.

  12. Successful removal of zinc sulfide scale restriction from a hot, deep, sour gas well

    SciTech Connect (OSTI)

    Kenrick, A.J.; Ali, S.A. [Chevron USA Production Co., New Orleans, LA (United States)

    1997-07-01T23:59:59.000Z

    Removal of zinc sulfide scale with hydrochloric acid from a hot, deep, Norphlet Sandstone gas well in the Gulf of Mexico resulted in a 29% increase in the production rates. The zinc sulfide scale was determined to be in the near-wellbore area. The presence of zinc sulfide is explained by the production of 25 ppm H{sub 2}S gas, and the loss of 50--100 bbl of zinc bromide fluid to the formation. Although zinc sulfide scale has been successfully removed with hydrochloric acid in low-to-moderate temperature wells, no analogous treatment data were available for high temperature, high pressure (HTHP) Norphlet wells. Therefore laboratory testing was initiated to identify suitable acid systems for scale removal, and select a high quality corrosion inhibitor that would mitigate detrimental effects of the selected acid on downhole tubulars and surface equipment. This case history presents the first successful use of hydrochloric acid in removing zinc sulfide scale from a HTHP Norphlet sour gas well.

  13. Mechanisms of virus removal during transport in unsaturated porous media

    E-Print Network [OSTI]

    Flury, Markus

    Mechanisms of virus removal during transport in unsaturated porous media Yanjie Chu and Yan Jin retention and retardation during transport in unsaturated systems. In this study, bacteriophages X174 and MS at the solid-water interface rather than at the air-water interface dominates in virus removal and transport

  14. An Adaptive Kalman Filter for Removing Baseline Wandering in ECG

    E-Print Network [OSTI]

    Povinelli, Richard J.

    An Adaptive Kalman Filter for Removing Baseline Wandering in ECG Signals MA Mneimneh, EE Yaz, MT to baseline removal. This paper proposes an adaptive Kalman filter for the real time re- moval of baseline is used with an adaptive Kalman filter to estimate the state variables, including the baseline wandering

  15. Continuous cryopump with a method for removal of solidified gases

    DOE Patents [OSTI]

    Carlson, L.W.; Herman, H.

    1988-05-05T23:59:59.000Z

    An improved cryopump for the removal of gases from a high vacuum, comprising a cryopanel incorporating honeycomb structure, refrigerant means thermally connected to the cryopanel, and a rotatable channel moving azimuthally around an axis located near the center of the cryopanel, removing gases adsorbed within the honeycomb structure by subliming them and conducting them outside the vacuum vessel. 4 figs.

  16. Method for removing chlorine compounds from hydrocarbon mixtures

    DOE Patents [OSTI]

    Janoski, E.J.; Hollstein, E.J.

    1984-09-29T23:59:59.000Z

    A process for removing halide ions from a hydrocarbon feedstream containing halogenated hydrocarbons wherein the contaminated feedstock is contacted with a solution of a suitable oxidizing acid containing a lanthanide oxide, the acid being present in a concentration of at least about 50 weight percent for a time sufficient to remove substantially all of the halide ion from the hydrocarbon feedstock.

  17. Process for removing pyritic sulfur from bituminous coals

    DOE Patents [OSTI]

    Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

    1990-01-01T23:59:59.000Z

    A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

  18. Removal of Estrogenic Pollutants from Contaminated Water Using

    E-Print Network [OSTI]

    Chen, Wilfred

    Removal of Estrogenic Pollutants from Contaminated Water Using Molecularly Imprinted Polymers Z I H that this material may be appropriate for treating a complex mixture of estrogenic pollutants. The feasibility of removing estrogenic compounds from environmental water by the MIP was demonstrated using lake water spiked

  19. Process for selected gas oxide removal by radiofrequency catalysts

    DOE Patents [OSTI]

    Cha, C.Y.

    1993-09-21T23:59:59.000Z

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

  20. UNL/OSU Researchers Try Promising Technique to Remove Groundwater

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    UNL/OSU Researchers Try Promising Technique to Remove Groundwater Contamination Under Former Oklahoma State University have joined to test promising new methods of removing longstanding groundwater into specially drilled injection wells, where it mixes with contaminants in the groundwater under the former

  1. Atmospheric Environment 41 (2007) 31513160 Ozone removal by HVAC filters

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Atmospheric Environment 41 (2007) 3151­3160 Ozone removal by HVAC filters P. Zhao, J.A. Siegel�, R May 2006; accepted 14 June 2006 Abstract Residential and commercial HVAC filters that have been loaded of the relative importance of HVAC filters as a removal mechanism for ozone in residential and commercial

  2. Removal of residual particulate matter from filter media

    DOE Patents [OSTI]

    Almlie, Jay C; Miller, Stanley J

    2014-11-11T23:59:59.000Z

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  3. Aluminum Removal from Photographic Waste Submitted to Dr. Tony Bi

    E-Print Network [OSTI]

    Aluminum Removal from Photographic Waste Submitted to Dr. Tony Bi By: Kristen Favel, Tiffany Jung, and Kenny Tam CHBE 484 University of British Columbia April 15, 2009 #12;ii "Aluminum Removal from photographic waste has shown elevated levels of aluminum in the fixer, which exceed sewer discharge standards

  4. Fuzzy predictive control for nitrogen removal in biological wastewater treatment

    E-Print Network [OSTI]

    Fuzzy predictive control for nitrogen removal in biological wastewater treatment S. Marsili predictive control; wastewater treatment plant Introduction The problem of improving the nitrogen removal wastewater is too low, full denitrification is difficult to obtain and an additional source of organic carbon

  5. Method for removing metals from a cleaning solution

    DOE Patents [OSTI]

    Deacon, Lewis E. (Waverly, OH)

    2002-01-01T23:59:59.000Z

    A method for removing accumulated metals from a cleaning solution is provided. After removal of the metals, the cleaning solution can be discharged or recycled. The process manipulates the pH levels of the solution as a means of precipitating solids. Preferably a dual phase separation at two different pH levels is utilized.

  6. Passive shut-down heat removal system

    DOE Patents [OSTI]

    Hundal, Rolv (Greensburg, PA); Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

    1988-01-01T23:59:59.000Z

    An improved shut-down heat removal system for a liquid metal nuclear reactor of the type having a vessel for holding hot and cold pools of liquid sodium is disclosed herein. Generally, the improved system comprises a redan or barrier within the reactor vessel which allows an auxiliary heat exchanger to become immersed in liquid sodium from the hot pool whenever the reactor pump fails to generate a metal-circulating pressure differential between the hot and cold pools of sodium. This redan also defines an alternative circulation path between the hot and cold pools of sodium in order to equilibrate the distribution of the decay heat from the reactor core. The invention may take the form of a redan or barrier that circumscribes the inner wall of the reactor vessel, thereby defining an annular space therebetween. In this embodiment, the bottom of the annular space communicates with the cold pool of sodium, and the auxiliary heat exchanger is placed in this annular space just above the drawn-down level that the liquid sodium assumes during normal operating conditions. Alternatively, the redan of the invention may include a pair of vertically oriented, concentrically disposed standpipes having a piston member disposed between them that operates somewhat like a pressure-sensitive valve. In both embodiments, the cessation of the pressure differential that is normally created by the reactor pump causes the auxiliary heat exchanger to be immersed in liquid sodium from the hot pool. Additionally, the redan in both embodiments forms a circulation flow path between the hot and cold pools so that the decay heat from the nuclear core is uniformly distributed within the vessel.

  7. Northwest Plume Groundwater System Green-sand Media Removal and Waste Packaging Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Troutman, M.T.; Richards, C.J.; Tarantino, J.J. [CDM Federal Programs Corporation, 325 Kentucky Avenue, Kevil, KY 42053 (United States)

    2006-07-01T23:59:59.000Z

    The Northwest Plume Groundwater System (NWPGS) was temporarily shut down due to high differential pressures across the green-sand filters. Increased levels of suspended solids were introduced into the system from monitoring well development water, equipment decontamination water, and secondary containment water. These waters were treated for suspended solids through a groundwater pretreatment system but were suspected of causing the high differential pressures in the green-sand filters. Prior to the system being shutdown, the NWPGS had been experiencing increasingly shorter run times between filter backwashes indicating that the normal backwash cycle was not adequately removing the fines. This condition led to the removal and replacement of green-sand media from two filter vessels. Discussions include problems with the removal process, waste packaging specifications, requirements for the disposition of green-sand media, and lessons learned. (authors)

  8. Demonstrations and commercial applications of innovative sediment removal technologies

    SciTech Connect (OSTI)

    Pelletier, J.P. [Environment Canada, Toronto, Ontario (Canada)

    1995-12-31T23:59:59.000Z

    The Contaminated Sediment Removal Program (CSRP) of Environment Canada was founded in November 1990 following a request from the Great Lakes Cleanup Fund to the Environmental Protection Service-Ontario Region to provide the leadership in the identification of removal technologies and procedures for contaminated sediments in the Great Lakes. Following a request for proposal issued by the CSRP, proposals were received from vendors of innovative sediment removal technologies to conduct contaminated sediment removal demonstrations in different Areas of Concern (AOCs) on the Canadian side of the Great Lakes. In 1992, the CSRP conducted the demonstration of two innovative sediment removal technologies at three different sites. The Cable Arm 100E clamshell bucket was demonstrated in Toronto and Hamilton Harbors, while the Pneuma Pump was demonstrated in Collingwood Harbor. Those three demonstrations led to the first Canadian commercial applications of the Cable Arm 100E clamshell bucket in Pickering, Ontario, and of the Pneuma Pump in Collingwood, Ontario.

  9. Uranium removal during low discharge in the Ganges-Brahmaputra mixing zone

    SciTech Connect (OSTI)

    Carroll, J.; Moore, W.S. (Univ. of South Carolina, Columbia, SC (United States))

    1993-11-01T23:59:59.000Z

    The Ganges-Brahmaputra river system supplies more dissolved uranium to the ocean than any other system in the world (Sarin et al., 1990; Sackett et al., 1973). However, there have been no investigations to determine whether riverine supplies of uranium are altered by geochemical reactions in the river-ocean mixing zone. In this study, uranium and salinity data were collected in the Ganges-Brahmaputra mixing zone during a period of low river discharge. The uranium distribution with salinity shows that in waters <12 ppt salinity, uranium activities are significantly lower than predicted from conservative mixing of river and seawater. This suggests that uranium is being removed within the mixing zone. The behavior of uranium in the Ganges-Brahmaputra is in sharp contrast to its behavior in the Amazon mixing zone where McKee et al. (1978) found uranium activities significantly higher than predicted from conservative mixing. The contrasting behaviors for uranium in these systems are due to the different locations where mixing between river and seawater occurs. For the Amazon, mixing takes place on the continental shelf whereas for the Ganges-Brahmaputra, mixing occurs within shoreline sedimentary environments. The physiochemical processes controlling uranium removal to sediment deposits in the Amazon are partly known. The authors discuss mechanisms which may be removing uranium to suspended and mangrove sediments in the Ganges-Brahmaputra.

  10. Regenerable hydrogen chloride removal sorbent and regenerable multi-functional hydrogen sulfide and hydrogen chloride removal sorbent for high temperature gas streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani (Morgantown, WV)

    2010-08-03T23:59:59.000Z

    Regenerable hydrogen chloride removal sorbent and regenerable multi-functional hydrogen sulfide and hydrogen chloride removal sorbent for high temperature gas streams

  11. ORNL Soils Remediation and Slabs Removal - The Bridge from D and D to Redevelopment - 12342

    SciTech Connect (OSTI)

    Travaglini, Mike; Halsey, Pat [U.S. Department of Energy - DOE (United States); Conger, Malinda; Schneider, Ken [UT-Battelle LLC (United States)

    2012-07-01T23:59:59.000Z

    The landscape of the Oak Ridge National Laboratory (ORNL) has dramatically changed over the past 2 years with demolition of aging facilities in the Central Campus. Removal of these infrastructure legacies was possible due to an influx of DOE-Environmental Management funding through the American Recovery and Reinvestment Act of 2009 (ARRA). Facility D and D traditionally removes everything down to the building slab, and the Soils and Sediments Program is responsible for slabs, below-grade footers and sub-grade structures, abandoned waste utilities, and soils contaminated above certain risk levels that must be removed before the site can be considered for redevelopment. DOE-EM has used a combination of base and ARRA funding to facilitate the clean-up process in ORNL's 2000 Area. Demolition of 13 buildings in the area was funded by the ARRA. Characterization of the remaining slabs, underground pipelines and soils was funded by DOE-EM base funding. Additional ARRA funding was provided for the removal of the slabs, pipelines and contaminated soils. Removal work is in progress and consists of removing and disposing of approximately 7,650 cubic meters (m{sup 3}) of concrete, 2,000 m{sup 3} of debris, and 400 m{sup 3} of contaminated soil. Immediately adjacent to the 2000 Area is the Oak Ridge Science and Technology Park and the modernized ORNL western campus. The Science and Technology Park is the only private sector business and technology park located within the footprint of a national laboratory. The completion of this work will not only greatly reduce the risk to the ORNL campus occupants but also allow this much sought after space to be available for redevelopment and site reuse efforts at ORNL. Demolition of aging facilities enabled by injection of ARRA funding has significantly altered the landscape at ORNL while reducing risk to laboratory personnel and operations and providing valuable central campus land parcels for redevelopment to expand and enhance the science mission of the Laboratory. D and D of these infrastructure legacies that were once eyesores that harbored risk in the ORNL Central Campus have been transformed to green spaces and extremely valuable candidate sites for future buildings. The 2000 Area slabs and soils removal marks the first step in creating the bridge between the modernized east and west campus and acts as the cornerstone in the redevelopment of the ORNL Central Campus area which will be a key contributor to ORNL meeting its vision of the future. (authors)

  12. Pilot-scale boiler study of sulfur hexafluoride and emissions of CO, CO sub 2 , O sub 2 , and unburned hydrocarbons as surrogates for verification of hazardous waste destruction removal efficiency. Final report, October 1986-June 1988

    SciTech Connect (OSTI)

    Proctor, C.L.; Fournier, D.L.; Hopmeier, M.; Roychoudhury, S.

    1989-06-01T23:59:59.000Z

    The use of sulfur hexafluoride (SF6) as a tracer and emissions of CO, CO{sub 2}, O{sub 2} and unburned hydrocarbons as surrogates for verification of hazardous-waste destruction removal efficiency (DRE) is discussed. These measurements were made in a pilot-scale firetube boiler facility and in a natural gas fired steam plant boiler. The data indicates that toluene, methyl ethyl ketone, and isopropanol are well-suited for destruction in a firetube boiler environment. Trichloroethylene and monochlorobenzene required auxillary fuel to maintain stable combustion. SF6 DRE was significantly lower than waste DREs for all runs. It also tracked waste DREs in most runs. Reduced waste and SF6 DREs were accompanied by lower emissions of CO{sub 2} and by increased emissions of O{sub 2} and total unburned hydrocarbons (TUHC). DREs tended to fall with increased CO concentration depicted by a few data points.

  13. EA-1465: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    65: Finding of No Significant Impact EA-1465: Finding of No Significant Impact Wind Energy Center EdgeleyKulm Project, North Dakota Basin Electric Power Cooperative, on behalf of...

  14. EA-1501: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    01: Finding of No Significant Impact EA-1501: Finding of No Significant Impact Construction, Operation, and Closure of the Burma Road II Borrow Pit at the Savannah River Site The...

  15. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect (OSTI)

    C. Jean Bustard; Charles Lindsey; Paul Brignac

    2006-05-01T23:59:59.000Z

    This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and increase carbon injection when inlet loading and mercury removal were low. The resulting mercury removal varied between 50 and 98%, with an overall average of 85.6%, showing that the process was successful at removing high percentages of vapor-phase mercury even with a widely varying mass loading. In an effort to improve baghouse performance, high-permeability bags were tested. The new bags made a significant difference in the cleaning frequency of the baghouse. Before changing the bags, the baghouse was often in a continuous clean of 4.4 p/b/h, but with the new bags the cleaning frequency was very low, at less than 1 p/b/h. Alternative sorbent tests were also performed using these high-permeability bags. The results of these tests showed that most standard, high-quality activated carbon performed similarly at this site; low-cost sorbent and ash-based sorbents were not very effective at removing mercury; and chemically enhanced sorbents did not appear to offer any benefits over standard activated carbons at this site.

  16. Vehicle Technologies Office Merit Review 2014: Significant Enhancement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering Vehicle Technologies Office Merit Review 2014: Significant...

  17. Behavioral Change and Building Performance: Strategies for Significant...

    Office of Environmental Management (EM)

    Behavioral Change and Building Performance: Strategies for Significant, Persistent, and Measurable Institutional Change Behavioral Change and Building Performance: Strategies for...

  18. Vehicle Technologies Office Merit Review 2015: Significant Enhancement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering Vehicle Technologies Office Merit Review 2015: Significant Enhancement of Computational...

  19. MODEL 9975 SHIPPING PACKAGE: IMPACT OF CAPLUG REMOVAL ON FIBERBOARD MOISTURE LEVEL

    SciTech Connect (OSTI)

    Daugherty, W.

    2011-06-23T23:59:59.000Z

    Two 9975 shipping packages were removed from KAC and provided to SRNL for test purposes, after both packages were found to exceed the 1 inch maximum criterion for the axial gap at the top of the package. Package 9975-01818 was found with an axial gap of 1.437 inch, and an estimated 2.5 liters of excess moisture in the lower fiberboard layers. Package 9975-02287 was found with an axial gap of 1.008 inch, and only slightly elevated moisture levels relative to typical packages. Prior data from the 9975 Surveillance Program has shown that the 9975 drum provides a degree of isolation, and will tend to preserve fiberboard moisture levels for an extended period of time. Both packages were provided to SRNL to identify whether removal of the 4 caplugs in each package would allow moisture to escape the package. Following testing with the caplugs removed for approximately 1 year, this report documents the findings from this effort. Two 9975 shipping packages removed from service in K-Area Complex (KAC) due to an excessive axial gap have been tested in SRNL to determine if caplug removal would facilitate the reduction of excess fiberboard moisture. An additional question to be answered through this testing was whether the resulting moisture loss would reduce the axial gap, reversing the effect seen during storage with excess moisture present. These packages have completed approximately 1 year in test, during which time the weight of each package has steadily decreased as a result of moisture migration out of the package. However, elevated moisture levels still remain in the packages. During this test period, the bottom fiberboard layers of package 9975-01818 (which contained the greater amount of excess moisture) experienced further compaction, and the axial gap of both packages has increased. This effort has shown that removal of the caplugs may not be a sufficient measure to rehabilitate packages with excess moisture or excess axial gaps in a timely manner. However, this measure might make a meaningful contribution in combination with other actions (to be determined). It is recommended that the caplug removal tests in SRNL be discontinued at this time.

  20. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOE Patents [OSTI]

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31T23:59:59.000Z

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  1. Tank 241-CX-70 waste removal and packaging

    SciTech Connect (OSTI)

    DuVon, D.K.

    1993-06-01T23:59:59.000Z

    Tank 241-CX-70, located on the Hanford Site in Washington State, is a 30,000 gal single-shell storage tank built in 1952 to hold high-level process waste from pilot tests of the reduction-oxidation process. In 1979 decommissioning operations were begun by pumping liquid waste from the tank to the double-shell tank (DST) 101-AY. Not all the waste was removed at that time. Approximately 10,300 gal of sludge remained. On September 25, 1987, operations were resumed to remove the remaining waste using a sluicing and pumping method. This report documents the final removal of waste from Tank 241-CX-70.

  2. Tank 241-CX-70 waste removal and packaging

    SciTech Connect (OSTI)

    DuVon, D.K.

    1993-01-01T23:59:59.000Z

    Tank 241-CX-70, located on the Hanford Site in Washington State, is a 30,000 gal single-shell storage tank built in 1952 to hold high-level process waste from pilot tests of the reduction-oxidation process. In 1979 decommissioning operations were begun by pumping liquid waste from the tank to the double-shell tank (DST) 101-AY. Not all the waste was removed at that time. Approximately 10,300 gal of sludge remained. On September 25, 1987, operations were resumed to remove the remaining waste using a sluicing and pumping method. This report documents the final removal of waste from Tank 241-CX-70.

  3. Solid materials for removing metals and fabrication method

    DOE Patents [OSTI]

    Coronado, Paul R.; Reynolds, John G.; Coleman, Sabre J.

    2004-10-19T23:59:59.000Z

    Solid materials have been developed to remove contaminating metals and organic compounds from aqueous media. The contaminants are removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the metals and the organics leaving a purified aqueous stream. The materials are sol-gel and or sol-gel and granulated activated carbon (GAC) mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards the contaminant(s). The contaminated solid materials can then be disposed of or the contaminant can be removed and the solids recycled.

  4. Method and apparatus for the removal of bioconversion of constituents of organic liquids

    DOE Patents [OSTI]

    Scott, Timothy (Knoxville, TN); Scott, Charles D. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A method and apparatus for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing.

  5. Method and apparatus for the removal or bioconversion of constituents of organic liquids

    DOE Patents [OSTI]

    Scott, T.; Scott, C.D.

    1994-10-25T23:59:59.000Z

    A method and apparatus are disclosed for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing. 1 fig.

  6. Method for removing impurities from an impurity-containing fluid stream

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Fox, Robert V.

    2010-04-06T23:59:59.000Z

    A method of removing at least one polar component from a fluid stream. The method comprises providing a fluid stream comprising at least one nonpolar component and at least one polar component. The fluid stream is contacted with a supercritical solvent to remove the at least one polar component. The at least one nonpolar component may be a fat or oil and the at least one polar component may be water, dirt, detergents, or mixtures thereof. The supercritical solvent may decrease solubility of the at least one polar component in the fluid stream. The supercritical solvent may function as a solvent or as a gas antisolvent. The supercritical solvent may dissolve the nonpolar components of the fluid stream, such as fats or oils, while the polar components may be substantially insoluble. Alternatively, the supercritical solvent may be used to increase the nonpolarity of the fluid stream.

  7. Suppressing traffic-driven epidemic spreading by edge-removal strategies

    E-Print Network [OSTI]

    Yang, Han-Xin; Wang, Bing-Hong

    2015-01-01T23:59:59.000Z

    The interplay between traffic dynamics and epidemic spreading on complex networks has received increasing attention in recent years. However, the control of traffic-driven epidemic spreading remains to be a challenging problem. In this Brief Report, we propose a method to suppress traffic-driven epidemic outbreak by properly removing some edges in a network. We find that the epidemic threshold can be enhanced by the targeted cutting of links among large-degree nodes or edges with the largest algorithmic betweeness. In contrast, the epidemic threshold will be reduced by the random edge removal. These findings are robust with respect to traffic-flow conditions, network structures and routing strategies. Moreover, we find that the shutdown of targeted edges can effectively release traffic load passing through large-degree nodes, rendering a relatively low probability of infection to these nodes.

  8. Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals

    DOE Patents [OSTI]

    Hobson, David O. (Oak Ridge, TN); Alexeff, Igor (Oak Ridge, TN); Sikka, Vinod K. (Clinton, TN)

    1988-01-01T23:59:59.000Z

    Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to "float" in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields.

  9. Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals

    DOE Patents [OSTI]

    Hobson, D.O.; Alexeff, I.; Sikka, V.K.

    1987-08-10T23:59:59.000Z

    Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to ''float'' in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields. 6 figs.

  10. High Energy Laser for Space Debris Removal

    SciTech Connect (OSTI)

    Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

    2009-10-30T23:59:59.000Z

    The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and spectrally tailored pulse designed for high transmission through the atmosphere, as well as efficient ablative coupling to the target. The main amplifier would use either diode-pumped or flashlamp-pumped solid state gain media, depending on budget constraints of the project. A continuously operating system would use the gas-cooled amplifier technology developed for Mercury, while a burst-mode option would use the heat capacity laser technology. The ground-based system that we propose is capable of rapid engagement of targets whose orbits cross over the site, with potential for kill on a single pass. Very little target mass is ablated per pulse so the potential to create additional hazardous orbiting debris is minimal. Our cost estimates range from $2500 to $5000 per J depending on choices for laser gain medium, amplifier pump source, and thermal management method. A flashlamp-pumped, Nd:glass heat-capacity laser operating in the burst mode would have costs at the lower end of this spectrum and would suffice to demonstrate the efficacy of this approach as a prototype system. A diode-pumped, gas-cooled laser would have higher costs but could be operated continuously, and might be desirable for more demanding mission needs. Maneuverability can be incorporated in the system design if the additional cost is deemed acceptable. The laser system would need to be coupled with a target pointing and tracking telescope with guide-star-like wavefront correction capability.

  11. Diesel prices continue to increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel prices continue to increase The U.S.

  12. Diesel prices continue to increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel prices continue to increase The

  13. Diesel prices continue to increase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel prices continue to increase TheDiesel

  14. Technical Assistance: Increasing Code Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind »Assistance: Increasing Code Compliance

  15. Leach test of cladding removal waste grout using Hanford groundwater

    SciTech Connect (OSTI)

    Serne, R.J.; Martin, W.J.; Legore, V.L.

    1995-09-01T23:59:59.000Z

    This report describes laboratory experiments performed during 1986-1990 designed to produce empirical leach rate data for cladding removal waste (CRW) grout. At the completion of the laboratory work, funding was not available for report completion, and only now during final grout closeout activities is the report published. The leach rates serve as inputs to computer codes used in assessing the potential risk from the migration of waste species from disposed grout. This report discusses chemical analyses conducted on samples of CRW grout, and the results of geochemical computer code calculations that help identify mechanisms involved in the leaching process. The semi-infinite solid diffusion model was selected as the most representative model for describing leaching of grouts. The use of this model with empirically derived leach constants yields conservative predictions of waste release rates, provided no significant changes occur in the grout leach processes over long time periods. The test methods included three types of leach tests--the American Nuclear Society (ANS) 16.1 intermittent solution exchange test, a static leach test, and a once-through flow column test. The synthetic CRW used in the tests was prepared in five batches using simulated liquid waste spiked with several radionuclides: iodine ({sup 125}I), carbon ({sup 14}C), technetium ({sup 99}Tc), cesium ({sup 137}Cs), strontium ({sup 85}Sr), americium ({sup 241}Am), and plutonium ({sup 238}Pu). The grout was formed by mixing the simulated liquid waste with dry blend containing Type I and Type II Portland cement, class F fly ash, Indian Red Pottery clay, and calcium hydroxide. The mixture was allowed to set and cure at room temperature in closed containers for at least 46 days before it was tested.

  16. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1993-01-04T23:59:59.000Z

    Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as a reductant. Oxidized Green River oil shale heated at 10{degree}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppM/4000 ppM) with a gas residence time of {approximately}0.6 sec removed NO between 250 and 500{degree}C, with maximum removal of 70% at {approximately}400{degree}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH{sub 3} as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant. Parameters calculated for implementing oxidized oil shale for NO{sub x} remediation on the current HRS retort indicate an abatement device is practical to construct.

  17. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1993-01-04T23:59:59.000Z

    Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH[sub 3] as a reductant. Oxidized Green River oil shale heated at 10[degree]C/min in an Ar/O[sub 2]/NO/NH[sub 3] mixture ([approximately]93%/6%/2000 ppM/4000 ppM) with a gas residence time of [approximately]0.6 sec removed NO between 250 and 500[degree]C, with maximum removal of 70% at [approximately]400[degree]C. Under isothermal conditions with the same gas mixture, the maximum NO removal was [approximately]64%. When CO[sub 2] was added to the gas mixture at [approximately]8%, the NO removal dropped to [approximately]50%. However, increasing the gas residence time to [approximately]1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH[sub 3] as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH[sub 3] as the reductant. Parameters calculated for implementing oxidized oil shale for NO[sub x] remediation on the current HRS retort indicate an abatement device is practical to construct.

  18. Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 1

    SciTech Connect (OSTI)

    Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

    1992-06-10T23:59:59.000Z

    Oxidized oil shale from the combustor in the LLNL hot recycle solids oil shale retorting process has been studied as a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as areductant. Combusted Green River oil shale heated at 10{degrees}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppm/4000 ppm) with a gas residence time of {approximately}0.6 sec exhibited NO removal between 250 and 500{degrees}C, with maximum removal of 70% at {approximately}400{degrees}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was found to be {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. These results are not based on optimized process conditions, but indicate oxidized (combusted) oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant.

  19. Ozone Removal by Filters Containing Activated Carbon: A Pilot Study

    SciTech Connect (OSTI)

    Fisk, William; Spears, Mike; Sullivan, Douglas; Mendell, Mark

    2009-09-01T23:59:59.000Z

    This study evaluated the ozone removal performance of moderate-cost particle filters containing activated carbon when installed in a commercial building heating, ventilating, and air conditioning (HVAC) system. Filters containing 300 g of activated carbon per 0.09 m2 of filter face area were installed in two 'experimental' filter banks within an office building located in Sacramento, CA. The ozone removal performance of the filters was assessed through periodic measurements of ozone concentrations in the air upstream and downstream of the filters. Ozone concentrations were also measured upstream and downstream of a 'reference' filter bank containing filters without any activated carbon. The filter banks with prefilters containing activated carbon were removing 60percent to 70percent of the ozone 67 and 81 days after filter installation. In contrast, there was negligible ozone removal by the reference filter bank without activated carbon.

  20. CPP-603 Chloride Removal System Decontamination and Decommissioning. Final report

    SciTech Connect (OSTI)

    Moser, C.L.

    1993-02-01T23:59:59.000Z

    The CPP-603 (annex) Chloride Removal System (CRS) Decontamination and Decommissioning (D&D) Project is described in this report. The CRS was used for removing Chloride ions and other contaminants that were suspended in the waters of the underwater fuel storage basins in the CPP-603 Fuel Receiving and Storage Facility (FRSF) from 1975 to 1981. The Environmental Checklist and related documents, facility characterization, decision analysis`, and D&D plans` were prepared in 1991. Physical D&D activities were begun in mid summer of 1992 and were completed by the end of November 1992. All process equipment and electrical equipment were removed from the annex following accepted asbestos and radiological contamination removal practices. The D&D activities were performed in a manner such that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) occurred.

  1. apu controller removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  2. azo dye removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  3. acetic acid removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  4. aromatic hydrocarbon removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  5. aeruginosa requiring removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  6. after-heat removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  7. acid dye removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  8. Considering removing "Show Preview" button on utility rate form...

    Open Energy Info (EERE)

    Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 April, 2013 - 13:55 Utility Rates I'm considering removing the "Show Preview" button, since it does not work (javascript...

  9. Comparison of proton and neutron carrier removal rates

    SciTech Connect (OSTI)

    Pease, R.L.; Enlow, E.W.; Dinger, G.L.; Marshall, P.

    1987-12-01T23:59:59.000Z

    Displacement damage induced carrier removal rates for proton irradiations in the energy range 10-175 MeV were compared to 1 MeV equivalent neutrons using power MOSFETs as a test vehicle. The results showed that, within experimental error, the degradation mechanisms were qualitatively similar and the ratio of proton to neutron carrier removal rates as a function of proton energy correlate with a calculation based on nonionization energy loss in silicon. For exposures under junction bias, p-type silicon was found to have a smaller carrier removal rate for both proton and neutron irradiations, whereas, for n-type silicon, junction bias had little effect on the carrier removal rate.

  10. Method to remove uranium/vanadium contamination from groundwater

    DOE Patents [OSTI]

    Metzler, Donald R. (DeBeque, CO); Morrison, Stanley (Grand Junction, CO)

    2004-07-27T23:59:59.000Z

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  11. Oil and Gas- Leases to remove or recover (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act states that a lease or agreement conveying the right to remove or recover oil, natural gas or gas of any other designation from lessor to lessee shall not be valid if such lease does not...

  12. Energy Savings for CO2 Removal in Ammonia Plants 

    E-Print Network [OSTI]

    Pouilliart, R.; Van Hecke, F. C.

    1981-01-01T23:59:59.000Z

    of approx. 27 GJ/h (GHV) of natural gas is possible by using exhaust steam from a back pressure turbine instead of L.T. shift gas as the heat supply source for a Carsol C02 removal system....

  13. Channel response to Dam Removal, Clear Creek, California

    E-Print Network [OSTI]

    Miller, Peter; Vizcaino, Pilar

    2004-01-01T23:59:59.000Z

    to Dam Removal, Clear Creek, California Peter Miller and9, 2004 Abstract Clear Creek drains 720 km 2 , joining the2002) Saeltzer Dam on Clear Creek was a good candidate for

  14. Massive Hanford Test Reactor Removed - Plutonium Recycle Test...

    Broader source: Energy.gov (indexed) [DOE]

    on the U.S. Department of Energy's (DOE) Hanford Site by removing a 1,082-ton nuclear test reactor from the 300 Area. The River Corridor is a 220-square-mile section of land...

  15. Web Indexing on a Diet: Template Removal with the

    E-Print Network [OSTI]

    Thomas, Paul

    April 2009 Web Indexing on a Diet: Template Removal with the Sandwich Algorithm Stephen Wan stephen.wan@csiro.au Paul Thomas paul.thomas@csiro.au Tom Rowlands tom.rowlands@csiro.au #12;Copyright and Disclaimer

  16. Method to Remove Uranium/Vanadium Contamination from Groundwater

    DOE Patents [OSTI]

    Metzler, Donald R.; Morrison Stanley

    2004-07-27T23:59:59.000Z

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  17. Removal of phenols from wastewater by soluble and immobilized tyrosinase

    SciTech Connect (OSTI)

    Wada, Shinji; Ichikawa, Hiroyasu; Tatsumi, Kenji (National Inst. for Resources and Environment, Ibaraki (Japan))

    1993-09-20T23:59:59.000Z

    An enzymatic method for removal of phenols from industrial wastewater was investigated. Phenols in an aqueous solution were removed after treatment with mushroom tyrosinase. The reduction order of substituted phenols is catechol > p-cresol > p-chlorophenol > phenol > p-methoxyphenol. In the treatment of tyrosinase alone, no precipitate was formed but a color change from colorless to dark-brown was observed. The colored products were removed by chitin and chitosan which are available abundantly as shellfish waste. In addition, the reduction rate of phenols was observed to be accelerated in the presence of chitosan. Tyrosinase, immobilized by using amino groups in the enzyme on cation exchange resins, can be used repeatedly. By treatment with immobilized tyrosinase, 100% of phenol was removed after 2 h, and the activity was reduced very little even after 10 repeat treatments.

  18. Comparison of thermoelectric and permeation dryers for sulfur dioxide removal during sample conditioning of wet gas streams

    SciTech Connect (OSTI)

    Dunder, T.A. [Entropy, Inc., Research Triangle Park, NC (United States). Research Div.; Leighty, D.A. [Perma Pure, Inc., Toms River, NJ (United States)

    1997-12-31T23:59:59.000Z

    Flue gas conditioning for moisture removal is commonly performed for criteria pollutant measurements, in particular for extractive CEM systems at combustion sources. An implicit assumption is that conditioning systems specifically remove moisture without affecting pollutant and diluent concentrations. Gas conditioning is usually performed by passing the flue gas through a cold trap (Peltier or thermoelectric dryer) to remove moisture by condensation, which is subsequently extracted by a peristaltic pump. Many air pollutants are water-soluble and potentially susceptible to removal in a condensation dryer from gas interaction with liquid water. An alternative technology for gas conditioning is the permeation dryer, where the flue gas passes through a selectively permeable membrane for moisture removal. In this case water is transferred through the membrane while other pollutants are excluded, and the gas does not contact condensed liquid. Laboratory experiments were performed to measure the relative removal of a water-soluble pollutant (sulfur dioxide, SO{sub 2}) by the two conditioning techniques. A wet gas generating system was used to create hot, wet gas streams of known composition (15% and 30% moisture, balance nitrogen) and flow rate. Pre-heated SO{sub 2} was dynamically spiked into the wet stream using mass flow meters to achieve concentrations of 20, 50, and 100 ppm. The spiked gas was directed through a heated sample line to either a thermoelectric or a permeation conditioning system. Two gas analyzers (Western Research UV gas monitor, KVB/Analect FTIR spectrometer) were used to measure the SO{sub 2} concentration after conditioning. Both analytic methods demonstrated that SO{sub 2} is removed to a significantly greater extent by the thermoelectric dryer. These results have important implications for SO{sub 2} monitoring and emissions trading.

  19. Removal of testa from food grade copra by air classification

    E-Print Network [OSTI]

    Lopitakwong, Rommanee

    1975-01-01T23:59:59.000Z

    REMOVAL OF TESTA FROM FOOD GRADE COPRA BY AIR CLASSIFICATION A Thesi. s by ROMMANEE LOPITAKWONG Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December... 1975 Major Subject: Food Technology REMOVAL OF TESTA FROM FOOD GRADE COPRA BY AIR CLASSIFICATION A Thesis by ROMMANEE LOPITAKWONG Approved as to style and content by: (Ch irman of Comm'ttee) ad of Dep tment) Member) (Member) December 1975...

  20. Method for removing oxide contamination from titanium diboride powder

    DOE Patents [OSTI]

    Brynestad, Jorulf (Oak Ridge, TN); Bamberger, Carlos E. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB.sub.2 powders with a gaseous boron halide, such as BCl.sub.3, at temperatures in the range of 500.degree.-800.degree. C. The BCl.sub.3 reacts with the oxides to form volatile species which are removed by the BCl.sub.3 exit stream.

  1. Process for removing heavy metal compounds from heavy crude oil

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

    1991-01-01T23:59:59.000Z

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  2. Assessing Arsenic Removal By Zero-Valent Iron Under

    E-Print Network [OSTI]

    6 8 10 12 14 ­.5 0 .5 1 pH Eh(volts) SO4 -- HS - H2S(aq) HSO4 - 20°C Dell Fri Feb 08 2008 DiagramSO4Assessing Arsenic Removal By Zero-Valent Iron Under Various Water Quality Conditions Paul Pepler and operate. #12;7 Best Available Technologies for As Removal (USEPA 2003) Ion exchange Activated alumina

  3. Fluidized bed gasification ash reduction and removal process

    DOE Patents [OSTI]

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-12-04T23:59:59.000Z

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  4. Fluidized bed gasification ash reduction and removal system

    DOE Patents [OSTI]

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-02-28T23:59:59.000Z

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  5. Solid materials for removing arsenic and method thereof

    SciTech Connect (OSTI)

    Coronado, Paul R. (Livermore, CA); Coleman, Sabre J. (Oakland, CA); Sanner, Robert D. (Livermore, CA); Dias, Victoria L. (Livermore, CA); Reynolds, John G. (San Ramon, CA)

    2010-09-28T23:59:59.000Z

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  6. Solid materials for removing arsenic and method thereof

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA); Coleman, Sabre J. (Oakland, CA); Sanner, Robert D. (Livermore, CA); Dias, Victoria L. (Livermore, CA); Reynolds, John G. (San Ramon, CA)

    2008-07-01T23:59:59.000Z

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  7. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings...

    Broader source: Energy.gov (indexed) [DOE]

    DOE energy assessment and implementing recommendations to improve the efficiency of its steam system. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings (May 2008)...

  8. Finding of No Significant Impact Radiological/Nuclear Countermeasures...

    Broader source: Energy.gov (indexed) [DOE]

    FINDING OF NO SIGNIFICANT IMPACT RADIOLOGICALNUCLEAR COUNTERMEASURES TEST AND EVALUATION COMPLEX, NEVADA TEST SITE The U.S. Department of Homeland Security (DHS) is the Federal...

  9. Utilization of UV or EB Curing Technology to Significantly Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report,...

  10. DOE issues Finding of No Significant Impact for the Environmental...

    Office of Environmental Management (EM)

    the Environmental Assessment on Resumption of Transient Testing of Nuclear Fuels and Materials at Idaho National Laboratory DOE issues Finding of No Significant Impact for the...

  11. EA-1565: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of No Significant Impact Adopted Energy Conservation Standards for Distribution Transformers DOE has determined that the adoption of energy efficiency for liquid-immersed...

  12. EA-0912: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of No Significant Impact Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel Based on the analysis in the Environmental Assessment, and after careful...

  13. EA-1866: Final Environmental Assessment and Finding of No Significant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact EA-1866: Final Environmental Assessment and Finding of No Significant Impact Argonne National Laboratory Modernization Planning This environmental assessment (EA) has...

  14. EA-1638: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of No Significant Impact Loan Guarantee to Solyndra, Inc. for Construction of a Photovoltaic Manufacturing Facility and Leasing of an Existing Commercial Facility in Fremont,...

  15. EA-1672: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of No Significant Impact Basin Electric Power Cooperative Culbertson Combustion Turbine Generator Project Western Area Power Administration proposes to modify its...

  16. EA-1761: Finding of No Significant Impact and Floodplain Statement...

    Broader source: Energy.gov (indexed) [DOE]

    of No Significant Impact and Floodplain Statement of Findings Clemson University Wind Turbine Drivetrain Test Facility North Charleston, South Carolina The Department of Energy is...

  17. EA-1889: Final Environmental Assessment and Finding of No Significant...

    Broader source: Energy.gov (indexed) [DOE]

    of No Significant Impact (FONSI) on the Disposal of Decommissioned, Defueled, Naval Reactor Plants from the USS Enterprise. Because the preferred alternative is to dispose of...

  18. EA-1137: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    impacts in the EA, the proposed action to use an electrochemical etching process on solid depleted uranium components at the DOE's Kansas City Plant would not significantly affect...

  19. EA-1457: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Significant Impact Center for Integrated Nano Technologies at Sandia Laboratories, New Mexico The EA analyzes the potential effects of a proposal to construct and operate the...

  20. A Requirement for Significant Reduction in the Maximum BTU Input...

    Energy Savers [EERE]

    A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for...

  1. Security enhanced with increased vehicle inspections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security enhanced with increased vehicle inspections Security measures increase as of March: vehicle inspections won't delay traffic New increased security procedures meet LANL's...

  2. Coal liquefaction process with increased naphtha yields

    DOE Patents [OSTI]

    Ryan, Daniel F. (Friendswood, TX)

    1986-01-01T23:59:59.000Z

    An improved process for liquefying solid carbonaceous materials wherein the solid carbonaceous material is slurried with a suitable solvent and then subjected to liquefaction at elevated temperature and pressure to produce a normally gaseous product, a normally liquid product and a normally solid product. The normally liquid product is further separated into a naphtha boiling range product, a solvent boiling range product and a vacuum gas-oil boiling range product. At least a portion of the solvent boiling-range product and the vacuum gas-oil boiling range product are then combined and passed to a hydrotreater where the mixture is hydrotreated at relatively severe hydrotreating conditions and the liquid product from the hydrotreater then passed to a catalytic cracker. In the catalytic cracker, the hydrotreater effluent is converted partially to a naphtha boiling range product and to a solvent boiling range product. The naphtha boiling range product is added to the naphtha boiling range product from coal liquefaction to thereby significantly increase the production of naphtha boiling range materials. At least a portion of the solvent boiling range product, on the other hand, is separately hydrogenated and used as solvent for the liquefaction. Use of this material as at least a portion of the solvent significantly reduces the amount of saturated materials in said solvent.

  3. Removal of H{sub 2}S using molten carbonate at high temperature

    SciTech Connect (OSTI)

    Kawase, Makoto, E-mail: kawase@criepi.denken.or.jp; Otaka, Maromu

    2013-12-15T23:59:59.000Z

    Highlights: • The performance of molten carbonate for the removal of H{sub 2}S improves at higher temperatures. • The degree of H{sub 2}S removal is significantly affected by the CO{sub 2} concentration in syngas. • Addition of carbon elements, such as char and tar, decrease the negative effects of CO{sub 2}. • Continuous addition of carbon elements into molten carbonate enables continuous desulfurization. • Desulfurization using molten carbonate is suitable for gasification gas. - Abstract: Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngas produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H{sub 2}S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 °C. It is found that the removal of H{sub 2}S is significantly affected by the concentration of CO{sub 2} in the syngas. When only a small percentage of CO{sub 2} is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H{sub 2}S removal can be maintained at a high level. To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford good gas-cleaning performance.

  4. FULL-SCALE TREATMENT WETLANDS FOR METAL REMOVAL FROM INDUSTRIAL WASTEWATER

    SciTech Connect (OSTI)

    Nelson, E; John Gladden, J

    2007-03-22T23:59:59.000Z

    The A-01 NPDES outfall at the Savannah River Site receives process wastewater discharges and stormwater runoff from the Savannah River National Laboratory. Routine monitoring indicated that copper concentrations were regularly higher than discharge permit limit, and water routinely failed toxicity tests. These conditions necessitated treatment of nearly one million gallons of water per day plus storm runoff. Washington Savannah River Company personnel explored options to bring process and runoff waters into compliance with the permit conditions, including source reduction, engineering solutions, and biological solutions. A conceptual design for a constructed wetland treatment system (WTS) was developed and the full-scale system was constructed and began operation in 2000. The overall objective of our research is to better understand the mechanisms of operation of the A-01 WTS in order to provide better input to design of future systems. The system is a vegetated surface flow wetland with a hydraulic retention time of approximately 48 hours. Copper, mercury, and lead removal efficiencies are very high, all in excess of 80% removal from water passing through the wetland system. Zinc removal is 60%, and nickel is generally unaffected. Dissolved organic carbon in the water column is increased by the system and reduces toxicity of the effluent. Concentrations of metals in the A-01 WTS sediments generally decrease with depth and along the flow path through the wetland. Sequential extraction results indicate that most metals are tightly bound to wetland sediments.

  5. High SO(2) Removal Efficiency Testing.

    SciTech Connect (OSTI)

    Blythe, G.

    1997-10-22T23:59:59.000Z

    On the base program, testing was completed at the Tampa Electric Company`s (TECo`s) Big Bend Station in November 1992. The upgrade option tested was DBA additive. Additional testing was conducted at this site during the previous quarter (April through June 1997). Results from that testing were presented in the Technical Progress Report dated July 1997. For Option I, at the Hoosier Energy Merom Station, results from another program co-funded by the Electric Power Research Institute (EPRI) and the National Rural Electric Cooperative Association have been combined with results from DOE-funded testing. Three upgrade options have been tested: DBA additive, sodium formate additive, and high pH set-point operation. All testing was completed by November 1992. There were no activities for this site during the current quarter. Option II involved testing at the Southwestern Electric Power Company Pirkey Station. Both sodium formate and DBA additives were tested as potential upgrade options. All of the testing at this site was completed by May 1993. On Option III, for testing at the PSI Energy Gibson Station, testing with sodium formate additive was completed in early October 1993, and a DBA additive performance and consumption test was completed in March of 1994. There were no efforts for this site during the current quarter. Option IV is for testing at the Duquesne Light Elrama Station. The FGD system employs magnesium-enhanced lime reagent and venturi absorber modules. An EPRI-funded model evaluation of potential upgrade options for this FGD system, along with a preliminary economic evaluation, determined that the most attractive upgrade options for this site were to increase thiosulfate ion concentrations in the FGD system liquor to lower oxidation percentages.

  6. The significance of energy storage for renewable energy generation and the role of instrumentation and measurement.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 The significance of energy storage for renewable energy generation and the role and Alternative Energies Commission INES: National Institute For Solar Energy ENERGY STORAGE: FROM PRESENT TO EMERGING TECHNOLOGIES Energy storage is not a new concept but is currently getting increasing importance

  7. Significantly improved charge-collection efficiencies result from a general chemical approach to synthesizing photocathodes.

    E-Print Network [OSTI]

    as photocathodes for p-type semiconductor-sensitized solar cells. Compared to dye-sensitized NiO photocathodes for photoelectrochemical solar cells. Key Result Compared to dye-sensitized NiO photocathodes, the CdS-sensitized Ni coupled to a dye-sensitized photoanode, could significantly increase overall solar conversion efficiency

  8. Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks

    SciTech Connect (OSTI)

    David A Lesch

    2010-06-30T23:59:59.000Z

    UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary building units bound by DOBDC resulting in 1D hexagonal pores about 11 angstroms in diameter. Surface areas range from 800 to 1500 sq m/g for the different MOFs. Mg/DOBDC outperformed all MOF and zeolite materials evaluated to date, with about 25 wt% CO{sub 2} captured by this MOF at flue gas conditions ({approx}0.13 atm CO{sub 2} pressure, 311K). In simulated flue gas without oxygen, the zero-length (ZLC) system was very useful in quickly simulating the effect of long term exposure to impurities on the MOFs. Detailed adsorption studies on MOF pellets have shown that water does not inhibit CO{sub 2} adsorption for MOFs as much as it does for typical zeolites. Moreover, some MOFs retain a substantial CO{sub 2} capacity even with a modest water loading at room temperature. Molecular modeling was a key activity in three areas of our earlier DOE/NETL-sponsored MOF-based research on CC. First, the team was able to effectively simulate CO{sub 2} and other gas adsorption isotherms for more than 20 MOFs, and the knowledge obtained was used to help predict new MOF structures that should be effective for CO{sub 2} adsorption at low pressure. The team also showed that molecular modeling could be utilized to predict the hydrothermal stability of a given MOF. Finally, the team showed that low moisture level exposure actually enhanced the CO{sub 2} adsorption performance of a particular MOF, HKUST-1.

  9. Development of Advanced Combustion Technologies for Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on...

  10. EA-1603: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the 9940 Complex and Thunder Range at Sandia National Laboratories, Albuquerque, New Mexico The EA analyzes the potential effects of a proposal to increase testing and training...

  11. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-03-04T23:59:59.000Z

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NOX control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

  12. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-02-04T23:59:59.000Z

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NO{sub x} control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two First Energy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

  13. Removing a sheet from the surface of a melt using gas jets

    DOE Patents [OSTI]

    Kellerman, Peter L; Thronson, Gregory D; Sun, Dawei

    2014-04-01T23:59:59.000Z

    In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

  14. Removable pellicle for lithographic mask protection and handling

    DOE Patents [OSTI]

    Klebanoff, Leonard E. (Dublin, CA); Rader, Daniel J. (Albuquerque, NM); Hector, Scott D. (Oakland, CA); Nguyen, Khanh B. (Sunnyvale, CA); Stulen, Richard H. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A removable pellicle for a lithographic mask that provides active and robust particle protection, and which utilizes a traditional pellicle and two deployments of thermophoretic protection to keep particles off the mask. The removable pellicle is removably attached via a retaining structure to the mask substrate by magnetic attraction with either contacting or non-contacting magnetic capture mechanisms. The pellicle retaining structural is composed of an anchor piece secured to the mask substrate and a frame member containing a pellicle. The anchor piece and the frame member are in removable contact or non-contact by the magnetic capture or latching mechanism. In one embodiment, the frame member is retained in a floating (non-contact) relation to the anchor piece by magnetic levitation. The frame member and the anchor piece are provided with thermophoretic fins which are interdigitated to prevent particles from reaching the patterned area of the mask. Also, the anchor piece and mask are maintained at a higher temperature than the frame member and pellicle which also prevents particles from reaching the patterned mask area by thermophoresis. The pellicle can be positioned over the mask to provide particle protection during mask handling, inspection, and pumpdown, but which can be removed manually or robotically for lithographic use of the mask.

  15. Economic potential for clinically significant in vitro diagnostics

    E-Print Network [OSTI]

    Bignami, Adrian (Adrian A.)

    2009-01-01T23:59:59.000Z

    In recent years, significant advances have been made in the realm of in vitro diagnostics with the development of novel tests which are able to meaningfully impact the course of a patients' disease management. This ...

  16. On the epistemological significance of aesthetic values in architectural theory

    E-Print Network [OSTI]

    Bhatt, Ritu

    2000-01-01T23:59:59.000Z

    This dissertation examines the epistemological significance of "truth," "rationality," and the "aesthetic" first in the nineteenth-century definitions of the nature of Gothic and, then in more recent twentieth-century ...

  17. EA-1642: Finding of No Significant Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1642: Finding of No Significant Impact Design and Construction of an Early Lead Mini-Fischer-Tropsch Refinery at the University of Kentucky Center for Applied Energy Research...

  18. The Theological Significance of Hegel's Four World-Historical Realms

    E-Print Network [OSTI]

    Von Der Luft, Eric

    The Theological Significance of Hegel's Four World-Historical Realms1 ERIC VON DER LUFT Villanova University The major problem concerning Hegel's four world- historical realms is this: How are we to view them—as categories of historical...

  19. MOAB PROJECT REACHES SIGNIFICANT MILESTONE | Department of Energy

    Office of Environmental Management (EM)

    REACHES SIGNIFICANT MILESTONE August 1, 2011 - 12:00pm Addthis View of the mill tailings pile at the MOAB site, looking east. View of the mill tailings pile at the MOAB site,...

  20. EA-1177: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    No Significant Impact SalvageDemolition of 200 West Area, 200 East Area, and 300 Area Steam Plants Based on the analysis in the EA, and in the absence of any public comments, I...

  1. EA-1409: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Significant Impact Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos...

  2. Mobile system for microwave removal of concrete surfaces

    DOE Patents [OSTI]

    White, Terry L. (Oak Ridge, TN); Bigelow, Timothy S. (Knoxville, TN); Schaich, Charles R. (Lenoir City, TN); Foster, Jr., Don (Knoxville, TN)

    1997-01-01T23:59:59.000Z

    A method and apparatus for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface.

  3. Metal chelate process to remove pollutants from fluids

    DOE Patents [OSTI]

    Chang, S.G.T.

    1994-12-06T23:59:59.000Z

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  4. Mobile system for microwave removal of concrete surfaces

    DOE Patents [OSTI]

    White, T.L.; Bigelow, T.S.; Schaich, C.R.; Foster, D. Jr.

    1997-06-03T23:59:59.000Z

    A method and apparatus are disclosed for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface. 7 figs.

  5. Removal of fluoride impurities from UF/sub 6/ gas

    DOE Patents [OSTI]

    Beitz, J.V.

    1984-01-06T23:59:59.000Z

    A method of purifying a UF/sub 6/ gas stream containing one or more metal fluoride impurities composed of a transuranic metal, transition metal or mixtures thereof, is carried out by contacting the gas stream with a bed of UF/sub 5/ in a reaction vessel under conditions where at least one impurity reacts with the UF/sub 5/ to form a nongaseous product and a treated gas stream, and removing the treated gas stream from contact with the bed. The nongaseous products are subsequently removed in a reaction with an active fluorine affording agent to form a gaseous impurity which is removed from the reaction vessel. The bed of UF/sub 5/ is formed by the reduction of UF/sub 6/ in the presence of uv light. One embodiment of the reaction vessel includes a plurality of uv light sources as tubes on which UF/sub 5/ is formed. 2 figures.

  6. Removal of pollutants from solid matrices using supercritical fluids

    SciTech Connect (OSTI)

    Tomasko, D.L. [Ohio State Univ., Columbus, OH (United States); Macnaughton, S.J.; Foster, N.R. [Univ. of South Wales, Kensington (Australia)] [and others

    1995-04-01T23:59:59.000Z

    Several supercritical fluid extraction (SCFE) processes have been proposed for removing toxic and intractable organic compounds from a range of contaminated solids. These include soil remediation and the regeneration of absorbents used to treat wastewater streams such as granular activated carbon (GAC). As a separation technique for environmental control, SCFR has several distinct advantages over conventional liquid extraction methods and incineration. Most notably, the contaminant is removed from the solvent in a concentrated form via a change in pressure or temperature and can be completely separated upon expansion to atmospheric pressure. The viability of SCFE hinges on process conditions such as solvent-feed ratio and solvent recycle ratio. The necessity of recycling solvent complicates the contaminant separation step since a complete reduction to atmospheric pressure would create large recompression costs. Because of this, the pressure and temperature dependence of contaminant solubility must be understood so that operating conditions for the separation step can be defined. Fortunately, this is the most developed aspect of SCF technology. However, the mass transfer limitations to removing contaminants from solids change with solvent flow rate. This paper discusses the use of SCFE for environmental control and presents results for the removal of DDT and 2-chlorophenol from GAC. 2-chlorophenol is almost completely removed with pure CO{sub 2} at 40{degrees}C and 101 bar while only 55% of the DDT is removed at 40{degrees}C and 200 bar. These differences in regeneration efficiency cannot be understood solely in terms of solubility but point to a need for detailed studies of adsorption equilibrium and mass transfer resistances in supercritical fluid systems.

  7. Inhibition of uracil-DNA glycosylase increases SCEs in BrdU-treated and visible light-irradiated cells

    SciTech Connect (OSTI)

    Maldonado, A.; Hernandez, P.; Gutierrez, C.

    1985-11-01T23:59:59.000Z

    The authors have approached the study of the ability of different types of lesions produced by DNA-damaging agents to develop sister-chromatid exchanges (SCEs) by analyzing SCE levels observed in Allium cepa L cells with BrdU-substituted DNA and exposed to visible light (VL), an irradiation which produces uracil residues in DNA after debromination of bromouracil and enhances SCE levels but only above a certain dose. They have partially purified an uracil-DNA glycosylase activity from A. cepa L root meristem cells, which removes uracil from DNA, the first step in the excision repair of this lesion. This enzyme was inhibited in vitro by 6-amino-uracil and uracil but not by thymine. When cells exposed to VL, at a dose that did not produce per se an SCE increase, were immediately post-treated with these inhibitors of uracil-DNA glycosylase, a significant increase in SCE levels was obtained. Moreover, SCE levels in irradiated cells dropped to control level when a short holding time elapsed between exposure to VL and the beginning of post-treatment with the inhibitor. Thus, our results showed that inhibitors of uracil-DNA glycosylase enhanced SCE levels in cells with unifilarly BrdU-substituted DNA exposed to visible light; and indicated the existence of a very rapid repair of SCE-inducing lesions produced by visible light irradiation of cells with unifilarly BrdU-containing DNA.

  8. Method for removing undesired particles from gas streams

    DOE Patents [OSTI]

    Durham, Michael Dean (Castle Rock, CO); Schlager, Richard John (Aurora, CO); Ebner, Timothy George (Westminster, CO); Stewart, Robin Michele (Arvada, CO); Hyatt, David E. (Denver, CO); Bustard, Cynthia Jean (Littleton, CO); Sjostrom, Sharon (Denver, CO)

    1998-01-01T23:59:59.000Z

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  9. Method for removal of beryllium contamination from an article

    DOE Patents [OSTI]

    Simandl, Ronald F.; Hollenbeck, Scott M.

    2012-12-25T23:59:59.000Z

    A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.

  10. Methods of hydrotreating a liquid stream to remove clogging compounds

    DOE Patents [OSTI]

    Minderhoud, Johannes Kornelis [Amsterdam, NL; Nelson, Richard Gene [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Ryan, Robert Charles [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-22T23:59:59.000Z

    A method includes producing formation fluid from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a gas stream. At least a portion of the liquid stream is provided to a hydrotreating unit. At least a portion of selected in situ heat treatment clogging compositions in the liquid stream are removed to produce a hydrotreated liquid stream by hydrotreating at least a portion of the liquid stream at conditions sufficient to remove the selected in situ heat treatment clogging compositions.

  11. Method for removing semiconductor layers from salt substrates

    DOE Patents [OSTI]

    Shuskus, Alexander J. (West Hartford, CT); Cowher, Melvyn E. (East Brookfield, MA)

    1985-08-27T23:59:59.000Z

    A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.

  12. Method for the removal and recovery of mercury

    DOE Patents [OSTI]

    Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

    1997-01-28T23:59:59.000Z

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  13. Method for removal of furfural coke from metal surfaces

    SciTech Connect (OSTI)

    Turner, J.D.

    1990-02-27T23:59:59.000Z

    This patent describes a process for preparing furfural coke for removal from metallic surfaces. It comprises: heating ship furfural coke without causing an evolution of heat capable of undesirably altering metallurgical properties of the surfaces in the presence of a gas with a total pressure of less than 100 psig containing molecular oxygen. The gas being at a sufficient temperature below 800{degrees}F. (427{degrees}C.) for a sufficient time to change the crush strength of the coke so as to permit removal with a water jet at a pressure of about 5000 psi.

  14. Compositions and methods for removing arsenic in water

    DOE Patents [OSTI]

    Gadgil, Ashok Jagannth (El Cerrito, CA)

    2011-02-22T23:59:59.000Z

    Compositions and methods and for contaminants from water are provided. The compositions comprise ferric hydroxide and ferric oxyhydride coated substrates for use in removing the contaminant from the water. Contacting water bearing the contaminant with the substrates can substantially reduce contaminant levels therein. Methods of oxidizing the contaminants in water to facilitate their removal by the ferric hydroxide and ferric oxyhydride coated substrates are also provided. The contaminants include, but are not limited to, arsenic, selenium, uranium, lead, cadmium, nickel, copper, zinc, chromium and vanadium, their oxides and soluble salts thereof.

  15. Water Recycling removal using temperature-sensitive hydronen

    SciTech Connect (OSTI)

    Rana B. Gupta

    2002-10-30T23:59:59.000Z

    The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

  16. Increasing transmission loadability by the application of shunt capacitors

    SciTech Connect (OSTI)

    Palmer, R.

    1981-05-01T23:59:59.000Z

    The companies located in the eastern portion of the Pennsylvania-New Jersey-Maryland Interconnection (PJM) have installed oil-fired generation to meet strict environmental requirements. In an attempt to reduce the use of oil, PJM has been purchasing energy from systems to the west of PJM where the primary fuel is coal. These west-to-east energy transfers have increased the loading on the 500kV transmission system. The heavy loadings have resulted in voltage limitations on the 500kV system that limit flows to well below the thermal capability. Results of an analysis of this problem and recommendations for removing the voltage limitations are presented. It is primarily recommended to use shunt capacitors to supply the transmission system reactive losses.

  17. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    SciTech Connect (OSTI)

    Elmore, B.B.

    1993-08-01T23:59:59.000Z

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  18. Environmental significance of biocatalytic conversion of low grade oils

    SciTech Connect (OSTI)

    Lin, M.S.; Premuzic, E.T.; Lian, H.; Zhou, W.M.; Yablon, J.

    1996-09-01T23:59:59.000Z

    Studies dealing with the interactions between extremophilic microorganisms and crude oils have led to the identification of biocatalysts which through multiple biochemical reactions catalyze desulfurization, denitrogenation, and demetalation reactions in oils. Concurrently, the oils are also converted to lighter oils. These complex biochemical reactions have served as models in the development of the crude oil bioconversion technology to be applied prior to the treatment of oils by conventional chemical processes. In practical terms, this means that the efficiency of the existing technology is being enhanced. For example, the recently introduced additional regulation for the emission of nitrogen oxides in some states restricts further the kinds of oils that may be used in burners. The biocatalysts being developed in this laboratory selectively interact with nitrogen compounds, i.e. basic and neutral types present in the oil and, hence, affect the fuel NOx production. This, in turn, has a cost-efficient influence on the processed oils and their consumption. In this paper, these cost-efficient and beneficial effects will be discussed in terms of produced oils, the lowering of sulfur and nitrogen contents, and the effect on products, as well as the longevity of catalysts due to the removal of heteroatoms and metal containing compounds found in crudes.

  19. REMOVAL OF SOLIDS FROM HIGHLY ENRICHED URANIUM SOLUTIONS USING THE H-CANYON CENTRIFUGE

    SciTech Connect (OSTI)

    Rudisill, T; Fernando Fondeur, F

    2009-01-15T23:59:59.000Z

    Prior to the dissolution of Pu-containing materials in HB-Line, highly enriched uranium (HEU) solutions stored in Tanks 11.1 and 12.2 of H-Canyon must be transferred to provide storage space. The proposed plan is to centrifuge the solutions to remove solids which may present downstream criticality concerns or cause operational problems with the 1st Cycle solvent extraction due to the formation of stable emulsions. An evaluation of the efficiency of the H-Canyon centrifuge concluded that a sufficient amount (> 90%) of the solids in the Tank 11.1 and 12.2 solutions will be removed to prevent any problems. We based this conclusion on the particle size distribution of the solids isolated from samples of the solutions and the calculation of particle settling times in the centrifuge. The particle size distributions were calculated from images generated by scanning electron microscopy (SEM). The mean particle diameters for the distributions were 1-3 {micro}m. A significant fraction (30-50%) of the particles had diameters which were < 1 {micro}m; however, the mass of these solids is insignificant (< 1% of the total solids mass) when compared to particles with larger diameters. It is also probable that the number of submicron particles was overestimated by the software used to generate the particle distribution due to the morphology of the filter paper used to isolate the solids. The settling times calculated for the H-Canyon centrifuge showed that particles with diameters less than 1 to 0.5 {micro}m will not have sufficient time to settle. For this reason, we recommend the use of a gelatin strike to coagulate the submicron particles and facilitate their removal from the solution; although we have no experimental basis to estimate the level of improvement. Incomplete removal of particles with diameters < 1 {micro}m should not cause problems during purification of the HEU in the 1st Cycle solvent extraction. Particles with diameters > 1 {micro}m account for > 99% of the solid mass and will be efficiently removed by the centrifuge; therefore, the formation of emulsions during solvent extraction operations is not an issue. Under the current processing plan, the solutions from Tanks 11.1 and 12.2 will be transferred to the enriched uranium storage (EUS) tank following centrifugation. The solution from Tanks 11.1 and 12.2 may remain in the EUS tank for an extended time prior to purification. The effects of extended storage on the solution were not evaluated as part of this study.

  20. Simultaneous removal of H{sub 2}S and NH{sub 3} from coal gas. Final report

    SciTech Connect (OSTI)

    Gangwal, S.K.; Portzer, J.W.

    1998-05-01T23:59:59.000Z

    Hydrogen sulfide (H{sub 2}S) and ammonia (NH{sub 3}) are the primary sulfur and nitrogen contaminants released when coal is gasified. Before coal gas can be utilized in an integrated gasification combined cycle (IGCC) plant to produce electricity, these contaminants need to be removed. The objective of this research was to develop sorbent-catalysts with the ability to simultaneously remove H{sub 2}S and NH{sub 3} from coal gas. Microreactor tests with HART-49, a zinc-based sorbent-catalyst with Ni, Co, and Mo as catalyst additives, showed that this material had the potential to remove 90% NH{sub 3} and reduce H{sub 2}S to <20 ppmv at 1 atm and 550 to 700 C. HART-49 was prepared in attrition-resistant fluidizable form (HART-56) using up to 75 wt% binder. Bench-scale fluidized-bed multicycle tests were conducted with the attrition-resistant sorbent-catalyst, HART-56, at 20 atm and 550 C. The H{sub 2}S and NH{sub 3} removal performance over the first two cycles was good in the presence of 5% steam but deteriorated thereafter when steam level was increased to 15%. The results point to a complex mechanism for simultaneous H{sub 2}S and NH{sub 3} removal, potentially involving both chemisorption and catalytic decomposition of NH{sub 3}. Further research and development is needed to develop a sorbent-catalyst for simultaneous H{sub 2}S and NH{sub 3} removal at IGCC hot-gas cleanup conditions.

  1. Technical note Barriers and opportunities for passive removal of indoor ozone

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Technical note Barriers and opportunities for passive removal of indoor ozone Elliott T. Gall presents a Monte Carlo simulation to assess passive removal materials (PRMs) that remove ozone of homes in Houston, Texas, were taken from the literature and combined with back- ground ozone removal

  2. Have Increases in CO2 Contributed to the Recent

    E-Print Network [OSTI]

    Gray, William

    since 1979. Global Accumulated Cyclone Energy (ACE) shows significant year-to-year and decadal 233 5.1. US Landfall Observations 233 6. IPCC-IV'S Tropical Cyclone Mis-statements 236 7. Special to indicate increased hurricane frequency or intensity in any of the globe's other tropical cyclone basins

  3. Development of Silica/Vanadia/ Titania Catalysts for Removal of

    E-Print Network [OSTI]

    Li, Ying

    mercury (Hg0) from simulated coal-combustion flue gas. Experiments were carried out in fixed-bed reactorsDevelopment of Silica/Vanadia/ Titania Catalysts for Removal of Elemental Mercury from Coal-Combustion the composition and microstructures of SCR (selective catalytic reduction) catalysts for Hg0 oxidation in coal-combustion

  4. The Minimum Constraint Removal Problem with Three Robotics Applications

    E-Print Network [OSTI]

    Indiana University

    The Minimum Constraint Removal Problem with Three Robotics Applications Kris Hauser Abstract on three example applications: generating human-interpretable excuses for failure, motion planning under their failures. · In human-robot interaction, semantically meaningful explanations would help people diagnose

  5. The Minimum Constraint Removal Problem with Three Robotics Applications

    E-Print Network [OSTI]

    Indiana University

    The Minimum Constraint Removal Problem with Three Robotics Applications Kris Hauser September 13 strategies. It is demonstrated on three example applications: gener- ating human-interpretable excuses, then they provide no explanation for the failure. For several applications, it would be useful for planners

  6. ADVANCES IN DUST DETECTION AND REMOVAL FOR TOKAMAKS

    SciTech Connect (OSTI)

    Campos, A.; Skinner, C.H.

    2009-01-01T23:59:59.000Z

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. In the tokamak environment, large particles or fi bers can fall on the electrostatic detector potentially causing a permanent short. An electrostatic dust detector developed in the laboratory is being applied to the National Spherical Torus Experiment (NSTX). We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments at atmospheric pressure with varying nozzle designs, backing pressures, puff durations and exit fl ow orientations have given an optimal confi guration that effectively removes particles from a 25 cm² area. Similar removal effi ciencies were observed under a vacuum base pressure of 1 mTorr. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tri-polar grid of fi ne interdigitated traces has been designed that generates an electrostatic traveling wave for conveying dust particles to a “drain.” First trials with only two working electrodes have shown particle motion in optical microscope images.

  7. GROUNDWATER NITRATE REMOVAL CAPACITY OF RIPARIAN ZONES IN

    E-Print Network [OSTI]

    Gold, Art

    , and 3 in Urban watersheds to study denitrification capacity. Mini-piezometers were installed at eachGROUNDWATER NITRATE REMOVAL CAPACITY OF RIPARIAN ZONES IN URBANIZING WATERSHEDS BY TARA KIMBERLY and geomorphology of riparian zones, potentially changing riparian groundwater denitrification capacity. Little work

  8. Thief process for the removal of mercury from flue gas

    DOE Patents [OSTI]

    Pennline, Henry W. (Bethel Park, PA); Granite, Evan J. (Wexford, PA); Freeman, Mark C. (South Park Township, PA); Hargis, Richard A. (Canonsburg, PA); O'Dowd, William J. (Charleroi, PA)

    2003-02-18T23:59:59.000Z

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  9. Potential Supply Impacts of Removal of 1-Pound RVP Waiver

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    trends, and current laws and regulations. The EIA's Annual Energy Outlook 2002 (AEO2002) is usedPotential Supply Impacts of Removal of 1-Pound RVP Waiver September 2002 #12;ii Energy Information by the Office of Oil and Gas of the Energy Information Administration. General questions concerning the report

  10. Process for removing polymer-forming impurities from naphtha fraction

    DOE Patents [OSTI]

    Kowalczyk, Dennis C. (Pittsburgh, PA); Bricklemyer, Bruce A. (Avonmore, PA); Svoboda, Joseph J. (Pittsburgh, PA)

    1983-01-01T23:59:59.000Z

    Polymer precursor materials are vaporized without polymerization or are removed from a raw naphtha fraction by passing the raw naphtha to a vaporization zone (24) and vaporizing the naphtha in the presence of a wash oil while stripping with hot hydrogen to prevent polymer deposits in the equipment.

  11. Process for removing polymer-forming impurities from naphtha fraction

    DOE Patents [OSTI]

    Kowalczyk, D.C.; Bricklemyer, B.A.; Svoboda, J.J.

    1983-12-27T23:59:59.000Z

    Polymer precursor materials are vaporized without polymerization or are removed from a raw naphtha fraction by passing the raw naphtha to a vaporization zone and vaporizing the naphtha in the presence of a wash oil while stripping with hot hydrogen to prevent polymer deposits in the equipment. 2 figs.

  12. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29T23:59:59.000Z

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  13. Particulate contamination removal from wafers using plasmas and mechanical agitation

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    Particulate contamination removal from wafers using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer's position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates.

  14. Energy Savings for CO2 Removal in Ammonia Plants

    E-Print Network [OSTI]

    Pouilliart, R.; Van Hecke, F. C.

    1981-01-01T23:59:59.000Z

    An exergy analysis of carbonate solution C02 removal systems which use solution flashing shows that there is no energy saving by using a mechanical thermocompressor instead of a steam-jet ejector. In a 1000 ShT/D ammonia plant an energy saving...

  15. Decay heat removal by natural convection - the RVACS system.

    SciTech Connect (OSTI)

    Tzanos, C. P.

    1999-08-17T23:59:59.000Z

    In conclusion, this work shows that for sodium coolant the reactor vessel auxiliary cooling system (RVACS) is an effective passive heat removal system if the reactor power does not exceed about 1600 MW(th). Its effectiveness is limited by the effective radiative heat transfer coefficient in the inner gap. In a lead cooled system, economic considerations may impose a lower limit.

  16. Removing Redundancy and Inconsistency in Memory-Based Collaborative Filtering

    E-Print Network [OSTI]

    Tresp, Volker

    Removing Redundancy and Inconsistency in Memory- Based Collaborative Filtering Kai Yu Siemens AG, Corporate Technology & University of Munich, Germany kai.yu.external@mchp.siemens. de Xiaowei Xu Information Science Department University of Arkansas at Little Rock xwxu@ualr.edu Anton Schwaighofer Siemens AG

  17. Guide wire extension for shape memory polymer occlusion removal devices

    DOE Patents [OSTI]

    Maitland, Duncan J. (Pleasant Hill, CA); Small, IV, Ward (Livermore, CA); Hartman, Jonathan (Sacramento, CA)

    2009-11-03T23:59:59.000Z

    A flexible extension for a shape memory polymer occlusion removal device. A shape memory polymer instrument is transported through a vessel via a catheter. A flexible elongated unit is operatively connected to the distal end of the shape memory polymer instrument to enhance maneuverability through tortuous paths en route to the occlusion.

  18. Apparatus for removably holding a plurality of microballoons

    DOE Patents [OSTI]

    Jorgensen, B.S.

    1984-06-05T23:59:59.000Z

    The present invention relates generally to the manipulation of microballoons and more particularly to an apparatus for removably holding a plurality of microballoons in order to more efficiently carry out the filling of the microballoons with a known quantity of gas.

  19. Investigating the Use of Biosorbents to Remove Arsenic from Water

    E-Print Network [OSTI]

    Erapalli, Shreyas

    2011-02-22T23:59:59.000Z

    , As (III), and arsenate, As (V), from water. Batch reactors were employed to assess the percent removal, reaction kinetics, adsorption capacity, and desorption of each arsenic species onto/from biosorbents under pH buffered and non?buffered conditions...

  20. Biological Removal of Siloxanes from Landfill and Digester Gases

    E-Print Network [OSTI]

    Biological Removal of Siloxanes from Landfill and Digester Gases: Opportunities and Challenges S U) presents challenges for using landfill and digester gases as energy fuels because of the formation volatilize from waste at landfills and wastewater treatment plants (1). As a result, biogas produced

  1. Instructions for use Removal of Oxygen and Nitrogen from Niobium

    E-Print Network [OSTI]

    Tachizawa, Kazuya

    Instructions for use #12;------ Removal of Oxygen and Nitrogen from Niobium by External Gettering External Gettering, Purification of Niobium, Thermodynamics of Impurities, Oxygen Diffusion, Purity niobium even below 1500K. The oxygen concentration in the deposit and the Nb bulk is evaluated

  2. Apparatuses and methods for removal of ink buildup

    DOE Patents [OSTI]

    Cudzinovic, Michael; Pass, Thomas; Rogers, Rob; Sun, Ray-Hon; Sun, Sheng; Wahlstrom, Ben; Fuhrman, Dennis Jason; Altendorf, Kyle David

    2013-03-12T23:59:59.000Z

    A substrate patterning method including the steps of spraying ink on a surface of a substrate, the spraying of the ink resulting in an overspray of excess ink past an edge of the substrate; changing a temperature of the excess ink to cause a change in a viscosity of the excess ink; and removing the excess ink having the changed viscosity.

  3. Argonne Electrochemical Technology Program Sulfur removal from reformate

    E-Print Network [OSTI]

    Argonne Electrochemical Technology Program Sulfur removal from reformate Xiaoping Wang, Theodore Krause, and Romesh Kumar Chemical Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells, and Infrastructure Technologies 2003 Merit Review Berkeley, CA May 19-22, 2003 #12;Argonne Electrochemical Technology

  4. Method for removal of mercury from various gas streams

    DOE Patents [OSTI]

    Granite, E.J.; Pennline, H.W.

    2003-06-10T23:59:59.000Z

    The invention provides for a method for removing elemental mercury from a fluid, the method comprising irradiating the mercury with light having a wavelength of approximately 254 nm. The method is implemented in situ at various fuel combustion locations such as power plants and municipal incinerators.

  5. Blood storage device and method for oxygen removal

    DOE Patents [OSTI]

    Bitensky, Mark W. (Waban, MA); Yoshida, Tatsuro (Newton, MA)

    2000-01-01T23:59:59.000Z

    The present invention relates to a storage device and method for the long-term storage of blood and, more particularly, to a blood storage device and method capable of removing oxygen from the stored blood and thereby prolonging the storage life of the deoxygenated blood.

  6. Sea Turtle Observations at Explosive Removals of Energy Structures

    E-Print Network [OSTI]

    Sea Turtle Observations at Explosive Removals of Energy Structures GREGG R. GITSCHLAG and BRYAN A. HERCZEG Introduction In July 1992 the total number of oil and gas production platformsI in the Gulfof. In that year 51 dead sea turtles were found on upper Texas beaches during mid-March to mid-April following

  7. Particulate contamination removal from wafers using plasmas and mechanical agitation

    DOE Patents [OSTI]

    Selwyn, G.S.

    1998-12-15T23:59:59.000Z

    Particulate contamination removal from wafers is disclosed using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer`s position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates. 4 figs.

  8. MAILLER et al. Removal of priority and emerging substances by

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of micropollutants in conventional wastewater treatment plants (WWTPs) composed by primary and biological treatmentsMAILLER et al. Removal of priority and emerging substances by biological and tertiary treatments in the case of urban areas (Heberer 2002). This implies a large understanding of wastewater treatment

  9. Nutrient Removal Mechanisms in a Cold Climate Gravel Wetland

    E-Print Network [OSTI]

    Nutrient Removal Mechanisms in a Cold Climate Gravel Wetland Alison Watts, Robert Roseen, Kim Farah and development of stormwater treatment systems Gregg Hall 35 Colovos Road Durham, New Hampshire 03824-3534 603.862.4024 http://www.unhsc.unh.edu #12;POROUS ASPHALT Watershed Boundary #12;#12;Gravel Wetland Effluent sampling

  10. Nutrient Removal Mechanisms in a Cold Climate Gravel Wetland

    E-Print Network [OSTI]

    Nutrient Removal Mechanisms in a Cold Climate Gravel Wetland Alison Watts, Robert Roseen, Kim Farah and development of stormwater treatment systems Gregg Hall 35 Colovos Road Durham, New Hampshire 03824-3534 603;Gravel Wetland Sampling within the system #12;NEIWPCC-UNH Project Goals Validation of constructed gravel

  11. Environmental Impacts of Increased Hydroelectric Development...

    Energy Savers [EERE]

    Environmental Impacts of Increased Hydroelectric Development at Existing Dams Environmental Impacts of Increased Hydroelectric Development at Existing Dams This report describes...

  12. Sandia National Laboratories: increased photovoltaic efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    increased photovoltaic efficiency Combining 'Tinkertoy' Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News,...

  13. Increasing Scientific Productivity by Tracking Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Tracking Increases Scientific Productivity Data Tracking Increases Scientific Productivity July 20, 2011 | Tags: HPSS, NERSC Linda Vu, lvu@lbl.gov, +1 510 486 2402 HPSS...

  14. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    SciTech Connect (OSTI)

    Behrouzi, Aria [Savannah River Remediation, LLC (United States); Zamecnik, Jack [Savannah River National Laboratory, Aiken, South Carolina, 29808 (United States)

    2012-07-01T23:59:59.000Z

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolution of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)

  15. Detroit Edison's Fermi 1 - Preparation for Reactor Removal

    SciTech Connect (OSTI)

    Swindle, Danny [Sargent and Lundy Engineers, LLC, 55 E. Monroe Street, Chicago, IL 60603 (United States)

    2008-01-15T23:59:59.000Z

    This paper is intended to provide information about the ongoing decommissioning tasks at Detroit Edison's Fermi 1 plant, and in particular, the work being performed to prepare the reactor for removal and disposal. In 1972 Fermi 1 was shutdown and the fuel returned to the Atomic Energy Commission. By the end of 1975, a retirement plan was prepared, the bulk sodium removed, and the plant placed in a safe store condition. The plant systems were left isolated with the sodium containing systems inert with carbon dioxide in an attempt to form a carbonate layer, thus passivating the underlying reactive sodium. In 1996, Detroit Edison determined to evaluate the condition of the plant and to make recommendations in relation to the Fermi 1 future plans. At the end of 1997 approval was obtained to remove the bulk asbestos and residual alkali-metals (i.e., sodium and sodium potassium (NaK)). In 2000, full nuclear decommissioning of the plant was approved. To date, the bulk asbestos insulation has been removed, and the only NaK remaining is located in six capillary instrument tubes. The remaining sodium is contained within the reactor, two of the three primary loops, and miscellaneous removed pipes and equipment to be processed. The preferred method for removing or reacting sodium at Fermi 1 is by injecting superheated steam into a heated, nitrogen inert system. The byproducts of this reaction are caustic sodium hydroxide, hydrogen gas, and heat. The decision was made to separate the three primary loops from the reactor for better control prior to processing each loop and the reactor separately. The first loop has already been processed. The main focus is now to process the reactor to allow removal and disposal of the Class C waste prior to the anticipated June 2008 closure of the Barnwell radioactive waste disposal facility located in South Carolina. Lessons learnt are summarized and concern: the realistic schedule and adherence to the schedule, time estimates, personnel accountability, back up or fill in work, work packages, condensation control, radiological contamination control, and organization of the waste stream.

  16. Opportunities for Achieving Significant Energy Reduction in Existing University Buildings

    E-Print Network [OSTI]

    Hutyra, Lucy R.

    Opportunities for Achieving Significant Energy Reduction in Existing University Buildings of Findings from GE 520/MN 500: "Energy Audit/Conservation Analysis of BU's Charles River Campus" 2010 #12 Footprint: Boston University Charles River Campus. Presentation to the BU Energy Club. Results of 2007

  17. lthough Earth has undergone many periods of significant environmen-

    E-Print Network [OSTI]

    Horton, Tom

    A lthough Earth has undergone many periods of significant environmen- tal change, the planet push the Earth system outside the stable environmental state of the Holocene, with consequences occurred naturally and Earth's regu- latory capacity maintained the conditions that enabled human

  18. A method for robust variable selection with significance assessment

    E-Print Network [OSTI]

    Rosasco, Lorenzo

    and control. Such an analy- sis encompasses, at least two steps, gene selection and model assessment. When architecture to assess the statistical significance of the model via cross validation and permutation testing. Finally we challenge the system on real data experiments, and study its performance when changing variable

  19. The chemical properties and biological significance of gossypol protein complexes

    E-Print Network [OSTI]

    Baliga, Bantval Prabhakara

    1956-01-01T23:59:59.000Z

    ................................. 2 III. REVIEW OF LITERATURE ......................... 4 1. Cottonseed Proteins ....................... 4 2. Evaluation of Proteins ................... 5 5. The Pigments of Cottonseed.............. 11 4. The Physiological Significance of Free...-Protein Complexes . 59 5. Chemical Analysis of Cottonseed Meal and Gossypol-Protein Complexes .......... 59 4. Biological Evaluation ..................... 44 5. Enzymatic Hydrolysis of Gossypol-Protein Complexes............................. 46 6. Bibliography...

  20. The Color of Blood: Between Sensory Experience and Epistemic Significance

    E-Print Network [OSTI]

    Bertoloni Meli, Domenico

    4 The Color of Blood: Between Sensory Experience and Epistemic Significance domenico bertoloni meli Si¯na¯-- known in the West as Avicenna--discussed the nature and composition of blood with regard to its role in nutrition. In an important passage, he argued that blood is a humor consisting of four

  1. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    SciTech Connect (OSTI)

    Rizzo, T.R. [Univ. of Rochester, NY (United States)

    1993-12-01T23:59:59.000Z

    This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.

  2. Significant neutrinoless double beta decay with quasi-Dirac neutrinos

    E-Print Network [OSTI]

    Pei-Hong Gu

    2012-09-13T23:59:59.000Z

    A significant signal of neutrinoless double beta decay can be consistent with the existence of light quasi-Dirac neutrinos. To demonstrate this possibility, we consider a realistic model where the neutrino masses and the neutrinoless double beta decay can be simultaneously generated after a Peccei-Quinn symmetry breaking.

  3. The significance of nucleotides within DNA codons: a quantitative approach.

    E-Print Network [OSTI]

    Guerra Hernández, Alejandro

    The significance of nucleotides within DNA codons: a quantitative approach. Alejandro Guerra amino acids coded by triplets of nucleotides (codons) in the Genetic Code, ap- pears to depend on the nucleotide position within a codon, as well as its physico-chemical features. Although differ- ent orders

  4. TECHNICAL REPORTS Denitrification walls have significantly reduced nitrogen

    E-Print Network [OSTI]

    Florida, University of

    , and demands for food, biofuels, and other crops will ensure that N demand will continue to increase (FAO, 2008 and Stoner, 2000). Because N is a biologically essential element, its transport, transformations, and storage ecosystems, thus terminating the N cascade. The transport of shallow groundwater through riparian soils

  5. Synthesis, Characterization, to application of water soluble and easily removable cationic pressure sensitive adhesives

    SciTech Connect (OSTI)

    Institute of Paper Science Technology

    2004-01-30T23:59:59.000Z

    In recent years, the world has expressed an increasing interest in the recycling of waste paper to supplement the use of virgin fiber as a way to protect the environment. Statistics show that major countries are increasing their use of recycled paper. For example, in 1991 to 1996, the U.S. increased its recovered paper utilization rate from 31% to 39%, Germany went from 50% to 60%, the UK went from 60% to 70%, France increased from 46% to 49%, and China went from 32% to 35% [1]. As recycled fiber levels and water system closures both increase, recycled product quality will need to improve in order for recycled products to compete with products made from virgin fiber [2]. The use of recycled fiber has introduced an increasing level of metal, plastic, and adhesive contamination into the papermaking process which has added to the complexity of the already overwhelming task of providing a uniform and clean recycle furnish. The most harmful of these contaminates is a mixture of adhesives and polymeric substances that are commonly known as stickies. Stickies, which enter the mill with the pulp furnish, are not easily removed from the repulper and become more difficult the further down the system they get. This can be detrimental to the final product quality. Stickies are hydrophobic, tacky, polymeric materials that are introduced into the papermaking system from a mixture of recycled fiber sources. Properties of stickies are very similar to the fibers used in papermaking, viz. size, density, hydrophobicity, and electrokinetic charge. This reduces the probability of their removal by conventional separation processes, such as screening and cleaning, which are based on such properties. Also, their physical and chemical structure allows for them to extrude through screens, attach to fibers, process equipment, wires and felts. Stickies can break down and then reagglomerate and appear at seemingly any place in the mill. When subjected to a number of factors including changes in pH, temperature, concentration, charge, and shear forces, stickies can deposit [3]. These deposits can lead to decreased runnability, productivity and expensive downtime. If the stickie remains in the stock, then machine breaks can be common. Finally, if the stickie is not removed or deposited, it will either leave in the final product causing converting and printing problems or recirculate within the mill. It has been estimated that stickies cost the paper industry between $600 and $700 million a year due to the cost of control methods and lost production attributed to stickies [3]. Also, of the seven recycling mills opened in the United States between 1994 and 1997, four have closed citing stickies as the main reason responsible for the closure [4]. Adhesives are widely used throughout the paper and paperboard industry and are subsequently found in the recycled pulp furnish. Hodgson stated that even the best stock preparation process can only remove 99% of the contaminants, of which the remaining 1% is usually adhesives of various types which are usually 10-150 microns in effective diameter [5]. The large particles are removed by mechanical means such as cleaners and screens, and the smaller, colloidal particles can be removed with washing. The stickies that pass through the cleaning and screening processes cause 95% of the problems associated with recycling [6]. The cleaners will remove most of the stickies that have a density varying from the pulp slurry ({approx}1.0 g/cm3) and will accept stickies with densities ranging from 0.95-1.05 g/cm3 [2]. The hydrophobicity of the material is also an important characteristic of the stickie [7]. The hydrophobicity causes the stickies to agglomerate with other hydrophobic materials such as other stickies, lignin, and even pitch. The tacky and viscous nature of stickies contributes to many product and process problems, negatively affecting the practicality of recycled fiber use. The source of stickies that evade conventional removal techniques are usually synthetic polymers, including acrylates, styrene butadiene rub

  6. Gas Turbine Fired Heater Integration: Achieve Significant Energy Savings

    E-Print Network [OSTI]

    Iaquaniello, G.; Pietrogrande, P.

    GAS TURBINE FIRED HEATER INTEGRATION: ACHIEVE SIGNIFICANT ENERGY SAVINGS G. Iaquaniello**, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI SpA, Rome, Italy ABSTRAer Faster payout will result if gas... turbine exhaust is used as combustion air for fired heaters. Here are economic examples and system design considera-, tions. INTRODUCT ION Heat and power cogeneration is a potentially rewarding tecnique for achieving savings when applied to process...

  7. Single-bridge unit-connected HVDC generation with increased pulse number

    SciTech Connect (OSTI)

    Villablanca, M.; Arrillaga, J. (Univ. of Canterbury, Christchurch (New Zealand))

    1993-04-01T23:59:59.000Z

    A true unit-connected generator-HVdc convertor scheme is proposed which removes the need to use two bridges in series to achieve twelve-pulse operation. Moreover, the combination of a single main bridge and an auxiliary feedback dc ripple reinjection bridge is shown to increase the pulse number from 6 to 18. This is achieved purely by natural commutation and is equally valid for rectification and inversion. The theoretical waveforms are validated by extensive experimental verification.

  8. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect (OSTI)

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01T23:59:59.000Z

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  9. Method for increasing thermostability in cellulase ennzymes

    DOE Patents [OSTI]

    Adney, W.S.; Thomas, S.R.; Baker, J.O.; Himmel, M.E.; Chou, Y.C.

    1998-01-27T23:59:59.000Z

    The gene encoding Acidothermus cellulolyticus E1 endoglucanase is cloned and expressed in Pichia pastoris. A new modified E1 endoglucanase enzyme comprising the catalytic domain of the full size E1 enzyme demonstrates enhanced thermostability and is produced by two methods. The first method of producing the new modified E1 is proteolytic cleavage to remove the cellulose binding domain and linker peptide of the full size E1. The second method of producing the new modified E1 is genetic truncation of the gene encoding the full size E1 so that the catalytic domain is expressed in the expression product. 8 figs.

  10. Methods of using adsorption media for separating or removing constituents

    DOE Patents [OSTI]

    Tranter, Troy J. (Idaho Falls, ID); Herbst, R. Scott (Idaho Falls, ID); Mann, Nicholas R. (Blackfoot, ID); Todd, Terry A. (Aberdeen, ID)

    2011-10-25T23:59:59.000Z

    Methods of using an adsorption medium to remove at least one constituent from a feed stream. The method comprises contacting an adsorption medium with a feed stream comprising at least one constituent and removing the at least one constituent from the feed stream. The adsorption medium comprises a polyacrylonitrile (PAN) matrix and at least one metal hydroxide homogenously dispersed therein. The adsorption medium may comprise from approximately 15 wt % to approximately 90 wt % of the PAN and from approximately 10 wt % to approximately 85 wt % of the at least one metal hydroxide. The at least one metal hydroxide may be selected from the group consisting of ferric hydroxide, zirconium hydroxide, lanthanum hydroxide, cerium hydroxide, titanium hydroxide, copper hydroxide, antimony hydroxide, and molybdenum hydroxide.

  11. Method of removing nitrogen oxides from exhaust gas mixtures

    SciTech Connect (OSTI)

    Batha, H.D.; Mason, J.H.; Thompson, S.R.

    1980-03-04T23:59:59.000Z

    A method of removing nitrogen oxides (NOX) from exhaust gas mixtures is described. The removal of NOX from exhaust gas mixtures is accomplished by exposing the exhaust gas mixture, in a manner that does not substantially impede the gas flow, to a ceramic material containing from about 75% to about 95% by weight silicon carbide and from about 0.3% to about 10.0% silica. A reduction of at least 85% of NOX from the mixture is to be expected and reductions up to 95 to 100% are attainable. Ceramic mixtures containing silicon nitride in amounts between about 10% and about 30% are found to reduce the amount of NOX in exhaust gases at temperatures as low as 200* C.

  12. Apparatus for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, G.A.; Thomas, C.P.

    1996-02-13T23:59:59.000Z

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  13. Method for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

    1995-01-01T23:59:59.000Z

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  14. Apparatus for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  15. Method for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, G.A.; Thomas, C.P.

    1995-10-03T23:59:59.000Z

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  16. Process for removing sulfate anions from waste water

    DOE Patents [OSTI]

    Nilsen, David N. (Lebanon, OR); Galvan, Gloria J. (Albany, OR); Hundley, Gary L. (Corvallis, OR); Wright, John B. (Albany, OR)

    1997-01-01T23:59:59.000Z

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  17. An investigation of sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Haddad, G.J.; Hargis, R.A. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

    1998-12-31T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from a carrier gas. An on-line atomic fluorescence spectrophotometer, used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. The capacities and breakthrough times of several commercially available activated carbons, as well as novel sorbents, were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  18. Method for removing undesired particles from gas streams

    DOE Patents [OSTI]

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1998-11-10T23:59:59.000Z

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  19. Negative kinetic energy term of general relativity and its removing

    E-Print Network [OSTI]

    T. Mei

    2009-03-30T23:59:59.000Z

    We first present a new Lagrangian of general relativity, which can be divided into kinetic energy term and potential energy term. Taking advantage of vierbein formalism, we reduce the kinetic energy term to a sum of five positive terms and one negative term. Some gauge conditions removing the negative kinetic energy term are discussed. Finally, we present a Lagrangian that only include positive kinetic energy terms. To remove the negative kinetic energy term leads to a new field equation of general relativity in which there are at least five equations of constraint and at most five dynamical equations, this characteristic is different from the normal Einstein field equation in which there are four equations of constraint and six dynamical equations.

  20. Use of microalgae to remove pollutants from power plant discharges

    DOE Patents [OSTI]

    Wilde, Edward W. (1833 Pisgah Rd., North Augusta, SC 29841); Benemann, John R. (2741 O'Harte, San Pablo, CA 94806); Weissman, Joseph C. (2086 N. Porpoise Pt. La., Vero Beach, FL 32963); Tillett, David M. (911-3 Coquina La., Vero Beach, FL 32963)

    1991-01-01T23:59:59.000Z

    A method and system for removing pollutants dissolved in the aqueous discharge of a plant, such as a power plant, from a body of water having known hydraulogy and physicochemical characteristics, the method comprising (a) modifying the hydraulic system of the body of water including use of physical barriers to define a zone in a portion of the body of water which zone includes the discharge point and where the water has a range of physicochemical characteristics; (b) selecting a large and preferably filamentous, planktonically growing strain of algae adapted to absorb the particular pollutants and genetically dominating algae at the physicochemical characteristics of the zone; (c) establishing a colony of the selected algal strain in the zone; (d) harvesting a portion of the colony; and (e) reinnoculating the zone near the discharge point with a fraction of the harvested portion. The fraction used for reinnoculation can be adjusted to balance the rate of pollutant removal to the rate of pollutant discharge.

  1. Methods for removing contaminant matter from a porous material

    DOE Patents [OSTI]

    Fox, Robert V. (Idaho Falls, ID) [Idaho Falls, ID; Avci, Recep (Bozeman, MT) [Bozeman, MT; Groenewold, Gary S. (Idaho Falls, ID) [Idaho Falls, ID

    2010-11-16T23:59:59.000Z

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  2. ALCOHOL FLUSHING FOR REMOVING DNAPL'S FROM CLAY AND SAND LAYERED AQUIFER SYSTEMS

    SciTech Connect (OSTI)

    N.J. Hayden; P. Padgett; C. Farrell; J. Diebold; X. Zhou; M. Hood

    1999-08-01T23:59:59.000Z

    Alcohol flushing, also called cosolvent flushing, is a relatively new in-situ remediation technology that shows promise for removing organic solvents from the soil and groundwater. Soil and groundwater contamination from organic solvents and petroleum products is one of the most serious and widespread environmental problems of our time. Most of the DOE facilities and inactive sites are experiencing soil and groundwater contamination from organic solvents. These water immiscible solvents have entered the subsurface from leaking underground storage tanks and piping, and from past waste handling and disposal practices such as leaking lagoons, holding ponds and landfills. In many cases, they have traveled hundreds of feet down into the saturated zone. If left in the soil, these chemicals may pose a significant environmental and human health risk. Alcohol flushing has potential for application to spilled solvents located deep within the saturated zone which are difficult if not impossible to remove by current remediation strategies, thus, greatly expediting restoration time, reducing total remediation cost and reducing risk.

  3. INTRODUCTION The increase in energy costs has led to a significant rise in the cost of mixtures containing asphalt cement. This resulted

    E-Print Network [OSTI]

    Harms, Kyle E.

    containing asphalt cement. This resulted in a need to search for alternatives that reduce the cost of those mixed with low percentages (1 percent below standard HMA mixtures) of paving grade asphalt cement and lower percentages of asphalt cement binder and easier compaction efforts. Asphalt treated mixtures can

  4. Fairer Trade, Removing Gender Bias in US Import Taxes

    E-Print Network [OSTI]

    Taylor, Lori L.; Dar, Jawad

    Fairer Trade Removing Gender Bias in US Import Taxes LORI L. TAYLOR AND JAWAD DAR Mosbacher Institute VOLUME 6 | ISSUE 3 | 2015 There are many inequalities in US tariff policy. Products imported from certain countries enter duty free..., the US Su- preme Court refused to hear appeals from import- ers Rack Room Shoes Inc. and Forever 21 Inc., thereby blocking their attempts to challenge an earlier ruling by the Court of Internation- al Trade. The importers had argued before the Court...

  5. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, Jerry R. (Iona, ID); Downs, Wayne C. (Sugar City, ID); Kaser, Timothy G. (Ammon, ID); Hall, H. James (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

  6. Efficiency of alum coagulation for removal of trihalomethane precursors

    E-Print Network [OSTI]

    Shannon, Joe Dan

    1980-01-01T23:59:59.000Z

    EFFICIENCY OF ALUM COAGULATION FOR REMOUAL OF TRIHALOMETHANE PRECURSORS A Thesis by JOE DAN SHANNON Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... August 1980 Major Subject: Civil Engineering EFFICIENCY OF ALUM COAGULATION FOR REMOVAL OF TRIHALOMETHANE PRECURSORS A Thesis by JOE DAN SHANNON Approved as to style and content by: (Chairman of Committee) (Member) (Memb ) (Head of Department...

  7. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

    1997-12-16T23:59:59.000Z

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

  8. Inflatable containment diaphragm for sealing and removing stacks

    DOE Patents [OSTI]

    Meskanick, G.R.; Rosso, D.T.

    1993-04-13T23:59:59.000Z

    A diaphragm with an inflatable torus-shaped perimeter is used to seal at least one end of a stack so that debris that might be hazardous will not be released during removal of the stack. A diaphragm is inserted and inflated in the lower portion of a stack just above where the stack is to be cut such that the perimeter of the diaphragm expands and forms a seal against the interior surface of the stack.

  9. Microbial removal of no.sub.x from gases

    DOE Patents [OSTI]

    Sublette, Kerry L. (Tulsa, OK)

    1991-01-01T23:59:59.000Z

    Disclosed is a process by which a gas containing nitric oxide is contacted with an anaerobic microbial culture of denitrifying bacteria to effect the chemical reduction of the nitric oxide to elemental nitrogen. The process is particularly suited to the removal of nitric oxide from flue gas streams and gas streams from nitric acid plants. Thiobacillus dentrificians as well as other bacteria are disclosed for use in the process.

  10. Active Space Debris Removal using Capture and Ejection 

    E-Print Network [OSTI]

    Missel, Jonathan William

    2013-04-25T23:59:59.000Z

    object as well as its launch vehicle and parts thereof." Based on this de ni- tion, space debris are uncontrolled space objects serving no function, such as expired satellites, jettisoned components, and collision shrapnel. Traveling at speeds around.... Many alternative proposals to remove space debris have been made: laser impingement [5], ground-based laser design \\Project Orion" [3], ion guns [4], remote vehicles that capture debris and return to a central station [6], passively intercepting...

  11. Removable, hermetically-sealing, filter attachment system for hostile environments

    DOE Patents [OSTI]

    Mayfield, Glenn L [Richland, WA

    1983-01-01T23:59:59.000Z

    A removable and reusable filter attachment system. A filter medium is fixed o, and surrounded by, a filter frame having a coaxial, longitudinally extending, annular rim. The rim engages an annular groove which surrounds the opening of a filter housing. The annular groove contains a fusible material and a heating mechanism for melting the fusible material. Upon resolidifying, the fusible material forms a hermetic bond with the rim and groove. Remelting allows detachment and replacement of the filter frame.

  12. Nitrogen removal from natural gas using two types of membranes

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Wijmans, Johannes G.; Da Costa, Andre R.

    2003-10-07T23:59:59.000Z

    A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using methane-selective membranes for the first stage and nitrogen-selective membranes for the second stage. The process enables the nitrogen content of the gas to be substantially reduced, without requiring the membranes to be operated at very low temperatures.

  13. Active Space Debris Removal using Capture and Ejection

    E-Print Network [OSTI]

    Missel, Jonathan William

    2013-04-25T23:59:59.000Z

    object as well as its launch vehicle and parts thereof." Based on this de ni- tion, space debris are uncontrolled space objects serving no function, such as expired satellites, jettisoned components, and collision shrapnel. Traveling at speeds around.... Many alternative proposals to remove space debris have been made: laser impingement [5], ground-based laser design \\Project Orion" [3], ion guns [4], remote vehicles that capture debris and return to a central station [6], passively intercepting...

  14. Superfund fact sheet: The removal program. Fact sheet

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    The fact sheet describes the Superfund Emergency Response Program, a program specifically designed to respond to multi-media hazardous materials accidents (e.g. illegal disposal or improper handling of materials, transportation accidents, chemical fires) that endanger people and/or the environment. Explanations of how the removal program works and how the affected communities are involved are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no scientific training.

  15. EA-1728: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIXKahuku Wind Power, LLC,Finding of No Significant

  16. EA-1752: Finding of No Significant Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrewFinding of No Significant Impact6:EA-1752: Finding

  17. EA-1752: Finding of No Significant Impact | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal NuclearofCommunication |DoesFinding of No Significant

  18. BOA: Pipe-asbestos insulation removal robot system

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.; Mutschler, E. [and others

    1995-12-31T23:59:59.000Z

    This paper describes the BOA system, a mobile pipe-external crawler used to remotely strip and bag (possibly contaminated) asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations across the DOE weapons complex. The mechanical removal of ACLIM is very cost-effective due to the relatively low productivity and high cost involved in human removal scenarios. BOA, a mechanical system capable of removing most forms of lagging (paper, plaster, aluminum sheet, clamps, screws and chicken-wire), and insulation (paper, tar, asbestos fiber, mag-block) uses a circular cutter and compression paddles to cut and strip the insulation off the pipe through compression, while a HEPA-filter and encapsulant system maintain a certifiable vacuum and moisture content inside the system and on the pipe, respectively. The crawler system has been built and is currently undergoing testing. Key design parameters and performance parameters are developed and used in performance testing. Since the current system is a testbed, we also discuss future enhancements and outline two deployment scenarios (robotic and manual) for the final system to be designed and completed by the end of FY `95. An on-site demonstration is currently planned for Fernald in Ohio and Oak Ridge in Tennessee.

  19. Method for removing oxide contamination from silicon carbide powders

    DOE Patents [OSTI]

    Brynestad, J.; Bamberger, C.E.

    1984-08-01T23:59:59.000Z

    The described invention is directed to a method for removing oxide contamination in the form of oxygen-containing compounds such as SiO/sub 2/ and B/sub 2/O/sub 3/ from a charge of finely divided silicon carbide. The silicon carbide charge is contacted with a stream of hydrogen fluoride mixed with an inert gas carrier such as argon at a temperature in the range of about 200/sup 0/ to 650/sup 0/C. The oxides in the charge react with the heated hydrogen fluoride to form volatile gaseous fluorides such as SiF/sub 4/ and BF/sub 3/ which pass through the charge along with unreacted hydrogen fluoride and the carrier gas. Any residual gaseous reaction products and hydrogen fluoride remaining in the charge are removed by contacting the charge with the stream of inert gas which also cools the powder to room temperature. The removal of the oxygen contamination by practicing the present method provides silicon carbide powders with desirable pressing and sintering characteristics. 1 tab.

  20. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.

    2013-09-30T23:59:59.000Z

    This report fulfills the M2 milestone M2FT-13PN0912022, “Stranded Sites De-Inventorying Report.” In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America’s Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

  1. The thief process for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Freeman, M.C.; Hargis, R.A.; O'Dowd, W.J.; Pennline, H.W.

    2007-09-01T23:59:59.000Z

    The Thief Process is a cost-effective variation to activated carbon injection (ACI) for removal of mercury from flue gas. In this scheme, partially combusted coal from the furnace of a pulverized coal power generation plant is extracted by a lance and then re-injected into the ductwork downstream of the air preheater. Recent results on a 500-lb/h pilot-scale combustion facility show similar removals of mercury for both the Thief Process and ACI. The tests conducted to date at laboratory, bench, and pilot-scales demonstrate that the Thief sorbents exhibit capacities for mercury from flue gas streams that are comparable to those exhibited by commercially available activated carbons. A patent for the process was issued in February 2003. The Thief sorbents are cheaper than commercially-available activated carbons; exhibit excellent capacities for mercury; and the overall process holds great potential for reducing the cost of mercury removal from flue gas. The Thief Process was licensed to Mobotec USA, Inc. in May of 2005.

  2. Cesium removal using crystalline silicotitanate. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    Approximately 100 million gallons of radioactive waste is stored in underground storage tanks at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation, and Savannah River Site (SRS). Most of the radioactivity comes from {sup 137}Cs, which emits high-activity gamma radiation. The Cesium Removal System is a modular, transportable, ion-exchange system configured as a compact processing unit. Liquid tank waste flows through columns packed with solid material, called a sorbent, that selectively adsorbs cesium and allows the other materials to pass through. The sorbent is crystalline silicotitanate (CST), an engineered material with a high capacity for sorbing cesium from alkaline wastes. The Cesium Removal System was demonstrated at Oak Ridge using Melton Valley Storage Tank (MVST) waste for feed. Demonstration operations began in September 1996 and were completed during June 1997. Prior to the demonstration, a number of ion-exchange materials were evaluated at Oak Ridge with MVST waste. Also, three ion-exchange materials and three waste types were tested at Hanford. These bench-scale tests were conducted in a hot cell. Hanford's results showed that 300 times less sorbent was used by selecting Ionsiv IE-911 over organic ion-exchange resins for cesium removal. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues and lessons learned.

  3. Ammonia removal process upgrade to the Acme Steel Coke Plant

    SciTech Connect (OSTI)

    Harris, J.L. [Acme Steel Co., Chicago, IL (United States). Chicago Coke Plant

    1995-12-01T23:59:59.000Z

    The need to upgrade the ammonia removal process at the Acme Steel Coke Plant developed with the installation of the benzene NESHAP (National Emission Standard for Hazardous Air Pollutants) equipment, specifically the replacement of the final cooler. At Acme Steel it was decided to replace the existing open cooling tower type final cooler with a closed loop direct spray tar/water final cooler. This new cooler has greatly reduced the emissions of benzene, ammonia, hydrogen sulfide and hydrogen cyanide to the atmosphere, bringing them into environmental compliance. At the time of its installation it was not fully recognized as to the effect this would have on the coke oven gas composition. In the late seventies the decision had been made at Acme Steel to stop the production of ammonia sulfate salt crystals. The direction chosen was to make a liquid ammonia sulfate solution. This product was used as a pickle liquor at first and then as a liquid fertilizer as more markets were developed. In the fall of 1986 the ammonia still was brought on line. The vapors generated from the operation of the stripping still are directed to the inlet of the ammonia absorber. At that point in time it was decided that an improvement to the cyclical ammonia removal process was needed. The improvements made were minimal yet allowed the circulation of solution through the ammonia absorber on a continuous basis. The paper describes the original batch process and the modifications made which allowed continuous removal.

  4. Process for off-gas particulate removal and apparatus therefor

    DOE Patents [OSTI]

    Carl, D.E.

    1997-10-21T23:59:59.000Z

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

  5. Process for off-gas particulate removal and apparatus therefor

    DOE Patents [OSTI]

    Carl, Daniel E. (Orchard Park, NY)

    1997-01-01T23:59:59.000Z

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector's centerline in proceeding toward the downstream side of the collector. Gasflow in the outer channel maintains the fluid on the channel's wall in the form of a "wavy film," while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator.

  6. Acid rain control strategists overlook dust removal benefits

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    Various strategies for controlling acid rain by reducing SO{sub 2} from existing utilities have failed to take into account the incidental particulate removal abilities of SO{sub 2} scrubbers. This has resulted in over-estimating the costs of acid rain control by 25% or more. This oversight has also caused utilities to invest in preliminary engineering of precipitator upgrades which will never have to be made if scrubbers are installed. While it seems inexplicable that a factor of this importance could have been overlooked by the industry, it is because of the unique situation in old U.S. utility power plants. These plants have relatively inefficient particulate control equipment which is not subject to new source performance standards. New power plants incorporate highly efficient particulate control devices so the ability of the downstream scrubbers to remove dust is irrelevant. The very small amount of particulate entering the scrubber from a highly efficient precipitator could be offset by escaping sulfate particles from a poorly operated scrubber. So an informal guideline was established to indicate that the scrubber had no overall effect on particulate emissions. The industry has generalized upon this guideline when, in fact, it only applies to new plants. The McIlvaine Company in its FGD Knowledge Network has thoroughly documented evidence that SO{sub 2} scrubbers will remove as much as 95% of the particulate being emitted from the relatively low efficiency precipitators operating on the nations existing coal-fired power plants.

  7. Formulation of substrate removal kinetics in multi-component aqueous systems

    E-Print Network [OSTI]

    Chaney, Ernest William

    1967-01-01T23:59:59.000Z

    : Or anic Component Analyses. . 44 14 Test J-a: Organic Component Analyses, . 15 Test J-b: Organic Component Analyses. . 16 Test K-c. 'Organic Component Analyses. . 51 53 59 17 Organic Substrate Added, Days 1-6. . 81 18 Organic Substrate Added, Days...: Removal of 1-pentanol 47 48 17 Test J-a: Organic Removal Analyses. . 52 18 Test J-b: Organic Removal Analyses. . . 54 19 Test J-b: Organic Removal Analyses. . 55 20 Test K-c- Organic Removal Analyses. . . 60 Comparison of Removal Patterns of I...

  8. HOTSPOTS OF CLIMATEDRIVEN INCREASES IN RESIDENTIAL

    E-Print Network [OSTI]

    . This paper provides reduced form estimates of changes in electricity consumption due to increased use to higher projections of electricity consumption. These increases in projected electricity consumption were: climate change, vulnerability, electricity consumption, heating, cooling Please use the following citation

  9. Bioenergy Research at BNL: Increasing Productivity Using

    E-Print Network [OSTI]

    Homes, Christopher C.

    Bioenergy Research at BNL: Increasing Productivity Using Biological Interactions Lee Newman With D consequences: ­ Price of corn has doubled ­ Farmers are planting more corn for ethanol · Increase alternative

  10. High-heat-flux removal by phase-change fluid and particulate flow

    SciTech Connect (OSTI)

    Gorbis, Z.R.; Raffray, A.R.; Abdou, M.A. (Univ. of California, Los Angeles (United States))

    1993-07-01T23:59:59.000Z

    A new concept based on particulate flow in which either or both the particulates and the fluid could undergo phase changes is proposed. The presence of particulates provides not only a mechanism for additional heat removal through phase change but also the potential for increasing the rate of heat transfer by enhancing convection through surface region/bulk [open quotes]mixing[close quotes], by enhancing radiation, particularly for high-temperature cases; and for the case of multiphase fluid, by enhancing the boiling process. One particularly interesting coolant system based on this concept is [open quotes]subcooled boiling water-ice particulate[close quotes] flow. A preliminary analysis of this coolant system is presented, the results of which indicate that such a coolant system is better applied for cooling of relatively small surface areas with high local heat fluxes, where a conventional cooling system would come short of providing the required heat removal at acceptable coolant pressure levels. 14 refs., 8 figs.

  11. Centrifugal accelerator, system and method for removing unwanted layers from a surface

    DOE Patents [OSTI]

    Foster, Christopher A. (Clinton, TN); Fisher, Paul W. (Heiskell, TN)

    1995-01-01T23:59:59.000Z

    A cryoblasting process having a centrifugal accelerator for accelerating frozen pellets of argon or carbon dioxide toward a target area utilizes an accelerator throw wheel designed to induce, during operation, the creation of a low-friction gas bearing within internal passages of the wheel which would otherwise retard acceleration of the pellets as they move through the passages. An associated system and method for removing paint from a surface with cryoblasting techniques involves the treating, such as a preheating, of the painted surface to soften the paint prior to the impacting of frozen pellets thereagainst to increase the rate of paint removal. A system and method for producing large quantities of frozen pellets from a liquid material, such as liquid argon or carbon dioxide, for use in a cryoblasting process utilizes a chamber into which the liquid material is introduced in the form of a jet which disintegrates into droplets. A non-condensible gas, such as inert helium or air, is injected into the chamber at a controlled rate so that the droplets freeze into bodies of relatively high density.

  12. Possible Pathways for Increasing Natural Gas Use for Transportation (Presentation)

    SciTech Connect (OSTI)

    Zigler, B.

    2014-10-01T23:59:59.000Z

    A collaborative partnership of DOE National Laboratories is working with DOE to identify critical RD&D needs to significantly increase the speed and breadth of NG uptake into the transportation sector. Drivers for increased utilization of natural gas for transportation are discussed. Key needs in research, development, and deployment are proposed, as well as possible pathways to address those needs. This presentation is intended to serve as a catalyst to solicit input from stakeholders regarding what technical areas they deem the most important.

  13. Recycling of cleach plant filtrates by electrodialysis removal of inorganic non-process elements.

    SciTech Connect (OSTI)

    Tsai, S. P.; Pfromm, P.; Henry, M. P.; Fracaro, A. T.; Swanstrom, C. P.; Moon, P.; Energy Systems; Inst. of Paper Science and Tech.

    2000-11-01T23:59:59.000Z

    Water use in the pulp and paper industry is very significant, and the U.S. pulp and paper industries as well as other processing industries are actively pursuing water conservation and pollution prevention by in-process recycling of water. Bleach plant effluent is a large portion of the water discharged from a typical bleached kraft pulp mill. The recycling of bleach plant effluents to the kraft recovery cycle is widely regarded as an approach to low effluent bleached kraft pulp production. The focus of this work has been on developing an electrodialysis process for recycling the acidic bleach plant effluent of bleached Kraft pulp mills. Electrodialysis is uniquely suited as a selective kidney to remove non-process elements (NPEs) from bleach plant effluent before they reach the chemical recovery cycle. Using electrodialysis for selective NPE removal can prevent the problems caused by accumulation of inorganic NPEs in the pulping cycle and recovery boiler. In this work, acidic bleach plant filtrates from three mills using different bleaching sequences based on chlorine dioxide were characterized. The analyses showed no fundamental differences in the inorganic NPE composition or other characteristics among these filtrates. The majority of total dissolved solids in the effluents were found to be inorganic NPEs. Chloride and nitrate were present at significant levels in all effluent samples. Sodium was the predominant metal ion, while calcium and magnesium were also present at considerable levels. The feasibility of using electrodialysis to selectively remove inorganic NPEs from the acidic bleach effluent was successfully demonstrated in laboratory experiments with effluents from all these three mills. Although there were some variations in these effluents, chloride and potentially harmful cations, such as potassium, calcium, and magnesium, were removed efficiently from the bleach effluents into a small-volume, concentrated purge stream. This effective removal of inorganic NPEs can enable the mills to recycle bleach effluents to reduce water consumption. The electrodialysis process also effectively retained up to 98% of the organics and can reduce the organic discharge in the mill wastewater. By using suitable commercially available electrodialysis membranes, there were no indications of rapid or irreversible membrane fouling or scale formation, even in extended laboratory scale operations up to 100 hours. Results of laboratory experiments also showed that commercially available membranes properly selected for this process would have good stability to withstand the potentially oxidative conditions of the filtrate. A pilot-scale field demonstration was also conducted at a southern mill, using the D0 filtrate from the bleach plant. During the field demonstration we found serious membrane 2 stack clogging problems, which apparently were caused by fine fibers that escaped through the 5-micron pre-filters, although such a pre-filtration method had been satisfactory in the laboratory tests. Additional R&D is recommended to address this pre-filtration or clogging issue with systems approaches integrating pre-filtration, other separation methods, and stack design. After the pre-filtration/clogging issue is overcome, laboratory development and pilot demonstration are recommended to optimize the process parameters and to evaluate the long-term process parameters. The key technical issues here include membrane lives, control and mitigation of fouling and scaling, and cleaning-in-place protocols. From the data collected in this work, a preliminary process design and economic evaluations were performed for a model mill with 1,000-ton/day pulp production that uses a bleaching sequence based on chlorine dioxide. Assuming 3 m{sup 3} acidic effluents to be treated per ton of pulp produced, the electrodialysis process would require a membrane area of about 361 m{sup 2} for this model mill. The energy consumption of the electrodialytic stack for separation is estimated to be about $160/day, and the estimated capital cost of the electrodia

  14. Chemical Addition prior to Membrane Processes for Natural Organic Matter (NOM) Removal 

    E-Print Network [OSTI]

    Schäfer, Andrea; Fane, Anthony G.; Waite, T. D.

    1998-01-01T23:59:59.000Z

    Membrane processes for surface water treatment include microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF), depending on the target material to be removed and the limiting process economics. MF will remove ...

  15. SOFC Ohmic Resistance Reduction by HCl-Induced Removal of Manganese...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOFC Ohmic Resistance Reduction by HCl-Induced Removal of Manganese at the AnodeElectrolyte Interface. SOFC Ohmic Resistance Reduction by HCl-Induced Removal of Manganese at the...

  16. Contaminant Stratigraphy of the Ballville Reservoir, Sandusky River, NW Ohio: Implications for Dam Removal

    E-Print Network [OSTI]

    Gottgens, Hans

    . Removal of the dam would require dredging or release downstream of 0.35 million m3 of sedi- ment to re for keeping the dam. Reasons to remove a dam might include economic obsolescence, safety issues, costs

  17. Notice of Asbestos-Containing Material (ACM) Removal Request for Correction of Online ACM Inventory

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Inventory This form is to be completed for all asbestos abatement/removal work at the University of Maryland and type of material removed -as listed on DES inventory. (Indicate "NPL" ­ if described material is "not

  18. 324 Building spent fuel segments pieces and fragments removal summary report

    SciTech Connect (OSTI)

    SMITH, C L

    2003-01-09T23:59:59.000Z

    As part of the 324 Building Deactivation Project, all Spent Nuclear Fuel (SNF) and Special Nuclear Material were removed. The removal entailed packaging the material into a GNS-12 cask and shipping it to the Central Waste Complex (CWC).

  19. Proton Delivery and Removal in [Ni(PR2NR?2)2]2+ Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delivery and Removal in Ni(PR2NR?2)22+ Hydrogen Production and Oxidation Catalysts. Proton Delivery and Removal in Ni(PR2NR?2)22+ Hydrogen Production and Oxidation...

  20. Oil removal for produced water treatment and micellar cleaning of ultrafiltration membranes

    E-Print Network [OSTI]

    Beech, Scott Jay

    2006-10-30T23:59:59.000Z

    turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be useful as one of the first steps in purifying the water. Membrane cleaning of produced water...