National Library of Energy BETA

Sample records for remove sulfur species

  1. Continuous sulfur removal process

    DOE Patents [OSTI]

    Jalan, V.; Ryu, J.

    1994-04-26

    A continuous process for the removal of hydrogen sulfide from a gas stream using a membrane comprising a metal oxide deposited on a porous support is disclosed. 4 figures.

  2. Process for removing sulfur from sulfur-containing gases

    DOE Patents [OSTI]

    Rochelle, Gary T.; Jozewicz, Wojciech

    1989-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accorda The government may own certain rights in the present invention pursuant to EPA Cooperative Agreement CR 81-1531.

  3. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, T.; Squires, T.G.; Venier, C.G.

    1983-08-11

    A process is disclosed for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  4. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, Tetsuo; Squires, Thomas G.; Venier, Clifford G.

    1985-02-05

    A process for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  5. Method of removal of sulfur from coal and petroleum products

    DOE Patents [OSTI]

    Verkade, John G.; Mohan, Thyagarajan; Angelici, Robert J.

    1995-01-01

    A method for the removal of sulfur from sulfur-bearing materials such as coal and petroleum products using organophosphine and organophosphite compounds is provided.

  6. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    DOE Patents [OSTI]

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  7. Removal of sulfur compounds from combustion product exhaust

    DOE Patents [OSTI]

    Cheng, Dah Y.

    1982-01-01

    A method and device are disclosed for removing sulfur containing contaminents from a combustion product exhaust. The removal process is carried out in two stages wherein the combustion product exhaust is dissolved in water, the water being then heated to drive off the sulfur containing contaminents. The sulfur containing gases are then resolublized in a cold water trap to form a concentrated solution which can then be used as a commercial product.

  8. Process for removing pyritic sulfur from bituminous coals

    DOE Patents [OSTI]

    Pawlak, Wanda; Janiak, Jerzy S.; Turak, Ali A.; Ignasiak, Boleslaw L.

    1990-01-01

    A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

  9. SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-07-03

    longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm the effectiveness of the sorbents tested over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP, Unit 3, and the second test was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant testing provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. This report presents the results from those long-term tests. The tests determined the effectiveness of injecting commercially available magnesium hydroxide slurry (Gavin Plant) and byproduct magnesium hydroxide slurry (both Gavin Plant and BMP) for sulfuric acid control. The results show that injecting either slurry could achieve up to 70 to 75% overall sulfuric acid removal. At BMP, this overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NOX control than at removing SO{sub 3} formed in the furnace. The long-term tests also determined balance-of-plant impacts from slurry injection during the two tests. These include impacts on boiler back-end temperatures and pressure drops, SCR catalyst properties, ESP performance, removal of other flue gas species, and flue gas opacity. For the most part the balance-of-plant impacts were neutral to positive, although adverse effects on ESP performance became an issue during the BMP test.

  10. Method for removing sulfur oxides from a hot gas

    SciTech Connect (OSTI)

    Morris, W.P.; Hurst, T.B.

    1984-06-05

    An improved method for removing sulfur oxides from a hot gas by introducing the gas into a first compartment of a spray drying reactor chamber for settleable particulate removal, by then directing the gas to a second compartment of the reactor chamber wherein the gas is contacted with an atomized alkali slurry for sulfur oxide removal by formation of a dry mixture of sulfite and sulfate compounds, by removing a portion of the dry mixture from the gas in the second compartment and by passing the gas from the second compartment to a dry particle collection zone for removal of substantially all of the remaining gas entrained dry mixture.

  11. Removal of sulfur contaminants in methanol for fuel cell applications

    SciTech Connect (OSTI)

    Lee, S.H.D.; Kumar, R.; Sederquist, R.

    1996-12-31

    Fuel cell power plants are being developed for transit bus and passenger car applications that use methanol as the on-board fuel. Commodity methanol by itself contains very little sulfur; however, it may occasionally be contaminated with up to about 1% diesel fuel or gasoline in current liquid-fuel distribution systems, leading to the presence of sulfur in the methanol fuel. This sulfur must be removed because of its deleterious effect on the reforming catalysts. International Fuel Cells has set the allowable sulfur limit in the methanol fuel at less than 1 ppm. The equilibrium adsorption isotherm and breakthrough data were used to assess the feasibility of developing a granular activated carbon adsorber for the removal of sulfur from transportation fuel cell systems.

  12. Sulfur removal and comminution of carbonaceous material

    DOE Patents [OSTI]

    Narain, Nand K.; Ruether, John A.; Smith, Dennis N.

    1988-01-01

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product.

  13. Sulfur removal and comminution of carbonaceous material

    DOE Patents [OSTI]

    Narain, N.K.; Ruether, J.A.; Smith, D.N.

    1987-10-07

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product. 2 figs.

  14. Process for removal of sulfur compounds from fuel gases

    DOE Patents [OSTI]

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  15. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    DOE Patents [OSTI]

    Rochelle, Gary T.; Chang, John C. S.

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  16. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    SciTech Connect (OSTI)

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  17. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOE Patents [OSTI]

    Joubert, James I.

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  18. A solvent system to provide selective removal of sulfur compounds

    SciTech Connect (OSTI)

    Pearce, R.L.; Bacon, T.R.

    1986-01-01

    Energy costs and SRU inefficiencies resulting from utilization of low strength MEA technology induced a large refinery to convert to MDEA. One of the seven product streams being treated required extremely low carbonyl sulfide in the treated product. This required careful consideration in making the decision to convert. However, the conclusions were that the advantages outweighed the disadvantages. When the initial converted operations verified a need to improve the carbonyl sulfide removal, GAS/SPEC Tech Service produced an innovative solution which allowed for efficient operation at acceptable COS specification, lower energy utilization, reduced solvent losses, and improved sulfur recovery unit operation.

  19. Removal of nitrogen and sulfur from oil-shale

    SciTech Connect (OSTI)

    Olmstead, W.N.

    1986-01-28

    This patent describes a process for enhancing the removal of nitrogen and sulfur from oil-shale. The process consists of: (a) contacting the oil-shale with a sufficient amount of an aqueous base solution comprised of at least a stoichiometric amount of one or more alkali metal or alkaline-earth metal hydroxides based on the total amount of nitrogen and sulfur present in the oil-shale. Also necessary is an amount sufficient to form a two-phase liquid, solid system, a temperature from about 50/sup 0/C to about 350/sup 0/C., and pressures sufficient to maintain the solution in liquid form; (b) separating the effluents from the treated oil-shale, wherein the resulting liquid effluent contains nitrogen moieties and sulfur moieties from the oil-shale and any resulting gaseous effluent contains nitrogen moieties from the oil-shale, and (c) converting organic material of the treated oil-shale to shale-oil at a temperature from about 450/sup 0/C to about 550/sup 0/C.

  20. Process and system for removing sulfur from sulfur-containing gaseous streams

    DOE Patents [OSTI]

    Basu, Arunabha; Meyer, Howard S.; Lynn, Scott; Leppin, Dennis; Wangerow, James R.

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  1. Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases

    DOE Patents [OSTI]

    Clay, David T.; Lynn, Scott

    1976-10-19

    A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

  2. SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS

    SciTech Connect (OSTI)

    King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

    2003-11-21

    Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

  3. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1984-06-19

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  4. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1982-07-07

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  5. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, John E.; Jalan, Vinod M.

    1984-01-01

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  6. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOE Patents [OSTI]

    Walker, Richard J.

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  7. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  8. Study on removal of organic sulfur compound by modified activated carbon

    SciTech Connect (OSTI)

    Fan Huiling; Li Chunhu; Guo Hanxian [Taiyuan Univ. of Technology (China). Research Inst. for Chemical Engineering of Coal

    1997-12-31

    With the price of coal increasing in China, more and more small and medium scale chemical plants are turning to high sulfur coal as the raw material in order to cut cost. However, the major drawback is that the lifetime of the ammonia synthesis catalyst is then reduced greatly because of the high concentration of the sulfur compounds in the synthesis gas, especially organic sulfur, usually CS{sub 2} and COS. The effects of water vapor and experimental temperature on removal of organic sulfur compounds by using a modified activated carbon were studied in this paper. It was found that water vapor had a negative effect on removal of carbon disulfide by activated carbon impregnated with organic amine. The use of activated carbon impregnated with K{sub 2}CO{sub 3} for removal of carbonyl sulfide was also investigated over the temperature range 30--60, the results show a favorable temperature (40) existing for carbonyl sulfide removal. Fixed-bed breakthrough curves for the adsorbent bed were also offered in this paper.

  9. Low-quality natural gas sulfur removal/recovery

    SciTech Connect (OSTI)

    Damon, D.A.; Siwajek, L.A.; Klint, B.W.

    1993-12-31

    Low quality natural gas processing with the integrated CFZ/CNG Claus process is feasible for low quality natural gas containing 10% or more of CO{sub 2}, and any amount of H{sub 2}S. The CNG Claus process requires a minimum CO{sub 2} partial pressure in the feed gas of about 100 psia (15% CO{sub 2} for a 700 psia feed gas) and also can handle any amount of H{sub 2}S. The process is well suited for handling a variety of trace contaminants usually associated with low quality natural gas and Claus sulfur recovery. The integrated process can produce high pressure carbon dioxide at purities required by end use markets, including food grade CO{sub 2}. The ability to economically co-produce high pressure CO{sub 2} as a commodity with significant revenue potential frees process economic viability from total reliance on pipeline gas, and extends the range of process applicability to low quality gases with relatively low methane content. Gases with high acid gas content and high CO{sub 2} to H{sub 2}S ratios can be economically processed by the CFZ/CNG Claus and CNG Claus processes. The large energy requirements for regeneration make chemical solvent processing prohibitive. The cost of Selexol physical solvent processing of the LaBarge gas is significantly greater than the CNG/CNG Claus and CNG Claus processes.

  10. Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process

    SciTech Connect (OSTI)

    Klint, V.W.; Dale, P.R.; Stephenson, C.

    1997-10-01

    Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) process for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus

  11. Low-quality natural gas sulfur removal/recovery

    SciTech Connect (OSTI)

    K. Amo; R.W. Baker; V.D. Helm; T. Hofmann; K.A. Lokhandwala; I. Pinnau; M.B. Ringer; T.T. Su; L. Toy; J.G. Wijmans

    1998-01-29

    A significant fraction of U.S. natural gas reserves are subquality due to the presence of acid gases and nitrogen; 13% of existing reserves (19 trillion cubic feed) may be contaminated with hydrogen sulfide. For natural gas to be useful as fuel and feedstock, this hydrogen sulfide has to be removed to the pipeline specification of 4 ppm. The technology used to achieve these specifications has been amine, or similar chemical or physical solvent, absorption. Although mature and widely used in the gas industry, absorption processes are capital and energy-intensive and require constant supervision for proper operation. This makes these processes unsuitable for treating gas at low throughput, in remote locations, or with a high concentration of acid gases. The U.S. Department of Energy, recognizes that exploitation of smaller, more sub-quality resources will be necessary to meet demand as the large gas fields in the U.S. are depleted. In response to this need, Membrane Technology and Research, Inc. (MTR) has developed membranes and a membrane process for removing hydrogen sulfide from natural gas. During this project, high-performance polymeric thin-film composite membranes were brought from the research stage to field testing. The membranes have hydrogen sulfide/methane selectivities in the range 35 to 60, depending on the feed conditions, and have been scaled up to commercial-scale production. A large number of spiral-wound modules were manufactured, tested and optimized during this project, which culminated in a field test at a Shell facility in East Texas. The short field test showed that membrane module performance on an actual natural gas stream was close to that observed in the laboratory tests with cleaner streams. An extensive technical and economic analysis was performed to determine the best applications for the membrane process. Two areas were identified: the low-flow-rate, high-hydrogen-sulfide-content region and the high-flow-rate, high

  12. Method of removing sulfur emissions from a fluidized-bed combustion process

    DOE Patents [OSTI]

    Vogel, Gerhard John; Jonke, Albert A.; Snyder, Robert B.

    1978-01-01

    Alkali metal or alkaline earth metal oxides are impregnated within refractory support material such as alumina and introduced into a fluidized-bed process for the combustion of coal. Sulfur dioxide produced during combustion reacts with the metal oxide to form metal sulfates within the porous support material. The support material is removed from the process and the metal sulfate regenerated to metal oxide by chemical reduction. Suitable pore sizes are originally developed within the support material by heat-treating to accommodate both the sulfation and regeneration while still maintaining good particle strength.

  13. Low Temperature Sorbents for Removal of Sulfur Compounds from Fluid Feed Streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani

    2004-06-01

    A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

  14. H[sub 2]S-removal and sulfur-recovery processes using metal salts

    SciTech Connect (OSTI)

    Lynn, S.; Cairns, E.J.

    1992-01-01

    Scrubbing a sour gas stream with a solution of copper sulfate allows the clean-up temperature to be increased from ambient to the adiabatic saturation temperature of the gas. The copper ion in solution reacts with the H[sub 2]S to produce insoluble CuS. The choice of copper sulfate was set by the very low solubility of CuS and the very rapid kinetics of the Cus formation. Since the copper sulfate solutions used are acidic, CO[sub 2] will not be co-absorbed. In a subsequent step the solid CuS is oxidized by a solution of ferric sulfate. The copper sulfate is regenerated, and elemental sulfur is formed together with ferrous sulfate. The ferrous sulfate is reoxidized to ferric sulfate using air. Since the copper sulfate and ferric solutions are regenerated, the overall reaction in this process is the oxidation of hydrogen sulfide with oxygen to form sulfur. The use of copper sulfate has the further advantage that the presence of sulfuric acid, even as concentrated as 1 molar, does not inhibit the sorption of H[sub 2]S. Furthermore, the absorption reaction remains quite favorable thermodynamically over the temperature range of interest. Because the reaction goes to completion, only a single theoretical stage is required for complete H[sub 2]S removal and cocurrent gas/liquid contacting may be employed. The formation of solids precludes the use of a packed column for the contacting device. However, a venturi scrubber would be expected to perform satisfactorily. The kinetics of the oxidation of metal sulfides, in particular zinc and copper sulfide, is reported in the literature to be slow at near-ambient temperatures. The proposed process conditions for the oxidation step are different from those reported in the literature, most notably the higher temperature. The kinetics of the reaction must be studied at high temperatures and corresponding pressures. An important goal is to obtain sulfur of high purity, which is a salable product.

  15. H{sub 2}S-removal and sulfur-recovery processes using metal salts

    SciTech Connect (OSTI)

    Lynn, S.; Cairns, E.J.

    1992-11-01

    Scrubbing a sour gas stream with a solution of copper sulfate allows the clean-up temperature to be increased from ambient to the adiabatic saturation temperature of the gas. The copper ion in solution reacts with the H{sub 2}S to produce insoluble CuS. The choice of copper sulfate was set by the very low solubility of CuS and the very rapid kinetics of the Cus formation. Since the copper sulfate solutions used are acidic, CO{sub 2} will not be co-absorbed. In a subsequent step the solid CuS is oxidized by a solution of ferric sulfate. The copper sulfate is regenerated, and elemental sulfur is formed together with ferrous sulfate. The ferrous sulfate is reoxidized to ferric sulfate using air. Since the copper sulfate and ferric solutions are regenerated, the overall reaction in this process is the oxidation of hydrogen sulfide with oxygen to form sulfur. The use of copper sulfate has the further advantage that the presence of sulfuric acid, even as concentrated as 1 molar, does not inhibit the sorption of H{sub 2}S. Furthermore, the absorption reaction remains quite favorable thermodynamically over the temperature range of interest. Because the reaction goes to completion, only a single theoretical stage is required for complete H{sub 2}S removal and cocurrent gas/liquid contacting may be employed. The formation of solids precludes the use of a packed column for the contacting device. However, a venturi scrubber would be expected to perform satisfactorily. The kinetics of the oxidation of metal sulfides, in particular zinc and copper sulfide, is reported in the literature to be slow at near-ambient temperatures. The proposed process conditions for the oxidation step are different from those reported in the literature, most notably the higher temperature. The kinetics of the reaction must be studied at high temperatures and corresponding pressures. An important goal is to obtain sulfur of high purity, which is a salable product.

  16. Manganese and Ceria Sorbents for High Temperature Sulfur Removal from Biomass-Derived Syngas -- The Impact of Steam on Capacity and Sorption Mode

    SciTech Connect (OSTI)

    Cheah, S.; Parent, Y. O.; Jablonski, W. S.; Vinzant, T.; Olstad, J. L.

    2012-07-01

    Syngas derived from biomass and coal gasification for fuel synthesis or electricity generation contains sulfur species that are detrimental to downstream catalysts or turbine operation. Sulfur removal in high temperature, high steam conditions has been known to be challenging, but experimental reports on methods to tackle the problem are not often reported. We have developed sorbents that can remove hydrogen sulfide from syngas at high temperature (700 C), both in dry and high steam conditions. The syngas composition chosen for our experiments is derived from statistical analysis of the gasification products of wood under a large variety of conditions. The two sorbents, Cu-ceria and manganese-based, were tested in a variety of conditions. In syngas containing steam, the capacity of the sorbents is much lower, and the impact of the sorbent in lowering H{sub 2}S levels is only evident in low space velocities. Spectroscopic characterization and thermodynamic consideration of the experimental results suggest that in syngas containing 45% steam, the removal of H{sub 2}S is primarily via surface chemisorptions. For the Cu-ceria sorbent, analysis of the amount of H{sub 2}S retained by the sorbent in dry syngas suggests both copper and ceria play a role in H{sub 2}S removal. For the manganese-based sorbent, in dry conditions, there is a solid state transformation of the sorbent, primarily into the sulfide form.

  17. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOE Patents [OSTI]

    Cohen, M.R.; Gal, E.

    1993-04-13

    A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.

  18. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    DOE Patents [OSTI]

    Cohen, Mitchell R.; Gal, Eli

    1993-01-01

    A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.

  19. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    SciTech Connect (OSTI)

    Zanfir, Monica; Solunke, Rahul; Shah, Minish

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon's catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full

  20. Synergistic capture mechanisms for alkali and sulfur species from combustion. Final report

    SciTech Connect (OSTI)

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Mwabe, P.O.

    1994-02-01

    Experimental work was carried out on a 17 kW, 600 cm long, gas laboratory combustor, to investigate the post flame reactive capture of alkali species by kaolinite. Emphasis was on alkali/sorbent interactions occurring in flue gas at temperatures above the alkali dewpoint and on the formation of water insoluble reaction products. Time-temperature studies were carried out by injecting kaolinite at different axial points along the combustor. The effect of chlorine and sulfur on alkali capture was investigated by doping the flame with SO{sub 2} and Cl{sub 2} gases to simulate coal flame environments. Particle time and temperature history was kept as close as possible to that which would ordinarily be found in a practical boiler. Experiments designed to extract apparent initial reaction rates were carried using a narrow range, 1-2 {mu}m modal size sorbent, while, a coarse, multi size sorbent was used to investigate the governing transport mechanisms. The capture reaction has been proposed to be between alkali hydroxide and activated kaolinite, and remains so in the presence of sulfur and chlorine. The presence of sulfur reduces sodium capture by under 10% at 1300{degree}C. Larger reductions at lower temperatures are attributed to the elevated dewpoint of sodium ({approximately}850{degree}C) with subsequent reduction in sorbent residence time in the alkali gas phase domain. Chlorine reduces sodium capture by 30% across the temperature range covered by the present experiments. This result has been linked to thermodynamic equilibria between sodium hydroxide, sodium chloride and water.

  1. Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report

    SciTech Connect (OSTI)

    Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S.

    1989-04-28

    This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

  2. Low-quality natural gas sulfur removal/recovery: Task 2. Topical report, September 30, 1992--August 29, 1993

    SciTech Connect (OSTI)

    Cook, W.J.; Neyman, M.; Brown, W.; Klint, B.W.; Kuehn, L.; O`Connell, J.; Paskall, H.; Dale, P.

    1993-08-01

    The primary purpose of this Task 2 Report is to present conceptual designs developed to treat a large portion of proven domestic natural gas reserves which are low quality. The conceptual designs separate hydrogen sulfide and large amounts of carbon dioxide (>20%) from methane, convert hydrogen sulfide to elemental sulfur, produce a substantial portion of the carbon dioxide as EOR or food grade CO{sub 2}, and vent residual CO{sub 2} virtually free of contaminating sulfur containing compounds. A secondary purpose of this Task 2 Report is to review existing gas treatment technology and identify existing commercial technologies currently used to treat large volumes of low quality natural gas with high acid content. Section II of this report defines low quality gas and describes the motivation for seeking technology to develop low quality gas reserves. The target low quality gas to be treated with the proposed technology is identified, and barriers to the production of this gas are reviewed. Section III provides a description of the Controlled Freeze Zone (CFG)-CNG technologies, their features, and perceived advantages. The three conceptual process designs prepared under Task 2 are presented in Section IV along with the design basis and process economics. Section V presents an overview of existing gas treatment technologies, organized into acid gas removal technology and sulfur recovery technology.

  3. Doped carbon-sulfur species nanocomposite cathode for Li--S batteries

    SciTech Connect (OSTI)

    Wang, Donghai; Xu, Tianren; Song, Jiangxuan

    2015-12-29

    We report a heteroatom-doped carbon framework that acts both as conductive network and polysulfide immobilizer for lithium-sulfur cathodes. The doped carbon forms chemical bonding with elemental sulfur and/or sulfur compound. This can significantly inhibit the diffusion of lithium polysulfides in the electrolyte, leading to high capacity retention and high coulombic efficiency.

  4. Method and system for the removal of oxides of nitrogen and sulfur from combustion processes

    DOE Patents [OSTI]

    Walsh, John V.

    1987-12-15

    A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.

  5. Henry`s law solubilities and Setchenow coefficients for biogenic reduced sulfur species obtained from gas-liquid uptake measurements

    SciTech Connect (OSTI)

    De Bruyn, W.J.; Swartz, E.; Hu, J.H. [Boston College, Chestnut Hill, MA (United States)] [and others] [Boston College, Chestnut Hill, MA (United States); and others

    1995-04-20

    Biogenically produced reduced sulfur compounds, including dimethylsulfide (DMS, CH{sub 3}SCH{sub 3}), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}SH), and carbonyl sulfide (OCS), are a major source of sulfur in the marine atmosphere. This source is estimated to contribute 25-40% of global sulfur emissions. These species and their oxidation products, dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}), and methane sulfonic acid (MSA), dominate the production of aerosol and cloud condensation nuclei (CCN) in the clean marine atmosphere. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion-produced sulfur oxides over the oceans. Using a newly developed bubble column apparatus, a series of aqueous phase uptake studies have been completed for the reduced sulfur species DMS, H{sub 2}S, CS{sub 2}, CH{sub 3}SH, and OCS. Aqueous phase uptake has been studied as a function of temperature (278-298 K), pH (1-14), H{sub 2}O{sub 2} concentration (0-1 M), NaCl concentration (0-5 M), and (NH{sub 4}){sub 2}SO{sub 4} concentration (0-4 M). The Henry`s law coefficients for CH{sub 3}SH and CS{sub 2} were determined for the first time, as were the Setchenow coefficients for all the species studied. 33 refs., 8 figs., 2 tabs.

  6. Effects of reactive element additions and sulfur removal on the oxidation behavior of FECRAL alloys

    SciTech Connect (OSTI)

    Stasik, M.C.; Pettit, F.S.; Meier, G.H. . Dept. of Materials Science and Engineering); Ashary, A. ); Smialek, J.L. )

    1994-12-15

    The results of this study have shown that desulfurization of FeCrAl alloys by hydrogen annealing can result in improvements in cyclic oxidation comparable to that achieved by doping with reactive elements. Moreover, specimens of substantial thicknesses can be effectively desulfurized because of the high diffusivity of sulfur in bcc iron alloys. The results have also shown that there is less stress generation during the cyclic oxidation of Y-doped FeCrAl compared to Ti-doped or desulfurized FeCrAl. This indicates that the growth mechanism, as well as the strength of the oxide/alloy interface, influences the ultimate oxidation morphology and stress state which will certainly affect the length of time the alumina remains protective.

  7. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    SciTech Connect (OSTI)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  8. Electrokinetic removal of charged contaminant species from soil and other media using moderately conductive adsorptive materials

    DOE Patents [OSTI]

    Lindgren, Eric R.; Mattson, Earl D.

    2001-01-01

    Method for collecting and concentrating charged species, specifically, contaminant species in a medium, preferably soil. The method utilizes electrokinesis to drive contaminant species into and through a bed adjacent to a drive electrode. The bed comprises a moderately electrically conductive adsorbent material which is porous and is infused with water or other solvent capable of conducting electrical current. The bed material, preferably activated carbon, is easily removed and disposed of. Preferably, where activated carbon is used, after contaminant species are collected and concentrated, the mixture of activated carbon and contaminant species is removed and burned to form a stable and easily disposable waste product.

  9. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    DOE Patents [OSTI]

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  10. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    SciTech Connect (OSTI)

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  11. Comparison of thermodynamics of nitrogen and sulfur removal in heavy oil upgrading: Part 1, Acyclic and monocyclic compounds

    SciTech Connect (OSTI)

    Steele, W.V.; Archer, D.G.; Chirico, R.D.; Strube, M.M.

    1989-06-01

    This report is the first in a series detailing the equilibrium thermodynamics associated with hydrodesulfurization and hydrodenitrogenation reactions for organic compounds present as contaminants in crude fossil fuels. In this report acyclic and monocyclic aromatic and nonaromatic compounds are considered. Results for nitrogen and sulfur compounds are compared and contrasted using available thermodynamic data from the literature. Details of all calculations are provided, and all data sources are documented. 38 refs., 8 figs., 14 tabs.

  12. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  13. Evaluation of Sulfur in Syngas

    SciTech Connect (OSTI)

    None

    2006-04-01

    This project will define the options and costs at different scales of technology that can be used to remove sulfur from syngas.

  14. Attrition resistant, zinc titanate-containing, reduced sulfur sorbents

    DOE Patents [OSTI]

    Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.

    2004-11-02

    The disclosure is directed to sorbent compositions for removing reduced sulfur species (e.g., H.sub.2 S, COS and CS.sub.2) a feed stream. The sorbent is formed from a multi-phase composition including a zinc titanate phase and a zinc oxide-aluminate phase. The sorbent composition is substantially free of unreacted alumina.

  15. Attrition resistant, zinc titanate-containing, reduced sulfur sorbents and methods of use thereof

    DOE Patents [OSTI]

    Vierheilig, Albert A.; Gupta, Raghubir P.; Turk, Brian S.

    2006-06-27

    Reduced sulfur gas species (e.g., H.sub.2S, COS and CS.sub.2) are removed from a gas stream by compositions wherein a zinc titanate ingredient is associated with a metal oxide-aluminate phase material in the same particle species. Nonlimiting examples of metal oxides comprising the compositions include magnesium oxide, zinc oxide, calcium oxide, nickel oxide, etc.

  16. Two stage sorption of sulfur compounds

    DOE Patents [OSTI]

    Moore, William E.

    1992-01-01

    A two stage method for reducing the sulfur content of exhaust gases is disclosed. Alkali- or alkaline-earth-based sorbent is totally or partially vaporized and introduced into a sulfur-containing gas stream. The activated sorbent can be introduced in the reaction zone or the exhaust gases of a combustor or a gasifier. High efficiencies of sulfur removal can be achieved.

  17. Synthesis and development of processes for the recovery of sulfur from acid gases. Part 1, Development of a high-temperature process for removal of H{sub 2}S from coal gas using limestone -- thermodynamic and kinetic considerations; Part 2, Development of a zero-emissions process for recovery of sulfur from acid gas streams

    SciTech Connect (OSTI)

    Towler, G.P.; Lynn, S.

    1993-05-01

    Limestone can be used more effectively as a sorbent for H{sub 2}S in high-temperature gas-cleaning applications if it is prevented from undergoing calcination. Sorption of H{sub 2}S by limestone is impeded by sintering of the product CaS layer. Sintering of CaS is catalyzed by CO{sub 2}, but is not affected by N{sub 2} or H{sub 2}. The kinetics of CaS sintering was determined for the temperature range 750--900{degrees}C. When hydrogen sulfide is heated above 600{degrees}C in the presence of carbon dioxide elemental sulfur is formed. The rate-limiting step of elemental sulfur formation is thermal decomposition of H{sub 2}S. Part of the hydrogen thereby produced reacts with CO{sub 2}, forming CO via the water-gas-shift reaction. The equilibrium of H{sub 2}S decomposition is therefore shifted to favor the formation of elemental sulfur. The main byproduct is COS, formed by a reaction between CO{sub 2} and H{sub 2}S that is analogous to the water-gas-shift reaction. Smaller amounts of SO{sub 2} and CS{sub 2} also form. Molybdenum disulfide is a strong catalyst for H{sub 2}S decomposition in the presence of CO{sub 2}. A process for recovery of sulfur from H{sub 2}S using this chemistry is as follows: Hydrogen sulfide is heated in a high-temperature reactor in the presence of CO{sub 2} and a suitable catalyst. The primary products of the overall reaction are S{sub 2}, CO, H{sub 2} and H{sub 2}O. Rapid quenching of the reaction mixture to roughly 600{degrees}C prevents loss Of S{sub 2} during cooling. Carbonyl sulfide is removed from the product gas by hydrolysis back to CO{sub 2} and H{sub 2}S. Unreacted CO{sub 2} and H{sub 2}S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H{sub 2} and CO, which recovers the hydrogen value from the H{sub 2}S. This process is economically favorable compared to the existing sulfur-recovery technology and allows emissions of sulfur-containing gases to be controlled to very low levels.

  18. Nanopore reactive adsorbents for the high-efficiency removal of waste species

    DOE Patents [OSTI]

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2005-01-04

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as ions, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  19. Recovery of sulfur from native ores

    SciTech Connect (OSTI)

    Womack, J.T.; Wiewiorowski, T.K.; Astley, V.C.; Perez, J.W.; Headington, T.A.

    1992-03-17

    This patent describes a process for removing elemental sulfur from ores containing elemental sulfur. It comprises crushing a sulfur-containing ore to a coarse particle size wherein ore particles produced during crushing enable substantially all of the sulfur to be liberated during a heating step and to produce an ore gangue that is substantially not susceptible to flotation: forming an aqueous ore slurry containing about 50-80% by weight of solids from the crushed ore and adjusting the pH to at least a pH of about 8.0; heating the aqueous ore slurry formed in step (b) under elevated pressure to a temperature of about 240{degrees} - 315{degrees} F. for sufficient time to melt and liberate elemental sulfur contained in the ore to produce liberated molten sulfur and ore gangue, wherein the slurry is heated while agitating the slurry at sufficient velocity to substantially maintain the ore, ore gangue and liberated molten sulfur in suspension; cooling the heated slurry sufficiently to resolidify the liberated molten sulfur; conditioning the aqueous slurry of step (d) with a flotation aid; separating the condition aqueous slurry of ore gangue and resolidified sulfur in a flotation unit to produce a sulfur-rich flotation concentrate overstream; and recovering the sulfur-rich flotation concentrate and separating the sulfur therefrom.

  20. Spray drying for high-sulfur coal

    SciTech Connect (OSTI)

    Rhudy, R.

    1988-09-01

    Recent pilot plant tests indicate that spray drying, now used to control SO/sub 2/ emissions from low-sulfur coal, can also be effective for high-sulfur coal. Spray drying coupled with baghouse particulate removal is the most effective configuration tested to date, removing over 90% of SO/sub 2/ while easily meeting New Source Performance Standards for particulate emissions. 2 figures, 1 table.

  1. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur...

    Office of Scientific and Technical Information (OSTI)

    Title: Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur ...

  2. Uses of lunar sulfur

    SciTech Connect (OSTI)

    Vaniman, D.T.; Pettit, D.R.; Heiken, G.

    1988-01-01

    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical and biochemical properties. Although low in abundance on the Moon (/approximately/0.1% in mare soils), sulfur is surface-correlated and relatively extractable. Co-production of sulfur during oxygen extraction from ilmenite-rich soils could yield sulfur in masses up to 10% of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource. 29 refs., 3 figs.

  3. Process for removing sulfur from sulfur-containing gases

    DOE Patents [OSTI]

    Rochelle, Gary T.; Jozewicz, Wojciech

    1990-01-01

    The present disclosure relates to i The government may own certain rights in the present invention pursuant to EPA Cooperative Agreement CR 81-1531. This is a continuation of U.S. Ser. No. 928,337, filed Nov. 7, 1986, now U.S. Pat. No. 4,804,521.

  4. Sulfuric acid-sulfur heat storage cycle

    DOE Patents [OSTI]

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  5. Quantitative and Qualitative Determination of Polysulfide Species in the Electrolyte of a Lithium-Sulfur Battery using HPLC ESI/MS with One-Step Derivatization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Qu, Deyu; Yang, Xiao-Qing; Yu, Xiqian; Lee, Hung-Sui; Qu, Deyang

    2015-01-29

    The polysulfide species dissolved in aprotic solvents can be separated and analyzed by reverse phase (RP) high performance liquid chromatography (HPLC) in tandem with electrospray-mass spectroscopy. The relative distribution of polysulfide species in the electrolyte recovered from Li-S batteries is quantitatively and reliably determined for the first time.

  6. Fuel-rich sulfur capture in a combustion environment

    SciTech Connect (OSTI)

    Lindgren, E.R.; Pershing, D.W.; Kirchgessner, D.A.; Drehmel, D.C.

    1992-01-01

    The paper discusses the use of a refactory-lined, natural gas furnace to study the fuel-rich sulfur capture reactions of calcium sorbents under typical combustion conditions. The fuel-rich sulfur species hydrogen sulfide and carbonyl sulfide were monitored in a nearly continuous fashion using a gas chromatograph equiped with a flame photometric detector and an automatic system that sampled every 30 seconds. Below the fuel-rich zone, 25% excess air was added, and the ultimate fuel-lean capture was simultaneously measured using a continuous sulfur dioxide monitor. Under fuel-rich conditions, high levels of sulfur capture were obtained, and calcium utilization increased with sulfur concentration. The ultimate lean capture was found to be weakly dependent on sulfur concentration and independent of the sulfur capture level obtained in the fuel-rich zone.

  7. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang; Zheng, Jianming; Walter, Eric; Pan, Huilin; Lv, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Z. D.; Liaw, Bor Y.; Yu, Xiqian; et al

    2015-01-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-Smore » cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.« less

  8. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Wang, Qiang; Zheng, Jianming; Walter, Eric; Pan, Huilin; Lv, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Z. D.; Liaw, Bor Y.; Yu, Xiqian; Yang, Xiao-Qing; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2015-01-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-S cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  9. Direct Observation of Sulfur Radicals as Reaction Media in lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Wang, Qiang; Zheng, Jianming; Walter, Eric D.; Pan, Huilin; Lu, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Zhiqun; Liaw, Bor Yann; Yu, Xiqian; Yang, Xiaoning; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2014-12-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge process follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials, it is revealed that the chemical and electrochemical reactions in Li-S cell are driven each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new insights to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  10. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  11. Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification

    SciTech Connect (OSTI)

    Dutta. A.; Cheah, S.; Bain, R.; Feik, C.; Magrini-Bair, K.; Phillips, S.

    2012-06-20

    Sulfur present in biomass often causes catalyst deactivation during downstream operations after gasification. Early removal of sulfur from the syngas stream post-gasification is possible via process rearrangements and can be beneficial for maintaining a low-sulfur environment for all downstream operations. High-temperature sulfur sorbents have superior performance and capacity under drier syngas conditions. The reconfigured process discussed in this paper is comprised of indirect biomass gasification using dry recycled gas from downstream operations, which produces a drier syngas stream and, consequently, more-efficient sulfur removal at high temperatures using regenerable sorbents. A combination of experimental results from NREL's fluidizable Ni-based reforming catalyst, fluidizable Mn-based sulfur sorbent, and process modeling information show that using a coupled process of dry gasification with high-temperature sulfur removal can improve the performance of Ni-based reforming catalysts significantly.

  12. Sulfur control in ion-conducting membrane systems

    DOE Patents [OSTI]

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  13. Reduction mechanism of sulfur in lithium-sulfur battery: From elemental sulfur to polysulfide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Yang, Xuran; Zhang, Xiaoqing; Wang, Jiankun; Qu, Deyu; Qu, Deyang

    2015-10-30

    In this study, the polysulfide ions formed during the first reduction wave of sulfur in Li–S battery were determined through both in-situ and ex-situ derivatization of polysulfides. By comparing the cyclic voltammetric results with and without the derivatization reagent (methyl triflate) as well as the in-situ and ex-situ derivatization results under potentiostatic condition, in-situ derivatization was found to be more appropriate than its ex-situ counterpart, since subsequent fast chemical reactions between the polysulfides and sulfur may occur during the timeframe of ex-situ procedures. It was found that the major polysulfide ions formed at the first reduction wave of elemental sulfurmore » were the S42– and S52– species, while the widely accepted reduction products of S82– and S62– for the first reduction wave were in low abundance.« less

  14. Seed-Mediated Growth of Gold Nanocrystals: Changes to the Crystallinity or Morphology as Induced by the Treatment of Seeds with a Sulfur Species

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Yiqun; Luo, Ming; Tao, Jing; Peng, Hsin-Chieh; Wan, Dehui; Zhu, Yimei; Xia, Younan

    2014-12-11

    We report our observation of changes to the crystallinity or morphology during seed-mediated growth of Au nanocrystals. When single-crystal Au seeds with a spherical or rod-like shape were treated with a chemical species such as S₂O₃²⁻ ions, twin defects were developed during the growth process to generate multiply twinned nanostructures. X-ray photoelectron spectroscopy analysis indicated that the S₂O₃²⁻ ions were chemisorbed on the surfaces of the seeds during the treatment. The chemisorbed S₂O₃²⁻ ions somehow influenced the crystallization of Au atoms added onto the surface during a growth process, leading to the formation of twin defects. In contrast to themore » spherical and rod-like Au seeds, the single-crystal structure was retained to generate a concave morphology when single-crystal Au seeds with a cubic or octahedral shape were used for a similar treatment and then seed-mediated growth. The different outcomes are likely related to the difference in spatial distribution of S₂O₃²⁻ ions chemisorbed on the surface of a seed. This approach based on surface modification is potentially extendable to other noble metals for engineering the crystallinity and morphology of nanocrystals formed via seed-mediated growth.« less

  15. Seed-Mediated Growth of Gold Nanocrystals: Changes to the Crystallinity or Morphology as Induced by the Treatment of Seeds with a Sulfur Species

    SciTech Connect (OSTI)

    Zheng, Yiqun; Luo, Ming; Tao, Jing; Peng, Hsin-Chieh; Wan, Dehui; Zhu, Yimei; Xia, Younan

    2014-12-11

    We report our observation of changes to the crystallinity or morphology during seed-mediated growth of Au nanocrystals. When single-crystal Au seeds with a spherical or rod-like shape were treated with a chemical species such as S₂O₃²⁻ ions, twin defects were developed during the growth process to generate multiply twinned nanostructures. X-ray photoelectron spectroscopy analysis indicated that the S₂O₃²⁻ ions were chemisorbed on the surfaces of the seeds during the treatment. The chemisorbed S₂O₃²⁻ ions somehow influenced the crystallization of Au atoms added onto the surface during a growth process, leading to the formation of twin defects. In contrast to the spherical and rod-like Au seeds, the single-crystal structure was retained to generate a concave morphology when single-crystal Au seeds with a cubic or octahedral shape were used for a similar treatment and then seed-mediated growth. The different outcomes are likely related to the difference in spatial distribution of S₂O₃²⁻ ions chemisorbed on the surface of a seed. This approach based on surface modification is potentially extendable to other noble metals for engineering the crystallinity and morphology of nanocrystals formed via seed-mediated growth.

  16. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  17. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  18. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  19. Removal of mercury from coal via a microbial pretreatment process

    DOE Patents [OSTI]

    Borole, Abhijeet P.; Hamilton, Choo Y.

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  20. Reduction mechanism of sulfur in lithium-sulfur battery: From elemental sulfur to polysulfide

    SciTech Connect (OSTI)

    Zheng, Dong; Yang, Xuran; Zhang, Xiaoqing; Wang, Jiankun; Qu, Deyu; Qu, Deyang

    2015-10-30

    In this study, the polysulfide ions formed during the first reduction wave of sulfur in Li–S battery were determined through both in-situ and ex-situ derivatization of polysulfides. By comparing the cyclic voltammetric results with and without the derivatization reagent (methyl triflate) as well as the in-situ and ex-situ derivatization results under potentiostatic condition, in-situ derivatization was found to be more appropriate than its ex-situ counterpart, since subsequent fast chemical reactions between the polysulfides and sulfur may occur during the timeframe of ex-situ procedures. It was found that the major polysulfide ions formed at the first reduction wave of elemental sulfur were the S42– and S52– species, while the widely accepted reduction products of S82– and S62– for the first reduction wave were in low abundance.

  1. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G.

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  2. Bacterial Sulfur Storage Globules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prominent among these are the sulfide-oxidizing bacteria that oxidize sulfide (S2-) to sulfate (SO42-). Many of these organisms can store elemental sulfur (S0) in "globules" for...

  3. Biogenic sulfur source strengths

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.; Robinson, E.; Pack, M.R.; Bamesberger, W.L.

    1981-12-01

    Conclusions are presented from a 4-yr field measurement study of biogenic sulfur gas emissions from soils, and some water and vegetated surfaces, at 35 locales in the eastern and southeastern United States. More than one soil order was examined whenever possible to increase the data base obtained from the 11 major soil orders comprising the study area. Data analysis and emission model development were based upon an (80 x 80)-km/sup 2/ grid system. The measured sulfur fluxes, adjusted for the annual mean temperature for each sampling locale, weigted by the percentage of each soil order within each grid, and averaged for each of the east-west grid tiers from 47/sup 0/N to 25/sup 0/N latitude, showed an exponential north-to-south increase in total sulfur gas flux. Our model predits an additional increase of nearly 25-fold in sulfur flux between 25/sup 0/N and the equator.

  4. Separation of sulfur isotopes

    DOE Patents [OSTI]

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  5. Process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal sulfide sorbents

    DOE Patents [OSTI]

    Ayala, Raul E.; Gal, Eli

    1995-01-01

    A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.

  6. Sodium-sulfur thermal battery

    SciTech Connect (OSTI)

    Ludwig, F.A.

    1990-12-11

    This paper discusses a sodium-sulfur thermal battery for generating electrical energy at temperatures above the melting point of sodium metal and sulfur. It comprises a sodium electrode comprising sodium metal; a sulfur electrode comprising sulfur; and a separator located between the sodium and sulfur electrodes. The separator having sufficient porosity to allow preliminary migration of fluid sodium metal and fluid sulfur and fluid sodium polysulfides therethrough during operation of the thermal battery to form a mixed polysulfides electrolyte gradient within the separator.

  7. Sodium sulfur battery seal

    DOE Patents [OSTI]

    Mikkor, Mati

    1981-01-01

    This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

  8. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun; Yu, Qiquan; Chang, Shih-Ger

    1996-01-01

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

  9. CE IGCC Repowering plant sulfuric acid plant. Topical report, June 1993

    SciTech Connect (OSTI)

    Chester, A.M.

    1993-12-01

    A goal of the CE IGCC Repowering project is to demonstrate a hot gas clean-up system (HGCU), for the removal of sulfur from the product gas stream exiting the gasifier island. Combustion Engineering, Inc. (ABB CE) intends to use a HGCU developed by General Electric Environmental Services (GEESI). The original design of this system called for the installation of the HGCU, with a conventional cold gas clean-up system included as a full-load operational back-up. Each of these systems removes sulfur compounds and converts them into an acid off-gas. This report deals with the investigation of equipment to treat this off-gas, recovering these sulfur compounds as elemental sulfur, sulfuric acid or some other form. ABB CE contracted ABB Lummus Crest Inc. (ABB LCI) to perform an engineering evaluation to compare several such process options. This study concluded that the installation of a sulfuric acid plant represented the best option from both a technical and economic point of view. Based on this evaluation, ABB CE specified that a sulfuric acid plant be installed to remove sulfur from off-gas exiling the gas clean-up system. ABB LCI prepared a request for quotation (RFQ) for the construction of a sulfuric acid production plant. Monsanto Enviro-Chem Inc. presented the only proposal, and was eventually selected as the EPC contractor for this system.

  10. Sodium sulfur battery seal

    DOE Patents [OSTI]

    Topouzian, Armenag

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  11. Process for forming sulfuric acid

    DOE Patents [OSTI]

    Lu, Wen-Tong P.

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  12. SULFUR POLYMER ENCAPSULATION.

    SciTech Connect (OSTI)

    KALB, P.

    2001-08-22

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ({approx}$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  13. Modified dry limestone process for control of sulfur dioxide emissions

    DOE Patents [OSTI]

    Shale, Correll C.; Cross, William G.

    1976-08-24

    A method and apparatus for removing sulfur oxides from flue gas comprise cooling and conditioning the hot flue gas to increase the degree of water vapor saturation prior to passage through a bed of substantially dry carbonate chips or lumps, e.g., crushed limestone. The reaction products form as a thick layer of sulfites and sulfates on the surface of the chips which is easily removed by agitation to restore the reactive surface of the chips.

  14. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  15. Sulfur@Carbon Cathodes for Lithium Sulfur Batteries > Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High Performance ...

  16. Ultra-low Sulfur Reduction Emission Control Device/Development of an On-board Fuel Sulfur Trap

    SciTech Connect (OSTI)

    Rohrbach, Ron; Barron, Ann

    2008-07-31

    Honeywell has completed working on a multiyear program to develop and demonstrate proof-of-concept for an 'on-vehicle' desulfurization fuel filter for both light duty and heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NOx adsorbers. The NOx adsorber may be required to meet the proposed new EPA Tier II and '2007-Rule' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters was also examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. In the second phase of the program a light duty diesel engine test was also demonstrated. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consisted of four phases. Phase I focused on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II concentrated on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III studied life cycle and regeneration options for the spent filter. Phase IV focused on efficacy and benefits in the desulfation steps of a NOx adsorber on both a heavy and light duty engine. The project team included a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer

  17. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:nnsa.energy.govaboutusourprogramsdnnm3remove

    Page...

  18. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:www.nnsa.energy.govaboutusourprogramsdnnm3remove

    Pag...

  19. Volume efficient sodium sulfur battery

    DOE Patents [OSTI]

    Mikkor, Mati

    1980-01-01

    In accordance with the teachings of this specification, a sodium sulfur battery is formed as follows. A plurality of box shaped sulfur electrodes are provided, the outer surfaces of which are defined by an electrolyte material. Each of the electrodes have length and width dimensions substantially greater than the thicknesses thereof as well as upwardly facing surface and a downwardly facing surface. An electrode structure is contained in each of the sulfur electrodes. A holding structure is provided for holding the plurality of sulfur electrodes in a stacked condition with the upwardly facing surface of one sulfur electrode in facing relationship to the downwardly facing surface of another sulfur electrode thereabove. A small thickness dimension separates each of the stacked electrodes thereby defining between each pair of sulfur electrodes a volume which receives the sodium reactant. A reservoir is provided for containing sodium. A manifold structure interconnects the volumes between the sulfur electrodes and the reservoir. A metering structure controls the flow of sodium between the reservoir and the manifold structure.

  20. An Evolutionary Arms Race for Sulfur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    globally distributed sulfur-oxidizing bacteria in the deep sea carry bacterial genes for the oxidation of elemental sulfur. Although such observations are common in...

  1. Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results

    SciTech Connect (OSTI)

    Smith, Steven J.; Andres, Robert; Conception , Elvira; Lurz, Joshua

    2004-01-25

    A global, self-consistent estimate of sulfur dioxide emissions over the last one and a half century were estimated by using a combination of bottom-up and best available inventory methods including all anthropogenic sources. We find that global sulfur dioxide emissions peaked about 1980 and have generally declined since this time. Emissions were extrapolated to a 1{sup o} x 1{sup o} grid for the time period 1850-2000 at annual resolution with two emission height levels and by season. Emissions are somewhat higher in the recent past in this new work as compared with some comprehensive estimates. This difference is largely due to our use of emissions factors that vary with time to account for sulfur removals from fossil fuels and industrial smelting processes.

  2. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-29

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub X} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub X} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the

  3. METHOD TO PREVENT SULFUR ACCUMULATION INSIDE MEMBRANE ELECTRODE ASSEMBLY

    SciTech Connect (OSTI)

    Steimke, J.; Steeper, T.; Herman, D.; Colon-Mercado, H.; Elvington, M.

    2009-06-22

    HyS is conceptually the simplest of the thermochemical cycles and involves only sulfur chemistry. In the HyS Cycle hydrogen gas (H{sub 2}) is produced at the cathode of the electrochemical cell (or electrolyzer). Sulfur dioxide (SO{sub 2}) is oxidized at the anode to form sulfuric acid (H{sub 2}SO{sub 4}) and protons (H{sup +}) as illustrated below. A separate high temperature reaction decomposes the sulfuric acid to water and sulfur dioxide which are recycled to the electrolyzers, and oxygen which is separated out as a secondary product. The electrolyzer includes a membrane that will allow hydrogen ions to pass through but block the flow of hydrogen gas. The membrane is also intended to prevent other chemical species from migrating between electrodes and undergoing undesired reactions that could poison the cathode or reduce overall process efficiency. In conventional water electrolysis, water is oxidized at the anode to produce protons and oxygen. The standard cell potential for conventional water electrolysis is 1.23 volts at 25 C. However, commercial electrolyzers typically require higher voltages ranging from 1.8 V to 2.6 V [Kirk-Othmer, 1991]. The oxidation of sulfur dioxide instead of water in the HyS electrolyzer occurs at a much lower potential. For example, the standard cell potential for sulfur dioxide oxidation at 25 C in 50 wt % sulfuric acid is 0.29 V [Westinghouse, 1980]. Since power consumption by the electrolyzers is equal to voltage times current, and current is proportional to hydrogen production, a large reduction in voltage results in a large reduction in electrical power cost per unit of hydrogen generated.

  4. Insight into Sulfur Reactions in Li–S Batteries

    SciTech Connect (OSTI)

    Xu, Rui; Belharouak, Ilias; Zhang, Xiaofeng; chamoun, rita; Yu, Cun; Ren, Yang; Nie, Anmin; Reza, Shahbazian-Yassar; Lu, Jun; Li, James C.M.; Amine, Khalil

    2014-12-09

    Understanding and controlling the sulfur reduction species (Li2Sx, 1 ≤ x ≤ 8) under realistic battery conditions are essential for the development of advanced practical Li–S cells that can reach their full theoretical capacity. However, it has been a great challenge to probe the sulfur reduction intermediates and products because of the lack of methods. This work employed various ex situ and in situ methods to study the mechanism of the Li–S redox reactions and the properties of Li2Sx and Li2S. Synchrotron high-energy X-ray diffraction analysis used to characterize dry powder deposits from lithium polysulfide solution suggests that the new crystallite phase may be lithium polysulfides. The formation of Li2S crystallites with a polyhedral structure was observed in cells with both the conventional (LiTFSI) electrolyte and polysulfide-based electrolyte. In addition, an in situ transmission electron microscopy experiment observed that the lithium diffusion to sulfur during discharge preferentially occurred at the sulfur surface and formed a solid Li2S crust. This may be the reason for the capacity fade in Li–S cells (as also suggested by EIS experiment in Supporting Information). The results can be a guide for future studies and control of the sulfur species and meanwhile a baseline for approaching the theoretical capacity of the Li–S battery.

  5. METHOD OF REMOVING RADIOACTIVE IODINE FROM GASES

    DOE Patents [OSTI]

    Silverman, L.

    1962-01-23

    A method of removing radioactive iodine from a gaseous medium is given in which the gaseous medium is adjusted to a temperature not exceeding 400 deg C and then passed over a copper fibrous pad having a coating of cupric sulfide deposited thereon. An ionic exchange on the pad results in the formation of cupric iodide and the release of sulfur. (AEC)

  6. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x

  7. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 1, [September--November 1994

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1994-11-30

    This project is being coordinated with an ongoing project at Western Kentucky University that is being supported by the Southeastern Regional Biomass Energy Program through the Tennessee Valley Authority. Fluidized bed combustion tests will be performed on municipal solid waste blended with high-sulfur and high-chlorine coals in a laboratory scale combustor. The purpose of the tests is to evaluate combustion performance, the extent of the inorganic acid gases (HCl and SO{sub x}) and chlorinated organic compound formation, the effect of chlorine species on SO{sub 2} removal with a sorbent, and the effect of sulfur species on the formation of chlorinated organic compounds from MSW for a range of bed temperatures, excess air levels, MSW/coal ratios, and S/Cl ratios. Flue gas samples will be collected and analyzed at three locations: free board, cyclone inlet, and cyclone outlet. Analytical methods used will include ion chromatography, gas chromatography, and mass spectrometry. Waste stream ash samples will be collected from the cyclone catch and analyzed for unburned carbon, chlorine, chlorinated benzenes, polychlorinated biphenyls, chlorinated phenols, dioxins, furans, and metal content. Major, minor, and trace elements in the ash will be determined by x-ray fluorescence and inductively coupled plasma-atomic emission spectroscopy. Accomplishments for the first quarter are presented.

  8. Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    SciTech Connect (OSTI)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuliang; Li, Xiaolin

    2015-04-07

    A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.

  9. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOE Patents [OSTI]

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  10. Alkali metal/sulfur battery

    DOE Patents [OSTI]

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  11. Process for removing metal carbonyls from gaseous streams

    SciTech Connect (OSTI)

    Heyd, R.L.; Pignet, T.P.

    1988-04-26

    A process for removing metal carbonyl contaminates from a gaseous stream is described containing such contaminates and which is free from sulfur contaminates, which process comprises contacting the gaseous stream with a zinc sulfide absorbent to thereby remove metal carbonyl contaminates from the gaseous stream, and separating the gaseous stream from the zinc sulfide absorbent.

  12. Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sulfur Deactivation on CuZeolite SCR Catalysts in Diesel Application Investigation of Sulfur Deactivation on CuZeolite SCR Catalysts in Diesel Application Investigation of Sulfur ...

  13. Martinez Sulfuric Acid Regeneration Plt Biomass Facility | Open...

    Open Energy Info (EERE)

    Martinez Sulfuric Acid Regeneration Plt Biomass Facility Jump to: navigation, search Name Martinez Sulfuric Acid Regeneration Plt Biomass Facility Facility Martinez Sulfuric Acid...

  14. Identification of Martian Regolith Sulfur Components In Shergottites...

    Office of Scientific and Technical Information (OSTI)

    Sulfur Components In Shergottites Using Sulfur K XANES and FeS Ratios. Citation Details In-Document Search Title: Identification of Martian Regolith Sulfur Components In ...

  15. A Damage Model for Degradation in the Electrodes of solid oxide fuel cells: Modeling the effects of sulfur and antimony in the anode

    SciTech Connect (OSTI)

    Ryan, Emily M.; Xu, Wei; Sun, Xin; Khaleel, Mohammad A.

    2012-07-15

    Over their designed lifetime, high temperature electrochemical devices, such as solid oxide fuel cells (SOFCs), can experience degradation in their electrochemical performance due to environmental conditions, operating conditions, contaminants, and other factors. Understanding the different degradation mechanisms in SOFCs and other electrochemical devices is essential to reducing performance degradation and increasing the lifetime of these devices. In this paper SOFC degradation mechanisms are discussed and a damage model is presented which describes performance degradation in SOFCs due to damage or degradation in the electrodes of the SOFC. A degradation classification scheme is presented that divides the various SOFC electrode degradation mechanisms into categories based on their physical effects on the SOFC. The application of the damage model and the classification method is applied to sulfur poisoning and antimony poisoning which occur in the anode of SOFCs. For sulfur poisoning the model is able to predict the degradation in SOFC performance based on the operating temperature and voltage of the fuel cell and the concentration of gaseous sulfur species in the anode. For antimony poisoning the effects of nickel removal from the anode matrix is investigated.

  16. Process for recovery of sulfur from acid gases

    DOE Patents [OSTI]

    Towler, Gavin P.; Lynn, Scott

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  17. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi

  18. Adsorbed sulfur-gas methods for both near-surface exploration and downhole logging

    SciTech Connect (OSTI)

    Farwell, S.O.; Barinaga, C.J.; Dolenc, M.R.; Farwell, G.H.

    1986-08-01

    The use of sulfur-containing gases in petroleum exploration is supported by (1) the idea that sulfur may play a role in petroleum genesis, (2) the corresponding existence of sulfur-containing compounds in petroleum and the potential for vertical migration of the low-molecular-weight sulfur species from these reservoirs, (3) the production of H/sub 2/S by anaerobic microorganism populations that develop in the subsurface areas overlying petroleum reservoirs due to the concomitant supply of hydrocarbon nutrients, (4) the recent discovery of near-surface accumulations of pyrite and marcasite as the source of induction potential anomalies over certain fields, and (5) the strong adsorptive affinities of sulfur gases to solid surfaces, which enhance both the concentration and localization of such sulfur-expressed anomalies. During the past 3 years, numerous near-surface soil samples and well cuttings from the Utah-Wyoming Overthrust belt have been analyzed for adsorbed sulfur-gas content by two novel analytical techniques: thermal desorption/metal foil collection/flash desorption/sulfur-selective detection (TD/MFC/FD/SSD) and thermal desorption/cryogenic preconcentration/high-resolution-gas chromatography/optimized-flame photometry (TD/CP/HRGC/OFP).

  19. Preliminary evaluation of an electromagnetic concept for simultaneous NO sub x /SO sub 2 removal

    SciTech Connect (OSTI)

    Grimes, R.W.

    1990-12-01

    Western Research Institute is developing concepts to use radio frequency (RF) energy to remove NO and SO{sub 2} from combustion flue gas. Char produced from the mild gasification of coal can be heated with RF energy to react with sulfur oxides and nitric oxide at low temperatures and pressures using RF energy to form carbon dioxide, carbon monoxide, elemental sulfur, and nitrogen.

  20. Catalyst regeneration process including metal contaminants removal

    DOE Patents [OSTI]

    Ganguli, Partha S.

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  1. Seal for sodium sulfur battery

    DOE Patents [OSTI]

    Topouzian, Armenag; Minck, Robert W.; Williams, William J.

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which the sealing is accomplished by a radial compression seal made on a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  2. Molten iron oxysulfide as a superior sulfur sorbent

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1990-01-01

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and SO{sub x} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but under the right conditions of oxygen potential and after combination with sulfur, the reaction products of coal gases with iron oxide can act as a flux to produce a fluid phase. The thermodynamic conditions for determining the most effective operating conditions of the first stage of a combustor are calculated for several Illinois coals. These conditions include contact of the gas with the phase combinations: CaO/CaSO{sub 4}, CaO/CaS, and Fe/FeO/liquid for the temperature range 950{degree} to 1300{degree}C. In the latter system, the minimum dosage of iron required at equilibrium and the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of SO{sub 2} per million Btu of heat evolution calculated for complete combustion. The calculations indicate that for the Fe-O-S system, higher temperatures give better results approaching 96 percent sulfur removal from a coal containing 4.2% sulfur. For this example, the stack gas emerging from the second stage of combustion under stoichiometric conditions would contain 0.36 pounds of SO{sub 2} per million BTU's of heat generated. The temperature limits of the sulfate and sulfide forming reactions are defined.

  3. Catalytic conversion of sulfur dioxide and trioxide

    SciTech Connect (OSTI)

    Solov'eva, E.L.; Shenfel'd, B.E.; Kuznetsova, S.M.; Khludenev, A.G.

    1987-11-10

    The reclamation and utilization of sulfur-containing wastes from the flue gas of fossil-fuel power plants and the subsequent reduction in sulfur emission is addressed in this paper. The authors approach this problem from the standpoint of the catalytic oxidation of sulfur dioxide on solid poison-resistant catalysts with subsequent sorption of the sulfur trioxide and its incorporation into the manufacture of sulfuric acid. The catalyst they propose is a polymetallic dust-like waste from the copper-smelting industry comprised mainly of iron and copper oxides. Experiments with this catalyst were carried out using multifactorial experiment planning.

  4. Process for reducing sulfur in coal char

    DOE Patents [OSTI]

    Gasior, Stanley J.; Forney, Albert J.; Haynes, William P.; Kenny, Richard F.

    1976-07-20

    Coal is gasified in the presence of a small but effective amount of alkaline earth oxide, hydroxide or carbonate to yield a char fraction depleted in sulfur. Gases produced during the reaction are enriched in sulfur compounds and the alkaline earth compound remains in the char fraction as an alkaline earth oxide. The char is suitable for fuel use, as in a power plant, and during combustion of the char the alkaline earth oxide reacts with at least a portion of the sulfur oxides produced from the residual sulfur contained in the char to further lower the sulfur content of the combustion gases.

  5. Evaluation of sulfur-reducing microorganisms for organic desulfurization. [Pyrococcus furiosus

    SciTech Connect (OSTI)

    Miller, K.W.

    1991-01-01

    Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

  6. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-06-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi

  7. CNG process, a new approach to physical-absorption acid-gas removal

    SciTech Connect (OSTI)

    Hise, R.E.; Massey, L.G.; Adler, R.J.; Brosilow, C.B.; Gardner, N.C.; Brown, W.R.; Cook, W.J.; Petrik, M.

    1982-01-01

    The CNG acid gas removal process embodies three novel features: (1) scrubbing with liquid carbon dioxide to remove all sulfurous molecules and other trace contaminants; (2) triple-point crystallization of carbon dioxide to concentrate sulfurous molecules and produce pure carbon dioxide; and (3) absorption of carbon dioxide with a slurry of solid carbon dioxide in organic carrier liquid. The CNG process is discussed and contrasted with existing acid gas removal technology as represented by the Benfield, Rectisol, and Selexol acid gas removal processes.

  8. Biotechnology for removal of carbon disulfide emissions. Final report

    SciTech Connect (OSTI)

    McIntosh, M.J.

    1995-07-01

    Biological removal in a ``biofilter`` plant of carbon disulfide and hydrogen sulfide from the air effluent of a viscose plant at Teepak, Inc., is analyzed from process and economic standpoints by use of the Aspen Plus simulation program. The metabolic product from the biofilter, 3% sulfuric acid, must be transformed at the source into either a marketable or recyclable commodity (such as 95% sulfuric acid, high-quality sulfur, or high-quality gypsum) or a material with reasonable landfill costs (such as sulfur or gypsum). The simulations indicate that the total capital requirement for production of concentrated sulfuric acid is $48.9 million; for high-quality gypsum, $40.4 million; and for high-quality sulfur, $29.4 million. Production of concentrated sulfur for landfill is not economically practical. The process to neutralize the 3% acid effluent with limestone and landfill the resulting low-quality gypsum requires the lowest total investment of the processes simulated, $8.7 million, including the biofilter plant.

  9. Biogenic sulfur emissions in the SURE region

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.; Robinson, E.; Pack, M.R.

    1980-09-01

    The objective of this study was to estimate the magnitude of biogenic sulfur emissions from the northeastern United States - defined as the EPRI Sulfate Regional Experiment (SURE) study area. Initial laboratory efforts developed and validated a portable sulfur sampling system and a sensitive, gas chromatographic analytical detection system. Twenty-one separate sites were visited in 1977 to obtain a representative sulfur emission sampling of soil orders, suborders, and wetlands. The procedure determined the quantity of sulfur added to sulfur-free sweep air by the soil flux as the clean air was blown through the dynamic enclosure set over the selected sampling area. This study represents the first systematic sampling for biogenic sulfur over such a wide range of soils and such a large land area. The major impacts upon the measured sulfur flux were found to include soil orders, temperature, sunlight intensity, tidal effects along coastal areas. A mathematical model was developed for biogenic sulfur emissions which related these field variables to the mean seasonal and annual ambient temperatures regimes for each SURE grid and the percentage of each soil order within each grid. This model showed that at least 53,500 metric tons (MT) of biogenic sulfur are emitted from the SURE land surfaces and approximately 10,000 MT are emitted from the oceanic fraction of the SURE grids. This equates to a land sulfur flux of nearly 0.02 gram of sulfur per square meter per yr, or about 0.6% of the reported anthropogenic emissions withn the SURE study area. Based upon these data and the summertime Bermuda high clockwise circulation of maritime air across Florida and the Gulf Coast states northward through the SURE area, the total land biogenic sulfur emission contribution to the SURE area atmospheric sulfur burden might approach 1 to 2.5% of the anthropogenic.

  10. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1

    SciTech Connect (OSTI)

    Zhang, T; Bain, TS; Barlett, MA; Dar, SA; Snoeyenbos-West, OL; Nevin, KP; Lovley, DR

    2014-01-02

    Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electron donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.

  11. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control

    SciTech Connect (OSTI)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. ); Gidaspow, D.; Gupta, R.; Wasan, D.T. ); Pfister, R.M.: Krieger, E.J. )

    1992-05-01

    This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  12. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    SciTech Connect (OSTI)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  13. Process for the removal of acid gases from gaseous streams

    SciTech Connect (OSTI)

    Blytas, G.C.; Diaz, Z.

    1982-11-16

    Hydrogen sulfide, carbon dioxide, and carbonyl sulfide are removed from a gas stream in a staged procedure by: absorption of the CO/sub 2/ and COS; conversion of the hydrogen sulfide to produce sulfur in an absorbent mixture; hydrolysis of the carbonyl sulfide to produce a gas stream of hydrogen sulfide and carbon dioxide; and removal of the hydrogen sulfide from the gas stream.

  14. Preliminary evaluation of an electromagnetic concept for simultaneous NO{sub x}/SO{sub 2} removal

    SciTech Connect (OSTI)

    Grimes, R.W.

    1990-12-01

    Western Research Institute is developing concepts to use radio frequency (RF) energy to remove NO and SO{sub 2} from combustion flue gas. Char produced from the mild gasification of coal can be heated with RF energy to react with sulfur oxides and nitric oxide at low temperatures and pressures using RF energy to form carbon dioxide, carbon monoxide, elemental sulfur, and nitrogen.

  15. Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C{sub 3}N{sub 4} photocatalysts

    SciTech Connect (OSTI)

    Ge, Lei; Han, Changcun; Xiao, Xinlai; Guo, Lele; Li, Yujing

    2013-10-15

    Graphical abstract: - Highlights: Sulfur-doped g-C{sub 3}N{sub 4} was prepared using thiourea as sulfur source. The sulfur-doped g-C{sub 3}N{sub 4} shows significantly enhanced H{sub 2} evolution activity. The doped sulfur species plays key roles in the improvement of H{sub 2} production. Photocatalytic mechanism is proposed based on the experimental results. The mechanism is confirmed by PL spectra and transient photocurrent curves. - Abstract: Visible light-activated sulfur-doped g-C{sub 3}N{sub 4} photocatalysts were successfully synthesized using thiourea as sulfur source. The obtained photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microcopy, ultravioletvisible diffuse reflection spectroscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy and transient photocurrent response. The sulfur-doped g-C{sub 3}N{sub 4} photocatalysts show beneficial effects on visible light absorption, electronhole pair generation and separation. The sulfur species doped in the samples was identified as S{sup 2?} to replace N atoms in the g-C{sub 3}N{sub 4} framework. The photocatalytic activities of the sulfur-doped g-C{sub 3}N{sub 4} under visible light were evaluated by hydrogen evolution from water splitting in aqueous solution containing methanol. The sulfur-doped g-C{sub 3}N{sub 4} photocatalyst showed the highest photocatalytic performance with H{sub 2} evolution rate of 12.16 ?mol h{sup ?1}, about 6 times higher than un-doped g-C{sub 3}N{sub 4}. It can be concluded that the sulfur species play a vital role and act as active sites in the photocatalytic reaction. This novel sulfur-doped g-C{sub 3}N{sub 4} can be potentially used in energy and environmental applications.

  16. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    SciTech Connect (OSTI)

    Liang, Chengdu; Dudney, Nancy J; Howe, Jane Y

    2015-05-05

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  17. Stabilized sulfur binding using activated fillers

    DOE Patents [OSTI]

    Kalb, Paul D.; Vagin, Vyacheslav P.; Vagin, Sergey P.

    2015-07-21

    A method of making a stable, sulfur binding composite comprising impregnating a solid aggregate with an organic modifier comprising unsaturated hydrocarbons with at least one double or triple covalent bond between adjacent carbon atoms to create a modifier-impregnated aggregate; heating and drying the modifier-impregnated aggregate to activate the surface of the modifier-impregnated aggregate for reaction with sulfur.

  18. Sulfur oxide adsorbents and emissions control

    DOE Patents [OSTI]

    Li, Liyu; King, David L.

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  19. Removal of hydrogen sulfide and carbonyl sulfide from gas-streams

    SciTech Connect (OSTI)

    Deal, C.H.; Lieder, C.A.

    1982-06-01

    Hydrogen sulfide and carbonyl sulfide are removed from a gas stream in a staged procedure characterized by conversion of the hydrogen sulfide to produce sulfur in aqueous solution, hydrolysis of the carbonyl sulfide remaining in the gas stream to produce hydrogen sulfide and carbon dioxide, and removal of the hydrogen sulfide from the gas stream.

  20. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage - FY13 Q1 Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage - FY13 ...

  1. Scientists Probe Lithium-Sulfur Batteries in Real Time - Joint...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2012, Videos Scientists Probe Lithium-Sulfur Batteries in Real Time Lithium-sulfur batteries are a promising technology that could some day power electric vehicles. Scientists ...

  2. Understanding Lithium-Sulfur Batteries at the Molecular Level...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 17, 2015, Accomplishments Understanding Lithium-Sulfur Batteries at the Molecular Level Conceived some 40 years ago, the lithium-sulfur battery can store, in theory, ...

  3. Sulfur Poisoning of Metal Membranes for Hydrogen Separation ...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Sulfur Poisoning of Metal Membranes for Hydrogen Separation Citation Details In-Document Search Title: Sulfur Poisoning of Metal Membranes for Hydrogen Separation ...

  4. Additives and Cathode Materials for High-Energy Lithium Sulfur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

  5. Electrochemical separation and concentration of sulfur containing gases from gas mixtures

    DOE Patents [OSTI]

    Winnick, Jack (3805 Woodrail-on-the-Green, Columbia, MO 65201)

    1981-01-01

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  6. Evaluation of sulfur-reducing microorganisms for organic desulfurization. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect (OSTI)

    Miller, K.W.

    1991-12-31

    Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

  7. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  8. Silica Scaling Removal Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scaling Removal Process Scientists at Los Alamos National Laboratory have developed a novel technology to remove both dissolved and colloidal silica using small gel particles....

  9. A new, safer method of sulfur degassing

    SciTech Connect (OSTI)

    Schico, C.M.; Clem, K.R.; Hartley, D.; Watson, E.A.

    1985-10-01

    The Exxon system for degassing liquid sulfur is presented, and it can reduce total H2S in liquid sulfur to levels as low as 10-15 wppm under the commercial conditions tested. Because Exxon found commercially available mechanical degassing systems to be inadequate, the Claus plant initiated an RandD program to develop the new degassing process. Hydrogen sulfide and hydrogen polysulfide are inherent to the Claus process. The major concerns associated with this H2S in the Claus liquid sulfur include: toxic levels of H2S are possible while loading/unloading liquid sulfur; the H2S lower explosive limit in air can be exceeded in unvented pit/tank vapor space; nuisance odors/environmental concerns; and potential government regulations/ customer restrictions. Results are presented in this article of successful commercial tests using the process at five sites.

  10. Definition of Non-Conventional Sulfur Utilization in Western Kazakhstan for Sulfur Concrete (Phase 1)

    SciTech Connect (OSTI)

    Kalb, Paul

    2007-05-31

    Battelle received a contract from Agip-KCO, on behalf a consortium of international oil and gas companies with exploration rights in the North Caspian Sea, Kazakhstan. The objective of the work was to identify and help develop new techniques for sulfur concrete products from waste, by-product sulfur that will be generated in large quantitites as drilling operations begin in the near future. BNL has significant expertise in the development and use of sulfur concrete products and has direct experience collaborating with the Russian and Kazakh partners that participated. Feasibility testing was successfully conducted for a new process to produce cost-effective sulfur polymer cement that has broad commerical applications.

  11. Method for reducing the sulfur content of a sulfur-containing hydrocarbon stream

    DOE Patents [OSTI]

    Mahajan, Devinder

    2004-12-28

    The sulfur content of a liquid hydrocarbon stream is reduced under mild conditions by contracting a sulfur-containing liquid hydrocarbon stream with transition metal particles containing the transition metal in a zero oxidation state under conditions sufficient to provide a hydrocarbon product having a reduced sulfur content and metal sulfide particles. The transition metal particles can be produced in situ by adding a transition metal precursor, e.g., a transition metal carbonyl compound, to the sulfur-containing liquid feed stream and sonicating the feed steam/transition metal precursor combination under conditions sufficient to produce the transition metal particles.

  12. Copper mercaptides as sulfur dioxide indicators

    DOE Patents [OSTI]

    Eller, Phillip G.; Kubas, Gregory J.

    1979-01-01

    Organophosphine copper(I) mercaptide complexes are useful as convenient and semiquantitative visual sulfur dioxide gas indicators. The air-stable complexes form 1:1 adducts in the presence of low concentrations of sulfur dioxide gas, with an associated color change from nearly colorless to yellow-orange. The mercaptides are made by mixing stoichiometric amounts of the appropriate copper(I) mercaptide and phosphine in an inert organic solvent.

  13. World copper smelter sulfur balance-1988

    SciTech Connect (OSTI)

    Towle, S.W. )

    1993-01-01

    In 1989, the US Bureau of Mines initiated a contract to gather engineering, operating, and environmental cost data for 1988 for 30 major foreign primary copper smelters in market economy countries. Data were collected for 29 of the designated smelters together with information on applicable environmental regulations. Materials balance data obtained were used with available data for the eight US smelters to determine the approximate extent of copper smelter sulfur emission control in 1988. A broad characterization of the status of sulfur emission control regulation was made. The 37 US and foreign smelters represented roughly 73.2% of world and 89.3% of market economy primary copper production in 1988. The 29 non-US smelters attained 55.3% control of their input sulfur in 1988. Combined with the 90.4% control of US smelters, an aggregate 63.4% sulfur control existed. Roughly 1,951,100 mt of sulfur was emitted from the 37 market economy smelters in 1988. Identifiable SO[sub 2] control regulations covered 72.4% of the 29 foreign smelters, representing 65.5% of smelting capacity. Including US smelters, 78.4% of the major market economy smelters were regulated, representing 73.1% of smelting capacity. Significant changes since 1988 that may increase sulfur emission control are noted.

  14. Interfacial reaction dependent performance of hollow carbon nanosphere - sulfur composite as a cathode for Li-S battery

    SciTech Connect (OSTI)

    Zheng, Jianming; Yan, Pengfei; Gu, Meng; Wagner, Michael J.; Hays, Kevin A.; Chen, Junzheng; Li, Xiaohong S.; Wang, Chong M.; Zhang, Ji -Guang; Liu, Jun; Xiao, Jie

    2015-05-26

    Lithium-sulfur (Li-S) battery is a promising energy storage system due to its high energy density, cost effectiveness and environmental friendliness of sulfur. However, there are still a number of challenges, such as low Coulombic efficiency and poor long-term cycling stability, impeding the commercialization of Li-S battery. The electrochemical performance of Li-S battery is closely related with the interfacial reactions occurring between hosting substrate and active sulfur species which are poorly conducting at fully oxidized and reduced states. Here, we correlate the relationship between the performance and interfacial reactions in the Li-S battery system, using a hollow carbon nanosphere (HCNS) with highly graphitic character as hosting substrate for sulfur. With an appropriate amount of sulfur loading, HCNS/S composite exhibits excellent electrochemical performance because of the fast interfacial reactions between HCNS and the polysulfides. However, further increase of sulfur loading leads to increased formation of highly resistive insoluble reaction products (Li2S2/Li2S) which limits the reversibility of the interfacial reactions and results in poor electrochemical performance. In conclusion, these findings demonstrate the importance of the interfacial reaction reversibility in the whole electrode system on achieving high capacity and long cycle life of sulfur cathode for Li-S batteries.

  15. Interfacial reaction dependent performance of hollow carbon nanosphere - sulfur composite as a cathode for Li-S battery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Jianming; Yan, Pengfei; Gu, Meng; Wagner, Michael J.; Hays, Kevin A.; Chen, Junzheng; Li, Xiaohong S.; Wang, Chong M.; Zhang, Ji -Guang; Liu, Jun; et al

    2015-05-26

    Lithium-sulfur (Li-S) battery is a promising energy storage system due to its high energy density, cost effectiveness and environmental friendliness of sulfur. However, there are still a number of challenges, such as low Coulombic efficiency and poor long-term cycling stability, impeding the commercialization of Li-S battery. The electrochemical performance of Li-S battery is closely related with the interfacial reactions occurring between hosting substrate and active sulfur species which are poorly conducting at fully oxidized and reduced states. Here, we correlate the relationship between the performance and interfacial reactions in the Li-S battery system, using a hollow carbon nanosphere (HCNS) withmore » highly graphitic character as hosting substrate for sulfur. With an appropriate amount of sulfur loading, HCNS/S composite exhibits excellent electrochemical performance because of the fast interfacial reactions between HCNS and the polysulfides. However, further increase of sulfur loading leads to increased formation of highly resistive insoluble reaction products (Li2S2/Li2S) which limits the reversibility of the interfacial reactions and results in poor electrochemical performance. In conclusion, these findings demonstrate the importance of the interfacial reaction reversibility in the whole electrode system on achieving high capacity and long cycle life of sulfur cathode for Li-S batteries.« less

  16. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification

    SciTech Connect (OSTI)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M.; Gidaspow, D.; Gupta, R.; Wasan, D.T.; Pfister, R.M.: Krieger, E.J.

    1992-05-01

    This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  17. Laser spectroscopy and dynamics of transient species

    SciTech Connect (OSTI)

    Clouthier, D.J.

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  18. Sensitive Species

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitive Species Sensitive Species By avoiding or minimizing the impact of Laboratory activities on sensitive species, LANL can potentially reduce the possibility of these species being upgraded to federal protection. February 2, 2015 sensitive species The bald eagle is one of our sensitive species. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Sensitive species are plants and animals that are protected at the state

  19. Electrostatic self-assembly of graphene oxide wrapped sulfur particles for lithium–sulfur batteries

    SciTech Connect (OSTI)

    Wu, Haiwei; Huang, Ying Zong, Meng; Ding, Xiao; Ding, Juan; Sun, Xu

    2015-04-15

    Highlights: • Researched graphene oxide wrapped sulfur particles for lithium–sulfur batteries. • New approach for core–shell GO/S composites by electrostatic self-assembly method. • Both core–shell structure and the GO support help to retard the diffusion of polysulfides during the electrochemical cycling process of GO/S cathode. - Abstract: A novel graphene oxide (GO)/sulfur (S) composite is developed by electrostatic self-assembly method. Remarkably, the core–shell structure of the composite and the GO support helps to retard the diffusion of polysulfides during the electrochemical cycling process. The GO/sulfur cathode presents enhanced cycling ability. Specific discharge capacities up to 494.7 mAh g{sup −1} over 200 cycles at 0.1 C is achieved with enhanced columbic efficiency around 95%, representing a good cathode material for lithium–sulfur batteries.

  20. Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery

    SciTech Connect (OSTI)

    Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk; Cho, Gyu-Bong; Cho, Kwon-Koo; Kim, Ki-Won; Ahn, Jou-Hyeon; Wang, Guoxiu; Ahn, Jae-Pyeung; Ahn, Hyo-Jun

    2015-09-15

    Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur content is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)

  1. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries Vehicle Technologies ...

  2. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Protection of Li Anodes ...

  3. Ice Nucleation of Bare and Sulfuric Acid-coated Mineral Dust Particles and Implication for Cloud Properties

    SciTech Connect (OSTI)

    Kulkarni, Gourihar R.; Sanders, Cassandra N.; Zhang, Kai; Liu, Xiaohong; Zhao, Chun

    2014-08-27

    Ice nucleation properties of different dust species coated with soluble material are not well understood. We determined the ice nucleation ability of bare and sulfuric acid coated mineral dust particles as a function of temperature (-25 to -35 deg C) and relative humidity with respect to water (RHw). Five different mineral dust species: Arizona test dust (ATD), illite, montmorillonite, quartz and kaolinite were dry dispersed and size-selected at 150 nm and exposed to sulfuric acid vapors in the coating apparatus. The condensed sulfuric acid soluble mass fraction per particle was estimated from the cloud condensation nuclei activated fraction measurements. The fraction of dust particles nucleating ice at various temperatures and RHw was determined using a compact ice chamber. In water-subsaturated conditions, compared to bare dust particles, we found that only coated ATD particles showed suppression of ice nucleation ability while other four dust species did not showed the effect of coating on the fraction of particles nucleating ice. The results suggest that interactions between the dust surface and sulfuric acid vapor are important, such that interactions may or may not modify the surface via chemical reactions with sulfuric acid. At water-supersaturated conditions we did not observed the effect of coating, i.e. the bare and coated dust particles had similar ice nucleation behavior.

  4. Investigation into the effects of trace coal syn gas species on the performance of solid oxide fuel cell anodes, PhD. thesis, Russ College of Engineering and Technology of Ohio University

    SciTech Connect (OSTI)

    Trembly, J. P.

    2007-06-01

    Coal is the United States’ most widely used fossil fuel for the production of electric power. Coal’s availability and cost dictates that it will be used for many years to come in the United States for power production. As a result of the environmental impact of burning coal for power production more efficient and environmentally benign power production processes using coal are sought. Solid oxide fuel cells (SOFCs) combined with gasification technologies represent a potential methodology to produce electric power using coal in a much more efficient and cleaner manner. It has been shown in the past that trace species contained in coal, such as sulfur, severely degrade the performance of solid oxide fuel cells rendering them useless. Coal derived syngas cleanup technologies have been developed that efficiently remove sulfur to levels that do not cause any performance losses in solid oxide fuel cells. The ability of these systems to clean other trace species contained in syngas is not known nor is the effect of these trace species on the performance of solid oxide fuel cells. This works presents the thermodynamic and diffusion transport simulations that were combined with experimental testing to evaluate the effects of the trace species on the performance of solid oxide fuel cells. The results show that some trace species contained in coal will interact with the SOFC anode. In addition to the transport and thermodynamic simulations that were completed experimental tests were completed investigating the effect of HCl and AsH3 on the performance of SOFCs.

  5. Endangered Species

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Endangered Species Protecting our Endangered Species The Endangered Species Act requires that endangered species be protected at the individual level. February 2, 2015 Adult Mexican Spotted Owl Adult Mexican Spotted Owl recorded in 2010. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The Habitat Management Plan details how threatened and endangered species and their habitats are managed at LANL. Endangered species on

  6. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  7. Phenol removal pretreatment process

    DOE Patents [OSTI]

    Hames, Bonnie R.

    2004-04-13

    A process for removing phenols from an aqueous solution is provided, which comprises the steps of contacting a mixture comprising the solution and a metal oxide, forming a phenol metal oxide complex, and removing the complex from the mixture.

  8. Turbomachinery debris remover

    DOE Patents [OSTI]

    Krawiec, Donald F.; Kraf, Robert J.; Houser, Robert J.

    1988-01-01

    An apparatus for removing debris from a turbomachine. The apparatus includes housing and remotely operable viewing and grappling mechanisms for the purpose of locating and removing debris lodged between adjacent blades in a turbomachine.

  9. Method of making a sodium sulfur battery

    DOE Patents [OSTI]

    Elkins, P. E.

    1981-09-22

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another. 3 figs.

  10. Method of making a sodium sulfur battery

    DOE Patents [OSTI]

    Elkins, Perry E.

    1981-01-01

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another.

  11. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K. C. Kwon

    2007-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components

  12. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K.C. Kwon

    2009-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components

  13. Effect of Sulfur on Solid Oxide Fuel Cell (SOFC) Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effect of Sulfur on SOFC Performance Using Diesel Reformate R. Kerr March 6-7, 2014 Workshop on Gas Cleanup for Fuel Cell Applications, ANL, March 6-7, 2014 Sulfur Poisoning Effect ...

  14. EPA Diesel Rule and the Sulfur Effects (DECSE) Project

    SciTech Connect (OSTI)

    2009-05-08

    The VT program collaborated with industry stakeholders and the EPA (in an effort initiated in 1998 called Diesel Emission Control – Sulfur Effects study, otherwise known as DECSE) to quantify the effects of fuel sulfur on emission control technologies.

  15. SO2 REMOVAL WITH COAL SCRUBBING

    SciTech Connect (OSTI)

    Eung Ha Cho; Hari Prashanth Sundaram; Aubrey L. Miller

    2001-07-01

    This project is based on an effective removal of sulfur dioxide from flue gas with coal as the scrubbing medium instead of lime, which is used in the conventional FGD processes. A laboratory study proves that coal scrubbing is an innovative technology that can be implemented into a commercial process in place of the conventional lime scrubbing flue gas desulfurization process. SO{sub 2} was removed from a gas stream using an apparatus, which consisted of a 1-liter stirred reactor immersed in a thermostated oil bath. The reactor contained 60 g of 35-65 mesh coal in 600 ml of water. The apparatus also had 2 bubblers connected to the outlet of the reactor, each containing 1500 ml of 1 molar NaOH solution. The flow rate of the gas was 30 ml/sec, temperature was varied from 21 C to 73 C. Oxygen concentration ranged from 3 to 20% while SO{sub 2} concentration, from 500 to 2000 ppm. SO{sub 2} recovery was determined by analyzing SO{sub 2} concentration in the liquid samples taken from the bubblers. The samples taken from the reactor were analyzed for iron concentrations, which were then used to calculate fractions of coal pyrite leached. It was found that SO{sub 2} removal was highly temperature sensitive, giving 13.1% recovery at 21 C and 99.2% recovery at 73 C after 4 hours. The removal of SO{sub 2} was accomplished by the catalysis of iron that was produced by leaching of coal pyrite with combination of SO{sub 2} and O{sub 2}. This leaching reaction was found to be controlled by chemical reaction with apparent activation energy of 11.6 kcal/mole. SO{sub 2} removal increased with increasing O{sub 2} concentration up to 10% and leveled off upon further increase. The effect of SO{sub 2} concentration on its removal was minimal.

  16. Graphitic packing removal tool

    DOE Patents [OSTI]

    Meyers, Kurt Edward; Kolsun, George J.

    1997-01-01

    Graphitic packing removal tools for removal of the seal rings in one piece. he packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  17. Graphitic packing removal tool

    DOE Patents [OSTI]

    Meyers, K.E.; Kolsun, G.J.

    1997-11-11

    Graphitic packing removal tools for removal of the seal rings in one piece are disclosed. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal. 5 figs.

  18. Following the Transient Reactions in Lithium-Sulfur Batteries Using an In

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Situ Nuclear Magnetic Resonance (NMR) Technique - Joint Center for Energy Storage Research 18, 2015, Research Highlights Following the Transient Reactions in Lithium-Sulfur Batteries Using an In Situ Nuclear Magnetic Resonance (NMR) Technique (a) NMR spectra as a function of time during charge-discharge. Peaks 1 to 4 reflect change of concentrations of different polysulfide species. Peaks 5 to 6 reflect the formation of microstructures on Li anodes. (b) Formation of a thick SEI layer on Li

  19. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K. C. Kwon

    2006-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2} in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of

  20. Sulfuric acid thermoelectrochemical system and method

    DOE Patents [OSTI]

    Ludwig, Frank A.

    1989-01-01

    A thermoelectrochemical system in which an electrical current is generated between a cathode immersed in a concentrated sulfuric acid solution and an anode immersed in an aqueous buffer solution of sodium bisulfate and sodium sulfate. Reactants consumed at the electrodes during the electrochemical reaction are thermochemically regenerated and recycled to the electrodes to provide continuous operation of the system.

  1. Anodes for Rechargeable Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Cao, Ruiguo; Xu, Wu; Lu, Dongping; Xiao, Jie; Zhang, Jiguang

    2015-04-10

    In this work, we will review the recent developments on the protection of Li metal anode in Li-S batteries. Various strategies used to minimize the corrosion of Li anode and reducing its impedance increase will be analyzed. Other potential anodes used in sulfur based rechargeable batteries will also be discussed.

  2. Tailoring Pore Size of Nitrogen-Doped Hollow Carbon Nanospheres for Confi ning Sulfur in LithiumSulfur Batteries

    SciTech Connect (OSTI)

    Zhou, Weidong; Wang, Chong M.; Zhang, Quiglin; Abruna, Hector D.; He, Yang; Wang, Jiangwei; Mao, Scott X.; Xiao, Xingcheng

    2015-08-19

    Three types of nitrogen-doped hollow carbon spheres with different pore sized porous shells are prepared to investigate the performance of sulfur confinement. The reason that why no sulfur is observed in previous research is determined and it is successfully demonstrated that the sulfur/polysulfide will overflow the porous carbon during the lithiation process.

  3. Kinetics of Direct Oxidation of H2S in Coal Gas to Elemental Sulfur

    SciTech Connect (OSTI)

    K.C. Kwon

    2005-11-01

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that produce electric power and clean transportation fuels with coal and natural gas. These Vision 21 plants will require highly clean coal gas with H{sub 2}S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objectives of this research are to measure kinetics of direct

  4. CATALYST EVALUATION FOR A SULFUR DIOXIDE-DEPOLARIZED ELECTROLYZER

    SciTech Connect (OSTI)

    Hobbs, D; Hector Colon-Mercado, H

    2007-01-31

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. Testing examined the activity and stability of platinum and palladium as the electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by the concentration of the sulfuric acid electrolyte.

  5. Method to prevent sulfur accumulation in membrane electrode assembly

    DOE Patents [OSTI]

    Steimke, John L; Steeper, Timothy J; Herman, David T

    2014-04-29

    A method of operating a hybrid sulfur electrolyzer to generate hydrogen is provided that includes the steps of providing an anolyte with a concentration of sulfur dioxide, and applying a current. During steady state generation of hydrogen a plot of applied current density versus concentration of sulfur dioxide is below a boundary line. The boundary line may be linear and extend through the origin of the graph with a slope of 0.001 in which the current density is measured in mA/cm2 and the concentration of sulfur dioxide is measured in moles of sulfur dioxide per liter of anolyte.

  6. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    K.C. Kwon

    2005-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 0.059-0.87 seconds at 125-155 C to evaluate effects of reaction temperature, H{sub 2}S concentration, reaction pressure, and catalyst loading on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 62-78 v% hydrogen, 3,000-7,000-ppmv hydrogen sulfide, 1,500-3,500 ppmv sulfur dioxide, and 10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 50 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an

  7. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    K.C. Kwon

    2004-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 1-6 milliseconds at 125-155 C to evaluate effects of reaction temperature, moisture concentration, reaction pressure on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 70 v% hydrogen, 2,500-7,500-ppmv hydrogen sulfide, 1,250-3,750 ppmv sulfur dioxide, and 0-15 vol% moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 100 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The

  8. Coal Cleaning Using Resonance Disintegration for Mercury and Sulfur Reduction Prior to Combustion

    SciTech Connect (OSTI)

    Andrew Lucero

    2005-04-01

    Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method of liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.

  9. Device for removing blackheads

    DOE Patents [OSTI]

    Berkovich, Tamara

    1995-03-07

    A device for removing blackheads from pores in the skin having a elongated handle with a spoon shaped portion mounted on one end thereof, the spoon having multiple small holes piercing therethrough. Also covered is method for using the device to remove blackheads.

  10. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria; Liu, Wei

    1995-01-01

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  11. Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal for Biomass Application

    SciTech Connect (OSTI)

    Howard, Christopher J.; Dagle, Robert A.; Lebarbier, Vanessa MC; Rainbolt, James E.; Li, Liyu; King, David L.

    2013-06-19

    Systems comprising of multiple sorbent and catalytic beds have been developed for the warm syngas cleanup of coal- and biomass-derived syngas. Tailored specifically for biomass application the process described here consists of six primary unit operations: 1) Na2CO3 bed for HCl removal, 2) two regenerable ZnO beds for bulk H2S removal, 3) ZnO bed for H2S polishing, 4) NiCu/SBA-16 sorbent for trace metal (e.g. AsH3) removal, 5) steam reforming catalyst bed for tars and light hydrocarbons reformation and NH3 decomposition, and a 6) Cu-based LT-WGS catalyst bed. Simulated biomass-derived syngas containing a multitude of inorganic contaminants (H2S, AsH3, HCl, and NH3) and hydrocarbon additives (methane, ethylene, benzene, and naphthalene) was used to demonstrate process effectiveness. The efficiency of the process was demonstrated for a period of 175 hours, during which no signs of deactivation were observed. Post-run analysis revealed small levels of sulfur slipped through the sorbent bed train to the two downstream catalytic beds. Future improvements could be made to the trace metal polishing sorbent to ensure complete inorganic contaminant removal (to low ppb level) prior to the catalytic steps. However, dual, regenerating ZnO beds were effective for continuous removal for the vast majority of the sulfur present in the feed gas. The process was effective for complete AsH3 and HCl removal. The steam reforming catalyst completely reformed all the hydrocarbons present in the feed (methane, ethylene, benzene, and naphthalene) to additional syngas. However, post-run evaluation, under kinetically-controlled conditions, indicates deactivation of the steam reforming catalyst. Spent material characterization suggests this is attributed, in part, to coke formation, likely due to the presence of benzene and/or naphthalene in the feed. Future adaptation of this technology may require dual, regenerable steam reformers. The process and materials described in this report hold

  12. Comparison of environmental and isolate Sulfobacillus genomes reveals diverse carbon, sulfur, nitrogen, and hydrogen metabolisms

    SciTech Connect (OSTI)

    Justice, Nicholas B.; Norman, Anders; Brown, Christopher T.; Singh, Andrea; Thomas, Brian C.; Banfield, Jillian F.

    2014-12-15

    Bacteria of the genus Sulfobacillus are found worldwide as members of microbial communities that accelerate sulfide mineral dissolution in acid mine drainage environments (AMD), acid-rock drainage environments (ARD), as well as in industrial bioleaching operations. Despite their frequent identification in these environments, their role in biogeochemical cycling is poorly understood. Here we report draft genomes of five species of the Sulfobacillus genus (AMDSBA1-5) reconstructed by cultivation-independent sequencing of biofilms sampled from the Richmond Mine (Iron Mountain, CA). Three of these species (AMDSBA2, AMDSBA3, and AMDSBA4) have no cultured representatives while AMDSBA1 is a strain of S. benefaciens, and AMDSBA5 a strain of S. thermosulfidooxidans. We analyzed the diversity of energy conservation and central carbon metabolisms for these genomes and previously published Sulfobacillus genomes. Pathways of sulfur oxidation vary considerably across the genus, including the number and type of subunits of putative heterodisulfide reductase complexes likely involved in sulfur oxidation. The number and type of nickel-iron hydrogenase proteins varied across the genus, as does the presence of different central carbon pathways. Only the AMDSBA3 genome encodes a dissimilatory nitrate reducatase and only the AMDSBA5 and S. thermosulfidooxidans genomes encode assimilatory nitrate reductases. Lastly, within the genus, AMDSBA4 is unusual in that its electron transport chain includes a cytochrome bc type complex, a unique cytochrome c oxidase, and two distinct succinate dehydrogenase complexes. Overall, the results significantly expand our understanding of carbon, sulfur, nitrogen, and hydrogen metabolism within the Sulfobacillus genus.

  13. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect (OSTI)

    Bandy, A.R.; Thornton, D.C.; Driedger, A.R. III [Drexel Univ., Philadelphia, PA (United States)

    1993-12-01

    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  14. Process for production of synthesis gas with reduced sulfur content

    DOE Patents [OSTI]

    Najjar, Mitri S.; Corbeels, Roger J.; Kokturk, Uygur

    1989-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

  15. Advances in Acid Concentration Membrane Technology for the Sulfur-Iodine Thermochemical Cycle

    SciTech Connect (OSTI)

    Frederick F. Stewart; Christopher J. Orme

    2006-11-01

    One of the most promising cycles for the thermochemical generation of hydrogen is the Sulfur-Iodine (S-I) process, where aqueous HI is thermochemically decomposed into H2 and I2 at approximately 350 degrees Celsius. Regeneration of HI is accomplished by the Bunsen reaction (reaction of SO2, water, and iodine to generate H2SO4 and HI). Furthermore, SO2 is regenerated from the decomposition of H2SO4 at 850 degrees Celsius yielding the SO2 as well as O2. Thus, the cycle actually consists of two concurrent oxidation-reduction loops. As HI is regenerated, co-produced H2SO4 must be separated so that each may be decomposed. Current flowsheets employ a large amount (~83 mol% of the entire mixture) of elemental I2 to cause the HI and the H2SO4 to separate into two phases. To aid in the isolation of HI, which is directly decomposed into hydrogen, water and iodine must be removed. Separation of iodine is facilitated by removal of water. Sulfuric acid concentration is also required to facilitate feed recycling to the sulfuric acid decomposer. Decomposition of the sulfuric acid is an equilibrium limited process that leaves a substantial portion of the acid requiring recycle. Distillation of water from sulfuric acid involves significant corrosion issues at the liquid-vapor interface. Thus, it is desirable to concentrate the acid without boiling. Recent efforts at the INL have concentrated on applying pervaporation through Nafion-117, Nafion-112, and sulfonated poly(etheretherketone) (S-PEEK) membranes for the removal of water from HI/water and HI/Iodine/water feedstreams. In pervaporation, a feed is circulated at low pressure across the upstream side of the membrane, while a vacuum is applied downstream. Selected permeants sorb into the membrane, transport through it, and are vaporized from the backside. Thus, a concentration gradient is established, which provides the driving force for transport. In this work, membrane separations have been performed at temperatures as high as

  16. Project Profile: Baseload CSP Generation Integrated with Sulfur-Based

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Heat Storage | Department of Energy Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage Project Profile: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage General Atomics logo General Atomics, under the Baseload CSP FOA, demonstrated the engineering feasibility of using a sulfur-based thermochemical cycle to store heat from a CSP plant and support baseload power generation. Approach Graphic of a diagram of squares and

  17. Sulfur-impurity Induced Amorphization of Nickel | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Sulfur-impurity Induced Amorphization of Nickel Authors: Yuan, Z., Chen, H.P, Wang, W., Nomura, K., Kalia, R.K., Nakano, A., Vashishta, P. Recent experimental and theoretical studies have shown an essential role of sulfur segregation-induced amorphization of crystalline nickel leading to its embrittlement at a critical sulfur concentration of ∼14%, but the atomistic mechanism of the amorphization remains unexplained. Here, molecular dynamics simulations reveal that the

  18. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Joint Center for Energy Storage Research August 24, 2016, Videos Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries As JCESR scientists work to develop lighter and less expensive chemistries than those used in current lithium-ion batteries, lithium-sulfur shows tremendous promise. However, current lithium-sulfur batteries require an excessive amount of electrolyte to achieve moderate cycle life. This perspective presents an alternate approach of

  19. Sulfide catalysts for reducing SO2 to elemental sulfur

    DOE Patents [OSTI]

    Jin, Yun; Yu, Qiquan; Chang, Shih-Ger

    2001-01-01

    A highly efficient sulfide catalyst for reducing sulfur dioxide to elemental sulfur, which maximizes the selectivity of elemental sulfur over byproducts and has a high conversion efficiency. Various feed stream contaminants, such as water vapor are well tolerated. Additionally, hydrogen, carbon monoxide, or hydrogen sulfides can be employed as the reducing gases while maintaining high conversion efficiency. This allows a much wider range of uses and higher level of feed stream contaminants than prior art catalysts.

  20. Reactor for removing ammonia

    DOE Patents [OSTI]

    Luo, Weifang; Stewart, Kenneth D.

    2009-11-17

    Disclosed is a device for removing trace amounts of ammonia from a stream of gas, particularly hydrogen gas, prepared by a reformation apparatus. The apparatus is used to prevent PEM "poisoning" in a fuel cell receiving the incoming hydrogen stream.

  1. Extraction of Sulfur Mustard Metabolites from Urine Samples and...

    Office of Scientific and Technical Information (OSTI)

    Title: Extraction of Sulfur Mustard Metabolites from Urine Samples and Analysis by Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS) Authors: Mayer, B P ; Williams, ...

  2. Microsoft Word - Updated Air Dispersion Modeling Table _sulfur...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIVINE STRAKE AIR DISPERSION MODELING RESULTS for SULFUR DIOXIDE The attached table is ... within the Nevada Ambient Air Quality Standards at the boundary of the Nevada Test Site. ...

  3. Following the Transient Reactions in Lithium-Sulfur Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Following the Transient Reactions in Lithium-Sulfur Batteries Using an In Situ Nuclear ... cell electrochemical reactions in Li-S batteries using a microbattery design Interphase ...

  4. Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of doped mesoporous carbon and elemental sulfur at a temperature inside a stainless steel vessel, which was used in lithiumsulfur batteries that were tested in ...

  5. Project Profile: Baseload CSP Generation Integrated with Sulfur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Project Profile: Baseload CSP Generation Integrated with Sulfur-Based ... General Atomics is seeking a better thermal energy storage approach using ...

  6. Sodium-tetravalent sulfur molten chloroaluminate cell

    DOE Patents [OSTI]

    Mamantov, Gleb (Knoxville, TN)

    1985-04-02

    A sodium-tetravalent sulfur molten chloroaluminate cell with a .beta."-alumina sodium ion conductor having a S-Al mole ratio of above about 0.15 in an acidic molten chloroaluminate cathode composition is disclosed. The cathode composition has an AlCl.sub.3 -NaCl mole percent ratio of above about 70-30 at theoretical full charge. The cell provides high energy densities at low temperatures and provides high energy densities and high power densities at moderate temperatures.

  7. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    SciTech Connect (OSTI)

    Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott

    2014-09-30

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  8. Nonflame, source-induced sulfur fluorescence detector for sulfur-containing compounds

    SciTech Connect (OSTI)

    Gage, D.R.; Farwell, S.O.

    1980-12-01

    Results of some preliminary investigations of the fluorescence spectra of S/sub 2/ and the non-flame production of S/sub 2/ from sulfur-containing molecules are reported. Passage of the gas to be analyzed through a catalyst-oven containing a plug of NiO/sub 2//Al/sub 2/O/sub 3/ catalyst containing 10 wt% NiO/sub 2/ and heated to 400/sup 0/C resulted in conversion of H/sub 2/S to S/sub 2/ and elemental sulfur. The S/sub 2/ was detected by measurement of its fluorescence bands at 260 and 310nm, and elemental sulfur condensed on the cool parts of the apparatus. However, determination of sulfur-content of gas mixtures with the apparatus described herein were not as repeatable as desired, and the work is being continued on various facets of the non-flame system with work being directed toward the evaluation of different catalysts, catalyst temperature, design of a smaller detector geometry utilizing a pulsed-light excitation source, a windowless cell, and optical filters instead of monochromators to select the S/sub 2/ excitation and emission wavelengths. (BLM)

  9. Simulation of integrated pollutant removal (IPR) water-treatment system using ASPEN Plus

    SciTech Connect (OSTI)

    Harendra, Sivaram; Oryshcyhn, Danylo [U.S. DOE Ochs, Thomas [U.S. DOE Gerdemann, Stephen; Clark, John

    2013-01-01

    Capturing CO2 from fossil fuel combustion provides an opportunity for tapping a significant water source which can be used as service water for a capture-ready power plant and its peripherals. Researchers at the National Energy Technology Laboratory (NETL) have patented a process—Integrated Pollutant Removal (IPR®)—that uses off-the-shelf technology to produce a sequestration ready CO2 stream from an oxy-combustion power plant. Water condensed from oxy-combustion flue gas via the IPR system has been analyzed for composition and an approach for its treatment—for in-process reuse and for release—has been outlined. A computer simulation model in ASPEN Plus has been developed to simulate water treatment of flue gas derived wastewater from IPR systems. At the field installation, water condensed in the IPR process contains fly ash particles, sodium (largely from spray-tower buffering) and sulfur species as well as heavy metals, cations, and anions. An IPR wastewater treatment system was modeled using unit operations such as equalization, coagulation and flocculation, reverse osmosis, lime softening, crystallization, and pH correction. According to the model results, 70% (by mass) of the inlet stream can be treated as pure water, the other 20% yields as saleable products such as gypsum (CaSO4) and salt (NaCl) and the remaining portion is the waste. More than 99% of fly ash particles are removed in the coagulation and flocculation unit and these solids can be used as filler materials in various applications with further treatment. Results discussed relate to a slipstream IPR installation and are verified experimentally in the coagulation/flocculation step.

  10. Combined NO sub x /SO sub 2 removal in spray-dryer FGD systems

    SciTech Connect (OSTI)

    Livengood, C.D.

    1991-01-01

    Increased control of sulfur dioxide (SO{sub 2}) has been the focus of air pollution and acid deposition debates for many years, and the new Clean Air Act Amendments will require controls for this pollutant at many more installations. Calls for greater control of nitrogen oxides (NO{sub x}) have also been heard in response to their implication in environmental damage and possible links to global climate effects. This has already led to more stringent NO{sub x} emission regulations in several countries and some parts of the United States. While a number of options are available to remove either NO{sub x} or SO{sub 2} from flue gas, integrated technologies that can simultaneously remove both species (and perhaps particulate matter (PM) as well) in a single system can offer significant advantages. The benefits of such integration generally include better system operability, higher reliability, and lower capital and operating costs. In addition, there may be advantages due to lower consumption of resources, reduced waste volumes, and beneficial synergisms between the pollutants. The construction of complete, integrated systems will be of interest for new utility plants and industrial installations, as well as existing sites that currently have minimal pollution control. However, opportunities to incorporate integrated pollution control into existing flue gas cleanup (FGC) systems will be particularly important for operators with existing SO{sub 2} scrubbing systems who are faced with the need to add additional control of NO{sub x}. This paper describes research that could lead to relatively low-cost NO{sub x} control retrofits of flue gas desulfurization (FGD) systems based on spray drying. 10 refs., 10 figs., 3 tabs.

  11. Arsenic removal from water

    DOE Patents [OSTI]

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  12. Multi-component removal in flue gas by aqua ammonia

    DOE Patents [OSTI]

    Yeh, James T.; Pennline, Henry W.

    2007-08-14

    A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

  13. Sodium sulfur container with chromium/chromium oxide coating

    DOE Patents [OSTI]

    Ludwig, Frank A.; Higley, Lin R.

    1981-01-01

    A coating of chromium/chromium oxide is disclosed for coating the surfaces of electrically conducting components of a sodium sulfur battery. This chromium/chromium oxide coating is placed on the surfaces of the electrically conducting components of the battery which are in contact with molten polysulfide and sulfur reactants during battery operation.

  14. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    DOE Patents [OSTI]

    Moore, Robert; Pickard, Paul S.; Parma, Jr., Edward J.; Vernon, Milton E.; Gelbard, Fred; Lenard, Roger X.

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  15. Molten iron oxysulfide as a superior sulfur sorbent. First and second quarters progress report, September 1, 1989--March 1, 1990

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1990-03-06

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and SO{sub X} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but, under the right conditions of oxygen potential, it can act as a flux to produce a glassy slag. This glassy slag should be dense and environmentally inert. In this reporting period, the thermodynamic conditions for the operation of the first stage of a combustor operating on a Illinois No. 2 Coal have been examined with respect to the formation of the four phase equilibrium: FeO(wustite)/Fe/liquid/gas over the temperature 950{degrees} to 1300{degrees}C. The minimum dosages of iron oxide which are required at equilibrium and the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of So, per million Btu of heat evolution calculated for complete combustion. These preliminary results indicate that higher temperatures, in the range studied, give better results approaching 96 percent sulfur removal from a coal containing (on a dry basis) 3.29% by weight sulfur. A comparison is made between iron oxide and lime as a desulfurizing agent.

  16. Drum lid removal tool

    DOE Patents [OSTI]

    Pella, Bernard M.; Smith, Philip D.

    2010-08-24

    A tool for removing the lid of a metal drum wherein the lid is clamped over the drum rim without protruding edges, the tool having an elongated handle with a blade carried by an angularly positioned holder affixed to the midsection of the handle, the blade being of selected width to slice between lid lip and the drum rim and, when the blade is so positioned, upward motion of the blade handle will cause the blade to pry the lip from the rim and allow the lid to be removed.

  17. Removable feedwater sparger assembly

    DOE Patents [OSTI]

    Challberg, Roy C. (Livermore, CA)

    1994-01-01

    A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith.

  18. Removable feedwater sparger assembly

    DOE Patents [OSTI]

    Challberg, R.C.

    1994-10-04

    A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith. 8 figs.

  19. Metal-sulfur type cell having improved positive electrode

    DOE Patents [OSTI]

    Dejonghe, Lutgard C.; Visco, Steven J.; Mailhe, Catherine C.; Armand, Michel B.

    1989-01-01

    An novel metal-sulfur type cell operable at a temperature of 200.degree. C. or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S).sub.y).sub.n wherein y=1 to 6; n=2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprisises one of more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associtated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

  20. Metal-sulfur type cell having improved positive electrode

    DOE Patents [OSTI]

    DeJonghe, L.C.; Visco, S.J.; Mailhe, C.C.; Armand, M.B.

    1988-03-31

    A novel metal-sulfur type cell operable at a temperature of 200/degree/C or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S)/sub y/)n wherein y = 1 to 6; n = 2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprises one or more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon. 4 figs.

  1. Sulfur Speciation of Different Kerogens using XANES Spectroscopy

    SciTech Connect (OSTI)

    Wiltfong,R.; Mitra-Kirtley, S.; Mullins, O.; Andrews, B.; Fujisawa, G.; Larsen, J.

    2005-01-01

    X-ray absorption near-edge structure (XANES) methodology has been employed to quantify the different sulfur structures present in three Type I and three Type II kerogens. Kerogens from the Green River (3), Bakken (1), Woodford (1), and Indiana limestone (1) formations were studied. Both aliphatic (sulfide) and aromatic (thiophene) forms of sulfur exist in all these kerogen samples. Except for Woodford, all of the kerogens contain oxidized functional groups. Sulfur in Types I and II kerogens mimics the carbon chemistry in that the sulfur structures are more aromatic in Type II than in Type I. It was impossible to differentiate elemental sulfur from pyrite in these samples by using K-edge XANES.

  2. Multi-model mean nitrogen and sulfur deposition from the Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate ... Title: Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and ...

  3. Mercury and tritium removal from DOE waste oils

    SciTech Connect (OSTI)

    Klasson, E.T.

    1997-10-01

    This work covers the investigation of vacuum extraction as a means to remove tritiated contamination as well as the removal via sorption of dissolved mercury from contaminated oils. The radiation damage in oils from tritium causes production of hydrogen, methane, and low-molecular-weight hydrocarbons. When tritium gas is present in the oil, the tritium atom is incorporated into the formed hydrocarbons. The transformer industry measures gas content/composition of transformer oils as a diagnostic tool for the transformers` condition. The analytical approach (ASTM D3612-90) used for these measurements is vacuum extraction of all gases (H{sub 2}, N{sub 2}, O{sub 2}, CO, CO{sub 2}, etc.) followed by analysis of the evolved gas mixture. This extraction method will be adapted to remove dissolved gases (including tritium) from the SRS vacuum pump oil. It may be necessary to heat (60{degrees}C to 70{degrees}C) the oil during vacuum extraction to remove tritiated water. A method described in the procedures is a stripper column extraction, in which a carrier gas (argon) is used to remove dissolved gases from oil that is dispersed on high surface area beads. This method appears promising for scale-up as a treatment process, and a modified process is also being used as a dewatering technique by SD Myers, Inc. (a transformer consulting company) for transformers in the field by a mobile unit. Although some mercury may be removed during the vacuum extraction, the most common technique for removing mercury from oil is by using sulfur-impregnated activated carbon (SIAC). SIAC is currently being used by the petroleum industry to remove mercury from hydrocarbon mixtures, but the sorbent has not been previously tested on DOE vacuum oil waste. It is anticipated that a final process will be similar to technologies used by the petroleum industry and is comparable to ion exchange operations in large column-type reactors.

  4. Condensate removal device

    DOE Patents [OSTI]

    Maddox, James W.; Berger, David D.

    1984-01-01

    A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

  5. The CNG process: Acid gas removal with liquid carbon dioxide

    SciTech Connect (OSTI)

    Liu, Y.C.; Auyang, L.; Brown, W.R.

    1987-01-01

    The CNG acid gas removal process has two unique features: the absorption of sulfur-containing compounds and other trace contaminants with liquid carbon dioxide, and the regeneration of pure liquid carbon dioxide by triple-point crystallization. The process is especially suitable for treating gases which contain large amounts of carbon dioxide and much smaller amounts (relative to carbon dioxide) of hydrogen sulfide. Capital and energy costs are lower than conventional solvent processes. Further, products of the CNG process meet stringent purity specifications without undue cost penalties. A process demonstration unit has been constructed and operated to demonstrate the two key steps of the CNG process. Hydrogen sulfide and carbonyl sulfide removal from gas streams with liquid carbon dioxide absorbent to sub-ppm concentrations has been demonstrated. The production of highly purified liquid carbon dioxide (less than 0.1 ppm total contaminant) by triple-point crystallization also has been demonstrated.

  6. Molten iron oxysulfide as a superior sulfur sorbent. Third quarter technical progress report, June 1--August 31, 1990

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1990-12-31

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and SO{sub x} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but under the right conditions of oxygen potential and after combination with sulfur, the reaction products of coal gases with iron oxide can act as a flux to produce a fluid phase. The thermodynamic conditions for determining the most effective operating conditions of the first stage of a combustor are calculated for several Illinois coals. These conditions include contact of the gas with the phase combinations: CaO/CaSO{sub 4}, CaO/CaS, and Fe/FeO/liquid for the temperature range 950{degree} to 1300{degree}C. In the latter system, the minimum dosage of iron required at equilibrium and the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of SO{sub 2} per million Btu of heat evolution calculated for complete combustion. The calculations indicate that for the Fe-O-S system, higher temperatures give better results approaching 96 percent sulfur removal from a coal containing 4.2% sulfur. For this example, the stack gas emerging from the second stage of combustion under stoichiometric conditions would contain 0.36 pounds of SO{sub 2} per million BTU`s of heat generated. The temperature limits of the sulfate and sulfide forming reactions are defined.

  7. Thermochemical and kinetic aspects of the sulfurization of Cu-Sb and Cu-Bi thin films

    SciTech Connect (OSTI)

    Colombara, Diego; Peter, Laurence M.; Rogers, Keith D.; Hutchings, Kyle

    2012-02-15

    CuSbS{sub 2} and Cu{sub 3}BiS{sub 3} are being investigated as part of a search for new absorber materials for photovoltaic devices. Thin films of these chalcogenides were produced by conversion of stacked and co-electroplated metal precursor layers in the presence of elemental sulfur vapour. Ex-situ XRD and SEM/EDS analyses of the processed samples were employed to study the reaction sequence with the aim of achieving compact layer morphologies. A new 'Time-Temperature-Reaction' (TTR) diagram and modified Pilling-Bedworth coefficients have been introduced for the description and interpretation of the reaction kinetics. For equal processing times, the minimum temperature required for CuSbS{sub 2} to appear is substantially lower than for Cu{sub 3}BiS{sub 3}, suggesting that interdiffusion across the interfaces between the binary sulfides is a key step in the formation of the ternary compounds. The effects of the heating rate and sulfur partial pressure on the phase evolution as well as the potential losses of Sb and Bi during the processes have been investigated experimentally and the results related to the equilibrium pressure diagrams obtained via thermochemical computation. - Graphical Abstract: Example of 3D plot showing the equilibrium pressure surfaces of species potentially escaping from chalcogenide films as a function of temperature and sulfur partial pressure. Bi{sub (g)}, Bi{sub 2(g)}, and BiS{sub (g)} are the gaseous species in equilibrium with solid Bi{sub 2}S{sub 3(s)} considered in this specific example. The pressure threshold plane corresponds to the pressure limit above which the elemental losses from 1 {mu}m thick films exceeds 10% of the original content per cm{sup 2} area of film and dm{sup 3} capacity of sulfurization furnace under static atmosphere conditions. The sulfurization temperature/sulfur partial pressure boundaries required to minimise the elemental losses below a given value can be easily read from the 2D projection of the

  8. Membranes for the Sulfur-Iodine Integrated Laboratory Scale Demonstration

    SciTech Connect (OSTI)

    Frederick F. Stewart

    2007-08-01

    INL has developed polymeric membrane-based chemical separations to enable the thermochemical production of hydrogen. Major activities included studies of sulfuric acid concentration membranes, hydriodic acid concentration membranes, SO2/O2 separation membranes, potential applications of a catalyst reactor system for the decomposition of HI, and evaluation of the chemical separation needs for alternate thermochemical cycles. Membranes for the concentration of sulfuric acid were studied using pervaporation. The goal of this task was to offer the sulfur-iodine (S-I) and the hybrid sulfur (HyS) cycles a method to concentrate the sulfuric acid containing effluent from the decomposer without boiling. In this work, sulfuric acid decomposer effluent needs to be concentrated from ~50 % acid to 80 %. This task continued FY 2006 efforts to characterize water selective membranes for use in sulfuric acid concentration. In FY 2007, experiments were conducted to provide specific information, including transmembrane fluxes, separation factors, and membrane durability, necessary for proper decision making on the potential inclusion of this process into the S-I or HyS Integrated Laboratory Scale demonstration.

  9. Development of advanced, dry, SO{sub x}/NO{sub x} emission control technologies for high-sulfur coal. Final report, April 1, 1993--December 31, 1994

    SciTech Connect (OSTI)

    Amrhein, G.T.

    1994-12-23

    Dry Scrubbing is a common commercial process that has been limited to low- and medium-sulfur coal applications because high-sulfur coal requires more reagent than can be efficiently injected into the process. Babcock & Wilcox has made several advances that extend dry scrubbing technologies to higher sulfur coals by allowing deposit-free operation at low scrubber exit temperatures. This not only increases the amount of reagent that can be injected into the scrubber, but also increases SO{sub 2} removal efficiency and sorbent utilization. The objectives of this project were to demonstrate, at pilot scale, that advanced, dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} and NO{sub x} emissions while burning high-sulfur coal, and that these technologies are economically competitive with wet scrubber systems. The use of these technologies by utilities in and around Ohio, on new or retrofit applications, will ensure the future of markets for high-sulfur coal by creating cost effective options to coal switching.

  10. Evaluation of metallic foils for preconcentration of sulfur-containing gases with subsequent flash desorption/flame photometric detection

    SciTech Connect (OSTI)

    Kagel, R.A.; Farwell, S.O.

    1986-05-01

    Ag, Ni, Pd, Pt, Rh, and W foils were examined for their collective efficiencies toward seven sulfur-containing gases, i.e., H/sub 2/S, CH/sub 3/SH, CH/sub 3/SCH/sub 3/, CH/sub 3/SSCH/sub 3/, CS/sub 2/, COS, and SO/sub 2/. Low- and sub-part-per-billion (v/v) concentrations of these individual sulfur gases in air were drawn through a fluorocarbon resin cell containing a mounted 30-mm x 7-mm x 0.025-mm metal foil. The preconcentrated species were then thermally desorbed by a controlled pulse of current through the foil. The desorbed sample plug was swept in precleaned zero air from the fluorocarbon resin cell to a flame photometric detector. Sampling flow rate, ambient temperature, sample humidity, and common oxidants were examined for their effects on the collection efficiencies of these sulfur compounds on platinum and palladium foils. Analytical characteristics of this metal foil collection/flash desorption/flame photometric detector (MFC/FD/FPD) technique include a sulfur gas detectability of less than 50 pptr (parts per trillion) (v/v), a response repeatability of at least 95%, and field portable collection cells and instrumentation. The results are discussed both in terms of potential analytical applications of MFC/FD/FPD and in terms of their relationship to characterized models of gas adsorption on solid surfaces. 33 references, 6 figures, 3 tables.

  11. Hydrogen sulfide selectivity with carbonyl sulfide removal to less than PPM levels

    SciTech Connect (OSTI)

    Bacon, T.R.; Pearce, R.L.; Foster, W.R. Jr.

    1986-01-01

    Changes in market conditions and plant operating economics require examination of traditional processes and operating practices in gas treating applications for upgrading to more stringent standards of efficiency in order to remain competitive while returning a satisfactory operating profit margin to the company. Anticipated reduction in solvent usage, improvements in Claus sulfur recovery unit performance and lower energy costs induced Ashland's Catlettsburg refinery to convert its entire sulfur removal system from monoethanolamine to methyldiethanolamine. One of the seven product streams being treated required extremely low carbonyl sulfide specifications. When the initial converted operations evidenced a need to improve the carbonyl sulfide removal, GAS/SPEC Tech Service produced an innovative solution which allowed for efficient operation which still achieved these objectives.

  12. Removal of hydrogen sulfide from waste treatment plant biogas using the apollo scrubber

    SciTech Connect (OSTI)

    Smith, J.W.; Burrowes, P.A.; Gupta, A.; Walton, P.S.; Meffe, S.

    1996-12-31

    The removal of hydrogen sulfide and other sulphur compounds from anaerobic digester gas streams prior to their use as fuel for boilers, stationary engines, and cogeneration units minimizes corrosion problems and reduces sulfur emission loadings. A research program at the Department of Chemical Engineering and Applied Chemistry, University of Toronto in the 1980`s demonstrated the use of a modified flotation cell for the absorption of hydrogen sulfide from a gas stream and its catalytic oxidation to sulfur. The essence of the technology was a proprietary gas liquid contactor which provided very high mass transfer rates at the interface. A bench scale contactor developed at the university achieved hydrogen sulfide removal efficiencies of over 99.9% at atmospheric pressure. A demonstration unit for digester gas scrubbing applications was designed, fabricated, and then installed and evaluated at the Metropolitan Toronto Works Department - Main Treatment Plant (MTP).

  13. Pneumatic soil removal tool

    DOE Patents [OSTI]

    Neuhaus, J.E.

    1992-10-13

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

  14. Pneumatic soil removal tool

    DOE Patents [OSTI]

    Neuhaus, John E.

    1992-01-01

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

  15. Facilities removal working group

    SciTech Connect (OSTI)

    1997-03-01

    This working group`s first objective is to identify major economic, technical, and regulatory constraints on operator practices and decisions relevant to offshore facilities removal. Then, the group will try to make recommendations as to regulatory and policy adjustments, additional research, or process improvements and/or technological advances, that may be needed to improve the efficiency and effectiveness of the removal process. The working group will focus primarily on issues dealing with Gulf of Mexico platform abandonments. In order to make the working group sessions as productive as possible, the Facilities Removal Working Group will focus on three topics that address a majority of the concerns and/or constraints relevant to facilities removal. The three areas are: (1) Explosive Severing and its Impact on Marine Life, (2) Pile and Conductor Severing, and (3) Deep Water Abandonments This paper will outline the current state of practice in the offshore industry, identifying current regulations and specific issues encountered when addressing each of the three main topics above. The intent of the paper is to highlight potential issues for panel discussion, not to provide a detailed review of all data relevant to the topic. Before each panel discussion, key speakers will review data and information to facilitate development and discussion of the main issues of each topic. Please refer to the attached agenda for the workshop format, key speakers, presentation topics, and panel participants. The goal of the panel discussions is to identify key issues for each of the three topics above. The working group will also make recommendations on how to proceed on these key issues.

  16. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOE Patents [OSTI]

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  17. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOE Patents [OSTI]

    Johnson, Richard; Steinberg, Meyer

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  18. Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    via Surface Modification of SiO2 with TiO2 and ZrO2 | Department of Energy Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts via Surface Modification of SiO2 with TiO2 and ZrO2 Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts via Surface Modification of SiO2 with TiO2 and ZrO2 This study demonstrates the feasibility of developing highly stable, sulfur-tolerant oxidation catalysts that use less Pt via surface modification of silica supports

  19. Comparison of environmental and isolate Sulfobacillus genomes reveals diverse carbon, sulfur, nitrogen, and hydrogen metabolisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Justice, Nicholas B.; Norman, Anders; Brown, Christopher T.; Singh, Andrea; Thomas, Brian C.; Banfield, Jillian F.

    2014-12-15

    Bacteria of the genus Sulfobacillus are found worldwide as members of microbial communities that accelerate sulfide mineral dissolution in acid mine drainage environments (AMD), acid-rock drainage environments (ARD), as well as in industrial bioleaching operations. Despite their frequent identification in these environments, their role in biogeochemical cycling is poorly understood. Here we report draft genomes of five species of the Sulfobacillus genus (AMDSBA1-5) reconstructed by cultivation-independent sequencing of biofilms sampled from the Richmond Mine (Iron Mountain, CA). Three of these species (AMDSBA2, AMDSBA3, and AMDSBA4) have no cultured representatives while AMDSBA1 is a strain of S. benefaciens, and AMDSBA5 amore » strain of S. thermosulfidooxidans. We analyzed the diversity of energy conservation and central carbon metabolisms for these genomes and previously published Sulfobacillus genomes. Pathways of sulfur oxidation vary considerably across the genus, including the number and type of subunits of putative heterodisulfide reductase complexes likely involved in sulfur oxidation. The number and type of nickel-iron hydrogenase proteins varied across the genus, as does the presence of different central carbon pathways. Only the AMDSBA3 genome encodes a dissimilatory nitrate reducatase and only the AMDSBA5 and S. thermosulfidooxidans genomes encode assimilatory nitrate reductases. Lastly, within the genus, AMDSBA4 is unusual in that its electron transport chain includes a cytochrome bc type complex, a unique cytochrome c oxidase, and two distinct succinate dehydrogenase complexes. Overall, the results significantly expand our understanding of carbon, sulfur, nitrogen, and hydrogen metabolism within the Sulfobacillus genus.« less

  20. Effects of sulfur loading on the corrosion behaviors of metal lithium anode in lithium–sulfur batteries

    SciTech Connect (OSTI)

    Han, Yamiao; Duan, Xiaobo; Li, Yanbing; Huang, Liwu; Zhu, Ding; Chen, Yungui

    2015-08-15

    Highlights: • The effects of sulfur loading on the corrosion behaviors were investigated systematically. • The corrosion became severer with increasing sulfur loading or cycle times. • The corrosion films are porous and loose and cannot prevent further reaction between lithium and polysulfides. - Abstract: The corrosion behaviors in rechargeable lithium–sulfur batteries come from the reactions between polysulfides and metal lithium anode, and they are significantly influenced by the sulfur loading. While there are limited papers reported on the effects of sulfur loading on the corrosion behaviors. In this paper, the effects have been investigated systematically. The corrosion films consisted of insulating lithium ion conductors are loose and porous, so that the corrosive reactions cannot be hindered. The thickness of the corrosion layers, consequently, increased along with increasing sulfur loading or cycle times. For instance, the thickness of corrosion layers after 50 cycles was 98 μm in the cell with 5 mg sulfur while it reached up to 518 μm when the loading increased to 15 mg. The continuous deposition of corrosion products gave rise to low active materials utilization and poor cycling performance.

  1. Removal of heteroatoms and metals from heavy oils by bioconversion processes

    SciTech Connect (OSTI)

    Kaufman, E.N.

    1996-06-01

    Biocatalysts, either appropriate microorganisms or isolated enzymes, will be used in an aqueous phase in contact with the heavy oil phase to extract heteroatoms such as sulfur from the oil phase by bioconversion processes. Somewhat similar work on coal processing will be adapted and extended for this application. Bacteria such as Desulfovibrio desulfuricans will be studied for the reductive removal of organically-bound sulfur and bacteria such as Rhodococcus rhodochrum will be investigated for the oxidative removal of sulfur. Isolated bacteria from either oil field co-produced sour water or from soil contaminated by oil spills will also be tested. At a later time, bacteria that interact with organic nitrogen may also be studied. This type of interaction will be carried out in advanced bioreactor systems where organic and aqueous phases are contacted. One new concept of emulsion-phase contacting, which will be investigated, disperses the aqueous phase in the organic phase and is then recoalesced for removal of the contaminants and recycled back to the reactor. This program is a cooperative research and development program with the following companies: Baker Performance Chemicals, Chevron, Energy BioSystems, Exxon, Texaco, and UNOCAL. After verification of the bioprocessing concepts on a laboratory-scale, the end-product will be a demonstration of the technology at an industrial site. This should result in rapid transfer of the technology to industry.

  2. Lithium / Sulfur Cells with Long Cycle Life and High Specific...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Sulfur Cells with Long Cycle Life and High Specific Energy Lawrence Berkeley ... Song, M-K., Zhang, Y., Cairns, E.J., "A long-life, high-rate lithiumsulfur cell: a ...

  3. Sulfur Resistant Electrodes for Zirconia Oxygen Sensors - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxide (Tb-YSZ) electrode have tested in a high-sulfur-coal fired power plant side by side against Zirconia-based O2 sensors with a standard platinum electrode. ...

  4. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  5. Method for removing oxide contamination from titanium diboride powder

    DOE Patents [OSTI]

    Brynestad, Jorulf; Bamberger, Carlos E.

    1984-01-01

    A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB.sub.2 powders with a gaseous boron halide, such as BCl.sub.3, at temperatures in the range of 500.degree.-800.degree. C. The BCl.sub.3 reacts with the oxides to form volatile species which are removed by the BCl.sub.3 exit stream.

  6. Method for removing oxide contamination from titanium diboride powder

    DOE Patents [OSTI]

    Brynestad, J.; Bamberger, C.E.

    A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB/sub 2/ powders with a gaseous boron halide, such as BCl/sub 3/, at temperatures in the range of 500 to 800/sup 0/C. The BCl/sub 3/ reacts with the oxides to form volatile species which are removed by the BCl/sub 3/ exit stream.

  7. Solid materials for removing arsenic and method thereof

    DOE Patents [OSTI]

    Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.

    2008-07-01

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  8. Solid materials for removing arsenic and method thereof

    DOE Patents [OSTI]

    Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.

    2010-09-28

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  9. Gasoline from natural gas by sulfur processing

    SciTech Connect (OSTI)

    Erekson, E.J.; Miao, F.Q.

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  10. Evaluation of Sulfur Spinel Compounds for Multivalent Battery Cathode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications - Joint Center for Energy Storage Research August 17, 2016, Research Highlights Evaluation of Sulfur Spinel Compounds for Multivalent Battery Cathode Applications A group of 3d transition-metal sulfur-spinel compounds were systematically assessed for MV cathode applications, based on their electrochemical and thermodynamic properties . Cr2S4, Ti2S4 and Mn2S4 spinel compounds exhibit superior Mg2+ mobility, and hence, emerge as the top three candidates. Scientific Achievement

  11. Carbonyl sulfide: potential agent of atmospheric sulfur corrosion

    SciTech Connect (OSTI)

    Graedel, T.E.; Kammlott, G.W.; Franey, J.P.

    1981-05-08

    Laboratory exposure experiments demonstrate that carbonyl sulfide in wet air corrodes copper at 22/sup 0/C at a rate that is approximately linear with total exposure (the product of exposure time and carbonyl sulfide concentration). The corrosion rate is similar to that of hydrogen sulfide, a widely recognized corrodant. The much greater average atmospheric abundance of carbonyl sulfide compared with that of hydrogen sulfide or sulfur dioxide suggests that carbonyl sulfide may be a major agent of atmospheric sulfur corrosion.

  12. Ultra Low Sulfur Home Heating Oil Demonstration Project

    SciTech Connect (OSTI)

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  13. Electrochemically assisted paint removal

    SciTech Connect (OSTI)

    Keller, R.; Hydock, D.M.; Burleigh, T.D.

    1995-12-31

    A method to remove paint coatings from metal and other electronically conductive substrates is being studied. In particular, the remediation of objects coated with lead based paints is the focus of research. The approach also works very well with automotive coatings and may be competitive with sandblasting. To achieve debonding of the coating, the deteriorated or artifically damaged surface of the object is cathodically polarized. The object can be immersed in a benign aqueous electrolyte for treatment, or the electrolyte can be retained in an absorbent pad covering the surface to be treated.

  14. Method and apparatus for converting and removing organosulfur and other oxidizable compounds from distillate fuels, and compositions obtained thereby

    DOE Patents [OSTI]

    D'Alessandro, Robert N.; Tarabocchia, John; Jones, Jerald Andrew; Bonde, Steven E.; Leininger, Stefan

    2010-10-26

    The present disclosure is directed to a multi-stage system and a process utilizing said system with the design of reducing the sulfur-content in a liquid comprising hydrocarbons and organosulfur compounds. The process comprising at least one of the following states: (1) an oxidation stage; (2) an extraction state; (3) a raffinate washing stage; (4) a raffinate polishing stage; (5) a solvent recovery stage; (6) a solvent purification stage; and (7) a hydrocarbon recovery stage. The process for removing sulfur-containing hydrocarbons from gas oil, which comprises oxidizing gas oil comprising hydrocarbons and organosulfur compounds to obtain a product gas oil.

  15. Molten iron oxysulfide as a superior sulfur sorbent. Final report, [September 1989--1993

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1993-03-31

    The studies had as original objective the analysis of conditions for using liquid iron oxysulfide as a desulfuring agent during coal gasification. Ancillary was a comparison of iron oxysulfide with lime as sorbents under conditions where lime reacts with S-bearing gases to form Ca sulfate or sulfide. Primary thrust is to determine the thermodynamic requirements for desulfurization by iron additions (e.g., taconite concentrate) during combustion in gasifiers operating at high equivalence ratios. Thermodynamic analysis of lime-oxygen-sulfur system shows why lime is injected into burners under oxidizing conditions; reducing conditions forms CaS, requiring its removal, otherwise oxidation and release of S would occur. Iron as the oxysulfide liquid has a range of stability and can be used as a desulfurizing agent, if the burner/gasifier operates in a sufficiently reducing regime (high equivalence ratio); this operating range is given and is calculable for a coal composition, temperature, stoichiometry. High moisture or hydrogen contents of the coal yield a poorer degree of desulfurization. Kinetic tests on individual iron oxide particles on substrates or Pt cups with a TGA apparatus fail to predict reaction rates within a burner. Preliminary tests on the Dynamic Containment Burner with acetylene give some promise that this system can produce the proper conditions of coal gasification for use of added iron as a sulfur sorbent.

  16. Coal-firing sulfur coal with refuse derived fuels. Technical progress report {number_sign}7, [April--June 1996

    SciTech Connect (OSTI)

    Pan, Wei-Ping, Riley, J.T.; Lloyd, W.G.

    1996-05-31

    The objectives for this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the organic compounds tentatively identified as combustion products in the previous report were confirmed by comparing retention times with pure samples. Secondly, a reduced amount of unburned carbon in the fly ash and an oxygen concentration at about 3--6% in the flue gases were achieved by the addition of removable heat exchange tubes in the AFBC system.

  17. In situ Observation of Sulfur in Living Mammalian Cells: Uptake of Taurine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into MDCK Cells In situ Observation of Sulfur in Living Mammalian Cells: Uptake of Taurine into MDCK Cells Sulfur is essential for life. It plays important roles in the amino acids methionine and cysteine, and has a structural function in disulfide bonds. As a component of iron-sulfur clusters it takes part in electron and sulfur transfer reactions.1 Glutathione, a sulfur-containing tripeptide, is an important part of biological antioxidant systems.2 Another example for the biological

  18. Mercury removal sorbents

    DOE Patents [OSTI]

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  19. Removal of Mercury from Coal-Derived Synthesis Gas

    SciTech Connect (OSTI)

    2005-09-29

    A paper study was completed to survey literature, patents, and companies for mercury removal technologies applicable to gasification technologies. The objective was to determine if mercury emissions from gasification of coal are more or less difficult to manage than those from a combustion system. The purpose of the study was to define the extent of the mercury problem for gasification-based coal utilization and conversion systems. It is clear that in coal combustion systems, the speciation of mercury between elemental vapor and oxidized forms depends on a number of factors. The most important speciation factors are the concentration of chlorides in the coal, the temperatures in the ducting, and residence times. The collection of all the mercury was most dependent upon the extent of carbon in the fly ash, and the presence of a wet gas desulfurization system. In combustion, high chloride content plus long residence times at intermediate temperatures leads to oxidation of the mercury. The mercury is then captured in the wet gas desulfurization system and in the fly ash as HgCl{sub 2}. Without chloride, the mercury oxidizes much slower, but still may be trapped on thick bag house deposits. Addition of limestone to remove sulfur may trap additional mercury in the slag. In gasification where the mercury is expected to be elemental, activated carbon injection has been the most effective method of mercury removal. The carbon is best injected downstream where temperatures have moderated and an independent collector can be established. Concentrations of mercury sorbent need to be 10,000 to 20,000 the concentrations of the mercury. Pretreatment of the activated carbon may include acidification or promotion by sulfur.

  20. Solid materials for removing metals and fabrication method

    DOE Patents [OSTI]

    Coronado, Paul R.; Reynolds, John G.; Coleman, Sabre J.

    2004-10-19

    Solid materials have been developed to remove contaminating metals and organic compounds from aqueous media. The contaminants are removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the metals and the organics leaving a purified aqueous stream. The materials are sol-gel and or sol-gel and granulated activated carbon (GAC) mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards the contaminant(s). The contaminated solid materials can then be disposed of or the contaminant can be removed and the solids recycled.

  1. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key partsa positive and negative electrode and an electrolytethat exchange ions to store and release electricity. Using different materials for these components changes a batterys chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  2. Rubber stopper remover

    DOE Patents [OSTI]

    Stitt, Robert R.

    1994-01-01

    A device for removing a rubber stopper from a test tube is mountable to an upright wall, has a generally horizontal splash guard, and a lower plate spaced parallel to and below the splash guard. A slot in the lower plate has spaced-apart opposing edges that converge towards each other from the plate outer edge to a narrowed portion, the opposing edges shaped to make engagement between the bottom of the stopper flange and the top edge of the test tube to wedge therebetween and to grasp the stopper in the slot narrowed portion to hold the stopper as the test tube is manipulated downwardly and pulled from the stopper. The opposing edges extend inwardly to adjoin an opening having a diameter significantly larger than that of the stopper flange.

  3. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect (OSTI)

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is

  4. Effect of coal quality on maintenance costs at utility plants. Final report. [Effect of ash and sulfur content of coal

    SciTech Connect (OSTI)

    Holt, E.C. Jr.

    1980-06-01

    In an attempt to determine if correlation exists between coal quality, as measured by its ash and sulfur contents, and the maintenance cost at utility plants, an examination was made of the actual maintenance cost experience of selected portions of five TVA coal-fired power plants as a function of the fuel quality consumed during an extended period of time. The results indicate that, according to our decision rules developed in compliance with accepted statistical practices, correlation does exist in many portions of the coal-fired plants for which sufficient maintenance cost records were available. The degree of correlation varies significantly among the individual portions of a particular plant as well as among the various plants. However, the indicators are sufficient to confirm that a change (within the design constraints of the unit) in the ash and/or sulfur content of the coal being consumed by a utility boiler will have a proportionate effect on the maintenance cost at the plant. In the cases examined, each percent variation in ash content could have a monetary effect of from $0.05 to $0.10 per ton of coal consumed. Similarly, each percent variation in sulfur content could influence maintenance costs from $0.30 to $0.50 per ton of coal. Since these values are based on preliminary analysis of limited data, they must be approached with caution and not removed from the context in which they are presented. However, if borne out by further study, the potential magnitude of such savings may be sufficient to justify the acquisition of superior coal supplies, either by changing the source and/or using preparation to obtain a lower ash and sulfur fuel.

  5. Sulfur gas emissions from stored flue-gas-desulfurization sludges

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1980-01-01

    In field studies conducted for the Electric Power Research Institute by the University of Washington (1978) and the University of Idaho (1979), 13 gas samples from sludge storage sites at coal-burning power plants were analyzed by wall-coated open-tube cryogenic capillary-column gas chromatography with a sulfur-selective flame-photometric detector. Hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide were identified in varying concentrations and ratios in the emissions from both operating sludge ponds and landfills and from FGD sludge surfaces that had been stored in the open for 3-32 mo or longer. Other sulfur compounds, probably propanethiols, were found in emissions from some sludges. Chemical ''stabilization/fixation'' sulfate-sulfite ratio, sludge water content, and temperature were the most significant variables controlling sulfur gas production. The average sulfur emissions from each of the 13 FGD storage sites ranged from 0.01 to 0.26 g/sq m/yr sulfur.

  6. ADDITIVE TESTING FOR IMPROVED SULFUR RETENTION: PRELIMINARY REPORT

    SciTech Connect (OSTI)

    Amoroso, J.; Fox, K.

    2011-09-07

    The Savannah River National Laboratory is collaborating with Alfred University to evaluate the potential for additives in borosilicate glass to improve sulfur retention. This preliminary report provides further background on the incorporation of sulfur in glass and outlines the experiments that are being performed by the collaborators. A simulated waste glass composition has been selected for the experimental studies. The first phase of experimental work will evaluate the impacts of BaO, PbO, and V{sub 2}O{sub 5} at concentrations of 1.0, 2.0, and 5.0 wt % on sulfate retention in simulated high level waste borosilicate glass. The second phase of experimental work will evaluate the effects of time at the melt temperature on sulfur retention. The resulting samples will be characterized to determine the amount of sulfur remaining as well as to identify the formation of any crystalline phases. The results will be used to guide the future selection of frits and glass forming chemicals in vitrifying Department of Energy wastes containing high sulfur concentrations.

  7. Analytical method for the evaluation of sulfur functionalities in American coals. Final report

    SciTech Connect (OSTI)

    Attar, A.

    1983-05-01

    This investigation consisted of the following 6 tasks: (1) improve the instrumentation for the sulfur functional groups analysis and make it more reliable. (2) create a set of reference standards of sulfur-containing compounds. (3) examine the sulfur groups distribution in untreated and desulfurized coals. (4) examine the sulfur functionalities in raw and processed coals, i.e., liquefied coals. (5) determine the distribution of sulfur functionalities in modified coals. (6) prepare computer programs for calculations related to the distribution of sulfur functional groups in coal. Each task is discussed and results are presented. Appendix A contains the computer program used to interpret the data. 31 references, 56 figures, 17 tables.

  8. An intercomparison of aircraft instrumentation for tropospheric measurements of sulfur dioxide

    SciTech Connect (OSTI)

    Gregory, G.L.; Davis, D.D.; Beltz, N.; Bandy, A.R.; Ferek, R.J.; Thornton, D.C. [NASA, Langely Research Center, Hampton, VA (United States)]|[Georgia Institute of Technology, Atlanta, GA (United States)]|[J.W. Goethe Univ., Frankfurt (Germany)]|[Drexel Univ., Philadelphia, PA (United States)]|[Univ. of Washington, Seattle, WA (United States)

    1993-12-01

    As part of the NASA Tropospheric Chemistry Program, a series of field intercomparisons have been conducted to evaluate the state-of-the art for measuring key tropospheric species. One of the objectives of the third intercomparison campaign in this series, Chemical Instrumentation Test and Evaluation 3 (CITE 3), was to evaluate instrumentation for making reliable tropospheric aircraft measurements of sulfur dioxide, dimethyl sulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide. This paper reports the results of the intercomparisons of five sulfur dioxide measurement methods ranging from filter techniques, in which samples collected in flight are returned to the laboratory for analyses (chemiluminescent or ion chromatographic), to near real-time, in-flight measurements via gas chromatographic, mass spectrometric, and chemiluminescent techniques. All techniques showed some tendency to track sizeable changes in ambient SO2 such as those associated with altitude changes. For SO2 mixing ratios in the range of 200 pptv to a few ppbv, agreement among the techniques varies from about 30% to several orders of magnitude, depending upon the pair of measurements intercompared. For SO2 mixing ratios less than 200 pptv, measurements from the techniques are uncorrelated. In general, observed differences in the measurement of standards do not account for the flight results. The CITE 3 results do not unambiguously identify one or more of the measurement techniques as providing valid or invalid SO2 measurements, but identify the range of `potential` uncertainty in SO2 measurements reported by currently available instrumentation and as measured under realistic aircraft environments.

  9. Molten iron oxysulfide as a superior sulfur sorbent. Technical progress report, September 1, 1989--March 1, 1990

    SciTech Connect (OSTI)

    Hepworth, M.T.

    1990-03-06

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be stages to reduce NO{sub x} and SO{sub x} emissions. Iron oxide, as an alternative to lime or-limestone may be effective not only as a desulfurizing agent, but, under the right conditions of oxygen potential, it can act as a flux to produce a glassy slag This glassy slag should be dense and environmentally inert. In this reporting period, the thermodynamic conditions for the operation of the first stage of a combustor operating on a Illinois No. 2 Coal have been examined with respect to the formation of the four phase equilibrium:FeO(wustite)/Fe/liquid/gas over the temperature 950{degree} to 1300{degree}C. The minimum dosages of iron oxide which are required at equilibrium and the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of S per million Btu of heat SO{sub 2} evolution calculated for complete combustion. These preliminary results indicate that higher temperatures, in the range studied, give better results approaching 96 percent sulfur removal from a coal containing (on a dry basis) 3.29% by weight sulfur. A comparison is made between iron oxide and lime as a desulfurizing agent. With lime, the thermodynamic conditions were chosen: a set of conditions where the compound calcium sulfide is the product and a set of conditions where calcium sulfate is the product. The temperature limits of the sulfate forming and sulfide forming reactions are defined.

  10. Composition and method for removing photoresist materials from electronic components

    DOE Patents [OSTI]

    Davenhall, Leisa B.; Rubin, James B.

    2002-01-01

    The invention is a combination of at least one dense phase fluid and at least one dense phase fluid modifier which can be used to contact substrates for electronic parts such as semiconductor wafers or chips to remove photoresist materials which are applied to the substrates during manufacture of the electronic parts. The dense phase fluid modifier is one selected from the group of cyclic, aliphatic or alicyclic compounds having the functional group: ##STR1## wherein Y is a carbon, oxygen, nitrogen, phosphorus or sulfur atom or a hydrocarbon group having from 1 to 10 carbon atoms, a halogen or halogenated hydrocarbon group having from 1 to 10 carbon atoms, silicon or a fluorinated silicon group; and wherein R.sub.1 and R.sub.2 can be the same or different substituents; and wherein, as in the case where X is nitrogen, R.sub.1 or R.sub.2 may not be present. The invention compositions generally are applied to the substrates in a pulsed fashion in order to remove the hard baked photoresist material remaining on the surface of the substrate after removal of soft baked photoresist material and etching of the barrier layer.

  11. Removing Arsenic from Drinking Water

    SciTech Connect (OSTI)

    2011-01-01

    See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

  12. Removing Arsenic from Drinking Water

    ScienceCinema (OSTI)

    None

    2013-05-28

    See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

  13. Removal to Maximum Extent Practical

    Broader source: Energy.gov [DOE]

    Summary Notes from 1 November 2007 Generic Technical Issue Discussion on Removal of Highly Radioactive Radionuclides/Key Radionuclides to the Maximum Extent Practical

  14. Protection #1: Remove the Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remove the Source Protection #1: Remove the Source The 3 Protections = Defense in Depth August 1, 2013 Waste being removed from MDA-B inside a metal building Excavation of waste from MDA-B thumbnail of Removing the source means excavating contaminants, sorting these by waste type, and transporting to a disposal area in which contaminants are contained. RELATED IMAGES http://farm8.staticflickr.com/7388/9571274521_679fe1e34a_t.jpg Enlarge http://farm4.staticflickr.com/3726/9571272211_6873a5717f

  15. HYBRID SULFUR ELECTROLYZER DEVELOPMENT FY09 SECOND QUARTER REPORT

    SciTech Connect (OSTI)

    Herman, D; David Hobbs, D; Hector Colon-Mercado, H; Timothy Steeper, T; John Steimke, J; Mark Elvington, M

    2009-04-15

    The primary objective of the DOE-NE Nuclear Hydrogen Initiative (NHI) is to develop the nuclear hydrogen production technologies necessary to produce hydrogen at a cost competitive with other alternative transportation fuels. The focus of the NHI is on thermochemical cycles and high temperature electrolysis that can be powered by heat from high temperature gas reactors. The Savannah River National Laboratory (SRNL) has been tasked with the primary responsibility to perform research and development in order to characterize, evaluate and develop the Hybrid Sulfur (HyS) thermochemical process. This report documents work during the first quarter of Fiscal Year 2009, for the period between January 1, 2009 and March 31, 2009. The HyS Process is a two-step hybrid thermochemical cycle that is part of the 'Sulfur Family' of cycles. As a sulfur cycle, it uses high temperature thermal decomposition of sulfuric acid to produce oxygen and to regenerate the sulfur dioxide reactant. The second step of the process uses a sulfur dioxide depolarized electrolyzer (SDE) to split water and produce hydrogen by electrochemically reacting sulfur dioxide with H{sub 2}O. The SDE produces sulfuric acid, which is then sent to the acid decomposer to complete the cycle. The DOE NHI program is developing the acid decomposer at Sandia National Laboratory for application to both the HyS Process and the Sulfur Iodine Cycle. The SDE is being developed at SRNL. During FY05 and FY06, SRNL designed and conducted proof-of-concept testing for a SDE using a low temperature, PEM fuel cell-type design concept. The advantages of this design concept include high electrochemical efficiency, small footprint and potential for low capital cost, characteristics that are crucial for successful implementation on a commercial scale. During FY07, SRNL extended the range of testing of the SDE to higher temperature and pressure, conducted a 100-hour longevity test with a 60-cm{sup 2} single cell electrolyzer, and

  16. Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries

    SciTech Connect (OSTI)

    Chen, Renjie E-mail: chenrj@bit.edu.cn; Zhao, Teng; Tian, Tian; Fairen-Jimenez, David; Cao, Shuai; Coxon, Paul R.; Xi, Kai E-mail: chenrj@bit.edu.cn; Vasant Kumar, R.; Cheetham, Anthony K.

    2014-12-01

    A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/C{sub ZIF8-D}) composite for use in a cathode for a lithium sulfur (Li-S) battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8), a typical zinc-containing metal organic framework (MOF), which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/C{sub ZIF8-D}) composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/C{sub ZIF8-D} sample, Li-S batteries with the GS-S/C{sub ZIF8-D} composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.

  17. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  18. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOE Patents [OSTI]

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  19. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage - FY13 Q1 | Department of Energy Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage - FY13 Q1 Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage - FY13 Q1 This document summarizes the progress of this General Atomics project, funded by SunShot, for the first quarter of fiscal year 2013. progress_report_baseload_generalatomics_fy13_q1.pdf (196.13 KB) More Documents & Publications Baseload CSP Generation Integrated with

  20. SUSTAINABLE DEVELOPMENT IN KAZAKHASTAN: USING OIL AND GAS PRODUCTION BY-PRODUCT SULFUR FOR COST-EFFECTIVE SECONDARY END-USE PRODUCTS.

    SciTech Connect (OSTI)

    KALB, P.D.; VAGIN, S.; BEALL, P.W.; LEVINTOV, B.L.

    2004-09-25

    The Republic of Kazakhstan is continuing to develop its extensive petroleum reserves in the Tengiz region of the northeastern part of the Caspian Sea. Large quantities of by-product sulfur are being produced as a result of the removal of hydrogen sulfide from the oil and gas produced in the region. Lack of local markets and economic considerations limit the traditional outlets for by-product sulfur and the buildup of excess sulfur is a becoming a potential economic and environmental liability. Thus, new applications for re-use of by-product sulfur that will benefit regional economies including construction, paving and waste treatment are being developed. One promising application involves the cleanup and treatment of mercury at a Kazakhstan chemical plant. During 19 years of operation at the Pavlodar Khimprom chlor-alkali production facility, over 900 tons of mercury was lost to the soil surrounding and beneath the buildings. The Institute of Metallurgy and Ore Benefication (Almaty) is leading a team to develop and demonstrate a vacuum-assisted thermal process to extract the mercury from the soil and concentrate it as pure, elemental mercury, which will then be treated using the Sulfur Polymer Stabilization/Solidification (SPSS) process. The use of locally produced sulfur will recycle a low-value industrial by-product to treat hazardous waste and render it safe for return to the environment, thereby helping to solve two problems at once. SPSS chemically stabilizes mercury to mercuric sulfide, which has a low vapor pressure and low solubility, and then physically encapsulates the material in a durable, monolithic solid sulfur polymer matrix. Thus, mercury is placed in a solid form very much like stable cinnabar, the form in which it is found in nature. Previous research and development has shown that the process can successfully encapsulate up to 33 wt% mercury in the solid form, while still meeting very strict regulatory standards for leachable mercury (0.025 mg

  1. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; et al

    2016-04-05

    Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance.more » Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Lastly, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.« less

  2. removal | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    removal US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium WASHINGTON D.C - The Department of Energy's National Nuclear Security Administration (DOE/NNSA) announced today the removal of 36 kilograms (approximately 80 pounds) of highly enriched uranium (HEU) spent fuel from the Institute of Nuclear Physics (INP) in Almaty, Kazakhstan. The HEU was

  3. Method for removing heavy metal and nitrogen oxides from flue gas, device for removing heavy metal and nitrogen oxides from flue gas

    SciTech Connect (OSTI)

    Huang, Hann-Sheng; Livengood, Charles David

    1997-12-01

    A method for the simultaneous removal of oxides and heavy metals from a fluid is provided comprising combining the fluid with compounds containing alkali and sulfur to create a mixture; spray drying the mixture to create a vapor phase and a solid phase; and isolating the vapor phase from the solid phase. A device is also provided comprising a means for spray-drying flue gas with alkali-sulfide containing liquor at a temperature sufficient to cause the flue gas to react with the compounds so as to create a gaseous fraction and a solid fraction and a means for directing the gaseous fraction to a fabric filter.

  4. Solvent Tuning of Properties of Iron-Sulfur Clusters in Proteins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Proteins Figure 1. Schematic repre-sentation of the common active-site iron-sulfur cluster structural motif. Proteins containing Fe4S4 iron-sulfur clusters are ubiquitous in...

  5. Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4: June 9, 2014 EPA Sulfur Standards for Gasoline Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline Sulfur naturally occurs in gasoline and diesel fuel, contributing to pollution when the fuel is burned. Beginning in 2004, standards were set on the amount of sulfur in gasoline (Tier 2 standards). Separate standards were set for different entities, such as large refiners, small refiners, importers, downstream wholesalers, etc. In March 2014, Tier 3 standards were finalized by

  6. Chromium modified nickel-iron aluminide useful in sulfur bearing environments

    DOE Patents [OSTI]

    Cathcart, John V.; Liu, Chain T.

    1989-06-13

    An improved nickel-iron aluminide containing chromium and molybdenum additions to improve resistance to sulfur attack.

  7. Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts in Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application | Department of Energy Sulfur Deactivation on Cu/Zeolite SCR Catalysts in Diesel Application Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts in Diesel Application Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts in Diesel Application deer09_cheng.pdf (564.79 KB) More Documents & Publications Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials Sulfur Effect and Performance Recovery of a DOC + CSF +

  8. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    SciTech Connect (OSTI)

    K.C. Kwon

    2003-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 60-{micro}m C-500-04 alumina catalyst particles and a PFA differential fixed-bed micro reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into elemental sulfur were carried out for the space time range of 0.01-0.047 seconds at 125-155 C to evaluate effects of reaction temperatures, moisture concentrations, reaction pressures on conversion of hydrogen sulfide into elemental sulfur. Simulated coal gas mixtures consist of 61-89 v% hydrogen, 2,300-9,200-ppmv hydrogen sulfide, 1,600-4,900 ppmv sulfur dioxide, and 2.6-13.7 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 100-110 cm{sup 3}/min at room temperature and atmospheric pressure (SCCM). The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 28-127 psia. The following results were obtained based on experimental data generated from the differential reactor system, and their interpretations, (1) Concentration of moisture and concentrations of both H{sub 2}S and SO{sub 2} appear to affect slightly reaction

  9. Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of SiO2 with TiO2 and ZrO2 Hydrothermally Stable, Sulfur-Tolerant Platinum-Based Oxidation Catalysts via Surface Modification of SiO2 with TiO2 and ZrO2 This study ...

  10. Sulfur isotope ratios in petroleum research and exploration: Williston basin

    SciTech Connect (OSTI)

    Thode, H.G.

    1981-09-01

    The three major types of crude oil in the Williston basin - the type I oils of the Winnipeg-Red River system, the type II oils of the Bakken-Madison system, and the type III oils of the Tyler-Pennsylvanian system - can be distinguished by their sulfur isotope compositions. They have characteristic delta/sup 34/S values of 5.8 +- 1.2 parts per thousand (ppt), 2.8 +- 0.8 ppt, and -4.0 +- 0.7 ppt respectively. Highly mature oils have less typical values. Type II oils which have migrated over a distance of some 150 km beyond the region of generation have maintained their characteristic delta/sup 34/S values even though sulfur may have been lost. This indicates little or no interaction with reservoir sulfates under normal circumstances. On the periphery of the basin, type II oils altered by water washing and biodegradation have altered delta/sup 34/S values which increase from +2.9 to +9.4 ppt with the increasing degree of crude oil degradation. The Bakken shales, source of the type II oils, have delta/sup 34/S distribution patterns in the reduced sulfur typical of marine sediments. The delta/sup 34/S values for the type II oils match most closely the delta/sup 34/S value of organic sulfur in the black bituminous shales of the lower Bakken.

  11. Workshop on sulfur chemistry in flue gas desulfurization

    SciTech Connect (OSTI)

    Wallace, W.E. Jr.

    1980-05-01

    The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

  12. Catalyst added to Claus furnace reduces sulfur losses

    SciTech Connect (OSTI)

    Luinstra, E.A.; d'Haene, P.E. (Shell Canada Ltd., Toronto, ON (Canada). Oakville Research Centre)

    1989-07-01

    Several substances effectively catalyze the reduction of carbon disulfide in Claus gas streams at Claus reaction furnace conditions (about 1,000{sup 0}C). Some conversion of carbonyl sulfide also occurs. Carbon disulfide and carbonyl sulfide as well-known problem compounds that reduce sulfur recovery efficiency in many sulfur recovery plants. Installation of a suitable catalytic material in the reaction furnace promises significant improvement of Claus plant efficiency, and prolonged life of the catalytic converters. Almost every Claus sulfur recovery plant makes some carbon disulfide (CS/sub 2/) and carbonyl sulfide (COS) in the reaction furnace, and in many of these plants, these compounds constitute a significant problem. CS/sub 2/ and COS often comprise more than 50% of sulfur losses in the tail gas. This article reexamines the issue of CS/sub 2/ and COS in the Claus plant. The relative importance of these two troublesome components is explored with data accumulated from Shell Canada Claus plants. The authors discuss which factors tend to produce these components. Then a method for reducing CS/sub 2/ and COS virtually at the source will be introduced.

  13. Emission of reduced malodorous sulfur gases from wastewater treatment plants

    SciTech Connect (OSTI)

    Devai, I.; DeLaune, R.D.

    1999-03-01

    The emission of malodorous gaseous compounds from wastewater collection and treatment facilities is a growing maintenance and environmental problem. Numerous gaseous compounds with low odor detection thresholds are emitted from these facilities. Sulfur-bearing gases represent compounds with the lowest odor detection threshold. Using solid adsorbent preconcentration and gas chromatographic methods, the quantity and composition of reduced malodorous sulfur gases emitted from various steps of the treatment process were determined in wastewater treatment plants in Baton Rouge, Louisiana. Hydrogen sulfide, which is a malodorous, corrosive, and potentially toxic gas, was the most dominant volatile reduced sulfur (S) compound measured. Concentrations were not only more than the odor detection threshold of hydrogen sulfide, but above levels that may affect health during long-term exposure. The concentrations of methanethiol, dimethyl sulfide, carbon disulfide, and carbonyl sulfide were significantly less than hydrogen sulfide. However, even though emissions of reduced sulfur gases other than hydrogen sulfide were low, previous studies suggested that long-term exposure to such levels may cause respiratory problems and other symptoms.

  14. Hydroprocessing key issue in low-sulfur' era

    SciTech Connect (OSTI)

    Not Available

    1993-07-26

    Refiners gave heavy attention to hydroprocessing operations at the most recent National Petroleum Refiners Association annual question and answer session on refining and petrochemical technology. Among the topics covered were diesel color, blending to meet diesel sulfur specs, and ammonia injection in hydrocracking units. The panelists also related their experiences with increasing vacuum gas oil conversion in hydrocracking operations. These discussions are reproduced here.

  15. Sulfur tolerant molten carbonate fuel cell anode and process

    DOE Patents [OSTI]

    Remick, Robert J.

    1990-01-01

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  16. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    SciTech Connect (OSTI)

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  17. FY08 MEMBRANE CHARACTERIZATION REPORT FOR HYBRID SULFUR ELECTROLYZER

    SciTech Connect (OSTI)

    Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

    2008-09-01

    This report summarizes results from all of the membrane testing completed to date at the Savannah River National Laboratory (SRNL) for the sulfur dioxide-depolarized electrolyzer (SDE). Several types of commercially-available membranes have been analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid (PFSA), sulfonated polyether-ketone-ketone (SPEKK), and polybenzimidazole membranes (PBI). Of these membrane types, the poly-benzimidazole membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Several experimental membranes have also been analyzed including hydrated sulfonated Diels-Alder polyphenylenes (SDAPP) membranes from Sandia National Laboratory, perfluorosulfonimide (PFSI) and sulfonated perfluorocyclobutyl aromatic ether (S-PFCB) prepared by Clemson University, hydrated platinum-treated PFSA prepared by Giner Electrochemical Systems (GES) and Pt-Nafion{reg_sign} 115 composites prepared at SRNL. The chemical stability, SO{sub 2} transport and ionic conductivity characteristics have been measured for several commercially available and experimental proton-conducting membranes. Commercially available PFSA membranes such as the Nafion{reg_sign} series exhibited excellent chemical stability and ionic conductivity in sulfur dioxide saturated sulfuric acid solutions. Sulfur dioxide transport in the Nafion{reg_sign} membranes varied proportionally with the thickness and equivalent weight of the membrane. Although the SO{sub 2} transport in the Nafion{reg_sign} membranes is higher than desired, the excellent chemical stability and conductivity makes this membrane the best commercially-available membrane at this time. Initial results indicated that a modified Nafion{reg_sign} membrane incorporating Pt nanoparticles exhibited significantly reduced SO{sub 2} transport. Reduced SO{sub 2} transport was also measured with commercially available PBI membrane and several experimental membranes produced

  18. Photochemical reaction of sulfur hexafluoride with water in low-temperature xenon matrices

    SciTech Connect (OSTI)

    Yamada, Yasuhiro; Tamura, Hiroyuki; Takeda, Daisuke

    2011-03-14

    Sulfur hexafluoride SF{sub 6} is a very stable molecule with which very few reactions with other molecules have been reported. Here, we report a photochemical reaction of SF{sub 6} with water molecules using a matrix-isolation technique, where SF{sub 6} and H{sub 2}O were co-condensed in Xe matrices, and the products were observed using infrared spectroscopy. Irradiation at 193 nm from an ArF excimer laser caused the simultaneous decomposition of SF{sub 6} and H{sub 2}O, which resulted in the production of novel species. Infrared spectra and molecular orbital calculations of the species showed that the product was a SF{sub 4}{center_dot}{center_dot}{center_dot}HF{center_dot}{center_dot}{center_dot}HOF complex, which consists of hydrogen bonds and charge transfer interaction between S and F atoms. The assignment of the species was confirmed by isotope shifts using D and {sup 18}O isotope substitutions.

  19. Gas Cleaning and Siloxane Removal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - H2O, H2S, Siloxanes, VOCs, CO2, N2 and O2 - Production of gas for Pipeline, CNG and LNG - Siloxasorb Siloxane removal systems * Experience - 60 projects total - 19 for Digester ...

  20. Section 46: Removal of Waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in and around the WIPP site, the EPA did not identify any significant changes in the planning and execution of the DOE's strategy for removal of waste since the 1998...

  1. Article removal device for glovebox

    DOE Patents [OSTI]

    Guyer, R.H.; Leebl, R.G.

    1973-12-01

    An article removal device for a glovebox is described comprising a conduit extending through a glovebox wall which may be closed by a plug within the glovebox, and a fire-resistant container closing the outer end of the conduit and housing a removable container for receiving pyrophoric or otherwise hazardous material without disturbing the interior environment of the glovebox or adversely affecting the environment outside of the glovebox. (Official Gazette)

  2. Ion Removal - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Ion Removal Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's ion removal technology leverages the ability of phosphazene polymers discriminate between water and metal ions, which allows water to pass through the membrane while retaining the ions. Description The inherent chemical and thermal stability of the phosphazene polymers are an added strengths for separating and

  3. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C.

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  4. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    SciTech Connect (OSTI)

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  5. CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY

    SciTech Connect (OSTI)

    Steeper, T.

    2010-09-15

    This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that

  6. Process studies for a new method of removing H/sub 2/S from industrial gas streams

    SciTech Connect (OSTI)

    Neumann, D.W.; Lynn, S.

    1986-07-01

    A process for the removal of hydrogen sulfide from coal-derived gas streams has been developed. The basis for the process is the absorption of H/sub 2/S into a polar organic solvent where it is reacted with dissolved sulfur dioxide to form elemental sulfur. After sulfur is crystallized from solution, the solvent is stripped to remove dissolved gases and water formed by the reaction. The SO/sub 2/ is generated by burning a portion of the sulfur in a furnace where the heat of combustion is used to generate high pressure steam. The SO/sub 2/ is absorbed into part of the lean solvent to form the solution necessary for the first step. The kinetics of the reaction between H/sub 2/S and SO/sub 2/ dissolved in mixtures of N,N-Dimethylaniline (DMA)/ Diethylene Glycol Monomethyl Ether and DMA/Triethylene Glycol Dimethyl Ether was studied by following the temperature rise in an adiabatic calorimeter. This irreversible reaction was found to be first-order in both H/sub 2/S and SO/sub 2/, with an approximates heat of reaction of 28 kcal/mole of SO/sub 2/. The sole products of the reaction appear to be elemental sulfur and water. The presence of DMA increases the value of the second-order rate constant by an order of magnitude over that obtained in the glycol ethers alone. Addition of other tertiary aromatic amines enhances the observed kinetics; heterocyclic amines (e.g., pyridine derivatives) have been found to be 10 to 100 times more effective as catalysts when compared to DMA.

  7. Selection of an acid-gas removal process for an LNG plant

    SciTech Connect (OSTI)

    Stone, J.B.; Jones, G.N.; Denton, R.D.

    1996-12-31

    Acid gas contaminants, such as, CO{sub 2}, H{sub 2}S and mercaptans, must be removed to a very low level from a feed natural gas before it is liquefied. CO{sub 2} is typically removed to a level of about 100 ppm to prevent freezing during LNG processing. Sulfur compounds are removed to levels required by the eventual consumer of the gas. Acid-gas removal processes can be broadly classified as: solvent-based, adsorption, cryogenic or physical separation. The advantages and disadvantages of these processes will be discussed along with design and operating considerations. This paper will also discuss the important considerations affecting the choice of the best acid-gas removal process for LNG plants. Some of these considerations are: the remoteness of the LNG plant from the resource; the cost of the feed gas and the economics of minimizing capital expenditures; the ultimate disposition of the acid gas; potential for energy integration; and the composition, including LPG and conditions of the feed gas. The example of the selection of the acid-gas removal process for an LNG plant.

  8. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect (OSTI)

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  9. Removal of metals from heavy oils with phosphorus - Alumina catalysts

    SciTech Connect (OSTI)

    Kukes, S.G.; Parrott, S.L.; Gardner, L.E. )

    1987-04-01

    Earlier it was found that various oil-soluble phosphorous compounds were active for vanadium removal from different crude oils. The phosphorous compounds preferentially reacted with low molecular weight vanadium species in the resin fraction and therefore the highest rate of vanadium removal was observed when the asphaltene fraction was partially or completely removed. Phosphorous compounds promoted the rate of vanadium removal during hydroprocessing over alumina in a trickle bed reactor. Some metal phosphates were prepared and tested for demetallization activity. Several mixed metal phosphates, such as Cr-Zr, Ni-Zr, Cu-Zr, V-Co-Zr, Fe-Co-Zr, Ni-Co-Zr, etc., exhibited high activity for both vanadium and nickel removal. These catalysts were found to possess HDM activity and activity maintenance comparable to conventional hydrotreating catalysts available commercially. The vanadium removal selectivity of the mixed metal phosphates was similar to that of the commercial catalyst, but much lower than that observed earlier for oil soluble phosphorous compounds. Since the lack of high vanadium selectivity for the mixed metal phosphates could be due to their transition metal component, they investigated the hydroprocessing of heavy oils over aluminas impregnated with different inorganic phosphorous compounds.

  10. Multiple pollutant removal using the condensing heat exchanger. Task 2, Pilot scale IFGT testing

    SciTech Connect (OSTI)

    Jankura, B.J.

    1996-01-01

    The purpose of Task 2 (IFGT Pilot-Scale Tests at the B&W Alliance Research Center) is to evaluate the emission reduction performance of the Integrated flue Gas Treatment (IFGT) process for coal-fired applications. The IFGT system is a two-stage condensing heat exchanger that captures multiple pollutants - while recovering waste heat. The IFGT technology offers the potential of a addressing the emission of SO{sub 2} and particulate from electric utilities currently regulated under the Phase I and Phase II requirements defined in Title IV, and many of the air pollutants that will soon be regulated under Title III of the Clean Air Act. The performance data will be obtained at pilot-scale conditions similar to full-scale operating systems. The task 2 IFGT tests have been designed to investigate several aspects of IFGT process conditions at a broader range of variable than would be feasible at a larger scale facility. The performance parameters that will be investigated are as follows: SO{sub 2} removal; particulate removal; removal of mercury and other heavy metals; NO{sub x} removal; HF and HCl removal; NH{sub 3} removal; ammonia-sulfur compounds generation; and steam injection for particle removal. For all of the pollutant removal tests, removal efficiency will be based on measurements at the inlet and outlet of the IFGT facility. Heat recovery measurements will also be made during these tests to demonstrate the heat recovery provided by the IFGT technology. This report provides the Final Test Plan for the first coal tested in the Task 2 pilot-scale IFGT tests.

  11. High removal rate laser-based coating removal system

    DOE Patents [OSTI]

    Matthews, Dennis L.; Celliers, Peter M.; Hackel, Lloyd; Da Silva, Luiz B.; Dane, C. Brent; Mrowka, Stanley

    1999-11-16

    A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

  12. Method of making sulfur-resistant composite metal membranes

    DOE Patents [OSTI]

    Way, J. Douglas (Boulder, CO) [Boulder, CO; Lusk, Mark (Golden, CO) [Golden, CO; Thoen, Paul (Littleton, CO) [Littleton, CO

    2012-01-24

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  13. Simultaneous SO{sub 2}, SO{sub 3} and NOx removal with ammonia and electron beam irradiation by the EBA process

    SciTech Connect (OSTI)

    Hirano, S.; Aoki, S.; Izutsu, M.; Yuki, Y.

    1999-07-01

    Details are presented of design, performance, operational experience and cost-effectiveness of an ammonium sulfate/nitrate yielding, 90 MWe-capacity, Electron Beam system retrofit, an initial commercial installation of the EBA Process in high-sulfur bituminous coal service at the Chengdu Power Station of Sichuan Electric Power Administration in China. 1997/1998 system startup and commissioning activities leading to successful acceptance tests in 1998 are reviewed to indicate the scope of problems addressed and overcome, and the resulting broad applicability for low-grade fuel service, e.g. in Asia and North America, is illustrated. A retrofit installation of 220 MWe capacity at a powerplant of Chubu Electric Power Company, Inc., in Japan, 92+% SO{sub 2} and SO{sub 3} removal w/60+% NOx removal, that will start up in late 1999 is reviewed. Process economics, i.e. cost/ton SO{sub 2} removal are presented for: The Chengdu Station installation, 80+% SO{sub 2} and SO{sub 3} removal w/20% NOx removal; and a commonly referenced, hypothetical application on a new unit in the U.S. of 300 MWe capacity with 2.6% sulfur bituminous coal fueling designed for performance of 90% SO{sub 2} and SO{sub 3} removal w/65% NOx removal.

  14. Removal - An alternative to clearance

    SciTech Connect (OSTI)

    Feinhals, J.; Kelch, A.; Kunze, V.

    2007-07-01

    This presentation shows the differences between the application of clearance and removal, both being procedures for materials leaving radiation protection areas permanently. The differentiation will be done on the basis of the German legislation but may be also applicable for other national legislation. For clearance in Germany two basic requirements must be given, i.e. that the materials are activated or contaminated and that they result from the licensed use or can be assigned to the scope of the license. Clearance needs not to be applied to objects in Germany which are to be removed only temporarily from controlled areas with the purpose of repair or reuse in other controlled areas. In these cases only the requirements of contamination control apply. In the case of removal it must either be proved by measurements that the relevant materials are neither activated nor contaminated or that the materials result from areas where activation or contamination is impossible due to the operational history considering operational procedures and events. If the material is considered neither activated nor contaminated there is no need for a clearance procedure. Therefore, these materials can be removed from radiation protection areas and the removal is in the responsibility of the licensee. Nevertheless, the removal procedure and the measuring techniques to be applied for the different types of materials need an agreement from the competent authority. In Germany a maximum value of 10% of the clearance values has been established in different licenses as a criterion for the application of removal. As approximately 2/3 of the total mass of a nuclear power plant is not expected to be contaminated or activated there is a need for such a procedure of removal for this non contaminated material without any regulatory control especially in the case of decommissioning. A remarkable example is NPP Stade where in the last three years more than 8600 Mg were disposed of by removal and

  15. Large Component Removal/Disposal

    SciTech Connect (OSTI)

    Wheeler, D. M.

    2002-02-27

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  16. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Joint Center for Energy Storage Research July 11, 2016, Research Highlights Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries Precipitation-dissolution Li-S chemistry achieved by sparingly solvating electrolyte and various electrolyte design concepts Scientific Achievement This work presents the promising new concepts of using sparingly solvating electrolyte to enable Li-S battery operation at lean electrolyte condition, as well as the design rules

  17. Development of High Energy Lithium-Sulfur Batteries

    Broader source: Energy.gov (indexed) [DOE]

    High Energy Lithium-Sulfur Batteries Jun Liu and Dongping Lu Pacific Northwest National Laboratory 2016 DOE Vehicle Technologies Program Review June 6-10, 2016 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID #ES282 1 1 2 Overview Timeline * Start date: Oct. 2012 * End date: Sept. 2017 * Percent complete: 80% Budget * Total project funding - DOE share 100% * Funding received in FY15: $400k * Funding for FY16: $400k Barriers *

  18. Molecular Structure and Stability of Dissolved Lithium Polysulfide Species

    SciTech Connect (OSTI)

    Vijayakumar, M.; Govind, Niranjan; Walter, Eric D.; Burton, Sarah D.; Shukla, Anil K.; Devaraj, Arun; Xiao, Jie; Liu, Jun; Wang, Chong M.; Karim, Ayman M.; Thevuthasan, Suntharampillai

    2014-01-01

    Ability to predict the solubility and stability of lithium polysulfide is vital in realizing longer lasting lithium-sulfur batteries. Herein we report a combined computational and experimental spectroscopic analysis to understand the dissolution mechanism of lithium polysulfide species in an aprotic solvent medium. Multinuclear NMR and sulfur K-edge X-ray absorption (XAS) analysis reveals that the lithium exchange between polysulfide species and solvent molecule constitutes the first step in the dissolution process. Lithium exchange leads to de-lithiated polysulfide ions which subsequently forms highly reactive free radicals through disproportion reaction. The energy required for the disproportion and possible dimer formation reactions of the polysulfide species are analyzed using density functional theory (DFT) calculations. We validate our calculations with variable temperature electron spin resonance (ESR) measurements. Based on these findings, we discuss approaches to optimize the electrolyte in order to control the polysulfide solubility. The energy required for the disproportion and possible dimer formation reactions of the polysulfide species are analyzed using density functional theory (DFT) calculations. We validate our calculations with variable temperature electron spin resonance (ESR) measurements. Based on these findings, we discuss approaches to optimize the electrolyte in order to control the polysulfide solubility.

  19. Photovoltaic module with removable wind deflector (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Photovoltaic module with removable wind deflector Title: Photovoltaic module with removable wind deflector A photovoltaic (PV) module assembly including a PV module, a deflector, ...

  20. Heavy Water Test Reactor Dome Removal

    SciTech Connect (OSTI)

    2011-01-01

    A high speed look at the removal of the Heavy Water Test Reactor Dome Removal. A project sponsored by the Recovery Act on the Savannah River Site.

  1. Protection #2: Trap and Remove Sediment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trap and Remove Sediment Protection 2: Trap and Remove Sediment The 3 Protections Defense in Depth August 1, 2013 Sediment behind LA Canyon weir is sampled and excavated...

  2. Photovoltaic module with removable wind deflector (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Patent: Photovoltaic module with removable wind deflector Citation Details In-Document Search Title: Photovoltaic module with removable wind deflector A photovoltaic (PV) module ...

  3. ,"Virginia Natural Gas Nonhydrocarbon Gases Removed (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Nonhydrocarbon Gases Removed ... 2:52:09 AM" "Back to Contents","Data 1: Virginia Natural Gas Nonhydrocarbon Gases Removed ...

  4. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    SciTech Connect (OSTI)

    Lin, Zhan; Liang, Chengdu

    2015-01-01

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and the electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.

  5. Low-sulfur coal usage alters transportation strategies

    SciTech Connect (OSTI)

    Stein, H.

    1995-07-01

    As electricity production has grown, so has the amount of coal burned by US utilities. In order to comply with the 1990 Clean Air Act Amendments (CAAA), many utilities have changed from high-sulfur coal to lower-sulfur coal to reduce sulfur dioxide emissions. The primary mode of transporting coal to utilities remains the railroad, and coal represents the largest freight tonnage shipped - two out of every five tons. Since coal is so important to the railroads, it is logical that as utilities have changed their coal-buying strategies, the railroads` strategies have also changed. The increased demand for Western coal has caused rail lines some capacity problems which they are attempting to meet head-on by buying new railcars and locomotives and expanding track capacities. The new railcars typically have aluminum bodies to reduce empty weight, enabling them to carry larger loads of coal. Train locomotives are also undergoing upgrade changes. Most new locomotives have as motors to drive the wheels which deliver more motive power (traction) to the wheel trucks. In fact the motors are up to 30% more efficient at getting the traction to the trucks. Trackage is also being expanded to alleviate serious congestion on the tracks when moving Western coal.

  6. Method for preparing a sodium/sulfur cell

    DOE Patents [OSTI]

    Weiner, Steven A.

    1978-01-01

    A method for preparing a sodium/sulfur cell comprising (A) inserting a solid sodium slug, adapted to be connected to an external circuit, into the anodic reaction zone of a cell subassembly maintained within an inert atmosphere, said cell subassembly comprising a cell container and a tubular cation-permeable barrier disposed within said container such that a first reaction zone is located within cation-permeable barrier and a second reaction zone is located between the outer surface of said cation-permeable barrier and the inner surface of said container, one of said reaction zones being said anodic reaction zone and the other of said reaction zone being a cathodic reaction zone containing a precast composite cathodic reactant comprising a sulfur impregnated porous conductive material connected to said cation permeable barrier and adapted to be connected to said external circuit; and (B) providing closure means for said subassembly and sealing the same to said subassembly at a temperature less than about 100.degree. C. The method of the invention overcomes deficiencies of the prior art methods by allowing preparation of a sodium/sulfur cell without the use of molten reactants and the fill spouts which are required when the cell is filled with molten reactants.

  7. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Zhan; Liang, Chengdu

    2014-11-11

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and themore » electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.« less

  8. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    SciTech Connect (OSTI)

    Lin, Zhan; Liang, Chengdu

    2014-11-11

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and the electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.

  9. Glass surface deactivants for sulfur-containing gases

    SciTech Connect (OSTI)

    Farwell, S.O.; Gluck, S.J.

    1980-10-01

    In gas chromatographic technique for measuring reduced sulfur-containing gases in biogenic air fluxes, the major problem seemed to be the irreversible adsorption of the polar sulfur compounds on the glass surfaces of the cryogenic sampling traps. This article discusses the comparative degrees of Pyrex glass surface passivation for over 25 chemical deactivants and their related pretreatment procedures. Since H/sub 2/S was discovered to be the sulfur compound with a consistently lower recovery efficiency than COS, CH/sub 3/SH, CH/sub 3/SCH, CS/sub 2/ or CH/sub 3/SSCH/sub 3/, the percent recovery for H/sub 2/S was employed as the indicator of effectiveness for the various deactivation treatments. Tables are presented summarizing the mean H/sub 2/S recoveries for chlorosilane deactivants and for the mean H/sub 2/S recoveries for different pyrex surface pretreatments with an octadecyltrialkoxysilane deactivation. The general conclusion of this investigation is that the relative degree of passivation for glass surfaces by present deactivation techniques is dependent on the types of analyzed compounds and the nature of the glass surface.

  10. Utilizing the market to control sulfur dioxide emissions

    SciTech Connect (OSTI)

    Loeher, C.F. III

    1995-12-01

    Environmental policy in the United States is evolving; command and control approaches are being slowly replaced with market-based incentives. Market-based regulation is favorable because it provides the regulated community with flexibility in choosing between pollution control options. A recent application of a market-based approach is Title IV of the 1990 Clean Air Act Amendments. This paper evaluates the advantages of utilizing market-based incentives to control sulfur dioxide emissions. The evaluation embodies an extensive methodology, which provides an overview of the policy governing air quality, discusses pollution control philosophies and analyzes their associated advantages and limitations. Further, it describes the development and operation of a market for emissions trading, impediments to the market, and recommends strategies to improve the market. The evaluation concludes by analyzing the results of five empirical simulations demonstrating the cost-effectiveness of employing market-based incentives versus command-and-control regulation for controlling sulfur dioxide emissions. The results of the evaluation indicate that regulatory barriers and market impediments have inhibited allowance trading. However, many of these obstacles have been or are being eliminated through Federal and state regulations, and through enhancement of the market. Results also demonstrate that sulfur dioxide allowance trading can obtain identical levels of environmental protection as command-and-control approaches while realizing cost savings to government and industry.

  11. Method for removal of explosives from aqueous solution using suspended plant cells

    DOE Patents [OSTI]

    Jackson, Paul J.; Torres, deceased, Agapito P.; Delhaize, Emmanuel

    1994-01-01

    The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells was also found to be of use in treating waste directly.

  12. Method for removal of metal atoms from aqueous solution using suspended plant cells

    DOE Patents [OSTI]

    Jackson, Paul J.; Torres, deceased, Agapito P.; Delhaize, Emmanuel

    1992-01-01

    The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells were also found to be of use in treating waste directly.

  13. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    DOE Patents [OSTI]

    Ramkumar, Shwetha; Fan, Liang-Shih

    2015-11-04

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  14. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    DOE Patents [OSTI]

    Ramkumar, Shwetha; Fan, Liang-Shih

    2013-07-30

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  15. Bioenergetic studies of coal sulfur oxidation by extremely thermophilic bacteria. Final report, September 15, 1992--August 31, 1997

    SciTech Connect (OSTI)

    Kelly, R.M.; Han, C.J.

    1997-12-31

    Thermoacidophilic microorganisms have been considered for inorganic sulfur removal from coal because of expected improvements in rates of both biotic and abiotic sulfur oxidation reactions with increasing temperature. In this study, the bioenergetic response of the extremely thermoacidophilic archaeon, Metallosphaera sedula, to environmental changes have been examined in relation to its capacity to catalyze pyrite oxidation in coal. Given an appropriate bioenergetic challenge, the metabolic response was to utilize additional amounts of energy sources (i.e., pyrite) to survive. Of particular interest were the consequences of exposing the organism to various forms of stress (chemical, nutritional, thermal, pH) in the presence of coal pyrite. Several approaches to take advantage of stress response to accelerate pyrite oxidation by this organism were examined, including attempts to promote acquired thermal tolerance to extend its functional range, exposure to chemical uncouplers and decouplers, and manipulation of heterotrophic and chemolithotrophic tendencies to optimize biomass concentration and biocatalytic activity. Promising strategies were investigated in a continuous culture system. This study identified environmental conditions that promote better coupling of biotic and abiotic oxidation reactions to improve biosulfurization rates of thermoacidophilic microorganisms.

  16. Actinide removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  17. Metals removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  18. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran; Li, Chao; McKinnon, Meaghan E.; Sadok, Rachel G.; Qu, Deyu; Yu, Xiqian; Lee, Hung-Sui; Qu, Deyang

    2014-12-02

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility ofmore » the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.« less

  19. Natural sulfur flux from the Gulf of Mexico: dimethyl sulfide, carbonyl sulfide, and sulfur dioxide. Technical report

    SciTech Connect (OSTI)

    Van Valin, C.C.; Luria, M.; Wellman, D.L.; Gunter, R.L.; Pueschel, R.F.

    1987-06-01

    Atmospheric measurements of natural sulfur compounds were performed over the northern Gulf of Mexico during the late summer months of 1984. Air samples were collected with an instrumented aircraft at elevations of 30-3500 m, during both day and night. Most air samples were representative of the clean maritime atmosphere, although some were from continental contaminated air during periods of offshore flow at the coastline. In all samples, carbonyl sulfide concentrations were within the range of 400-500 pptv. Conversely, the dimethyl sulfide concentrations showed significant variability: during clean atmospheric conditions the average of all measurements was 27 pptv, whereas under polluted conditions the average was 7 pptv. Measureable quantities of dimethyl sulfide (>5 pptv) were not observed above the boundary layer. The average sulfur dioxide concentration measured in the marine (clean) atmosphere was 215 pptv, which is consistent with the oxidation of dimethyl sulfide being its major source.

  20. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran; Li, Chao; McKinnon, Meaghan E.; Sadok, Rachel G.; Qu, Deyu; Yu, Xiqian; Lee, Hung-Sui; Qu, Deyang

    2014-12-02

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility of the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.

  1. Laboratory scale studies of Pd/{gamma}-Al{sub 2}O{sub 3} sorbents for the removal of trace contaminants from coal-derived fuel gas at elevated temperatures

    SciTech Connect (OSTI)

    Rupp, Erik C.; Granite, Evan J.; Stanko, Dennis C.

    2013-01-01

    The Integrated Gasification Combined Cycle (IGCC) is a promising technology for the use of coal in a clean and efficient manner. In order to maintain the overall efficiency of the IGCC process, it is necessary to clean the fuel gas of contaminants (sulfur, trace compounds) at warm (150–540 °C) to hot (>540 °C) temperatures. Current technologies for trace contaminant (such as mercury) removal, primarily activated carbon based sorbents, begin to lose effectiveness above 100 °C, creating the need to develop sorbents effective at elevated temperatures. As trace elements are of particular environmental concern, previous work by this group has focused on the development of a Pd/γ-Al{sub 2}O{sub 3} sorbent for Hg removal. This paper extends the research to Se (as hydrogen selenide, H{sub 2}Se), As (as arsine, AsH{sub 3}), and P (as phosphine, PH{sub 3}) which thermodynamic studies indicate are present as gaseous species under gasification conditions. Experiments performed under ambient conditions in He on 20 wt.% Pd/γ-Al{sub 2}O{sub 3} indicate the sorbent can remove the target contaminants. Further work is performed using a 5 wt.% Pd/γ-Al{sub 2}O{sub 3} sorbent in a simulated fuel gas (H{sub 2}, CO, CO{sub 2}, N{sub 2} and H{sub 2}S) in both single and multiple contaminant atmospheres to gauge sorbent performance characteristics. The impact of H{sub 2}O, Hg and temperature on sorbent performance is explored.

  2. Laser-based coatings removal

    SciTech Connect (OSTI)

    Freiwald, J.G.; Freiwald, D.A.

    1995-10-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D&D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building. This report describes the use of pulse-repetetion laser systems for the removal of paints and coatings.

  3. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Hobbs, D.

    2010-07-22

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  4. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    SciTech Connect (OSTI)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  5. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  6. Feasibility of actinide separation from UREX-like raffinates using a combination of sulfur- and oxygen-donor extractants

    SciTech Connect (OSTI)

    Zalupski, P.R.; Peterman, D.R.; Riddle, C.L.

    2013-07-01

    A synergistic combination of bis(o-trifluoromethylphenyl)dithios-phosphinic acid and trioctylphosphine oxide has been recently shown to selectively remove uranium, neptunium, plutonium and americium from aqueous environment containing up to 0.5 M nitric acid and 5.5 g/l fission products. Here the feasibility of performing this complete actinide recovery from aqueous mixtures is forecasted for a new organic formulation containing sulfur donor extractant of modified structure based on Am(III) and Eu(III) extraction data. A mixture of bis(bis-m,m-trifluoromethyl)phenyl)-dithios-phosphinic acid and TOPO in toluene enhances the extraction performance, accomplishing Am/Eu differentiation in aqueous mixtures up to 1 M nitric acid. The new organic recipe is also less susceptible to oxidative damage resulting from radiolysis. (authors)

  7. Feasibility of actinide separation from UREX-like raffinates using a combination of sulfur- and oxygen-donor extractants

    SciTech Connect (OSTI)

    Peter R. Zalupski; Dean R. Peterman; Catherine L. Riddle

    2013-09-01

    A synergistic combination of bis(o-trifluoromethylphenyl)dithiosphosphinic acid and trioctylphosphine oxide has been recently shown to selectively remove uranium, neptunium, plutonium and americium from aqueous environment containing up to 0.5 M nitric acid and 5.5 g/L fission products. Here the feasibility of performing this complete actinide recovery from aqueous mixtures is forecasted for a new organic formulation containing sulfur donor extractant of modified structure based on Am(III) and Eu(III) extraction data. A mixture of bis(bis-m,m-trifluoromethyl)phenyl)-dithiosphosphinic acid and TOPO in toluene enhances the extraction performance, accomplishing Am/Eu differentiation in aqueous mixtures up to 1 M nitric acid. The new organic recipe is also less susceptible to oxidative damage resulting from radiolysis.

  8. Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Lin, Zhan; Liu, Zengcai; Fu, Wujun; Dudney, Nancy J; Liang, Chengdu

    2013-01-01

    Given the great potential for improving the energy density of state-of-the-art lithium-ion batteries by a factor of 5, a breakthrough in lithium-sulfur (Li-S) batteries will have a dramatic impact in a broad scope of energy related fields. Conventional Li-S batteries that use liquid electrolytes are intrinsically short-lived with low energy efficiency. The challenges stem from the poor electronic and ionic conductivities of elemental sulfur and its discharge products. We report herein lithium polysulfidophosphates (LPSP), a family of sulfur-rich compounds, as the enabler of long-lasting and energy-efficient Li-S batteries. LPSP have ionic conductivities of 3.0 10-5 S cm-1 at 25 oC, which is 8 orders of magnitude higher than that of Li2S (~10-13 S cm-1). The high Li-ion conductivity of LPSP is the salient characteristic of these compounds that impart the excellent cycling performance to Li-S batteries. In addition, the batteries are configured in an all-solid state that promises the safe cycling of high-energy batteries with metallic lithium anodes.

  9. removal

    National Nuclear Security Administration (NNSA)

    80 pounds) of highly enriched uranium (HEU) spent fuel from the Institute of Nuclear Physics (INP) in Almaty, Kazakhstan. The HEU was transported via two air shipments to a...

  10. Effects of weathering on coal and its sulfur constituents in refuse piles

    SciTech Connect (OSTI)

    Khan, L.A.; Berggren, D.J.; Hughes, R.E.

    1984-12-01

    The rejects from coal mining and processing operations are intensively weathered in refuse piles. The effects of weathering on coal and and its associated sulfur-containing compounds are economically and environmentally significant. Chemical and x-ray diffraction analyses of material from abandoned mined lands, collected for a study of historic long-wall mines in Illinois, showed that most pyrite in weathered samples is converted to gypsum, jarosite, and minor alunite. There were only small reductions in the trace element concentrations of these samples. Coal readily takes up oxygen from air. Coal-oxygen complexes produced by oxygen adsorption or peroxide formation are very unstable, and the oxygen can be removed as oxygen gas, CO/sub 2/, or H/sub 2/O upon heating and evacuation. Heating coal under partial vacuum decreases its surface charge. The decrease in surface charge increases with heating time and temperature. This suggests that the adverse effect of exposure to air may be partially reversed, with a corresponding gain in the efficiency of the coal recovery processes.

  11. Enhanced NO{sub x} removal in wet scrubbers using metal chelates. Final report, Volume 1

    SciTech Connect (OSTI)

    Smith, K.; Lani, B.; Berisko, D.; Schultz, C.; Carlson, W.; Benson, L.B.

    1992-12-01

    Successful pilot plant tests of simultaneous removal of S0{sub 2} and NO{sub x} in a wet lime flue gas desulfurization system were concluded in December. The tests, at up to 1.5 MW(e) capacity, were conducted by the Cincinnati Gas and Electric Company and Dravo Lime Company for the US Department of Energy at a pilot facility at the Miami Fort station of CG&E near Cincinnati, Ohio. The pilot plant scrubbed a slipstream of flue gas from Unit 7, a 530 MW coal-fired electric generating unit. Tests were conducted in three phases between April and December. The technology tested was wet scrubbing with Thiosorbic{reg_sign} magnesium-enhanced lime for S0{sub 2} removal and simultaneous NO scrubbing with ferrous EDTA, a metal chelate. Magnesium-enhanced lime-based wet scrubbing is used at 20 full-scale high-sulfur coal-fired electric generating units with a combined capacity of 8500 NW. Ferrous EDTA reacts with nitric oxide, NO, which comprises about 95% of NO{sub x} from coal-fired boilers. In this report, although not precise, NO and NO{sub x} are used interchangably. A major objective of the tests was to combine NO{sub x} removal using ferrous EDTA, a developing technology, with SO{sub 2} removal using wet lime FGD, already in wide commercial use. If successful, this could allow wide application of this NO{sub x} removal technology.

  12. Massive Hanford Test Reactor Removed - Plutonium Recycle Test...

    Office of Environmental Management (EM)

    Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed ...

  13. Part 3: Removal Action | Department of Energy

    Office of Environmental Management (EM)

    3: Removal Action Part 3: Removal Action Question: When may removal actions be initiated? Answer: Removal actions may be initiated when DOE determines that the action will prevent, minimize, stabilize, or eliminate a risk to health or the environment. The NCP specifies that the determination that a risk to health or the environment is appropriate for removal action should be based on: actual or potential exposure of humans, animals, or the food chain the presence of contained hazardous

  14. Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite SCR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite SCR System Sulfur Effect and Performance Recovery of a DOC + CSF + Cu-Zeolite SCR System effect and performance recovery studies at system level with typical diesel emission control consisting of diesel oxidation catalyst, catalyzed soot filter, and selective catalytic reduction deer11_tang.pdf (504.68 KB) More Documents & Publications Investigation of Sulfur Deactivation on Cu/Zeolite SCR

  15. DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distillate | Department of Energy Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said

  16. Multiple pollutant removal using the condensing heat exchanger: Phase 1 final report, October 1995--July 1997

    SciTech Connect (OSTI)

    Bailey, R.T.; Jankura, B.J.; Kudlac, G.A.

    1998-06-01

    The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon{reg_sign} covered condensing heat exchanger is adapted to remove certain flue gas constitutents, both particulate and gaseous, while recovering low level heat. Phase 1 includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MW{sub t}. The other task studied the durability of the Teflon{reg_sign} covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. The durability of the Teflon{reg_sign} covered heat exchanger tubes was studied on a pilot-scale single-stage condensing heat exchanger (CHX{reg_sign}). Data from the test indicate that virtually no decrease in Teflon{reg_sign} thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings. Evidence of wear was present only at the microscopic level, and even then was very minor in severity.

  17. Effect of Environmental Factors on Sulfur Gas Emissions from Drywall

    SciTech Connect (OSTI)

    Maddalena, Randy

    2011-08-20

    Problem drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. The U.S. Consumer Product Safety Commission's (CPSC) investigation of problem drywall incorporates three parallel tracks: (1) evaluating the relationship between the drywall and reported health symptoms; (2) evaluating the relationship between the drywall and electrical and fire safety issues in affected homes; and (3) tracing the origin and the distribution of the drywall. To assess the potential impact on human health and to support testing for electrical and fire safety, the CPSC has initiated a series of laboratory tests that provide elemental characterization of drywall, characterization of chemical emissions, and in-home air sampling. The chemical emission testing was conducted at Lawrence Berkeley National Laboratory (LBNL). The LBNL study consisted of two phases. In Phase 1 of this study, LBNL tested thirty drywall samples provided by CPSC and reported standard emission factors for volatile organic compounds (VOCs), aldehydes, reactive sulfur gases (RSGs) and volatile sulfur compounds (VSCs). The standard emission factors were determined using small (10.75 liter) dynamic test chambers housed in a constant temperature environmental chamber. The tests were all run at 25 C, 50% relative humidity (RH) and with an area-specific ventilation rate of {approx}1.5 cubic meters per square meter of emitting surface per hour [m{sup 3}/m{sup 2}/h]. The thirty samples that were tested in Phase 1 included seventeen that were manufactured in China in 2005, 2006 and 2009, and thirteen that were manufactured in North America in 2009. The measured emission factors for VOCs and aldehydes were generally low and did not differ significantly between the Chinese and North American drywall. Eight of the samples tested had elevated emissions of volatile sulfur-containing compounds with total RSG emission factors between 32 and 258 micrograms per square meter

  18. Direct observation of the redistribution of sulfur and polysufides in Li-S batteries during first cycle by in situ X-Ray fluorescence microscopy

    SciTech Connect (OSTI)

    Yu, Xiquian; Pan, Huilin; Zhou, Yongning; Northrup, Paul; Xiao, Jie; Bak, Seongmin; Liu, Mingzhao; Nam, Kyung-Wan; Qu, Deyang; Liu, Jun; Wu, Tianpin; Yang, Xiao-Qing

    2015-03-25

    The demands on low cost and high energy density rechargeable batteries for both transportation and large-scale stationary energy storage are stimulating more and more research toward new battery systems. Since sulfur is an earth-abundant material with low cost, research on the high energy density Li–S batteries (2600 W h kg⁻¹) are getting more and more attention. The reactions between sulfur and lithium during charge–discharge cycling are quite complicated, going through multiple electron transfer process associated with chemical and electrochemical equilibrium between long- and short-chain polysulfide Li₂Sx intermediates (1 < x ≤ 8). It is reported that the long-chain polysulfides can be dissolved into electrolyte with aprotic organic solvents and migrated to the Li anode side. This so-called “shuttle effect” is believed to be the main reason for capacity loss and low columbic efficiency of the Li–S batteries. In the past few years, a great deal of efforts have been made on how to overcome the problem of polysulfide dissolution through new sulfur electrode construction and cell designs, as well as the modification of the electrolyte. Although it has been reported by several publications that some Li–S cells can sustain more than a thousand cycles based on the thin film electrode configurations, the long-term cycling stability is still one of the major barriers for the real application of Li–S batteries. More in-depth studies on the fundamental understanding of the sulfur reaction mechanism and interactions among the different polysulfide species, the electrolyte and the electrodes are still greatly needed. Various in situ techniques have been developed and applied to study the mechanism of the sulfur chemistry in Li–S batteries during electrochemical cycling, such as transmission X-ray microscopy (TXM), X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), UV–visible spectroscopy, and electron paramagnetic resonance (EPR

  19. Direct observation of the redistribution of sulfur and polysufides in Li-S batteries during first cycle by in situ X-Ray fluorescence microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Xiquian; Pan, Huilin; Zhou, Yongning; Northrup, Paul; Xiao, Jie; Bak, Seongmin; Liu, Mingzhao; Nam, Kyung-Wan; Qu, Deyang; Liu, Jun; et al

    2015-03-25

    The demands on low cost and high energy density rechargeable batteries for both transportation and large-scale stationary energy storage are stimulating more and more research toward new battery systems. Since sulfur is an earth-abundant material with low cost, research on the high energy density Li–S batteries (2600 W h kg⁻¹) are getting more and more attention. The reactions between sulfur and lithium during charge–discharge cycling are quite complicated, going through multiple electron transfer process associated with chemical and electrochemical equilibrium between long- and short-chain polysulfide Li₂Sx intermediates (1 < x ≤ 8). It is reported that the long-chain polysulfides canmore » be dissolved into electrolyte with aprotic organic solvents and migrated to the Li anode side. This so-called “shuttle effect” is believed to be the main reason for capacity loss and low columbic efficiency of the Li–S batteries. In the past few years, a great deal of efforts have been made on how to overcome the problem of polysulfide dissolution through new sulfur electrode construction and cell designs, as well as the modification of the electrolyte. Although it has been reported by several publications that some Li–S cells can sustain more than a thousand cycles based on the thin film electrode configurations, the long-term cycling stability is still one of the major barriers for the real application of Li–S batteries. More in-depth studies on the fundamental understanding of the sulfur reaction mechanism and interactions among the different polysulfide species, the electrolyte and the electrodes are still greatly needed. Various in situ techniques have been developed and applied to study the mechanism of the sulfur chemistry in Li–S batteries during electrochemical cycling, such as transmission X-ray microscopy (TXM), X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), UV–visible spectroscopy, and electron paramagnetic resonance (EPR

  20. Direct observation of the redistribution of sulfur and polysufides in Li-S batteries during first cycle by in situ X-Ray fluorescence microscopy

    SciTech Connect (OSTI)

    Yu, Xiquian; Pan, Huilin; Zhou, Yongning; Northrup, Paul; Xiao, Jie; Bak, Seongmin; Liu, Mingzhao; Nam, Kyung-Wan; Qu, Deyang; Liu, Jun; Wu, Tianpin; Yang, Xiao-Qing

    2015-03-25

    The demands on low cost and high energy density rechargeable batteries for both transportation and large-scale stationary energy storage are stimulating more and more research toward new battery systems. Since sulfur is an earth-abundant material with low cost, research on the high energy density LiS batteries (2600 W h kg?) are getting more and more attention. The reactions between sulfur and lithium during chargedischarge cycling are quite complicated, going through multiple electron transfer process associated with chemical and electrochemical equilibrium between long- and short-chain polysulfide Li?Sx intermediates (1 < x ? 8). It is reported that the long-chain polysulfides can be dissolved into electrolyte with aprotic organic solvents and migrated to the Li anode side. This so-called shuttle effect is believed to be the main reason for capacity loss and low columbic efficiency of the LiS batteries. In the past few years, a great deal of efforts have been made on how to overcome the problem of polysulfide dissolution through new sulfur electrode construction and cell designs, as well as the modification of the electrolyte. Although it has been reported by several publications that some LiS cells can sustain more than a thousand cycles based on the thin film electrode configurations, the long-term cycling stability is still one of the major barriers for the real application of LiS batteries. More in-depth studies on the fundamental understanding of the sulfur reaction mechanism and interactions among the different polysulfide species, the electrolyte and the electrodes are still greatly needed. Various in situ techniques have been developed and applied to study the mechanism of the sulfur chemistry in LiS batteries during electrochemical cycling, such as transmission X-ray microscopy (TXM), X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), UVvisible spectroscopy, and electron paramagnetic resonance (EPR). The applications of

  1. Sulfur barrier for use with in situ processes for treating formations

    DOE Patents [OSTI]

    Vinegar, Harold J.; Christensen, Del Scot

    2009-12-15

    Methods for forming a barrier around at least a portion of a treatment area in a subsurface formation are described herein. Sulfur may be introduced into one or more wellbores located inside a perimeter of a treatment area in the formation having a permeability of at least 0.1 darcy. At least some of the sulfur is allowed to move towards portions of the formation cooler than the melting point of sulfur to solidify the sulfur in the formation to form the barrier.

  2. Portable instrument and method for detecting reduced sulfur compounds in a gas

    DOE Patents [OSTI]

    Gaffney, J.S.; Kelly, T.J.; Tanner, R.L.

    1983-06-01

    A portable real time instrument for detecting concentrations in the part per billion range of reduced sulfur compounds in a sample gas. Ozonized air or oxygen and reduced sulfur compounds in a sample gas stream react to produce chemiluminescence in a reaction chamber and the emitted light is filtered and observed by a photomultiplier to detect reduced sulfur compounds. Selective response to individual sulfur compounds is achieved by varying reaction chamber temperature and ozone and sample gas flows, and by the use of either air or oxygen as the ozone source gas.

  3. Status of Heavy Vehicle Diesel Emission Control Sulfur Effects (DECSE) Test Program

    SciTech Connect (OSTI)

    George Sverdrup

    1999-06-07

    DECSE test program is well under way to providing data on effects of sulfur levels in diesel fuel on performance of emission control technologies.

  4. A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Life, High-Rate LithiumSulfur Cell: A Multifaceted Approach to Enhancing Cell Performance Min-Kyu Song, , Yuegang Zhang,* ,, and Elton J. Cairns* ,, The...

  5. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Content, Sales Type, and PAD District 242 Energy Information Administration Petroleum Marketing Annual 1997 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  6. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Content, Sales Type, and PAD District 242 Energy Information Administration Petroleum Marketing Annual 1996 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  7. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power- Fact Sheet, 2015

    Broader source: Energy.gov [DOE]

    Factsheet describing project objective to develop a new, high-capacity, expendable sorbent to remove sulfur species from anaerobic digester gas

  8. High temperature regenerable hydrogen sulfide removal agents

    DOE Patents [OSTI]

    Copeland, Robert J.

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  9. Industrial lead paint removal specifications

    SciTech Connect (OSTI)

    Stone, R.C.

    1997-06-01

    The purpose of this paper is to inform the reader as to some of the pertinent rules and regulations promulgated by the Environmental Protection Agency (EPA) and the Occupational Safety and Health Administration (OSHA) that may effect an industrial lead paint removal project. The paper discusses a recommended schedule of procedures and preparations to be followed by the lead paint removal specification writer when analyzing the possible impact of the project on the environment, the public and workers. Implications of the Clean Air Act, the Clean Water Act and the Resource Conservation and Recovery Act (RCRA) along with hazardous waste handling, manifesting, transporting and disposal procedures are discussed with special emphasis placed as to their impact on the writer and the facility owner. As the rules and regulations are highly complex, the writer has attempted to explain the methodology currently being used in state-of-the-art industrial lead abatement specifications.

  10. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOE Patents [OSTI]

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  11. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    SciTech Connect (OSTI)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  12. SLUDGE BATCH 7 (SB7) WASHING DEMONSTRATION TO DETERMINE SULFATE/OXALATE REMOVAL EFFICIENCY AND SETTLING BEHAVIOR

    SciTech Connect (OSTI)

    Reboul, S.; Click, D.; Lambert, D.

    2010-12-10

    To support Sludge Batch 7 (SB7) washing, a demonstration of the proposed Tank Farm washing operation was performed utilizing a real-waste test slurry generated from Tank 4, 7, and 12 samples. The purpose of the demonstration was twofold: (1) to determine the settling time requirements and washing strategy needed to bring the SB7 slurry to the desired endpoint; and (2) to determine the impact of washing on the chemical and physical characteristics of the sludge, particularly those of sulfur content, oxalate content, and rheology. Seven wash cycles were conducted over a four month period to reduce the supernatant sodium concentration to approximately one molar. The long washing duration was due to the slow settling of the sludge and the limited compaction. Approximately 90% of the sulfur was removed through washing, and the vast majority of the sulfur was determined to be soluble from the start. In contrast, only about half of the oxalate was removed through washing, as most of the oxalate was initially insoluble and did not partition to the liquid phase until the latter washes. The final sulfur concentration was 0.45 wt% of the total solids, and the final oxalate concentration was 9,900 mg/kg slurry. More oxalate could have been removed through additional washing, although the washing would have reduced the supernatant sodium concentration.The yield stress of the final washed sludge (35 Pa) was an order of magnitude higher than that of the unwashed sludge ({approx}4 Pa) and was deemed potentially problematic. The high yield stress was related to the significant increase in insoluble solids that occurred ({approx}8 wt% to {approx}18 wt%) as soluble solids and water were removed from the slurry. Reduction of the insoluble solids concentration to {approx}14 wt% was needed to reduce the yield stress to an acceptable level. However, depending on the manner that the insoluble solids adjustment was performed, the final sodium concentration and extent of oxalate removal

  13. Sulfur gas emissions from stored flue gas desulfurization solids. Final report

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.

    1981-10-01

    The emissions of volatile, sulfur-containing compounds from the surfaces of 13 flue gas desulfurization (FGD) solids field storage sites have been characterized. The sulfur gas emissions from these storage surfaces were determined by measuring the sulfur gas enhancement of sulfur-free sweep air passing through a dynamic emission flux chamber placed over selected sampling areas. Samples of the enclosure sweep air were cryogenically concentrated in surface-deactivated Pyrex U traps. Analyses were conducted by wall-coated, open-tubular, capillary column, cryogenic, temperature-programmed gas chromatography using a sulfur-selective flame photometric detector. Several major variables associated with FGD sludge production processes were examined in relation to the measured range and variations in sulfur fluxes including: the sulfur dioxide scrubbing reagent used, sludge sulfite oxidation, unfixed or stabilized (fixed) FGD solids, and ponding or landfill storage. The composition and concentration of the measured sulfur gas emissions were found to vary with the type of solids, the effectiveness of rainwater drainage from the landfill surface, the method of impoundment, and the sulfate/sulfite ratio of the solids. The FGD solids emissions may contain hydrogen sulfide, carbonyl sulfide, dimethyl sulfide, carbon disulfide, and dimethyl disulfide in varying concentrations and ratios. In addition, up to four unidentified organo-sulfur compounds were found in the emissions from four different FGD solids. The measured, total sulfur emissions ranged from less than 0.01 to nearly 0.3 kg of sulfur per day for an equivalent 40.5 hectare (100 acre) FGD solids impoundment surface.

  14. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOE Patents [OSTI]

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  15. Electrokinetics for removal of low-level radioactivity from soil

    SciTech Connect (OSTI)

    Pamukcu, S.; Wittle, J.K.

    1993-03-01

    The electrokinetic process is an emerging technology for in situ soil decontamination in which chemical species, both ionic and nonionic, are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. The work presented here describes part of the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentrations of a selected heavy-metal salt solution. These metals included surrogate radionuclides such as Sr, Cs and U, and an anionic species of Cr. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. Removals of some metal species up to 99% were achieved at the anode or cathode end of the soil upon 24 to 48 hours of treatment or a maximum of 1 pore volume of water displacement toward the cathode compartment. Transient pH change through the soil had an effect on the metal movement, as evidenced by accumulation of the metals at the discharge ends of the soil specimens. This accumulation was attributed to the precipitation of the metal and increased cation retention capacity of the clay in high pH environment at the cathode end. In general, the reduced mobility and dissociation of the ionic species as they encounter areas of higher ionic concentration in their path of migration resulted in the accumulation of the metals at the discharge ends of the soil specimens.

  16. EM's Paducah Site Completes Building Removals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM's Paducah Site Completes Building Removals EM's Paducah Site Completes Building Removals Addthis

  17. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub X} and NO{sub X} from coal combustion gases

    SciTech Connect (OSTI)

    Selvaraj, P.T.; Kaufman, E.N.

    1996-06-01

    The purpose of this research program is the development and demonstration of a new generation of gaseous substrate based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. This R&D program is a joint effort between the staff of the Bioprocessing Research and Development Center (BRDC) of ORNL and the staff of Bioengineering Resources, Inc. (BRI) under a Cooperative Research and Development Agreement (CRADA). The Federal Coordinating Council for Science, Engineering, and Technology report entitled {open_quotes}Biotechnology for the 21st Century{close_quotes} and the recent Energy Policy Act of 1992 emphasizes research, development, and demonstration of the conversion of coal to gaseous and liquid fuels and the control of sulfur and nitrogen oxides in effluent streams. This R&D program presents an innovative approach to the use of bioprocessing concepts that will have utility in both of these identified areas.

  18. Self-scrubbing removal of submicron particles from gaseous effluents

    SciTech Connect (OSTI)

    Lyon, R.K.

    1993-07-06

    A method is described for removal of submicron particles from gaseous effluents which contain sulfur dioxide among other substances, comprising the steps of: injecting liquid water droplets into a gaseous effluent containing submicron particles, said effluent being at a temperature higher than the bulk water dew point, said injection step cooling the effluent to approximately the bulk dew point of water and causing at least some but less than all of the water to evaporate; delaying the injection of any further substances into the effluent until the effluent and the injected water reach a substantially uniform temperature at approximately the bulk water dew point; following said delay, injecting gaseous ammonia into the resulting mixture of effluent and water in order to cause ammonium sulfite on said submicron particles, thus increasing the size of said particles, and also such as to cause water to condense onto the ammonium sulfite-coated particles, thus further increasing the size of said particles; and separating at least some of the resultant enlarged particles from the effluent.

  19. Water Distribution and Removal Model

    SciTech Connect (OSTI)

    Y. Deng; N. Chipman; E.L. Hardin

    2005-08-26

    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD&R) Model; (2) EBS Physical and Chemical Environment (P&CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD&R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment. The purposes

  20. Production of low sulfur binder pitich from high-sulfur Illinois coals. Quarterly report, 1 March 1995--31 May 1995

    SciTech Connect (OSTI)

    Knight, R.A.

    1995-12-31

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. Previously, flash thermocracking (FTC) was used to successfully upgrade the properties of mild gasification pitch, yielding a suitable blending stock for use as a binder in the production of carbon electrodes for the aluminum industry. However, in pitches from high-sulfur (4%) Illinois coal, the pitch sulfur content (2%) was still higher than preferred. In this project two approaches to sulfur reduction are being explored in conjunction with FTC: (1) the use of a moderate-sulfur (1.2%) Illinois coal as mild gasification feedstock, and (2) direct biodesulfurization of the liquids from high-sulfur coal prior to FTC. In Case 1, the liquids are being produced by mild gasification of IBC-109 coal in a bench-scale fluidized-bed reactor, followed by distillation to isolate the crude pitch. In Case 2, biodesulfurization with Rhodococcus Rhodochrous IGTS8 biocatalyst is being performed on crude pitch obtained from Illinois No. 6 coal tests conducted in the IGT MILDGAS PRU in 1990. Following preparation of the crude pitches, pitch upgrading experiments are being conducted in a continuous FTC reactor constructed in previous ICCI-sponsored studies. This quarter, mild gasification of IBC-109 coal was completed, producing 450 g of coal liquids, which were then distilled to recover 329 g of Case 1 crude pitch. Next month, the pitch will be subjected to FTC treatment and evaluated. Biodesulfurization experiments were performed on Case 2 pitch dispersed in l-undecanol, resulting in sulfur reductions of 15.1 to 21.4%. This was marginally lower than the 24.8% desulfurization obtained in l-dodecanol, but separation of pitch from the dispersant was facilitated by the greater volatility of l-undecanol.

  1. Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Susanti, Dwi; Johnson, Eric F.; Lapidus, Alla; Han, James; Reddy, T. B. K.; Pilay, Manoj; Ivanova, Natalia N.; Markowitz, Victor M.; Woyke, Tanja; Kyrpides, Nikos C.; et al

    2016-01-13

    Our report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilization systems alsomore » exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.« less

  2. Assessing historical global sulfur emission patterns for the period 1850--1990

    SciTech Connect (OSTI)

    Lefohn, A.S.; Husar, J.D.; Husar, R.B.; Brimblecombe, P.

    1996-07-19

    Anthropogenic sulfur dioxide emissions from energy-producing and metal production activities have become an important factor in better understanding the relationship between humans and the environment. Concerns about (1) acid rain effects on the environment and (2) anthropogenic aerosols affecting possible global change have prompted interest in the transformation and fate of sulfur in the environment. One step in assessing the importance of sulfur emissions is the development of a reliable regional emission inventory of sulfur as a function of time. The objective of this research effort was to create a homogeneous database for historical sulfur emission estimates for the world. The time from 1850--1990 was selected to include the period of industrialization form the time the main production of fuels and minerals began until the most recent year for which complete production data exist. This research effort attempts to correct some of the deficiencies associated with previous global sulfur emission estimates by (1) identifying those production activities that resulted in sulfur emissions by country and (2) calculating historical emission trends by country across years. An important component of this study was the comparison of the sulfur emission results with those of previous studies.

  3. Use of selective oxidation of petroleum residue for production of low-sulfur coke

    SciTech Connect (OSTI)

    Hairudinov, I.R.; Kul`chitskaya, O.V.; Imashev, U.B.

    1995-12-10

    The chemical nature of liquid-phase oxidation of sulfurous petroleum residues by cumene hydroperoxide was studied by a tracer technique. Sulfur compounds are selectively oxidized in the presence of catalytic additives of molybdenum salts. Desulfurization of distillate products and coke during coking of preoxidized raw materials was revealed.

  4. Impact of Sulfur Dioxide on Lean NOx Trap Catalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sulfur Dioxide on Lean NOx Trap Catalysts Impact of Sulfur Dioxide on Lean NOx Trap Catalysts 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: University of New Mexico 2004_deer_hammache.pdf (249.2 KB) More Documents & Publications CLEERS Aftertreatment Modeling and Analysis CLEERS Aftertreatment Modeling and Analysis An Improvement of Diesel PM and NOx Reduction System

  5. Mexico HEU Removal | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home content Four-Year Plan Mexico HEU Removal Mexico HEU Removal Location Mexico United States 24 24' 35.298" N, 102...

  6. Toxicology Studies on Lewisite and Sulfur Mustard Agents: Subchronic Toxicity of Sulfur Mustard (HD) In Rats Final Report

    SciTech Connect (OSTI)

    Sasser, L. B.; Miller, R. A.; Kalkwarf, D, R.; Buschbom, R. L.; Cushing, J. A.

    1989-06-30

    Occupational health standards have not been established for sulfur mustard [bis(2- chlorethyl)-sulfide], a strong alkylating agent with known mutagenic properties. Seventytwo Sprague-Dawley rats of each sex, 6-7 weeks old, were divided into six groups (12/group/ sex) and gavaged with either 0, 0.003 , 0.01 , 0.03 , 0.1 or 0.3 mg/kg of sulfur mustard in sesame oil 5 days/week for 13 weeks. No dose-related mortality was observed. A significant decrease (P ( 0.05) in body weight was observed in both sexes of rats only in the 0.3 mg/kg group. Hematological evaluations and clinical chemistry measurements found no consistent treatment-related effects at the doses studied. The only treatment-related lesion associated with gavage exposure upon histopathologic evaluation was epithelial hyperplasia of the forestomach of both sexes at 0.3 mg/kg and males at 0.1 mg/kg. The hyperplastic change was minimal and characterized by cellular disorganization of the basilar layer, an apparent increase in mitotic activity of the basilar epithelial cells, and thickening of the epithelial layer due to the apparent increase in cellularity. The estimated NOEL for HD in this 90-day study is 0.1 mg/kg/day when administered orally.

  7. Investigation of the sulfur and lithium to sulfur ratio threshold in stress corrosion cracking of sensitized alloy 600 in borated thiosulfate solution

    SciTech Connect (OSTI)

    Bandy, R.; Kelly, K.

    1984-07-01

    The stress corrosion cracking of sensitized Alloy 600 was investigated in aerated solutions of sodium thiosulfate generally containing 1.3% boric acid. The aim of the investigation, among others, was to determine the existence, if any, of a threshold level of sulfur, and lithium to sulfur ratio governing the SCC. Specimens were first solution annealed at 1135/sup 0/C for 45 minutes, water quenched, and then sensitized at 621/sup 0/C for 18 hours. Reverse U-bends were tested at room temperature, whereas slow strain rate and constant load tests were performed at 80/sup 0/C. All tests were performed in solutions open to the atmosphere. The results indicate that in the borated thiosulfate solution containing 7 ppM sulfur, 5 ppM lithium as lithium hydroxide is sufficient to inhibit SCC in U-bends. The occurrence of inhibition seems to correlate to the rapid increase of pH and conductivity of the solution as a result of the lithium hydroxide addition. In the slow strain rate tests in the borated solution containing 0.7 ppM lithium as lithium hydroxide, significant stress corrosion cracking is observed at a sulfur level of 30 ppb, i.e., a lithium to sulfur ratio of 23. In a parallel test in 30 ppb sulfur level but without any lithium hydroxide, the stress corrosion cracking is more severe than that in the lithiated environment, thus implying that lithium hydroxide plays some role in the stress corrosion cracking inhibition.

  8. Production of low-sulfur binder pitch from high-sulfur Illinois coals. Technical report, December 1, 1994--February 28, 1995

    SciTech Connect (OSTI)

    Knight, R.A.

    1996-03-01

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. In previous ICCI projects at IGT, flash thermocracking (FTC) was used to successfully upgrade the properties of mild gasification pitch, yielding a suitable blending stock for use as a binder in the production of carbon electrodes for the aluminum industry. However, in pitches from high-sulfur (4%) Illinois coal, the pitch sulfur content is still unacceptably high at 2%. In this project, two approaches to sulfur reduction are being explored in conjunction with FTC: (1) the use of conventionally cleaned coal with low ({approximately}1%) sulfur as a mild gasification feedstock, and (2) direct biodesulfurization of the liquids prior to FTC. In Case 1, the crude pitch is being produced by mild gasification of IBC-109 coal in an existing IGT bench-scale reactor, followed by distillation to isolate the crude pitch. In Case 2, the crude pitch for biodesulfurization was obtained from Illinois No. 6 coal tests conducted in the IGT mild gasification PRU in 1990. Biodesulfurization is to be performed by contacting the pitch with Rhodococcus Rhodochrous IGTS8 biocatalyst. Following preparation of the crude pitches, pitch upgrading experiments are to be conducted in a continuous FTC reactor constructed in previous ICCI-sponsored studies. The finished pitch is then characterized for physical and chemical properties (density, softening point, QI, TI, coking value, and elemental composition), and compared to typical specifications for binder pitches.

  9. California Endangered Species Act Species List | Open Energy...

    Open Energy Info (EERE)

    California Endangered Species Act Species List Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: California Endangered Species Act...

  10. Nuclear & Radiological Material Removal | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    & Radiological Material Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  11. Remove Condensate with Minimal Air Loss

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet outlines several condensate removal methods as part of maintaining compressed air system air quality.

  12. Sulfur dioxide capture in the combustion of mixtures of lime, refuse-derived fuel, and coal

    SciTech Connect (OSTI)

    Churney, K.L.; Buckley, T.J. . Center for Chemical Technology)

    1990-06-01

    Chlorine and sulfur mass balance studies have been carried out in the combustion of mixtures of lime, refuse-derived fuel, and coal in the NIST multikilogram capacity batch combustor. The catalytic effect of manganese dioxide on the trapping of sulfur dioxide by lime was examined. Under our conditions, only 4% of the chlorine was trapped in the ash and no effect of manganese dioxide was observed. Between 42 and 14% of the total sulfur was trapped in the ash, depending upon the lime concentration. The effect of manganese dioxide on sulfur capture was not detectable. The temperature of the ash was estimated to be near 1200{degrees}C, which was in agreement with that calculated from sulfur dioxide capture thermodynamics. 10 refs., 12 figs., 10 tabs.

  13. Removal of Mercury from the Off-Gas from Thermal Treatment of Radioactive Liquid Waste

    SciTech Connect (OSTI)

    Deldebbio, John Anthony; Olson, Lonnie Gene

    2001-05-01

    Acidic, radioactive wastes with a high nitrate concentration, and containing mercury are currently being stored at the Idaho Nuclear Technology and Engineering Center (INTEC). In the past, these wastes were converted into a dry, granular solid by a high temperature fluidized-bed calcination process. In the future, the calcined solids may be immobilized by a vitrification process prior to disposal. It has been proposed that a vitrification facility be built to treat the acidic wastes, as well as the calcined solids. As was the case with the calcination process, NOx levels in the vitrification off-gas are expected to be high, and mercury emissions are expected to exceed the Maximum Control Technology (MACT) limits. Mitigation of mercury emissions by wet scrubbing, followed by adsorption onto activated carbon is being investigated. Scoping tests with sulfur-impregnated activated carbon, KCl-impregnated activated carbon and non-impregnated activated carbon were conducted with a test gas containing1% NO2, 28% H2O, 4% O2 and 67% N2. Average removal efficiencies for Hgo and HgCl2 were 100 ± 2.5% and 99 ± 3.6% respectively, for sulfur-impregnated carbon. The KCl-impregnated carbon removed 99 ± 4.6% HgCl2. The removal efficiency of the non-impregnated carbon was 99 ± 3.6% for HgCl2. No short-term detrimental effects due to NO2 and H2O were observed. These results indicate that, placed downstream of a wet scrubber, an activated carbon adsorption bed has the potential of reducing mercury levels sufficiently to enable compliance with the MACT limit. Long-term exposure tests, and bed size optimization studies are planned for the future.

  14. MERCURY REMOVAL IN A NON-THERMAL, PLASMA-BASED MULTI-POLLUTANT CONTROL TECHNOLOGY FOR UTILITY BOILERS

    SciTech Connect (OSTI)

    Christopher R. McLaron

    2004-12-01

    Powerspan has conducted pilot scale testing of a multi-pollutant control technology at FirstEnergy's Burger Power Plant under a cooperative agreement with the U.S. Department of Energy. The technology, Electro-Catalytic Oxidation (ECO), simultaneously removes sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), fine particulate matter (PM{sub 2.5}) and mercury (Hg) from the flue gas of coal-fired power plants. Powerspan's ECO{reg_sign} pilot test program focused on optimization of Hg removal in a 1-MWe slipstream pilot while maintaining greater than 90% removal of NO{sub x} and 98% removal of SO{sub 2}. This Final Technical Report discusses pilot operations, installation and maintenance of the Hg SCEMS instrumentation, and performance results including component and overall removal efficiencies of SO{sub 2}, NO{sub x}, PM and Hg from the flue gas and removal of captured Hg from the co-product fertilizer stream.

  15. Composites for removing metals and volatile organic compounds and method thereof

    DOE Patents [OSTI]

    Coronado, Paul R.; Coleman, Sabre J.; Reynolds, John G.

    2006-12-12

    Functionalized hydrophobic aerogel/solid support structure composites have been developed to remove metals and organic compounds from aqueous and vapor media. The targeted metals and organics are removed by passing the aqueous or vapor phase through the composite which can be in molded, granular, or powder form. The composites adsorb the metals and the organics leaving a purified aqueous or vapor stream. The species-specific adsorption occurs through specific functionalization of the aerogels tailored towards specific metals and/or organics. After adsorption, the composites can be disposed of or the targeted metals and/or organics can be reclaimed or removed and the composites recycled.

  16. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    SciTech Connect (OSTI)

    Zhang, Hongyu; Schuchardt, Frank; Li, Guoxue; Yang, Jinbing; Yang, Qingyuan

    2013-04-15

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup −1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.

  17. Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities

    U.S. Energy Information Administration (EIA) Indexed Site

    (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Type Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 1.43 1.38 1.43 1.39 1.43 1.47 1985-2016 PADD 1 0.75 0.63 0.83 0.88 0.90 0.86 1985-2016 East Coast 0.68 0.55 0.76 0.81 0.84 0.79 1985-2016 Appalachian No. 1 1.53 1.57 1.51 1.74 1.58 1.59 1985-2016 PADD 2 1.56 1.58 1.56 1.58 1.45 1.55

  18. Method of forming and starting a sodium sulfur battery

    DOE Patents [OSTI]

    Paquette, David G.

    1981-01-01

    A method of forming a sodium sulfur battery and of starting the reactive capability of that battery when heated to a temperature suitable for battery operation is disclosed. An anodic reaction zone is constructed in a manner that sodium is hermetically sealed therein, part of the hermetic seal including fusible material which closes up openings through the container of the anodic reaction zone. The hermetically sealed anodic reaction zone is assembled under normal atmospheric conditions with a suitable cathodic reaction zone and a cation-permeable barrier. When the entire battery is heated to an operational temperature, the fusible material of the hermetically sealed anodic reaction zone is fused, thereby allowing molten sodium to flow from the anodic reaction zone into reactive engagement with the cation-permeable barrier.

  19. Sulfur-Iodine Integrated Lab Scale Experiment Development

    SciTech Connect (OSTI)

    Russ, Ben

    2011-05-27

    The sulfur-iodine (SI) cycle was deermined to be the best cycle for coupling to a high temperature reactor (HTR) because of its high efficiency and potential for further improvement. The Japanese Atomic Energy Agency (JAEA) has also selected the SI process for further development and has successfully completed bench-scale demonstrations of the SI process at atmospheric pressure. JEA also plans to proceed with pilot-scale demonstrations of the SI process and eventually plans to couple an SI demonstration plant to its High Temperature Test Reactor (HHTR). As part of an international NERI project, GA, SNL, and the Frech Commissariat L'Energie Atomique performed laboratory-scale demonstrations of the SI process at prototypical temperatures and pressures. This demonstration was performed at GA in San Diego, CA and concluded in April 2009.

  20. Nuclear Material Removal | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Nuclear Material Removal Once weapons-usable nuclear material is no longer required, the Office of Nuclear Material Removal works with global partners and facilities to consolidate, remove and dispose of the excess HEU and plutonium via 1) the U.S.-origin Removal Program that repatriates U.S.-origin HEU and LEU fuel (MTR and TRIGA), 2) the Russian-origin Removal Program that repatriates Russian-origin HEU and separated plutonium, and 3) the Gap Material Program that addresses material

  1. Portsmouth Removal Actions | Department of Energy

    Energy Savers [EERE]

    Removal Actions Portsmouth Removal Actions Links to the Portsmouth Removal Action Reports in PDF. Final Action Memorandum for the Plant Support Buildings and Structures at Portsmouth - March 2012 (6.98 MB) Removal Action Completion Report for Phases I and II of X-334 Transformer Cleaning/Storage Building at Portsmouth - Nov 2011 (4.75 MB) Removal Action Completion Report for X-103 Auxiliary Office Building at Portsmouth - Nov 2011 (4.1 MB) Construction Completion Report for Phases I and II of

  2. Method of making thermally removable epoxies

    DOE Patents [OSTI]

    Loy, Douglas A.; Wheeler, David R.; Russick, Edward M.; McElhanon, James R.; Saunders, Randall S.

    2002-01-01

    A method of making a thermally-removable epoxy by mixing a bis(maleimide) compound to a monomeric furan compound containing an oxirane group to form a di-epoxy mixture and then adding a curing agent at temperatures from approximately room temperature to less than approximately 90.degree. C. to form a thermally-removable epoxy. The thermally-removable epoxy can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The epoxy material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

  3. Multiple pollutant removal using the condensing heat exchanger: Preliminary test plan for Task 2, Pilot scale IFGT testing

    SciTech Connect (OSTI)

    Jankura, B.J.

    1995-11-01

    The purpose of Task 2 (IFGT Pilot-Scale Tests at the B&W Alliance Research Center) is to evaluate the emission reduction performance of the Integrated Flue Gas Treatment (IFGT) process for coal-fired applications. The IFGT system is a two-stage condensing heat exchanger that captures multiple pollutants -- while recovering waste heat. The IFGT technology offers the potential of addressing the emission of S0{sub 2} and particulate from electric utilities currently regulated under the Phase 1 and Phase 2 requirements defined in Title IV, and many of the air pollutants that will soon be regulated under Title III of the Clean Air Act. The performance data will be obtained at pilot-scale conditions similar to full-scale operating systems. The Task 2 IFGT tests have been designed to investigate several aspects of IFGT process conditions at a broader range of variables than would be feasible at a larger scale facility. The data from these tests greatly expands the IFGT performance database for coals and is needed for the technology to progress from the component engineering phase to system integration and commercialization. The performance parameters that will be investigated are as follows: SO{sub 2} removal; particulate removal; removal of mercury and other heavy metals; NO{sub x} removal; HF and HCl removal; NH{sub 3} removal; ammonia-sulfur compounds generation; and steam injection for particle removal. For all of the pollutant removal tests, removal efficiency will be based on measurements at the inlet and outlet of the IFGT facility. Heat recovery measurements will also be made during these tests to demonstrate the heat recovery provided by the IFGT technology. This report provides a preliminary test plan for all of the Task 2 pilot-scale IFGT tests.

  4. Fuel removal, transport, and storage

    SciTech Connect (OSTI)

    Reno, H.W.

    1986-01-01

    The March 1979 accident at Unit 2 of the Three Mile Island Nuclear Power Station (TMI-2) which damaged the core of the reactor resulted in numerous scientific and technical challenges. Some of those challenges involve removing the core debris from the reactor, packaging it into canisters, loading canisters into a rail cask, and transporting the debris to the Idaho National Engineering Laboratory (INEL) for storage, examination, and preparation for final disposal. This paper highlights how some challenges were resolved, including lessons learned and benefits derived therefrom. Key to some success at TMI was designing, testing, fabricating, and licensing two rail casks, which each provide double containment of the damaged fuel. 10 refs., 12 figs.

  5. THERMALLY SHIELDED MOISTURE REMOVAL DEVICE

    DOE Patents [OSTI]

    Miller, O.E.

    1958-08-26

    An apparatus is presented for removing moisture from the air within tanks by condensation upon a cartridge containing liquid air. An insulating shell made in two halves covers the cartridge within the evacuated system. The shell halves are hinged together and are operated by a system of levers from outside the tank with the motion translated through a sylphon bellows to cover and uncover the cartridge. When the condensation of moisture is in process, the insulative shell is moved away from the liquid air cartridge, and during that part of the process when there is no freezing out of moisture, the shell halves are closed on the cell so thnt the accumulated frost is not evaporated. This insulating shell greatly reduces the consumption of liquid air in this condensation process.

  6. Melter Glass Removal and Dismantlement

    SciTech Connect (OSTI)

    Richardson, BS

    2000-10-31

    The U.S. Department of Energy (DOE) has been using vitrification processes to convert high-level radioactive waste forms into a stable glass for disposal in waste repositories. Vitrification facilities at the Savannah River Site (SRS) and at the West Valley Demonstration Project (WVDP) are converting liquid high-level waste (HLW) by combining it with a glass-forming media to form a borosilicate glass, which will ensure safe long-term storage. Large, slurry fed melters, which are used for this process, were anticipated to have a finite life (on the order of two to three years) at which time they would have to be replaced using remote methods because of the high radiation fields. In actuality the melters useable life spans have, to date, exceeded original life-span estimates. Initial plans called for the removal of failed melters by placing the melter assembly into a container and storing the assembly in a concrete vault on the vitrification plant site pending size-reduction, segregation, containerization, and shipment to appropriate storage facilities. Separate facilities for the processing of the failed melters currently do not exist. Options for handling these melters include (1) locating a facility to conduct the size-reduction, characterization, and containerization as originally planned; (2) long-term storing or disposing of the complete melter assembly; and (3) attempting to refurbish the melter and to reuse the melter assembly. The focus of this report is to look at methods and issues pertinent to size-reduction and/or melter refurbishment in particular, removing the glass as a part of a refurbishment or to reduce contamination levels (thus allowing for disposal of a greater proportion of the melter as low level waste).

  7. Method of removing and detoxifying a phosphorus-based substance

    DOE Patents [OSTI]

    Vandegrift, G.F.; Steindler, M.J.

    1985-05-21

    A method of removing a phosphorus-based poisonous substance from water contaminated is presented. In addition, the toxicity of the phosphorus-based substance is also subsequently destroyed. A water-immiscible organic solvent is first immobilized on a supported liquid membrane before the contaminated water is contacted with one side of the supported liquid membrane to absorb the phosphorus-based substance in the organic solvent. The other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react with phosphorus-based solvated species to form a non-toxic product.

  8. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    SciTech Connect (OSTI)

    Howard Meyer

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy’s Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process – High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

  9. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    SciTech Connect (OSTI)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  10. Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

    SciTech Connect (OSTI)

    Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.; Piepel, Gregory F.; Kruger, Albert A.

    2014-10-01

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis). If the amount of sulfur exceeds its tolerance level a molten salt will accumulate and upset melter operations and potentially shorten melter useful life. Therefore relatively conservative limits have been placed on sulfur loading in melter feed which in-turn significantly impacts the amount of glass that will be produced, in particular at the Hanford site. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 312 individual glass compositions. This model was shown to well represent the data, accounting for over 80% of the variation in data and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed based on 19 scaled melter tests. The model is appropriate for control of waste glass processing which includes uncertainty quantification. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5 ? TiO2 < CaO < P2O5 ? ZnO. The components that most decrease sulfur solubility are Cl > Cr2O3 > SiO2 ? ZrO2 > Al2O3.

  11. Emission of biogenic sulfur gases from Chinese paddy soil and rice plant

    SciTech Connect (OSTI)

    Zhen Yang [Nanjing Univ. of Science and Technology (China); Li Kong [Nanjing Agricultural Univ. (China)

    1996-12-31

    Biogenic sulfur gases emitted from terrestrial ecosystem may play in important role in global sulfur cycle and have a profound influence on global climate change. But very little is known concerning emissions from paddy soil and rice plant, which are abundant in many parts of the world. As a big agricultural country, this is about 33 million hectare rice planted in China. With laboratory incubation and closed chamber method in the field, the biogenic sulfur gases emitted from Chinese paddy soil and rice plant were detected in both conditions: hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), methyl mercaptan (MSH), carbon disulfide (CS{sub 2}), dimethyl sulfide (DMS) and dimethyl disulfide (DMDS). Among which, DMS was predominant part of sulfur emission. Emission of sulfur gases from different paddy field exhibit high spatial and temporal variability. The application of fertilizer and organic manure, total sulfur content in wetland, air temperature were positively correlated to the emission of volatile sulfur gases from paddy soil. Diurnal and seasonal variation of total volatile sulfur gases and DMS indicate that their emissions were greatly influenced by the activity of the rice plant. The annual emission of total volatile sulfur gases, from Nanjing paddy field is ranged from 4.0 to 9.5 mg S m{sup -2}yr{sup -1}, that of DMS is ranged from 3.1 to 6.5 mg S m{sup -2}yr{sup -1}. Rice plant could absorb COS gas, that may be one of the sinks of COS.

  12. GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material...

    National Nuclear Security Administration (NNSA)

    GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material May 29, 2014 GTRI's Remove Program works around the world to remove excess nuclear and radiological materials ...

  13. Example Cleanup: Removal of Polychlorinated Biphenyls from Hillside...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Example Cleanup Removal of Polychlorinated Biphenyls from Hillside 140 Removing the source is one of three defenses in depth, as illustrated at the PCB removal from Hillside 140. ...

  14. Hot Spot Removal System: System description

    SciTech Connect (OSTI)

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  15. Method of making a current collector for a sodium/sulfur battery

    DOE Patents [OSTI]

    Tischer, R.P.; Winterbottom, W.L.; Wroblowa, H.S.

    1987-03-10

    This specification is directed to a method of making a current collector for a sodium/sulfur battery. The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500--1,000 angstroms. 2 figs.

  16. Method of making a current collector for a sodium/sulfur battery

    DOE Patents [OSTI]

    Tischer, Ragnar P.; Winterbottom, Walter L.; Wroblowa, Halina S.

    1987-01-01

    This specification is directed to a method of making a current collector (14) for a sodium/sulfur battery (10). The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material (16) formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500-1000 angstroms.

  17. Update on Transition to Ultra-Low-Sulfur Diesel Fuel (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On November 8, 2005, the Environmental Protection Agency (EPA) Administrator signed a direct final rule that will shift the retail compliance date for offering ultra-low sulfur diesel (ULSD) for highway use from September 1, 2006, to October 15, 2006. The change will allow more time for retail outlets and terminals to comply with the new 15 parts per million (ppm) sulfur standard, providing time for entities in the diesel fuel distribution system to flush higher sulfur fuel out of the system during the transition. Terminals will have until September 1, 2006, to complete their transitions to ULSD. The previous deadline was July 15, 2006.

  18. Spent Nuclear Fuel (SNF) Removal Campaign Plan

    SciTech Connect (OSTI)

    PAJUNEN, A.L.

    2000-08-07

    The overall operation of the Spent Nuclear Fuel Project will include fuel removal, sludge removal, debris removal, and deactivation transition activities. Figure 1-1 provides an overview of the current baseline operating schedule for project sub-systems, indicating that a majority of fuel removal activities are performed over an approximately three-and-one-half year time period. The purpose of this document is to describe the strategy for operating the fuel removal process systems. The campaign plan scope includes: (1) identifying a fuel selection sequence during fuel removal activities, (2) identifying MCOs that are subjected to extra testing (process validation) and monitoring, and (3) discussion of initial MCO loading and monitoring in the Canister Storage Building (CSB). The campaign plan is intended to integrate fuel selection requirements for handling special groups of fuel within the basin (e.g., single pass reactor fuel), process validation activities identified for process systems, and monitoring activities during storage.

  19. Removal of metal ions from aqueous solution

    DOE Patents [OSTI]

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  20. Removal of metal ions from aqueous solution

    DOE Patents [OSTI]

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-11-13

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  1. Protection #2: Trap and Remove Sediment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trap and Remove Sediment Protection #2: Trap and Remove Sediment The 3 Protections = Defense in Depth August 1, 2013 Sediment behind LA Canyon weir is sampled and excavated regularly. As of 2012, no sediment required disposal as hazardous or radioactive waste. Sediment behind LA Canyon weir is sampled and excavated regularly. As of 2012, no sediment required disposal as hazardous or radioactive waste. The 3 Protections Protection #1: Remove the source of contamination Protection #2: Stabilize,

  2. Method for removing contaminants from plastic resin

    SciTech Connect (OSTI)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  3. Removal of radioisotopes from waste solutions

    DOE Patents [OSTI]

    Kirby, H.W.

    1973-10-01

    The invention comprises removing radioisotopes from waste liquids or solutions by passing these through filters and through a column containing a suitable salt of phosphoric acid. (Official Gazette)

  4. Slag capture and removal during laser cutting

    DOE Patents [OSTI]

    Brown, Clyde O.

    1984-05-08

    Molten metal removed from a workpiece in a laser cutting operation is blown away from the cutting point by a gas jet and collected on an electromagnet.

  5. System for removing contaminants from plastic resin

    SciTech Connect (OSTI)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  6. Turkey HEU Removal | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Turkey HEU Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  7. General Counsel Legal Interpretation Regarding Medical Removal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits Pursuant to 10 CFR Part 850, Chronic Beryllium Disease Prevention Program General Counsel Legal Interpretation Regarding Medical Removal Protection Benefits ...

  8. Sulfur dioxide emissions from primary copper smelters in the western US

    SciTech Connect (OSTI)

    Mangeng, C.A.; Mead, R.W.

    1980-01-01

    The body of information presented is directed to environmental scientists and policy makers without chemical or metallurgical engineering backgrounds. This paper addresses the problems of reducing sulfur dioxide emissions from primary copper smelters in the western United States and projects the future impact of emissions within a framework of legal, technological, and economic considerations. Methodology used to calculate historical sulfur dioxide emissions is described. Sulfur dioxide emission regulations are outlined as they apply to primary copper smelters. A discussion of available sulfur dioxide control technology and copper smelting processes summarizes the technological and economic problems of reducing copper smelter emissions. Based upon these technological and economic considerations, projections of smelter emissions indicate that compliance with existing legislative requirements will be achieved by 1990. Three smelters are projected to close by 1985.

  9. Diesel Fuel Sulfur Effects on the Performance of Diesel Oxidation Catalysts

    SciTech Connect (OSTI)

    Whitacre, Shawn D.

    2000-08-20

    Research focus: - Impact of sulfur on: Catalyst performance; Short term catalyst durability. This presentation summarizes results from fresh catalyst performance evaluations - WVU contracted to conduct DOC and Lean NOx catalyst testing for DECSE DECSE program. (experimental details discussed previously)

  10. First-Principles Study of Redox End-Members in Li-Sulfur Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First-Principles Study of Redox End-Members in Li-Sulfur Batteries Images for Redox ... and surface characteristics of solid-phase redox end-members in Li-S batteries. ...

  11. Demand, Supply, and Price Outlook for Low-Sulfur Diesel Fuel

    Reports and Publications (EIA)

    1993-01-01

    The Clean Air Act Amendments of 1990 established a new, sharply lower standard for the maximum sulfur content of on-highway diesel fuel, to take effect October 1, 1993.

  12. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    57.8 42.0 See footnotes at end of table. 200 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  13. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    62.6 47.4 See footnotes at end of table. 200 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  14. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    51.8 See footnotes at end of table. 242 Energy Information Administration Petroleum Marketing Annual 1995 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  15. Sulfur tolerant highly durable CO.sub.2 sorbents (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Sulfur tolerant highly durable CO.sub.2 sorbents A sorbent for the capture of carbon dioxide from a gas stream is provided, the sorbent ...

  16. Combining automatic titration of total iron and sulfur in thermal battery materials

    SciTech Connect (OSTI)

    Marley, N.A.

    1986-05-28

    Optimal thermal battery performance requires careful control of the iron disulfide content in the catholyte mixture. Previously, the iron and sulfur content of battery materials was determined separately, each requiring a lengthy sample preparation and clean up procedure. A new method has been developed which allows both determinations to be made on the same sample following a simple dissolution procedure. Sample preparation requires oxidation and dissolution with nitric acid followed by dissolution in hydrochloric acid. Iron and sulfur are then determined on sample aliquots by automatic titration. The implementation of this combined procedure for the determination of iron and sulfur by automatic titration has resulted in a substantial reduction in the analysis time. Since sample aliquots are used for each determination, the need to repeat a sample for analysis is rare, improving both the analytical efficiency and sample throughput. Results obtained for sulfur show an improved precision.

  17. Method and apparatus for removing ions from soil

    DOE Patents [OSTI]

    Bibler, J.P.

    1993-03-02

    A method and apparatus are presented for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.

  18. Method and apparatus for removing ions from soil

    DOE Patents [OSTI]

    Bibler, Jane P.

    1993-01-01

    A method and apparatus for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.

  19. Facile synthesis, spectral properties and formation mechanism of sulfur nanorods in PEG-200

    SciTech Connect (OSTI)

    Xie, Xin-yuan; Li, Li-yun; Zheng, Pu-sheng; Zheng, Wen-jie; Bai, Yan; Cheng, Tian-feng; Liu, Jie

    2012-11-15

    Graphical abstract: Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of about 68 was obtained. The sulfur nanoparticles could self-assemble from spherical particles to nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift which was due to the production of nanorods. Highlights: ? A novel, facile and greener method to synthesize sulfur nanorods by the solubilizing and templating effect of PEG-200 was reported. ? S{sup 0} nanoparticles could self assemble in PEG-200 and finally form monodisperse and homogeneous rod-like structure with an average diameter of about 80 nm, the length ca. 600 nm. ? The absorption band showed a red shift and the RRS intensity enhanced continuously during the self-assembling process. ? PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups. -- Abstract: The synthesis of nano-sulfur sol by dissolving sublimed sulfur in a green solvent-PEG-200 was studied. Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of 68 was obtained. The structure, morphology, size, and stability of the products were investigated by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) measurements. The spectral properties of the products were investigated by ultraviolet-visible (UVvis) absorption and resonance Rayleigh scattering spectroscopy (RRS). The results showed that the spherical sulfur nanoparticles could self-assemble into nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift and the RRS intensity enhanced continuously. There was physical cross-linking between PEG and sulfur nanoparticles. PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal

  20. Overview of Contaminant Removal From Coal-Derived Syngas

    SciTech Connect (OSTI)

    Layne, A.W.; Alvin, M.A.; Granite, E.; Pennline, H.W.; Siriwardane, R.V.; Keairns, D.; Newby, R.A.

    2007-11-01

    Gasification is an important strategy for increasing the utilization of abundant domestic coal reserves. DOE envisions increased use of gasification in the United States during the next 20 years. As such, the DOE Gasification Technologies Program, including the FutureGen initiative, will strive to approach a near-zero emissions goal, with respect to multiple pollutants, such as sulfur, mercury, and nitrogen oxides. Since nearly one-third of anthropogenic carbon dioxide emissions are produced by coal-powered generation facilities, conventional coal-burning power plants, and advanced power generation plants, such as IGCC, present opportunities in which carbon can be removed and then permanently stored.
    Gas cleaning systems for IGCC power generation facilities have been effectively demonstrated and used in commercial operations for many years. These systems can reduce sulfur, mercury, and other contaminants in synthesis gas produced by gasifiers to the lowest level achievable in coal-based energy systems. Currently, DOE Fossil Energy's goals set for 2010 direct completion of R&D for advanced gasification combined cycle technology to produce electricity from coal at 4550% plant efficiency. By 2012, completion of R&D to integrate this technology with carbon dioxide separation, capture, and sequestration into a zero-emissions configuration is targeted with a goal to provide electricity with less than a 10% increase in cost of electricity. By 2020, goals are set to develop zero-emissions plants that are fuel-flexible and capable of multi-product output and thermal efficiencies of over 60% with coal. These objectives dictate that it is essential to not only reduce contaminant emissions into the generated synthesis gas, but also to increase the process or system operating temperature to that of humid gas cleaning criteria conditions (150 to 370 C), thus reducing the energy penalties that currently exist as a result of lowering process temperatures (?40 to 38 C) with

  1. Longitudinal study of children exposed to sulfur oxides

    SciTech Connect (OSTI)

    Dodge, R.; Solomon, P.; Moyers, J.; Hayes, C.

    1985-05-01

    This study is a longitudinal comparison of the health of children exposed to markedly different concentrations of sulfur dioxide and moderately different concentrations of particulate sulfate. The four groups of subjects lived in two areas of one smelter town and in two other towns, one of which was also a smelter town. In the area of highest pollution, children were intermittently exposed to high SO/sub 2/ levels (peak three-hour average concentration exceeded 2,500 micrograms/m3) and moderate particulate SO/sub 4/= levels (average concentration was 10.1 micrograms/m3). When the children were grouped by the four gradients of pollution observed, the prevalence of cough (measured by questionnaire) correlated significantly with pollution levels (trend chi-square = 5.6, p = 0.02). No significant differences in the incidence of cough or other symptoms occurred among the groups of subjects over three years, and pulmonary function and lung function growth over the study were roughly equal among all the groups. These results suggest that intermittent elevations in SO/sub 2/ concentration, in the presence of moderate particulate SO/sub 4/= concentration, produced evidence of bronchial irritation in the subjects, but no chronic effect on lung function or lung function growth was detected.

  2. Sulfur gas sensor using a calcium fluoride solid electrolyte

    SciTech Connect (OSTI)

    Toniguchi, M.; Wakihara, M.; Uchida, T.; Hirakawa, K.; Nii, J.

    1988-01-01

    The sulfur gas potentials in the H/sub 2/S + H/sub 2/ buffer gases were measured by a galvanic cell Ps/sub 2/(g),Au(Pt)/(MoS/sub 2/ + CaS)/CaF/sub 2//(Cu + Cu/sub 2/S + CaS)/Au(Pt) in the temperature range from 650/sup 0/ to 950/sup 0/C and Ps/sub 2/ region from 10/sup -2/ to 10/sup -10/ atm. A quick response time (within 5 to 10 min) in emf with the change of Ps/sub 2/ at a given temperature was observed by placing a MoS/sub 2/ and CaS mixed pellet auxiliary electrode at the bottom of the cylindrical single-crystal CaF/sub 2/ electrolyte. The observed emf's agreed well with with those calculated from the Nernst equation. Using this sensor, Ps/sub 2/ values in the SO/sub 2/ + H/sub 2/ + H/sub 2/S gas system were also evaluated from the measured emf at 827/sup 0/C and were found to be in close agreement with those calculated from the thermochemical tables.

  3. Sulfur dioxide-induced chronic bronchitis in beagle dogs

    SciTech Connect (OSTI)

    Greene, S.A.; Wolff, R.K.; Hahn, F.F.; Henderson, R.F.; Mauderly, J.L.; Lundgren, D.L.

    1984-01-01

    This study was done to produce a model of chronic bronchitis. Twelve beagle dogs were exposed to 500 ppm sulfur dioxide (SO/sub 2/) for 2 h/d, 5d/wk for 21 wk and 4 dogs were sham-exposed to filtered ambient air for the same period. Exposure effects were evaluated by periodically examining the dogs using chest radiographs, pulmonary function, tracheal mucous clearance, and the cellular and soluble components of bronchopulmonary lavage fluids. Dogs were serially sacrificed after 13 and 21 wk of exposure and after 6 and 14 wk of recovery. Clinical signs produced in the SO/sub 2/-exposed dogs included mucoid nasal discharge, productive cough, moist rales on auscultation, tonsilitis, and conjunctivitis. Chest radiographs revealed mild peribronchiolar thickening. Histopathology, tracheal mucous clearance measurements, and lavage cytology were consistent with a diagnosis of chronic bronchitis. It is concluded that repeated exposure to 500 ppm SO/sub 2/ for 21 wk produced chronic bronchitis in the beagle dog. Complete recovery occurred within 5 wk following cessation of SO/sub 2/ exposure. 43 references, 2 figures, 2 tables.

  4. Low Temperature Sodium-Sulfur Grid Storage and EV Battery - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Low Temperature Sodium-Sulfur Grid Storage and EV Battery Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab researcher Gao Liu has developed an innovative design for a battery, made primarily of sodium and sulfur, that

  5. Direct Observation of the Redistribution of Sulfur and Polysufides in Li-S

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries by In Situ X-Ray Fluorescence Microscopy - Joint Center for Energy Storage Research March 30, 2015, Research Highlights Direct Observation of the Redistribution of Sulfur and Polysufides in Li-S Batteries by In Situ X-Ray Fluorescence Microscopy (Top) The morphology and chemical state changes of a sulfur electrode were observed in real time throughout an entire first electro-chemical cycle. The contamination of polysulfides on the Li anode was also investigated. (Bottom) A

  6. Development of Efficient Flowsheet and Transient Modeling for Nuclear Heat Coupled Sulfur Iodine Cyclefor Hydrogen Production

    SciTech Connect (OSTI)

    Shripad T. Revankar; Nicholas R. Brown; Cheikhou Kane; Seungmin Oh

    2010-05-01

    The realization of the hydrogen as an energy carrier for future power sources relies on a practical method of producing hydrogen in large scale with no emission of green house gases. Hydrogen is an energy carrier which can be produced by a thermochemical water splitting process. The Sulfur-Iodine (SI) process is an example of a water splitting method using iodine and sulfur as recycling agents.

  7. Fitting the Lithium-Sulfur Battery with a New Membrane - Joint Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Research October 22, 2015, Accomplishments Fitting the Lithium-Sulfur Battery with a New Membrane The lithium-sulfur battery has higher energy storage capacity and lower cost than lithium ion. But there is a serious stumbling block. Polysulfides form in the cathode during battery cycling and pass through the membrane to contaminate the lithium metal anode. This results in a rapid decline in performance. JCESR researchers appear to have found a solution to the problem - the

  8. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    DOE Patents [OSTI]

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  9. Complexation of Mercury(II) in Soil Organic Matter: EXAFS Evidence for Linear Two-Coordination with Reduced Sulfur Groups

    SciTech Connect (OSTI)

    Skyllberg,U.; Bloom, P.; Qian, J.; Lin, C.; Bleam, W.

    2006-01-01

    The chemical speciation of inorganic mercury (Hg) is to a great extent controlling biologically mediated processes, such as mercury methylation, in soils, sediments, and surface waters. Of utmost importance are complexation reactions with functional groups of natural organic matter (NOM), indirectly determining concentrations of bioavailable, inorganic Hg species. Two previous extended X-ray absorption fine structure (EXAFS) spectroscopic studies have revealed that reduced organic sulfur (S) and oxygen/nitrogen (O/N) groups are involved in the complexation of Hg(II) to humic substances extracted from organic soils. In this work, covering intact organic soils and extending to much lower concentrations of Hg than before, we show that Hg is complexed by two reduced organic S groups (likely thiols) at a distance of 2.33 Angstroms in a linear configuration. Furthermore, a third reduced S (likely an organic sulfide) was indicated to contribute with a weaker second shell attraction at a distance of 2.92-3.08 Angstroms. When all high-affinity S sites, corresponding to 20-30% of total reduced organic S, were saturated, a structure involving one carbonyl-O or amino-N at 2.07 Angstroms and one carboxyl-O at 2.84 Angstroms in the first shell, and two second shell C atoms at an average distance of 3.14 Angstroms, gave the best fit to data. Similar results were obtained for humic acid extracted from an organic wetland soil. We conclude that models that are in current use to describe the biogeochemistry of mercury and to calculate thermodynamic processes need to include a two-coordinated complexation of Hg(II) to reduced organic sulfur groups in NOM in soils and waters.

  10. Interaction of CuS and sulfur in Li-S battery system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Ke; Su, Dong; Zhang, Qing; Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Gan, Hong

    2015-10-27

    Lithium-Sulfur (Li-S) battery has been a subject of intensive research in recent years due to its potential to provide much higher energy density and lower cost than the current state of the art lithiumion battery technology. In this work, we have investigated Cupric Sulfide (CuS) as a capacitycontributing conductive additive to the sulfur electrode in a Li-S battery. Galvanostatic charge/discharge cycling has been used to compare the performance of both sulfur electrodes and S:CuS hybrid electrodes with various ratios. We found that the conductive CuS additive enhanced the utilization of the sulfur cathode under a 1C rate discharge. However, undermore » a C/10 discharge rate, S:CuS hybrid electrodes exhibited lower sulfur utilization in the first discharge and faster capacity decay in later cycles than a pure sulfur electrode due to the dissolution of CuS. The CuS dissolution is found to be the result of strong interaction between the soluble low order polysulfide Li2S3 and CuS. As a result, we identified the presence of conductive copper-containing sulfides at the cycled lithium anode surface, which may degrade the effectiveness of the passivation function of the solid-electrolyte-interphase (SEI) layer, accounting for the poor cycling performance of the S:CuS hybrid cells at low rate.« less

  11. Interaction of CuS and sulfur in Li-S battery system

    SciTech Connect (OSTI)

    Sun, Ke; Su, Dong; Zhang, Qing; Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Gan, Hong

    2015-10-27

    Lithium-Sulfur (Li-S) battery has been a subject of intensive research in recent years due to its potential to provide much higher energy density and lower cost than the current state of the art lithiumion battery technology. In this work, we have investigated Cupric Sulfide (CuS) as a capacitycontributing conductive additive to the sulfur electrode in a Li-S battery. Galvanostatic charge/discharge cycling has been used to compare the performance of both sulfur electrodes and S:CuS hybrid electrodes with various ratios. We found that the conductive CuS additive enhanced the utilization of the sulfur cathode under a 1C rate discharge. However, under a C/10 discharge rate, S:CuS hybrid electrodes exhibited lower sulfur utilization in the first discharge and faster capacity decay in later cycles than a pure sulfur electrode due to the dissolution of CuS. The CuS dissolution is found to be the result of strong interaction between the soluble low order polysulfide Li2S3 and CuS. As a result, we identified the presence of conductive copper-containing sulfides at the cycled lithium anode surface, which may degrade the effectiveness of the passivation function of the solid-electrolyte-interphase (SEI) layer, accounting for the poor cycling performance of the S:CuS hybrid cells at low rate.

  12. Unusual refinery boiler tube failures due to corrosion by sulfuric acid induced by steam leaks

    SciTech Connect (OSTI)

    Lopez-Lopez, D.; Wong-Moreno, A.

    1998-12-31

    Corrosion by sulfuric acid in boilers is a low probability event because gas temperature and metal temperature of boiler tubes are high enough to avoid the condensation of sulfuric acid from flue gases. This degradation mechanism is frequently considered as an important cause of air preheaters materials degradation, where flue gases are cooled by heat transfer to the combustion air. Corrosion is associated to the presence of sulfuric acid, which condensates if metal temperature (or gas temperature) is below of the acid dew point. In economizer tubes, sulfuric acid corrosion is an unlikely event because flue gas and tube temperatures are normally over the acid dewpoint. In this paper, the failure analysis of generator tubes (similar to the economizer of bigger boilers) of two small oil-fired subcritical boilers is reported. It is concluded that sulfuric acid corrosion was the cause of the failure. The sulfuric acid condensation was due to the contact of flue gases containing SO{sub 3} with water-steam spray coming from leaks at the interface of rolled tube to the drum. Considering the information gathered from these two cases studied, an analysis of this failure mechanism is presented including a description of the thermodynamics condition of water leaking from the drum, and an analysis of the factors favoring it.

  13. Method of removing contaminants from plastic resins

    DOE Patents [OSTI]

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  14. Method for removing contaminants from plastic resin

    DOE Patents [OSTI]

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  15. Method of removing contaminants from plastic resins

    DOE Patents [OSTI]

    Bohnert,George W.; Hand,Thomas E.; Delaurentiis,Gary M.

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  16. Method And Apparatus For Arbitrarily Large Capacity Removable Media

    DOE Patents [OSTI]

    Milligan, Charles A.; Hughes, James P.; Debiez; Jacques

    2003-04-08

    A method and apparatus to handle multiple sets of removable media within a storage system. A first set of removable media are mounted on a set of drives. Data is accepted until the first set of removable media is filled. A second set of removable media is mounted on the drives, while the first set of removable media is removed. When the change in removable media is complete, writing of data proceeds on the second set of removable media. Data may be buffered while the change in removable media occurs. Alternatively, two sets of removable media may be mounted at the same time. When the first set of removable media is filled to a selected amount, the second set of removable media may then be used to write the data. A third set of removable media is set up or mounted for use, while the first set of removable media is removed.

  17. Effectiveness of decanter modifications on organic removal

    SciTech Connect (OSTI)

    Lambert, D.P.

    1992-08-20

    A series of runs were planned in the Precipitate Hydrolysis Experimental Facility (PHEF) at the Savannah River Plant to determine the effectiveness of equipment and process modifications on the PHEF decanter organic removal efficiency. Runs 54-59 were planned to test the effectiveness of spray recirculation, a new decanter, heated organic recirculation and aqueous drawoff on organic removal efficiency in the revised HAN flowsheet. Runs 60-63 were planned to provide a comparison of the original and new decanter designs on organic removal efficiency in the late wash flowsheet without organic recirculation. Operational problems were experienced in both the PHEF and IDMS pilot facilities because of the production of high boiling organics and the low organic removal efficiency of the PHEF decanters. To prevent these problems in the DWPF Salt and Chemical Cells, modifications were proposed to the decanter and flowsheet to maximize the organic removal efficiency and minimize production of high boiling organics.

  18. Test Plan for the overburden removal demonstration

    SciTech Connect (OSTI)

    Rice, P.; Thompson, D.; Winberg, M.; Skaggs, J.

    1993-06-01

    The removal of soil overburdens from contaminated pits and trenches involves using equipment that will remove a small layer of soil from 3 to 6 in. at any time. As a layer of soil is removed, overburden characterization techniques perform surveys to a depth that exceeds each overburden removal layer to ensure that the removed soil will be free of contamination. It is generally expected that no contamination will be found in the soil overburden, which was brought in after the waste was put in place. It is anticipated that some containers in the waste zone have lost their integrity, and the waste leakage from those containers has migrated by gravity downward into the waste zone. To maintain a safe work environment, this method of overburden removal should allow safe preparation of a pit or trench for final remediation. To demonstrate the soil overburden techniques, the Buried Waste Integrated Demonstration Program has contracted vendor services to provide equipment and techniques demonstrating soil overburden removal technology. The demonstration will include tests that will evaluate equipment performance and techniques for removal of overburden soil, control of contamination spread, and dust control. To evaluate the performance of these techniques, air particulate samples, physical measurements of the excavation soil cuts, maneuverability measurements, and time versus volume (rate) of soil removal data will be collected during removal operations. To provide a medium for sample evaluation, the overburden will be spiked at specific locations and depths with rare earth tracers. This test plan will be describe the objectives of the demonstration, data quality objectives, methods to be used to operate the equipment and use the techniques in the test area, and methods to be used in collecting data during the demonstration.

  19. Genomic definition of species

    SciTech Connect (OSTI)

    Crkvenjakov, R.; Drmanac, R.

    1991-07-01

    The subject of this paper is the definition of species based on the assumption that genome is the fundamental level for the origin and maintenance of biological diversity. For this view to be logically consistent it is necessary to assume the existence and operation of the new law which we call genome law. For this reason the genome law is included in the explanation of species phenomenon presented here even if its precise formulation and elaboration are left for the future. The intellectual underpinnings of this definition can be traced to Goldschmidt. We wish to explore some philosophical aspects of the definition of species in terms of the genome. The point of proposing the definition on these grounds is that any real advance in evolutionary theory has to be correct in both its philosophy and its science.

  20. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    SciTech Connect (OSTI)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate

  1. Method for changing removable bearing for a wind turbine generator

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2008-04-22

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  2. Removable bearing arrangement for a wind turbine generator

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2010-06-15

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  3. In situ removal of contamination from soil

    DOE Patents [OSTI]

    Lindgren, E.R.; Brady, P.V.

    1997-10-14

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.

  4. In situ removal of contamination from soil

    DOE Patents [OSTI]

    Lindgren, Eric R.; Brady, Patrick V.

    1997-01-01

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.

  5. The economic impact of removing chloride from closed-loop wet limestone FGD systems. Volume 1. Final report

    SciTech Connect (OSTI)

    Phillips, J.L.; Horton, W.M.

    1995-01-01

    High chloride concentrations in wet limestone FGD systems increase the corrosion rates of certain materials and decrease SO{sub 2} removal efficiency and limestone utilization. This study revealed four different technologies that could be used to control chloride concentrations in closed-loop wet limestone FGD systems: reverse osmosis, electrodialysis reversal, vapor compression evaporation, and duct injection. This two-volume report describes each option in detail, discusses the basis for selecting the chloride threshold levels along with approximate cost estimates for combined chloride removal and waste disposal options, and presents flow sheets and detailed material balances for the least-cost combined options. The total annualized costs for chloride removal and waste disposal estimated in this study for a 300-MW plant range from 0.8 to 1.3 mils/kWh for controlling chloride at 3000 ppm to prevent corrosion and range from 0.3 to 0.7 mils/kWh for controlling chloride at 15,000 ppm to prevent decreased SO{sub 2} removal. The design coal has a relatively high chloride-to-sulfur ratio; costs for other coals would be lower.

  6. The economic impact of removing chloride from closed-loop wet limestone GFD systems. Volume 2. Final report

    SciTech Connect (OSTI)

    Phillips, J.L.; Horton, W.M.

    1995-01-01

    High chloride concentrations in wet limestone FGD systems increase the corrosion rates of certain materials and decrease SO{sub 2} removal efficiency and limestone utilization. This study revealed four different technologies that could be used to control chloride concentrations in closed-loop wet limestone FGD systems: reverse osmosis, electrodialysis reversal, vapor compression evaporation, and duct injection. This two-volume report describes each option in detail, discusses the basis for selecting the chloride threshold levels along with approximate cost estimates for combined chloride removal and waste disposal options, and presents flow sheets and detailed material balances for the least-cost combined options. The total annualized costs for chloride removal and waste disposal estimated in this study for a 300-MW plant range from 0.8 to 1.3 mils/kWh for controlling chloride at 3000 ppm to prevent corrosion and range from 0.3 to 0.7 mils/kWh for controlling chloride at 15,000 ppm to prevent decreased SO{sub 2} removal. The design coal has a relatively high chloride-to-sulfur ratio; costs for other coals would be lower.

  7. Nuclear Hydrogen Initiative, Results of the Phase II Testing of Sulfur-Iodine Integrated Lab Scale Experiments

    SciTech Connect (OSTI)

    Benjamin Russ; G. Naranjo; R. Moore; W. Sweet; M. Hele; N. Pons

    2009-10-30

    International collaborative effort to construct a laboratory-scale Sulfur-Iodine process capable of producing 100-200 L/hr of hydrogen.

  8. Letter from Commonwealth to Mirant Potomac River Concerning Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide

    Office of Energy Efficiency and Renewable Energy (EERE)

    Docket No. EO-05-01: Letter from Commonwealth of Virginia to Mirant Potomac River concerning Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide.

  9. Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

    SciTech Connect (OSTI)

    Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.; Piepel, Greg F.; Kruger, Albert A.

    2014-07-24

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ? P2O5 > Na2O ? B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ? SnO2 > Others ? SiO2. The order of component effects is similar to previous literature data, in most cases.

  10. Toward understanding the effect of low-activity waste glass composition on sulfur solubility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vienna, John D.; Kim, Dong -Sang; Muller, Isabelle S.; Piepel, Greg F.; Kruger, Albert A.; Jantzen, C.

    2014-07-24

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which inmore » turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ≈ P2O5 > Na2O ≈ B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ≈ SnO2 > Others ≈ SiO2. As a result, the order of component effects is similar to previous literature data, in most cases.« less

  11. Method of removing polychlorinated biphenyl from oil

    DOE Patents [OSTI]

    Cook, G.T.; Holshouser, S.K.; Coleman, R.M.; Harless, C.E.; Whinnery, W.N. III

    1982-03-17

    Polychlorinated biphenyls are removed from oil by extracting the biphenyls into methanol. The mixture of methanol and extracted biphenyls is distilled to separate methanol therefrom, and the methanol is recycled for further use in extraction of biphenyls from oil.

  12. Method of removing polychlorinated biphenyl from oil

    DOE Patents [OSTI]

    Cook, Gus T.; Holshouser, Stephen K.; Coleman, Richard M.; Harless, Charles E.; Whinnery, III, Walter N.

    1983-01-01

    Polychlorinated biphenyls are removed from oil by extracting the biphenyls into methanol. The mixture of methanol and extracted biphenyls is distilled to separate methanol therefrom, and the methanol is recycled for further use in extraction of biphenyls from oil.

  13. Advanced Water Removal via Membrane Solvent Extraction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Removal via Membrane Solvent Extraction Reduction in energy and water use for the ethanol industry Ethanol is the leading biofuel in the U.S. with 13 Billion gallons produced ...

  14. Effect of morphology of sulfurized materials in the retention of mercury from gas streams

    SciTech Connect (OSTI)

    Guijarro, M.I.; Mendioroz, S.; Munoz, V.

    1998-03-01

    Mercury pollution sources are chloralkali industries, metal sulfide ore smelting, gold refining, cement production, industrial applications of metals, and, especially, fossil fuel combustion and incineration of sewage sludge or municipal garbage. The retention of mercury vapor by sulfur supported on sepiolite has been studied, and the utility of sepiolite as a dispersant for the active phase, sulfur, has been thoroughly ascertained. Samples with 10% S supported on sepiolite of varying size and shape have been prepared from powders sulfurized by reaction/deposit, and their efficiency in depurating air streams with 95 ppm mercury has been tested in a dynamic system using a fixed-bed glass reactor and fluid velocities ranging from 3.1 to 18.9 cm/s. From breakthrough curves under various sets of conditions, the importance of mass transfer under the process conditions has been proven. The progress of the reaction is limited by the resistance to reactant diffusion inside the solid through the layer of product formed. Sulfur reaction to HgS is reduced to an external zone of the solid, giving rise to an egg-shell deposit whose extension is related to sulfur dispersion and porosity of the adsorbent. Then, conversion and capacity of the samples are related to their porosity and S/V ratio. The use of SEM helps to confirm those statements. The 10% S samples compare well with the more conventional S/activated carbon, with their use being advantageous for the low price and abundance of the substrate.

  15. Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by Antimony and Tin

    SciTech Connect (OSTI)

    Marina, Olga A.; Coyle, Christopher A.; Engelhard, Mark H.; Pederson, Larry R.

    2011-02-28

    Surface Ni/Sb and Ni/Sb alloys were found to efficiently minimize the negative effects of sulfur on the performance of Ni/zirconia anode-supported solid oxide fuel cells (SOFC). Prior to operating on fuel gas containing low concentrations of H2S, the nickel/zirconia anodes were briefly exposed to antimony or tin vapor, which only slightly affected the SOFC performance. During the subsequent exposures to 1 and 5 ppm H2S, increases in anodic polarization losses were minimal compared to those observed for the standard nickel/zirconia anodes. Post-test XPS analyses showed that Sb and Sn tended to segregate to the surface of Ni particles, and further confirmed a significant reduction of adsorbed sulfur on the Ni surface in Ni/Sn and Ni/Sb samples compared to the Ni. The effect may be the result of weaker sulfur adsorption on bimetallic surfaces, adsorption site competition between sulfur and Sb or Sn on Ni, or other factors. The use of dilute binary alloys of Ni-Sb or Ni-Sn in the place of Ni, or brief exposure to Sb or Sn vapor, may be effective means to counteract the effects of sulfur poisoning in SOFC anodes and Ni catalysts. Other advantages, including suppression of coking or tailoring the anode composition for the internal reforming, are also expected.

  16. Laser removal of sludge from steam generators

    DOE Patents [OSTI]

    Nachbar, Henry D.

    1990-01-01

    A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

  17. Method for removing RFI from SAR images

    DOE Patents [OSTI]

    Doerry, Armin W.

    2003-08-19

    A method of removing RFI from a SAR by comparing two SAR images on a pixel by pixel basis and selecting the pixel with the lower magnitude to form a composite image. One SAR image is the conventional image produced by the SAR. The other image is created from phase-history data which has been filtered to have the frequency bands containing the RFI removed.

  18. Investigation of combined SO{sub 2}/NO{sub x} removal by ceria sorbents. Quarterly technical progress report, [April--June 1995

    SciTech Connect (OSTI)

    Akyurtlu, A.; Akyurtlu, J.F.

    1995-07-01

    Simultaneous removal of SO{sub 2} and NO{sub x} using a regenerable solid sorbent will constitute an important improvement over the use of separate processes for the removal of these two pollutants from stack gases and possibly eliminate several shortcomings of the individual SO{sub 2} and NO{sub x} removal operations. Recent studies at PETC considered cerium oxide as an alternate sorbent to CuO. The present study aims to determine the effects of ammonia on the sulfation of the sorbent and to obtain a rate expression for the regeneration of alumina-supported CeO{sub 2} sorbents. In this quarter runs for methane regeneration were completed. The data obtained were evaluated and interpreted. When the sulfated sorbent was regenerated with methane coke formation on the sorbent was observed. Treatment of fresh sorbent with methane also resulted in coking. Coke formed on the sorbent disappeared very rapidly after the methane flow was replaced with nitrogen. The order of the regeneration reaction with respect to methane was estimated as 0:76 and the activation energy of the reaction was estimated as 130 kJ/mol. During repeated sulfation-regeneration cycles the decrease in the sulfur capacity after the first cycle was slightly more when regeneration was done with methane compared to that observed with hydrogen regeneration. In the subsequent 4 cycles, the ceria sorbent preserved its sulfur capacity. The regenerated sorbent was able to capture 1.5 sulfur atoms per cerium atom in less than an hour of sulfation, compared to S/Ce of 2.5 for fresh sorbents and 2 for sorbents regenerated with hydrogen.

  19. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    SciTech Connect (OSTI)

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

    2013-07-10

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  20. Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming

    SciTech Connect (OSTI)

    Gunther Dieckmann

    2006-06-30

    In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

  1. EO 13112: Invasive Species | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EO 13112: Invasive Species EO 13112: Invasive Species Establishment of the Invasive Species Council PDF icon EO 13112: Invasive Species More Documents & Publications EO 13089 -- ...

  2. Sulfur capture by oil shale ashes under atmospheric and pressurized FBC conditions

    SciTech Connect (OSTI)

    Yrjas, K.P.; Hupa, M. [Aabo Akademi Univ., Turku (Finland). Dept. of Chemical Engineering; Kuelaots, I.; Ots, A. [Tallinn Technical Univ. (Estonia). Thermal Engineering Dept.

    1995-12-31

    When oil shale contains large quantities of limestone, a significant auto-absorption of sulfur is possible under suitable conditions. The sulfur capture by oil shale ashes has been studied using a pressurized thermogravimetric apparatus. The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. The Ca/S molar ratios in the two oil shales studied were 8 (Estonian) and 10 (Israeli). The samples were first burned in a gas atmosphere containing O{sub 2} and N{sub 2} (and CO{sub 2} if pressurized). After the combustion step, SO{sub 2} was added and sulfation started. The results with the oil shales were compared to those obtained with an oil shale cyclone ash from the Narva power plant in Estonia. In general, the results from the sulfur capture experiments under both atmospheric and pressurized conditions showed that the oil shale cannot only capture its own sulfur but also significant amounts of additional sulfur of another fuel if the fuels are mixed together. For example from the runs at atmospheric pressure, the conversion of CaO to CaSO{sub 4} was about 70% for Israeli oil shale and about 55% for Estonian oil shale (850 C). For the cyclone ash the corresponding conversion was about 20%. In comparison it could be mentioned that under the same conditions the conversions of natural limestones are about 30%. The reason the cyclone ash was a poor sulfur absorbent was probably due to its temperature history. In Narva the oil shale was burned at a significantly higher temperature (1,400 C) than was used in the experiments (750 C and 850 C). This caused the ash to sinter and the reactive surface area of the cyclone ash was therefore decreased.

  3. Examination Of Sulfur Measurements In DWPF Sludge Slurry And SRAT Product Materials

    SciTech Connect (OSTI)

    Bannochie, C. J.; Wiedenman, B. J.

    2012-11-29

    Savannah River National Laboratory (SRNL) was asked to re-sample the received SB7b WAPS material for wt. % solids, perform an aqua regia digestion and analyze the digested material by inductively coupled plasma - atomic emission spectroscopy (ICP-AES), as well as re-examine the supernate by ICP-AES. The new analyses were requested in order to provide confidence that the initial analytical subsample was representative of the Tank 40 sample received and to replicate the S results obtained on the initial subsample collected. The ICP-AES analyses for S were examined with both axial and radial detection of the sulfur ICP-AES spectroscopic emission lines to ascertain if there was any significant difference in the reported results. The outcome of this second subsample of the Tank 40 WAPS material is the first subject of this report. After examination of the data from the new subsample of the SB7b WAPS material, a team of DWPF and SRNL staff looked for ways to address the question of whether there was in fact insoluble S that was not being accounted for by ion chromatography (IC) analysis. The question of how much S is reaching the melter was thought best addressed by examining a DWPF Slurry Mix Evaporator (SME) Product sample, but the significant dilution of sludge material, containing the S species in question, that results from frit addition was believed to add additional uncertainty to the S analysis of SME Product material. At the time of these discussions it was believed that all S present in a Sludge Receipt and Adjustment Tank (SRAT) Receipt sample would be converted to sulfate during the course of the SRAT cycle. A SRAT Product sample would not have the S dilution effect resulting from frit addition, and hence, it was decided that a DWPF SRAT Product sample would be obtained and submitted to SRNL for digestion and sample preparation followed by a round-robin analysis of the prepared samples by the DWPF Laboratory, F/H Laboratories, and SRNL for S and sulfate. The

  4. Sulfur determination in blood from inhabitants of Brazil using neutron activation analysis

    SciTech Connect (OSTI)

    Oliveira, Laura C.; Zamboni, Cibele B.

    2013-05-06

    In this study the NAA technique was applied to analyze sulfur in blood from inhabitants of Brazil for the proposition of an indicative interval. The measurements were performed considering lifestyle factors (non-smokers, non-drinkers and no history of toxicological exposure) of Brazilian inhabitants. The influence of gender was also investigated considering several age ranges (18-29, 30-39, 40-49, >50 years). These data are useful in clinical investigations, to identify or prevent diseases caused by inadequate sulfur ingestion and for nutritional evaluation of Brazilian population.

  5. ,"Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities",16,"Monthly","6/2016","1/15/1985" ,"Release Date:","8/31/2016" ,"Next Release

  6. NO[sub x] reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOE Patents [OSTI]

    Mathur, V.K.; Breault, R.W.; McLarnon, C.R.; Medros, F.G.

    1992-09-15

    This invention presents an NO[sub x] environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO[sub x] reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO[sub x] bearing gas stream at a minimum of at least about 75 watts/cubic meter. 7 figs.

  7. NOx reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOE Patents [OSTI]

    Mathur, V.K.; Breault, R.W.; McLarnon, C.R.; Medros, F.G.

    1993-08-31

    This invention presents an NO[sub x] environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO[sub x] reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO[sub x] bearing gas stream at a minimum of at least about 75 watts/cubic meter.

  8. NO.sub.x reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOE Patents [OSTI]

    Mathur, Virendra K.; Breault, Ronald W.; McLarnon, Christopher R.; Medros, Frank G.

    1993-01-01

    This invention presents an NO.sub.x environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO.sub.x reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO.sub.x bearing gas stream at a minimum of at least about 75 watts/cubic meter.

  9. NO.sub.x reduction by sulfur tolerant coronal-catalytic apparatus and method

    DOE Patents [OSTI]

    Mathur, Virendra K.; Breault, Ronald W.; McLarnon, Christopher R.; Medros, Frank G.

    1992-01-01

    This invention presents an NO.sub.x environment effective reduction apparatus comprising a sulfur tolerant coronal-catalyst such as high dielectric coronal-catalysts like glass wool, ceramic-glass wool or zirconium glass wool and method of use. In one embodiment the invention comprises an NO.sub.x reduction apparatus of sulfur tolerant coronal-catalyst adapted and configured for hypercritical presentation to an NO.sub.x bearing gas stream at a minimum of at least about 75 watts/cubic meter.

  10. Preliminary analysis of patent trends for sodium/sulfur battery technology

    SciTech Connect (OSTI)

    Triplett, M.B.; Winter, C.; Ashton, W.B.

    1985-07-01

    This document summarizes development trends in sodium/sulfur battery technology based on data from US patents. Purpose of the study was to use the activity, timing and ownership of 285 US patents to identify and describe broad patterns of change in sodium/sulfur battery technology. The analysis was conducted using newly developed statistical and computer graphic techniques for describing technology development trends from patent data. This analysis suggests that for some technologies trends in patent data provide useful information for public and private R and D planning.

  11. A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol

    SciTech Connect (OSTI)

    Chin, M.; Davis, D.D. [Georgia Institute of Technology, Atlanta, GA (United States)] [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-05-20

    The authors present an analysis of carbonyl sulfide (OCS) in the earth`s atmosphere, with the objective being to assess its role in the formation of sulfate aerosols in the stratosphere. They review the amount of OCS in the atmosphere, its distribution between the troposphere and stratosphere, the estimated source term for emission to the atmosphere, and from one-dimensional model calculations infer a stratospheric lifetime to photochemical reactions of ten years. Calculations infer a sulfur production rate from OCS oxidation which is a factor of 2 to 5 less than recent sulfur aerosol estimates would infer. They discuss a number of possible explanations for the discrepancy.

  12. Advection of sulfur dioxide over the western Atlantic Ocean during CITE 3

    SciTech Connect (OSTI)

    Thornton, D.C.; Bandy, A.R.; Beltz, N.; Driedger, A.R. III; Ferek, R. ||

    1993-12-01

    During the NASA Chemical Instrumentation Test and Evaluation 3 sulfur intercomparison over the western Atlantic Ocean, five techniques for the determination of sulfur dioxide were evaluated. The response times of the techniques varied from 3 to 30 min. Based on the ensemble of measurements reported, it was clear that advection of SO2 from the North American continent occurred in the boundary layer (altitude less than 1 km) with only one exception. The vertical distribution of SO2 above the boundary layer for the northern and southern Atlantic Ocean was remarkably similar duing this experiment.

  13. Performance and economics of a spray-dryer FGD system used with high-sulfur coal

    SciTech Connect (OSTI)

    Livengood, C.D.; Farber, P.S.

    1986-04-01

    Flue-gas desulfurization (FGD) systems based on spray drying to offer advantages over wet lime/limestone systems in a number of areas: low energy consumption, low capital cost, high reliability, and production of a dry waste that is easily handled and disposed of. Uncertainties regarding the performance and economics of such systems for control of high-sulfur-coal emissions have slowed adoption of the technology in the Midwest and East. This paper summarizes 4 years, operating and research experience with that system and describes the current research program, which includes an indepth characterization of an industrial scale dry scrubber with 3.5% sulfur coal.

  14. Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects | Department of Energy Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_parks.pdf (655.5 KB) More Documents & Publications The Next Regulatory Chapter for Commercial Vehicles Review of Diesel

  15. FWS - Candidate Species List under the Endangered Species Act...

    Open Energy Info (EERE)

    what a candidate species is under Section 4 of the Endangered Species Act. Author U.S. Fish and Wildlife Service Published U.S. Fish and Wildlife Service, 2011 DOI Not Provided...

  16. EO 13112: Invasive Species

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presidential Documents 6183 Federal Register / Vol. 64, No. 25 / Monday, February 8, 1999 / Presidential Documents Executive Order 13112 of February 3, 1999 Invasive Species By the authority vested in me as President by the Constitution and the laws of the United States of America, including the National Environmental Policy Act of 1969, as amended (42 U.S.C. 4321 et seq.), Nonindigenous Aquatic Nuisance Prevention and Control Act of 1990, as amended (16 U.S.C. 4701 et seq.), Lacey Act, as

  17. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12

    PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

  18. Innovative Approach Reduces Costs of Removing Contaminated Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Approach Reduces Costs of Removing Contaminated Oil from Paducah Site Innovative Approach Reduces Costs of Removing Contaminated Oil from Paducah Site January 27, 2016 - ...

  19. Guide wire extension for shape memory polymer occlusion removal...

    Office of Scientific and Technical Information (OSTI)

    Guide wire extension for shape memory polymer occlusion removal devices Title: Guide wire extension for shape memory polymer occlusion removal devices A flexible extension for a ...

  20. Moab Mill Tailings Removal Project Plans to Resume Train Shipments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tons of Mill Tailings Removed From DOE Moab Project Site Laborers place a disposable liner in a tailings container. Moab Project Continues Progress on Tailings Removal with...