Powered by Deep Web Technologies
Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sulfur Dioxide Regulations (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter of the law establishes that the Ohio Environmental Protection Agency provides sulfur dioxide emission limits for every county, as well as regulations for the emission, monitoring and...

2

Control of Sulfur Dioxide Emissions from Pulverized Coal-Fired Boilers by Dry Removal with Lime and Limestone Sorbants  

E-Print Network (OSTI)

Over the past decade increasing concern over the potential environmental impact associated with the emissions of both gaseous and particulate pollutants has resulted in the promulgation of strict regulatory standards governing such emissions. In this regard, particular attention has been placed upon the control of sulfur dioxide (SO2) from major fuel burning installations. The provisions of the 1977 Amendments to the Clean Air Act which relate to the Prevention of Significant Deterioration (PSD) and the New Source Performance Standards (NSPS) have made consideration of this problem of significant additional importance in the context of increased coal utilization. There exist three general methods for the control of sulfur dioxide emissions from pulverized coal-fired boiler equipment. These are: (1) coal cleaning to remove pyritic sulfur, (2) conventional wet, nonregenerable scrubbing with alkaline slurry and solution processes, and (3) dry processes which involve direct introduction of lime or limestone into the firebox, or a spray dryer operated with nonregenerable alkaline sorbents coupled with a fabric filter collector. Equipment requirements, SO2 removal criteria, general economics, and potential applications of these latter two approaches within category (3) will be discussed.

Schwartz, M. H.

1979-01-01T23:59:59.000Z

3

Limestone treatment for sulfur dioxide removal. (Latest citations from the EI compendex*plus database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the use of limestone for the control of sulfur dioxide emmisions in flue gases. The various designs for flue gas desulfurization are discussed, including dry fluidized beds and wet scrubbers. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1998-02-01T23:59:59.000Z

4

Method for removing sulfur oxide from waste gases and recovering elemental sulfur  

DOE Patents (OSTI)

A continuous catalytic fused salt extraction process is described for removing sulfur oxides from gaseous streams. The gaseous stream is contacted with a molten potassium sulfate salt mixture having a dissolved catalyst to oxidize sulfur dioxide to sulfur trioxide and molten potassium normal sulfate to solvate the sulfur trioxide to remove the sulfur trioxide from the gaseous stream. A portion of the sulfur trioxide loaded salt mixture is then dissociated to produce sulfur trioxide gas and thereby regenerate potassium normal sulfate. The evolved sulfur trioxide is reacted with hydrogen sulfide as in a Claus reactor to produce elemental sulfur. The process may be advantageously used to clean waste stack gas from industrial plants, such as copper smelters, where a supply of hydrogen sulfide is readily available.

Moore, Raymond H. (Richland, WA)

1977-01-01T23:59:59.000Z

5

Copper mercaptides as sulfur dioxide indicators  

DOE Patents (OSTI)

Organophosphine copper(I) mercaptide complexes are useful as convenient and semiquantitative visual sulfur dioxide gas indicators. The air-stable complexes form 1:1 adducts in the presence of low concentrations of sulfur dioxide gas, with an associated color change from nearly colorless to yellow-orange. The mercaptides are made by mixing stoichiometric amounts of the appropriate copper(I) mercaptide and phosphine in an inert organic solvent.

Eller, Phillip G. (Los Alamos, NM); Kubas, Gregory J. (Los Alamos, NM)

1979-01-01T23:59:59.000Z

6

Continuous sulfur removal process  

DOE Patents (OSTI)

A continuous process for the removal of hydrogen sulfide from a gas stream using a membrane comprising a metal oxide deposited on a porous support is disclosed. 4 figures.

Jalan, V.; Ryu, J.

1994-04-26T23:59:59.000Z

7

sulfur dioxide emissions | OpenEI  

Open Energy Info (EERE)

sulfur dioxide emissions sulfur dioxide emissions Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides

8

Improved sulfur removal processes evaluated for IGCC  

SciTech Connect

An inherent advantage of Integrated Coal Gasification Combined Cycle (IGCC) electric power generation is the ability to easily remove and recover sulfur. During the last several years, a number of new, improved sulfur removal and recovery processes have been commercialized. An assessment is given of alternative sulfur removal processes for IGCC based on the Texaco coal gasifier. The Selexol acid gas removal system, Claus sulfur recovery, and SCOT tail gas treating are currently used in Texaco-based IGCC. Other processes considered are: Purisol, Sulfinol-M, Selefning, 50% MDEA, Sulften, and LO-CAT. 2 tables.

1986-12-01T23:59:59.000Z

9

Process for removing sulfur from sulfur-containing gases  

DOE Patents (OSTI)

The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accorda The government may own certain rights in the present invention pursuant to EPA Cooperative Agreement CR 81-1531.

Rochelle, Gary T. (Austin, TX); Jozewicz, Wojciech (Chapel Hill, NC)

1989-01-01T23:59:59.000Z

10

Average prices for spot sulfur dioxide emissions allowances at ...  

U.S. Energy Information Administration (EIA)

The weighted average spot price for sulfur dioxide (SO 2) emissions allowances awarded to winning bidders at Environmental Protection Agency's (EPA) annual auction on ...

11

Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results  

E-Print Network (OSTI)

PNNL-14537 Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results S.J. Smith E;PNNL-14537 Historical Sulfur Dioxide Emissions 1850-2000: Methods and Results PNNL Research Report Joint Global Change Research Institute 8400 Baltimore Avenue College Park, Maryland 20740 #12;PNNL-14537

Hultman, Nathan E.

12

Method for Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestering Carbon Dioxide and Sulfur Dioxide Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,922,792 entitled "Method for Sequestering Carbon Dioxide and Sulfur Dioxide Utilizing a Plurality of Waste Streams." Disclosed in this patent is the invention of a neutralization/sequestration method that concomitantly treats bauxite residues from aluminum production processes, as well as brine wastewater from oil and gas production processes. The method uses an integrated approach that coincidentally treats multiple industrial waste by-product streams. The end results include neutralizing caustic

13

Process for removal of sulfur compounds from fuel gases  

DOE Patents (OSTI)

Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

Moore, Raymond H. (Richland, WA); Stegen, Gary E. (Richland, WA)

1978-01-01T23:59:59.000Z

14

Process for removing sulfur from coal  

DOE Patents (OSTI)

A process is disclosed for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

Aida, T.; Squires, T.G.; Venier, C.G.

1983-08-11T23:59:59.000Z

15

Terpolymerization of ethylene, sulfur dioxide and carbon monoxide  

DOE Patents (OSTI)

This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

Johnson, Richard (Shirley, NY); Steinberg, Meyer (Huntington Station, NY)

1981-01-01T23:59:59.000Z

16

Method of removal of sulfur from coal and petroleum products  

DOE Patents (OSTI)

A method for the removal of sulfur from sulfur-bearing materials such as coal and petroleum products using organophosphine and organophosphite compounds is provided.

Verkade, John G. (Ames, IA); Mohan, Thyagarajan (Ames, IA); Angelici, Robert J. (Ames, IA)

1995-01-01T23:59:59.000Z

17

CATALYST EVALUATION FOR A SULFUR DIOXIDE-DEPOLARIZED ELECTROLYZER  

DOE Green Energy (OSTI)

Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. Testing examined the activity and stability of platinum and palladium as the electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by the concentration of the sulfuric acid electrolyte.

Hobbs, D; Hector Colon-Mercado, H

2007-01-31T23:59:59.000Z

18

Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases  

DOE Patents (OSTI)

A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

Clay, David T. (Longview, WA); Lynn, Scott (Walnut Creek, CA)

1976-10-19T23:59:59.000Z

19

Process for sequestering carbon dioxide and sulfur dioxide  

DOE Patents (OSTI)

A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

2009-10-20T23:59:59.000Z

20

Conventional methods for removing sulfur and other contaminants...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conventional methods for removing sulfur and other contaminants from syngas typically rely on chemical or physical absorption processes operating at low temperatures. When cooled...

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS  

Science Conference Proceedings (OSTI)

Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. Characterizations of dry PFS synthesized from SO{sub 2} show the PFS possesses amorphous structure, which is desired for it to be a good coagulant in water and wastewater treatment. A series of lab-scale experiments were conducted to evaluate the performance of PFS synthesized from waste sulfur dioxide, ferrous sulfate and sodium chlorate. The performance assessments were based on the comparison of PFS and other conventional and new coagulants for the removal of turbidity and arsenic under different laboratory coagulant conditions. Pilot plant studies were conducted at Des Moines Water Works in Iowa and at the City of Savannah Industrial and Domestic (I&D) Water Treatment Plant in Port Wentworth, Georgia. PFS performances were compared with those of conventional coagulants. The tests in both water treatment plants have shown that PFS is, in general, comparable or better than other coagulants in removal of turbidity and organic substances. The corrosion behavior of polymeric ferric sulfate (PFS) prepared from SO{sub 2} and ferric chloride (FC) were compared. Results showed that both temperature and concentration of the coagulants substantially impact corrosion rates. The corrosion rates increased with the increase of temperature and concentration. The results from a scanning electron microscope (SEM) showed that chloride caused more serious pitting than sulfate anion on both aluminum and steel specimens. Although SEM confirmed the existence of pitting corrosion, the results of weight loss indicated that the uniform corrosion predominate the corrosion mechanism, and pitting corrosion played a less important role. The test proved that PFS was less corrosive than FC, which may lead to the large-scale application of PFS in waste treatment. The kinetics of the new desulfurization process has been studied. The study results provide the theoretical guidance for improving sulfur removal efficiency and controlling the quality of PFS.

Robert C. Brown; Maohong Fan; Adrienne Cooper

2004-11-01T23:59:59.000Z

22

Removal of sulfur compounds from combustion product exhaust  

DOE Patents (OSTI)

A method and device are disclosed for removing sulfur containing contaminents from a combustion product exhaust. The removal process is carried out in two stages wherein the combustion product exhaust is dissolved in water, the water being then heated to drive off the sulfur containing contaminents. The sulfur containing gases are then resolublized in a cold water trap to form a concentrated solution which can then be used as a commercial product.

Cheng, Dah Y. (Palo Alto, CA)

1982-01-01T23:59:59.000Z

23

Process for removing pyritic sulfur from bituminous coals  

DOE Patents (OSTI)

A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

1990-01-01T23:59:59.000Z

24

Design and operation of the coke-oven gas sulfur removal facility at Geneva Steel  

Science Conference Proceedings (OSTI)

The coke-oven gas sulfur removal facility at Geneva Steel utilizes a combination of two technologies which had never been used together. These two technologies had proven effective separately and now in combination. However, it brought unique operational considerations which has never been considered previously. The front end of the facility is a Sulfiban process. This monoethanolamine (MEA) process effectively absorbs hydrogen sulfide and other acid gases from coke-oven gas. The final step in sulfur removal uses a Lo-Cat II. The Lo-Cat process absorbs and subsequently oxidizes H{sub 2}S to elemental sulfur. These two processes have been effective in reducing sulfur dioxide emissions from coke-oven gas by 95%. Since the end of the start-up and optimization phase, emission rate has stayed below the 104.5 lb/hr limit of equivalent SO{sub 2} (based on a 24-hr average). In Jan. 1995, the emission rate from the sulfur removal facility averaged 86.7 lb/hr with less than 20 lb/hr from the Econobator exhaust. The challenges yet to be met are decreasing the operating expenses of the sulfur removal facility, notably chemical costs, and minimizing the impact of the heating system on unit reliability.

Havili, M.U.; Fraser-Smyth, L.L.; Wood, B.W. [Geneva Steel, Provo, UT (United States)

1996-02-01T23:59:59.000Z

25

Modified dry limestone process for control of sulfur dioxide emissions  

DOE Patents (OSTI)

A method and apparatus for removing sulfur oxides from flue gas comprise cooling and conditioning the hot flue gas to increase the degree of water vapor saturation prior to passage through a bed of substantially dry carbonate chips or lumps, e.g., crushed limestone. The reaction products form as a thick layer of sulfites and sulfates on the surface of the chips which is easily removed by agitation to restore the reactive surface of the chips.

Shale, Correll C. (Morgantown, WV); Cross, William G. (Morgantown, WV)

1976-08-24T23:59:59.000Z

26

Organoclay Sorbent for Removal of Carbon Dioxide from Gas ...  

Organoclay Sorbent for Removal of Carbon Dioxide from Gas ... required for sequestration, an area of research identified as a high priority

27

Carbon ion pump for removal of carbon dioxide from combustion ...  

Biomass and Biofuels; Building Energy Efficiency; ... Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures United States Patent ...

28

Low-Quality Natural Gas Sulfur Removal/Recovery System  

SciTech Connect

Natural gas provides more than one-fifth of all the primary energy used in the United States. Much raw gas is `subquality`, that is, it exceeds the pipeline specifications for nitrogen, carbon dioxide, and/or hydrogen sulfide content, and much of this low-quality natural gas cannot be produced economically with present processing technology. Against this background, a number of industry-wide trends are affecting the natural gas industry. Despite the current low price of natural gas, long-term demand is expected to outstrip supply, requiring new gas fields to be developed. Several important consequences will result. First, gas fields not being used because of low-quality products will have to be tapped. In the future, the proportion of the gas supply that must be treated to remove impurities prior to delivery to the pipeline will increase substantially. The extent of treatment required to bring the gas up to specification will also increase. Gas Research Institute studies have shown that a substantial capital investment in facilities is likely to occur over the next decade. The estimated overall investment for all gas processing facilities up to the year 2000 alone is approximates $1.2 Billion, of which acid gas removal and sulfur recovery are a significant part in terms of invested capital. This large market size and the known shortcomings of conventional processing techniques will encourage development and commercialization of newer technologies such as membrane processes. Second, much of today`s gas production is from large, readily accessible fields. As new reserves are exploited, more gas will be produced from smaller fields in remote or offshore locations. The result is an increasing need for technology able to treat small-scale gas streams.

Lokhandwala, K.A.; Ringer, M.; Wijams, H.; Baker, R.W.

1997-10-01T23:59:59.000Z

29

Sulfur removal and comminution of carbonaceous material  

DOE Patents (OSTI)

Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product.

Narain, Nand K. (Bethel Park, PA); Ruether, John A. (McMurray, PA); Smith, Dennis N. (Herminie, PA)

1988-01-01T23:59:59.000Z

30

Sulfur removal and comminution of carbonaceous material  

DOE Patents (OSTI)

Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product. 2 figs.

Narain, N.K.; Ruether, J.A.; Smith, D.N.

1987-10-07T23:59:59.000Z

31

Low quality natural gas sulfur removal/recovery  

Science Conference Proceedings (OSTI)

The project comprises a Base Program and an Optional Program. The Base Program, which included NEPA reporting, process design and an experimental research plan for the optional program, was completed August 31, 1993 with submission of the Task 2 Final Report. The Optional Program, Task 3, began in July 1994. The project goal is to further develop and demonstrate two of the component technologies of the CFZ-CNG Process: (1) pilot-scale triple-point crystallization of carbon dioxide, producing commercially pure carbon dioxide from contaminated carbon dioxide at the rate of 25 ton/day, and (2) bench-scale modified high pressure Claus technology, recovering elemental sulfur from hydrogen sulfide at the rate of 200 lb/day.

Siwajek, L.A. [Acrion Technologies, Inc., Cleveland, OH (United States); Kuehn, L. [Bovar Corp., Houston, TX (United States). Western Research

1995-06-01T23:59:59.000Z

32

Carbon Ion Pump for Carbon Dioxide Removal  

coal fired power plants; oil or gas fired power plants; cement production; bio-fuel combustion; Separation of carbon dioxide from other combustion ...

33

Apparatus for catalytic reforming with continuous sulfur removal  

Science Conference Proceedings (OSTI)

An apparatus for continuously removing residual sulfur from a naptha stream has a primary manganous oxide absorber, a secondary parallel manganous oxide absorber and valve and duct means for by-passing the primary absorber and directing the naptha feed stream to the secondary absorber. The apparatus also includes means for removing manganous oxide from the primary absorber and nitrogen purge means for purging the same.

Novak, W. J.

1985-08-13T23:59:59.000Z

34

Process for removal of sulfur oxides from waste gases  

Science Conference Proceedings (OSTI)

A process for removing sulfur oxides from waste gas is provided. The gas is contacted with a sorbent selected from sodium bicarbonate, trona and activated sodium carbonate and, utilizing an alkaline liquor containing borate ion so as to reduce flow rates and loss of alkalinity, the spent sorbent is regenerated with an alkaline earth metal oxide or hydroxide.

Lowell, P.S.; Phillips, J.L.

1983-05-24T23:59:59.000Z

35

Process for removing sulfur from sulfur-containing gases: high calcium fly-ash  

DOE Patents (OSTI)

The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

Rochelle, Gary T. (Austin, TX); Chang, John C. S. (Cary, NC)

1991-01-01T23:59:59.000Z

36

Smart battery controller for lithium/sulfur dioxide batteries  

Science Conference Proceedings (OSTI)

Each year, the U.S. Army purchases millions of lithium sulfur dioxide batteries for use in portable electronics equipment. Because of their superior rate capability and service life over a wide variety of conditions, lithium batteries are the power source of choice for military equipment. There is no convenient method of determining the available energy remaining in partially used lithium batteries; hence, users do not take full advantage of all the available battery energy. Currently, users replace batteries before each mission, which leads to premature disposal, and results in the waste of millions of dollars in battery energy every year. Another problem of the lithium battery is that it is necessary to ensure complete discharge of the cells when the useful life of the battery has been expended, or when a hazardous condition exists; a hazardous condition may result in one or more of the cells venting. The Electronics Technology and Devices Laboratory has developed a working prototype of a smart battery controller (SBC) that addresses these problems.

Atwater, T.; Bard, A.; Testa, B.; Shader, W.

1992-08-01T23:59:59.000Z

37

More Economical Sulfur Removal for Fuel Processing Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

enabled TDA to develop and commercialize its direct oxidation process-a simple, catalyst-based system for removing sulfur from natural gas and petroleum-that was convenient and economical enough for smaller fuel processing plants to use. TDA Research, Inc. (TDA) of Wheat Ridge, CO, formed in 1987, is a privately-held R&D company that brings products to market either by forming internal business

38

Metal Organic Clathrates for Carbon Dioxide Removal  

removal from coal-fired power plant flue gas streams.  Modified variations of the materials can be used in a variety of other fields as well, ...

39

Removal of sulfur and nitrogen containing pollutants from discharge gases  

DOE Patents (OSTI)

Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

Joubert, James I. (Pittsburgh, PA)

1986-01-01T23:59:59.000Z

40

Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control  

Science Conference Proceedings (OSTI)

Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

Li, Liyu [Richland, WA; King, David L [Richland, WA

2011-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Improved efficiency in the sulfur dioxide-iodine hydrogen cycle through the use of magnesium oxide  

DOE Green Energy (OSTI)

The reaction of iodine with dry magnesium oxide and magnesium sulfite hexahydrate was studied experimentally as a possible means of improving the efficiency of the sulfur dioxide-iodine cycle. When no extra water was introduced, the maximum product yield was 67% obtained at 423 K. With excess water vapor, a nonporous plug was formed which prevented complete reaction. In the second case, maximum yield was 62% measured at 433 K showing that added water does not increase reaction products. This reaction gives an alternate route for producing hydrogen from water via the sulfur dioxide-iodine process.

Mason, C.F.V.; Bowman, M.G.

1981-01-01T23:59:59.000Z

42

The effects of moderate coal cleaning on the microbial removal of organic sulfur. [Rhodococcuc rhodochrous  

SciTech Connect

The purpose of this project is to investigate the possibilities of developing an integrated physical/chemical/microbial process for the precombustion removal of sulfur from coal. An effective pre- combustion coal desulfurization process should ideally be capable of removing both organic and inorganic sulfur. A variety of techniques exist for the removal of inorganic sulfur from coal, but there is currently no cost-effective method for the pre-combustion removal of organic sulfur. Recent developments have demonstrated that microorganisms are capable of specifically cleaving carbon-sulfur bonds and removing substantial amounts of organic sulfur from coal. However, lengthy treatment times are required. Moreover, the removal of organic sulfur form coal by microorganisms is hampered by the fact that, as a solid substrate, it is difficult to bring microorganisms in contact with the entirety of a coal sample. This study will examine the suitability of physically/chemically treated coal sample for subsequent biodesulfurization. Physical/chemical processes primarily designed for the removal of pyritic sulfur may also cause substantial increases in the porosity and surface area of the coal which may facilitate the subsequent removal of organic sulfur by microoganisms. During the current quarter, coal samples that have been chemically pretreated with methanol, ammonia, and isopropanol were examined for the removal of organic sulfur by the microbial culture IGTS8, an assay for the presence of protein in coal samples was developed, and a laboratory-scale device for the explosive comminution of coal was designed and constructed.

Srivastava, V.J.

1991-01-01T23:59:59.000Z

43

Remote Sensing of Ammonia and Sulfur Dioxide from On-Road Light  

E-Print Network (OSTI)

Remote Sensing of Ammonia and Sulfur Dioxide from On-Road Light Duty Vehicles D A N I E L A . B U R by dynamometer (16), remote sensing (17), and recently by a chase vehicle (18). Results from these studies vary

Denver, University of

44

On the Ratio of Sulfur Dioxide to Nitrogen Oxides as an Indicator of Air Pollution Sources  

Science Conference Proceedings (OSTI)

The ratio of sulfur dioxide to nitrogen oxides (RSN = SO2/NOx) is one indicator of air pollution sources. The role of this ratio in source attribution is illustrated here for the Ashdod area, located in the southern coastal plain of Israel. The ...

Ronit Nirel; Uri Dayan

2001-07-01T23:59:59.000Z

45

Removal of sulfur contaminants in methanol for fuel cell applications  

DOE Green Energy (OSTI)

Equilibrium adsorption isotherm and breakthrough data were used to assess feasibility of developing a granular activated carbon (GAC) adsorber for use as a sulfur removal subsystem in transportation fuel cell systems. Results suggest that an on-board GAC adsorber may not be attractive due to size and weight constraints. However, it may be feasible to install this GAC adsorber at methanol distribution stations, where space and weight are not a critical concern. Preliminary economic analysis indicated that the GAC adsorber concept will be attractive if the spent AC can be regenerated for reuse. These preliminary analyses were made on basis of very limited breakthrough data obtained from the bench-scale testing. Optimization on dynamic testing parameters and study on regeneration of spent AC are needed.

Lee, S.H.D.; Kumar, R. [Argonne National Lab., IL (United States); Sederquist, R. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

46

Low-quality natural gas sulfur removal/recovery  

Science Conference Proceedings (OSTI)

Low quality natural gas processing with the integrated CFZ/CNG Claus process is feasible for low quality natural gas containing 10% or more of CO{sub 2}, and any amount of H{sub 2}S. The CNG Claus process requires a minimum CO{sub 2} partial pressure in the feed gas of about 100 psia (15% CO{sub 2} for a 700 psia feed gas) and also can handle any amount of H{sub 2}S. The process is well suited for handling a variety of trace contaminants usually associated with low quality natural gas and Claus sulfur recovery. The integrated process can produce high pressure carbon dioxide at purities required by end use markets, including food grade CO{sub 2}. The ability to economically co-produce high pressure CO{sub 2} as a commodity with significant revenue potential frees process economic viability from total reliance on pipeline gas, and extends the range of process applicability to low quality gases with relatively low methane content. Gases with high acid gas content and high CO{sub 2} to H{sub 2}S ratios can be economically processed by the CFZ/CNG Claus and CNG Claus processes. The large energy requirements for regeneration make chemical solvent processing prohibitive. The cost of Selexol physical solvent processing of the LaBarge gas is significantly greater than the CNG/CNG Claus and CNG Claus processes.

Damon, D.A. [CNG Research Co., Pittsburgh, PA (United States); Siwajek, L.A. [Acrion Technologies, Inc., Cleveland, OH (United States); Klint, B.W. [BOVAR Inc., AB (Canada). Western Research

1993-12-31T23:59:59.000Z

47

Process and system for removing sulfur from sulfur-containing gaseous streams  

DOE Patents (OSTI)

A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

Basu, Arunabha (Aurora, IL); Meyer, Howard S. (Hoffman Estates, IL); Lynn, Scott (Pleasant Hill, CA); Leppin, Dennis (Chicago, IL); Wangerow, James R. (Medinah, IL)

2012-08-14T23:59:59.000Z

48

Mercury removal from coal by leaching with sulfur-dioxide.  

E-Print Network (OSTI)

??Mercury from coal-fired utilities has been identified as one of the most hazardous air pollutants and the greatest potential public health concern. Furthermore, it has… (more)

Chateker, Poornima.

2010-01-01T23:59:59.000Z

49

Low-quality natural gas sulfur removal/recovery: Task 2. Topical report, September 30, 1992--August 29, 1993  

Science Conference Proceedings (OSTI)

The primary purpose of this Task 2 Report is to present conceptual designs developed to treat a large portion of proven domestic natural gas reserves which are low quality. The conceptual designs separate hydrogen sulfide and large amounts of carbon dioxide (>20%) from methane, convert hydrogen sulfide to elemental sulfur, produce a substantial portion of the carbon dioxide as EOR or food grade CO{sub 2}, and vent residual CO{sub 2} virtually free of contaminating sulfur containing compounds. A secondary purpose of this Task 2 Report is to review existing gas treatment technology and identify existing commercial technologies currently used to treat large volumes of low quality natural gas with high acid content. Section II of this report defines low quality gas and describes the motivation for seeking technology to develop low quality gas reserves. The target low quality gas to be treated with the proposed technology is identified, and barriers to the production of this gas are reviewed. Section III provides a description of the Controlled Freeze Zone (CFG)-CNG technologies, their features, and perceived advantages. The three conceptual process designs prepared under Task 2 are presented in Section IV along with the design basis and process economics. Section V presents an overview of existing gas treatment technologies, organized into acid gas removal technology and sulfur recovery technology.

Cook, W.J.; Neyman, M.; Brown, W. [Acrion Technologies, Inc., Cleveland, OH (United States); Klint, B.W.; Kuehn, L.; O`Connell, J.; Paskall, H.; Dale, P. [Bovar, Inc., Calgary, Alberta (Canada)

1993-08-01T23:59:59.000Z

50

Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process  

Science Conference Proceedings (OSTI)

Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) process for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus process also allow for use of the methane/H{sub 2}S separation unit as a Claus tail gas treating unit by recycling the CNG Claus tail gas stream. This allows for virtually 100 percent sulfur recovery efficiency (virtually zero SO{sub 2} emissions) by recycling the sulfur laden tail gas to extinction. The use of the tail gas recycle scheme also deemphasizes the conventional requirement in Claus units to have high unit conversion efficiency and thereby make the operation much less affected by process upsets and feed gas composition changes. The development of these technologies has been ongoing for many years and both the CFZ and the TPC processes have been demonstrated at large pilot plant scales. On the other hand, prior to this project, the CNG Claus process had not been proven at any scale. Therefore, the primary objective of this portion of the program was to design, build and operate a pilot scale CNG Claus unit and demonstrate the required fundamental reaction chemistry and also demonstrate the viability of a reasonably sized working unit.

Klint, V.W.; Dale, P.R.; Stephenson, C.

1997-10-01T23:59:59.000Z

51

Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures  

Science Conference Proceedings (OSTI)

A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

Aines, Roger D.; Bourcier, William L.; Viani, Brian

2013-01-29T23:59:59.000Z

52

Selective catalytic reduction of sulfur dioxide to elemental sulfur. Final report  

Science Conference Proceedings (OSTI)

This project has investigated new metal oxide catalysts for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as CO. Significant progress in catalyst development has been made during the course of the project. We have found that fluorite oxides, CeO{sub 2} and ZrO{sub 2}, and rare earth zirconates such as Gd{sub 2}Zr{sub 2}O{sub 7} are active and stable catalysts for reduction Of SO{sub 2} by CO. More than 95% sulfur yield was achieved at reaction temperatures about 450{degrees}C or higher with the feed gas of stoichiometric composition. Reaction of SO{sub 2} and CO over these catalysts demonstrated a strong correlation of catalytic activity with the catalyst oxygen mobility. Furthermore, the catalytic activity and resistance to H{sub 2}O and CO{sub 2} poisoning of these catalysts were significantly enhanced by adding small amounts of transition metals, such as Co, Ni, Co, etc. The resulting transition metal-fluorite oxide composite catalyst has superior activity and stability, and shows promise in long use for the development of a greatly simplified single-step sulfur recovery process to treat variable and dilute SO{sub 2} concentration gas streams. Among various active composite catalyst systems the Cu-CeO{sub 2} system has been extensively studied. XRD, XPS, and STEM analyses of the used Cu-CeO{sub 2} catalyst found that the fluorite crystal structure of ceria was stable at the present reaction conditions, small amounts of copper was dispersed and stabilized on the ceria matrix, and excess copper oxide particles formed copper sulfide crystals of little contribution to catalytic activity. A working catalyst consisted of partially sulfated cerium oxide surface and partially sulfided copper clusters. The overall reaction kinetics were approximately represented by a first order equation.

Liu, W.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

1995-06-01T23:59:59.000Z

53

SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS  

DOE Green Energy (OSTI)

Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

2003-11-21T23:59:59.000Z

54

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, J.E.; Jalan, V.M.

1984-06-19T23:59:59.000Z

55

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, John E. (Woodridge, IL); Jalan, Vinod M. (Concord, MA)

1984-01-01T23:59:59.000Z

56

EVALUATION OF PROTON-CONDUCTING MEMBRANES FOR USE IN A SULFUR-DIOXIDE DEPOLARIZED ELECTROLYZER  

DOE Green Energy (OSTI)

The chemical stability, sulfur dioxide transport, ionic conductivity, and electrolyzer performance have been measured for several commercially available and experimental proton exchange membranes (PEMs) for use in a sulfur dioxide depolarized electrolyzer (SDE). The SDE's function is to produce hydrogen by using the Hybrid Sulfur (HyS) Process, a sulfur based electrochemical/thermochemical hybrid cycle. Membrane stability was evaluated using a screening process where each candidate PEM was heated at 80 C in 60 wt. % H{sub 2}SO{sub 4} for 24 hours. Following acid exposure, chemical stability for each membrane was evaluated by FTIR using the ATR sampling technique. Membrane SO{sub 2} transport was evaluated using a two-chamber permeation cell. SO{sub 2} was introduced into one chamber whereupon SO{sub 2} transported across the membrane into the other chamber and oxidized to H{sub 2}SO{sub 4} at an anode positioned immediately adjacent to the membrane. The resulting current was used to determine the SO{sub 2} flux and SO{sub 2} transport. Additionally, membrane electrode assemblies (MEAs) were prepared from candidate membranes to evaluate ionic conductivity and selectivity (ionic conductivity vs. SO{sub 2} transport) which can serve as a tool for selecting membranes. MEAs were also performance tested in a HyS electrolyzer measuring current density versus a constant cell voltage (1V, 80 C in SO{sub 2} saturated 30 wt% H2SO{sub 4}). Finally, candidate membranes were evaluated considering all measured parameters including SO{sub 2} flux, SO{sub 2} transport, ionic conductivity, HyS electrolyzer performance, and membrane stability. Candidate membranes included both PFSA and non-PFSA polymers and polymer blends of which the non-PFSA polymers, BPVE-6F and PBI, showed the best selectivity.

Hobbs, D.; Elvington, M.; Colon-Mercado, H.

2009-11-11T23:59:59.000Z

57

Apparatus and method for removing solvent from carbon dioxide in resin recycling system  

SciTech Connect

A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2009-01-06T23:59:59.000Z

58

The effects of moderate coal cleaning on the microbial removal of organic sulfur. Technical report, September 1--November 30, 1991  

SciTech Connect

The purpose of this project is to investigate the possibilities of developing an integrated physical/chemical/microbial process for the precombustion removal of sulfur from coal. An effective pre- combustion coal desulfurization process should ideally be capable of removing both organic and inorganic sulfur. A variety of techniques exist for the removal of inorganic sulfur from coal, but there is currently no cost-effective method for the pre-combustion removal of organic sulfur. Recent developments have demonstrated that microorganisms are capable of specifically cleaving carbon-sulfur bonds and removing substantial amounts of organic sulfur from coal. However, lengthy treatment times are required. Moreover, the removal of organic sulfur form coal by microorganisms is hampered by the fact that, as a solid substrate, it is difficult to bring microorganisms in contact with the entirety of a coal sample. This study will examine the suitability of physically/chemically treated coal sample for subsequent biodesulfurization. Physical/chemical processes primarily designed for the removal of pyritic sulfur may also cause substantial increases in the porosity and surface area of the coal which may facilitate the subsequent removal of organic sulfur by microoganisms. During the current quarter, coal samples that have been chemically pretreated with methanol, ammonia, and isopropanol were examined for the removal of organic sulfur by the microbial culture IGTS8, an assay for the presence of protein in coal samples was developed, and a laboratory-scale device for the explosive comminution of coal was designed and constructed.

Srivastava, V.J.

1991-12-31T23:59:59.000Z

59

Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures  

DOE Patents (OSTI)

A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

2010-11-09T23:59:59.000Z

60

Removal of sulfur from recycle gas streams in catalytic reforming  

Science Conference Proceedings (OSTI)

This patent describes improvement in a process for catalytically reforming a hydrocarbonaceous feedstock boiling in the gasoline range, wherein the reforming is conducted in the presence of hydrogen in a reforming process unit under reforming conditions, the process unit comprised of serially connected reactors, each of the reactors containing a reforming catalyst, and which process unit also includes a regeneration circuit for regenerating the catalyst after it becomes coked, the regeneration comprising treatment with a sulfur containing gas, and which process unit also includes a gas/liquid separator wherein a portion of the gas is recycled and the remaining portion is collected as make-gas. The improvement comprises using a sulfur trap, containing a catalyst comprised of about 10 to about 70 wt. % nickel dispersed on a support, between the gas/liquid separator and the first reactor.

Boyle, J.P.

1991-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Organoclay Sorbent for Removal of Carbon Dioxide from Gas Streams at Low Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Organoclay Sorbent for Removal of Carbon Dioxide from Gas Organoclay Sorbent for Removal of Carbon Dioxide from Gas Streams at Low Temperatures Contact NETL Technology Transfer Group techtransfer@netl.doe.gov October 2012 Significance * Energy mixing is maximized * Mobilizing of the particulates is complete * No "dead zones" exist * Packing of material is minimized * Eroding effects are significantly reduced Applications * Mixing nuclear waste at Hanford * Any similar industrial process involving heavy solids in a carrier fluid Opportunity Research is currently active on the patent-pending technology "Organoclay Sorbent for Removal of Carbon Dioxide from

62

Carbon Ion Pump for Carbon Dioxide Removal - Energy Innovation ...  

coal fired power plants; oil or gas fired power plants; cement production; bio-fuel combustion; Separation of carbon dioxide from other combustion ...

63

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL  

Science Conference Proceedings (OSTI)

The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP Unit 3, and the second was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant test provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. A final task in the project was to compare projected costs for furnace injection of magnesium hydroxide slurries to estimated costs for other potential sulfuric acid control technologies. Estimates were developed for reagent and utility costs, and capital costs, for furnace injection of magnesium hydroxide slurries and seven other sulfuric acid control technologies. The estimates were based on retrofit application to a model coal-fired plant.

Gary M. Blythe

2004-01-01T23:59:59.000Z

64

Laboratory study for removal of organic sulfur from coal. Quarterly technical progress report  

SciTech Connect

Substantial progress has been made in the development of the Gravimelt Process for removal of organic sulfur from coal. Three reactors have been fabricated for both material balance studies of the desulfurization of coal with caustic and examination of the behavior of model organic and inorganic sulfur-containing compounds with the same mixture. Model organic sulfur conpounds have been procured and samples of Kentucky No. 9 coal enriched in mineral matter and samples enriched in organic matter have been prepared by float sink techniques for use in determining mechanism and products of the desulfurization reactions. Initial experimentation has been aimed at determining the fate of sulfur removed from coal and obtaining semi-quantitative information for future material balance studies. These studies show near 90% of the sulfur content of the Kentucky No. 9 coal was removed and approximately 3/4 of this removed sulfur was found by chemical analysis to be in the caustic phase. It was further determined that approximately 1% of the coal organic matter dissolves into the caustic phase. These results indicate rough material flows and show that material balance measurements are feasible. A preliminary conceptual engineering design for a full scale Gravimelt coal desulfurization plant was prepared in order to guide future laboratory efforts toward obtaining key engineering data. The engineering study indicates that the Gravimelt Process can be designed utilizing state of the art equipment and that likely energy recovery is approximately 90%. It is estimated that coal desulfurization costs will be in the range of $20 per ton of coal produced, or $.70/10/sup 6/ Btu, in 1980 dollars.

1980-07-01T23:59:59.000Z

65

The effect of moderate coal cleaning on microbial removal of organic sulfur. [Rhodococcus rhodochrous  

SciTech Connect

The objective of this research is to provide data relevant to the development of an integrated physical, chemical, and microbiological process for the desulfurization of coal, utilizing existing technologies insofar as is possible. Specifically, the effect of increased surface area and porosity achieved by physical, chemical, and microbial treatments of coal on the subsequent microbiological removal of organic sulfur will be evaluated.

Srivastava, V.J.

1991-01-01T23:59:59.000Z

66

Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbents for Removal of Carbon Dioxide from Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 6,908,497 entitled "Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures." Disclosed in this patent is a new low-cost carbon dioxide (CO 2 ) sorbent that can be used in large-scale gas-solid processes. Researchers have developed a new method to prepare these sorbents by treating substrates with an amine and/or an ether in a way that either one comprises at least 50 weight percent of the sorbent. The sorbent captures compounds contained in gaseous fluids through chemisorptions and/or

67

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

efficiency by sulfur and/or chlorine containing compounds atfired Flue Gas by Sulfur-chlorine Compounds Nai-Qiang Yanremoval. Two sulfur-chlorine compounds, sulfur dichloride (

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

68

Smart battery controller for lithium/sulfur dioxide batteries. Technical report, Jan 89-Apr 91  

Science Conference Proceedings (OSTI)

Each year, the U.S. Army purchases millions of lithium sulfur dioxide batteries for use in portable electronics equipment. Because of their superior rate capability and service life over a wide variety of conditions, lithium batteries are the power source of choice for military equipment. There is no convenient method of determining the available energy remaining in partially used lithium batteries; hence, users do not take full advantage of all the available battery energy. Currently, users replace batteries before each mission, which leads to premature disposal, and results in the waste of millions of dollars in battery energy every year. Another problem of the lithium battery is that it is necessary to ensure complete discharge of the cells when the useful life of the battery has been expended, or when a hazardous condition exists; a hazardous condition may result in one or more of the cells venting. The Electronics Technology and Devices Laboratory has developed a working prototype of a smart battery controller (SBC) that addresses these problems.

Atwater, T.; Bard, A.; Testa, B.; Shader, W.

1992-08-01T23:59:59.000Z

69

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

SciTech Connect

Oxidation of Hg0 with any oxidant or converting it to a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg0 by gas phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas phase reaction rate constants between Hg0 and the sulfur/chlorine compounds were determined, and the effects of temperature and the main components in flue gases were studied. The gas phase reaction between Hg0 and SCl2 is shown to be more rapid than the gas phase reaction with chlorine, and the second order rate constant was 9.1(+-0.5) x 10-18 mL-molecules-1cdots-1 at 373oK. Nitric oxide (NO) inhibited the gas phase reaction of Hg0 with sulfur-chlorine compounds. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg0 removal is about 90percent with 5 ppm SCl2 or S2Cl2 and 40 g/m3 of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that co-injection of 3-5 ppm of SCl2 (or S2Cl2) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90percent of Hg0 can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3percent of SCl2 or S2Cl2 is used. Unlike gas phase reactions, NO exhibited little effect on Hg0 reactions with SCl2 or S2Cl2 on flyash or activated carbon. Mercuric sulfide was identified as one of the principal products of the Hg0/SCl2 or Hg0/S2Cl2 reactions. Additionally, about 8percent of SCl2 or S2Cl2 in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution.

Chang, Shih-Ger; Yan, Nai-Qiang; Qu, Zan; Chi, Yao; Qiao, Shao-Hua; Dod, Ray; Chang, Shih-Ger; Miller, Charles

2008-07-02T23:59:59.000Z

70

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard  

Gasoline and Diesel Fuel Update (EIA)

3 3 ERRATA Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard July 2001 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Contacts This report was prepared by the Office of Integrated Analysis and Forecasting, Energy Information Adminis- tration. General questions concerning the report may be directed to Mary J. Hutzler (202/586-2222, mhutzler @eia.doe.gov), Director of the Office of Integrated Analysis and Forecasting, Scott B. Sitzer (202/586-2308,

71

Low Temperature Sorbents for removal of Sulfur Compounds from fluid feed Streams  

DOE Patents (OSTI)

A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

Siriwardane, Ranjan

1999-09-30T23:59:59.000Z

72

Low Temperature Sorbents for Removal of Sulfur Compounds from Fluid Feed Streams  

DOE Patents (OSTI)

A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200 C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.

Siriwardane, Ranjani

2004-06-01T23:59:59.000Z

73

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network (OSTI)

Ozawa Meida. 2001. “Carbon Dioxide Emissions from the Globalpost-combustion capture of carbon dioxide. ” InternationalIPCC Special Report on Carbon Dioxide Capture and Storage:

Zhou, Nan

2013-01-01T23:59:59.000Z

74

Simulation of the nonequilibrium chemical decomposition of carbon dioxide in the presence of sulfur in a plasma  

Science Conference Proceedings (OSTI)

The authors carry out a model calculation of the kinetics of the decomposition of carbon dioxide in the presence of sulfur in a moderate-pressure nonequilibrium discharge. The process is stimulated by the vibrational excitation of CO/sub 2/. Kinetic curves and the time variation of the vibrational and translational temperatures are calculated. The dependence of the energy efficiency on the specific energy input has been obtained. The optimal energy input is 4 J/cm/sup 3/. The minimal energy comsumption per CO molecule is 2.7-3.5 eV. The results of the calculations are consistent with the experimental results in the case of a nonequilibrium UHF discharge. The mechanism of the process, which accounts for the results, particularly the higher efficiency of the process in comparison to the dissociation of pure CO/sub 2/, has been ascertained.

Zhivotov, V.K.; Levitskii, A.A.; Macheret, S.O.; Polak, L.S.

1986-05-01T23:59:59.000Z

75

Why Sequence Sulfur-Oxidizing Bacteria?  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur-Oxidizing Bacteria? Sulfur-Oxidizing Bacteria? Several environmental problems, such as acid rain, biocorrosion, etc., are caused by sulfur compounds, such as sulfur dioxide (SO2) and hydrogen sulfide (H2S). A sustainable process to remove these sulfur compounds is the production of elemental sulfur from H2S-containing gas streams by the use of sulfide-oxidizing bacteria. In this process, H2S is absorbed into the alkaline solution in the scrubber unit, followed by the biological oxidation of H2S to elemental sulfur and the recycling of water. With this two-step process, a variety of gas streams (i.e., natural gas, synthesis gas, biogas, and refinery gas) can be treated. For the treatment of sulfate-containing waste streams, an extra step has to be introduced: the transformation of sulfate into H2S by sulfate-reducing bacteria. In

76

Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases  

SciTech Connect

Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C (Menlo Park, CA); Baker, Richard W. (Palo Alto, CA)

2011-10-11T23:59:59.000Z

77

Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream  

DOE Patents (OSTI)

A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.

Cohen, Mitchell R. (Troy, NY); Gal, Eli (Lititz, PA)

1993-01-01T23:59:59.000Z

78

Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream  

DOE Patents (OSTI)

A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.

Cohen, M.R.; Gal, E.

1993-04-13T23:59:59.000Z

79

H[sub 2]S in EOR--1: Gas processing for CO[sub 2] EOR involves sulfur removal  

SciTech Connect

A design study for a new West Texas gas processing plant for a CO[sub 2] EOR project provides for installation of H[sub 2]S removal processes to be delayed for 3 years after completion of the plant. During this delay, a more precise produced gas composition will be obtained so that the process equipment for removing H[sub 2]S can be properly selected and sized to handle the gas stream that at the peak will reach about 30 MMscfd. The new plant's processing components include inlet separation, sulfur removal and recovery, compression, dehydration, and NGL recovery. The new plant will be capable of processing CO[sub 2]-contaminated associated gas, recovering valuable propane-plus NGLs,a nd producing a miscible CO[sub 2] for reinjection. The first in a series of two articles details the process and configuration options. The concluding part will discuss in greater detail the sulfur recovery alternatives.

Johnson, J.E. (Pritchard Corp., Overland Park, KS (United States)); Tzap, S.J.; Kelley, R.E. (Raytheon Engineers and Constructors, Denver, CO (United States)); Laczko, L.P. (OXY USA Inc., Midland, TX (United States))

1993-11-15T23:59:59.000Z

80

Fast-regenerable sulfur dioxide absorbents for lean-burn diesel engine emission control  

SciTech Connect

It is known that sulfur oxides contribute significantly and deleteriously to the overall performance of lean-burn diesel engine aftertreatment systems, especially in the case of NOx traps. A Ag-based, fast regenerable SO2 absorbent has been developed and will be described. Over a temperature range of 300oC to 550oC, it absorbs almost all of the SO2 in the simulated exhaust gases during the lean cycles and can be fully regenerated by the short rich cycles at the same temperature. Its composition has been optimized as 1 wt% Pt-5wt%Ag-SiO2, and the preferred silica source for the supporting material has been identified as inert Cabosil fumed silica. The thermal instability of Ag2O under fuel-lean conditions at 230oC and above makes it possible to fast regenerate the sulfur-loaded absorbent during the following fuel-rich cycles. Pt catalyst helps reducing Ag2SO4 during rich cycles at low temperatures. And the chemically inert fumed SiO2 support gives the absorbent long term stability. This absorbent shows great potential to work under the same lean-rich cycling conditions as those imposed on the NOx traps, and thus, can protect the downstream particulate filter and the NOx trap from sulfur poisoning.

Li, Liyu; King, David L.

2010-01-23T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Regenerable process for the selective removal of sulfur dioxide from effluent gases  

SciTech Connect

A regenerable process is claimed for scrubbing SO/sub 2/ from effluent gases using an aqueous alkanolamine and the corresponding sulfite as the solvent, such amine having a boiling point below about 250/sup 0/ C. At one atmosphere pressure and wherein the alkanolamine solutions containing heat stable salts (Hss) is regenerated by alkali addition, crystallization and vacuum distillation of the amine.

Atwood, G.R.; Kosseim, A.J.; Sokolik, J.E.

1983-06-21T23:59:59.000Z

82

Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides  

DOE Patents (OSTI)

A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

Ramkumar, Shwetha; Fan, Liang-Shih

2013-07-30T23:59:59.000Z

83

Removal and Transformation of Sulfur Species During Regeneration of Poisoned Nickel Biomass Conditioning Catalysts  

DOE Green Energy (OSTI)

Sulfur K-edge XANES was used to monitor sulfur species transforming from sulfides to sulfates during steam + air regeneration on a Ni/Mg/K/Al{sub 2}O{sub 3} catalyst used to condition biomass-derived syngas. The catalyst was tested for multiple reaction/regeneration cycles. Post-reaction samples showed the presence of sulfides on the H{sub 2}S-poisoned nickel catalyst. Although some gaseous sulfur species were observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst and a transformation from sulfides to sulfates was observed. The subsequent H{sub 2} reduction led to a partial reduction of sulfates back to sulfides. A proposed reaction sequence is presented and recommended regeneration strategies are discussed.

Yung, M. M.; Cheah, S.; Kuhn, J. N.; Magrini-Bair, K. A.

2012-01-01T23:59:59.000Z

84

High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor  

DOE Green Energy (OSTI)

Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

2011-07-31T23:59:59.000Z

85

Process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal sulfide sorbents  

DOE Patents (OSTI)

A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.

Ayala, Raul E. (Clifton Park, NY); Gal, Eli (Lititz, PA)

1995-01-01T23:59:59.000Z

86

Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis  

E-Print Network (OSTI)

The oxidation of SO[subscript 2] to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to ...

Harris, E.

87

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network (OSTI)

carbon dioxide emissions. The model uses generation dispatch algorithms, efficiency levels, and capacity factorsemissions factors for fuel and electricity. Table A-3.3.2 Energy Savings, Costs, and Carbon Dioxide

Zhou, Nan

2013-01-01T23:59:59.000Z

88

Notification to Mirant by the Commonwealth of Virginia of Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2005 9, 2005 Lisa D. Johnson, President Mirant Potomac River, LLC 8711 Westphalia Road Upper Marlboro, Maryland 20774 Dear Ms. Johnson: DEQ is in receipt of the results of Mirant's "downwash" modeling provided by Mirant to DEQ pursuant to the consent special order between the State Air Pollution Control Board and Mirant Potomac River, LLC. A cursory review of the modeling reveals that emissions from the Potomac River Generating Station result in, cause or substantially contribute to serious violations of the primary national ambient air quality standards or "NAAQS" for sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ) and PM 10 . NAAQS are established by the U. S. Environmental Protection Agency at concentrations necessary to protect human health with an adequate margin of safety.

89

National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China  

E-Print Network (OSTI)

and Price 2008). In addition, this scenario assumes that the share of biomassand Price 2008). Substitution of fossil fuels in cement kilns with low-sulfur biomass

Zhou, Nan

2013-01-01T23:59:59.000Z

90

Sulfuric acid-sulfur heat storage cycle  

DOE Patents (OSTI)

A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

Norman, John H. (LaJolla, CA)

1983-12-20T23:59:59.000Z

91

Regenerable Sorbent Development for Sulfur, Chloride and Ammonia Removal from Coal-Derived Synthesis Gas  

DOE Green Energy (OSTI)

A large number of components in coal form corrosive and toxic compounds during coal gasification processes. DOE’s NETL aims to reduce contaminants to parts per billion in order to utilize gasification gas streams in fuel cell applications. Even more stringent requirements are expected if the fuel is to be utilized in chemical production applications. Regenerable hydrogen sulfide removal sorbents have been developed at NETL. These sorbents can remove the hydrogen sulfide to ppb range at 316 °C and at 20 atmospheres. The sorbent can be regenerated with oxygen. Reactivity and physical durability of the sorbent did not change during the multi-cycle tests. The sorbent development work has been extended to include the removal of other major impurities, such as HCl and NH3. The sorbents for HCl removal that are available today are not regenerable. Regenerable HCl removal sorbents have been developed at NETL. These sorbents can remove HCl to ppb range at 300 °C to 500 °C. The sorbent can be regenerated with oxygen. Results of TGA and bench-scale flow reactor tests with both regenerable and non-regenerable HCl removal sorbents will be discussed in the paper. Bench-scale reactor tests were also conducted with NH3 removal sorbents. The results indicated that the sorbents have a high removal capacity and good regenerability during the multi-cycle tests. Future emphasis of the NETL coal gasification/cleanup program is to develop multi-functional sorbents to remove multiple impurities in order to minimize the steps involved in the cleanup systems. To accomplish this goal, a regenerable sorbent capable of removing both HCl and H2S was developed. The results of the TGA conducted with the sorbent to evaluate the feasibility of both H2S and HCl sorption will be discussed in this paper.

Siriwardane, R.V.; Tian, H.; Simonyi, T.; Webster, T.

2007-08-01T23:59:59.000Z

92

SRD 134 Sulfur Dioxide  

Science Conference Proceedings (OSTI)

... MO, NIST Standard Reference Database 23: NIST Reference Fluid Thermodynamic and Transport Properties, Version 7.0 Beta, National Institute ...

2012-07-27T23:59:59.000Z

93

Method and system for the removal of oxides of nitrogen and sulfur from combustion processes  

DOE Patents (OSTI)

A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.

Walsh, John V. (Glendora, CA)

1987-12-15T23:59:59.000Z

94

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

removal from flue gas of coal-fired power plants. Environ.Speciation in a 100-MW Coal-Fired Boiler with Low-NOxControl Technologies for Coal-Fired Power Plants, DOE/NETL

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

95

Synthesis and development of processes for the recovery of sulfur from acid gases. Part 1, Development of a high-temperature process for removal of H{sub 2}S from coal gas using limestone -- thermodynamic and kinetic considerations; Part 2, Development of a zero-emissions process for recovery of sulfur from acid gas streams  

SciTech Connect

Limestone can be used more effectively as a sorbent for H{sub 2}S in high-temperature gas-cleaning applications if it is prevented from undergoing calcination. Sorption of H{sub 2}S by limestone is impeded by sintering of the product CaS layer. Sintering of CaS is catalyzed by CO{sub 2}, but is not affected by N{sub 2} or H{sub 2}. The kinetics of CaS sintering was determined for the temperature range 750--900{degrees}C. When hydrogen sulfide is heated above 600{degrees}C in the presence of carbon dioxide elemental sulfur is formed. The rate-limiting step of elemental sulfur formation is thermal decomposition of H{sub 2}S. Part of the hydrogen thereby produced reacts with CO{sub 2}, forming CO via the water-gas-shift reaction. The equilibrium of H{sub 2}S decomposition is therefore shifted to favor the formation of elemental sulfur. The main byproduct is COS, formed by a reaction between CO{sub 2} and H{sub 2}S that is analogous to the water-gas-shift reaction. Smaller amounts of SO{sub 2} and CS{sub 2} also form. Molybdenum disulfide is a strong catalyst for H{sub 2}S decomposition in the presence of CO{sub 2}. A process for recovery of sulfur from H{sub 2}S using this chemistry is as follows: Hydrogen sulfide is heated in a high-temperature reactor in the presence of CO{sub 2} and a suitable catalyst. The primary products of the overall reaction are S{sub 2}, CO, H{sub 2} and H{sub 2}O. Rapid quenching of the reaction mixture to roughly 600{degrees}C prevents loss Of S{sub 2} during cooling. Carbonyl sulfide is removed from the product gas by hydrolysis back to CO{sub 2} and H{sub 2}S. Unreacted CO{sub 2} and H{sub 2}S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H{sub 2} and CO, which recovers the hydrogen value from the H{sub 2}S. This process is economically favorable compared to the existing sulfur-recovery technology and allows emissions of sulfur-containing gases to be controlled to very low levels.

Towler, G.P.; Lynn, S.

1993-05-01T23:59:59.000Z

96

Organoclay Sorbent for Removal of Carbon Dioxide from Gas Streams at Low Temperatures  

By incorporating amines inside clay containing quaternary ammonium salts (organoclay) minerals, this invention has created a way to prepare sorbents that capture carbon dioxide (CO2) from low temperature and low pressure gas streams. In this process, ...

97

Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry  

E-Print Network (OSTI)

A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

Plumley, Michael J

2005-01-01T23:59:59.000Z

98

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal  

Science Conference Proceedings (OSTI)

The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

Nick Degenstein; Minish Shah; Doughlas Louie

2012-05-01T23:59:59.000Z

99

The effects of moderate coal cleaning on the microbial removal of organic sulfur. [Quarterly] technical report, March 1, 1992--May 30, 1992  

SciTech Connect

The purpose of this project is to investigate the possibilities of developing an integrated physical/chemical/microbial process for the precombustion removal of sulfur from coal. Microorganisms are capable of specifically cleaving carbon-sulfur bonds and removing substantial amounts of organic sulfur from coal; however, the removal of organic sulfur from coal by microorganisms is hampered by the fact that, as a solid substrate, it is difficult to bring microorganisms in contact with the entirety of a coal sample. This study will examine the suitability of physically/chemically treated coal samples for subsequent biodesulfurization. During this quarter tests were performed involving prolonged (7 day) exposure to chemical comminution agents followed by explosive comminution. Combined chemical plus physical comminution yielded only minor differences between the chemical treatments tested (0.lN NAOH, methanol plus 0.lN NAOH, isopropanol plus 0.lN NAOH, and ammonia vapor) as regards particle size distribution. The densities of treated products varied somewhat with 0.lN NaOH and ammonia yielding the lowest and highest densities respectively. Biodesulfurization tests indicate that pre-grown IGTS8 biocatalysts can be used to desulfurized chemically treated IBC-107 coal.

Srivastava, V.J.; Kilbane, J.J. II

1992-10-01T23:59:59.000Z

100

Experiments of Sulfur Removal in 1MW Poly-Generation System with Partial Gasification and Combustion Combined  

Science Conference Proceedings (OSTI)

An experimental study on sulfur release and adsorption during coal partial gasification and combustion is conducted in a 1MW circulating fluidized bed (CFB) poly-generation system. Limestone is added to gasifier as a sorbent of sulfur produced, where ... Keywords: partial gasification, poly-generation, recycled coal gas, limestone, desulfurization

Qin Hong; Wang Qing; Wang Qinhui; Luo Zhongyang

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Second quarterly technical progress report, January--March 1996  

SciTech Connect

In the more than 170 wet scrubber systems in 72,000 MW of US, coal-fired, utility boilers, the SO{sub 2} removed from the boiler flue gas is sorbed, and the sulfated sorbent must be disposed of. The use of regenerable sorbents has the potential to reduce this disposal problem. The team of Arthur D. Little, Tufts Univ., and Engelhard Corp. are conducting Phase I of a 4.5-year, two-phase effort to develop and scale-up a direct, single-stage, catalytic process for converting SO{sub 2} to S. This catalytic process reduces SO{sub 2} over a fluorite-type oxide such as ceria and zirconia; the catalytic activity can be promoted by active transition metals such as Cu. The Phase I program includes the following work elements: market/process/cost/evaluation; lab-scale catalyst preparation/optimization, lab-scale bulk/supported catalyst kinetic studies, bench-scale catalyst/process studies, and utility review.

1996-05-01T23:59:59.000Z

102

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal  

Science Conference Proceedings (OSTI)

The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbonâ??s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

Monica Zanfir; Rahul Solunke; Minish Shah

2012-06-01T23:59:59.000Z

103

The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification  

E-Print Network (OSTI)

S.P Chan, J. M Norbeck, Steam hydrogasification of coal-woodet al. , Sulfur-deactivated steam reforming of gasifiedPark, S.P. Singh, J.M. Norbeck, Steam hydrogasification of

Luo, Qian

2012-01-01T23:59:59.000Z

104

Manganese and Ceria Sorbents for High Temperature Sulfur Removal from Biomass-Derived Syngas -- The Impact of Steam on Capacity and Sorption Mode  

Science Conference Proceedings (OSTI)

Syngas derived from biomass and coal gasification for fuel synthesis or electricity generation contains sulfur species that are detrimental to downstream catalysts or turbine operation. Sulfur removal in high temperature, high steam conditions has been known to be challenging, but experimental reports on methods to tackle the problem are not often reported. We have developed sorbents that can remove hydrogen sulfide from syngas at high temperature (700 C), both in dry and high steam conditions. The syngas composition chosen for our experiments is derived from statistical analysis of the gasification products of wood under a large variety of conditions. The two sorbents, Cu-ceria and manganese-based, were tested in a variety of conditions. In syngas containing steam, the capacity of the sorbents is much lower, and the impact of the sorbent in lowering H{sub 2}S levels is only evident in low space velocities. Spectroscopic characterization and thermodynamic consideration of the experimental results suggest that in syngas containing 45% steam, the removal of H{sub 2}S is primarily via surface chemisorptions. For the Cu-ceria sorbent, analysis of the amount of H{sub 2}S retained by the sorbent in dry syngas suggests both copper and ceria play a role in H{sub 2}S removal. For the manganese-based sorbent, in dry conditions, there is a solid state transformation of the sorbent, primarily into the sulfide form.

Cheah, S.; Parent, Y. O.; Jablonski, W. S.; Vinzant, T.; Olstad, J. L.

2012-07-01T23:59:59.000Z

105

Remediation of chromium(VI) in the vadose zone: stoichiometry and kinetics of chromium(VI) reduction by sulfur dioxide  

E-Print Network (OSTI)

Immobilization and detoxification of chromium in the vadose zone is made possible by the existence of an effective reductant, SO2, that exists in a gaseous form at room temperature. Experimental studies were designed to characterize stoichiometry and kinetics of chromium reduction both in aqueous solutions at pH values near neutrality and in soil. First, batch experiments and elemental analyses were conducted to characterize the stoichiometry and kinetics of Cr(VI) reduction in water. The stoichiometric ratio of S(IV) removed to Cr(VI) removed ranged between 1.6 and 1.8. The overall reaction is believed to be the result of a linear combination of two reactions in which dithionate is an intermediate and sulfate is the stable oxidized product. The reaction was also rapid, with the half-time of about 45 minutes at pH 6 and about 16 hours at pH 7. A two-step kinetic model was developed to describe changes in concentrations of Cr(VI), S(IV), and S(V). Nonlinear regression was applied to obtain the kinetic parameters. The rate of reaction was assumed to be second-order with respect to [Cr(VI)] and first-order with respect to [S(IV)], and [S(V)]. The values for the rate coefficient for the first reaction (k1) were found to be 4.5 (?10%), 0.25 (?9.4%) (mM-2h-1) at pH 6 and 7, respectively. The values of the rate coefficient for the second reaction (k2) were 25 (?29%), 1.1 (? 30%) (mM-2h-1) at pH 6 and 7, respectively. The reaction rate decreased as pH increased. Experiments showed that the rate at pH 7 was lower than that at pH 6 by one order of magnitude. Second, batch experiments and elemental analyses were conducted to characterize the stoichiometry and kinetics of Cr(VI) reduction in soil. The stoichiometric ratio of S(IV) removed to Cr(VI) removed was almost 2, which is slightly higher than that for the reaction in water. This higher value may be due to S(IV) oxidation by soil-derived Fe(III). The reaction was rapid, with the half-time less than 2 minutes, which is faster than in water. The rate coefficients, k1 and k2, were 22 (?41%) and 13 (?77%) (M-2h-1), respectively.

Ahn, Min

2003-08-01T23:59:59.000Z

106

Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks  

SciTech Connect

UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary building units bound by DOBDC resulting in 1D hexagonal pores about 11 angstroms in diameter. Surface areas range from 800 to 1500 sq m/g for the different MOFs. Mg/DOBDC outperformed all MOF and zeolite materials evaluated to date, with about 25 wt% CO{sub 2} captured by this MOF at flue gas conditions ({approx}0.13 atm CO{sub 2} pressure, 311K). In simulated flue gas without oxygen, the zero-length (ZLC) system was very useful in quickly simulating the effect of long term exposure to impurities on the MOFs. Detailed adsorption studies on MOF pellets have shown that water does not inhibit CO{sub 2} adsorption for MOFs as much as it does for typical zeolites. Moreover, some MOFs retain a substantial CO{sub 2} capacity even with a modest water loading at room temperature. Molecular modeling was a key activity in three areas of our earlier DOE/NETL-sponsored MOF-based research on CC. First, the team was able to effectively simulate CO{sub 2} and other gas adsorption isotherms for more than 20 MOFs, and the knowledge obtained was used to help predict new MOF structures that should be effective for CO{sub 2} adsorption at low pressure. The team also showed that molecular modeling could be utilized to predict the hydrothermal stability of a given MOF. Finally, the team showed that low moisture level exposure actually enhanced the CO{sub 2} adsorption performance of a particular MOF, HKUST-1.

David A Lesch

2010-06-30T23:59:59.000Z

107

Multi-component Removal in Flue Gas by Aqua Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

component Removal in Flue Gas by Aqua Ammonia component Removal in Flue Gas by Aqua Ammonia Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,255,842 entitled "Multi-component Removal in Flue Gas by Aqua Ammonia." This patent discloses a method for the removal of potential environmental-impacting compounds from flue gas streams. The method oxidizes some or all of the acid precursors such as sulfur dioxide (SO 2 ) and nitric oxides (NO x ) into sulfur trioxide and nitrogen dioxide, respectively. Following this step, the gas stream is then treated with aqua ammonia or ammonium hydroxide to capture the compounds via chemical absorption through acid-base or neutralization reactions where a fertilizer is formed.

108

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic Prioritization of Research Needs  

E-Print Network (OSTI)

Balbach, J. H. (1991). "Modeling the removal of sulfur dioxide and nitrogen oxides from flue gases using% by volume (Chang et al. 1992b). Such observation is important for combustors that operate with flue gases and ultraviolet radiation. The composition, tem- perature, and pressure of the treated gas streams simulate gases

109

Elemental sulfur recovery process  

DOE Patents (OSTI)

An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

Flytzani-Stephanopoulos, M.; Zhicheng Hu.

1993-09-07T23:59:59.000Z

110

Method of detecting sulfur dioxide  

DOE Patents (OSTI)

(CH.sub.3).sub.3 SiNSO is produced by the reaction of ((CH.sub.3).sub.3 Si).sub.2 NH with SO.sub.2. Also produced in the reaction are ((CH.sub.3).sub.3 Si).sub.2 O and a new solid compound [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ]. Both (CH.sub.3).sub.3 SiNSO and [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO.sub.2 pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH.sub.3).sub.3 Si).sub.2 NH, whereby any SO.sub.2 present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO.sub.2 in the original gas sample. The solid product [NH.sub.4][(CH.sub.3).sub.3 SiOSO.sub.2 ] may be used as a standard in solid state NMR spectroscopy.

Spicer, Leonard D. (Salt Lake City, UT); Bennett, Dennis W. (Clemson, SC); Davis, Jon F. (Salt Lake City, UT)

1985-01-01T23:59:59.000Z

111

The effects of moderate coal cleaning on the microbial removal of organic sulfur. Final technical report, September 1, 1991--August 31, 1992  

SciTech Connect

During the second year of this project, chemical treatments examined included ammonia vapor, 0.1N NaOH, isopropanol, isopropanol plus 0.1N NaOH, methanol, and methanol plus 0.1N NaOH. The exposure of IBC-107 coal to chemical solutions was varied from minutes to days, at temperatures of 70{degrees} to 240{degrees}F, and at pressures of 800 or 1200 psi with an explosive release of pressure. Ammonia vapor was found to be the most effective chemical comminution agent; however, in tests involving combined chemical and physical treatments 240{degrees}F and 1200 psi yielded the greatest comminution with very little effect attributable to the nature of the chemical solutions. In contrast to the mere physical grinding of coal, coal samples subjected to chemical or chemical plus physical comminution can be successfully biodesulfurized by pre-grown biocatalysts. Coal samples treated with ammonia vapor yielded preferred samples for subsequent biodesulfurization. The removal of about 20% of organic sulfur from solid coal samples was observed using 24 hour treatment times. The accessibility of microorganisms to coal was shown to be the chief factor limiting the removal of organic sulfur from coal. Chemical and/or physical treatments that increase the porosity of coal were shown to increase the treatability of coal using biodesulfurization. The results of this project suggest that perhaps the most practical application of biodesulfurization may be the use of biocatalysts to treat coal byproducts that possess enhanced accessibility such as the organosulfur-rich liquids derived from mild coal gasification.

Srivastava, V.J.; Kilbane, J.J. II [Institute of Gas Technology, Chicago, IL (United States)

1992-12-31T23:59:59.000Z

112

Evaluation of active transport membranes for carbon dioxide removal from hydrogen containing streams. Approved final topical report  

SciTech Connect

Air Products and Chemicals, Inc. is developing a new class of gas separation membranes called Active Transport Membranes (ATM). ATMs are unique in that they permeate acid gas components, via a reactive pathway, to the low pressure side of the membrane while retaining lighter, non-reactive gases at near feed pressure. This feature is intuitively attractive for hydrogen and synthesis gas processes where CO{sub 2} removal is desired and the hydrogen or synthesis gas product is to be used at elevated pressure. This report provides an overview of the technology status and reports on preliminary, order of magnitude assessments of ATMs for three applications requiring CO{sub 2} removal from gas streams containing hydrogen. The end uses evaluated are: CO{sub 2} removal in the COREX{reg_sign} Steel making process--upgrading export gas for a Direct Reducing Iron (DRI) process; CO{sub 2} removal for onboard hydrogen gas generators for mobile fuel cell applications; Bulk CO{sub 2} removal from hydrogen plant synthesis gas--a plant de-bottlenecking analysis for ammonia production. For each application, an overview of the process concept, rough equipment sizing and techno-economic evaluation against competing technologies is provided. Brief descriptions of US and world market conditions are also included.

Cook, P.J.; Laciak, D.V.; Pez, G.P.; Quinn, R.

1995-11-01T23:59:59.000Z

113

Separation of sulfur isotopes  

DOE Patents (OSTI)

Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

DeWitt, Robert (Centerville, OH); Jepson, Bernhart E. (Dayton, OH); Schwind, Roger A. (Centerville, OH)

1976-06-22T23:59:59.000Z

114

Why sequence Alkaliphilic sulfur oxidizing bacteria for sulfur pollution  

NLE Websites -- All DOE Office Websites (Extended Search)

Alkaliphilic sulfur oxidizing Alkaliphilic sulfur oxidizing bacteria for sulfur pollution remediation? Burning sulfur-containing fuels, such as coal, oil, and natural gas, contributes significantly to global environmental problems, such as air pollution and acid rain, besides contributing to the loss of the ozone layer. One method of managing sulfur compounds released as byproducts from industrial processes is to scrub them out using chemical treatments and activated charcoal beds. A lower-cost solution relies on incorporating alkaliphic sulfur-oxidizing bacteria into biofilters to convert the volatile and toxic compounds into insoluble sulfur for easier removal. Discovered in the last decade, these bacteria have been found to thrive in habitats that span the full pH range. The bacteria could have applications

115

Spray-dryer scrubbers for high-sulfur coal combustion  

Science Conference Proceedings (OSTI)

Spray-dryer scrubbers for sulfur-dioxide removal from flue gases have been a developing technology for several years. Because spray-dryer scrubbers offer several potential advantages over wet scrubbing, they are attractive to the utility industry. Some of these advantages are: 1) a simpler waste-disposal problem, 2) higher energy efficiency, 3) lower water comsumption, 4) lower capital cost, 5) lower operating costs, 6) less exotic materials of construction, 7) simpler operation, and 8) ability to consume some plant waste water in the spray dryer. The paper provides a broad survey of the state of the art as it might be useful to electric utilitites using high-sulfur coal.

Henry, J.M.; Robards, R.F.; Wells, W.L.

1982-11-01T23:59:59.000Z

116

Two stage sorption of sulfur compounds  

DOE Patents (OSTI)

A two stage method for reducing the sulfur content of exhaust gases is disclosed. Alkali- or alkaline-earth-based sorbent is totally or partially vaporized 10 and introduced into a sulfur-containing gas stream. The activated sorbent can be introduced in the reaction zone or the exhaust gases of a combustor or a gasifier. High efficiencies of sulfur removal can be achieved.

Moore, W.E.

1991-12-31T23:59:59.000Z

117

Two stage sorption of sulfur compounds  

DOE Patents (OSTI)

A two stage method for reducing the sulfur content of exhaust gases is disclosed. Alkali- or alkaline-earth-based sorbent is totally or partially vaporized and introduced into a sulfur-containing gas stream. The activated sorbent can be introduced in the reaction zone or the exhaust gases of a combustor or a gasifier. High efficiencies of sulfur removal can be achieved.

Moore, William E. (Manassas, VA)

1992-01-01T23:59:59.000Z

118

Effects of sorbent injection for sulfur dioxide removal on particulate control systems for coal-fired boilers. Final report, October 1984-October 1987  

Science Conference Proceedings (OSTI)

This report describes studies undertaken to quantify the effects of dry SO2 sorbent injection on electrostatic precipitator (ESP) operation with a coal-burning utility boiler. The specific operation of interest was EPA's limestone injection, multistage burners (LIMB) process. The combination of spent sorbent and fly ash has a higher resistivity, a higher mass concentration, and a finer particle-size distribution than the ash alone; all of these factors diminish the effectiveness of ESP. Also investigated was chemical conditioning to reduce the resistivity problem, the only one of three concerns stemming from sorbent injection that can be readily mitigated. Other topics studied were: the recycle, disposal, and utilization of waste-ash/sorbent mixtures; the selection and modification of sorbents to improve SO2 capture in the furnace; and the reactivation of spent sorbent by humidification to achieve supplemental post-furnace capture of SO2.

Gooch, J.P.; DuBard, J.L.; Faulkner, M.G.; Marchant, G.H.; Dahlin, R.S.

1988-11-01T23:59:59.000Z

119

Proposed use of antimonyl sulfate in a sulfuric-acid cycle  

DOE Green Energy (OSTI)

A proposed use of antimonyl sulfate in a sulfuric acid thermochemical hydrogen cycle is outlined. The principal advantage would be the separate evolution of sulfur dioxide and oxygen in high temperature steps.

Jones, W.M.

1982-01-01T23:59:59.000Z

120

Multi-component removal in flue gas by aqua ammonia  

DOE Patents (OSTI)

A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

Yeh, James T. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA)

2007-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Experimental work related to two bismuth sulfate cycles and their possible improvement. Outline of a possible antimonyl sulfate cycle with separate evolution of sulfur dioxide and oxygen  

DOE Green Energy (OSTI)

Two bismuth sulfate cycles are made possible by the stepwise decomposition of the sulfate-oxysulfate system. Omitting statement of the steps for decomposition of SO/sub 3/ and the electrochemical formation of H/sub 2/ and H/sub 2/SO/sub 4/ from SO/sub 2/ and H/sub 2/O, the key reactions are: Cycle I - Bi/sub 2/(SO/sub 4/)/sub 3/ = Bi/sub 2/O/sub 2/ /sub 3/(SO/sub 4/)/sub 0/ /sub 7/ + 2.3 SO/sub 3/; Bi/sub 2/O/sub 2/ /sub 3/(SO/sub 4/)/sub 0/ /sub 7/ + 2.3 H/sub 2/SO/sub 4/ = Bi/sub 2/(SO/sub 4/)/sub 3/ + 2.3 H/sub 2/O; Cycle II - Bi/sub 2/O(SO/sub 4/)/sub 2/ = Bi/sub 2/O/sub 2/ /sub 3/(SO/sub 4/)/sub 0/ /sub 7/ + 1.3 SO/sub 3/; Bi/sub 2/O/sub 2/ /sub 3/(SO/sub 4/)/sub 0/ /sub 7/ + 1.3 H/sub 2/SO/sub 4/ = Bi/sub 2/O(SO/sub 4/)/sub 2/ + 1.3 H/sub 2/O. Cycle I proceeds through the intermediate oxysulfates Bi/sub 2/O(SO/sub 4/)/sub 2/ and Bi/sub 2/O/sub 2/SO/sub 4/ and Cycle II through Bi/sub 2/O/sub 2/SO/sub 4/. Cycle I has the advantage of generating 2.3 moles of H/sub 2/ per mole of Bi/sub 2/O/sub 3/, compared with 1.3 for Cycle II. Published work on the Bi/sub 2/O/sub 3/-SO/sub 3/-H/sub 2/O system shows that Bi/sub 2/(SO/sub 4/)/sub 3/ is the stable solid in contact with H/sub 2/SO/sub 4/ solutions above 52.7 wt%, so that acid of at least this strength would have to be used in Cycle I. Concentrations between about 3 wt% and 52.7 wt% could be used for Cycle II. The efficiency for electrochemical formation of H/sub 2/SO/sub 4/ and H/sub 2/ seems at present to be a maximum at around 30 wt% H/sub 2/SO/sub 4/. Some thermodynamic data obtained for the decomposition reactions are presented. A possible improvement in these cycles is also discussed which may provide a solution to a problem of sorption of H/sub 2/SO/sub 4/ solution by the solids and might allow use of a more dilute acid than in Cycle I above. A brief discussion on the possible simplification of the SO/sub 3/-SO/sub 2/-O/sub 2/ separation problem with a sulfuric acid-antimonyl sulfate hybrid cycle is presented. The principal reactions are: (1) Sb/sub 2/O/sub 2/SO/sub 4/ = Sb/sub 2/O/sub 4/ + SO/sub 2/ at 900 K; (2) Sb/sub 2/O/sub 4/ = Sb/sub 2/O/sub 3/ + 1/2 O/sub 2/ at 1300 K; (3) Sb/sub 2/O/sub 3/ + H/sub 2/SO/sub 4/ = Sb/sub 2/O/sub 2/SO/sub 4/ + H/sub 2/O.

Jones, W.M.

1981-01-01T23:59:59.000Z

122

Membrane Characterization for a Sulfur- Dioxide Depolarized ...  

with hot H 2SO 4 solution SO 2 transport under non-polarized conditions Ionic conductivity ... 2 transport characterization cell SO 2 Transport ...

123

OpenEI - sulfur dioxide emissions  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm4600 en Hourly Energy Emission Factors for Electricity Generation in the United States http:en.openei.orgdatasetsnode488...

124

SOOT-CATALYZED OXIDATION OF SULFUR DIOXIDE  

E-Print Network (OSTI)

produced by combustion of propane saturated with benzeneparticles produced by a propane flame. investigators foundand carbon(ls) regions of propane soot particles produced by

Chang, S.G.

2010-01-01T23:59:59.000Z

125

Economic comparison of hydrogen production using sulfuric acid electrolysis and sulfur cycle water decomposition. Final report  

SciTech Connect

An evaluation of the relative economics of hydrogen production using two advanced techniques was performed. The hydrogen production systems considered were the Westinghouse Sulfur Cycle Water Decomposition System and a water electrolysis system employing a sulfuric acid electrolyte. The former is a hybrid system in which hydrogen is produced in an electrolyzer which uses sulfur dioxide to depolarize the anode. The electrolyte is sulfuric acid. Development and demonstration efforts have shown that extremely low cell voltages can be achieved. The second system uses a similar sulfuric acid electrolyte technology in water electrolysis cells. The comparative technoeconomics of hydrogen produced by the hybrid Sulfur Cycle and by water electrolysis using a sulfuric acid electrolyte were determined by assessing the performance and economics of 380 million SCFD plants, each energized by a very high temperature nuclear reactor (VHTR). The evaluation concluded that the overall efficiencies of hydrogen production, for operating parameters that appear reasonable for both systems, are approximately 41% for the sulfuric acid electrolysis and 47% for the hybrid Sulfur Cycle. The economic evaluation of hydrogen production, based on a 1976 cost basis and assuming a developed technology for both hydrogen production systems and the VHTRs, indicated that the hybrid Sulfur Cycle could generate hydrogen for a total cost approximately 6 to 7% less than the cost from the sulfuric acid electrolysis plant.

Farbman, G.H.; Krasicki, B.R.; Hardman, C.C.; Lin, S.S.; Parker, G.H.

1978-06-01T23:59:59.000Z

126

Catalyst for elemental sulfur recovery process  

DOE Patents (OSTI)

A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

Flytzani-Stephanopoulos, M.; Liu, W.

1995-01-24T23:59:59.000Z

127

Integrated boiler, superheater, and decomposer for sulfuric acid decomposition  

DOE Patents (OSTI)

A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

Moore, Robert (Edgewood, NM); Pickard, Paul S. (Albuquerque, NM); Parma, Jr., Edward J. (Albuquerque, NM); Vernon, Milton E. (Albuquerque, NM); Gelbard, Fred (Albuquerque, NM); Lenard, Roger X. (Edgewood, NM)

2010-01-12T23:59:59.000Z

128

Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3  

SciTech Connect

The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

Frey, H.C. [North Carolina State Univ., Raleigh, NC (United States); Williams, R.B. [Carneigie Mellon Univ., Pittsburgh, PA (United States)

1995-09-01T23:59:59.000Z

129

RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION  

DOE Green Energy (OSTI)

Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

Hobbs, D.

2010-07-22T23:59:59.000Z

130

Process for removing sulfur from sulfur-containing gases  

DOE Patents (OSTI)

The present disclosure relates to i The government may own certain rights in the present invention pursuant to EPA Cooperative Agreement CR 81-1531. This is a continuation of U.S. Ser. No. 928,337, filed Nov. 7, 1986, now U.S. Pat. No. 4,804,521.

Rochelle, Gary T. (Austin, TX); Jozewicz, Wojciech (Chapel Hill, NC)

1990-01-01T23:59:59.000Z

131

Polyaniline-Based Membranes for Separating Carbon Dioxide and Methane  

Berkeley Lab researchers have optimized polymer membrane technology to more efficiently remove carbon dioxide (CO2) from natural gas. The invention ...

132

COMPONENT DEVELOPMENT NEEDS FOR THE HYBRID SULFUR ELECTROLYZER  

DOE Green Energy (OSTI)

Fiscal year 2008 studies in electrolyzer component development have focused on the characterization of membrane electrode assemblies (MEA) after performance tests in the single cell electrolyzer, evaluation of electrocatalysts and membranes using a small scale electrolyzer and evaluating the contribution of individual cell components to the overall electrochemical performance. Scanning electron microscopic (SEM) studies of samples taken from MEAs testing in the SRNL single cell electrolyzer test station indicates a sulfur-rich layer forms between the cathode catalyst layer and the membrane. Based on a review of operating conditions for each of the MEAs evaluated, we conclude that the formation of the layer results from the reduction of sulfur dioxide as it passes through the MEA and reaches the catalyst layer at the cathode-membrane interface. Formation of the sulfur rich layer results in partial delamination of the cathode catalyst layer leading to diminished performance. Furthermore we believe that operating the electrolyzer at elevated pressure significantly increases the rate of formation due to increased adsorption of hydrogen on the internal catalyst surface. Thus, identification of a membrane that exhibits much lower transport of sulfur dioxide is needed to reduce the quantity of sulfur dioxide that reaches the cathode catalyst and is reduced to produce the sulfur-rich layer. Three candidate membranes are currently being evaluated that have shown promise from preliminary studies, (1) modified Nafion{reg_sign}, (2) polybenzimidazole (PBI), and (3) sulfonated Diels Alder polyphenylene (SDAPP). Testing examined the activity for the sulfur dioxide oxidation of platinum (Pt) and platinum-alloy catalysts in 30 wt% sulfuric acid solution. Linear sweep voltammetry showed an increase in activity when catalysts in which Pt is alloyed with non-noble transition metals such as cobalt and chromium. However when Pt is alloyed with noble metals, such as iridium or ruthenium, the kinetic activity decreases. We recommend further testing to determine if these binary alloys will provide the increased reaction kinetic needed to meet the targets. We also plan to test the performance of these catalyst materials for both proton and sulfur dioxide reduction. The latter may provide another parameter by which we can control the reduction of sulfur dioxide upon transport to the cathode catalyst surface. A small scale electrolyzer (2 cm{sup 2}) has been fabricated and successfully installed as an additional tool to evaluate the effect of different operating conditions on electrolyzer and MEA performance. Currently this electrolyzer is limited to testing at temperatures up to 80 C and at atmospheric pressure. Selected electrochemical performance data from the single cell sulfur dioxide depolarized electrolyzer were analyzed with the aid of an empirical equation which takes into account the overpotential of each of the components. By using the empirical equation, the performance data was broken down into its components and a comparison of the potential losses was made. The results indicated that for the testing conditions of 80 C and 30 wt% sulfuric acid, the major overpotential contribution ({approx}70 % of all losses) arise from the slow reaction rate of oxidation of sulfur dioxide. The results indicate that in order to meet the target of hydrogen production at 0.5 A/cm{sup 2} at 0.6 V and 50 wt% sulfuric acid, identification of a better catalyst for sulfur dioxide oxidation will provide the largest gain in electrolyzer performance.

Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

2008-05-30T23:59:59.000Z

133

METHOD TO PREVENT SULFUR ACCUMULATION INSIDE MEMBRANE ELECTRODE ASSEMBLY  

DOE Green Energy (OSTI)

HyS is conceptually the simplest of the thermochemical cycles and involves only sulfur chemistry. In the HyS Cycle hydrogen gas (H{sub 2}) is produced at the cathode of the electrochemical cell (or electrolyzer). Sulfur dioxide (SO{sub 2}) is oxidized at the anode to form sulfuric acid (H{sub 2}SO{sub 4}) and protons (H{sup +}) as illustrated below. A separate high temperature reaction decomposes the sulfuric acid to water and sulfur dioxide which are recycled to the electrolyzers, and oxygen which is separated out as a secondary product. The electrolyzer includes a membrane that will allow hydrogen ions to pass through but block the flow of hydrogen gas. The membrane is also intended to prevent other chemical species from migrating between electrodes and undergoing undesired reactions that could poison the cathode or reduce overall process efficiency. In conventional water electrolysis, water is oxidized at the anode to produce protons and oxygen. The standard cell potential for conventional water electrolysis is 1.23 volts at 25 C. However, commercial electrolyzers typically require higher voltages ranging from 1.8 V to 2.6 V [Kirk-Othmer, 1991]. The oxidation of sulfur dioxide instead of water in the HyS electrolyzer occurs at a much lower potential. For example, the standard cell potential for sulfur dioxide oxidation at 25 C in 50 wt % sulfuric acid is 0.29 V [Westinghouse, 1980]. Since power consumption by the electrolyzers is equal to voltage times current, and current is proportional to hydrogen production, a large reduction in voltage results in a large reduction in electrical power cost per unit of hydrogen generated.

Steimke, J.; Steeper, T.; Herman, D.; Colon-Mercado, H.; Elvington, M.

2009-06-22T23:59:59.000Z

134

Packed-Bed Reactor Study of NETL Sample 196c for the Removal of Carbon Dioxide from Simulated Flue Gas Mixture  

Science Conference Proceedings (OSTI)

An amine-based solid sorbent process to remove CO2 from flue gas has been investigated. The sorbent consists of polyethylenimine (PEI) immobilized onto silica (SiO2) support. Experiments were conducted in a packed-bed reactor and exit gas composition was monitored using mass spectrometry. The effects of feed gas composition (CO2 and H2O), temperature, and simulated steam regeneration were examined for both the silica support as well as the PEI-based sorbent. The artifact of the empty reactor was also quantified. Sorbent CO2 capacity loading was compared to thermogravimetric (TGA) results to further characterize adsorption isotherms and better define CO2 working capacity. Sorbent stability was monitored by periodically repeating baseline conditions throughout the parametric testing and replacing with fresh sorbent as needed. The concept of the Basic Immobilized Amine Sorbent (BIAS) Process using this sorbent within a system where sorbent continuously flows between the absorber and regenerator was introduced. The basic tenet is to manipulate or control the level of moisture on the sorbent as it travels around the sorbent circulation path between absorption and regeneration stages to minimize its effect on regeneration heat duty.

Hoffman, James S.; Hammache, Sonia; Gray, McMahan L.; Fauth Daniel J.; Pennline, Henry W.

2012-04-24T23:59:59.000Z

135

Method of removing contaminants from plastic resins  

DOE Patents (OSTI)

A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee' s Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2008-11-18T23:59:59.000Z

136

Method for removing contaminants from plastic resin  

Science Conference Proceedings (OSTI)

A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2008-12-30T23:59:59.000Z

137

Method of removing contaminants from plastic resins  

Science Conference Proceedings (OSTI)

A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

Bohnert,George W. (Harrisonville, MO); Hand,Thomas E. (Lee's Summit, MO); Delaurentiis,Gary M. (Jamestown, CA)

2007-08-07T23:59:59.000Z

138

KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR  

DOE Green Energy (OSTI)

The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 1-6 milliseconds at 125-155 C to evaluate effects of reaction temperature, moisture concentration, reaction pressure on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 70 v% hydrogen, 2,500-7,500-ppmv hydrogen sulfide, 1,250-3,750 ppmv sulfur dioxide, and 0-15 vol% moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 100 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 40-170 psia.

K.C. Kwon

2004-01-01T23:59:59.000Z

139

KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR  

DOE Green Energy (OSTI)

The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 0.059-0.87 seconds at 125-155 C to evaluate effects of reaction temperature, H{sub 2}S concentration, reaction pressure, and catalyst loading on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 62-78 v% hydrogen, 3,000-7,000-ppmv hydrogen sulfide, 1,500-3,500 ppmv sulfur dioxide, and 10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 50 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 40-170 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the bubble reactor is maintained at 2 for all the reaction experiment runs.

K.C. Kwon

2005-01-01T23:59:59.000Z

140

Sulfur tolerant anode materials  

DOE Green Energy (OSTI)

The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

Not Available

1988-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cation Adsorption on Manganese Dioxide Impregnated Fibers  

Science Conference Proceedings (OSTI)

The complete removal of radioactive cations by standard mixed-bed ion-exchange resins is sometimes not achieved in liquid radwaste systems. This report documents an alternative ion adsorption process for the purification of liquid wastes, specifically, the use of manganese dioxide (MnO2) impregnated fibers to remove selected cations from PWR liquid waste streams.

1993-02-26T23:59:59.000Z

142

Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification  

DOE Green Energy (OSTI)

Sulfur present in biomass often causes catalyst deactivation during downstream operations after gasification. Early removal of sulfur from the syngas stream post-gasification is possible via process rearrangements and can be beneficial for maintaining a low-sulfur environment for all downstream operations. High-temperature sulfur sorbents have superior performance and capacity under drier syngas conditions. The reconfigured process discussed in this paper is comprised of indirect biomass gasification using dry recycled gas from downstream operations, which produces a drier syngas stream and, consequently, more-efficient sulfur removal at high temperatures using regenerable sorbents. A combination of experimental results from NREL's fluidizable Ni-based reforming catalyst, fluidizable Mn-based sulfur sorbent, and process modeling information show that using a coupled process of dry gasification with high-temperature sulfur removal can improve the performance of Ni-based reforming catalysts significantly.

Dutta. A.; Cheah, S.; Bain, R.; Feik, C.; Magrini-Bair, K.; Phillips, S.

2012-06-20T23:59:59.000Z

143

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

DOE Green Energy (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained at 116-129 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is

K. C. Kwon

2007-09-30T23:59:59.000Z

144

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

DOE Green Energy (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in an oven at 120-155 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio

K.C. Kwon

2009-09-30T23:59:59.000Z

145

Carbon Dioxide (CO2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide (CO2) Carbon Dioxide (CO2) Gateway Pages to Carbon Dioxide Data Modern records and ice core records back 2000 years 800,000 year records from ice cores Other...

146

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

DOE Green Energy (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2} in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is mai

K. C. Kwon

2006-09-30T23:59:59.000Z

147

NETL: News Release - NETL Patented CO2-Removal Sorbents Promise...  

NLE Websites -- All DOE Office Websites (Extended Search)

Power and Cost Savings DOE Laboratory Signs License Agreement Incorporating Sorbents in HVAC Add-on Technology Washington, DC - Carbon dioxide removal sorbents developed by the...

148

Carbon Dioxide: Threat or Opportunity?  

E-Print Network (OSTI)

Over the past century, fossil fuel consumption has added carbon dioxide to the atmosphere at rapidly increasing rates. The prospect of further acceleration of this rate by turning from petroleum to coal has alarmed climatologists because of possible catastrophic long term effects on world climate. An alternative to discharging carbon dioxide into the atmosphere is to find new uses. One possible use is in 'Biofactories'. Biofactories may be achieved by exploiting two new developing technologies: Solar (Photosynthesis) energy, and genetic engineering. Some exciting new developments in genetic engineering will be touched on together with established bio-engineering-aquaculture, hydroponics, yeast, pharmaceutical production, fermentation, single cell protein, etc. A 'bio-factory' will be described, with a feed stream of carbon dioxide, water, nutrients containing sulfur, nitrogen, phosphorus and trace elements, and living culture interacting with light under controlled conditions to yield food and raw materials. Candidate products will be suggested and a few of the problems anticipated. Engineering and logistic requirements will be outlined and the economic impact assessed.

McKinney, A. R.

1982-01-01T23:59:59.000Z

149

Ultra-Low Sulfur Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra-Low Sulfur Diesel ULSD LSD Off-Road Ultra-Low Sulfur Highway Diesel Fuel (15 ppm Sulfur Maximum). Required for use in all model year 2007 and later highway diesel vehicles...

150

CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY  

DOE Green Energy (OSTI)

This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that prevents the formation of a sulfur layer previously observed in MEAs used in the Hybrid Sulfur Cycle electrolyzer. This result is very important because the sulfur layer increased cell voltage and eventually destroyed the MEA that is the heart of the cell. Steimke and Steeper [2005, 2006, 2007, 2008] reported on testing in the Single Cell Electrolyzer test facility in several periodic reports. Steimke et. al [2010] issued a final facility close-out report summarizing all the testing in the Single Cell Electrolyzer test facility. During early tests, significant deterioration of the membrane occurred in 10 hours or less; the latest tests ran for at least 200 hours with no sign of deterioration. Ironically, the success with the Single Cell electrolyzer meant that it became dedicated to long runs and not available for quick membrane evaluations. Early in this research period, the ambient pressure Button Cell Electrolyzer test facility was constructed to quickly evaluate membrane materials. Its small size allowed testing of newly developed membranes that typically were not available in sizes large enough to test in the Single Cell electrolyzer. The most promising membranes were tested in the Single Cell Electrolyzer as soon as sufficient large membranes could be obtained. However, since the concentration of SO{sub 2} gas in sulfuric acid decreases rapidly with increasing temperature, the ambient pressure Button Cell was no longer able to achieve the operating conditions needed to evaluate the newer improved high temperature membranes. Significantly higher pressure operation was required to force SO{sub 2} into the sulfuric acid to obtain meaningful concentrations at increased temperatures. A high pressure (200 psig), high temperature (120 C) Button Cell was designed and partially fabricated just before funding was discontinued in June 2009. SRNL completed the majority of the design of the test facility, including preparation of a process and instrument drawing (P&ID) and preliminary designs for the major components. SRNL intended to complete the designs and procu

Steeper, T.

2010-09-15T23:59:59.000Z

151

Process studies for a new method of removing H/sub 2/S from industrial gas streams  

SciTech Connect

A process for the removal of hydrogen sulfide from coal-derived gas streams has been developed. The basis for the process is the absorption of H/sub 2/S into a polar organic solvent where it is reacted with dissolved sulfur dioxide to form elemental sulfur. After sulfur is crystallized from solution, the solvent is stripped to remove dissolved gases and water formed by the reaction. The SO/sub 2/ is generated by burning a portion of the sulfur in a furnace where the heat of combustion is used to generate high pressure steam. The SO/sub 2/ is absorbed into part of the lean solvent to form the solution necessary for the first step. The kinetics of the reaction between H/sub 2/S and SO/sub 2/ dissolved in mixtures of N,N-Dimethylaniline (DMA)/ Diethylene Glycol Monomethyl Ether and DMA/Triethylene Glycol Dimethyl Ether was studied by following the temperature rise in an adiabatic calorimeter. This irreversible reaction was found to be first-order in both H/sub 2/S and SO/sub 2/, with an approximates heat of reaction of 28 kcal/mole of SO/sub 2/. The sole products of the reaction appear to be elemental sulfur and water. The presence of DMA increases the value of the second-order rate constant by an order of magnitude over that obtained in the glycol ethers alone. Addition of other tertiary aromatic amines enhances the observed kinetics; heterocyclic amines (e.g., pyridine derivatives) have been found to be 10 to 100 times more effective as catalysts when compared to DMA.

Neumann, D.W.; Lynn, S.

1986-07-01T23:59:59.000Z

152

Method of immobilizing carbon dioxide from gas streams  

DOE Patents (OSTI)

This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

Holladay, David W. (Knoxville, TN); Haag, Gary L. (Oliver Springs, TN)

1979-01-01T23:59:59.000Z

153

HIGH SO2 REMOVAL EFFICIENCY TESTING  

Science Conference Proceedings (OSTI)

This final report describes the results of performance tests at six full-scale wet lime- and limestone-reagent flue gas desulfurization (FGD) systems. The objective of these tests was to evaluate the effectiveness of low capital cost sulfur dioxide (SO{sub 2}) removal upgrades for existing FGD systems as an option for complying with the provisions of the Clean Air Act Amendments of 1990. The upgrade options tested at the limestone-reagent systems included the use of organic acid additives (dibasic acid (DBA) and/or sodium formate) as well as increased reagent ratio (higher excess limestone levels in the recirculating slurry solids) and absorber liquid-to-gas ratio. One system also tested operating at higher flue gas velocities to allow the existing FGD system to treat flue gas from an adjacent, unscrubbed unit. Upgrade options for the one lime-based system tested included increased absorber venturi pressure drop and increased sulfite concentration in the recirculating slurry liquor.

Gary M. Blythe; James L. Phillips

1997-10-15T23:59:59.000Z

154

Bacterial Sulfur Storage Globules  

NLE Websites -- All DOE Office Websites (Extended Search)

by I. J. Pickering and G. N. George by I. J. Pickering and G. N. George Sulfur is essential for all life, but it plays a particularly central role in the metabolism of many anaerobic microorganisms. Prominent among these are the sulfide-oxidizing bacteria that oxidize sulfide (S2-) to sulfate (SO42-). Many of these organisms can store elemental sulfur (S0) in "globules" for use when food is in short supply (Fig. 1). The chemical nature of the sulfur in these globules has been an enigma since they were first described as far back as 1887 (1); all known forms (or allotropes) of elemental sulfur are solid at room temperature, but globule sulfur has been described as "liquid", and it apparently has a low density – 1.3 compared to 2.1 for the common yellow allotrope a-sulfur. Various exotic forms of sulfur have been proposed to explain these properties, including micelles (small bubble-like structures) formed from long-chain polythionates, but all of these deductions have been based upon indirect evidence (for example the density was estimated by flotation of intact cells), and many questions remained.

155

System for adding sulfur to a fuel cell stack system for improved fuel cell stability  

DOE Patents (OSTI)

A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

Mukerjee, Subhasish (Pittsford, NY); Haltiner, Jr., Karl J (Fairport, NY); Weissman, Jeffrey G. (West Henrietta, NY)

2012-03-06T23:59:59.000Z

156

Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development  

SciTech Connect

Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

Stephenson, M.

1994-03-01T23:59:59.000Z

157

Development of the Hybrid Sulfur Thermochemical Cycle  

DOE Green Energy (OSTI)

The production of hydrogen via the thermochemical splitting of water is being considered as a primary means for utilizing the heat from advanced nuclear reactors to provide fuel for a hydrogen economy. The Hybrid Sulfur (HyS) Process is one of the baseline candidates identified by the U.S. Department of Energy [1] for this purpose. The HyS Process is a two-step hybrid thermochemical cycle that only involves sulfur, oxygen and hydrogen compounds. Recent work has resulted in an improved process design with a calculated overall thermal efficiency (nuclear heat to hydrogen, higher heating value basis) approaching 50%. Economic analyses indicate that a nuclear hydrogen plant employing the HyS Process in conjunction with an advanced gas-cooled nuclear reactor system can produce hydrogen at competitive prices. Experimental work has begun on the sulfur dioxide depolarized electrolyzer, the major developmental component in the cycle. Proof-of-concept tests have established proton-exchange-membrane cells (a state-of-the-art technology) as a viable approach for conducting this reaction. This is expected to lead to more efficient and economical cell designs than were previously available. Considerable development and scale-up issues remain to be resolved, but the development of a viable commercial-scale HyS Process should be feasible in time to meet the commercialization schedule for Generation IV gas-cooled nuclear reactors.

Summers, William A.; Steimke, John L

2005-09-23T23:59:59.000Z

158

Using ISC & GIS to predict sulfur deposition from coal-fired power plants  

E-Print Network (OSTI)

The goal of this research project was to determine if atmospheric sources have the potential of contributing significantly to the sulfur content of grazed forage. Sulfur deposition resulting from sulfur dioxide emissions from coal- fired power plants was predicted utilizing the Industrial Source Complex Long-Term (ISCLT2) Model for the areas ofa interest in East Texas. GRASS, a geographical information system (GIS), was used to pull together all predicted values from ISCLT2 and present them in the form of predicted sulfur deposition maps with different ranges of deposition. Two field trips to NE Texas were taken to obtain data on soil and forage sulfur content. GRASS was used extensively in the planning process before each trip and the global positioning system was also used extensively during the trip to locate sampling sites and to obtain the geographical location of each site. The methodology developed predicts that 11 to 21 kg sulfur/ha per year can be deposited as far as 100 to 160 km from the source. Data from both field trips do not show a statistical significant relation between predicted sulfur deposition and either soil or forage sulfur content. However, the data do show that there is a trend of increasing soil and forage sulfur content as predicted sulfur deposition increases.

Lopez, Jose Ignacio

1993-01-01T23:59:59.000Z

159

Economic feasibility of biochemical processes for the upgrading of crudes and the removal of sulfur, nitrogen, and trace metals from crude oil -- Benchmark cost establishment of biochemical processes on the basis of conventional downstream technologies. Final report FY95  

Science Conference Proceedings (OSTI)

During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change in light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; and (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between biodegraded and biotreated oils. The downstream biotechnological crude oil processing research performed thus far is of laboratory scale and has focused on demonstrating the technical feasibility of downstream processing with different types of biocatalysts under a variety of processing conditions. Quantitative economic analysis is the topic of the present project which investigates the economic feasibility of the various biochemical downstream processes which hold promise in upgrading of heavy crudes, such as those found in California, e.g., Monterey-type, Midway Sunset, Honda crudes, and others.

Premuzic, E.T.

1996-08-01T23:59:59.000Z

160

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

Have a question, comment, or suggestion for a future article? Send your feedback to todayinenergy@eia.gov

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Abatement of Air Pollution: Control of Sulfur Dioxide Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

serve a generator with a nameplate capacity of 15 MW or more, or fossil-fuel fired boilers or indirect heat exchangers with a maximum input heat capacity of 250 MMBtuhr or...

162

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel ... acid rain program in the eastern half of the United States. ... and settlements under the Clean Air Act's New Source Review ...

163

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... the program provided an economic incentive for coal-fired power plants to reduce emissions by installing pollution contro ...

164

Preservation of chopped sweet sorghum using sulfur dioxide  

Science Conference Proceedings (OSTI)

Sweet sorghum (Sorghum bicolor (L.) Moench) is an attractive feedstock for fermentation but its sugars degrade quickly after harvest. The effects of SO/sub 2/ dosage and temperature on the storability of chopped Rio sweet sorghum was studied. Four SO/sub 2/ dosage levels (0, 0.5, 1.5 and 3.0% w.b.) and five storage temperatures (-16, 2, 12, 22 and 32/sup 0/C) were investigated. The samples were stored in constant temperature incubators for three months. Fermentable sugars, sample pH and initial and final SO/sub 2/ levels were determined. All three non-zero levels of SO/sub 2/ adequately preserved the chopped sweet sorghum with no significant decrease in the total fermentable sugars.

Eckhoff, S.R.; Bender, D.A.; Okos, M.R.; Peart, R.M.

1983-12-01T23:59:59.000Z

165

Carbon Dioxide Compression  

Science Conference Proceedings (OSTI)

Page 1. © C opyright 2009 Carbon Dioxide Compression DOE – EPRI – NIST ... Greenhouse gas sequestration Page 5. 5 © C opyright 2009 ...

2013-04-22T23:59:59.000Z

166

Liquid-impregnated clay solid sorbents for CO2 removal from postcombustion gas streams  

Science Conference Proceedings (OSTI)

A novel liquid-impregnated clay sorbent #1;R. V. Siriwardane, U.S. Patent No. 6,908,497 B1 #2;2003#3;#4; was developed for carbon dioxide #1;CO2#2; removal in the temperature range of ambient to 60°C for both fixed-bed and fluidized-bed reactor applications. The sorbent is regenerable at 80–100°C. A 20-cycle test conducted in an atmospheric reactor with simulated flue gas with moisture demonstrated that the sorbent retains its CO2 sorption capacity with CO2 removal efficiency of about 99% during the cyclic tests. The sorbents suitable for fluidized-bed reactor operations showed required delta CO2 capacity requirements for sorption of CO2 at 40°C and regeneration at 100°C. The parameters such as rate of sorption, heat of sorption, minimum fluidization velocities, and attrition resistance data that are necessary for the design of a reactor suitable for capture and regeneration were also determined for the sorbent. A 20-cycle test conducted in the presence of flue-gas pollutant sulfur dioxide—SO2 #2;20 parts per million#3;—indicated that the sorbent performance was not affected by the presence of SO2.

Siriwardane, R.; Robinson, C.

2009-01-01T23:59:59.000Z

167

Trifluoromethyl Sulfur Pentafluoride (SF5CF3) and Sulfur Hexafluoride...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur Pentafluoride (SF5CF3) and Sulfur Hexafluoride (SF6) from Dome Concordia graphics Graphics data Data Investigators W. T. Sturges,1 T. J. Wallington,2 M. D. Hurley,2 K....

168

Sodium sulfur battery seal  

DOE Patents (OSTI)

This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

Mikkor, Mati (Ann Arbor, MI)

1981-01-01T23:59:59.000Z

169

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect

The objective of the project is to develop engineering evaluations of technologies for the capture, use, and disposal of carbon dioxide (CO{sub 2}). This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestering of unused CO{sub 2}. Commercially available CO{sub 2}-capture technology is providing a performance and economic baseline against which to compare innovative technologies. The intent is to provide the CO{sub 2} budget, or an {open_quotes}equivalent CO{sub 2}{close_quotes} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The value used for the {open_quotes}equivalent CO{sub 2}{close_quotes} budget is 1 kg of CO{sub 2} per kilowatt-hour (electric). The base case is a 458-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and in-bed sulfur removal. Mining, feed preparation, and conversion result in a net electric power production of 454 MW, with a CO{sub 2} release rate of 0.835 kg/kWhe. Two additional life-cycle energy balances for emerging technologies were considered: (1) high-temperature CO{sub 2} separation with calcium- or magnesium-based sorbents, and (2) ambient-temperature facilitated-transport polymer membranes for acid-gas removal.

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.; Berry, G.F.; Livengood, C.D.

1994-09-01T23:59:59.000Z

170

CE IGCC Repowering plant sulfuric acid plant. Topical report, June 1993  

SciTech Connect

A goal of the CE IGCC Repowering project is to demonstrate a hot gas clean-up system (HGCU), for the removal of sulfur from the product gas stream exiting the gasifier island. Combustion Engineering, Inc. (ABB CE) intends to use a HGCU developed by General Electric Environmental Services (GEESI). The original design of this system called for the installation of the HGCU, with a conventional cold gas clean-up system included as a full-load operational back-up. Each of these systems removes sulfur compounds and converts them into an acid off-gas. This report deals with the investigation of equipment to treat this off-gas, recovering these sulfur compounds as elemental sulfur, sulfuric acid or some other form. ABB CE contracted ABB Lummus Crest Inc. (ABB LCI) to perform an engineering evaluation to compare several such process options. This study concluded that the installation of a sulfuric acid plant represented the best option from both a technical and economic point of view. Based on this evaluation, ABB CE specified that a sulfuric acid plant be installed to remove sulfur from off-gas exiling the gas clean-up system. ABB LCI prepared a request for quotation (RFQ) for the construction of a sulfuric acid production plant. Monsanto Enviro-Chem Inc. presented the only proposal, and was eventually selected as the EPC contractor for this system.

Chester, A.M.

1993-12-01T23:59:59.000Z

171

Carbon dioxide capture process with regenerable sorbents  

DOE Patents (OSTI)

A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

2002-05-14T23:59:59.000Z

172

ELECTRON IRRADIATION OF CARBON DISULFIDE-OXYGEN ICES: TOWARD THE FORMATION OF SULFUR-BEARING MOLECULES IN INTERSTELLAR ICES  

Science Conference Proceedings (OSTI)

The formation of sulfur-bearing molecules in interstellar ices was investigated during the irradiation of carbon disulfide (CS{sub 2})-oxygen (O{sub 2}) ices with energetic electrons at 12 K. The irradiation-induced chemical processing of these ices was monitored online and in situ via Fourier transform infrared spectroscopy to probe the newly formed products quantitatively. The sulfur-bearing molecules produced during the irradiation were sulfur dioxide (SO{sub 2}), sulfur trioxide (SO{sub 3}), and carbonyl sulfide (OCS). Formations of carbon dioxide (CO{sub 2}), carbon monoxide (CO), and ozone (O{sub 3}) were observed as well. To fit the temporal evolution of the newly formed products and to elucidate the underlying reaction pathways, kinetic reaction schemes were developed and numerical sets of rate constants were derived. Our studies suggest that carbon disulfide (CS{sub 2}) can be easily transformed to carbonyl sulfide (OCS) via reactions with suprathermal atomic oxygen (O), which can be released from oxygen-containing precursors such as water (H{sub 2}O), carbon dioxide (CO{sub 2}), and/or methanol (CH{sub 3}OH) upon interaction with ionizing radiation. This investigation corroborates that carbonyl sulfide (OCS) and sulfur dioxide (SO{sub 2}) are the dominant sulfur-bearing molecules in interstellar ices.

Maity, Surajit; Kaiser, Ralf I. [Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822 (United States)

2013-08-20T23:59:59.000Z

173

Multiple pollutant removal using the condensing heat exchanger: Phase 1 final report, October 1995--July 1997  

SciTech Connect

The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon{reg_sign} covered condensing heat exchanger is adapted to remove certain flue gas constitutents, both particulate and gaseous, while recovering low level heat. Phase 1 includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MW{sub t}. The other task studied the durability of the Teflon{reg_sign} covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. The durability of the Teflon{reg_sign} covered heat exchanger tubes was studied on a pilot-scale single-stage condensing heat exchanger (CHX{reg_sign}). Data from the test indicate that virtually no decrease in Teflon{reg_sign} thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings. Evidence of wear was present only at the microscopic level, and even then was very minor in severity.

Bailey, R.T.; Jankura, B.J.; Kudlac, G.A.

1998-06-01T23:59:59.000Z

174

Sodium sulfur battery seal  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI)

1980-01-01T23:59:59.000Z

175

SULFUR POLYMER ENCAPSULATION.  

SciTech Connect

Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ({approx}$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not recommended for treatment of wastes containing high concentrations of nitrates because of potentially dangerous reactions between sulfur, nitrate, and trace quantities of organics. Recently, the process has been adapted for the treatment of liquid elemental mercury and mercury contaminated soil and debris.

KALB, P.

2001-08-22T23:59:59.000Z

176

HYBRID SULFUR ELECTROLYZER DEVELOPMENT FY09 SECOND QUARTER REPORT  

DOE Green Energy (OSTI)

The primary objective of the DOE-NE Nuclear Hydrogen Initiative (NHI) is to develop the nuclear hydrogen production technologies necessary to produce hydrogen at a cost competitive with other alternative transportation fuels. The focus of the NHI is on thermochemical cycles and high temperature electrolysis that can be powered by heat from high temperature gas reactors. The Savannah River National Laboratory (SRNL) has been tasked with the primary responsibility to perform research and development in order to characterize, evaluate and develop the Hybrid Sulfur (HyS) thermochemical process. This report documents work during the first quarter of Fiscal Year 2009, for the period between January 1, 2009 and March 31, 2009. The HyS Process is a two-step hybrid thermochemical cycle that is part of the 'Sulfur Family' of cycles. As a sulfur cycle, it uses high temperature thermal decomposition of sulfuric acid to produce oxygen and to regenerate the sulfur dioxide reactant. The second step of the process uses a sulfur dioxide depolarized electrolyzer (SDE) to split water and produce hydrogen by electrochemically reacting sulfur dioxide with H{sub 2}O. The SDE produces sulfuric acid, which is then sent to the acid decomposer to complete the cycle. The DOE NHI program is developing the acid decomposer at Sandia National Laboratory for application to both the HyS Process and the Sulfur Iodine Cycle. The SDE is being developed at SRNL. During FY05 and FY06, SRNL designed and conducted proof-of-concept testing for a SDE using a low temperature, PEM fuel cell-type design concept. The advantages of this design concept include high electrochemical efficiency, small footprint and potential for low capital cost, characteristics that are crucial for successful implementation on a commercial scale. During FY07, SRNL extended the range of testing of the SDE to higher temperature and pressure, conducted a 100-hour longevity test with a 60-cm{sup 2} single cell electrolyzer, and designed and built a larger, multi-cell stack electrolyzer. During FY08, SRNL continued SDE development, including development and successful testing of a three-cell electrolyzer stack with a rated capacity of 100 liters per hour. The HyS program for FY09 program will address improving SDE performance by focusing on preventing or minimizing sulfur deposition inside the cell caused by SO{sub 2} crossover, reduction of cell voltage for improved efficiency, an extension of cell operating lifetime. During FY09 a baseline technology development program is being conducted to address each of these issues. Button-cell (2-cm{sup 2}) and single cell (60-cm{sup 2}) SDEs will be fabricated and tested. A pressurized button-cell test facility will be designed and constructed to facilitate addition testing. The single cell test facility will be upgraded for unattended operation, and later for operation at higher temperature and pressure. Work will continue on development of the Gas Diffusion Electrode (GDE), or Gap Cell, as an alternative electrolyzer design approach that is being developed under subcontract with industry partner Giner Electrochemical Systems. If successful, it could provide an alternative means of preventing sulfur crossover through the proton exchange membrane, as well as the possibility for higher current density operation based on more rapid mass transfer in a gas-phase anode. Promising cell components will be assembled into membrane electrode assemblies (MEAs) and tested in the single cell test facility. Upon modification for unattended operation, test will be conducted for 200 hours or more. Both the button-cell and modified single cell facility will be utilized to demonstrate electrolyzer operation without sulfur build-up limitations, which is a Level 1 Milestone.

Herman, D; David Hobbs, D; Hector Colon-Mercado, H; Timothy Steeper, T; John Steimke, J; Mark Elvington, M

2009-04-15T23:59:59.000Z

177

Assessing historical global sulfur emission patterns for the period 1850--1990  

Science Conference Proceedings (OSTI)

Anthropogenic sulfur dioxide emissions from energy-producing and metal production activities have become an important factor in better understanding the relationship between humans and the environment. Concerns about (1) acid rain effects on the environment and (2) anthropogenic aerosols affecting possible global change have prompted interest in the transformation and fate of sulfur in the environment. One step in assessing the importance of sulfur emissions is the development of a reliable regional emission inventory of sulfur as a function of time. The objective of this research effort was to create a homogeneous database for historical sulfur emission estimates for the world. The time from 1850--1990 was selected to include the period of industrialization form the time the main production of fuels and minerals began until the most recent year for which complete production data exist. This research effort attempts to correct some of the deficiencies associated with previous global sulfur emission estimates by (1) identifying those production activities that resulted in sulfur emissions by country and (2) calculating historical emission trends by country across years. An important component of this study was the comparison of the sulfur emission results with those of previous studies.

Lefohn, A.S. [A.S.L. and Associates, Helena, MT (United States); Husar, J.D.; Husar, R.B. [Washington Univ., St. Louis, MO (United States). Center for Air Pollution Impact and Trend Analysis; Brimblecombe, P. [Univ. of East Anglia, Norwich (United Kingdom)

1996-07-19T23:59:59.000Z

178

Method for dissolving plutonium dioxide  

DOE Patents (OSTI)

A method for dissolving plutonium dioxide comprises adding silver ions to a nitric acid-hydrofluoric acid solution to significantly speed up dissolution of difficultly soluble plutonium dioxide.

Tallent, Othar K. (Oak Ridge, TN)

1976-01-01T23:59:59.000Z

179

It's Elemental - The Element Sulfur  

NLE Websites -- All DOE Office Websites (Extended Search)

Phosphorus Phosphorus Previous Element (Phosphorus) The Periodic Table of Elements Next Element (Chlorine) Chlorine The Element Sulfur [Click for Isotope Data] 16 S Sulfur 32.065 Atomic Number: 16 Atomic Weight: 32.065 Melting Point: 388.36 K (115.21°C or 239.38°F) Boiling Point: 717.75 K (444.60°C or 832.28°F) Density: 2.067 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 3 Group Number: 16 Group Name: Chalcogen What's in a name? From the Sanskrit word sulvere and the Latin word sulphurium. Say what? Sulfur is pronounced as SUL-fer. History and Uses: Sulfur, the tenth most abundant element in the universe, has been known since ancient times. Sometime around 1777, Antoine Lavoisier convinced the rest of the scientific community that sulfur was an element. Sulfur is a

180

Why sequence purple sulfur bacteria?  

NLE Websites -- All DOE Office Websites (Extended Search)

purple sulfur bacteria? purple sulfur bacteria? The process by which plants and some bacteria can convert light energy to sugar, or photosynthesis, is crucial to global food webs, and complicated. Very little is known about the photosynthetic bacteria in the purple sulfur bacteria group, which may represent one of the most primitive photosynthetic organisms and are capable of carbon fixation and sequestration in both light and dark conditions with the help of sulfur compounds. Purple sulfur bacteria are autotrophic and can synthesize organic compounds from inorganic sources. Researchers hope to learn more by sequencing nine type strains of purple sulfur bacteria that are found in freshwater, brackish and marine systems. The information would lead to a better understanding of the process of photosynthesis as well as the global

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The studying of washing of arsenic and sulfur from coals having different ranges of arsenic contents  

SciTech Connect

To study the effectiveness of washing in removal of arsenic and sulfur from coals with different ranges of arsenic concentration, coal was divided into three groups on the basis of arsenic content: 0-5.5 mg/kg, 5.5 mg/kg-8.00 mg/kg, and over 8.00 mg/kg. The result shows that the arsenic in coals with higher arsenic content occurs mainly in an inorganic state and can be relatively easily removed. Arsenic removal is very difficult and less complete when the arsenic content is lower than 5.5 mg/kg because most of this arsenic is in an organic state. There is no relationship between washing rate of total sulfur and arsenic content, but the relationship between the washing rate of total sulfur and percent of organic sulfur is very strong.

Mingshi Wang; Dangyu Song; Baoshan Zheng; R.B. Finkelman [Institute of Geochemistry, Guiyang (China). State Key Lab of Environmental Geochemistry

2008-10-15T23:59:59.000Z

182

Better Batteries from Waste Sulfur  

Science Conference Proceedings (OSTI)

Apr 28, 2013 ... Although there are some industrial uses for sulfur, the amount generated from refining fossil fuels far outstrips the current need for the element.

183

The Hybrid Sulfur Cycle for Nuclear Hydrogen Production  

DOE Green Energy (OSTI)

Two Sulfur-based cycles--the Sulfur-Iodine (SI) and the Hybrid Sulfur (HyS)--have emerged as the leading thermochemical water-splitting processes for producing hydrogen utilizing the heat from advanced nuclear reactors. Numerous international efforts have been underway for several years to develop the SI Cycle, but development of the HyS Cycle has lagged. The purpose of this paper is to discuss the background, current status, recent development results, and the future potential for this thermochemical process. Savannah River National Laboratory (SRNL) has been supported by the U.S. Department of Energy Office of Nuclear Energy, Science, and Technology since 2004 to evaluate and to conduct research and development for the HyS Cycle. Process design studies and flowsheet optimization have shown that an overall plant efficiency (based on nuclear heat converted to hydrogen product, higher heating value basis) of over 50% is possible with this cycle. Economic studies indicate that a nuclear hydrogen plant based on this process can be economically competitive, assuming that the key component, the sulfur dioxide-depolarized electrolyzer, can be successfully developed. SRNL has recently demonstrated the use of a proton-exchange-membrane electrochemical cell to perform this function, thus holding promise for economical and efficient hydrogen production.

Summers, William A.; Gorensek, Maximilian B.; Buckner, Melvin R.

2005-09-08T23:59:59.000Z

184

Ion Removal  

INL’s ion removal technology leverages the ability of phosphazene polymers discriminate between water and metal ions, which allows water to pass ...

185

Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells  

DOE Green Energy (OSTI)

One of the unique advantages of SOFCs over other types of fuel cells is the potential for direct utilization of hydrocarbon fuels (it may involve internal reforming). Unfortunately, most hydrocarbon fuels contain sulfur, which would dramatically degrade SOFC performance at parts-per-million (ppm) levels. Low concentration of sulfur (ppm or below) is difficult to remove efficiently and cost-effectively. Therefore, knowing the exact poisoning process for state-of-the-art anode-supported SOFCs with Ni-YSZ cermet anodes, understanding the detailed anode poisoning mechanism, and developing new sulfur-tolerant anodes are essential to the promotion of SOFCs that run on hydrocarbon fuels. The effect of cell operating conditions (including temperature, H{sub 2}S concentration, cell voltage/current density, etc.) on sulfur poisoning and recovery of nickel-based anode in SOFCs was investigated. It was found that sulfur poisoning is more severe at lower temperature, higher H{sub 2}S concentration or lower cell current density (higher cell voltage). In-situ Raman spectroscopy identified the nickel sulfide formation process on the surface of a Ni-YSZ electrode and the corresponding morphology change as the sample was cooled in H{sub 2}S-containing fuel. Quantum chemical calculations predicted a new S-Ni phase diagram with a region of sulfur adsorption on Ni surfaces, corresponding to sulfur poisoning of Ni-YSZ anodes under typical SOFC operating conditions. Further, quantum chemical calculations were used to predict the adsorption energy and bond length for sulfur and hydrogen atoms on various metal surfaces. Surface modification of Ni-YSZ anode by thin Nb{sub 2}O{sub 5} coating was utilized to enhance the sulfur tolerance. A multi-cell testing system was designed and constructed which is capable of simultaneously performing electrochemical tests of 12 button cells in fuels with four different concentrations of H{sub 2}S. Through systematical study of state-of-the-art anode-supported SOFC button cells, it is seen that the long-term sulfur poisoning behavior of those cells indicate that there might be a second-stage slower degradation due to sulfur poisoning, which would last for a thousand hour or even longer. However, when using G-18 sealant from PNNL, the 2nd stage poisoning was effectively prohibited.

Lei Yang; Meilin Liu

2008-12-31T23:59:59.000Z

186

Geothermal hydrogen sulfide removal  

DOE Green Energy (OSTI)

UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

Urban, P.

1981-04-01T23:59:59.000Z

187

Volume efficient sodium sulfur battery  

SciTech Connect

In accordance with the teachings of this specification, a sodium sulfur battery is formed as follows. A plurality of box shaped sulfur electrodes are provided, the outer surfaces of which are defined by an electrolyte material. Each of the electrodes have length and width dimensions substantially greater than the thicknesses thereof as well as upwardly facing surface and a downwardly facing surface. An electrode structure is contained in each of the sulfur electrodes. A holding structure is provided for holding the plurality of sulfur electrodes in a stacked condition with the upwardly facing surface of one sulfur electrode in facing relationship to the downwardly facing surface of another sulfur electrode thereabove. A small thickness dimension separates each of the stacked electrodes thereby defining between each pair of sulfur electrodes a volume which receives the sodium reactant. A reservoir is provided for containing sodium. A manifold structure interconnects the volumes between the sulfur electrodes and the reservoir. A metering structure controls the flow of sodium between the reservoir and the manifold structure.

Mikkor, Mati (Ann Arbor, MI)

1980-01-01T23:59:59.000Z

188

Microsoft Word - INFLUENCE OF SULFUR REMOVAL ON IGCC PERFORMANCE...  

NLE Websites -- All DOE Office Websites (Extended Search)

results in a moderate increase in the power plant total investment, and a lower power plant thermal efficiency leading to an overall significant increase in the kW...

189

Applying Nano Technology to Remove Toxic Sulfur Gases ...  

Science Conference Proceedings (OSTI)

Cryoscopic Data for Hall-Héroult Bath Containing Magnesium Fluoride, Calcium Fluoride, Potassium Cryolite, and Sodium Chloride · Current Distribution and ...

190

Removal of Elemental Sulfur from Hydrometallurgical Waste Derived ...  

Science Conference Proceedings (OSTI)

Selective Recovery of Gold from E-wastes by Using Cellulosic Wastes · Stabilization of Chromium-Based Slags with FeS2 and FeSO4 · Sulphide Precipitation ...

191

Low Temperature Sorbents for Removal of Sulfur Compounds from...  

NLE Websites -- All DOE Office Websites (Extended Search)

less expensive sorbent to manufacture and maintain Applications * Power generation systems * Natural gas and oil production processes * Coal gasification and oil shale production...

192

CYCLIC CARBON DIOXIDE STIMULATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CARBON DIOXIDE STIMULATION ("Huff-and-Puff') (A well-stimulation method) Cyclic CO 2 stimulation is a single-well operation that is developing as a method of rapidly producing oil....

193

SRD 134 Carbon Dioxide  

Science Conference Proceedings (OSTI)

> Return to SRD 134, Index of Semiconductor Process Gases. CARBON DIOXIDE. MW [1]. 44.010. NBP [1]. 194.75 K. TP [1]. 216.59 K. CO 2. Pc [1]. ...

2012-07-27T23:59:59.000Z

194

Why Sequence Bacteria That Reduce Sulfur Compounds?  

NLE Websites -- All DOE Office Websites (Extended Search)

Bacteria That Reduce Sulfur Compounds? Combustion of sulfur-containing fuels, such as coal, oil, and natural gas, contributes significantly to global environmental problems, such...

195

BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE  

E-Print Network (OSTI)

Metallic Inclusions in Uranium Dioxide", LBL-11117 (1980).in Hypostoichiornetric Uranium Dioxide 11 , LBL-11095 (OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa L. Yang and

Yang, Rosa L.

2013-01-01T23:59:59.000Z

196

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

SciTech Connect

Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

2007-06-30T23:59:59.000Z

197

Appendix B: CArBon dioxide CApture teChnology SheetS  

NLE Websites -- All DOE Office Websites (Extended Search)

of the development of an advanced chemical looping combustion (CLC) system for coal-fired power generation that removes greater than 90 percent of the carbon dioxide (CO 2 ) with a...

198

Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent  

DOE Patents (OSTI)

Disclosed is a method of sizing and desizing yarn, or more specifically to a method of coating yarn with size and removing size from yarn with liquid carbon dioxide solvent. 3 figs.

Fulton, J.L.; Yonker, C.R.; Hallen, R.R.; Baker, E.G.; Bowman, L.E.; Silva, L.J.

1999-01-26T23:59:59.000Z

199

Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent  

DOE Patents (OSTI)

Disclosed is a method of sizing and desizing yarn, or more specifically to a method of coating yarn with size and removing size from yarn with liquid carbon dioxide solvent.

Fulton, John L. (Richland, WA); Yonker, Clement R. (Richland, WA); Hallen, Richard R. (Richland, WA); Baker, Eddie G. (Richland, WA); Bowman, Lawrence E. (Richland, WA); Silva, Laura J. (Richland, WA)

1999-01-01T23:59:59.000Z

200

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

E-Print Network (OSTI)

Dioxide Removal from Coal-Fired Power Plants”, Ph.D. thesis,widely used today in coal-fired power plants, and good siteswidely used today in coal-fired power plants, and good sites

Ogden, Joan

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sulfur condensation in Claus catalyst  

SciTech Connect

The heterogeneous reactions in which catalyst deactivation by pore plugging occur are listed and include: coke formation in petroleum processing, especially hydrocracking and hydrodesulfurization catalysts; steam reforming and methnation catalysts; ammonia synthesis catalyst; and automobile exhause catalysts. The authors explain how the Claus process converts hydrogen sulfide produced by petroleum desulfurization units and gas treatment processes into elemental sulfur and water. More than 15 million tons of sulfur are recovered annually by this process. Commercial Claus plants appear to operate at thermodynamic equilibrium. Depending on the H2S content of the feed and the number of reactors, total H2S conversion to elemental sulfur can exceed 95%.

Schoffs, G.R.

1985-02-01T23:59:59.000Z

202

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

2005-01-01T23:59:59.000Z

203

Carbon Dioxide Capture Process with Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Dioxide Capture Process with Regenerable Sorbents Dioxide Capture Process with Regenerable Sorbents sorbent material. Additionally, the design of the system incorporates a cross- flow moving-bed reactor where the gas flows horizontally through a "panel" of solid sorbent that is slowly moving down-wards under gravity flow. With the expanded use of fossil fuels expected throughout the world, the increase in CO 2 emissions may prove to contribute even more significantly to global climate change. To address this problem, carbon sequestration scientists and engineers have proposed a number of methods to remove CO 2 from gas streams, such as chemical absorption with a solvent, membrane separation, and cryogenic fractionation. However, all of these methods are expensive and possibly cost-prohibitive for a specific application.

204

Alkali metal/sulfur battery  

SciTech Connect

Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

Anand, Joginder N. (Clayton, CA)

1978-01-01T23:59:59.000Z

205

Depleted Uranium (DU) Dioxide Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

Fill Depleted Uranium (DU) Dioxide Fill DU dioxide in the form of sand may be used to fill the void spaces in the waste package after the package is loaded with SNF. This...

206

METHOD OF SINTERING URANIUM DIOXIDE  

DOE Green Energy (OSTI)

This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

Henderson, C.M.; Stavrolakis, J.A.

1963-04-30T23:59:59.000Z

207

Available Technologies: Acceleration of Carbon Dioxide ...  

APPLICATIONS OF TECHNOLOGY: Carbon dioxide capture and sequestration; ADVANTAGES: Accelerated capture of carbon dioxide; Effective at extremely dilute (nanomolar ...

208

Observations of the atmospheric sulfur cycle on SAGA 3  

SciTech Connect

During the Soviet/American Gases and Aerosols (SAGA) 3 program in February and March 1991 the authors measured a wide variety of sulfur compounds simultaneously in the equatorial Pacific marine boundary layer. They made measurements of atmospheric dimethyl sulfide (DMS), sulfur dioxide (SO{sub 2}), and size-resolved aerosol non-sea-salt sulfate (NSS), and methane sulfonate (MSA). Some of the observed ratios contradict commonly held views of the marine sulfur cycle: the large DMS/NSS ratio implies that NSS may not be the primary product of DMS oxidation under some conditions. The authors also found much more DMS than SO{sub 2}, which may suggest that SO{sub 2} is not always an intermediate in DMS oxidation. The small SO{sub 2}/NSS ratio also supports the idea that most NSS was not formed from SO{sub 2}. Although the measured ratios of MSA/NSS were similar to previous observations in this region, much of the MSA was contained on supermicron particles, in contrast to both the NSS and the earlier MSA observations at higher latitudes. This implies that MSA/NSS ratios in ice cores may not accurately reflect the MSA/NSS ratios in their source areas. 51 refs., 4 figs., 3 tabs.

Huebert, B.J.; Howell, S.; Laj, P. [Univ. of Rhode Island, Narragansett, RI (United States); Johnson, J.E.; Bates, T.S.; Quinn, P.K. [NOAA/Pacific Marine Environmental Lab., Seattle, WA (United States); Yegorov, V. [State Committee for Hydrometeorology, Moscow (Russian Federation); Clarke, A.D.; Porter, J.N. [Univ. of Hawaii, Honolulu, HI (United States)

1993-09-20T23:59:59.000Z

209

Hydrogen and Sulfur Production from Hydrogen Sulfide Wastes  

E-Print Network (OSTI)

A new hydrogen sulfide waste-treatment process that uses microwave plasma-chemical technology is currently under development in the Soviet Union and in the United States. Whereas the present waste treatment process only recovers sulfur at best, this novel process recovers both hydrogen and sulfur. The plasma process involves dissociating hydrogen sulfide in a "nonequilibrium" plasma in a microwave or radio-frequency reactor. After the dissociation process, sulfur is condensed and sold just as is currently done. The remaining gases are purified and separated into streams containing the product hydrogen, the hydrogen sulfide to be recycled to the plasma reactor, and the process purge containing carbon dioxide and water. This process has particular implications for petroleum refining industry, in which hydrogen is a widely used reagent and must be produced from increasingly scarce hydrocarbon resources. The modular nature of the new process may also offer economic advantages over small-scale waste treatment technologies widely used in the natural-gas industry. Laboratory-scale experiments with pure hydrogen sulfide indicate that conversions exceeding 90% are possible with appropriate reactor design and that the energy required to dissociate hydrogen sulfide is low enough for the plasma process to be economically competitive. In addition, the experiments show-that typical refinery acid-gas streams are compatible with the plasma process and that all by-products can be treated with existing technology.

Harkness, J.; Doctor, R. D.

1993-03-01T23:59:59.000Z

210

Hydrogen and sulfur production from hydrogen sulfide wastes  

DOE Green Energy (OSTI)

A new hydrogen sulfide waste-treatment process that uses microwave plasma-chemical technology is currently under development in the Soviet Union and in the United States. Whereas the present waste treatment process only recovers sulfur at best, this novel process recovers both hydrogen and sulfur. The plasma process involves dissociating hydrogen sulfide in a nonequilibrium'' plasma in a microwave or radio-frequency reactor. After the dissociation process, sulfur is condensed and sold just as is currently done. The remaining gases are purified and separated into streams containing the product hydrogen, the hydrogen sulfide to be recycled to the plasma reactor, and the process purge containing carbon dioxide and water. This process has particular implications for the petroleum refining industry, in which hydrogen is a widely used reagent and must be produced from increasingly scarce hydrocarbon resources. The modular nature of the new process may also offer economic advantages over small-scale waste treatment technologies widely used in the natural-gas industry. Laboratory-scale experiments with pure hydrogen sulfide indicate that conversions exceeding 90% are possible with appropriate reactor design and that the energy required to dissociate hydrogen sulfide is low enough for the plasma process to be economically competitive. In addition, the experiments show that typical refinery acid-gas streams are compatible with the plasma process and that all by-products can be treated with existing technology.

Harkness, J.B.L.; Doctor, R.D.

1993-01-01T23:59:59.000Z

211

Hydrogen and sulfur production from hydrogen sulfide wastes  

DOE Green Energy (OSTI)

A new hydrogen sulfide waste-treatment process that uses microwave plasma-chemical technology is currently under development in the Soviet Union and in the United States. Whereas the present waste treatment process only recovers sulfur at best, this novel process recovers both hydrogen and sulfur. The plasma process involves dissociating hydrogen sulfide in a ``nonequilibrium`` plasma in a microwave or radio-frequency reactor. After the dissociation process, sulfur is condensed and sold just as is currently done. The remaining gases are purified and separated into streams containing the product hydrogen, the hydrogen sulfide to be recycled to the plasma reactor, and the process purge containing carbon dioxide and water. This process has particular implications for the petroleum refining industry, in which hydrogen is a widely used reagent and must be produced from increasingly scarce hydrocarbon resources. The modular nature of the new process may also offer economic advantages over small-scale waste treatment technologies widely used in the natural-gas industry. Laboratory-scale experiments with pure hydrogen sulfide indicate that conversions exceeding 90% are possible with appropriate reactor design and that the energy required to dissociate hydrogen sulfide is low enough for the plasma process to be economically competitive. In addition, the experiments show that typical refinery acid-gas streams are compatible with the plasma process and that all by-products can be treated with existing technology.

Harkness, J.B.L.; Doctor, R.D.

1993-03-01T23:59:59.000Z

212

The carbon dioxide dilemma  

SciTech Connect

The effect of burning fossil fuels on the global climate is discussed. It may be that as we produce carbon dioxide by burning fossil fuels, we create a greenhouse effect which causes temperatures on earth to rise. Implications of changes in global temperatures are discussed.

Edelson, E.

1982-02-01T23:59:59.000Z

213

Carbon dioxide sensor  

SciTech Connect

The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

2011-11-15T23:59:59.000Z

214

Catalyst regeneration process including metal contaminants removal  

DOE Patents (OSTI)

Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

Ganguli, Partha S. (Lawrenceville, NJ)

1984-01-01T23:59:59.000Z

215

Cost-effective sulfur control strategies for the Great Plains gasification project  

SciTech Connect

The Great Plains gasification plant in Beulah, North Dakota, uses 14 Lurgi gasifiers to produce 152x10/sup 6/ scf/d (4.1x10/sup 6/ Nm/sup 3//d) of pipeline-quality gas from lignite. Since start-up in mid-1984, the plant has provided a serious challenge to the reliable operation of the Stretford sulfur recovery system. To address this challenge, over forty options for mitigating sulfur emissions were evaluated on an economic and technical basis, beginning at the emissions source (the stack) and working back through the plant. Although this study was directed toward providing a timely solution to the sulfur dioxide emissions problem, the status and opportunities for a number of emerging technologies were brought into focus. This evaluation is detailed here by the authors.

Doctor, R.D.; Wilzbach, K.E. (Argonne National Lab., IL (USA). Energy and Environmental Systems Div.)

1989-09-01T23:59:59.000Z

216

Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming  

DOE Green Energy (OSTI)

In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

Gunther Dieckmann

2006-06-30T23:59:59.000Z

217

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

is carbon dioxide? is carbon dioxide? CO2 Dipole Carbon Dioxide Carbon dioxide (chemical name CO2) is a clear gas composed of one atom of carbon (C) and two atoms of oxygen (O). Carbon dioxide is one of many chemical forms of carbon on the Earth. It does not burn, and in standard temperature and pressure conditions it is stable, inert, and non-toxic. Carbon dioxide occurs naturally in small amounts (about 0.04%) in the Earth's atmosphere. The volume of CO2 in the atmosphere is equivalent to one individual in a crowd of 2,500. Carbon dioxide is produced naturally by processes deep within the Earth. This CO2 can be released at the surface by volcanoes or might be trapped in natural underground geologic CO2 deposits, similar to underground deposits of oil and natural gas. As a major greenhouse gas, CO2 helps create and

218

Measuring Sulphur Dioxide (SO2) Emissions in October, 2010 Catastrophic Eruption from Merapi Volcano in Java, Indonesia  

E-Print Network (OSTI)

Volcano in Java, Indonesia with Ozone Monitoring Instrument (OMI) José A. Morales-Collazo Geology This paper discusses sulfur dioxide (SO2) cloud emissions from Merapi Volcano in Java, Indonesia during, Indonesia. In October 26th , 2010, a catastrophic eruption was reported from Merapi causing nearly 386

Gilbes, Fernando

219

Process for recovery of sulfur from acid gases  

DOE Patents (OSTI)

Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

Towler, Gavin P. (Kirkbymoorside, GB2); Lynn, Scott (Pleasant Hill, CA)

1995-01-01T23:59:59.000Z

220

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

Gary M. Blythe

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CARBON DIOXIDE FIXATION.  

DOE Green Energy (OSTI)

Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

FUJITA,E.

2000-01-12T23:59:59.000Z

222

Ultra-Low Sulfur Diesel Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Low Sulfur Diesel Fuel Ultra-Low Sulfur Diesel Fuel August 20, 2013 - 8:53am Addthis Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur...

223

Energy Basics: Ultra-Low Sulfur Diesel Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Ultra-Low Sulfur Diesel Fuel Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur...

224

Ultra-Low Sulfur Diesel Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur content. The U.S. Environmental Protection Agency requires 80% of the highway diesel fuel refined in or...

225

Abatement of Air Pollution: Control of Carbon Dioxide Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program...

226

Sulfur Partitioning During Vitrification of INEEL Sodium Bearing Waste: Status Report  

SciTech Connect

The sodium bearing tank waste (SBW) at Idaho National Engineering and Environmental Laboratory (INEEL) contains high concentrations of sulfur (roughly 5 mass% of SO3 on a nonvolatile oxide basis). The amount of sulfur that can be feed to the melter will ultimately determine the loading of SBW in glass produced by the baseline (low-temperature, joule-heated, liquid-fed, ceramic-lined) melter. The amount of sulfur which can be fed to the melter is determined by several major factors including: the tolerance of the melter for an immiscible salt layer accumulation, the solubility of sulfur in the glass melt, the fraction of sulfur removed to the off-gas, and the incorporation of sulfur into the glass up to it?s solubility limit. This report summarizes the current status of testing aimed at determining the impacts of key chemical and physical parameters on the partitioning of sulfur between the glass, a molten salt, and the off-gas.

Darab, John G.; Graham, Dennis D.; Macisaac, Brett D.; Russell, Renee L.; Smith, Harry D.; Vienna, John D.; Peeler, David K.

2001-07-31T23:59:59.000Z

227

Method of activating limestone for enhanced capture of sulfur from post combustion gases  

DOE Patents (OSTI)

Calcium based sulfur sorbent is prepared in a highly reactive form for use in removing gaseous sulfur species from coal combustion gases by heating finely divided limestone particles at a temperature of at least 2,000 K for a period of 5 to 50 milliseconds and quenching the particles by bringing them to a temperature below 1,400 K before they become sintered. For application to a coal combustion system, the quenching step may be carried out in the post coal combustion zone along with the reaction of the particles with sulfur. The initial heating step is performed outside of the zone because of the high temperatures required in that step, which would result in decomposition of the calcium-sulfur product.

Abichandan, J.S.; Holcombe, N.T.; Litka, A.F.; Woodroffe, J.A.

1991-03-04T23:59:59.000Z

228

Seal for sodium sulfur battery  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which the sealing is accomplished by a radial compression seal made on a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI); Minck, Robert W. (Lathrup Village, MI); Williams, William J. (Northville, MI)

1980-01-01T23:59:59.000Z

229

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

the process through which carbon is cycled through the air, ground, plants, animals, and fossil fuels. People and animals inhale oxygen from the air and exhale carbon dioxide...

230

Sonochemical reduction of carbon dioxide.  

E-Print Network (OSTI)

??Emissions from the combustion of fossil fuels and cement production are responsible for approximately 75% of the increase of carbon dioxide (CO2) concentration in the… (more)

Koblov, Alexander

2011-01-01T23:59:59.000Z

231

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium carbonate in these tests is initially very rapid and high degrees of removal are possible. The exothermic nature of the carbonation reaction resulted in a rise in bed temperature and subsequent decline in removal rate. Good temperature control, possibly through addition of supplemental water and evaporative cooling, appears to be the key to getting consistent carbon dioxide removal in a full-scale reactor system. The tendency of the alkali carbonate sorbents to cake on contact with liquid water complicates laboratory investigations as well as the design of larger scale systems. Also their low attrition resistance appears unsuitable for their use in dilute-phase transport reactor systems. Sodium and potassium carbonate have been incorporated in ceramic supports to obtain greater surface area and attrition resistance, using a laboratory spray dryer. The caking tendency is reduced and attrition resistance increased by supporting the sorbent. Supported sorbents with loading of up to 40 wt% sodium and potassium carbonate have been prepared and tested. These materials may improve the feasibility of large-scale CO{sub 2} capture systems based on short residence time dilute-phase transport reactor systems.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

2004-11-01T23:59:59.000Z

232

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

Science Conference Proceedings (OSTI)

Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium carbonate in these tests is initially very rapid and high degrees of removal are possible. The exothermic nature of the carbonation reaction resulted in a rise in bed temperature and subsequent decline in removal rate. Good temperature control, possibly through addition of supplemental water and evaporative cooling, appears to be the key to getting consistent carbon dioxide removal in a full-scale reactor system. The tendency of the alkali carbonate sorbents to cake on contact with liquid water complicates laboratory investigations as well as the design of larger scale systems. Also their low attrition resistance appears unsuitable for their use in dilute-phase transport reactor systems. Sodium and potassium carbonate have been incorporated in ceramic supports to obtain greater surface area and attrition resistance, using a laboratory spray dryer. The caking tendency is reduced and attrition resistance increased by supporting the sorbent. Supported sorbents with loading of up to 40 wt% sodium and potassium carbonate have been prepared and tested. These materials may improve the feasibility of large-scale CO{sub 2} capture systems based on short residence time dilute-phase transport reactor systems.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson; Santosh Gangwal; Ya Liang; Tyler Moore; Margaret Williams; Douglas P. Harrison

2004-09-30T23:59:59.000Z

233

Minimizing sulfur contamination and rinse water volume required following a sulfuric acid/hydrogen peroxide clean by performing a chemically basic rinse  

Science Conference Proceedings (OSTI)

Sulfuric acid hydrogen peroxide mixtures (SPM) are commonly used in the semiconductor industry to remove organic contaminants from wafer surfaces. This viscous solution is very difficult to rinse off wafer surfaces. Various rinsing conditions were tested and the resulting residual contamination on the wafer surface was measured. The addition of small amounts of a chemical base such as ammonium hydroxide to the rinse water has been found to be effective in reducing the surface concentration of sulfur and also mitigates the particle growth that occurs on SPM cleaned wafers. The volume of room temperature water required to rinse these wafers is also significantly reduced.

Clews, P.J.; Nelson, G.C.; Resnick, P.J.; Matlock, C.A.; Adkins, C.L.J.

1997-08-01T23:59:59.000Z

234

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

2004-07-01T23:59:59.000Z

235

Process for reducing sulfur in coal char  

DOE Patents (OSTI)

Coal is gasified in the presence of a small but effective amount of alkaline earth oxide, hydroxide or carbonate to yield a char fraction depleted in sulfur. Gases produced during the reaction are enriched in sulfur compounds and the alkaline earth compound remains in the char fraction as an alkaline earth oxide. The char is suitable for fuel use, as in a power plant, and during combustion of the char the alkaline earth oxide reacts with at least a portion of the sulfur oxides produced from the residual sulfur contained in the char to further lower the sulfur content of the combustion gases.

Gasior, Stanley J. (Pittsburgh, PA); Forney, Albert J. (Coraopolis, PA); Haynes, William P. (Pittsburgh, PA); Kenny, Richard F. (Venetia, PA)

1976-07-20T23:59:59.000Z

236

New Model to Predict Formation Damage due to Sulfur Deposition in Sour M.A. Mahmoud and A.A. Al-Majed, KFUPM, all SPE  

E-Print Network (OSTI)

. Kennedy, H. T. and Wieland, D. R. 1960. Equilibrium in the Methane/Carbon Dioxide/Hydrogen Sulfide (pressure and temperature). Accurate correlations were used to calculate the gas compressibility factor (Z-Awadhy et al. (1998) conducted a core flow experiment to study the sulfur deposition in carbonate oil

Al-Majed, Abdulaziz Abdullah

237

Simultaneous Removal of NOx and Mercury in Low Temperature Selective Catalytic and Adsorptive Reactor  

SciTech Connect

The results of a 18-month investigation to advance the development of a novel Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR), for the simultaneous removal of NO{sub x} and mercury (elemental and oxidized) from flue gases in a single unit operation located downstream of the particulate collectors, are reported. In the proposed LTSCAR, NO{sub x} removal is in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The concomitant capture of mercury in the unit is achieved through the incorporation of a novel chelating adsorbent. As conceptualized, the LTSCAR will be located downstream of the particulate collectors (flue gas temperature 140-160 C) and will be similar in structure to a conventional SCR. That is, it will have 3-4 beds that are loaded with catalyst and adsorbent allowing staged replacement of catalyst and adsorbent as required. Various Mn/TiO{sub 2} SCR catalysts were synthesized and evaluated for their ability to reduce NO at low temperature using CO as the reductant. It has been shown that with a suitably tailored catalyst more than 65% NO conversion with 100% N{sub 2} selectivity can be achieved, even at a high space velocity (SV) of 50,000 h-1 and in the presence of 2 v% H{sub 2}O. Three adsorbents for oxidized mercury were developed in this project with thermal stability in the required range. Based on detailed evaluations of their characteristics, the mercaptopropyltrimethoxysilane (MPTS) adsorbent was found to be most promising for the capture of oxidized mercury. This adsorbent has been shown to be thermally stable to 200 C. Fixed-bed evaluations in the targeted temperature range demonstrated effective removal of oxidized mercury from simulated flue gas at very high capacity ({approx}>58 mg Hg/g adsorbent). Extension of the capability of the adsorbent to elemental mercury capture was pursued with two independent approaches: incorporation of a novel nano-layer on the surface of the chelating mercury adsorbent to achieve in situ oxidation on the adsorbent, and the use of a separate titania-supported manganese oxide catalyst upstream of the oxidized mercury adsorbent. Both approaches met with some success. It was demonstrated that the concept of in situ oxidation on the adsorbent is viable, but the future challenge is to raise the operating capacity beyond the achieved limit of 2.7 mg Hg/g adsorbent. With regard to the manganese dioxide catalyst, elemental mercury was very efficiently oxidized in the absence of sulfur dioxide. Adequate resistance to sulfur dioxide must be incorporated for the approach to be feasible in flue gas. A preliminary benefits analysis of the technology suggests significant potential economic and environmental advantages.

Neville G. Pinto; Panagiotis G. Smirniotis

2006-03-31T23:59:59.000Z

238

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents (OSTI)

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

239

Carbon dioxide and climate  

SciTech Connect

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

1990-10-01T23:59:59.000Z

240

Photocatalytic Conversion of Carbon Dioxide to Methanol.  

E-Print Network (OSTI)

??The photocatalytic conversion of carbon dioxide (CO2) to methanol was investigated. The procedure for the carbon dioxide conversion was carried out using a small scale… (more)

Okpo, Emmanuel

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Figure 37. Carbon dioxide emissions from electricity ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 37. Carbon dioxide emissions from electricity generation in three cases, 2005-2040 (million metric tons carbon dioxide ...

242

China's Industrial Carbon Dioxide Emissions in Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces Title China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and...

243

Optimize carbon dioxide sequestration, enhance oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

4 January Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important...

244

Optimize carbon dioxide sequestration, enhance oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

245

NETL: Gasification Systems - Warm Gas Multi-Contaminant Removal System  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Multi-Contaminant Removal System Warm Gas Multi-Contaminant Removal System Project Number: DE-SC00008243 TDA Research, Inc. is developing a high-capacity, low-cost sorbent that removes anhydrous ammonia (NH3), mercury (Hg), and trace contaminants from coal- and coal/biomass-derived syngas. The clean-up system will be used after the bulk warm gas sulfur removal step, and remove NH3 and Hg in a regenerable manner while irreversibly capturing all other trace metals (e.g., Arsenic, Selenium) reducing their concentrations to sub parts per million (ppm) levels. Current project plans include identifying optimum chemical composition and structure that provide the best sorbent performance for removing trace contaminants, determining the effect of operating parameters, conducting multiple-cycle experiments to test the life of the sorbent for NH3 and Hg removal, and conducting a preliminary design of the sorbent reactor.

246

Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control  

Science Conference Proceedings (OSTI)

This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. (Institute of Gas Technology, Chicago, IL (United States)); Gidaspow, D.; Gupta, R.; Wasan, D.T. (Illinois Inst. of Tech., Chicago, IL (United States)); Pfister, R.M.: Krieger, E.J. (Ohio State Univ., Columbus, OH (United States))

1992-05-01T23:59:59.000Z

247

The Cost of Carbon Dioxide Capture and Storage in Geologic Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

CosT of Carbon DioxiDe CapTure CosT of Carbon DioxiDe CapTure anD sTorage in geologiC formaTions The sequestration of carbon dioxide (CO 2 ) in geologic formations is a viable option for achieving deep reductions in greenhouse gas emissions without hindering economic prosperity. Due to the abundance of fossil fuels in the United States and around the globe as compared to other energy sources, there is strong interest in geologic sequestration, but cost is a key issue. The volume of CO 2 emitted from power plants and other energy systems is enormous compared to other emissions of concern. For example, a pulverized coal (PC) boiler operating on Illinois #6 coal (2.5 percent sulfur) may generate 0.03 pounds of sulfur dioxide per kilowatt hour (kWh) and emit CO 2 at a rate of 1.7 pounds per kWh.

248

The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems  

SciTech Connect

Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

1994-06-01T23:59:59.000Z

249

Mitigation of Sulfur Effects on a Lean NOx Trap Catalyst by Sorbate Reapplication  

DOE Green Energy (OSTI)

Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping. Natural gas combusted over partial oxidation catalysts in the exhaust can be used to obtain the rich exhaust conditions necessary for catalyst regeneration. Thus, the lean NOx trap technology is well suited for lean natural gas engine applications. One potential limitation of the lean NOx trap technology is sulfur poisoning. Sulfur compounds directly bond to the NOx trapping sites of the catalyst and render them ineffective; over time, the sulfur poisoning leads to degradation in overall NOx reduction performance. In order to mitigate the effects of sulfur poisoning, a process has been developed to restore catalyst activity after sulfur poisoning has occurred. The process is an aqueous-based wash process that removes the poisoned sorbate component of the catalyst. A new sorbate component is reapplied after removal of the poisoned sorbate. The process is low cost and does not involve reapplication of precious metal components of the catalyst. Experiments were conducted to investigate the feasibility of the washing process on a lean 8.3-liter natural gas engine on a dynamometer platform. The catalyst was rapidly sulfur poisoned with bottled SO2 gas; then, the catalyst sorbate was washed and reapplied and performance was re-evaluated. Results show that the sorbate reapplication process is effective at restoring lost performance due to sulfur poisoning. Specific details relative to the implementation of the process for large stationary natural gas engines will be discussed.

Parks, II, James E [ORNL

2007-01-01T23:59:59.000Z

250

World petroleum-derived sulfur production  

SciTech Connect

Research efforts in new uses for sulfur, among them those of the Sulfur Development Institute of Canada, have resulted in the development of several new product markets. Petroleum and natural gas derived sulfurs are finding use as asphalt extenders in road construction throughout North America and as concrete extenders and substitutes for Portland cement in the construction industries of Mexico and the Middle East. Their use in masonry blocks is now being commercialized. Canada is the world's largest producer of commercial sulfur; 80% of it is used as a processing chemical in the form of sulfuric acid. Saudi Arabia, recently having begun to commercialize its vast resources, is constructing plants for the extraction of sulfur from natural gas and plans to export between 6 and 7 x 10/sup 5/ tons annually, much of it for fertilizer manufacture to India, Tunisia, Italy, Pakistan, Greece, Morocco, and Thailand.

Cantrell, A.

1982-08-02T23:59:59.000Z

251

Topsoe`s Wet gas Sulfuric Acid (WSA) process: An alternative technology for recovering refinery sulfur  

SciTech Connect

The Topsoe Wet gas Sulfuric Acid (WSA) process is a catalytic process which produces concentrated sulfuric acid from refinery streams containing sulfur compounds such as H{sub 2}S (Claus plant feed), Claus plant tail gas, SO{sub 2} (FCC off-gas, power plants), and spent sulfuric acid (alkylation acid). The WSA process recovers up to 99.97% of the sulfur value in the stream as concentrated sulfuric acid (93--98.5 wt%). No solid waste products or waste water is produced and no chemicals are consumed in the process. The simple process layout provides low capital cost and attractive operating economy. Twenty four commercial WSA plants have been licensed. The WSA process is explained in detail and comparisons with alternative sulfur management technology are presented. Environmental regulations applying to SO{sub x} abatement and sulfuric acid production plants are explained in the context of WSA plant operation.

Ward, J.W. [Haldor Topsoe, Inc., Houston, TX (United States)

1995-09-01T23:59:59.000Z

252

HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS  

DOE Green Energy (OSTI)

The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

2003-11-01T23:59:59.000Z

253

It's Elemental - Isotopes of the Element Sulfur  

NLE Websites -- All DOE Office Websites (Extended Search)

Phosphorus Previous Element (Phosphorus) The Periodic Table of Elements Next Element (Chlorine) Chlorine Isotopes of the Element Sulfur Click for Main Data Most of the isotope...

254

Retail Prices for Ultra Low Sulfur Diesel  

U.S. Energy Information Administration (EIA)

Beginning July 26, 2010 publication of Ultra Low Sulfur Diesel (ULSD) price became fully represented by the Diesel Average All Types price. As of December 1, ...

255

Natural Gas Processing Plant- Sulfur (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

256

THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE  

DOE Green Energy (OSTI)

The Hybrid Sulfur (HyS) cycle (Fig. 1) is one of the simplest, all-fluids thermochemical cycles that has been devised for splitting water with a high-temperature nuclear or solar heat source. It was originally patented by Brecher and Wu in 1975 and extensively developed by Westinghouse in the late 1970s and early 1980s. As its name suggests, the only element used besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps. One is the thermochemical (>800 C) decomposition of sulfuric acid (H{sub 2}SO{sub 4}) to sulfur dioxide (SO{sub 2}), oxygen (O{sub 2}), and water. H{sub 2}SO{sub 4} = SO{sub 2} + 1/2 O{sub 2} + H{sub 2}O. The other is the SO{sub 2}-depolarized electrolysis of water to H{sub 2}SO{sub 4} and hydrogen (H{sub 2}), SO{sub 2} + 2 H{sub 2}O = H{sub 2}SO{sub 4} + H{sub 2}, E{sup o} = -0.156 V, explaining the 'hybrid' designation. These two steps taken together split water into H{sub 2} and O{sub 2} using heat and electricity. Researchers at the Savannah River National Laboratory (SRNL) and at the University of South Carolina (USC) have successfully demonstrated the use of proton exchange membrane (PEM) electrolyzers (Fig. 2) for the SO{sub 2}-depolarized electrolysis (sulfur oxidation) step, while Sandia National Laboratories (SNL) successfully demonstrated the high-temperature sulfuric acid decomposition (sulfur reduction) step using a bayonet-type reactor (Fig. 3). This latter work was performed as part of the Sulfur-Iodine (SI) cycle Integrated Laboratory Scale demonstration at General Atomics (GA). The combination of these two operations results in a simple process that will be more efficient and cost-effective for the massive production of hydrogen than alkaline electrolysis. Recent developments suggest that the use of PEMs other than Nafion will allow sulfuric acid to be produced at higher concentrations (>60 wt%), offering the possibility of net thermal efficiencies around 50% (HHV basis). The effect of operation at higher anolyte concentrations on the flowsheet, and on the net thermal efficiency for a nuclear-heated HyS process, is examined and quantified.

Gorensek, M.; Summers, W.

2010-03-24T23:59:59.000Z

257

Method of removing SO.sub.2, NO.sub.X and particles from gas mixtures using streamer corona  

DOE Patents (OSTI)

A method for converting sulfur dioxide and/or nitrogen oxide gases to acid mist and or particle aerosols is disclosed in which the gases are passed through a streamer corona discharge zone having electrodes of a wire-cylinder or wire-plate geometry.

Mizuno, Akira (Toyohashi, JP); Clements, Judson S. (Tallahassee, FL)

1987-01-01T23:59:59.000Z

258

Investigation of a sulfur reduction technique for mild gasification char  

DOE Green Energy (OSTI)

The object of this program is to investigate the desulfurization of mild gasification char using hydrogen/methane mixtures in a laboratory-scale experimental study. In the first year of the two- year program, char is being treated with mixtures of H{sub 2} and CH{sub 4} at temperatures of 1100{degrees}C to 1550{degrees}F and pressures of 50 to 100 psig. The effects of temperature, pressure, residence time, gas velocity, and gas composition on sulfur removal and carbon gasification are being determined. The batch experiments are being performed in a nominal 2-inch-ID stainless-steel, batch, fluidized-bed reactor. The char to be desulfurized was produced by the IGT mild gasification process research unit (PRU) in a recently completed DOE/METC-sponsored technology development program. The parent coal was Illinois No. 6 from a preparation plant, and the char from the selected test contains 4.58 wt% sulfur. In the first quarter, we have obtained and prepared a char for the desulfurization tests. Ultimate and proximate analyses were performed on this char, and its pore size distribution and surface area were determined. Also this quarter, the fluidized-bed reactor system was constructed and equipped with high pressure mass flow controllers and a high pressure sintered metal filter to remove fines from the effluent gas stream.

Knight, R.A.

1991-01-01T23:59:59.000Z

259

Investigation of a sulfur reduction technique for mild gasification char. [Quarterly] technical report, March 1--May 31, 1993  

DOE Green Energy (OSTI)

The objective of this program is to investigate the desulfurization of mild gasification char using H{sub 2}:CH{sub 4} mixtures. Mild gasification of coal produces char, liquids, and gases at 1000{degrees}--1500{degrees}F and near-ambient pressure. Char, comprising 60--70% of the product, can be used to make high-value form coke for steel making and foundries. However, a sulfur content below 1 wt% is desirable, and char from high-sulfur Illinois coals must be upgraded to meet this criterion. Illinois No. 6 chars were treated in a batch fluidized bed with H{sub 2}:CH{sub 4} blends containing 9--24 vol% CH{sub 4} at 1100{degrees}--1600{degrees}F and 50--200 psig. Sulfur removal up to 92.5 wt% were obtainer, and the char desulfurization susceptibility was related to porosity, density, and crystallite size. The relationships among mild gasification parameters, char properties, and char desulfurization susceptibility are being studied. Acid washing of coal to remove Ca and Fe is being explored for its effect on subsequent sulfur removal, and secondary desulfurization of form coke produced from the desulfurized chars is also being studied. Desulfurization tests of entrained and fluidized-bed reactor chars from IBC-105 coal (4.1--4.3 wt% sulfur) were completed. Desulfurization conditions were 1400{degrees}F, 100--200 psig and reactant gas compositions of 15-49 vol% CH{sub 4} in H{sub 2}. Sulfur removal ranged from 28 to 95%, with carbon losses from 5 to 29%. Acid-washing of the coal prior to mild gasification or the char prior to desulfurization increased its susceptibility to desulfurization, with sulfur content reduced to as low as 0.10 wt% dry char. Fluidized-bed chars were easier to desulfurize than entrained chars, and were less affected by acid-washing.

Knight, R.A. [Institute of Gas Technology, Chicago, IL (United States)

1993-09-01T23:59:59.000Z

260

Sonic Enhanced Ash Agglomeration and Sulfur Capture. Technical progress report, October 1992--December 1992  

SciTech Connect

A major concern with the utilization of coal in directly fired gas turbines is the control of particulate emissions and reduction of sulfur dioxide, and alkali vapor from combustion of coal, upstream of the gas turbine. Much research and development has been sponsored on methods for particulate emissions control and the direct injection of calcium-based sorbents to reduce SO{sub 2} emission levels. The results of this research and development indicate that both acoustic agglomeration of particulates and direct injection of sorbents have the potential to become a significant emissions control strategy. The Sonic Enhanced Ash Agglomeration and Sulfur Capture program focuses upon the application of an MTCI proprietary invention (Invention Disclosure filed) for simultaneously enhancing sulfur capture and particulate agglomeration of the combustor effluent. This application can be adapted as either a ``hot flue gas cleanup`` subsystem for the current concepts for combustor islands or as an alternative primary pulse combustor island in which slagging, sulfur capture, particulate agglomeration and control, and alkali gettering as well as NO{sub x} control processes become an integral part of the pulse combustion process.

Not Available

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Co-firing high sulfur coal with refuse derived fuels. Final report  

DOE Green Energy (OSTI)

This project was designed to evaluate the combustion performance of and emissions from a fluidized bed combustor during the combustion of mixtures of high sulfur and/or high chlorine coals and municipal solid waste (MSW). The project included four major tasks, which were as follows: (1) Selection, acquisition, and characterization of raw materials for fuels and the determination of combustion profiles of combination fuels using thermal analytical techniques; (2) Studies of the mechanisms for the formation of chlorinated organics during the combustion of MSW using a tube furnace; (3) Investigation of the effect of sulfur species on the formation of chlorinated organics; and (4) Examination of the combustion performance of combination fuels in a laboratory scale fluidized bed combustor. Several kinds of coals and the major combustible components of the MSW, including PVC, newspaper, and cellulose were tested in this project. Coals with a wide range of sulfur and chlorine contents were used. TGA/MS/FTIR analyses were performed on the raw materials and their blends. The possible mechanism for the formation of chlorinated organics during combustion was investigated by conducting a series of experiments in a tube furnace. The effect of sulfur dioxide on the formation of molecular chlorine during combustion processes was examined in this study.

Pan, W.P.; Riley, J.T.; Lloyd, W.G.

1997-11-30T23:59:59.000Z

262

Sulfur  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Hydrogen production ...

263

decommissioning of carbon dioxide (CO  

NLE Websites -- All DOE Office Websites (Extended Search)

decommissioning of carbon dioxide (CO decommissioning of carbon dioxide (CO 2 ) storage wells. The manual builds on lessons learned through NETL research; the experiences of the Regional Carbon Sequestration Partnerships' (RCSPs) carbon capture, utilization, and storage (CCUS) field tests; and the acquired knowledge of industries that have been actively drilling wells for more than 100 years. In addition, the BPM provides an overview of the well-

264

METHOD OF MAKING PLUTONIUM DIOXIDE  

DOE Patents (OSTI)

A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.

Garner, C.S.

1959-01-13T23:59:59.000Z

265

Energy Basics: Ultra-Low Sulfur Diesel Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Ultra-Low Sulfur Diesel Fuel Ultra-low sulfur diesel (ULSD) is diesel fuel with 15 parts per million or lower sulfur content. The U.S. Environmental Protection...

266

Sulfur oxide adsorbents and emissions control  

DOE Patents (OSTI)

High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

Li, Liyu (Richland, WA); King, David L. (Richland, WA)

2006-12-26T23:59:59.000Z

267

Electrochemical separation and concentration of sulfur containing gases from gas mixtures  

DOE Patents (OSTI)

A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

Winnick, Jack (3805 Woodrail-on-the-Green, Columbia, MO 65201)

1981-01-01T23:59:59.000Z

268

Transformation of Sulfur Species during Steam/Air Regeneration on a Ni Biomass Conditioning Catalyst  

DOE Green Energy (OSTI)

Sulfur K-edge XANES identified transformation of sulfides to sulfates during combined steam and air regeneration on a Ni/Mg/K/Al2O3 catalyst used to condition biomass-derived syngas. This catalyst was tested over multiple reaction/regeneration/reduction cycles. Postreaction catalysts showed the presence of sulfides on H2S-poisoned sites. Although H2S was observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst, and a transformation from sulfides to sulfates was observed. Following the oxidative regeneration, the subsequent H2 reduction led to a partial reduction of sulfates back to sulfides, indicating the difficulty and sensitivity in achieving complete sulfur removal during regeneration for biomass-conditioning catalysts.

Yung, M. M.; Cheah, S.; Magrini-Bair, K.; Kuhn, J. N.

2012-07-06T23:59:59.000Z

269

Sulfur-Iodine thermochemical cycle for hydrogen production.  

E-Print Network (OSTI)

??The aim of the thesis was to study the Sulfur-Iodine thermochemical cycle for hydrogen production. There were three reactions in this cycle: Bunsen reaction, sulfuric… (more)

Dan, Huang

2009-01-01T23:59:59.000Z

270

Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon ...  

A sulfur/carbon composite material was prepared by heat treatment of doped mesoporous carbon and elemental sulfur at a temperature inside a stainless steel vessel ...

271

Removing oxygen from a solvent extractant in an uranium recovery process  

DOE Patents (OSTI)

An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous and accumulation of complex iron phosphates or cruds.

Hurst, Fred J. (Oak Ridge, TN); Brown, Gilbert M. (Knoxville, TN); Posey, Franz A. (Concord, TN)

1984-01-01T23:59:59.000Z

272

Calculating the probability of injected carbon dioxide plumes encountering faults  

E-Print Network (OSTI)

Change Special Report on Carbon Dioxide Capture and Storage,Probability of Injected Carbon Dioxide Plumes Encounteringthe probability of injected carbon dioxide encountering and

Jordan, P.D.

2013-01-01T23:59:59.000Z

273

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

carbon dioxide emissions index, we use conversion factors.conversion factor of pounds of carbon dioxide emitted perappropriate factors to arrive at carbon dioxide emissions.

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

274

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

carbon dioxide emissions index, we use conversion factors.into carbon dioxide emissions, we continue to use a factorappropriate factors to arrive at carbon dioxide emissions.

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

275

Protocols for the selective cleavage of carbon-sulfur bonds in coal. Technical report, December 1, 1992--February 28, 1993  

SciTech Connect

Chemical reactions that result in carbon-sulfur bond cleavage are an essential aspect of any protocol designed to remove organic sulfur from coal. Planned in the second year of our project Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal are investigations of reactions in which organic sulfur-containing coal model compounds are subjected to different conditions of temperature, solvent mixtures and radiation. Other investigations that will result in analyses of the likelihood of C-S bond cleavages resulting from various oxidative processes will also be undertaken. Summarized in this quarterly report are results of our investigations of the following topics: (a) desulfurization of coal model sulfones; (b) desulfurization of coal model sulfides; (c) photooxidation of organic sulfides; and (d) photolytic desulfurization of coal.

Bausch, M. [Southern Illinois Univ., Carbondale, IL (United States); Ho, K.K. [Illinois Clean Coal Inst., Carterville, IL (United States)

1993-05-01T23:59:59.000Z

276

Method for combined removal of mercury and nitrogen oxides from off-gas streams  

DOE Patents (OSTI)

A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

Mendelsohn, Marshall H. (Downers Grove, IL); Livengood, C. David (Lockport, IL)

2006-10-10T23:59:59.000Z

277

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture from Large Point Sources Carbon Dioxide Capture from Large Point Sources Project No.: FG02-04ER83925 SBIR CLICK ON IMAGE TO ENLARGE Commercial hollow fiber membrane cartridge [6" (D) X 17" (L)] Compact Membrane Systems, Inc. developed and tested a carbon dioxide (CO2) removal system for flue gas streams from large point sources that offers improved mass transfer rates compared to conventional technologies. The project fabricated perfluorinated membranes on hydrophobic hollow fiber membrane contactors, demonstrated CO2 removal from a simulated flue gas mixture via amine absorption using the fabricated membranes, examine chemical compatibility of the membrane with amines, and demonstrate enhanced stability of the perfluoro-coated membranes. In addition, an economic analysis was performed to demonstrate that the perfluoro-coated

278

Reaction products of chlorine dioxide  

E-Print Network (OSTI)

Concern over the presence of trihalomethanes and other chlorinated by-products in chlorinedisinfected drinking water has led to extensive investigations of treatment options for controlling these by-products. Among these treatment options is the use of an alternative disinfectant such as chlorine dioxide. Although chlorine dioxide does not react to produce trihalomethanes, considerable evidence does exist that chlorine dioxide, like chlorine, will produce other organic by-products. The literature describes chlorinated and nonchlorinated derivatives including acids, epoxides, quinones, aldehydes, disulfides, and sulfonic acids that are products of reactions carried out under conditions that are vastly different from those experienced during drinking water treatment. Evidence is beginning to emerge, however, that some by-products in these categories may be produced. Certain specific volatile aldehydes and halogenated derivatives as determined by the total organic halogen parameter are among those by-products that have been measured.

Alan A. Stevens

1982-01-01T23:59:59.000Z

279

Weyburn Carbon Dioxide Sequestration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Weyburn Carbon DioxiDe SequeStration Weyburn Carbon DioxiDe SequeStration ProjeCt Background Since September 2000, carbon dioxide (CO 2 ) has been transported from the Dakota Gasification Plant in North Dakota through a 320-km pipeline and injected into the Weyburn oilfield in Saskatchewan, Canada. The CO 2 has given the Weyburn field, discovered 50 years ago, a new life: 155 million gross barrels of incremental oil are slated to be recovered by 2035 and the field is projected to be able to store 30 million tonnes of CO 2 over 30 years. CO 2 injection began in October of 2005 at the adjacent Midale oilfield, and an additional 45-60 million barrels of oil are expected to be recovered during 30 years of continued operation. A significant monitoring project associated with the Weyburn and Midale commercial

280

SEPARATING PROTOACTINIUM WITH MANGANESE DIOXIDE  

DOE Patents (OSTI)

The preparation of U/sup 235/ and an improved method for isolating Pa/ sup 233/ from foreign products present in neutronirradiated thorium is described. The method comprises forming a solution of neutron-irradiated thorium together with a manganous salt, then adding potassium permanganate to precipitate the manganese as manganese dioxide whereby protoactinium is carried down with the nnanganese dioxide dissolving the precipitate, adding a soluble zirconium salt, and adding phosphate ion to precipitate zirconium phosphate whereby protoactinium is then carried down with the zirconium phosphate to effect a further concentration.

Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

1958-04-22T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Erbium diffusion in silicon dioxide  

SciTech Connect

Erbium diffusion in silicon dioxide layers prepared by magnetron sputtering, chemical vapor deposition, and thermal growth has been investigated by secondary ion mass spectrometry, and diffusion coefficients have been extracted from simulations based on Fick's second law of diffusion. Erbium diffusion in magnetron sputtered silicon dioxide from buried erbium distributions has in particular been studied, and in this case a simple Arrhenius law can describe the diffusivity with an activation energy of 5.3{+-}0.1 eV. Within a factor of two, the erbium diffusion coefficients at a given temperature are identical for all investigated matrices.

Lu Yingwei; Julsgaard, B.; Petersen, M. Christian [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Jensen, R. V. Skougaard [Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg O (Denmark); Pedersen, T. Garm; Pedersen, K. [Department of Physics and Nanotechnology, Aalborg University, DK-9220 Aalborg O (Denmark); Interdisciplinary Nanoscience Center-iNANO, DK-8000 Aarhus C (Denmark); Larsen, A. Nylandsted [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Interdisciplinary Nanoscience Center-iNANO, DK-8000 Aarhus C (Denmark)

2010-10-04T23:59:59.000Z

282

Sulfur-graphene oxide material for lithium-sulfur battery cathodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur-graphene oxide material for lithium-sulfur battery cathodes Sulfur-graphene oxide material for lithium-sulfur battery cathodes Theoretical specific energy and theoretical energy density Scanning electron micrograph of the GO-S nanocomposite June 2013 Searching for a safer, less expensive alternative to today's lithium-ion batteries, scientists have turned to lithium-sulfur as a possible chemistry for next-generation batteries. Li/S batteries have several times the energy storage capacity of the best currently available rechargeable Li-ion battery, and sulfur is inexpensive and nontoxic. Current batteries using this chemistry, however, suffer from extremely short cycle life-they don't last through many charge-discharge cycles before they fail. A research team led by Elton Cairns and Yuegang Zhang has developed a new

283

OXYGEN DIFFUSION IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE  

E-Print Network (OSTI)

IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE Kee Chul Kim Ph.D.727-366; Figure 1. Oxygen-uranium phase-equilibrium _ystem [18]. uranium dioxide powders and 18 0 enriched carbon

Kim, Kee Chul

2010-01-01T23:59:59.000Z

284

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Carbon Dioxide Fossil-Fuel CO2 Emissions Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Kyoto-Related Fossil-Fuel CO2 Emission...

285

Appalachian No. 1 Refinery District Sulfur Content (Weighted ...  

U.S. Energy Information Administration (EIA)

Appalachian No. 1 Refinery District Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)

286

Production of elemental sulfur and methane from H{sub 2}S and CO{sub 2} derived from a coal desulfurization process. Final report, September 1, 1993--March 31, 1997  

DOE Green Energy (OSTI)

The purpose of this study was to experimentally and theoretically investigate the feasibility of producing elemental sulfur, carbon monoxide, hydrogen and possible methane from hydrogen sulfide and carbon dioxide through catalytic reactions. A novel experimental system that could evaluate potential catalysts and adsorbents under controlled laboratory conditions was designed and constructed. Additionally an effective simulation program capable of providing valuable thermodynamic information on the reaction system was compiled. The following tasks have been performed: (1) design and construction of an experimental system for the catalyst preparation and catalyst screening studies including frequent modifications of the experimental setup to meet specific application needs; (2) installation and calibration of related analytical instruments, and investigation of the temperature distribution profile inside the reactor; (3) preparation, reduction, sulfidation of potential catalysts, and measurements of specific surface area of catalysts; (4) decomposition of H{sub 2}S under both non-catalytic condition and catalytic condition with the CoO-MoO{sub 3}-alumina catalyst at moderate temperatures around 550 C. Analyses of the product gas by gas chromatograph; and (5) thermodynamic studies on the theoretical conversions of H{sub 2}S for various temperatures, pressures and ratios of H{sub 2}S to CO{sub 2}. Based on the results of the above tasks, bench scale experiments were performed with the CoO-MoO{sub 3}-alumina catalyst at moderate temperatures around 550 C to investigate the adsorption effects of solid sorbents in order to remove sulfur from the reaction environment. Four kinds of adsorbents have been tested along with several designs of solid adsorbent feed systems.

Jiang, X.; Khang, S.J.; Keener, T.C.

1997-12-31T23:59:59.000Z

287

Flame Inhibition by Ferrocene, Carbon Dioxide, and ...  

Science Conference Proceedings (OSTI)

Flame Inhibition by Ferrocene, Carbon Dioxide, and Trifluoromethane Blends: Synergistic ... a straight sided schlieren image which is captured by a ...

2012-10-23T23:59:59.000Z

288

Sulfur Resistant Electrodes for Zirconia Oxygen Sensors ...  

Prototype - A zirconia O2 sensor with a Tb-YSZ electrode was tested in a high sulfur coal fired power plant side by side with a normal zirconia O2 ...

289

Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification  

SciTech Connect

This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. [Institute of Gas Technology, Chicago, IL (United States); Gidaspow, D.; Gupta, R.; Wasan, D.T. [Illinois Inst. of Tech., Chicago, IL (United States); Pfister, R.M.: Krieger, E.J. [Ohio State Univ., Columbus, OH (United States)

1992-05-01T23:59:59.000Z

290

Method for dissolving plutonium dioxide  

DOE Patents (OSTI)

The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.

Tallent, Othar K. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

291

TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS  

SciTech Connect

Core specimens and several material samples were collected from two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

Lawrence J. Pekot; Ron Himes

2004-05-31T23:59:59.000Z

292

Reducing Emissions of Sulfur Dioxide, Nitrogen Oxides, and Mercury from Electric Power Plants  

Reports and Publications (EIA)

This analysis responds to a request from Senators Bob Smith, George Voinovich, and Sam Brownback to examine the costs of specific multi-emission reduction strategies

J. Alan Beamon

2001-10-01T23:59:59.000Z

293

Modeling the Dry Deposition Velocity of Sulfur Dioxide and Sulfate in Asia  

Science Conference Proceedings (OSTI)

The dry deposition model was created to estimate SO2 and sulfate dry deposition velocities over nine land use types in Asia. The study domain is 20°S–50°N, 39°–154°E. Monthly averaged 1° × 1° dry deposition velocities are estimated for four ...

Yiwen Xu; Gregory R. Carmichael

1998-10-01T23:59:59.000Z

294

Study of Trona (Sodium Sesquicarbonate) Reactivity with Sulfur Dioxide in a Simulated Flue Gas.  

E-Print Network (OSTI)

??Dry injection of sodium-based sorbents has gained a lot of attention in the last few years. With Dry injection, it is possible to achieve almost… (more)

Srinivasn, Rangesh

2004-01-01T23:59:59.000Z

295

Effects of the reaction cavity on metastable optical excitation in ruthenium-sulfur dioxide complexes  

SciTech Connect

We report photoexcited-state crystal structures for two new members of the [Ru(SO{sub 2})(NH{sub 3}){sub 4}X]Y family: 1:X=H{sub 2}O, Y=({+-})-camphorsulfonate{sub 2}; 2:X=isonicotinamide, Y=tosylate{sub 2}. The excited states are metastable at 100 K, with a photoconversion fraction of 11.1(7)% achieved in 1, and 22.1(10)% and 26.9(10)% at the two distinct sites in 2. We further show using solid-state density-functional-theory calculations that the excited-state geometries achieved are strongly influenced by the local crystal environment. This result is relevant to attempts to rationally design related photoexcitation systems for optical data-storage applications.

Phillips, Anthony E.; D'Almeida, Thierry; Low, Kian Sing [Department of Physics, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Cole, Jacqueline M. [Department of Physics, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Department of Chemistry, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick, E3B5A3 (Canada); Department of Physics, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick, E3B5A3 (Canada)

2010-10-15T23:59:59.000Z

296

FISCAL YEAR 2006 REPORT ON ELECTROLYZER COMPONENT DEVELOPMENT FOR THE HYBRID SULFUR PROJECT  

DOE Green Energy (OSTI)

Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In FY05, testing at the Savannah River National Laboratory (SRNL) explored a low temperature fuel cell design concept for the SDE. The advantages of this design concept include high electrochemical efficiency and small volumetric footprint that is crucial for successful implementation on a commercial scale. A key component of the SDE is the ion conductive membrane through which protons produced at anode migrate to the cathode and react to produce hydrogen. An ideal membrane for the SDE should have both low ionic resistivity and low sulfur dioxide transport. These features allow the electrolyzer to perform at high currents with low potentials, along with preventing contamination of both the hydrogen output and poisoning of the catalysts involved. Another key component is the electrocatalyst material used for the anode and cathode. Good electrocatalysts should be chemically stable and low overpotential for the desired electrochemical reactions. This report summarizes results from activities to evaluate different membrane and electrocatalyst materials for the SDE. Several different types of commercially-available membranes were analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid, sulfonated poly-etherketone-ketone, and poly-benzimidazole membranes. Of these membrane types, the poly-benzimidazole (PBI) membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Testing examined the activity and stability of platinum and palladium as electrocatalyst for the SDE in sulfuric acid solutions. Cyclic and linear sweep voltammetry revealed that platinum provided better catalytic activity with much lower potentials and higher currents than palladium. Testing also showed that the catalyst activity is strongly influenced by concentration of the sulfuric acid. Various cell configurations were examined with respect to the deposition of electrocatalyst and use of conductive carbon materials such as carbon cloth and carbon paper. Findings from these evaluations and the results of the membrane and electrocatalyst testing, we prepared three different membrane electrode assemblies (MEA) for electrolyzer testing. The first MEA consisted of a Nafion{reg_sign} membrane with platinum electrocatalyst deposited on carbon cloths, which were heat pressed onto the membrane, an assembly identical to those used in proton exchange membrane fuel cells. The second MEA also used a Nafion membrane with the electrocatalysts deposited directly onto the membrane. The third MEA proved similar to the second but utilized a PBI membrane in place of the Nafion{reg_sign} membrane. Tailor of the membrane and catalysts properties for the SDE system was concluded as a required step for the technology to move forward. It was also recommended the evaluation of the tested and new developed materials at conditions closer to the SDE operating conditions and for longer period of time.

Colon-Mercado, H; David Hobbs, D; Daryl Coleman, D; Amy Ekechukwu, A

2006-08-03T23:59:59.000Z

297

Fluid extraction using carbon dioxide and organophosphorus chelating agents  

DOE Patents (OSTI)

Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.

Smart, Neil G. (Moscow, ID); Wai, Chien M. (Moscow, ID); Lin, Yuehe (Moscow, ID); Kwang, Yak Hwa (Moscow, ID)

1998-01-01T23:59:59.000Z

298

Fluid extraction using carbon dioxide and organophosphorus chelating agents  

DOE Patents (OSTI)

Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO{sub 2}, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO{sub 2} and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process. 1 fig.

Smart, N.G.; Wai, C.M.; Lin, Y.; Kwang, Y.H.

1998-11-24T23:59:59.000Z

299

Turbomachinery debris remover  

DOE Patents (OSTI)

An apparatus for removing debris from a turbomachine. The apparatus includes housing and remotely operable viewing and grappling mechanisms for the purpose of locating and removing debris lodged between adjacent blades in a turbomachine.

Krawiec, Donald F. (Pittsburgh, PA); Kraf, Robert J. (North Huntingdon, PA); Houser, Robert J. (Monroeville, PA)

1988-01-01T23:59:59.000Z

300

Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases  

SciTech Connect

The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

2001-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Carbon dioxide for enhanced oil recovery  

SciTech Connect

The current status and outlook for carbon dioxide in the immediate future has been examined by Kenneth M. Stern of Chem Systems Inc. Stern. Most of the tonnage carbon dioxide being used for EOR comes from natural gas wells. Major projects are now in progress to develop natural carbon dioxide sources and to transport the gas via pipeline to the injection region. These projects and the maximum permissible cost of carbon dioxide at current petroleum prices are discussed. Potential sources include exhaust gases from power plants, natural gas processing plants, chemical plants, and natural carbon dioxide wells.

Not Available

1986-04-28T23:59:59.000Z

302

Kinetics and mechanism of the reduction of sulphur dioxide in non-aqueous media  

Science Conference Proceedings (OSTI)

The electroreduction of sulfur dioxide has been studied using three solvents and six supporting electrolytes. Electrochemical and spectroscopic measurements indicate that several follow-on reactions occur after the initial electron transfer step. The results are interpreted in terms of equilibria between SO/sub 2/, SO/sub 2//sup -/, S/sub 2/O/sub 4//sup -/ and S/sub 2/O/sub 4//sup 2-/. It has been found that both the solvent and supporting electrolyte have a strong influence on the distribution of products. These results indicate that ion-pairing plays an important role in determining the course of the reduction process. 11 refs.

Gardner, C.L.; Fouchard, D.T.; Laman, F.C.; Fawcett, W.R.

1980-01-01T23:59:59.000Z

303

Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir  

E-Print Network (OSTI)

. Carbonate rocks record the inorganic carbon isotope composition of the oceanic reservoir through geologicalParallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur, University of California-Riverside, Riverside California 92521-0423, USA b Department of Geological Sciences

Saltzman, Matthew R.

304

ULTRA-LOW SULFUR REDUCTION EMISSION CONTROL DEVICE/DEVELOPMENT OF AN ON-BOARD FUEL SULFUR TRAP  

DOE Green Energy (OSTI)

Honeywell is actively working on a 3-year program to develop and demonstrate proof-of-concept for an ''on-vehicle'' desulfurization fuel filter for heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NO{sub x} adsorbers. The NO{sub x} adsorber may be required to meet the proposed new EPA Tier II and ''2007-Rule'' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters will also be examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. It is anticipated that the technology developed for heavy-duty applications will be applicable to light-duty as well. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consists of four phases. Phase I will focus on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II we will concentrate on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III will study life cycle and regeneration options for the spent filter. Phase IV will focus on efficacy and life testing and component integration. The project team will include a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Mack Trucks Inc.), a filter recycler (American Wastes Industries), and a low-sulfur fuel supplier (Equilon, a joint venture between Shell and Texaco).

Ron Rohrbach; Gary Zulauf; Tim Gavin

2003-04-01T23:59:59.000Z

305

Graphitic packing removal tool  

DOE Patents (OSTI)

Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

Meyers, K.E.; Kolsun, G.J.

1996-12-31T23:59:59.000Z

306

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer  

DOE Green Energy (OSTI)

This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

Nexant Inc.

2006-05-01T23:59:59.000Z

307

Sulfur Management of NOx Adsorber Technology for Diesel Light-Duty Vehicle and Truck Applications  

DOE Green Energy (OSTI)

Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure. With the use of a disposable SOx trap to remove large portion of the sulfur poisons from the exhaust, the NOx adsorber catalyst can be protected and the numbers of de-sulfation events can be greatly reduced. Spectroscopic techniques, such as DRIFTS and Raman, have been used to monitor the underlying chemical reactions during NOx trapping/ regeneration and de-sulfation periods, and provide a fundamental understanding of NOx storage capacity and catalyst degradation mechanism using model catalysts. This paper examines the sulfur effect on two model NOx adsorber catalysts. The chemistry of SOx/base metal oxides and the sulfation product pathways and their corresponding spectroscopic data are discussed. SAE Paper SAE-2003-01-3245 {copyright} 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

Fang, Howard L.; Wang, Jerry C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

2003-10-01T23:59:59.000Z

308

Catalytic partial oxidation of n-tetradecane using Rh and Sr substituted pyrochlores: Effects of sulfur  

SciTech Connect

The presence of high levels of organosulfur compounds hinders the catalytic partial oxidation (CPOX) of logistic fuels into a H2-rich gas stream for fuel cells. These species poison traditional supported metal catalysts because the sulfur adsorbs strongly to electron dense metal clusters and promotes the formation of carbon on the surface. To minimize deactivation by sulfur, two substituted lanthanum zirconate (LZ) pyrochlores (La2Zr2O7), identified in a previous study [D.J. Haynes, D.A. Berry, D. Shekhawat, J.J. Spivey, Catal. Today 136 (2008) 206], were investigated: (a) La–Rh–Zr (LRZ) and La–Sr– Rh–Zr (LSRZ). Using unsubstituted lanthanum zirconate and a conventional 0.5 wt% Rh/g-Al2O3 as comparisons, these four catalysts were exposed to a feed containing 1000 ppmw dibenzothiophene (DBT) in n-tetradecane (TD). DBT rapidly deactivated both the 0.5 wt% Rh/g-Al2O3 and LZ. The LRZ catalyst experienced a gradual deactivation, suggesting that Rh substitution into the pyrochlore structure, by itself, cannot completely eliminate deactivation by sulfur. However, the additional substitution of Sr stabilized yields of H2 and CO in the presence of DBT at levels only slightly below those observed without sulfur in the feed. After sulfur was removed from the feed, each catalyst was able to recover some activity. The recovery appears to be linked to carbon formed on active sites. The 0.5 wt% Rh/g-Al2O3, LZ, and LRZ all had comparable amounts of carbon formed on the surface: 0.90, 0.80 and 0.86 gcarbon/gcat, respectively. Of these three catalysts, only the LRZ was able to recover a significant portion of initial activity, suggesting that the carbon formed indiscriminately on the surface, and not solely on the active sites. LSRZ was able to regain almost its initial activity once sulfur was removed from the feed, and had the least amount of carbon on the surface (0.30 gcarbon/gcat). It is hypothesized that oxygen-ion mobility, which results from Sr substitution, reduces carbon formation and the deactivation by sulfur.

Haynes, D.; Berry, D.; Shekhawat, D. Spivey, J.

2009-01-01T23:59:59.000Z

309

Reductive Sequestration of Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Reductive Sequestration of Carbon Dioxide Reductive Sequestration of Carbon Dioxide T. Mill (ted.mill@sri.com; 650-859-3605) SRI, PS273 333 Ravenswood Menlo Park, CA 94025 D. Ross (dsross3@yahoo.com; 650-327-3842) U.S. Geological Survey, Bldg 15 MS 999 345 Middlefield Rd. Menlo Park, CA 94025 Introduction The United States currently meets 80% of its energy needs by burning fossil fuels to form CO 2 . The combustion-based production of CO 2 has evolved into a major environmental challenge that extends beyond national borders and the issue has become as politically charged as it is technologically demanding. Whereas CO 2 levels in the atmosphere had remained stable over the 10,000 years preceeding the industrial revolution, that event initiated rapid growth in CO 2 levels over the past 150 years (Stevens, 2000). The resulting accelerating accumulation of

310

IEP - Carbon Dioxide: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP - Carbon Dioxide (CO2) Regulatory Drivers In July 7, 2009 testimony before the U.S. Senate Committee on Environment and Public Works, Secretary of Energy Steven Chu made the following statements:1 "...Overwhelming scientific evidence shows that carbon dioxide from human activity has increased the atmospheric level of CO2 by roughly 40 percent, a level one- third higher than any time in the last 800,000 years. There is also a consensus that CO2 and other greenhouse gas emissions have caused our planet to change. Already, we have seen the loss of about half of the summer arctic polar ice cap since the 1950s, a dramatically accelerating rise in sea level, and the loss of over two thousand cubic miles of glacial ice, not on geological time scales but over a mere hundred years.

311

Capturing Carbon Dioxide From Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Capturing Carbon Dioxide From Air Capturing Carbon Dioxide From Air Klaus S. Lackner (kl2010@columbia.edu; 212-854-0304) Columbia University 500 West 120th Street New York, NY 10027 Patrick Grimes (pgrimes@worldnet.att.net; 908-232-1134) Grimes Associates Scotch Plains, NJ 07076 Hans-J. Ziock (ziock@lanl.gov; 505-667-7265) Los Alamos National Laboratory P.O.Box 1663 Los Alamos, NM 87544 Abstract The goal of carbon sequestration is to take CO 2 that would otherwise accumulate in the atmosphere and put it in safe and permanent storage. Most proposed methods would capture CO 2 from concentrated sources like power plants. Indeed, on-site capture is the most sensible approach for large sources and initially offers the most cost-effective avenue to sequestration. For distributed, mobile sources like cars, on-board capture at affordable cost would not be

312

Carbon Dioxide Compression and Transportation  

Science Conference Proceedings (OSTI)

This report summarizes the state of the art regarding carbon dioxide CO2 compression and transportation in the United States and Canada. The primary focus of the report was on CO2 compression because it is a significant cost and energy penalty in carbon capture and storage CCS. The secondary focus of the report was to document the state of the art of CO2 pipeline transportation in the United States and Canada.

2008-12-23T23:59:59.000Z

313

Plasma-chemical conversion of hydrogen sulfide into hydrogen and sulfur  

DOE Green Energy (OSTI)

A waste-treatment process that recovers both hydrogen and sulfur from hydrogen-sulfide-contaminated industrial wastes is being developed to replace the Claus technology, which recovers only sulfur. The proposed process is based on research reported in the Soviet technical literature and uses microwave (or radio-frequency) energy to initiate plasma-chemical reactions that dissociate hydrogen sulfide into elemental hydrogen and sulfur. In the plasma-chemical process, the gaseous stream would be purified and separated into streams containing the product hydrogen, hydrogen sulfide for recycle to the plasma reactor, and the process purge containing carbon dioxide and water. Since unconverted hydrogen sulfide is recycled to the plasma reactor, the plasma-chemical process has the potential for sulfur recoveries in excess of 99% without the additional tail-gas clean-up processes associated with the Claus technology. Laboratory experiments with pure hydrogen sulfide have confirmed that conversions of over 90% per pass are possible. Experiments with impurities typical of petroleum refinery and natural gas production acid gases have demonstrated that these impurities are compatible with the plasma dissociation process and do not appear to create new waste-treatment problems. Other experiments show that the cyclonic-flow pattern hypothesized by the Russian theoretical analysis of the plasma-chemical process can substantially decrease energy requirements for hydrogen sulfide dissociation while increasing conversion. This process has several advantages over the current Claus-plus-tail-gas-cleanup technology. The primary advantage is the potential for recovering hydrogen more cheaply than the direct production of hydrogen. The difference could amount to an energy savings of 40 {times} 10{sup 15} to 70 {times} 10{sup 15} J/yr in the refining industry, for an annual savings of $500 million to $1,000 million.

Harkness, J.B.L.; Doctor, R.D.; Daniels, E.J.

1993-09-01T23:59:59.000Z

314

Sequestering carbon dioxide in industrial polymers: Building materials for the 21st century  

SciTech Connect

This study was undertaken to determine the possibility of developing beneficial uses for carbon dioxide as a key component for a large-volume building product. Such a use may provide an alternative to storing the gas in oceanic sinks or clathrates as a way to slow the rate of global warming. The authors investigated the concept that carbon dioxide might be used with other chemicals to make carbon-dioxide-based polymers which would be lightweight, strong, and economical alternatives to some types of wood and silica-based building materials. As a construction-grade material, carbon dioxide would be fixed in a solid, useful form where it would not contribute to global warming. With the probable imposition of a fuel carbon tax in industrialized countries, this alternative would allow beneficial use of the carbon dioxide and could remove it from the tax basis if legislation were structured appropriately. Hence, there would be an economic driver towards the use of carbon-dioxide-based polymers which would enhance their future applications. Information was obtained through literature searches and personal contacts on carbon dioxide polymers which showed that the concept (1) is technically feasible, (2) is economically defensible, and (3) has an existing industrial infrastructure which could logically develop it. The technology exists for production of building materials which are strong enough for use by industry and which contain up to 90% by weight of carbon dioxide, both chemically and physically bound. A significant side-benefit of using this material would be that it is self-extinguishing in case of fire. This report is the first stage in the investigation. Further work being proposed will provide details on costs, specific applications and volumes, and potential impacts of this technology.

Molton, P.M.; Nelson, D.A.

1993-06-01T23:59:59.000Z

315

Sulfur isotopic evidence for controls on sulfur incorporation in peat and coal  

Science Conference Proceedings (OSTI)

Pyritic sulfur isotope [delta][sup 34]S values were used as a measure of two principal controls on sulfur incorporation in peat and coal: the availability of sulfate, and the activity of sulfate-reducing bacteria in the peat-forming mire. Relatively low [delta][sup 34]S values indicated an open system with a relatively abundant supply of sulfate that exceeded the rate of sulfate reduction to sulfide, whereas relatively high [delta][sup 34]S values indicated a closed system with a more limited supply of sulfate. For example, in the high-sulfur (>3% S), Holocene deposits of Mud Lake, Florida, pyritic sulfur [delta][sup 34]S values decreasing sharply across the transition from peat to the overlying lacustrine sapropel, which corresponds to an increased supply of sulfate from the lake waters. Likewise, syngenetic pyrite in the high-sulfur Minto coal bed (Pictou Group, Westphalian C) in New Brunswick, Canada, show up to 10% negative shifts in [delta][sup 34]S in attrital layers containing detrital quartz and illite, consistent with an increased supply of sulfate from streams entering the peat-forming mire. In contrast, positive pyritic sulfur [delta][sup 34]S values in high-sulfur, channel-fill coal beds (lower Breathitt Formation, Middle Pennsylvanian) in eastern Kentucky indicate that a steady supply of sulfate was exhausted by very active microbial sulfate reduction in the channel-fill peat.

Spiker, E.C.; Bates, A.L. (Geological Survey, Reston, VA (United States))

1993-08-01T23:59:59.000Z

316

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry.

David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

2002-04-01T23:59:59.000Z

317

Protocols for the selective cleavage of carbon-sulfur bonds in coal  

SciTech Connect

Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost--effective of desulfurizing Illinois coal is non-existent at the present time. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds, relative to fragmentation of the coal macromolecule via C-C, C-O, and C-N bond cleavage. During this funding period, we plan to carry out examinations of: (a) the effects of various reaction conditions on radical-initiated and Lewis acid-catalyzed C-S bond cleavages; (b) the effects of caustic impregnation and subsequent alcoholic reflux on C-S bond cleavage strategies; (c) the reactions of coal model compounds with electron-deficient substrates; (d) examinations of photooxidative C-S bond cleavage reactions; (e) the effects of moderate (300--400{degrees}C) temperatures and pressures as well as ultrasonic radiation on (a) - (c). Also planned are differential scanning calorimetric (DSC) examinations of selected C-S bond cleavage protocols, including those on Illinois coals that possess varying amounts of organic and inorganic sulfur.

Bausch, M.

1991-01-01T23:59:59.000Z

318

Nitrogen Removal From Low Quality Natural Gas  

SciTech Connect

Natural gas provides more than one-fifth of all the primary energy used in the United States. It is especially important in the residential sector, where it supplies nearly half of all the energy consumed in U.S. homes. However, significant quantities of natural gas cannot be produced economically because its quality is too low to enter the pipeline transportation system without some type of processing, other than dehydration, to remove the undesired gas fraction. Such low-quality natural gas (LQNG) contains significant concentration or quantities of gas other than methane. These non- hydrocarbons are predominantly nitrogen, carbon dioxide, and hydrogen sulfide, but may also include other gaseous components. The nitrogen concentrations usually exceeds 4%. Nitrogen rejection is presently an expensive operation which can present uneconomic scenarios in the potential development of natural gas fields containing high nitrogen concentrations. The most reliable and widely used process for nitrogen rejection from natural gas consists of liquefying the feed stream using temperatures in the order of - 300{degrees}F and separating the nitrogen via fractionation. In order to reduce the gas temperature to this level, the gas is compressed, cooled by mullet-stream heat exchangers, and expanded to low pressure. Significant energy for compression and expensive materials of construction are required. Water and carbon dioxide concentrations must be reduced to levels required to prevent freezing. SRI`s proposed research involves screening new nitrogen selective absorbents and developing a more cost effective nitrogen removal process from natural gas using those compounds. The long-term objective of this project is to determine the technical and economical feasibility of a N{sub 2}2 removal concept based on complexation of molecular N{sub 2} with novel complexing agents. Successful development of a selective, reversible, and stable reagent with an appropriate combination of capacity and N{sub 2} absorption/desorption characteristics will allow selective separation of N{sub 2} from LQNG.

Alvarado, D.B.; Asaro, M.F.; Bomben, J.L.; Damle, A.S.; Bhown, A.S.

1997-10-01T23:59:59.000Z

319

Method of making a sodium sulfur battery  

SciTech Connect

A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another.

Elkins, Perry E. (Santa Ana, CA)

1981-01-01T23:59:59.000Z

320

Carbon dioxide and climate: a bibliography  

SciTech Connect

This bibliography with abstracts presents 394 citations retrieved from the Energy Data Base of the Department of Energy Technical Information Center, Oak Ridge, Tennessee. The citations cover all aspects of the climatic effects of carbon dioxide emissions to the atmosphere. These include carbon cycling, temperature effects, carbon dioxide control technologies, paleoclimatology, carbon dioxide sources and sinks, mathematical models, energy policies, greenhouse effect, and the role of the oceans and terrestrial forests.

Ringe, A.C. (ed.)

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Multiple-sulfur isotope effects during photolysis of carbonyl sulfide  

E-Print Network (OSTI)

Laboratory experiments were carried out to determine sulfur isotope effects during ultraviolet photolysis of carbonyl sulfide (OCS) to carbon monoxide (CO) and elemental sulfur (S[superscript 0]). The OCS gas at 3.7 to 501 ...

Lin, Ying

322

Microwave assisted sulfur infusion technique and the corresponding ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Li-S battery is quite attractive due to the usage of elemental sulfur as cathode. The theoretical capacity of sulfur cathode is 1672 mAh/g, which

323

ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR  

SciTech Connect

Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO{sub 2}-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO{sub 2}-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing, scale-up, pilot-scale (0.5 MW{sub e}) testing at conditions representative of various regenerable SO{sub 2}-control systems, preparation of a commercial process design, and development of a utility-scale demonstration plan.

Robert S. Weber

1999-05-01T23:59:59.000Z

324

TABLE OF CONTENTS Carbon Dioxide Reduction Metallurgy  

Science Conference Proceedings (OSTI)

Chemical Utilization of Sequestered Carbon Dioxide as a. Booster of Hydrogen ... CO2 Capture and Sequestration – Implications for the Metals. Industry.

325

Atmospheric carbon dioxide and the greenhouse effect  

SciTech Connect

This document contains a non-technical review of the problems associated with atmospheric carbon dioxide and the resulting greenhouse effect. (TEM)

Firestine, M.W. (ed.)

1989-05-01T23:59:59.000Z

326

Carbon Dioxide Transportation and Sequestration Act (Illinois...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

process for the issuance of a certificate of authority by an owner or operator of a pipeline designed, constructed, and operated to transport and to sequester carbon dioxide...

327

Scientists Crack Materials Mystery of Vanadium Dioxide  

Science Conference Proceedings (OSTI)

Dec 1, 2010 ... Using a condensed physics theory to explain the observed phase behaviors of vanadium dioxide, ORNL scientists have discovered that the ...

328

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

U.S. Energy Information Administration (EIA)

Nonfuel uses of fossil fuels (for purposes other than their energy value) create carbon dioxide emissions and also sequester carbon in nonfuel products, ...

329

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

available free of charge - include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon...

330

Carbon Capture by a Continuous, Regenerative Ammonia-Based Scrubbing Process  

Science Conference Proceedings (OSTI)

Overview: To develop a knowledge/data base to determine whether an ammonia-based scrubbing process is a viable regenerable-capture technique that can simultaneously remove carbon dioxide, sulfur dioxide, nitric oxides, and trace pollutants from flue gas.

Resnik, K.P.; Yeh, J.T.; Pennline, H.W.

2006-10-01T23:59:59.000Z

331

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Recovery from Flue Gas using Carbon-Supported Amine Sorbents Carbon Dioxide Recovery from Flue Gas using Carbon-Supported Amine Sorbents Project No.: FG02-04ER83885 SBIR Virtual Depiction of a Carbon-Supported Amine Sorbent Virtual Depiction of a Carbon-Supported Amine Sorbent Advanced Fuel Research, Inc. has completed a small business innovative research (SBIR) project that initiated development of a novel sorbent for the removal of carbon dioxide (CO2) from combustion flue gas. The primary goal of this project wa s to develop a process using a supported amine for CO2 capture that exhibits better system efficiency, lower cost, and less corrosion than current aqueous amine-based processes. The project was to demonstrate performance of carbon-supported amine sorbents under simulated flue gas conditions. Three tasks were undertaken:

332

Protocols for the selective cleavage of carbon-sulfur bonds in coal. [Quarterly] technical report, March 1, 1993--May 31, 1993  

SciTech Connect

Chemical reactions that result in carbon-sulfur bond cleavage are an essential aspect of any protocol designed to remove organic sulfur from coal. Planned in the second year of our project ``Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal`` are investigations of reactions in which organic sulfur-containing coal model compounds are subjected to different conditions of temperature, solvent mixtures and radiation. other investigations that will result in analyses of the likelihood of C-S bond cleavages resulting from various oxidative processes will also be undertaken. Summarized in this quarterly report are results of our investigations of the following topics: (a) desulfurization of coal model sulfones and sulfides; (b) photolytic desulfurization of coal; (c) differential scanning calorimetric experiments on photooxidized coal; and (d) discussions on C-S bond strengths in radical cations.

Bausch, M. [Southern Illinois Univ., Carbondale, IL (United States)

1993-09-01T23:59:59.000Z

333

HYBRID SULFUR ELECTROLYZER DEVELOPMENT, NHI WORK PACKAGE N-SR07TC0301, FY07 FIRST QUARTER REPORT  

DOE Green Energy (OSTI)

The proof of concept of SO2 electrolysis for the hybrid sulfur (HyS) process is the second priority research target of the DOE Nuclear Hydrogen Initiative's thermochemical program for FY07. The proof of concept of the liquid-phase option must be demonstrated at the single cell level for an extended run times (>100 hours). The rate of development of HyS will depend on the identification of a promising membrane or an alternative means for controlling sulfur formation. Once successful long-duration operation has been demonstrated, SRNL will develop a multi-cell stack that can be connected to the H2SO4 decomposer being developed by SNL for the S-I ILS for a Hybrid Sulfur Integrated Laboratory-Scale Experiment during FY 2008. During the first quarter of FY07, SRNL continued the component development and membrane development activities with the goal of identifying and characterizing improved electrodes, electrocatalysts, membranes and MEA configurations which could then be tested at larger scale in the SDE test facility. A modified glass cell was fabricated to allow measurements of sulfur dioxide (SO2) transport across membrane samples at elevated temperatures (up to 70 C). This testing also includes evaluating SO2 transport in different sulfuric acid concentrations (30-70 wt%). A new potentiostat/frequency analyzer was installed for determining ionic conductivity of membranes. This instrument enhances our capabilities to characterize membrane, electrocatalyst and MEA properties and performance. Continuing work from FY06, evaluations were preformed on various commercial and experimental membranes and electrocatalyst materials for the SDE. Several different types of commercially-available membranes were analyzed for sulfur dioxide transport as a function of acid strength including perfluorinated sulfonic acid (PFSA), sulfonated polyetherketone-ketone, and poly-benzimidazole (PBI) membranes. Experimental membranes from the sulfonated diels-alder polyphenylenes (SDAPP) and modified Nafion{reg_sign} 117 were evaluated for SO{sub 2} transport as well. These membranes exhibited reduced transport coefficient for SO{sub 2} transport without the loss in ionic conductivity.

Summers, W

2006-12-20T23:59:59.000Z

334

BIODESULF(TM), A Novel Biological Technology for the Removal of H2S From Sour Natural Gas  

Science Conference Proceedings (OSTI)

The state-of-the-art technologies for the removal of sulfur compounds from Sour Natural Gas (SNG) are not cost-effective when scaled down to approximately 2-5 MMSCFD. At the same time, the SNG Production is increasing at 3-6 TCF/Yr and -78 TCF potential reserves are also sour. Assuming only 3% treatment of this potential SNG market is for small volume processing, the potential U.S. Market is worth $0.14 to $0.28 billion. Therefore, the Gas Processing Industry is seeking novel, cost-effective, environmentally compatible and operator friendly technologies applicable to the small volume producers in the range of less than 1 MMSCFD to - 5 MMSCFD. A novel biological process, BIODESTJLFTM (patent pending), developed at ARCTECH removes H{sub 2}S and other sulfur contaminants that make the Natural Gas Sour. The removal is accomplished by utilizing an adapted mixed microbial culture (consortium). A variety of anaerobic microbial consortia from ARCTECH`s Microbial Culture Collection were grown and tested for removal of H{sub 2}S. One of these consortia, termed SS-11 was found to be particularly effective. Utilizing the SS-11 consortium, a process has been developed on a laboratory-scale to remove sulfur species from Sour Natural Gas at well head production pressures and temperatures. The process has been independently evaluated and found to be promising in effectively removing H{sub 2}S and other sulfur species cost effectively.

Srivastava, K.C.; Stashick, J.J.; Johnson, P.E.; Kaushik, N.K.

1997-10-01T23:59:59.000Z

335

Reducing Sulfur Hexafluoride Use at LANSCE  

NLE Websites -- All DOE Office Websites (Extended Search)

U N C L A S S I F I E D U N C L A S S I F I E D Reducing Sulfur Hexafluoride Use at LANSCE Hank Alvestad presents to the Fugitive Emissions Working Group September 8, 2011...

336

Sulfuric acid thermoelectrochemical system and method  

DOE Patents (OSTI)

A thermoelectrochemical system in which an electrical current is generated between a cathode immersed in a concentrated sulfuric acid solution and an anode immersed in an aqueous buffer solution of sodium bisulfate and sodium sulfate. Reactants consumed at the electrodes during the electrochemical reaction are thermochemically regenerated and recycled to the electrodes to provide continuous operation of the system.

Ludwig, Frank A. (Rancho Palos Verdes, CA)

1989-01-01T23:59:59.000Z

337

Device for removing blackheads  

DOE Patents (OSTI)

A device for removing blackheads from pores in the skin having a elongated handle with a spoon shaped portion mounted on one end thereof, the spoon having multiple small holes piercing therethrough. Also covered is method for using the device to remove blackheads.

Berkovich, Tamara (116 N. Wetherly Dr., Suite 115, Los Angeles, CA)

1995-03-07T23:59:59.000Z

338

Silica Scaling Removal Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Silica Scaling Removal Process Silica Scaling Removal Process Silica Scaling Removal Process Scientists at Los Alamos National Laboratory have developed a novel technology to remove both dissolved and colloidal silica using small gel particles. Available for thumbnail of Feynman Center (505) 665-9090 Email Silica Scaling Removal Process Applications: Cooling tower systems Water treatment systems Water evaporation systems Potential mining applications (produced water) Industry applications for which silica scaling must be prevented Benefits: Reduces scaling in cooling towers by up to 50% Increases the number of cycles of concentration substantially Reduces the amount of antiscaling chemical additives needed Decreases the amount of makeup water and subsequent discharged water (blowdown) Enables considerable cost savings derived from reductions in

339

Kinetics of Direct Oxidation of H2S in Coal Gas to Elemental Sulfur  

SciTech Connect

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that produce electric power and clean transportation fuels with coal and natural gas. These Vision 21 plants will require highly clean coal gas with H{sub 2}S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and 400 square cells/inch{sup 2}, {gamma}-Al{sub 2}O{sub 3}-wash-coated monolithic catalyst, and various reactors such as a micro packed-bed reactor, a micro bubble reactor, and a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam.

K.C. Kwon

2005-11-01T23:59:59.000Z

340

Ultra-low Sulfur Reduction Emission Control Device/Development of an On-board Fuel Sulfur Trap  

DOE Green Energy (OSTI)

Honeywell has completed working on a multiyear program to develop and demonstrate proof-of-concept for an 'on-vehicle' desulfurization fuel filter for both light duty and heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NOx adsorbers. The NOx adsorber may be required to meet the proposed new EPA Tier II and '2007-Rule' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters was also examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. In the second phase of the program a light duty diesel engine test was also demonstrated. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consisted of four phases. Phase I focused on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II concentrated on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III studied life cycle and regeneration options for the spent filter. Phase IV focused on efficacy and benefits in the desulfation steps of a NOx adsorber on both a heavy and light duty engine. The project team included a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Navistar Inc. (formerly International Truck & Engine Corporation) and Mack Trucks Inc.), and filter recycler (American Wastes Industries).

Rohrbach, Ron; Barron, Ann

2008-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Removal of mercury from coal via a microbial pretreatment process  

Science Conference Proceedings (OSTI)

A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

Borole, Abhijeet P. (Knoxville, TN); Hamilton, Choo Y. (Knoxville, TN)

2011-08-16T23:59:59.000Z

342

Carbon dioxide storage professor Martin Blunt  

E-Print Network (OSTI)

Carbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS) referS to the Set of technologies developed to capture carbon dioxide (Co2) gas from the exhausts raises new issues of liability and risk. the focus of this briefing paper is on the storage of carbon

343

ORNL DAAC, Effects of Increased Carbon Dioxide, Dec. 11, 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Increased Carbon Dioxide on Vegetation The ORNL DAAC announces the release of a data set entitled "Effects of Elevated Carbon Dioxide on Litter Chemistry and Decomposition." The...

344

Geologic Carbon Dioxide Storage Field Projects Supported by DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program...

345

Recovery Act: Re-utilization of Industrial Carbon Dioxide for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Re-utilization of Industrial Carbon Dioxide for Algae Production Using a Phase Change Material Background Worldwide carbon dioxide (CO 2 ) emissions from human activity have...

346

EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania...

347

Haverford Researchers Create Carbon Dioxide-Separating Polymer  

NLE Websites -- All DOE Office Websites (Extended Search)

Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 | Tags: Basic Energy...

348

Cost and Performance of Carbon Dioxide Capture from Power Generation...  

Open Energy Info (EERE)

on Facebook icon Twitter icon Cost and Performance of Carbon Dioxide Capture from Power Generation Jump to: navigation, search Name Cost and Performance of Carbon Dioxide...

349

Changes related to "Cost and Performance of Carbon Dioxide Capture...  

Open Energy Info (EERE)

icon Changes related to "Cost and Performance of Carbon Dioxide Capture from Power Generation" Cost and Performance of Carbon Dioxide Capture from Power Generation...

350

Why do carbon dioxide emissions weigh more than the ...  

U.S. Energy Information Administration (EIA)

Why do carbon dioxide emissions weigh more than the original fuel? Carbon dioxide emissions weigh more than the original fuel because during complete ...

351

Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color...

352

THE HIGH TEMPERATURE BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE.  

E-Print Network (OSTI)

Products in Irradiated Uranium Dioxide," UKAEA Report AERE-OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa Lu Yang (Chemical State of Irradiated Uranium- Plutonium Oxide Fuel

Yang, Rosa Lu.

2010-01-01T23:59:59.000Z

353

Improving the Carbon Dioxide Emission Estimates from the Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California and Spatial Disaggregated Estimate of Energy-related Carbon Dioxide for California...

354

Improving the Carbon Dioxide Emission Estimates from the Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California Title Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in...

355

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry Title Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction...

356

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas) ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide CaptureSequestration Tax Deduction (Kansas) Carbon Dioxide CaptureSequestration Tax Deduction (Kansas) Eligibility Commercial Industrial Utility Program...

357

Supercritical carbon dioxide cycle control analysis.  

SciTech Connect

This report documents work carried out during FY 2008 on further investigation of control strategies for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converters. The main focus of the present work has been on investigation of the S-CO{sub 2} cycle control and behavior under conditions not covered by previous work. An important scenario which has not been previously calculated involves cycle operation for a Sodium-Cooled Fast Reactor (SFR) following a reactor scram event and the transition to the primary coolant natural circulation and decay heat removal. The Argonne National Laboratory (ANL) Plant Dynamics Code has been applied to investigate the dynamic behavior of the 96 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) S-CO{sub 2} Brayton cycle following scram. The timescale for the primary sodium flowrate to coast down and the transition to natural circulation to occur was calculated with the SAS4A/SASSYS-1 computer code and found to be about 400 seconds. It is assumed that after this time, decay heat is removed by the normal ABTR shutdown heat removal system incorporating a dedicated shutdown heat removal S-CO{sub 2} pump and cooler. The ANL Plant Dynamics Code configured for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) was utilized to model the S-CO{sub 2} Brayton cycle with a decaying liquid metal coolant flow to the Pb-to-CO{sub 2} heat exchangers and temperatures reflecting the decaying core power and heat removal by the cycle. The results obtained in this manner are approximate but indicative of the cycle transient performance. The ANL Plant Dynamics Code calculations show that the S-CO{sub 2} cycle can operate for about 400 seconds following the reactor scram driven by the thermal energy stored in the reactor structures and coolant such that heat removal from the reactor exceeds the decay heat generation. Based on the results, requirements for the shutdown heat removal system may be defined. In particular, the peak heat removal capacity of the shutdown heat removal loop may be specified to be 1.1 % of the nominal reactor power. An investigation of the oscillating cycle behavior calculated by the ANL Plant Dynamics Code under specific conditions has been carried out. It has been found that the calculation of unstable operation of the cycle during power reduction to 0 % may be attributed to the modeling of main compressor operation. The most probable reason for such instabilities is the limit of applicability of the currently used one-dimensional compressor performance subroutines which are based on empirical loss coefficients. A development of more detailed compressor design and performance models is required and is recommended for future work in order to better investigate and possibly eliminate the calculated instabilities. Also, as part of such model development, more reliable surge criteria should be developed for compressor operation close to the critical point. It is expected that more detailed compressor models will be developed as a part of validation of the Plant Dynamics Code through model comparison with the experiment data generated in the small S-CO{sub 2} loops being constructed at Barber-Nichols Inc. and Sandia National Laboratories (SNL). Although such a comparison activity had been planned to be initiated in FY 2008, data from the SNL compression loop currently in operation at Barber Nichols Inc. has not yet become available by the due date of this report. To enable the transient S-CO{sub 2} cycle investigations to be carried out, the ANL Plant Dynamics Code for the S-CO{sub 2} Brayton cycle was further developed and improved. The improvements include further optimization and tuning of the control mechanisms as well as an adaptation of the code for reactor systems other than the Lead-Cooled Fast Reactor (LFR). Since the focus of the ANL work on S-CO{sub 2} cycle development for the majority of the current year has been on the applicability of the cycle to SFRs, work has started on modification of the ANL Plant Dynamics Code to allow

Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

2011-04-11T23:59:59.000Z

358

Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal  

Science Conference Proceedings (OSTI)

This interim report presents initial results of an ongoing study of the potential cost of electricity (COE) produced in both conventional and innovative fossil fueled power plants that incorporate carbon dioxide (CO2) removal for subsequent sequestration or use. The baseline cases are natural gas combined cycle (NGCC) and ultra-supercritical pulverized coal (PC) plants, with and without post combustion CO2 removal, and integrated gasification combined cycle (IGCC) plants, with and without pre-combustion ...

2000-12-07T23:59:59.000Z

359

Carbon dioxide disposal in solid form  

SciTech Connect

Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

Lackner, K.S.; Butt, D.P.; Sharp, D.H. [Los Alamos National Lab., NM (United States); Wendt, C.H. [Auxon Corp., (United States)

1995-12-31T23:59:59.000Z

360

carbon dioxide emissions | OpenEI  

Open Energy Info (EERE)

dioxide emissions dioxide emissions Dataset Summary Description Total annual carbon dioxide emissions by country, 2005 to 2009 (million metric tons). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords carbon dioxide emissions EIA world Data text/csv icon total_carbon_dioxide_emissions_from_the_consumption_of_energy_2005_2009million_metric_tons.csv (csv, 12.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

2. Carbon Dioxide Emissions 2. Carbon Dioxide Emissions 2.1. Total carbon dioxide emissions Annual U.S. carbon dioxide emissions fell by 419 million metric tons in 2009 (7.1 percent), to 5,447 million metric tons (Figure 9 and Table 6). The annual decrease-the largest over the 19-year period beginning with the 1990 baseline-puts 2009 emissions 608 million metric tons below the 2005 level, which is the Obama Administration's benchmark year for its goal of reducing U.S. emissions by 17 percent by 2020. The key factors contributing to the decrease in carbon dioxide emissions in 2009 included an economy in recession with a decrease in gross domestic product of 2.6 percent, a decrease in the energy intensity of the economy of 2.2 percent, and a decrease in the carbon intensity of energy supply of

362

Coal Cleaning Using Resonance Disintegration for Mercury and Sulfur Reduction Prior to Combustion  

SciTech Connect

Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method of liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.

Andrew Lucero

2005-04-01T23:59:59.000Z

363

Solvent cleaning system and method for removing contaminants from solvent used in resin recycling  

DOE Patents (OSTI)

A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee' s Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

2009-01-06T23:59:59.000Z

364

Transport Models for Radioactive Carbon Dioxide at RWMC  

SciTech Connect

Radioactive carbon dioxide (formed by oxidation of carbon-14) is a highly mobile, radioactive contaminant released from solid wastes buried at the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL). Radioactive CO2 is chemically active in the environment, volatile, water soluble, and subject to adsorption on solids. For this reason, its fate must be understood and controlled to meet radiological requirements (protection of the atmosphere, aquifer, vadose zones, plants and animals). In the present work, the migration of carbon-14 as dissolved bicarbonate was studied using miscible displacement experiments in water-saturated columns containing sediments from RWMC. Dissolved carbon-14 was retarded relative to the movement of water by a factor of about 3.6, which translates to a partition coefficient (Kd) of 0.8 ml/g. Two different adsorption sites were identified, with one site possibly having a nonlinear adsorption isotherm. A conservative tracer gas, sulfur hexafluoride, was used to measure the tortuosity of sedimentary material for gaseous diffusion. The tortuosity of the RWMC sediment (Spreading Area B sediment) was determined to be 3.2, which is slightly greater than predicted by the commonly used Millington-Quirk equation. In terms of affecting the migration of carbon-14 to the aquifer, the relative importance of the parameters studied is: (1) natural moisture content of the sediments, (2) sediment tortuosity to gas-phase diffusion, and (3) adsorption onto solid phases.

Hull, Laurence Charles; Hohorst, Frederick August

2001-12-01T23:59:59.000Z

365

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

is the greenhouse effect? is the greenhouse effect? Greenhouse Effect Greenhouse Effect The greenhouse effect is used to describe the phenomenon whereby the Earth's atmosphere traps solar radiation, caused by the presence of gases, such as carbon dioxide (CO2), methane (CH4), and water vapor (H2O), in the atmosphere that allow incoming sunlight to pass through but absorb heat radiated back from the Earth's surface, resulting in higher temperatures. The greenhouse effect gets its name from what actually happens in a greenhouse. In a greenhouse, short wavelength visible sunlight shines through the glass panes and warms the air and the plants inside. The radiation emitted from the heated objects is of longer wavelength and is unable to pass through the glass barrier, maintaining a warm temperature

366

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coal being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals, to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized below in three broad categories outlining experimentation, model development, and coal characterization. (1) Experimental Work: Our adsorption apparatus was reassembled, and all instruments were tested and calibrated. Having confirmed the viability of the experimental apparatus and procedures used, adsorption isotherms for pure methane, carbon dioxide and nitrogen on wet Fruitland coal were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 2%. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on two other coals. (2) Model Development: The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, two-dimensional cubic equations of state, and the local density model. In general, all models performed well for Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). However, for pressures higher than 8.3 MPa (1200 psia), carbon dioxide produced multilayer adsorption behavior similar to Type IV adsorption. Our results to date indicate that the SLD model may be a suitable choice for modeling multilayer coalbed gas adsorption. However, model improvements are required to (a) account for coal heterogeneity and structure complexity, and (b) provide for more accurate density predictions. (3) Coal Characterization: We have identified several well-characterized coals for use in our adsorption studies. The criteria for coal selection has been guided by the need for coals that (a) span the spectrum of properties encountered in coalbed methane production (such as variation in rank), and (b) originate from coalbed methane recovery sites (e.g., San Juan Basin, Black Warrior Basin, etc.). At Pennsylvania State University, we have completed calibrating our instruments using a well-characterized activated carbon. In addition, we have conducted CO{sub 2} and methane uptakes on four samples, including (a) a widely used commercial activated carbon, BPL from Calgon Carbon Corp.; (b) an Illinois No.6 bituminous coal from the Argonne Premium Coal sample bank; (c) a Fruitland Intermediate coal sample; (d) a dry Fruitland sample. The results are as expected, except for a greater sensitivity to the outgassing temperature. ''Standard'' outgassing conditions (e.g., 383.2 K, overnight), which are often used, may not be appropriate for gas storage in coalbeds. Conditions that are more representative of in-situ coal (approximately 313.2 K) may be much more appropriate. In addition, our results highlight the importance of assessing the degree of approach to adsorption equilibrium.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-06-15T23:59:59.000Z

367

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

This report describes research conducted between January 1, 2004 and March 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. RTI has produced laboratory scale batches (approximately 300 grams) of supported sorbents (composed of 20 to 40% sodium carbonate) with high surface area and acceptable activity. Initial rates of weight gain of the supported sorbents when exposed to a simulated flue gas exceeded that of 100% calcined sodium bicarbonate. One of these sorbents was tested through six cycles of carbonation/calcination by thermogravimetric analysis and found to have consistent carbonation activity. Kinetic modeling of the regeneration cycle on the basis of diffusion resistance at the particle surface is impractical, because the evolving gases have an identical composition to those assumed for the bulk fluidization gas. A kinetic model of the reaction has been developed on the basis of bulk motion of water and carbon dioxide at the particle surface (as opposed to control by gas diffusion). The model will be used to define the operating conditions in future laboratory- and pilot-scale testing.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

2004-04-01T23:59:59.000Z

368

Vacuum carbonate desulfurization and claus sulfur recovery system at No. 11 battery  

Science Conference Proceedings (OSTI)

The vacuum carbonate process functions above 90% efficiency and satisfactorily removes the HCN and sulfur compounds from the coke oven gas generated at No. 11 Battery. It has been noted that a large quantity of energy is required for the operation of the vacuum carbonate system. Normally 544,617 kg (1.2 million lbs of steam) and 5.4 thousand kWh of electricity are used per day to maintain the system's temperatures and pressures. The processed coke oven gases from the system satisfy industrial and environmental standards as a combustible fuel. The HCN destruction unit reduces the corrosive HCN to concentrations below .07% of the acid gas stream and offers the necessary protection to the downstream modified Claus unit. The Claus unit at No. 11 Battery operates at 98% efficiency and produces 5896 kg (6.5 tons) of sulfur per day. The liquid sulfur generated in the Claus unit is a high quality product of 99% purity. 7 figures, 3 tables.

Ellis, A.

1981-01-01T23:59:59.000Z

369

Removal of H{sub2}S from geothermal steam by catalytic oxidation process: bench scale testing results. Interim report  

SciTech Connect

A process was investigated to remove hydrogen sulfide (H{sub2}S) from geothermal steam. This process is an upstream steam treatment process which utilizes a catalytic oxidation reaction to convert H{sub2}S in geothermal steam to water vapor and sulfur. The process consists of passing geothermal steam, containing H{sub2}S and other noncondensible gases, through fixed beds of activated carbon catalyst. Oxygen is provided by injection of air or oxygen upstream of the catalyst beds. The treated steam, with H{sub2}S being almost completely removed, passes to steam turbines for power generation. The elemental sulfur produced deposits on the catalyst surface and is retained. The catalyst activity decreases gradually with sulfur accumulation. Sulfur removal, and catalyst regeneration, is accomplished by solvent extraction. Sulfur is recovered from solvent by evaporation/crystallization. Bench scale experimental work on this process was performed to determine its performance and limits of applicability to power generation systems employing geothermal steam. The bench scale system employed a one-inch diameter reactor, a steam supply with controlled temperature and pressure, an injection system for adding {Hsub2}S and other gases at controlled rates, and instrumentation for control and measurement of temperatures, pressures, flow rates and presssure drop. H{sub2}S and other analyses were performed by wet chemistry techniques.

Li, C.T.; Brouns, R.A.

1978-11-01T23:59:59.000Z

370

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

Shi, J.B. ; Feng, X.B. Mercury Pollution in China. Environ.J T. DOE/NETL’s Phase II Mercury Control Technology Fieldoxidants for the oxidation of mercury gas. Ind. vEng. Chem.

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

371

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

of Catalysts for Oxidation of Mercury in Flue Gas, Environ.mercury oxidation when the chlorine concentration in flue gas

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

372

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

from flue gas of coal-fired power plants. Environ. Sci. &Technologies for Coal-Fired Power Plants, DOE/NETL Mercurynumber of coal-fired generating plants (1-3). The mercury is

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

373

Separation and Fixation of Carbon Dioxide Using Polymeric Membrane Contactor  

NLE Websites -- All DOE Office Websites (Extended Search)

National Natural Science Foundation of China. National Natural Science Foundation of China. Separation and Fixation of Carbon Dioxide Using Polymeric Membrane Contactor Zhikang XU, Jianli WANG, Wei CHEN, Youyi XU Institute of Polymer Science, Zhejiang University, 310027, Hangzhou, P. R. China Tel: +86-571-7951342-8218, E-mail: xuzk@ipsm.zju.edu.cn ABSTRACT: Polypropylene hollow fiber membrane (PPHFM) contactor, with aqueous solution absorbent such as sodium hydroxide (NaOH), monoethanolamine (MEA) and diethanolamine (DEA), was designed and used to separate and fix CO 2 from CO 2 /N 2 gas mixtures. The factors that influence the separation properties of CO 2 /N 2 were investigated. It was found that the CO 2 removal efficiency is the best by using MEA solution as absorbent. The overall mass transfer coefficient (K) increases

374

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

NLE Websites -- All DOE Office Websites (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4881 david.lang@netl.doe.doe Richard Willis Principal Investigator UOP LLC 50 East Algonquin Road Des Plaines, IL 60016 847-391-3190 Richard.Willis@uop.com Carbon DioxiDe Separation with novel MiCroporouS Metal organiC FraMeworkS Background UOP LLC, in collaboration with Vanderbilt University and the University of Edinburgh, is working to develop novel microporous metal organic frameworks (MOFs) and an associated process for the removal of CO 2 from coal-fired power plant flue gas. This innovative project will exploit the latest discoveries in an extraordinary class of materials (MOFs) having extremely high adsorption capacities. MOFs have previously exhibited

375

Ionic Liquid Membranes for Carbon Dioxide Separation  

SciTech Connect

Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on amine interactions. The hypothesis is that the performance at the elevated temperatures could be improved by allowing a facilitated transport mechanism to become dominant. Several amine-based ionic liquids were tested on the cross-linked nylon support. It was found that using the amine-based ionic liquid did improve selectivity and permeability at higher temperature. The hypothesis was confirmed, and it was determined that the type of amine used also played a role in facilitated transport. Given the appropriate aminated ionic liquid with the cross-linked nylon support, it is possible to have a membrane capable of separating CO2 at IGCC conditions. With this being the case, the research has expanded to include separation of other constituents besides CO2 (CO, H2S, etc.) and if they play a role in membrane poisoning or degradation. This communication will discuss the operation of the recently fabricated ionic liquid membranes and the impact of gaseous components other than CO2 on their performance and stability.

Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

2008-07-12T23:59:59.000Z

376

Advances in Acid Concentration Membrane Technology for the Sulfur-Iodine Thermochemical Cycle  

DOE Green Energy (OSTI)

One of the most promising cycles for the thermochemical generation of hydrogen is the Sulfur-Iodine (S-I) process, where aqueous HI is thermochemically decomposed into H2 and I2 at approximately 350 degrees Celsius. Regeneration of HI is accomplished by the Bunsen reaction (reaction of SO2, water, and iodine to generate H2SO4 and HI). Furthermore, SO2 is regenerated from the decomposition of H2SO4 at 850 degrees Celsius yielding the SO2 as well as O2. Thus, the cycle actually consists of two concurrent oxidation-reduction loops. As HI is regenerated, co-produced H2SO4 must be separated so that each may be decomposed. Current flowsheets employ a large amount (~83 mol% of the entire mixture) of elemental I2 to cause the HI and the H2SO4 to separate into two phases. To aid in the isolation of HI, which is directly decomposed into hydrogen, water and iodine must be removed. Separation of iodine is facilitated by removal of water. Sulfuric acid concentration is also required to facilitate feed recycling to the sulfuric acid decomposer. Decomposition of the sulfuric acid is an equilibrium limited process that leaves a substantial portion of the acid requiring recycle. Distillation of water from sulfuric acid involves significant corrosion issues at the liquid-vapor interface. Thus, it is desirable to concentrate the acid without boiling. Recent efforts at the INL have concentrated on applying pervaporation through Nafion-117, Nafion-112, and sulfonated poly(etheretherketone) (S-PEEK) membranes for the removal of water from HI/water and HI/Iodine/water feedstreams. In pervaporation, a feed is circulated at low pressure across the upstream side of the membrane, while a vacuum is applied downstream. Selected permeants sorb into the membrane, transport through it, and are vaporized from the backside. Thus, a concentration gradient is established, which provides the driving force for transport. In this work, membrane separations have been performed at temperatures as high as 134 degrees Celsius. Transmembrane fluxes of water are commercially competitive (~5000 g/m2h) and separation factors have been measured as high as 8000, depending on the membrane and the water content. For the Nafion-117 experiments, the common trade off in membrane performance is observed in that as flux is increased, separation factor decreases. Nafion-112, a thinner membrane, exhibited much higher fluxes than the Nafion-117; however without the expected loss in separation factor indicating that the permeability of iodine and HI through Nafion materials is low. Preliminary data for the sulfuric acid concentration suggests performance similar to the HI experiments. All membranes studied for the HI, HI/iodine and sulfuric acid feeds exhibited no degradation in membrane performance during use.

Frederick F. Stewart; Christopher J. Orme

2006-11-01T23:59:59.000Z

377

Process for production of synthesis gas with reduced sulfur content  

DOE Patents (OSTI)

A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

Najjar, Mitri S. (Hopewell Junction, NY); Corbeels, Roger J. (Wappingers Falls, NY); Kokturk, Uygur (Wappingers Falls, NY)

1989-01-01T23:59:59.000Z

378

Design and Experimental Test Plan for Hybrid Sulfur Single Cell Pressurized Electrolyzer  

DOE Green Energy (OSTI)

The Hybrid Sulfur (HyS) process is one of the leading thermochemical cycles being studied as part of the DOE Nuclear Hydrogen Initiative (NHI). SRNL is conducting analyses and research and development for the Department of Energy on the HyS process. A conceptual design report and development plan for the HyS process was issued on April 1, 2005 [Buckner, et. al., 2005] , and a report on atmospheric testing of a sulfur dioxide depolarized electrolyzer (SDE), a major component of the HyS process, was issued on August 1, 2005 [Steimke, 2005]. The purpose of this report is to document work related to the design and experimental test plan for a pressurized SDE. Pressurized operation of the SDE is a key requirement for development of an efficient and cost-effective HyS process. The HyS process, a hybrid thermochemical cycle proposed and investigated in the 1970s and early 1980s by Westinghouse Electric Corporation, is a high priority candidate for NHI due to the potential for high efficiency and its relatively high level of technical maturity. It was demonstrated in laboratory experiments by Westinghouse in 1978. Process improvements and component advancements that build on that work are being pursued. One of the objectives of the current work is to develop the SDE in order to permit the demonstration of a closed-loop laboratory model of the HyS process. The heart of the HyS process for generating hydrogen is a bank of electrolyzers incorporating sulfur dioxide depolarized anodes. SRNL planned, designed, built and operated a facility for testing single cell electrolyzers at ambient temperature and near atmospheric pressure during the spring and summer of 2005. The major contribution of the SRNL work was the establishment of the proof-of-concept for utilizing the proton-exchange-membrane (PEM) cell design for the SDE operation. Since PEM cells are being extensively developed for automotive fuel cell use, they offer significant potential for cost-effective application for the HyS Process. This report discusses the modifications necessary to the existing SRNL sulfur dioxide depolarized electrolyzer test facility to allow testing at up to 80 C and 90 psig. Because of the need for significant additional equipment and the ability to infer performance results to higher pressures, it recommends delaying further modifications to support testing at up to 300 psig (the commercial goal) until other, higher priority technical issues are addressed. These issues include membrane material selection, component designs, catalyst type and loading, etc. The factors and rationale that should be considered in developing and executing a detailed test matrix for pressurized operation are also discussed. In addition, an electrolyzer assembly design has been developed to allow the testing of different Membrane Electrode Assemblies (MEA's) as part of the planned FY06 HyS Development Program to complete selection of component design specifications for the HyS electrolyzer. MEA's are used in PEM cells to allow intimate contact and minimal resistance between the electrodes and the electrolyte layer. The pressurized electrolyzer assembly presented in this report will facilitate rapid change-out and testing of various MEA designs as part of the electrolyzer development effort.

Steeper, T. J.; Steimke, J. L.

2005-09-01T23:59:59.000Z

379

Removable feedwater sparger assembly  

DOE Patents (OSTI)

A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith. 8 figs.

Challberg, R.C.

1994-10-04T23:59:59.000Z

380

Canada, carbon dioxide and the greenhouse effect  

SciTech Connect

One of the major contributors to the greenhouse effect is carbon dioxide from the combustion of fossil fuels such as coal, oil, and natural gas. Even with its low population density, Canada, on a per capita basis, has the dubious distinction of being the world's fourth largest producer of carbon from carbon dioxide. This paper considers the impact of Canadian carbon dioxide emissions on the greenhouse effect in light of the 1988 Conference on the Changing Atmosphere's recommendations. A computer model has been developed that, when using anticipated Canadian fossil fuel demands, shows that unless steps are taken immediately, Canada will not be able to meet the conference's proposed carbon dioxide reduction of 20 percent of 1988 levels by the year 2005, let alone meet any more substantial cuts that may be required in the future.

Hughes, L.; Scott, S. (Dept. of Mathematics and Computing Science, Saint Mary' s Univ., Halifax, Nova Scotia B3H 3C3 (CA))

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Latest Estimates Latest Estimates Atmos CO2 Level 397.31 ppm Fossil CO2 Emissions 9,167 MMT Carbon Global Temp Anomaly +0.56°C / +1.01°F Global Sea Level Rise +2.9 ± 0.4 mm/y Carbon Dioxide Information Analysis Center The Carbon Dioxide Information Analysis Center (CDIAC) is the primary climate-change data and information analysis center of the U.S. Department of Energy (DOE). CDIAC is located at DOE's Oak Ridge National Laboratory (ORNL) and includes the World Data Center for Atmospheric Trace Gases. CDIAC's data holdings include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon dioxide and other radiatively active trace gases; carbon cycle and terrestrial carbon management datasets and analyses; and

382

Sequestration of Carbon Dioxide in Coal Seams  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide in Coal Seams K. Schroeder (schroede@netl.doe.gov; 412.386.5910) U.S. Department of Energy National Energy Technology Laboratory P.O. Box 10940 Pittsburgh, PA 15236...

383

Carbon Dioxide Variability and Atmospheric Circulation  

Science Conference Proceedings (OSTI)

Hourly values of the concentration of atmospheric carbon dioxide at Mauna Loa Observatory (MLO) formed the basis for an investigation of concentration fluctuations on daily to monthly time scales. In agreement with earlier studies we found no ...

James C. Sadler; Colin S. Ramage; Arnold M. Hori

1982-06-01T23:59:59.000Z

384

Turning unwanted carbon dioxide into electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

and use it as a tool to boost electric power. Turning unwanted carbon dioxide into electricity Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov High Resolution Image The...

385

Carbon Dioxide Emission Factors for Coal  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

William Watson

1994-08-01T23:59:59.000Z

386

Regulating carbon dioxide capture and storage  

E-Print Network (OSTI)

This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational ...

De Figueiredo, Mark A.

2007-01-01T23:59:59.000Z

387

Thorium dioxide: properties and nuclear applications  

SciTech Connect

This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

Belle, J.; Berman, R.M. (eds.)

1984-01-01T23:59:59.000Z

388

Investigation of a sulfur reduction technique for mild gasification char. Technical report, December 1, 1992--February 28, 1993  

DOE Green Energy (OSTI)

The objective of this program is to investigate the desulfurization of mild gasification char using H{sub 2}:CH{sub 4} mixtures. Mild gasification of coal produces char, liquids, and gases at 1000{degrees}--1500{degrees}F (538{degrees}-816{degrees}C) and near-ambient pressure. Char, comprising 60--70% of the product, can be used to make high-value form coke for steelmaking and foundries. However, a sulfur content below 1 wt% is desirable, and char from high-sulfur Illinois coals must be upgraded to meet this criterion. Illinois No. 6 chars were treated in a 2-inch batch fluidized-bed reactor with H{sub 2}:CH{sub 4} blends containing 9--24 vol % CH{sub 4} at 1100{degrees}-1600{degrees}F (538{degrees}-871{degrees}C) and 50--200 psig (0.35--1.38 Mpa). The data from these tests show sulfur removal of 6.0--92.5 wt % and carbon losses of 0.0--25.6 wt %, with the desulfurization susceptibility of char related to porosity, density, and crystallite size. The relationships among mild gasification parameters, char properties, and char desulfurization susceptibility are being studied. Acid washing of char to remove Ca and Fe is being explored for its effect on subsequent sulfur removal. Secondary desulfurization of form coke produced from the desulfurized chars is also being studied, and a final recommendation will be made for integration of char desulfurization into the IGT MILDGAS process.

Knight, R.A. [Institute of Gas Technology, Chicago, IL (United States); Banerjee, D. [Illinois Clean Coal Inst., Carterville, IL (United States)

1993-05-01T23:59:59.000Z

389

Polymer Electrolytes for Rechargeable Lithium/Sulfur Batteries.  

E-Print Network (OSTI)

??With the rapid development of portable electronics, hybrid-electric and electric cars, there is great interest in utilization of sulfur as cathodes for rechargeable lithium batteries.… (more)

Zhao, Yan

2013-01-01T23:59:59.000Z

390

Better Batteries from Waste Sulfur - Materials Technology@TMS  

Science Conference Proceedings (OSTI)

Posted on: 04/28/2013. Transforming waste sulfur into lightweight plastic that could lead to better batteries for electric cars is possible through a new chemical

391

Low Temperature Sodium-Sulfur Grid Storage and EV Battery  

Berkeley Lab researcher Gao Liu has developed an innovative design for a battery, made primarily of sodium and sulfur, that holds promise for both ...

392

Available Technologies: Lithium / Sulfur Cells with Long Cycle ...  

A team of Berkeley Lab battery researchers led by Elton Cairns has invented an advanced lithium/sulfur (Li/S) cell that, for the first time, offers ...

393

Nanostructured Sulfur Electrodes for Long-Life Lithium Batteries  

Berkeley Lab researcher Elton Cairns has developed a technology that addresses limitations of developing a commercial-grade lithium / sulfur battery. ...

394

Low Temperature Sodium-Sulfur Grid Storage and EV Battery ...  

Berkeley Lab researcher Gao Liu has developed an innovative design for a battery, made primarily of sodium and sulfur, that holds promise for both large-scale grid ...

395

Reductive Sulfur-fixation Smelting of Stibnite Concentrate in Sodium ...  

Science Conference Proceedings (OSTI)

Abstract Scope, A new process to extracted antimony directly from stibnite concentrate by reductive sulfur-fixation smelting in sodium molten salt has been ...

396

Abatement of Air Pollution: Control of Sulfur Compound Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abatement of Air Pollution: Control of Sulfur Compound Emissions Abatement of Air Pollution: Control of Sulfur Compound Emissions (Connecticut) Abatement of Air Pollution: Control of Sulfur Compound Emissions (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection These regulations set limits on the sulfur content of allowable fuels (1.0%

397

Mechanism of Sulfur-containing Aryl Polyphosphonate as Flame ...  

Science Conference Proceedings (OSTI)

Presentation Title, Mechanism of Sulfur-containing Aryl Polyphosphonate as Flame Retardant for PET. Author(s), Deng Yi. On-Site Speaker (Planned), Deng Yi.

398

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

During the present reporting period, six complementary tasks involving experimentation, model development, and coal characterization were undertaken to meet our project objectives: (1) A second adsorption apparatus, utilizing equipment donated by BP Amoco, was assembled. Having confirmed the reliability of this additional experimental apparatus and procedures, adsorption isotherms for CO{sub 2}, methane, ethane, and nitrogen on wet Fruitland coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 3%. The addition of this new facility has allowed us to essentially double our rate of data production. (2) Adsorption isotherms for pure CO{sub 2}, methane, and nitrogen on wet Illinois-6 coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia) on our first apparatus. The activated carbon measurements showed good agreement with literature data and with measurements obtained on our second apparatus. The expected uncertainty of the data is about 3%. The Illinois-6 adsorption measurements are a new addition to the existing database. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on DESC-8 coal. (3) Adsorption from binary mixtures of methane, nitrogen and CO{sub 2} at a series of compositions was also measured on the wet Fruitland coal at 319.3 K (115 F), using our first apparatus. The nominal compositions of these mixtures are 20%/80%, 40%/60%, 60%/40%, and 80%/20%. The experiments were conducted at pressures from 100 psia to 1800 psia. The expected uncertainty for these binary mixture data varies from 2 to 9%. (4) A study was completed to address the previously-reported rise in the CO{sub 2} absolute adsorption on wet Fruitland coal at 115 F and pressures exceeding 1200 psia. Our additional adsorption measurements on Fruitland coal and on activated carbon show that: (a) the Gibbs adsorption isotherm for CO{sub 2} under study exhibits typical adsorption behavior for supercritical gas adsorption, and (b) a slight variation from Type I absolute adsorption may be observed for CO{sub 2}, but the variation is sensitive to the estimates used for adsorbed phase density. (5) The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, a two-dimensional cubic equation of state (EOS), a new two-dimensional (2-D) segment-segment interactions equation of state, and the simplified local density model (SLD). Our model development efforts have focused on developing the 2-D analog to the Park-Gasem-Robinson (PGR) EOS and an improved form of the SLD model. The new PGR EOS offers two advantages: (a) it has a more accurate repulsive term, which is important for reliable adsorption predictions, and (b) it is a segment-segment interactions model, which should more closely describe the gas-coal interactions during the adsorption process. In addition, a slit form of the SLD model was refined to account more precisely for heterogeneity of the coal surface and matrix swelling. In general, all models performed well for the Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). In comparison, the SLD model represented the adsorption behavior of all fluids considered within 5% average deviations, including the near-critical behavior of carbon dioxide beyond 8.3 MPa (1200 psia). Work is in progress to (a) derive and implement the biporous form of the SLD model, which would expand the number of structural geometries used to represent the heterogeneity of coal surface; and (b) extend the SLD model to mixture predictions. (6) Proper reduction of our adsorption data requires accurate gas-phase compressibility (Z) factors for methane, ethane, nitrogen and carbon dioxide and their mixtures to properly analyze our experimental adsorption data. A careful evaluation of t

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-06-15T23:59:59.000Z

399

Cyclic process for producing methane in a tubular reactor with effective heat removal  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-Lee (Spring Valley, NY)

1986-01-01T23:59:59.000Z

400

Cyclic process for producing methane from carbon monoxide with heat removal  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-lee (Spring Valley, NY)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electrocatalytic reduction of carbon dioxide to carbon monoxide by rhenium and manganese polypyridyl catalysts  

E-Print Network (OSTI)

for reduction of carbon dioxide. IR-SpectroelectrochemicalElectrocatalytic reduction of carbon dioxide mediated by Re(Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (

Smieja, Jonathan Mark

2012-01-01T23:59:59.000Z

402

Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates  

E-Print Network (OSTI)

of Methane– Title: Carbon Dioxide Mixed Hydrates Tae-Hyukof methane with carbon dioxide in hydrate has been proposedsequestration of carbon dioxide ( CO 2 ) and/or production

Kwon, T.H.

2012-01-01T23:59:59.000Z

403

Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

4: April 9, 2007 4: April 9, 2007 Carbon Dioxide Emissions to someone by E-mail Share Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Facebook Tweet about Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Twitter Bookmark Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Google Bookmark Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Delicious Rank Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on Digg Find More places to share Vehicle Technologies Office: Fact #464: April 9, 2007 Carbon Dioxide Emissions on AddThis.com... Fact #464: April 9, 2007 Carbon Dioxide Emissions Carbon dioxide (CO2) emissions from the transportation sector began to

404

MULTIPLE SULFUR ISOTOPE FRACTIONATIONS IN BIOLOGICAL SYSTEMS: A CASE STUDY WITH SULFATE REDUCERS  

E-Print Network (OSTI)

MULTIPLE SULFUR ISOTOPE FRACTIONATIONS IN BIOLOGICAL SYSTEMS: A CASE STUDY WITH SULFATE REDUCERS*, DONALD E. CANFIELD**, and KIRSTEN S. HABICHT** ABSTRACT. Multiple sulfur isotope measurements of sulfur disproportionation indicate that different types of metabolic processes impart differ- ent multiple isotope

Kaufman, Alan Jay

405

Protocols for the selective cleavage of carbon-sulfur bonds in coal. Quarterly report, September 1, 1991--November 30, 1991  

SciTech Connect

Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost--effective of desulfurizing Illinois coal is non-existent at the present time. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds, relative to fragmentation of the coal macromolecule via C-C, C-O, and C-N bond cleavage. During this funding period, we plan to carry out examinations of: (a) the effects of various reaction conditions on radical-initiated and Lewis acid-catalyzed C-S bond cleavages; (b) the effects of caustic impregnation and subsequent alcoholic reflux on C-S bond cleavage strategies; (c) the reactions of coal model compounds with electron-deficient substrates; (d) examinations of photooxidative C-S bond cleavage reactions; (e) the effects of moderate (300--400{degrees}C) temperatures and pressures as well as ultrasonic radiation on (a) - (c). Also planned are differential scanning calorimetric (DSC) examinations of selected C-S bond cleavage protocols, including those on Illinois coals that possess varying amounts of organic and inorganic sulfur.

Bausch, M.

1991-12-31T23:59:59.000Z

406

DOE Removes Brookhaven Contractor  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Removes DOE Removes Brookhaven Contractor Peña sends a message to DOE facilities nationwide INSIDE 2 Accelerator Rx 4 FermiKids 6 Spring at Fermilab Photos courtesy of Brookhaven National Laboratory by Judy Jackson, Office of Public Affairs Secretary of Energy Federico Peña announced on Thursday, May 1, that the Department of Energy would immediately terminate the current management contract with Associated Universities, Inc. at Brookhaven National Laboratory in Upton, New York. Peña said that he made the decision after receiving the results of a laboratory safety management review conducted by the independent oversight arm of DOE's Office of Environment, Safety and Health. In addition, the Secretary said he found unacceptable "the continued on page 8 Volume 20 Friday, May 16, 1997

407

Pneumatic soil removal tool  

DOE Patents (OSTI)

A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

Neuhaus, John E. (Newport News, VA)

1992-01-01T23:59:59.000Z

408

Pneumatic soil removal tool  

Science Conference Proceedings (OSTI)

A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

Neuhaus, J.E.

1992-10-13T23:59:59.000Z

409

Distribution and origin of sulfur in Colorado oil shale  

SciTech Connect

The sulfur content of 1,225 samples of Green River oil shale from two core holes in the Piceance Creek Basin, Colorado, ranges from nearly 0 to 4.9 weight percent. In one core hole, the average sulfur content of a sequence of oil shale 555 m thick, which represents nearly the maximum thickness of oil shale in the basin, is 0.76 weight percent. The vertical distribution of sulfur through the oil shale is cyclic. As many as 25 sulfur cycles have lateral continuity and can be traced between the core holes. Most of the sulfur resides in iron sulfides (pyrite, marcasite, and minor. pyrrhotite), and small amounts are organically bound in kerogen. In general, the concentration of sulfur correlates moderately with oil shale yield, but the degree of association ranges from quite high in the upper 90 m of the oil shale sequence to low or none in the leached zone and in illitic oil shale in the lower part of the sequence. Sulfur also correlates moderately with iron in the carbonate oil shale sequence, but no correlation was found in the illitic samples. Sulfide mineralization is believed to have occurred during early and late stages of diagenesis, and after lithification, during development of the leached zone. Significant amounts of iron found in ankeritic dolomite and in illite probably account for the lack of a strong correlation between sulfur and iron.

Dyni, J.R.

1983-04-01T23:59:59.000Z

410

Sodium sulfur container with chromium/chromium oxide coating  

SciTech Connect

A coating of chromium/chromium oxide is disclosed for coating the surfaces of electrically conducting components of a sodium sulfur battery. This chromium/chromium oxide coating is placed on the surfaces of the electrically conducting components of the battery which are in contact with molten polysulfide and sulfur reactants during battery operation.

Ludwig, Frank A. (Irvine, CA); Higley, Lin R. (Santa Ana, CA)

1981-01-01T23:59:59.000Z

411

High-sulfur coals in the eastern Kentucky coal field  

Science Conference Proceedings (OSTI)

The Eastern Kentucky coal field is notable for relatively low-sulfur, [open quotes]compliance[close quotes] coals. Virtually all of the major coals in this area do have regions in which higher sulfur lithotypes are common, if not dominant, within the lithologic profile. Three Middle Pennsylvanian coals, each representing a major resource, exemplify this. The Clintwood coal bed is the stratigraphically lowest coal bed mined throughout the coal field. In Whitley County, the sulfur content increase from 0.6% at the base to nearly 12% in the top lithotype. Pyrite in the high-sulfur lithotype is a complex mixture of sub- to few-micron syngenetic forms and massive epigenetic growths. The stratigraphically higher Pond Creek coal bed is extensively mined in portions of the coal field. Although generally low in sulfur, in northern Pike and southern Martin counties the top one-third can have up to 6% sulfur. Uniformly low-sulfur profiles can occur within a few hundred meters of high-sulfur coal. Pyrite occurs as 10-50 [mu]m euhedra and coarser massive forms. In this case, sulfur distribution may have been controlled by sandstone channels in the overlying sediments. High-sulfur zones in the lower bench of the Fire Clay coal bed, the stratigraphically highest coal bed considered here, are more problematical. The lower bench, which is of highly variable thickness and quality, generally is overlain by a kaolinitic flint clay, the consequence of a volcanic ash fall into the peat swamp. In southern Perry and Letcher counties, a black, illite-chlorite clay directly overlies the lower bench. General lack of lateral continuity of lithotypes in the lower bench suggests that the precursor swamp consisted of discontinuous peat-forming environments that were spatially variable and regularly inundated by sediments. Some of the peat-forming areas may have been marshlike in character.

Hower, J.C.; Graham, U.M. (Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington, KY (United States))

1993-08-01T23:59:59.000Z

412

NETL Patented CO2-Removal Sorbents Promise Power and Cost Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patented CO2-Removal Sorbents Promise Power and Cost Savings Patented CO2-Removal Sorbents Promise Power and Cost Savings NETL Patented CO2-Removal Sorbents Promise Power and Cost Savings May 30, 2012 - 1:00pm Addthis Washington, DC - Carbon dioxide removal sorbents developed by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) could result in power and cost savings for users of some heating, ventilation and air conditioning (HVAC) systems under a recently signed license agreement. NETL, the research and development laboratory for DOE's Office of Fossil Energy, entered into a patent license agreement with Boston-based Enverid Systems Inc. for NETL-developed solid sorbents that remove CO2 from gas streams. NETL's sorbents will be incorporated into an Enverid product called EnClaire™, which adds on to HVAC systems to reduce power

413

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The originally-stated, major objectives of the current project are to (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project has developed, an important additional objective has been added to the above original list. Namely, we have been encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we have participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, have also provided direct synergism with the original goals of our work. Specific accomplishments of this project during the current reporting period are summarized in three broad categories outlining experimentation, model development, and coal characterization.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2003-03-10T23:59:59.000Z

414

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also provided direct synergism with the original goals of our work. Specific accomplishments of this project are summarized below in three broad categories: experimentation, model development, and coal characterization.

K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

2003-04-30T23:59:59.000Z

415

Appendix B: CArBon dioxide CApture teChnology SheetS  

NLE Websites -- All DOE Office Websites (Extended Search)

solvents solvents B-198 Post-Combustion solvents u.s. DePartment of energy aDvanCeD Carbon DioxiDe CaPture r&D Program: teChnology uPDate, may 2013 DeveloPment anD Demonstration of Waste heat integration With solvent ProCess for more effiCient Co 2 removal from Coal-fireD flue gas primary project goals Southern Company Services is developing viable heat integration methods for the capture of carbon dioxide (CO 2 ) produced from pulverized coal (PC) combustion. The project will quantify energy-efficiency improvements to the CO 2 capture process by utilizing a waste heat recovery technology, High-Efficiency System (HES). technical goals * Reduction of the amount of extraction steam required for sensible heat load in the

416

A Vortex Contactor for Carbon Dioxide Separations  

NLE Websites -- All DOE Office Websites (Extended Search)

Vortex Contactor for Carbon Dioxide Separations Vortex Contactor for Carbon Dioxide Separations Kevin T. Raterman (ratekt@inel.gov; 208-526-5444) Michael McKellar (mgq@inel.gov; 208-526-1346) Anna Podgorney (poloak@inel.gov; 208-526-0064) Douglas Stacey (stacde@inel.gov; 208-526-3938) Terry Turner (tdt@inel.gov; 208-526-8623) Idaho National Engineering and Environmental Laboratory P.O. Box 1625 Idaho Falls, Idaho 83415-2110 Brian Stokes (bxs9@pge.com; 415-972-5591) John Vranicar (jjv2@pge.com; 415-972-5591) Pacific Gas & Electric Company 123 Mission Street San Francisco, CA 94105 Introduction Many analysts 1,2,3 identify carbon dioxide (CO 2 ) capture and separation as a major roadblock in efforts to cost effectively mitigate greenhouse gas emissions via sequestration. An assessment 4 conducted by the International Energy Agency (IEA)

417

Polymers for metal extractions in carbon dioxide  

DOE Patents (OSTI)

A composition useful for the extraction of metals and metalloids comprises (a) carbon dioxide fluid (preferably liquid or supercritical carbon dioxide); and (b) a polymer in the carbon dioxide, the polymer having bound thereto a ligand that binds the metal or metalloid; with the ligand bound to the polymer at a plurality of locations along the chain length thereof (i.e., a plurality of ligands are bound at a plurality of locations along the chain length of the polymer). The polymer is preferably a copolymer, and the polymer is preferably a fluoropolymer such as a fluoroacrylate polymer. The extraction method comprises the steps of contacting a first composition containing a metal or metalloid to be extracted with a second composition, the second composition being as described above; and then extracting the metal or metalloid from the first composition into the second composition.

DeSimone, Joseph M. (7315 Crescent Ridge Dr., Chapel Hill, NC 27516); Tumas, William (1130 Big Rock Loop, Los Alamos, NM 87544); Powell, Kimberly R. (103 Timber Hollow Ct. Apartment 323, Chapel Hill, NC 27514); McCleskey, T. Mark (1930 Camino Mora, Los Alamos, NM 87544); Romack, Timothy J. (5810 Forest Ridge Dr., Durham, NC 27713); McClain, James B. (8530 Sommersweet La., Raleigh, NC 27612); Birnbaum, Eva R. (1930 Camino Mora, Los Alamos, NM 87544)

2001-01-01T23:59:59.000Z

418

CHLORINE DIOXIDE AND CHLORITE Chlorine Dioxide CAS # 10049-04-4  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about chlorine dioxide and chlorite. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because these substances may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Chlorine dioxide is a gas that does not occur naturally in the environment. It is used to disinfect drinking water and make it safe to drink. Chlorite is formed when chlorine dioxide reacts with water. High levels of chlorine dioxide can be irritating to the nose, eyes, throat, and lungs. Chlorine dioxide and chlorite have not been found in any of the 1,647 National Priorities List sites identified by the Environmental Protection Agency (EPA). What are chlorine dioxide and chlorite? Chlorine dioxide is a yellow to reddish-yellow manufactured gas. It does not occur naturally in the environment. When

Chlorite Cas

2004-01-01T23:59:59.000Z

419

Magnesium/manganese dioxide electrochemical cell  

SciTech Connect

This patent describes an improvement in a magnesium/manganese dioxide electrochemical cell that has been stored following partial usage and including an alloy of magnesium as the anode, a moist cathode mix of carbon black, manganese dioxide, magnesium hydroxide, barium chromate and lithium chromate as the cathode, and 3.5 to 4.0 normal magnesium perchlorate as the electrolyte. The improvement involves increasing the moisture content of the cathode mix from 34 to 38 percent at the time of making the cell to reduce the self discharge and increase the operating capacity after the cell has been stored following partial usage.

Jarvis, L.P.; Brundage, M.T.; Atwater, T.B.

1989-09-26T23:59:59.000Z

420

Protocols for the selective cleavage of carbon-sulfur bonds in coal. Interim final technical report, September 1, 1992--August 31, 1993  

SciTech Connect

This report presents results of research pertaining to chemical reactions that aim to selectively cleave C-S bonds in model compounds as well as Illinois coal. Chemical reactions that result in carbon-sulfur bond cleavage are an essential aspect of any protocol designed to remove organic sulfur from coal. In the second year of the project {open_quotes}Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal, the author has completed investigations of reactions in which organic sulfur-containing coal model compounds are subjected to different conditions of temperature, solvent mixtures, reagents, and radiation. He has also undertaken a series of reactions in which physically cleaned Illinois coal has been subjected to many of the same reaction conditions that were shown, via the use of model sulfides, to result in substantial C-S bond cleavage and or sulfur oxidation. Therefore, summarized in this interim final report are results of the investigations of the photooxidation reactions of coal model sulfones and sulfides; the photolytic desulfurization of coal; and various other topics, including a summary of the endeavors aimed at initiating C-S bond cleavage reactions using oxidation/chlorination/desulfurization protocols, and various tellurium reagents. Important experiments remain to be completed on this project; therefore, efforts in these areas will continue through the end of calendar year 1993.

Bausch, M. [Southern Illinois Univ., Carbondale, IL (United States)

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Protocols for the selective cleavage of carbon-sulfur bonds in coal. Final technical report, September 1, 1992--December 31, 1993  

SciTech Connect

Results of research pertaining to chemical reactions that aim to selectively cleave C-S bonds in model compounds as well as Illinois coal are summarized. Chemical reactions that result in carbon-sulfur bond cleavage are an essential aspect of any protocol designed to remove organic sulfur from coal. In the second year of the project ``Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal`` investigations of reactions in which organic sulfur-containing coal model compounds are subjected to different conditions of temperature, solvent mixtures, reagents, and radiation have been completed. A series of reactions have been undertaken in which physically cleaned Illinois coal has been subjected to many of the same reaction conditions that were shown, via the use of model sulfides, to result in substantial C-S bond cleavage and or sulfur oxidation. Therefore, summarized in this final report are results of the investigations of the photooxidation reactions of coal model sulfones and sulfides; the photolytic desulfurization of coal; and various other topics, including a summary of endeavors aimed at initiating C-S bond cleavage reactions using oxidation/chlorination/desulfurization protocols, and various tellurium reagents.

Bausch, M.

1993-12-31T23:59:59.000Z

422

EIA - International Energy Outlook 2007 - Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Relaated Carbon Dioxide Emissions Energy-Relaated Carbon Dioxide Emissions International Energy Outlook 2007 Chapter 7 - Energy-Related Carbon Dioxide Emissions In 2004, non-OECD emissions of carbon dioxide were greater than OECD emissions for the first time. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 57 percent. Figure 77. World Energy-Related Carbon Dioxide Emissions by Region, 2003-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center on 202-585-8800. Figure Data Figure 78. World energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy at 202-586-8800. Figure Data Carbon dioxide is the most abundant anthropogenic (human-caused) greenhouse

423

EIA - International Energy Outlook 2008-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2008 Chapter 7 - Energy-Related Carbon Dioxide Emissions In 2005, non-OECD emissions of carbon dioxide exceeded OECD emissions by 7 percent. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 72 percent. Figure 75. World Energy-Related Carbon Dioxide Emissions, 2005-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 76. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 77. Average Annual Growth in Energy-Related Carbon Dioxide Emissions in the OECD Economies, 2005-2030 (Percent per Year). Need help, contact the National Energy Information Center at 202-586-8800.

424

Recycling Carbon Dioxide to Make Plastics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomers thermoplastic pellets incorporate waste CO2 into a...

425

Dry process fluorination of uranium dioxide using ammonium bifluoride  

E-Print Network (OSTI)

An experimental study was conducted to determine the practicality of various unit operations for fluorination of uranium dioxide. The objective was to prepare ammonium uranium fluoride double salts from uranium dioxide and ...

Yeamans, Charles Burnett, 1978-

2003-01-01T23:59:59.000Z

426

New Texas Oil Project Will Help Keep Carbon Dioxide Underground...  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and...

427

How much carbon dioxide is produced by burning gasoline and ...  

U.S. Energy Information Administration (EIA)

How much carbon dioxide is produced by burning gasoline and diesel fuel? About 19.64 pounds of carbon dioxide (CO 2) are produced from burning a gallon of gasoline ...

428

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Carbon Dioxide Capture/Sequestration Tax Deduction allows a taxpayer a deduction to adjusted gross income with respect to the amortization of the amortizable costs of carbon dioxide capture,...

429

Calculating Residential Carbon Dioxide Emissions --A New Approach  

E-Print Network (OSTI)

Calculating Residential Carbon Dioxide Emissions -- A New Approach Larry Hughes, Kathleen Bohan to submit an annual national greenhouse gas inventory to the United Nations Framework Convention on Climate different sectors and their associated greenhouse gas emissions (principally carbon dioxide, methane

Hughes, Larry

430

Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers  

E-Print Network (OSTI)

carbon dioxide can be less than the viscosity of the aqueous phase by a factorcarbon dioxide can be less than the viscosity of the aqueous phase by a factor

Garcia, Julio Enrique

2003-01-01T23:59:59.000Z

431

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network (OSTI)

Structural Factors Affecting Energy Use and Carbon DioxideStructural Factors Affecting Energy Use and Carbon Dioxide

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

432

Engine Removal Projection Tool  

DOE Green Energy (OSTI)

The US Navy has over 3500 gas turbine engines used throughout the surface fleet for propulsion and the generation of electrical power. Past data is used to forecast the number of engine removals for the next ten years and determine engine down times between removals. Currently this is done via a FORTRAN program created in the early 1970s. This paper presents results of R&D associated with creating a new algorithm and software program. We tested over 60 techniques on data spanning 20 years from over 3100 engines and 120 ships. Investigated techniques for the forecast basis including moving averages, empirical negative binomial, generalized linear models, Cox regression, and Kaplan Meier survival curves, most of which are documented in engineering, medical and scientific research literature. We applied those techniques to the data, and chose the best algorithm based on its performance on real-world data. The software uses the best algorithm in combination with user-friendly interfaces and intuitively understandable displays. The user can select a specific engine type, forecast time period, and op-tempo. Graphical displays and numerical tables present forecasts and uncertainty intervals. The technology developed for the project is applicable to other logistic forecasting challenges.

Ferryman, Thomas A.; Matzke, Brett D.; Wilson, John E.; Sharp, Julia L.; Greitzer, Frank L.

2005-06-02T23:59:59.000Z

433

Carbon Dioxide as Cushion Gas for Natural Gas Storage  

Carbon dioxide injection during carbon sequestration with enhanced gas recovery can be carried out to produce the methane while

434

Carbon Dioxide and Other Greenhouse Gas Reduction Metallurgy  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Carbon Dioxide and Other Greenhouse Gas Reduction Metallurgy - 2011.

435

Method and apparatus for converting and removing organosulfur and other oxidizable compounds from distillate fuels, and compositions obtained thereby  

DOE Patents (OSTI)

The present disclosure is directed to a multi-stage system and a process utilizing said system with the design of reducing the sulfur-content in a liquid comprising hydrocarbons and organosulfur compounds. The process comprising at least one of the following states: (1) an oxidation stage; (2) an extraction state; (3) a raffinate washing stage; (4) a raffinate polishing stage; (5) a solvent recovery stage; (6) a solvent purification stage; and (7) a hydrocarbon recovery stage. The process for removing sulfur-containing hydrocarbons from gas oil, which comprises oxidizing gas oil comprising hydrocarbons and organosulfur compounds to obtain a product gas oil.

D' Alessandro, Robert N. (Spanish Fort, AL); Tarabocchia, John (Parsippany, NJ); Jones, Jerald Andrew (Frankfurt am Main, DE); Bonde, Steven E. (West Richard, WA); Leininger, Stefan (Langenselbold, DE)

2010-10-26T23:59:59.000Z

436

Role of carbon dioxide in gas expanded liquids for removal of photoresist and etch residue.  

E-Print Network (OSTI)

??Progress in the microelectronics industry is driven by smaller and faster transistors. As feature sizes in integrated circuits become smaller and liquid chemical waste becomes… (more)

Song, Ingu

2007-01-01T23:59:59.000Z

437

Solid sorbents for removal of carbon dioxide from gas streams at low temperatures  

DOE Patents (OSTI)

New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

Sirwardane, Ranjani V. (Morgantown, WV)

2005-06-21T23:59:59.000Z

438

Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures  

DOE Patents (OSTI)

New low-cost CO2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35 degrees C.

Sirwardane, Ranjani V.

2005-06-21T23:59:59.000Z

439

FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE  

DOE Patents (OSTI)

A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.

1962-06-26T23:59:59.000Z

440

Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate- Ammonium Bicarbonate Process Description Current commercial processes to remove carbon dioxide (CO 2 ) from conventional power plants are expensive and energy intensive. The objective of this project is to reduce the cost associated with the capture of CO 2 from coal based gasification processes, which convert coal and other carbon based feedstocks to synthesis gas.

Note: This page contains sample records for the topic "remove sulfur dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11