Powered by Deep Web Technologies
Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Categorical Exclusion 4568, Crane Removal Project  

Broader source: Energy.gov (indexed) [DOE]

l)eterminationFornl l)eterminationFornl Project Title: Crane Removal Project (4568) Program or Program Office: Y -12 Site Office Location: Oak Ridge Tennessee Project Description: This work scope is to remove an old legacy crane trolley and old crane operated cab. General Administration/Management DA I - Routine business actions DA2 - Administrative contract amendments DA4 - Interpretations/rulings for existing regulations DA5 - Regulatory interpretations without environmental effect DA6 - Procedural rulemakings upgrade DA7 - Transfer of property, use unchanged DA8 - Award of technical support/M&O/personal service contracts DA9 - Info gathering, analysis, documentation, dissemination, and training DAIO - Reports on non-DOE legislation DA II - Technical advice and planning assistance

2

Categorical Exclusion 4566, Ash Removal Project  

Broader source: Energy.gov (indexed) [DOE]

FOrnI FOrnI Project Title: Ash Removal Project (4566) Program or Program Office: Y -12 Site Office Location: Oak Ridge Tennessee Project Description: This work scope is to split, containerize, package, transport and disposition one hundred and two (102) cans of mixed waste. General Administration/Management OA I - Routine business actions OA2 * Administrative contract amendments OA4 - Interpretations/rulings for existing regulations OA5 - Regulatory interpretations without environmental effect OA6 - Procedural rule makings upgrade OA 7 - Transfer of property, use unchanged OA8 . Award of technical supportlM&O/personal service contracts OA9 - Info gathering, analysis, documentation, dissemination, and training OA 10 - Reports on non-DOE legislation OA II -

3

Moab Project Continues Progress on Tailings Removal with Contract  

Broader source: Energy.gov (indexed) [DOE]

Moab Project Continues Progress on Tailings Removal with Contract Moab Project Continues Progress on Tailings Removal with Contract Transition Moab Project Continues Progress on Tailings Removal with Contract Transition December 27, 2012 - 12:00pm Addthis Laborers place a disposable liner in a tailings container. Laborers place a disposable liner in a tailings container. MOAB, Utah - The Moab mill tailings removal project in Utah ended the year having shipped more than 35 percent of the total 16 million tons of uranium mill tailings off-site. The tailings are being transported by rail 30 miles north to a disposal cell for permanent storage. More than 1 million tons of tailings were shipped during fiscal year 2012, which closed at the end of September. The Moab Project also successfully transitioned both of its prime contracts

4

Moab Project Continues Progress on Tailings Removal with Contract  

Broader source: Energy.gov (indexed) [DOE]

Moab Project Continues Progress on Tailings Removal with Contract Moab Project Continues Progress on Tailings Removal with Contract Transition Moab Project Continues Progress on Tailings Removal with Contract Transition December 27, 2012 - 12:00pm Addthis Laborers place a disposable liner in a tailings container. Laborers place a disposable liner in a tailings container. MOAB, Utah - The Moab mill tailings removal project in Utah ended the year having shipped more than 35 percent of the total 16 million tons of uranium mill tailings off-site. The tailings are being transported by rail 30 miles north to a disposal cell for permanent storage. More than 1 million tons of tailings were shipped during fiscal year 2012, which closed at the end of September. The Moab Project also successfully transitioned both of its prime contracts

5

TMI defueling project fuel debris removal system  

SciTech Connect (OSTI)

The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

Burdge, B.

1992-01-01T23:59:59.000Z

6

TMI defueling project fuel debris removal system  

SciTech Connect (OSTI)

The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

Burdge, B.

1992-08-01T23:59:59.000Z

7

Moab Mill Tailings Removal Project Celebrates 5 Years of Success |  

Broader source: Energy.gov (indexed) [DOE]

Mill Tailings Removal Project Celebrates 5 Years of Success Mill Tailings Removal Project Celebrates 5 Years of Success Moab Mill Tailings Removal Project Celebrates 5 Years of Success October 3, 2012 - 12:00pm Addthis Pictured here is the Moab uranium mill tailings pile. Tailings excavation and conditioning activities are seen in the foreground. The water spray is used to eliminate extracted contaminated groundwater. Pictured here is the Moab uranium mill tailings pile. Tailings excavation and conditioning activities are seen in the foreground. The water spray is used to eliminate extracted contaminated groundwater. Moab Federal Project Director Donald Metzler stands on a final cover layer of the disposal cell. Several other layers are visible behind him. Moab Federal Project Director Donald Metzler stands on a final cover layer

8

Moab Mill Tailings Removal Project Celebrates 5 Years of Success |  

Broader source: Energy.gov (indexed) [DOE]

Moab Mill Tailings Removal Project Celebrates 5 Years of Success Moab Mill Tailings Removal Project Celebrates 5 Years of Success Moab Mill Tailings Removal Project Celebrates 5 Years of Success October 3, 2012 - 12:00pm Addthis Pictured here is the Moab uranium mill tailings pile. Tailings excavation and conditioning activities are seen in the foreground. The water spray is used to eliminate extracted contaminated groundwater. Pictured here is the Moab uranium mill tailings pile. Tailings excavation and conditioning activities are seen in the foreground. The water spray is used to eliminate extracted contaminated groundwater. Moab Federal Project Director Donald Metzler stands on a final cover layer of the disposal cell. Several other layers are visible behind him. Moab Federal Project Director Donald Metzler stands on a final cover layer

9

Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan  

SciTech Connect (OSTI)

This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

Carlson, Thomas J.; Johnson, Gary E.

2010-01-29T23:59:59.000Z

10

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project  

Broader source: Energy.gov (indexed) [DOE]

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely February 27, 2012 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145 Grand Junction, CO- The U.S. Department of Energy (DOE) reached another milestone today for the Uranium Mill Tailings Remedial Action Project, having shipped 5 million tons of tailings from the massive pile located in Moab, Utah, to the engineered disposal cell near Crescent Junction, Utah. The pile comprised an estimated 16 million tons total when DOE's Remedial

11

NAME: Old Place Creek Berm Removal Project LOCATION: Staten Island, Richmond County, New York  

E-Print Network [OSTI]

, particularly pesticides, and their removal from the system is an additional benefit of the project. In additionNAME: Old Place Creek Berm Removal Project LOCATION: Staten Island, Richmond County, New York ACRES Island, New York. Restoration will be accomplished through removal of an earthen berm, restoring

US Army Corps of Engineers

12

Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes  

Broader source: Energy.gov (indexed) [DOE]

Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site June 13, 2012 - 12:00pm Addthis Harrel McCray, left, and Joey Clark, employees with SRS management and operations contractor, Savannah River Nuclear Solutions, stand by an extensive SRS cleanup system that safely and successfully rid the site of more than 33,000 gallons of non-radioactive chemical

13

Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes  

Broader source: Energy.gov (indexed) [DOE]

Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site June 13, 2012 - 12:00pm Addthis Harrel McCray, left, and Joey Clark, employees with SRS management and operations contractor, Savannah River Nuclear Solutions, stand by an extensive SRS cleanup system that safely and successfully rid the site of more than 33,000 gallons of non-radioactive chemical

14

Moab Mill Tailings Removal Project Plans to Resume Train Shipments...  

Energy Savers [EERE]

result in a cost savings to the project over the long term. Made of -inch durable plastic, the liners will prevent the tailings material, which tends to be sticky, from...

15

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Broader source: Energy.gov (indexed) [DOE]

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

16

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Broader source: Energy.gov (indexed) [DOE]

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

17

Evaluation of an Unsuccessful Brook Trout Electrofishing Removal Project in a Small Rocky Mountain Stream.  

SciTech Connect (OSTI)

In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout from streams by means of electrofishing. Although the success of such projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. A multiagency watershed advisory group (WAG) conducted a 3-year removal project to reduce brook trout and enhance native salmonids in 7.8 km of a southwestern Idaho stream. We evaluated the costs and success of their project in suppressing brook trout and looked for brook trout compensatory responses, such as decreased natural mortality, increased growth, increased fecundity at length, and earlier maturation. The total number of brook trout removed was 1,401 in 1998, 1,241 in 1999, and 890 in 2000; removal constituted an estimated 88% of the total number of brook trout in the stream in 1999 and 79% in 2000. Although abundance of age-1 and older brook trout declined slightly during and after the removals, abundance of age-0 brook trout increased 789% in the entire stream 2 years after the removals ceased. Total annual survival rate for age-2 and older brook trout did not decrease during the removals, and the removals failed to produce an increase in the abundance of native redband trout Oncorhynchus mykiss gairdneri. Lack of a meaningful decline and unchanged total mortality for older brook trout during the removals suggest that a compensatory response occurred in the brook trout population via reduced natural mortality, which offset the removal of large numbers of brook trout. Although we applaud WAG personnel for their goal of enhancing native salmonids by suppressing brook trout via electrofishing removal, we conclude that their efforts were unsuccessful and suggest that similar future projects elsewhere over such large stream lengths would be costly, quixotic enterprises.

Meyer, Kevin A.; Lamansky, Jr., James A.; Schill, Daniel J.

2006-01-26T23:59:59.000Z

18

Recovery Act Funds Test Reactor Dome Removal in Historic D&D Project |  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act Funds Test Reactor Dome Removal in Historic D&D Recovery Act Funds Test Reactor Dome Removal in Historic D&D Project Recovery Act Funds Test Reactor Dome Removal in Historic D&D Project February 1, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 646-6075 paivi.nettamo@srs.gov AIKEN, S.C. - The landscape of the Savannah River Site (SRS) is a little flatter and a little less colorful with the removal today of the 75-foot-tall rusty-orange dome from the Cold War-era test reactor. This $25-million reactor decommissioning and deactivation project is funded By the American Recovery and Reinvestment Act. Affectionately known by SRS employees as "Hector," the iconic Heavy Water Components Test Reactor (HWCTR) has stood in the Site's B Area since 1959

19

The TMI defueling project fuel debris removal system  

SciTech Connect (OSTI)

The Three Mile Island (TMI) unit 2 pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems. A plethora of techniques, systems, and tools have been employed for the recovery and packaging of the postaccident configuration of the reactor core. Of particular difficulty was the removal of the fuel debris located beneath the lower core support structure. Fuel debris located beneath the lower core support structure was the result of rapid cooling of the previously molten UO{sub 2} and ZrO{sub 2}, causing formation of a ceramic like rubble. Approximately 19,100 kg of this rubble settled beneath the lower core support structure and onto the lower head of the reactor containment vessel. The development and implementation of a debris collection system based on the air lift principle proved to be an effective method for gathering the fuel debris from beneath the lower core support structure.

Burge, B. (EG and G Idaho, Inc., Idaho Falls (United States))

1992-01-01T23:59:59.000Z

20

Removal Action Plan for the Accelerated Retrieval Project for a Described Area within Pit 4  

SciTech Connect (OSTI)

This Removal Action Plan documents the plan for implementation of the Comprehensive Environmental Response, Compenstion, and Liability Act non-time-critical removal action to be performed by the Accelerated Retrieval Project. The focus of the action is the limited excavation and retrieval of selected waste streams from a designated portion of the Radioactive Waste Management Complex Subsurface Disposal Area that are contaminated with volatile organic compounds, isotopes of uranium, or transuranic radionuclides. The selected retrieval area is approximately 0.2 ha (1/2 acre) and is located in the eastern portion of Pit 4. The proposed project is referred to as the Accelerated Retrieval Project. This Removal Action Plan details the major work elements, operations approach, and schedule, and summarizes the environmental, safety and health, and waste management considerations associated with the project.

A. M. Tyson

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

GNEP Coupled End-to-End Demonstration Project Head-End Processing and Tritium Removal Using Voloxidation  

E-Print Network [OSTI]

of operating parameters on removal of volatile fission and activation products. In addition, data fromGNEP Coupled End-to-End Demonstration Project Head-End Processing and Tritium Removal Using fuel per year). The head-end processing segment includes single-pin shearing, voloxidation to remove

Pennycook, Steve

22

Public comment sought on hot cell removal project at the Idaho Site�s  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Public comment sought on hot cell removal project at the Idaho Site�s Advanced Test Reactor Complex Public comment sought on hot cell removal project at the Idaho Site�s Advanced Test Reactor Complex The U.S. Department of Energy (DOE) is seeking public comment on a project to remove three unused hot cells and the 1950s era laboratory building that contains them at the Idaho Site�s Advanced Test Reactor complex. An Engineering Evaluation/Cost Analysis (EE/CA) document with three proposed alternatives for the final end state of the building and hot cells is under evaluation by DOE, the U.S. Environmental Protection Agency, and Idaho�s Department of Environmental Quality. The TRA-632 building and the hot cells were built in 1952 for assembly, disassembly and examination of nuclear test reactor components. The 13,000 sq. foot building contains three shielded hot cells with lathes, power saws, grinders, and other remote handling equipment. In addition to the examination of test reactor components, the hot cells have been used during the production of radioisotopes for medical use like cobalt-60 and iridium-192. The last active work in the hot cells took place in 2004, and the aging facility was placed on standby in 2006.

23

HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT  

SciTech Connect (OSTI)

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

Jolly, R; Bruce Martin, B

2008-01-15T23:59:59.000Z

24

Moab Mill Tailings Removal Project Plans to Resume Train Shipments in  

Broader source: Energy.gov (indexed) [DOE]

Plans to Resume Train Shipments Plans to Resume Train Shipments in March; All of the Laid Off Workers Will Return Moab Mill Tailings Removal Project Plans to Resume Train Shipments in March; All of the Laid Off Workers Will Return February 25, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, donald.metzler@gjem.doe.gov 970-257-2115 Jeff Biagini, jeff.biagini@gjemrac.doe.gov 970-257-2117 Wendee Ryan, wryan@gjemtac.doe.gov 970-257-2145 Grand Junction, CO - All 27 employees of the Remedial Action Contractor (RAC) to the U.S. Department of Energy will return to work on the Uranium Mill Tailings Remedial Action Project on March 4, following a 3-month planned furlough. Project shipping and disposal operations have been shut down, as planned, since late November 2012, but are scheduled to resume

25

Environmental Assessment for the Decontamination, Demolition, and Removal of Certain Facilities at the West Valley Demonstration Project  

Broader source: Energy.gov (indexed) [DOE]

52 52 Environmental Assessment for the Decontamination, Demolition, and Removal of Certain Facilities at the West Valley Demonstration Project Final U.S. Department of Energy West Valley Demonstration Project West Valley, New York September 14, 2006 Final EA - Decontamination, Demolition, and Removal of Certain Facilities at WVDP i Table of Contents CHAPTER 1 INTRODUCTION AND PURPOSE AND NEED FOR AGENCY ACTION................ 1 1.1 Overview....................................................................................................................... 1 1.2 West Valley Demonstration Project.............................................................................. 2 1.3 Purpose and Need for Agency Action ..........................................................................

26

Report: Removal of EM Projects from the GAO High Risk List: Strategies for Improving the Effectiveness of Project and Contract Management in the Office of Environmental Management  

Broader source: Energy.gov (indexed) [DOE]

REPORT TO THE REPORT TO THE ENVIRONMENTAL MANAGEMENT ADVISORY BOARD Removal of EM Projects from the GAO High Risk List: Strategies for Improving the Effectiveness of Project and Contract Management in the Office of Environmental Management Submitted by the EMAB Acquisition and Project Management Subcommittee December 5, 2011 Introduction: This report provides a comprehensive summary of the work performed by the Acquisition and Project Management Subcommittee (APMS) of the Environmental Management Advisory Board, since tasking in March 2010. In particular, this report includes the summary observations developed and recommendations previously approved by the EMAB on the Subcommittee's work and presented to the then Assistant Secretary of Environmental Management (EM). As the

27

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect (OSTI)

5098-SR-04-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-11-03T23:59:59.000Z

28

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect (OSTI)

5098-SR-05-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1 BROOKHAVEN NATIONAL LABORATORY

E.M. Harpenau

2010-12-15T23:59:59.000Z

29

STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225  

SciTech Connect (OSTI)

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical Cleaning of Waste Tanks at the Savannah River Site--F Tank Farm Closure Project--Abstract 9114'. To support Tank 5 and Tank 6 cooling coil closure, cooling coil isolation and full scale cooling coil grout testing was completed to develop a strategy for grouting the horizontal and vertical cooling coils. This paper describes in detail the performance of the Mechanical Sludge Removal activities and SMP operational strategies within Tank 5. In addition, it will discuss the current status of Tank 5 & 6 cooling coil isolation activities and the results from the cooling coil grout fill tests.

Jolly, R

2009-01-06T23:59:59.000Z

30

DOE Moab Project Safely Removes 7 Million Tons of Mill Tailings  

Broader source: Energy.gov [DOE]

(Grand Junction, CO) ? The U.S. Department of Energy (DOE) has safely moved another million tons of uranium mill tailings from the Moab site in Utah under the Uranium Mill Tailings Remedial Action Project.

31

Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site.

NONE

1997-11-01T23:59:59.000Z

32

CHEMICAL SLUDGE HEEL REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT 8183  

SciTech Connect (OSTI)

Chemical Sludge Removal (CSR) is the final waste removal activity planned for some of the oldest nuclear waste tanks located at the Savannah River Site (SRS) in Aiken, SC. In 2008, CSR will be used to empty two of these waste tanks in preparation for final closure. The two waste tanks chosen to undergo this process have previously leaked small amounts of nuclear waste from the primary tank into an underground secondary containment pan. CSR involves adding aqueous oxalic acid to the waste tank in order to dissolve the remaining sludge heel. The resultant acidic waste solution is then pumped to another waste tank where it will be neutralized and then stored awaiting further processing. The waste tanks to be cleaned have a storage capacity of 2.84E+06 liters (750,000 gallons) and a target sludge heel volume of 1.89E+04 liters (5,000 gallons) or less for the initiation of CSR. The purpose of this paper is to describe the CSR process and to discuss the most significant technical issues associated with the development of CSR.

Thaxton, D; Timothy Baughman, T

2008-01-16T23:59:59.000Z

33

Project Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Questions Keeler-Pennwalt Wood Pole Removal Line Projects Line Rebuild, Relocation and Substation Projects Spacer Damper Replacement Program Wind Projects Project Overview BPA...

34

Preliminary engineering report waste area grouping 5, Old Hydrofracture Facility Tanks content removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facilities Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy (DOE) Oak Ridge Operations Office, the U.S. Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that liquid low-level waste (LLLW) tanks that are removed from service are evaluated and remediated through the CERCLA process. Five inactive LLLW tanks, designated T-1, T-2, T-3, T-4, and T-9, located at the Old Hydrofracture (OHF) Facility in the Melton Valley area of Oak Ridge National Laboratory (ORNL) have been evaluated and are now entering the remediation phase. As a precursor to final remediation, this project will remove the current liquid and sludge contents of each of the five tanks (System Requirements Document, Appendix A). It was concluded in the Engineering Evaluation/Cost Analysis [EE/CA] for the Old Hydrofracture Facility Tanks (DOE 1996) that sluicing and pumping the contaminated liquid and sludge from the five OHF tanks was the preferred removal action. Evaluation indicated that this alternative meets the removal action objective and can be effective, implementable, and cost-effective. Sluicing and removing the tank contents was selected because this action uses (1) applicable experience, (2) the latest information about technologies and techniques for removing the wastes from the tanks, and (3) activities that are currently acceptable for storage of transuranic (TRU) mixed waste.

NONE

1996-06-01T23:59:59.000Z

35

Cleanup and treatment (CAT) test: a land-area decontamination project utilizing a vacuum method of soil removal  

SciTech Connect (OSTI)

Areas 11 and 13 of the Nevada Test Site (NTS) are contaminated with varying concentrations of Pu-239, 240 and Am-241. An investigation of a vacuum method of soil removal, the Cleanup and Treatment (CAT) test, was conducted over a 3-month period in the plutonium safety shot or Plutonium Valley portion of Area 11. Soil in Plutonium Valley is of the Aridisol Order. The surface 0 to 10 cm is a gravelly loam, and is strongly alkaline (pH 8.8). A large truck-mounted vacuum unit, rather than conventional earth-moving equipment, was used as the primary soil collection unit. Effectiveness of the vacuum method of soil removal was evaluated in relation to conventional earthmoving procedures, particularly in terms of volume reduction of removed soil achieved over conventional techniques. Radiological safety considerations associated with use of the vacuum unit were evaluated in relation to their impact on a full-scale land decontamination program. Environmental and operational impacts of devegetation with retention of root crowns or root systems were investigated. It is concluded that the CAT test was successful under difficult environmental conditions.

Orcutt, J.A.

1982-08-01T23:59:59.000Z

36

CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project  

Broader source: Energy.gov [DOE]

Categorical Determination Alcoa Tennessee Automotive Sheet Expansion Project CX(s) Applied: B1.31 Date: 05/06/2014 Location(s): Alcoa, Tennessee Offices(s): Loan Programs Office

37

Babys Breath removal monitoring project Sarah Emery (Rice University/University of Louisville) In collaboration with TNC-MI and Sleeping Bear Dunes National Lakeshore  

E-Print Network [OSTI]

Title: Does removal of Gypsophila paniculata (babys breath) from Lake Michigan sand dunes restore native community structure and ecosystem function?

Tnc Contacts John Legge; Patrick Doran

38

Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

39

Categorical Exclusion Determinations: Advanced Research Projects  

Broader source: Energy.gov (indexed) [DOE]

October 18, 2012 October 18, 2012 CX-009518: Categorical Exclusion Determination (0674-1585) Xilectric, Inc. - Low Cost Transportation Batteries CX(s) Applied: B3.6 Date: 10/18/2012 Location(s): Rhode Island, New York Offices(s): Advanced Research Projects Agency-Energy September 27, 2012 CX-010530: Categorical Exclusion Determination Electro-Autotrophic Synthesis of Higher Alcohols CX(s) Applied: B3.6 Date: 09/27/2012 Location(s): California, North Carolina, North Carolina Offices(s): Advanced Research Projects Agency-Energy September 19, 2012 CX-009902: Categorical Exclusion Determination Agrivida - Conditionally Activated Enzymes Expressed in Cellulosic Energy Crops CX(s) Applied: B3.6 Date: 09/19/2012 Location(s): Massachusetts, Connecticut Offices(s): Advanced Research Projects Agency-Energy

40

Categorical Exclusion Determinations: Advanced Research Projects  

Broader source: Energy.gov (indexed) [DOE]

December 18, 2009 December 18, 2009 CX-000850: Categorical Exclusion Determination 25A4274 - Energy Efficient Capture of Carbon Dioxide from Coal Flue Gas CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Illinois Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-000841: Categorical Exclusion Determination 25A1381 - Affordable Energy from Water and Sunlight CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Massachusetts Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-000585: Categorical Exclusion Determination 25A1152 - 1366 Direct Wafer: Enabling Terawatt Photovoltaics CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Massachusetts Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-009901: Categorical Exclusion Determination

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Categorical Exclusion Determinations: Advanced Research Projects  

Broader source: Energy.gov (indexed) [DOE]

August 14, 2010 August 14, 2010 CX-004957: Categorical Exclusion Determination General Compression, Inc. -Fuel-Free, Ubiquitous, Compressed Air Energy Storage CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Watertown, Massachusetts Office(s): Advanced Research Projects Agency - Energy August 14, 2010 CX-004953: Categorical Exclusion Determination Fluidic Inc. -Enhanced Metal-Air Energy Storage System CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Scottsdale, Arizona Office(s): Advanced Research Projects Agency - Energy August 14, 2010 CX-004941: Categorical Exclusion Determination Makani Power, Inc. - Advanced Wind Turbine CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Alameda, California Office(s): Advanced Research Projects Agency - Energy August 13, 2010 CX-004925: Categorical Exclusion Determination

42

CHANGING THE LANDSCAPE--LOW-TECH SOLUTIONS TO THE PADUCAH SCRAP METAL REMOVAL PROJECT ARE PROVIDING SAFE, COST-EFFECTIVE REMEDIATION OF CONTAMINATED SCRAP YARDS  

SciTech Connect (OSTI)

Between 1974 and 1983, contaminated equipment was removed from the Paducah Gaseous Diffusion Plant (PGDP) process buildings as part of an enrichment process upgrade program. The upgrades consisted of the dismantlement, removal, and on-site storage of contaminated equipment, cell components, and scrap material (e.g., metal) from the cascade facilities. Scrap metal including other materials (e.g., drums, obsolete equipment) not related to this upgrade program have thus far accumulated in nine contiguous radiologically-contaminated and non-contaminated scrap yards covering 1.05E5 m2 (26 acres) located in the northwestern portion of the PGDP. This paper presents the sequencing of field operations and methods used to achieve the safe removal and disposition of over 47,000 tonnes (53,000 tons) of metal and miscellaneous items contained in these yards. The methods of accomplishment consist of mobilization, performing nuclear criticality safety evaluations, moving scrap metal to ground level, inspection and segregation, sampling and characterization, scrap metal sizing, packaging and disposal, and finally demobilization. Preventing the intermingling of characteristically hazardous and non-hazardous wastes promotes waste minimization, allowing for the metal and materials to be segregated into 13 separate waste streams. Low-tech solutions such as using heavy equipment to retrieve, size, and package scrap materials in conjunction with thorough planning that integrates safe work practices, commitment to teamwork, and incorporating lessons learned ensures that field operations will be conducted efficiently and safely.

Watson, Dan; Eyman, Jeff

2003-02-27T23:59:59.000Z

43

Categorical Exclusion Determinations: Advanced Research Projects  

Broader source: Energy.gov (indexed) [DOE]

July 25, 2012 July 25, 2012 CX-008873: Categorical Exclusion Determination Oregon State University- Natural Gas Self-contained Home Filling Station CX(s) Applied: B3.6 Date: 07/25/2012 Location(s): Oregon, Colorado, Michigan Offices(s): Advanced Research Projects Agency-Energy April 17, 2012 CX-008671: Categorical Exclusion Determination Arizona State University - Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels - Phase II CX(s) Applied: A9, B3.6 Date: 04/17/2012 Location(s): Arizona, Arizona, Arizona, Minnesota, North Carolina Offices(s): Advanced Research Projects Agency-Energy February 17, 2012 CX-007812: Categorical Exclusion Determination Smart Wire Grid, Inc. - Distributed Power Flow Control Using Smart Wires for Energy Routing CX(s) Applied: A9, B1.7, B3.6

44

Categorical Exclusion Determinations: Advanced Research Projects  

Broader source: Energy.gov (indexed) [DOE]

June 2, 2010 June 2, 2010 CX-003144: Categorical Exclusion Determination ATK - A High Efficiency Inertial Carbon Dioxide Extraction System CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): New York Office(s): Advanced Research Projects Agency - Energy June 2, 2010 CX-003132: Categorical Exclusion Determination Georgia Institute of Technology Research Corporation - Metal Organic Frameworks in Hollow Fiber Membranes for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Georgia Office(s): Advanced Research Projects Agency - Energy June 2, 2010 CX-003131: Categorical Exclusion Determination Lawrence Berkeley National Laboratory & Wildcat Disc. Technology - High Throughput Tools to Screen New Metal Organic Framework Materials CX(s) Applied: B3.6 Date: 06/02/2010

45

Categorical Exclusion Determinations: Portsmouth Paducah Project Office |  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth Paducah Project Portsmouth Paducah Project Office Categorical Exclusion Determinations: Portsmouth Paducah Project Office Categorical Exclusion Determinations issued by Portsmouth Paducah Project Office. DOCUMENTS AVAILABLE FOR DOWNLOAD August 9, 2012 CX-009253: Categorical Exclusion Determination Optimization of Electrical Power at the Portsmouth Gaseous Diffusion Facility CX(s) Applied: B4.6, B4.11 Date: 08/09/2012 Location(s): Ohio Offices(s): Portsmouth Paducah Project Office May 9, 2012 CX-008824: Categorical Exclusion Determination X-608 Well Field Transfer CX(s) Applied: B1.24 Date: 05/09/2012 Location(s): Ohio Offices(s): Portsmouth Paducah Project Office April 25, 2012 CX-009252: Categorical Exclusion Determination Disposition of Department of Energy Surplus or Excess Personal Property

46

Categorical Exclusion Determinations: Advanced Research Projects  

Broader source: Energy.gov (indexed) [DOE]

Advanced Research Projects Advanced Research Projects Agency-Energy Categorical Exclusion Determinations: Advanced Research Projects Agency-Energy Categorical Exclusion Determinations issued by Advanced Research Projects Agency-Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD June 10, 2013 CX-010529: Categorical Exclusion Determination Electroalcoholgenesis CX(s) Applied: B3.6 Date: 06/10/2013 Location(s): South Carolina, Washington Offices(s): Advanced Research Projects Agency-Energy May 23, 2013 CX-010566: Categorical Exclusion Determination Massachusetts Institute of Technology- Scalable, Self-Powered Purification Technology for Brackish and Heavy Metal Contaminated Water CX(s) Applied: B3.6 Date: 05/23/2013 Location(s): Massachusetts Offices(s): Advanced Research Projects Agency-Energy May 22, 2013

47

Categorical Exclusion Determinations: West Valley Demonstration Project |  

Broader source: Energy.gov (indexed) [DOE]

Valley Demonstration Valley Demonstration Project Categorical Exclusion Determinations: West Valley Demonstration Project Categorical Exclusion Determinations issued by West Valley Demonstration Project. DOCUMENTS AVAILABLE FOR DOWNLOAD July 11, 2013 CX-010718: Categorical Exclusion Determination Replacement Ventilation System for the Main Plant Process Building CX(s) Applied: B6.3 Date: 07/11/2013 Location(s): New York Offices(s): West Valley Demonstration Project December 20, 2012 CX-009527: Categorical Exclusion Determination WVDP-2012-02 Routine Maintenance CX(s) Applied: B1.3 Date: 12/20/2012 Location(s): New York Offices(s): West Valley Demonstration Project August 2, 2012 CX-009528: Categorical Exclusion Determination WVDP-2012-01 WVDP Reservoir Interconnecting Canal Maintenance Activities

48

Silica Scaling Removal Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Silica Scaling Removal Process Silica Scaling Removal Process Scientists at Los Alamos National Laboratory have developed a novel technology to remove both dissolved and colloidal...

49

TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 DF WASTE LINE REMOVAL, BNL  

SciTech Connect (OSTI)

5098-SR-02-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 DF WASTE LINE REMOVAL, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-07-09T23:59:59.000Z

50

Technologies for Boron Removal  

Science Journals Connector (OSTI)

Tests were performed to examine the removal of boron from aqueous solution either with polyvinyl alcohol (PVA) alone or by both PVA and other inorganic additives under room temperature. ... Added calcium hydroxide increased the co-removal of borate with PVA, and this offers a polishing treatment after borate removal by liming. ... As boron removal can be achieved by chemical precipitation and coagulation, it is logical to assume that the EC could remove boron from water and industrial effluent. ...

Yonglan Xu; Jia-Qian Jiang

2007-11-23T23:59:59.000Z

51

Categorical Exclusion Determinations: Advanced Research Projects  

Broader source: Energy.gov (indexed) [DOE]

November 21, 2011 November 21, 2011 CX-007697: Categorical Exclusion Determination Autogrid, Inc. - Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation CX(s) Applied: A9, B1.7 Date: 11/21/2011 Location(s): New York, California Offices(s): Advanced Research Projects Agency-Energy November 18, 2011 CX-007689: Categorical Exclusion Determination Georgia Tech Research Corporation- Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Internetworks CX(s) Applied: A9 Date: 11/18/2011 Location(s): Georgia Offices(s): Advanced Research Projects Agency-Energy November 18, 2011 CX-007684: Categorical Exclusion Determination Texas Engineering Experiment Station - Robust Adaptive Topology Control

52

Turbomachinery debris remover  

DOE Patents [OSTI]

An apparatus for removing debris from a turbomachine. The apparatus includes housing and remotely operable viewing and grappling mechanisms for the purpose of locating and removing debris lodged between adjacent blades in a turbomachine.

Krawiec, Donald F. (Pittsburgh, PA); Kraf, Robert J. (North Huntingdon, PA); Houser, Robert J. (Monroeville, PA)

1988-01-01T23:59:59.000Z

53

Offshore Wind Project Map  

Broader source: Energy.gov [DOE]

Image that shows the demonstration project site and developer headquarters for two funding opportunity announcements: the 2011 Grants for Technology Development and the 2011 Grants for Removing Market Barriers.

54

NETL: Gasification Systems - Warm Gas Multi-Contaminant Removal System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Warm Gas Multi-Contaminant Removal System Warm Gas Multi-Contaminant Removal System Project Number: DE-SC00008243 TDA Research, Inc. is developing a high-capacity, low-cost sorbent that removes anhydrous ammonia (NH3), mercury (Hg), and trace contaminants from coal- and coal/biomass-derived syngas. The clean-up system will be used after the bulk warm gas sulfur removal step, and remove NH3 and Hg in a regenerable manner while irreversibly capturing all other trace metals (e.g., Arsenic, Selenium) reducing their concentrations to sub parts per million (ppm) levels. Current project plans include identifying optimum chemical composition and structure that provide the best sorbent performance for removing trace contaminants, determining the effect of operating parameters, conducting multiple-cycle experiments to test the life of the sorbent for NH3 and Hg removal, and conducting a preliminary design of the sorbent reactor.

55

Risk Removal | Department of Energy  

Energy Savers [EERE]

Risk Removal Risk Removal Workers safely remove old mercury tanks from the Y-12 National Security Complex. Workers safely remove old mercury tanks from the Y-12 National Security...

56

Project 253  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anna Lee Tonkovich Anna Lee Tonkovich Technical Contact Velocys, Inc. 7950 Corporate Blvd. Plain City, OH 43064 614-733-3330 tonkovich@velocys.com Sequestration UPGRADING METHANE STREAMS WITH ULTRA-FAST TSA Background Most natural gas streams are contaminated with other materials, such as hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), and nitrogen. Effective processes for removal of H 2 S and CO 2 exist, but because of its relative inertness, nitrogen removal is more difficult and expensive. This project will focus on the separation of nitrogen from methane, which is one of the most significant challenges in recovering low-purity methane streams. The approach is based on applying Velocys' modular microchannel process technology (MPT) to achieve ultra-fast thermal swing adsorption (TSA). MPT

57

Silica Scaling Removal Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Silica Scaling Removal Process Silica Scaling Removal Process Silica Scaling Removal Process Scientists at Los Alamos National Laboratory have developed a novel technology to remove both dissolved and colloidal silica using small gel particles. Available for thumbnail of Feynman Center (505) 665-9090 Email Silica Scaling Removal Process Applications: Cooling tower systems Water treatment systems Water evaporation systems Potential mining applications (produced water) Industry applications for which silica scaling must be prevented Benefits: Reduces scaling in cooling towers by up to 50% Increases the number of cycles of concentration substantially Reduces the amount of antiscaling chemical additives needed Decreases the amount of makeup water and subsequent discharged water (blowdown) Enables considerable cost savings derived from reductions in

58

Project Year Project Title  

E-Print Network [OSTI]

the cost of the project to labor only. The efficacy of the examples will be assessed through their useProject Year 2012-2013 Project Title Sight-Reading at the Piano Project Team Ken Johansen, Peabody) Faculty Statement The goal of this project is to create a bank of practice exercises that student pianists

Gray, Jeffrey J.

59

Project Year Project Team  

E-Print Network [OSTI]

design goals for this project include low cost (less than $30 per paddle) and robustness. The projectProject Year 2001 Project Team Faculty: Allison Okamura, Mechanical Engineering, Whiting School Project Title Haptic Display of Dynamic Systems Audience 30 to 40 students per year, enrolled

Gray, Jeffrey J.

60

Project Year Project Team  

E-Print Network [OSTI]

-year section of the summer project will cost $1344.) This project will be measured by the CER surveys conductedProject Year 2005 Project Team Sean Greenberg, Faculty, Philosophy Department, Krieger School of Arts & Sciences; Kevin Clark, Student, Philosophy Department, Krieger School of Arts & Sciences Project

Gray, Jeffrey J.

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Louise Pasternack, Chemistry Department, Krieger School, Krieger School of Arts & Sciences Project Title Introductory Chemistry Lab Demonstrations Audience an interactive virtual lab manual that will facilitate understanding of the procedures and techniques required

Gray, Jeffrey J.

62

Continuous sulfur removal process  

DOE Patents [OSTI]

A continuous process for the removal of hydrogen sulfide from a gas stream using a membrane comprising a metal oxide deposited on a porous support is disclosed. 4 figures.

Jalan, V.; Ryu, J.

1994-04-26T23:59:59.000Z

63

241-AZ-101 pump removal trough analysis  

SciTech Connect (OSTI)

As part of the current Hanford mission of environmental cleanup, various long length equipment must be removed from highly radioactive waste tanks. The removal of equipment will utilize portions of the Equipment Removal System for Project W320 (ERS-W320), specifically the 50 ton hydraulic trailer system. Because the ERS-W320 system was designed to accommodate much heavier equipment it is adequate to support the dead weight of the trough, carriage and related equipment for 241AZ101 pump removal project. However, the ERS-W320 components when combined with the trough and its` related components must also be analyzed for overturning due to wind loads. Two troughs were designed, one for the 20 in. diameter carriage and one for the 36 in. diameter carriage. A proposed 52 in. trough was not designed and, therefore is not included in this document. In order to fit in the ERS-W320 strongback the troughs were design with the same widths. Structurally, the only difference between the two troughs is that more material was removed from the stiffener plates on the 36 in trough. The reduction in stiffener plate material reduces the allowable load. Therefore, only the 36 in. trough was analyzed.

Coverdell, B.L.

1995-10-17T23:59:59.000Z

64

Project Year Project Team  

E-Print Network [OSTI]

(Karl) Zhang, Undergraduate Student, Biomedical Engineering, Whiting School of Engineering; Cheryl Kim Audio, Digital Video Project Abstract The goal of this project is to develop online modular units

Gray, Jeffrey J.

65

Line Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PDCI) Upgrade Project Whistling Ridge Energy Project Line Rebuild, Relocation and Substation Projects Wind Projects Line Projects BPA identifies critical infrastructure and...

66

Project Year Project Title  

E-Print Network [OSTI]

that incorporate video taped procedures for student preview. Solution This project will create videos for more to study the procedure and techniques before coming to class. Our previous fellowship project addressedProject Year 2009 Project Title Enhancing Biology Laboratory Preparation through Video

Gray, Jeffrey J.

67

Project Year Project Team  

E-Print Network [OSTI]

, there is no resource available to view the procedure before class. Solution The purpose of this project is to capture available to view the procedure before class. The purpose #12;of this project is to capture variousProject Year 2007 Project Team Kristina Obom, Faculty, Advanced Academic Programs, Krieger School

Gray, Jeffrey J.

68

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2013-2014 Project Title German Online Placement Exam Project Team Deborah Mifflin to increased cost. As well, it lacked listening comprehension, writing and speaking components providing support, we will use Blackboard for this project. The creation will require numerous steps

Gray, Jeffrey J.

69

CREATING DOMESTIC DEPENDENTS: INDIAN REMOVAL, CHEROKEE SOVEREIGNTY AND WOMENS RIGHTS.  

E-Print Network [OSTI]

??What, this project asks, are the impacts of the alliance between women and Native Americans in the nineteenth century debate over Indian Removal? How might (more)

Collins-Frohlich, Jesslyn R.

2014-01-01T23:59:59.000Z

70

From sawdust to nuclear fuel: mitigating the removal of Humboldt Bay Power Plant.  

E-Print Network [OSTI]

??This projects purpose is to discuss the process for mitigating the removal of historic structures or buildings found eligible for listing in the National Register (more)

Root, Garret Samuel

2012-01-01T23:59:59.000Z

71

Drum lid removal tool  

DOE Patents [OSTI]

A tool for removing the lid of a metal drum wherein the lid is clamped over the drum rim without protruding edges, the tool having an elongated handle with a blade carried by an angularly positioned holder affixed to the midsection of the handle, the blade being of selected width to slice between lid lip and the drum rim and, when the blade is so positioned, upward motion of the blade handle will cause the blade to pry the lip from the rim and allow the lid to be removed.

Pella, Bernard M. (Martinez, GA); Smith, Philip D. (North Augusta, SC)

2010-08-24T23:59:59.000Z

72

Condensate removal device  

DOE Patents [OSTI]

A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

Maddox, James W. (Newport News, VA); Berger, David D. (Alexandria, VA)

1984-01-01T23:59:59.000Z

73

Projectivities and Projective Embeddings  

Science Journals Connector (OSTI)

In this chapter, we aim to prove some of the main achievements in the theory of generalized polygons. First, we want to show what the little projective group and the groups of projectivities of some Moufang po...

Hendrik van Maldeghem

1998-01-01T23:59:59.000Z

74

Project 320  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Philip Goldberg Philip Goldberg Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-5806 philip.goldberg@netl.doe.gov Marek Wojtowicz Advanced Fuel Research, Inc. 87 Church Street East Hartford, CT 06108 860-528-9806 marek@AFRinc.com Sequestration CARBON DIOXIDE RECOVERY FROM COMBUSTION FLUE GAS USING CARBON- SUPPORTED AMINE SORBENTS Background In Phase I, Advanced Fuel Research, Inc. will initiate development of a novel sorbent for the removal of carbon dioxide from combustion/incineration flue gas. The sorbent, based on amines supported on low-cost activated carbon, will be produced from scrap tires. Liquid-based amine systems are limited to relatively low concentrations to avoid corrosion. Corrosion should not be a

75

Project311  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lang Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov John Bowser Principal Investigator Compact Membrane Systems, Inc. 325 Water Street Wilmington, DE 19804 302-999-7996 john.bowser@compactmembrane.com Sequestration CARBON DIOXIDE CAPTURE FROM LARGE POINT SOURCES Background Capture of carbon dioxide at the source of its emission has been a major focus in greenhouse gas emission control. Current technologies used for capturing CO 2 suffer from inefficient mass transfer and economics. In Phase I, Compact Membrane Systems, Inc. will fabricate and test a membrane-based absorption system for the removal of carbon dioxide from a simulated power-plant flue gas. The stability of the membrane system under various operating conditions

76

Project Year Project Title  

E-Print Network [OSTI]

operators, matrix indexing, vector computations, loops, functions, and plotting graphs, among others basic arithmetic operators, matrix indexing, and vector computations in MATLAB. After creatingProject Year 2011-2012 Project Title Online Tutorial for MATLAB Project Team Eileen Haase, Whiting

Gray, Jeffrey J.

77

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2005 Project Team Krysia Hudson, Faculty, School of Nursing, Undergraduate Instruction for Educational Resources Project Title Enhanced Web-based Learning Environments for Beginning Nursing Students (e.g., demonstrations of procedures or tasks) into the WBL systems, it will be possible to increase

Gray, Jeffrey J.

78

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Michael McCloskey, Cognitive Science/Neuroscience, Krieger of Arts & Sciences Project Title Cognitive Neuropsychology Audience The initial audience to access. The current procedure calls for individual students or researchers to contact the faculty member

Gray, Jeffrey J.

79

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2011-2012 Project Title Using M-Health and GIS Technology in the Field to Improve into teams and having each team use a different m-health data collection tool (e.g., cellular phones, smart health patterns. The Tech Fellow, Jacqueline Ferguson, will assist in creating an m-health project

Gray, Jeffrey J.

80

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Gregory Hager, Computer Science, Whiting School of Engineering Fellow: Alan Chen, Biomedical Engineering, Whiting School of Engineering Project Title Robotics is complicated, time-consuming, and costly, making a robot for an introductory-level class is not practical

Gray, Jeffrey J.

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Project Proposal Project Logistics  

E-Print Network [OSTI]

Project Proposal · Project Logistics: ­ 2-3 person teams ­ Significant implementation, worth 55 and anticipated cost of copying to/from host memory. IV. Intellectual Challenges - Generally, what makes this computation worthy of a project? - Point to any difficulties you anticipate at present in achieving high

Hall, Mary W.

82

Combining Frequency and Spatial Domain Information for Fast Interactive Image Noise Removal  

E-Print Network [OSTI]

. Additional Keywords: scratch and wire removal, projections onto convex sets, POCS. fhirani | totsukagCombining Frequency and Spatial Domain Information for Fast Interactive Image Noise Removal Anil N. Hirani, Takashi Totsuka Sony Corporation Abstract Scratches on old films must be removed since

Hirani, Anil N.

83

DOE Removes Brookhaven Contractor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Removes DOE Removes Brookhaven Contractor Peña sends a message to DOE facilities nationwide INSIDE 2 Accelerator Rx 4 FermiKids 6 Spring at Fermilab Photos courtesy of Brookhaven National Laboratory by Judy Jackson, Office of Public Affairs Secretary of Energy Federico Peña announced on Thursday, May 1, that the Department of Energy would immediately terminate the current management contract with Associated Universities, Inc. at Brookhaven National Laboratory in Upton, New York. Peña said that he made the decision after receiving the results of a laboratory safety management review conducted by the independent oversight arm of DOE's Office of Environment, Safety and Health. In addition, the Secretary said he found unacceptable "the continued on page 8 Volume 20 Friday, May 16, 1997

84

Pneumatic soil removal tool  

DOE Patents [OSTI]

A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

Neuhaus, J.E.

1992-10-13T23:59:59.000Z

85

Nitrogen removal from natural gas  

SciTech Connect (OSTI)

According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

NONE

1997-04-01T23:59:59.000Z

86

Ordered Vertex Removal Subgraph Problems  

E-Print Network [OSTI]

of the vertex removal and subgraph problems are shown to be P­complete. In addition, a natural lex­ icographicOrdered Vertex Removal and Subgraph Problems Ray Greenlaw Department of Computer Science University­8703196. #12; Vertex Removal and Graph Problems Ray Greenlaw Department of Computer Science FR­35

Greenlaw, Ray

87

Reverse osmosis treatment to remove inorganic contaminants from drinking water  

SciTech Connect (OSTI)

The purpose of the research project was to determine the removal of inorganic contaminants from drinking water using several state-of-the-art reverse osmosis membrane elements. A small 5-KGPD reverse osmosis system was utilized and five different membrane elements were studied individually with the specific inorganic contaminants added to several natural Florida ground waters. Removal data were also collected on naturally occurring substances.

Huxstep, M.R.; Sorg, T.J.

1987-12-01T23:59:59.000Z

88

Pentek metal coating removal system: Baseline report  

SciTech Connect (OSTI)

The Pentek coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek coating removal system consisted of the ROTO-PEEN Scaler, CORNER-CUTTER{reg_sign}, and VAC-PAC{reg_sign}. They are designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M Roto Peen tungsten carbide cutters while the CORNER-CUTTER{reg_sign} uses solid needles for descaling activities. These hand tools are used with the VAC-PAC{reg_sign} vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure minimal, but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

NONE

1997-07-31T23:59:59.000Z

89

Duct Remediation Program: Material characterization and removal/handling  

SciTech Connect (OSTI)

Remediation efforts were successfully performed at Rocky Flats to locate, characterize, and remove plutonium holdup from process exhaust ducts. Non-Destructive Assay (NDA) techniques were used to determine holdup locations and quantities. Visual characterization using video probes helped determine the physical properties of the material, which were used for remediation planning. Assorted equipment types, such as vacuum systems, scoops, brushes, and a rotating removal system, were developed to remove specific material types. Personnel safety and material handling requirements were addressed throughout the project.

Beckman, T.d.; Davis, M.M.; Karas, T.M.

1992-11-01T23:59:59.000Z

90

Photoactivated metal removal  

SciTech Connect (OSTI)

The authors propose the use of photochromic dyes as light activated switches to bind and release metal ions. This process, which can be driven by solar energy, can be used in environmental and industrial processes to remove metals from organic and aqueous solutions. Because the metals can be released from the ligands when irradiated with visible light, regeneration of the ligands and concentration of the metals may be easier than with conventional ion exchange resins. Thus, the process has the potential to be less expensive than currently used metal extraction techniques. In this paper, the authors report on their studies of the metal binding of spirogyran dyes and the hydrolytic stability of these dyes. They have prepared a number of spirogyrans and measured their binding constants for calcium and magnesium. They discuss the relationship of the structure of the dyes to their binding strengths. These studies are necessary towards determining the viability of this technique.

Nimlos, M.R.; Filley, J.; Ibrahim, M.A.; Watt, A.S.; Blake, D.M.

1999-07-01T23:59:59.000Z

91

Project Year Project Team  

E-Print Network [OSTI]

; Ian Sims, Student, Electrical and Computer Engineering, Whiting School of Engineering Project Title and Jazz Theory/Keyboard I & II. Technologies Used Digital Audio, Digital Video, Graphic Design, HTML

Gray, Jeffrey J.

92

Ozone removal by HVAC filters  

Science Journals Connector (OSTI)

Residential and commercial HVAC filters that have been loaded with particles during operation in the field can remove ozone from intake or recirculated air. However, knowledge of the relative importance of HVAC filters as a removal mechanism for ozone in residential and commercial buildings is incomplete. We measured the ozone removal efficiencies of clean (unused) fiberglass, clean synthetic filters, and field-loaded residential and commercial filters in a controlled laboratory setting. For most filters, the ozone removal efficiency declined rapidly but converged to a non-zero (steady-state) value. This steady-state ozone removal efficiency varied from 0% to 9% for clean filters. The mean steady-state ozone removal efficiencies for loaded residential and commercial filters were 10% and 41%, respectively. Repeated exposure of filters to ozone following a 24-h period of no exposure led to a regeneration of ozone removal efficiency. Based on a theoretical scaling analysis of mechanisms that are involved in the ozone removal process, we speculate that the steady-state ozone removal efficiency is limited by reactant diffusion out of particles, and that regeneration is due to internal diffusion of reactive species to sites available to ozone for reaction. Finally, by applying our results to a screening model for typical residential and commercial buildings, HVAC filters were estimated to contribute 22% and 95%, respectively, of total ozone removal in HVAC systems.

P. Zhao; J.A. Siegel; R.L. Corsi

2007-01-01T23:59:59.000Z

93

NEPA COMPLIANCE SURVEY Project Information Project Title:  

Broader source: Energy.gov (indexed) [DOE]

Dig d~ch from 24-51-5TX-1 0 to 24-AX-10 and reinstall electrical wire Dig d~ch from 24-51-5TX-1 0 to 24-AX-10 and reinstall electrical wire Date: 12120/2010 DOE Coda: Contractor Coda: Project Lead: Marcus Bruckner Project Overview 1 Dig ditch from 24-51-8TX-1 0 to 24-AX-10 and remove and replace electrical wire {N 2.7o') 1. Brief project desalptlon Pnclude anything that oould impact the 2. 24-51-5TX-10 and 24-AX-10 (SW r.tN 10TOWNSHIP 38 NORTH RANGE 78WEST) environment] 2. Leg allocation 3. 1 day 3. Duration of the project 4. Major equipment to be used 4. Backhoe The table below is to be completed by the Project Leed and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey and contact the Technical Assurance Department.

94

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: Construction Project Team: Project Facts & Figures: Budget: £1.1M Funding Source: Departmental Construction Project Programme: Start on Site: November 2010 End Date : March 2011 Occupation Date: March 2011 For further information contact Project Manager as listed above

95

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The works cover the refurbishment of floors 4, 5 operating theatre. The Bionanotechnology Centre is one of the projects funded from the UK Government's £20.imperial.ac.uk/biomedeng Construction Project Team: Project Facts & Figures: Budget: £13,095,963 Funding Source: SRIF II and Capital

96

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: This project refurbished half of the 5th and 7th floors on the Faculty of Medicine, please visit: http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £3,500,000 Funding Source: SRIF III Construction Project Programme: Start

97

Removing Arsenic from Drinking Water  

ScienceCinema (OSTI)

See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

None

2013-05-28T23:59:59.000Z

98

Removing Arsenic from Drinking Water  

SciTech Connect (OSTI)

See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

None

2011-01-01T23:59:59.000Z

99

Project Year Project Team  

E-Print Network [OSTI]

An Engineer's Guide to the Structures of Baltimore Audience Students from the Krieger School of Arts City, interfaced through a course website, the team will integrate descriptions of structural behavior format. Technologies Used HTML/Web Design, MySQL Project Abstract Structural analysis is typically taught

Gray, Jeffrey J.

100

Project Year Project Team  

E-Print Network [OSTI]

information systems (GIS) tools to design maps that integrate data for visualizing geographic concepts School of Engineering Project Title GIS & Introductory Geography Audience Undergraduate students on how to use the Internet for geographic research, and an interactive introduction to GIS through online

Gray, Jeffrey J.

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Project Management Project Managment  

E-Print Network [OSTI]

­ Inspired by agile methods #12;Background · Large-scale software development & IT projects, plagued relations #12;One Agile Approach to Scheduling · The creative nature of game development resist heavy up Problems ­incompatible platforms, 3rd party etc. #12;Is Games Development Similar? · Yes & No

Stephenson, Ben

102

Building Removal Ongoing at DOE's Paducah Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Removal Ongoing at DOE's Paducah Site Building Removal Ongoing at DOE's Paducah Site Building Removal Ongoing at DOE's Paducah Site August 23, 2012 - 12:00pm Addthis Media Contact Buz Smith Robert.Smith@lex.doe.gov 270-441-6821 PADUCAH, KY - Work is ongoing at the Paducah Gaseous Diffusion Plant (PGDP) to raze a 65,000-square-foot facility known as the C-340 Metals Plant, which was used to make uranium metal during the Cold War. Department of Energy (DOE) cleanup contractor LATA Environmental Services of Kentucky began removing more than 1,500 panels of cement-asbestos siding from the Metals Plant complex Wednesday in anticipation of New Jersey-based LVI Services starting demolition Sept. 19. Demolition work is projected to last through the end of calendar 2012. "This is an important milestone because the C-340 Metals Plant is the

103

Rank Project Name Directorate, Dept/Div  

E-Print Network [OSTI]

Colichio) $6,240 $8,700.00 1.43 Mercury Removal 6 Bio-Diesel Tank Staff Services, F&O (Henry Hauptman) $11 was transferred to the Bio-Diesel Tank Project. #12;

104

Project Accounts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

» Project Accounts » Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the project account are traceable back to the individual who used the project account to perform those actions via gsisshd accounting logs. Requesting a Project Account PI's, PI proxies and project managers are allowed to request a project account. In NIM do "Actions->Request a Project Account" and fill in the form. Select the repository that the Project Account is to use from the drop-down menu, "Sponsoring Repository". Enter the name you want for the account (8 characters maximum) and a description of what you will use the account for and then click on the "Request Project Account" button. You

105

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: A state of the art facility, at Hammersmith information visit the Faculty of Medicine web pages http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £60 000 000 Funding Source: SRIF II (Imperial College), GSK, MRC

106

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The refurbishment of the instrumentation equipment. This project encompasses refurbishment work on over 1,150m2 of laboratory space across four, the completed project will allow researchers to expand their work in satellite instrumentation, the fabrication

107

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: In the first phase of the Union Building re.union.ic.ac.uk/marketing/building Construction Project Team: Project Facts & Figures: Budget: £1,400,000 Funding Source: Capital Plan and Imperial College Union reserves Construction Project Programme: Start on Site: August 2006 End Date: March

108

Volume Project  

E-Print Network [OSTI]

Math 13900. Volume Project. For the following project, you may use any materials. This must be your own original creation. Construct a right pyramid with a base...

rroames

2010-01-12T23:59:59.000Z

109

Oil removal for produced water treatment and micellar cleaning of ultrafiltration membranes  

E-Print Network [OSTI]

a research project that evaluated the treatment of brine generated in oil fields (produced water) with ultrafiltration membranes. The characteristics of various ultrafiltration membranes for oil and suspended solids removal from produced water were...

Beech, Scott Jay

2006-10-30T23:59:59.000Z

110

Project Controls  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

1997-03-28T23:59:59.000Z

111

WCH Removes Massive Test Reactor  

Broader source: Energy.gov [DOE]

RICHLAND, WA -- Hanford's River Corridor contractor, Washington Closure Hanford, has met a significant cleanup challenge on the U.S. Department of Energy's (DOE) Hanford Site by removing a 1,082...

112

Utilization of Partially Gasified Coal for Mercury Removal  

SciTech Connect (OSTI)

In this project, General Electric Energy and Environmental Research Corporation (EER) developed a novel mercury (Hg) control technology in which the sorbent for gas-phase Hg removal is produced from coal in a gasification process in-situ at a coal burning plant. The main objective of this project was to obtain technical information necessary for moving the technology from pilot-scale testing to a full-scale demonstration. A pilot-scale gasifier was used to generate sorbents from both bituminous and subbituminous coals. Once the conditions for optimizing sorbent surface area were identified, sorbents with the highest surface area were tested in a pilot-scale combustion tunnel for their effectiveness in removing Hg from coal-based flue gas. It was determined that the highest surface area sorbents generated from the gasifier process ({approx}600 m{sup 2}/g) had about 70%-85% of the reactivity of activated carbon at the same injection rate (lb/ACF), but were effective in removing 70% mercury at injection rates about 50% higher than that of commercially available activated carbon. In addition, mercury removal rates of up to 95% were demonstrated at higher sorbent injection rates. Overall, the results of the pilot-scale tests achieved the program goals, which were to achieve at least 70% Hg removal from baseline emissions levels at 25% or less of the cost of activated carbon injection.

Chris Samuelson; Peter Maly; David Moyeda

2008-09-09T23:59:59.000Z

113

Water Recycling removal using temperature-sensitive hydronen  

SciTech Connect (OSTI)

The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

Rana B. Gupta

2002-10-30T23:59:59.000Z

114

AX Tank Farm tank removal study  

SciTech Connect (OSTI)

This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

SKELLY, W.A.

1998-10-14T23:59:59.000Z

115

Nitrogen Removal From Low Quality Natural Gas  

SciTech Connect (OSTI)

Natural gas provides more than one-fifth of all the primary energy used in the United States. It is especially important in the residential sector, where it supplies nearly half of all the energy consumed in U.S. homes. However, significant quantities of natural gas cannot be produced economically because its quality is too low to enter the pipeline transportation system without some type of processing, other than dehydration, to remove the undesired gas fraction. Such low-quality natural gas (LQNG) contains significant concentration or quantities of gas other than methane. These non- hydrocarbons are predominantly nitrogen, carbon dioxide, and hydrogen sulfide, but may also include other gaseous components. The nitrogen concentrations usually exceeds 4%. Nitrogen rejection is presently an expensive operation which can present uneconomic scenarios in the potential development of natural gas fields containing high nitrogen concentrations. The most reliable and widely used process for nitrogen rejection from natural gas consists of liquefying the feed stream using temperatures in the order of - 300{degrees}F and separating the nitrogen via fractionation. In order to reduce the gas temperature to this level, the gas is compressed, cooled by mullet-stream heat exchangers, and expanded to low pressure. Significant energy for compression and expensive materials of construction are required. Water and carbon dioxide concentrations must be reduced to levels required to prevent freezing. SRI`s proposed research involves screening new nitrogen selective absorbents and developing a more cost effective nitrogen removal process from natural gas using those compounds. The long-term objective of this project is to determine the technical and economical feasibility of a N{sub 2}2 removal concept based on complexation of molecular N{sub 2} with novel complexing agents. Successful development of a selective, reversible, and stable reagent with an appropriate combination of capacity and N{sub 2} absorption/desorption characteristics will allow selective separation of N{sub 2} from LQNG.

Alvarado, D.B.; Asaro, M.F.; Bomben, J.L.; Damle, A.S.; Bhown, A.S.

1997-10-01T23:59:59.000Z

116

Recommendation 199: Recommendation to Remove Uncontaminated Areas...  

Office of Environmental Management (EM)

9: Recommendation to Remove Uncontaminated Areas of the Oak Ridge Reservation from the National Priorities List Recommendation 199: Recommendation to Remove Uncontaminated Areas of...

117

Science Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne Argonne Science Project Ideas! Our Science Project section provides you with sample classroom projects and experiments, online aids for learning about science, as well as ideas for Science Fair Projects. Please select any project below to continue. Also, if you have an idea for a great project or experiment that we could share, please click our Ideas page. We would love to hear from you! Science Fair Ideas Science Fair Ideas! The best ideas for science projects are learning about and investigating something in science that interests you. NEWTON has a list of Science Fair linkd that can help you find the right topic. Toothpick Bridge Web Sites Toothpick Bridge Sites! Building a toothpick bridge is a great class project for physics and engineering students. Here are some sites that we recommend to get you started!

118

Projection Systems  

Science Journals Connector (OSTI)

As a general rule, broad-band sources which employ projection optics are the most difficult to evaluate. In addition to the problems encountered in evaluating exposed lamps, one must characterize the projected...

David Sliney; Myron Wolbarsht

1980-01-01T23:59:59.000Z

119

Circle Project  

E-Print Network [OSTI]

This project asks students to decide if a collection of points in space do or do not lie on a ... The project is accessible to linear algebra students who have studied...

120

Hydropower Projects  

Broader source: Energy.gov [DOE]

This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Project Title: DOE Code: Project Lead: NEPA COMPLIANCE SURVEY  

Broader source: Energy.gov (indexed) [DOE]

DOE Code: DOE Code: Project Lead: NEPA COMPLIANCE SURVEY # 258 Project lnfonnation Rewire electrical to pole at 77SHX10 Mike Preston Date: 11-19-09 Contractor Code: Project Overview No~ rea has been previously disturbed. The trenching will be th,ugh pre-existing right of way for the 1. What are the environmental ~ ~=~d ~ impacts? 2. What is the legal location? Repair a~ replacement of electrical lines to the Pole next to well at 77S~1 0. This will require trenching 3. What is the duration of the project? across the road a~ to the pole. Removing old lines and replacement of lines. 4. What major equipment will be used if any (wor1< over rig, drilling rig, 1 day etc.)? Back hole The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA

122

Removing Stains from Washable Fabrics.  

E-Print Network [OSTI]

of May 8, 1914, as amended, and June 30, 1914, in cooperation with the United States Department of Agriculture. Zerle L. Carpenter, Director, Texas Agricultural Extension Service, The Texas A&M University System. lOM-1l-88, New CLO ...I UUL. Z TA24S.7 8873 NO.1616 B.1616 / Texas Agricultural Extension Service LIBRARY FEB 0 1 1989 Texas A&M University Removing Stains from Washable Fabrics Ann Vanderpoorten 8eard* Most spots and stains can be removed by prompt...

Beard, Ann Vanderpoorten

1988-01-01T23:59:59.000Z

123

CX-009410: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Granby (Farr) Pumping Plant Nest Removal Project CX(s) Applied: B1.3 Date: 10/03/2012 Location(s): Colorado Offices(s): Western Area Power Administration

124

Microsoft Word - CX-Keeler-Pennwalt-StJohns-Keeler-OC_De-EnergizedRemoval_WEB.docx  

Broader source: Energy.gov (indexed) [DOE]

3 3 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Chad Hamel Project Manager - TEP- TPP- 1 Proposed Action: De-energized Wood Pole Removal Project PP&A Project No.: 2601 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.10 Removal of electric transmission facilities Location: Multnomah and Washington counties, OR Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to remove two de-energized transmission lines that are located within the Portland Metro area. The entire remaining length of the Keeler- Pennwalt transmission line, from Keeler Substation to Structure 9/6, would be removed (approximately nine miles). Approximately three miles of the St. John's Tap to Keeler-Oregon

125

Microsoft Word - EC Sodium coolant removal.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 SECTION A. Project Title: MFC - EBR-II Sodium Removal/RCRA Closure Activities SECTION B . Project Description The proposed action will remove the sodium from the Experimental Breeder Reactor (EBR)-II piping system and tanks to achieve clean-closure for eventual decommissioning, deactivation and demolition (DD&D). The clean-closure will be completed in compliance with the EBR-II Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Storage and Treatment Permit PER-120, which includes the closure plan. EBR-II is located at the Materials and Fuels Complex at the Idaho National Laboratory. The EBR-II DD&D actions will be addressed under the Comprehensive Environmental Response Compensation, and Liability Act, specifically, the Engineering Evaluation/Cost

126

Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

127

Massive Hanford Test Reactor Removed - Plutonium Recycle Test...  

Office of Environmental Management (EM)

Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed...

128

Multipollutant Removal with WOWClean System  

E-Print Network [OSTI]

such as petcoke, coal, wood, diesel and natural gas. In addition to significant removal of CO2, test results demonstrate the capability to reduce 99.5% SOx (from levels as high as 2200 ppm), 90% reduction of NOx, and > 90% heavy metals. The paper will include...

Romero, M.

2010-01-01T23:59:59.000Z

129

Active Space Debris Removal using Capture and Ejection  

E-Print Network [OSTI]

object as well as its launch vehicle and parts thereof." Based on this de ni- tion, space debris are uncontrolled space objects serving no function, such as expired satellites, jettisoned components, and collision shrapnel. Traveling at speeds around.... Many alternative proposals to remove space debris have been made: laser impingement [5], ground-based laser design \\Project Orion" [3], ion guns [4], remote vehicles that capture debris and return to a central station [6], passively intercepting...

Missel, Jonathan William

2013-04-25T23:59:59.000Z

130

Sequestering agents for the removal of actinides from waste streams  

SciTech Connect (OSTI)

The ultimate goal of this project is to develop new separation technologies to remove radioactive metal ions from contaminated DOE sites. To this end we are studying both the fundamental chemistry and the extractant properties of some chelators that are either found in nature or are closely related to natural materials. The work is a collaboration betwen Lawrence Berkeley National Laboratory-University of California, Berkeley, and the Glenn T. Seaborg Institute for Transactinium Science at Lawrence Livermore National Laboratory.

Raymond, K.; White, D. [Univ. of California, Berkeley, CA (United States); Whisenhunt, D. [Lawrence Livermore National Lab., CA (United States)

1996-10-01T23:59:59.000Z

131

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit to the Program * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * This research project develops a reservoir scale CO 2 plume migration model at the Sleipner project, Norway. The Sleipner project in the Norwegian North Sea is the world's first commercial scale geological carbon storage project. 4D seismic data have delineated the CO 2 plume migration history. The relatively long history and high fidelity data make

132

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test and Evaluation of Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background information - Project Concept (MICP) - Ureolytic Biomineralization, Biomineralization Sealing * Accomplishments to Date - Site Characterization - Site Preparation - Experimentation and Modeling - Field Deployable Injection Strategy Development * Summary

133

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LBNL's Consolidated Sequestration Research Program (CSRP) Project Number FWP ESD09-056 Barry Freifeld Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefits and Goals of GEO-SEQ * Technical Status - Otway Project (CO2CRC) - In Salah (BP, Sonatrach and Statoil) - Ketzin Project (GFZ, Potsdam) - Aquistore (PTRC) * Accomplishments and Summary * Future Plans 3 Benefit to the Program * Program goals being addressed: - Develop technologies to improve reservoir storage capacity estimation - Develop and validate technologies to ensure 99 percent storage permanence.

134

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline I. Benefits II. Project Overview III. Technical Status A. Background B. Results IV. Accomplishments V. Summary 3 Benefit to the Program * Program goals. - Prediction of CO 2 storage capacity. * Project benefits. - Workforce/Student Training: Support of 3 student GAs in use of multiphase flow and geochemical models simulating CO 2 injection. - Support of Missouri DGLS Sequestration Program. 4 Project Overview: Goals and Objectives Project Goals and Objectives. 1. Training graduate students in use of multi-phase flow models related to CO 2 sequestration. 2. Training graduate students in use of geochemical models to assess interaction of CO

135

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center for Coal's Center for Coal's FY10 Carbon Sequestration Peer Review February 8 - 12, 2010 2 Collaborators * Tissa Illangasekare (Colorado School of Mines) * Michael Plampin (Colorado School of Mines) * Jeri Sullivan (LANL) * Shaoping Chu (LANL) * Jacob Bauman (LANL) * Mark Porter (LANL) 3 Presentation Outline * Benefit to the program * Project overview * Project technical status * Accomplishments to date * Future Plans * Appendix 4 Benefit to the program * Program goals being addressed (2011 TPP): - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefit: - This project is developing system modeling capabilities that can be used to address challenges associated with infrastructure development, integration, permanence &

136

Discontinued Projects  

Broader source: Energy.gov [DOE]

This page lists projects that received a loan or a loan guarantee from DOE, but that are considered discontinued by LPO for one of several reasons.

137

project management  

National Nuclear Security Administration (NNSA)

the Baseline Change Proposal process. Two 400,000-gallon fire protection water supply tanks and associated pumping facilities were added. Later in the project, an additional...

138

Custom Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Incentive Payment - The ESIP works with utility, industry, and BPA to complete the measurement and verification, reporting and development of a custom project completion...

139

LIMB Demonstration Project Extension  

SciTech Connect (OSTI)

The DOE LIMB Demonstration Project Extension is a continuation of the EPA Limestone Injection Multistage Burner (LIMB) Demonstration. EPA ultimately expects to show that LIMB is a low cost control technology capable of producing moderate SO{sub x} and NO{sub x} control (50--60 percent) with applicability for retrofit to the major portion of the existing coal-fired boiler population. The current EPA Wall-Fired LIMB Demonstration is a four-year project that includes design and installation of a LIMB system at the 105-MW Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. LIMB Extension testing continued during the quarter with lignosulfonated hydrated lime, pulverized limestone, and hydrated dolomitic lime while firing 1.8% and 3% sulfur coals. Sulfur dioxide removal efficiencies were equivalent to the results found during EPA, base LIMB testing. Sulfur dioxide removal efficiencies were lower than expected while testing with pulverized limestone without humidification. A slight increase in sulfur capture was noted while injecting pulverized limestone at the 187' elevation and with the humidifier outlet temperature at 145{degree}F.

Not Available

1990-09-21T23:59:59.000Z

140

Removing Barriers to Interdisciplinary Research  

E-Print Network [OSTI]

A significant amount of high-impact contemporary scientific research occurs where biology, computer science, engineering and chemistry converge. Although programmes have been put in place to support such work, the complex dynamics of interdisciplinarity are still poorly understood. In this paper we interrogate the nature of interdisciplinary research and how we might measure its "success", identify potential barriers to its implementation, and suggest possible mechanisms for removing these impediments.

Naomi Jacobs; Martyn Amos

2010-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Whistling Ridge Energy Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PDCI) Upgrade Project Whistling Ridge Energy Project Line Rebuild, Relocation and Substation Projects Wind Projects Whistling Ridge Energy Project Bonneville Power...

142

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Snøhvit CO Snøhvit CO 2 Storage Project Project Number: FWP-FEW0174 Task 4 Principal Investigators: L. Chiaramonte, *J.A. White Team Members: Y. Hao, J. Wagoner, S. Walsh Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Summary & Accomplishments * Appendix 3 Benefit to the Program * The research project is focused on mechanical

143

Project title:  

Broader source: Energy.gov (indexed) [DOE]

Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Requested By: David Young Mail Code : N1410 Phone: 916-353-4542 Date Submitted: 5/4/2011 Date Required: 5/7/2011 Description of the Project: Purpose and Need The Western Area Power Administration (Western), Sierra Nevada Region (SNR), is responsible for the operation and maintenance (O&M) of federally owned and operated transmission lines, Switchyards, and facilities throughout California. Western and Reclamation must comply with the National Electric Safety Code, Western States Coordinating Council (WECC), and internal directives for protecting human safety, the physical environment, and maintaining the reliable operation of the transmission system. There is an existing OPGW communications fiber on the transmission towers between Roseville and Elverta

144

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

InSalah CO InSalah CO 2 Storage Project Project Number: FWP-FEW0174 Task 2 Principal Investigator: W. McNab Team Members: L. Chiaramonte, S. Ezzedine, W. Foxall, Y. Hao, A. Ramirez, *J.A. White Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Accomplishments * Summary * Appendix 3 Benefit to the Program * The research project is combining sophisticated

145

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Space Geodesy, Seismology, Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites DE-FE0001580 Tim Dixon, University of South Florida Peter Swart, University of Miami U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to program * Goals & objectives * Preliminary InSAR results (site selection phase) * Project location * Project installed equipment * Specific project results * Summary 3 Benefit to the Program * Focused on monitoring, verification, and accounting (MVA) * If successful, our project will demonstrate the utility of low cost, surface

146

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 DE-FE0001159 Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations Gary Mavko Rock Physics Project/Stanford University 2 Presentation Outline * Benefit to the Program * Project Overview * Motivating technical challenge * Approach * Technical Status - Laboratory results - Theoretical modeling * Summary Mavko: Stanford University 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations. - Develop technologies to demonstrate that 99% of injected CO 2 remains in injection zones. * Project benefits statement.

147

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Volume Injection of CO Large Volume Injection of CO 2 to Assess Commercial Scale Geological Sequestration in Saline Formations in the Big Sky Region Project Number: DE-FC26-05NT42587 Dr. Lee Spangler Big Sky Carbon Sequestration Partnership Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and Objectives * Project overview * Kevin Dome characteristics * Project design philosophy * Infrastructure * Modeling * Monitoring * Project Opportunities 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

148

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Research on Probabilistic and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D. Colorado School of Mines U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program (Program goals addressed and Project benefits) * Project goals and objectives * Technical status - Project tasks * Technical status - Key findings * Lessons learned * Summary - Accomplishments to date 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

149

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Complexity and Choice of Complexity and Choice of Model Approaches for Practical Simulations of CO 2 Injection, Migration, Leakage, and Long- term Fate Karl W. Bandilla Princeton University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Project Number DE-FE0009563 2 Presentation Outline * Project Goals and Objectives * Project overview * Accomplishments * Summary 3 Benefit to the Program * The aim of the project is to develop criteria for the selection of the appropriate level of model complexity for CO 2 sequestration modeling at a given site. This will increase the confidence in modeling results, and reduce computational cost when appropriate.

150

Magnetohydrodynamic projects at the CDIF  

SciTech Connect (OSTI)

This quarterly technical progress report presents the tasks accomplished at the Component Development and Integration Facility during the second quarter of FY91. Areas of technical progress this quarter included: coal system development; seed system development; test train/A-Bay modifications; channel power dissipation and distribution system development; oxygen system storage upgrade; iron-core magnet thermal protection system checkout; TRW slag rejector/CDIF slag removal project; Data Acquisition System; stack gas/environmental compliance upgrade; coal-fired combustor support; 1A channels fabrication and assembly; support of Mississippi State University diagnostic testing; test operations and results; data analysis and modeling; technical papers; and projected activities. 2 figs., 2 tabs.

Not Available

1991-01-01T23:59:59.000Z

151

Libya HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plan Libya HEU Removal Libya HEU Removal Location Libya United States 27 34' 9.5448" N, 17 24' 8.4384" E See map: Google Maps Javascript is required to view this map....

152

Canada HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plan Canada HEU Removal Canada HEU Removal Location Canada United States 53 47' 24.972" N, 104 35' 23.4384" W See map: Google Maps Javascript is required to view this map....

153

Israel HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plan Israel HEU Removal Israel HEU Removal Location Israel United States 30 53' 18.2328" N, 34 52' 14.178" E See map: Google Maps Javascript is required to view this map....

154

Uzbekistan HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Uzbekistan HEU Removal Uzbekistan HEU Removal Location Uzbekistan United States 42 6' 56.196" N, 63 22' 8.9076" E See map: Google Maps Javascript is required to view this map...

155

France HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Four-Year Plan France HEU Removal France HEU Removal Location United States 45 44' 20.0544" N, 2 17' 6.5616" E See map: Google Maps Javascript is required to view this map...

156

Chile HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Four-Year Plan Chile HEU Removal Chile HEU Removal Location United States 25 28' 1.4916" S, 69 33' 55.548" W See map: Google Maps Javascript is required to view this map...

157

Taiwan HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plan Taiwan HEU Removal Taiwan HEU Removal Location Taiwan United States 24 35' 37.4964" N, 120 53' 36.798" E See map: Google Maps Javascript is required to view this map....

158

Romania HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plan Romania HEU Removal Romania HEU Removal Location Romania United States 45 47' 1.932" N, 24 41' 50.1576" E See map: Google Maps Javascript is required to view this map....

159

Serbia HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plan Serbia HEU Removal Serbia HEU Removal Location Serbia United States 44 22' 45.7068" N, 20 26' 4.452" E See map: Google Maps Javascript is required to view this map....

160

Poland HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plan Poland HEU Removal Poland HEU Removal Location Poland United States 53 23' 50.2872" N, 17 50' 30.4692" E See map: Google Maps Javascript is required to view this map....

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Vietnam HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plan Vietnam HEU Removal Vietnam HEU Removal Location Vietnam United States 13 12' 30.8628" N, 108 19' 30.702" E See map: Google Maps Javascript is required to view this map....

162

Ukraine HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog Home content Four-Year Plan Ukraine HEU Removal Ukraine HEU Removal Location Ukraine United States 50 12' 24.8688" N,...

163

Japan HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home content Four-Year Plan Japan HEU Removal Japan HEU Removal Location Japan United States 37 36' 59.5872" N, 140...

164

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS: CCS: Life Cycle Water Consumption for Carbon Capture and Storage Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Benefit to the Program * Program goals being addressed. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints

165

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leakage Mitigation Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number: FE0004478 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background Information * Accomplishments to Date - Injection strategy development (control and prediction) - Large core tests - ambient pressure - Large core tests - high pressure - Small core tests - high pressure - MCDP, permeability and porosity assessments * Progress Assessment and Summary

166

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Leakage Mitigation CO2 Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number FE0004478 Lee H Spangler, Al Cunningham, Robin Gerlach Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation * Background information * Large core tests - ambient pressure * Large core tests - high pressure 3 Benefit to the Program Program goals being addressed. Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Project benefits statement. The Engineered Biomineralized Sealing Technologies

167

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS CCS Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program goals being addressed. - Increased control of reservoir pressure, reduced risk of CO2 migration, and expanded formation storage capacity. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints on CCS deployment and provide insight into

168

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Multiphase of Multiphase Flow for Improved Injectivity and Trapping 4000.4.641.251.002 Dustin Crandall, URS PI: Grant Bromhal, NETL ORD Morgantown, West Virginia U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program * Project overview * Breakdown of FY12 project tasks * Facilities and personnel * Task progress to date * Planned task successes * Tech transfer and summary 3 Benefit to the Program * Program goal being addressed - Develop technologies that will support industries' ability to predict CO

169

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Resources International, Inc. Advanced Resources International, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Program goal being addressed: - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Project benefits statement: - This research seeks to develop a set of robust mathematical modules to predict how coal and shale permeability and

170

Remove Condensate with Minimal Air Loss  

Broader source: Energy.gov [DOE]

This tip sheet outlines several condensate removal methods as part of maintaining compressed air system air quality.

171

Laser-based coatings removal  

SciTech Connect (OSTI)

Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D & D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building.

Freiwald, J.G.; Freiwald, D.

1995-12-01T23:59:59.000Z

172

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SUMNER SUMNER COUNTY, KANSAS Project Number DE-FE0006821 W. Lynn Watney Kansas Geological Survey Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Fountainview Wednesday 8-21-12 1:10-1:35 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Acknowledgements & Disclaimer Acknowledgements * The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE- FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and

173

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0-22, 2013 0-22, 2013 Collaborators Zhengrong Wang, Yale University Kevin Johnson, University of Hawaii 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 storage capacity - Demonstrate fate of injected CO 2 and most common contaminants * Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of basalt formations for long term subsurface storage of CO 2 . Findings from this project

174

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

behavior of shales as behavior of shales as seals and storage reservoirs for CO2 Project Number: Car Stor_FY131415 Daniel J. Soeder USDOE/NETL/ORD U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Project Overview: Goals and Objectives * Program Goals - Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness * Project Objectives - Assess how shales behave as caprocks in contact with CO 2 under a variety of conditions - Assess the viability of depleted gas shales to serve as storage reservoirs for sequestered CO

175

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 leakage and cap rock remediation DE-FE0001132 Runar Nygaard Missouri University of Science and Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the program * Project overview * Technical status * Accomplishments to date * Summary 2 3 Benefit to the Program * Program goals being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefits statement. - The project develops a coupled reservoir and geomechanical modeling approach to simulate cap rock leakage and simulate the success of remediation

176

LUCF Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RZWR'HVLJQDQG RZWR'HVLJQDQG +RZWR'HVLJQDQG ,PSOHPHQW&DUERQ ,PSOHPHQW&DUERQ 0HDVXULQJDQG0RQLWRULQJ 0HDVXULQJDQG0RQLWRULQJ $.WLYLWLHVIRU/8&) $.WLYLWLHVIRU/8&) 3URMH.WV 3URMH.WV Sandra Brown Winrock International sbrown@winrock.org Winrock International 2 3URMH.WGHVLJQLVVXHV 3URMH.WGHVLJQLVVXHV z Baselines and additionality z Leakage z Permanence z Measuring and monitoring z Issues vary with projects in developed versus developing countries Winrock International 3 /HDNDJH /HDNDJH z Leakage is the unanticipated loss or gain in carbon benefits outside of the project's boundary as a result of the project activities-divide into two types: - Primary leakage or activity shifting outside project area - Secondary leakage or market effects due to

177

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Web-based CO Web-based CO 2 Subsurface Modeling Geologic Sequestration Training and Research Project Number DE-FE0002069 Christopher Paolini San Diego State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and goals. * Web interface for simulating water-rock interaction. * Development of, and experience teaching, a new Carbon Capture and Sequestration course at San Diego State University. * Some noteworthy results of student research and training in CCS oriented geochemistry. * Status of active student geochemical and geomechancal modeling projects.

178

Project Title:  

Broader source: Energy.gov (indexed) [DOE]

Repair flowline 61-66-SX-3 Repair flowline 61-66-SX-3 DOE Code: Project Lead: Wes Riesland NEPA COMPLIANCE SURVEY # 291 Project Information Date: 3/1 1/2010 Contractor Code: Project Overview In order to repair this line it was decided to trench a line aproximately 100 feet and tie it into the line at 71-3- 1. What are the environmental sx-3. This will get us out of the old flow line which has been repaired 5-6 times. this will mitigate the chances impacts? of having spills in the future. 2. What is the legal location? This flowline runs from the well77-s-1 0 to the B-2-10 manifold.+ "/-,~?X3 3. What is the duration of the project? Approximately 10 hours(1 day) to complete 4. What major equipment will be used backhoe and operator and one hand if any (work over rig. drilling rig.

179

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Co-Sequestration Co-Sequestration Studies Project Number 58159 Task 2 B. Peter McGrail Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 and mixed gas storage capacity in various geologic settings - Demonstrate fate of injected mixed gases * Project benefits statement:

180

Project X  

E-Print Network [OSTI]

provided by Project X would be a cost- effective approach toin Section I and for the cost estimate necessary as part ofby DOE order 413.3b. The cost range required for CD-0 will

Holmes, Steve

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Model Complexity in Geological Carbon Model Complexity in Geological Carbon Sequestration: A Design of Experiment (DoE) & Response Surface (RS) Uncertainty Analysis Project Number: DE-FE-0009238 Mingkan Zhang 1 , Ye Zhang 1 , Peter Lichtner 2 1. Dept. of Geology & Geophysics, University of Wyoming, Laramie, Wyoming 2. OFM Research, Inc., Santa Fe, New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project major goals and benefits; * Detailed project objectives & success criteria; * Accomplishments to date; * Summary of results; * Appendix (organization chart; Gantt chart; additional results). Dept. of Geology & Geophysics, University of Wyoming

182

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Region Region DE-FE0001812 Brian J. McPherson University of Utah U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 4 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 5 Benefit to the Program Program Goals Being Addressed by this Project

183

Pentek metal coating removal system: Baseline report; Greenbook (chapter)  

SciTech Connect (OSTI)

The Pentek coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek coating removal system consisted of the ROTO-PEEN Scaler, CORNER-CUTTER{reg_sign}, and VAC-PAC{reg_sign}. They are designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M Roto Peen tungsten carbide cutters while the CORNER-CUTTER{reg_sign} uses solid needles for descaling activities. These hand tools are used with the VAC-PAC{reg_sign} vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure minimal, but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

NONE

1997-07-31T23:59:59.000Z

184

'Project Wipeout' Helps Clean Up Oak Ridge | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

'Project Wipeout' Helps Clean Up Oak Ridge 'Project Wipeout' Helps Clean Up Oak Ridge 'Project Wipeout' Helps Clean Up Oak Ridge April 1, 2012 - 12:00pm Addthis A waste area at an East Tennessee Technology Park scrap yard before cleanup. A waste area at an East Tennessee Technology Park scrap yard before cleanup. The site of the waste area after removal of debris. The site of the waste area after removal of debris. A waste area at an East Tennessee Technology Park scrap yard before cleanup. The site of the waste area after removal of debris. OAK RIDGE, Tenn. - A term like "Project Wipeout," may conjure images of military operations, extreme sporting events or a comical competition show on television. However, at Oak Ridge, it refers to an effort to locate, identify, and remove legacy waste scattered throughout the site.

185

Method of making thermally removable epoxies  

DOE Patents [OSTI]

A method of making a thermally-removable epoxy by mixing a bis(maleimide) compound to a monomeric furan compound containing an oxirane group to form a di-epoxy mixture and then adding a curing agent at temperatures from approximately room temperature to less than approximately 90.degree. C. to form a thermally-removable epoxy. The thermally-removable epoxy can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The epoxy material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

Loy, Douglas A. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Russick, Edward M. (Rio Rancho, NM); McElhanon, James R. (Albuquerque, NM); Saunders, Randall S. (late of Albuquerque, NM)

2002-01-01T23:59:59.000Z

186

Project Fact Sheet Project Update  

E-Print Network [OSTI]

medical and dental centre; shop and café area for students and vacation accommodation centre. The new & Figures: Budget: £51,074,000 Funding Source: Capital Plan Construction Project Programme: Start on Site

187

Preparing for Project Implementation Financing Project Implementation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Project Implementation Financing Project Implementation Save Energy Now LEADER Web Conference Project Implementation Seminar Series Save Energy Now LEADER Web Conference...

188

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitoring Geological CO Monitoring Geological CO 2 Sequestration using Perfluorocarbon and Stable Isotope Tracers Project Number FEAA-045 Tommy J. Phelps and David R. Cole* Oak Ridge National Laboratory Phone: 865-574-7290 email: phelpstj@ornl.gov (*The Ohio State University) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Developing the Technologies and Building the Infrastructure for CO 2 Storage August 22, 2013 2 Project Overview: Goals and Objectives Goal: Develop methods to interrogate subsurface for improved CO 2 sequestration, field test characterization and MVA, demonstrate CO 2 remains in zone, and tech transfer. Objectives: 1. Assessment of injections in field. PFT gas tracers are analyzed by GC-ECD to

189

Project Homepage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Middle School Home Energy Audit Middle School Home Energy Audit Project Homepage NTEP Home - Project Homepage - Teacher Homepage - Student Pages Abstract: This set of lessons provides an opportunity for midlevel students to gain a basic understanding of how energy is turned into power, how power is measured using a meter, the costs of those units and the eventual reduction of energy consumption and cost to the consumer. Introduction to Research: By conducting energy audits of their own homes and completing exercises to gain baclground information, students begin to see the importance of energy in their daily lives. By using the Internet as a research tool, students gain develop research skills as they gain knowledge for their project. They use e-mail to collaborate with energy experts and share results with other

190

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Title: DEVELOPING A Title: DEVELOPING A COMPREHENSIVE RISK ASSESMENT FRAMEWORK FOR GEOLOGICAL STORAGE OF CO2 Ian Duncan University of Texas U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline 1. Benefit to the Program 2. Goals and Objectives 3. Technical Status Project 4. Accomplishments to Date 5. Summary 3 Benefit to the Program The research project is developing a comprehensive understanding of the programmatic (business), and technical risks associated with CCS particularly the likelihood of leakage and its potential consequences. This contributes to the Carbon Storage Program's effort of ensuring 99 percent CO

191

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Acknowledgments Dave Harris, Kentucky Geological Survey Dave Barnes, Western Michigan University John Rupp, Indiana Geological Survey Scott Marsteller, Schlumberger Carbon Services John McBride, Brigham Young University * Project is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute * ConocoPhillips: in-kind match * Western Kentucky Carbon Storage Foundation: matching funding * SeisRes 2020, Houston: VSP acquisition and processing

192

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Analyze Spatial and Temporal to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO 2 Sequestration Prediction, Simulation, and Monitoring Project Number DE-FE0001852 Dr. Brenda B. Bowen Purdue University (now at the University of Utah) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction to the project * Tasks * Student training * Student research successes * Lessons learned and future plans 3 Benefit to the Program * Addresses Carbon Storage Program major goals: - Develop technologies that will support industries' ability to predict CO

193

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Results from Simulation Project Results from Simulation Framework for Regional Geologic CO 2 Storage Infrastructure along Arches Province of Midwest United States DOE Award No. DE-FE0001034 Ohio Dept. of Dev. Grant CDO/D-10-03 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting August 21-23, 2012 Joel Sminchak and Neeraj Gupta Battelle Energy Systems sminchak@battelle.org, 614-424-7392 gupta@battelle.org, 614-424-3820 BUSINESS SENSITIVE 2 Presentation Outline 1. Technical Status 2. Background (CO 2 Sources, Geologic Setting) 3. Injection Well history 4. Geocellular Model Development 5. Geological Data (Geological dataset, Geostatistics) 6. Geocellular porosity/permeability model development 7. Pipeline Routing Analysis

194

Research projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yuan » Research projects Yuan » Research projects Research projects Research Interests Scientific computing, domain decomposition methods Linear solvers for sparse matrices Computational plasma physics Grid generation techniques GPU computing Current Research PDSLin: A hybrid linear solver for large-scale highly-indefinite linear systems The Parallel Domain decomposition Schur complement based Linear solver (PDSLin), which implements a hybrid (direct and iterative) linear solver based on a non-overlapping domain decomposition technique called chur complement method, and it has two levels of parallelism: a) to solve independent subdomains in parallel and b) to apply multiple processors per subdomain. In such a framework, load imbalance and excessive communication lead to the performance bottlenecks, and several techniques are developed

195

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SECARB Anthropogenic Test: SECARB Anthropogenic Test: CO 2 Capture/Transportation/Storage Project # DE-FC26-05NT42590 Jerry Hill, Southern Sates Energy Board Richard A. Esposito, Southern Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - CO 2 Capture - CO 2 Transportation - CO 2 Storage * Accomplishments to Date * Organization Chart * Gantt Chart * Bibliography * Summary Benefit to the Program 1. Predict storage capacities within +/- 30% * Conducted high resolution reservoir characterization of the Paluxy saline formation key

196

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigation of the CO Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford University, School of Earth Sciences U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Project Benefits * Technical Status * Imaging at mm- to micron-scales using CT - Permeability measurements and application of the Klinkenberg effect - Molecular Dynamics simulations for permeability and viscosity estimates * Accomplishments to Date * Summary Stanford University 3 Benefit to the Program * Carbon Storage Program major goals

197

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fidelity Computational Analysis of Fidelity Computational Analysis of CO2 Trappings at Pore-scales Project Number: DE-FE0002407 Vinod Kumar (vkumar@utep.edu) & Paul Delgado (pmdelgado2@utep.edu) University of Texas at El Paso U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Collaborators: Dr. C. Harris (Shell Oil Company/Imperial College), Dr. G. Bromhal (NETL), Dr. M. Ferer (WVU/NETL), Dr. D. Crandall (NETL-Ctr), and Dr. D. McIntyre (NETL). 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - Pore-network modeling - Conductance derivation for irregular geom. - Pore-to-CFD Computations

198

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Number (DE-FE0002056) W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary KANSAS STATE UNIVERSITY Bittersweet Energy Inc. Partners FE0002056 Devilbiss Coring Service Basic Energy Services Wellington Field Operator Industrial and Electrical Power Sources of CO 2 Southwest Kansas CO 2 -EOR Initiative Industry Partners (modeling 4 Chester/Morrowan oil fields to make CO2 ready) +drilling and seismic contractors TBN

199

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Number (DE-FE0002056) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 Brighton 1&2 2:40 August 20, 2013 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary ORGANIZATIONAL STRUCTURE Modeling CO 2 Sequestration in Saline A quifer and Depleted Oil Reservoir to Evaluate Regional CO 2 Sequestration Potential of Ozark Plateau A quifer System, South-Central Kansas Co-Principal Investigators Co-Principal Investigators Kerry D. Newell -- stratigraphy, geochemistry

200

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks DE-FE0004847 Jennifer Hall Columbia University in the City of New York U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Conservative and Reactive Tracer Techniques * Accomplishments to Date * Summary 3 Benefit to the Program * The goal of the project is to develop and test novel geochemical tracer techniques for quantitative monitoring, verification and accounting of stored CO 2 . These techniques contribute to the Carbon Storage Program's

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO 2 Rich Flue Gas Direct Injection Facility Project Number DOE Grant FE0001833 Paul Metz Department of Mining & Geological Engineering University of Alaska Fairbanks U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix: Not Included in Presentation 3 Benefit to the Program * Carbon Storage Program Major Goals: - Develop technologies that will support industries' ability to

202

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale CO Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources International U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Program Goals * Benefits Statement * Project Overview - Goals - Objectives * Technical Status * Accomplishments to Date * Summary * Appendix USDOE/NETL Program Goals * Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop and validate technologies to ensure 99 percent storage permanence. * Develop technologies to improve reservoir storage

203

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SUMNER COUNTY, KANSAS DE-FE0006821 W. Lynn Watney, Jason Rush, Joint PIs Kansas Geological Survey The University of Kansas Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Brighton 1&2 Wednesday 8-21-13 1:10-1:35 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 2 Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Project Team DOE-NETL Contract #FE0006821 KANSAS STATE UNIVERSITY 3 L. Watney (Joint PI), J. Rush (Joint PI), J. Doveton, E. Holubnyak, M. Fazelalavi, R. Miller, D. Newell, J. Raney

204

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seal Repair Using Seal Repair Using Nanocomposite Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Ed Matteo, Thomas Dewers Sandia National Laboratories 2 Presentation Outline * Introduction and overview * Materials synthesis * Materials testing and characterization * Annular seal system testing * Numerical simulation * Summary 3 Benefit to the Program * BENEFITS STATEMENT: The project involves the development and testing of polymer-cement nanocomposites for repairing flaws in annular wellbore seals. These materials will have superior characteristics compared to conventional

205

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity Project Number DE-FE0002112 PIs Drs. John Kaszuba and Kenneth Sims Virginia Marcon University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status - Results - Conclusions - Next Steps * Summary 3 Benefit to the Program * Program goal being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. - Monitoring, Verification, and Accounting (MVA). MVA technologies seek to monitor, verify, and

206

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of CO Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number (DEFE0002421) Dr. Yiran Dong Drs. Bruce W. Fouke, Robert A. Sanford, Stephen Marshak University of Illinois-Urbana Champaign U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Technical status * Results and discussion * Summary * Appendix 3 Benefit to the Program This research project has developed scientific, technical and institutional collaborations for the development of

207

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mohammad Piri and Felipe Pereira Mohammad Piri and Felipe Pereira University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 2013 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status o Experimentation: core-flooding and IFT/CA o Pore-scale modeling modeling * Accomplishments to Date * Summary University of Wyoming 3 Benefit to the Program * Program goal: o 'Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.' * Benefits statement: o The research project is focused on performing reservoir conditions experiments to measure steady-state relative permeabilities,

208

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MVA Tools MVA Tools Sam Clegg, Kristy Nowak-Lovato, Ron Martinez, Julianna Fessenden, Thom Rahn, & Lianjie Huang Los Alamos National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview - Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix - Organization Chart - Bibliography 3 Project Overview: Goals and Objectives * Surface MVA - Frequency Modulated Spectroscopy - Quantitatively identify CO2, H2S and CH4 seepage from geologic sequestration sites - Distinguish anthropogenic CO2 from natural CO2 emissions * CO2 carbon stable isotope measurements

209

Project Final Report UBC LBS Project Services1 Project Final Report UBC LBS Project Services2  

E-Print Network [OSTI]

Project Final Report UBC LBS Project Services1 #12;Project Final Report UBC LBS Project Services2 EXECUTIVE SUMMARY The purpose of the UBC Project Services web-based project management portal project on campus within Project Services, and with the rest of the UBC community. We began this project by defining

210

ADVANCES IN HEXAVALENT CHROMIUM REMOVAL AT HANFORD  

SciTech Connect (OSTI)

At the Hanford Site, chromium was used as a corrosion inhibitor in the reactor cooling water and was introduced into the groundwater as a result of planned and unplanned discharges from reactors during plutonium production since 1944. Beginning in 1995, groundwater treatment methods were evaluated leading to the use of pump and treat facilities with ion exchange using Dowex 21 K, a regenerable strong base anion exchange resin. This required regeneration of the resin, which is currently performed offsite. Resin was installed in a 4 vessel train, with resin removal required from the lead vessel approximately once a month. In 2007, there were 8 trains (32 vessels) in operation. In 2008, DOE recognized that regulatory agreements would require significant expansion in the groundwater chromium treatment capacity. Previous experience from one of the DOE project managers led to identification of a possible alternative resin, and the contractor was requested to evaluate alternative resins for both cost and programmatic risk reductions. Testing was performed onsite in 2009 and 2010, using a variety of potential resins in two separate facilities with groundwater from specific remediation sites to demonstrate resin performance in the specific groundwater chemistry at each site. The testing demonstrated that a weak base anion single-use resin, ResinTech SIR-700, was effective at removing chromium, had a significantly higher capacity, could be disposed of efficiently on site, and would eliminate the complexities and programmatic risks from sampling, packaging, transportation and return of resin for regeneration. This resin was installed in Hanford's newest groundwater treatment facility, called 100-DX, which began operations in November, 2010, and used in a sister facility, 100-HX, which started up in September of 2011. This increased chromium treatment capacity to 25 trains (100 vessels). The resin is also being tested in existing facilities that utilize Dowex 21 K for conversion to the new resin. This paper will describe the results of the testing, performance in the facilities, continued optimization in the pump and treat facilities, and the estimated savings and non-tangible benefits of the conversion.

NESHEM DO; RIDDELLE J

2012-01-30T23:59:59.000Z

211

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 BROWN 2 Presentation Outline * Benefits & overview of deriving acrylates from coupling carbon dioxide and ethylene * Chemical catalysis approach: background and battles left to fight * Experimental assessment of the viability of thermochemical acrylate production * Perspectives for the future BROWN 3 Benefit to the Program * This project identifies the critical catalyst features necessary to promote carbon dioxide coupling with ethylene to acrylate at molybdenum catalysts. This research demonstrates the viability of acrylate production

212

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool to Improve CO2 Sequestration DE FE0004542 Larry Murdoch, Clemson University Stephen Moysey, Clemson University Leonid Germanovich, Georgia Tech Cem Ozan, Baker Hughes Sihyun Kim, Georgia Tech Glenn Skawski, Clemson University Alex Hanna, Clemson University Johnathan Ebenhack, Clemson University Josh Smith, Clemson University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 23 Aug. 2013 2 Presentation Outline * Preliminaries

213

Hallmark Project  

Broader source: Energy.gov (indexed) [DOE]

Project Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message integrity, supervisory control and data acquisition (SCADA) systems require a method to validate device-to- device communication and verify that information has come from a trusted source and not been altered in transit. The Secure SCADA Communications Protocol (SSCP) provides message

214

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DE-FE0001836: DE-FE0001836: Numerical modeling of geomechanical processes related to CO 2 injection within generic reservoirs Andreas Eckert & Runar Nygaard Missouri University of Science & Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Objectives, Benefits and Outcomes * Technical status: Project summary - Teaching - Reservoir scale (Geomechanics & Fluid flow simulation) - Borehole scale (Wellbore integrity & wellbore trajectory planning) * Conclusions * Appendix 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

215

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DE-FE0002225: DE-FE0002225: Actualistic and geochemical modeling of reservoir rock, CO 2 and formation fluid interaction, Citronelle oil field, Alabama West Virginia University & University of Alabama Presenter: Dr. Amy Weislogel (WVU) Co-PI: Dr. Rona Donahoe (UA) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Overview & Project Map * Reservoir Geochemical Characterization * Formation Fluid Geochemistry * Geochemical Modeling * Summary 3 Benefit to the Program * Develop technologies that will support industries'

216

Cloudnet Project  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

Hogan, Robin

217

PROJECT REQUEST FORM PROJECT HOLDER INFORMATION  

E-Print Network [OSTI]

PROJECT REQUEST FORM Last Name: Email: PROJECT HOLDER INFORMATION UCID:Last Name: Email: Institute if different than Project Holder) First Name: Project Short Name: (50 characters max) (for eFIN view only) Project Title: PROJECT INFORMATION Start Date (MM/DD/YYYY): End Date (MM/DD/YYYY): For Questions or HELP

de Leon, Alex R.

218

Part 3: Removal Action | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3: Removal Action 3: Removal Action Part 3: Removal Action Question: When may removal actions be initiated? Answer: Removal actions may be initiated when DOE determines that the action will prevent, minimize, stabilize, or eliminate a risk to health or the environment. The NCP specifies that the determination that a risk to health or the environment is appropriate for removal action should be based on: actual or potential exposure of humans, animals, or the food chain the presence of contained hazardous substances that pose a threat of release the threat of migration of the hazardous substances the threat of fire or explosion the availability of an appropriate Federal or State response capability [section 300.415(b)(2)]. In essence, where DOE identifies a threat of exposure to or migration of

219

TMI-2 reactor vessel head removal  

SciTech Connect (OSTI)

This report describes the safe removal and storage of the Three Mile Island Unit 2 reactor vessel head. The head was removed in July 1984 to permit the removal of the plenum and the reactor core, which were damaged during the 1979 accident. From July 1982, plans and preparations were made using a standard head removal procedure modified by the necessary precautions and changes to account for conditions caused by the accident. After data acquisition, equipment and structure modifications, and training the head was safely removed and stored and the internals indexing fixture and a work platform were installed on top of the vessel. Dose rates during and after the operation were lower than expected; lessons were learned from the operation which will be applied to the continuing fuel removal operations activities.

Bengel, P.R.; Smith, M.D.; Estabrook, G.A.

1984-12-01T23:59:59.000Z

220

TMI-2 reactor vessel head removal  

SciTech Connect (OSTI)

This report describes the safe removal and storage of the Three Mile Island Unit 2 (TMI-2) reactor vessel head. The head was removed in July 1984 to permit the removal of the plenum and the reactor core, which were damaged during the 1979 accident. From July 1982, plans and preparations were made using a standard head removal procedure modified by the necessary precautions and changes to account for conditions caused by the accident. After data acquisition, equipment and structure modifications, and training, the head was safely removed and stored; and the internals indexing fixture and a work platform were installed on top of the vessel. Dose rates during and after the operation were lower than expected; lessons were learned from the operation which will be applied to the continuing fuel removal operations activities.

Bengel, P.R.; Smith, M.D.; Estabrook, G.A.

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Process for particulate removal from coal liquids  

DOE Patents [OSTI]

Suspended solid particulates are removed from liquefied coal products by first subjecting such products to hydroclone action for removal in the underflow of the larger size particulates, and then subjecting the overflow from said hydroclone action, comprising the residual finer particulates, to an electrostatic field in an electrofilter wherein such finer particulates are deposited in the bed of beads of dielectric material on said filter. The beads are periodically cleaned by backwashing to remove the accumulated solids.

Rappe, Gerald C. (Macungie, PA)

1983-01-01T23:59:59.000Z

222

Pre-Combustion CO2 Removal System … Demonstration Unit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Post-Combustion CO Post-Combustion CO 2 Capture System for Existing Coal-fired Power Plant Project Review (DE-FE-0007580) Gökhan Alptekin, PhD Ambal Jayaraman, PhD Robert Copeland, PhD DOE/NETL CO 2 Capture Technology Meeting Meeting Pittsburgh, PA July 8, 2013 TDA R e s e a r c h Project Summary * The objective is to develop a post-combustion capture process for coal-fired power plants and demonstrate technical feasibility (at bench-scale) and economic viability of the new concept * A mesoporous carbon adsorbent is used to selectively remove CO 2 from the flue gas, regenerating under very mild conditions Budget Period 1 * Sorbent Optimization/scale-up and Laboratory Evaluations * Process Design and System Analysis Budget Period 2 * Long-term Sorbent Cycling * Design of a Breadboard Prototype Test Unit

223

Install Removable Insulation on Valves and Fittings  

Broader source: Energy.gov [DOE]

This tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving steam systems using low-cost, proven practices and technologies.

224

Method of making thermally removable polymeric encapsulants  

DOE Patents [OSTI]

A method of making a thermally-removable encapsulant by heating a mixture of at least one bis(maleimide) compound and at least one monomeric tris(furan) or tetrakis(furan) compound at temperatures from above room temperature to less than approximately 90.degree. C. to form a gel and cooling the gel to form the thermally-removable encapsulant. The encapsulant can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C., preferably in a polar solvent. The encapsulant can be used in protecting electronic components that may require subsequent removal of the encapsulant for component repair, modification or quality control.

Small, James H. (Santa Fe, NM); Loy, Douglas A. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); McElhanon, James R. (Albuquerque, NM); Saunders, Randall S. (late of Albuquerque, NM)

2001-01-01T23:59:59.000Z

225

Australia HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Australia HEU Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

226

Argentina HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Argentina HEU Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

227

Keeler-Pennwalt Wood Pole Removal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

natural environment. The entire remaining length of the Keeler-Pennwalt transmission line, from Keeler Substation to Structure 96, will be removed (approximately 9 miles)....

228

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

RCS1 Sub-station HV Installation completed in April 2011 In defects until April 2012 For more Project Manager: Rob Pask Phase 2a RCS1 Sub-station enclosing works completed in December 2010 Phase 2b when completed will provide a new 11,000 volt electrical substation, switching gear and associated

229

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigating the Fundamental Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide Project Number DE-FE0000397 Lee H Spangler Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Computational tool development * Laboratory studies to understand subsurface CO 2 behavior * Analog studies to inform risk analysis * Near surface detection technologies / testing * Mitigation method development 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

230

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FE/NETL CTS Cost Models and FE/NETL CTS Cost Models and Benefits Assessment of Carbon Storage R&D Program David Morgan Benefits Division Office of Program Planning and Analysis National Energy Technology Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 OFFICE OF FOSSIL ENERGY 2 Presentation Outline * Overview of benefits assessment * Overview of FE/NETL models used to assess benefits of CO 2 capture and storage * Benefits evaluation of Storage Program's R&D projects using a model to estimate costs of CO 2 storage in a saline aquifer * Description of model used to estimate costs of

231

Project 307  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INTEGRATING MONO ETHANOL AMINE (MEA) INTEGRATING MONO ETHANOL AMINE (MEA) REGENERATION WITH CO 2 COMPRESSION AND PEAKING TO REDUCE CO 2 CAPTURE COSTS Background In Phase I, Trimeric Corporation, in collaboration with the University of Texas at Austin, performed engineering and economic analyses necessary to determine the feasibility of novel MEA processing schemes aimed at reducing the cost of CO 2 capture from flue gas. These novel MEA-based CO 2 capture schemes are designed for integration into coal-fired power plants with the aim of reducing costs and improving efficiency. Primary Project Goal The primary goal of this project was to reduce the cost of MEA scrubbing for the recovery of CO 2 from flue gas by improved process integration. CONTACTS Sean I. Plasynski Sequestration Technology Manager

232

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline * Benefit to the program * Project overview: Why 14 C for MVA? * Technical status: Cartridges, injections, lasers * Summary * Organizational chart * Collaborators 3 Benefit to the Program * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Permanent storage of CO 2 can be demonstrated by adding carbon-14 ( 14 C) prior to injection. This research project aims to demonstrate this by tagging fossil CO 2 with 14 C at a field site. When completed, this system will show that 14 C can be a safe and effective tracer for sequestered CO 2 . A laser-based 14 C measurement method is being adapted for continuous monitoring. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent

233

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leakage Pathways and Leakage Pathways and Mineralization within Caprocks for Geologic Storage of CO 2 Project DE-FC26-0xNT4 FE0001786 James P. Evans Utah State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Goals and Objectives * Relationship to overall program goals * Overview of seal bypass * Technical status; bypass systems - Field based studies - Technological advances * Accomplishments and Summary * Appendices 3 Benefit to the Program * Program goals addressed * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

234

Project 301  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2006 2006 Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Arun C. Bose Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4467 arun.bose@netl.doe.gov ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION Background Over the past years, environmental concerns regarding pollutants have grown dramatically. Current annual greenhouse gas (GHG) emissions are 12% higher than they were in 1992. In addition, carbon dioxide (CO 2 ) emissions are projected to increase by an additional 34% over the next 20 years. About one third of carbon emissions in the

235

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Michael G. Waddell Earth Sciences and Resources Institute University of South Carolina U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 2 Presentation Outline * Project goals and benefits * Overview of the geology of the South Georgia Rift basin in SC * Results of petrographic and core analysis from the Rizer #1 * Future investigations in the SGR * Summary 3 Benefit to the Program Program Goals: * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected

236

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Micro-Structured Sapphire Fiber Sensors for Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments DE-FE0001127 Investigators: Hai Xiao, Hai-Lung Tsai, Missouri University of Science and Technology Junhang Dong, University of Cincinnati Program Manager: Norm Popkie, Gasification Division, NETL DOE Project Kickoff Meeting in the NETL Pittsburgh December 15, 2009 Outline * Background * Objectives * Project Elements * Management Plan * Research Plan and Approaches * Risk Management * Summary Background * Demands: High-performance, reliable, in situ sensors are highly demanded for advanced process control and lifecycle management in existing and future advanced power and fuel systems - Improved efficiency/safety/reliability/availability/maintainability

237

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mart Oostrom Mart Oostrom Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline  Project overview  Sub-Task 1: Investigation of CO 2 migration in heterogeneous porous media  Sub-Task 2: Modeling CCUS deployment in China  Summary Collaboration with China on Clean Energy Research 3 Benefit to the Program The Clean Energy Partnership was established by a memorandum of understanding between the Chinese Academy of Sciences, the National Energy Technology Laboratory and the Pacific Northwest National Laboratory in May of 2009 with the goal of significantly reducing the environmental emissions and improving the efficiency of

238

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Evaluation of Geophysical Methods for Monitoring and Tracking CO 2 Migration in the Subsurface PI: Jeffrey Daniels Co-PI: Robert Burns & Franklin Schwartz Students: Michael Murphy & Kyle Shalek The Ohio State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 FOA Number: DE-FOA-0000032 NETL Award Number: DE-FE0002441 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 3 Benefit to the Program * Program Goal: Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones

239

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

capillary trapping (FE0004956), Bryant, UT-Austin capillary trapping (FE0004956), Bryant, UT-Austin Influence of Local Capillary Trapping on Containment System Effectiveness DE-FE0004956 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin

240

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and objectives * Carbon gasification * Carbon reactivity studies * Catalyst development * Techno-economic analysis * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Caprock Integrity and Improved Caprock Integrity and Risk Assessment Techniques Project Number (FE0009168) Michael Bruno, PhD, PE GeoMechanics Technologies U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Introduction and Motivation 2 A primary requirement for long-term geologic storage and containment of carbon dioxide is ensuring caprock integrity. Large-scale CO2 injection requires improved and advanced simulation tools and risk assessment techniques to better predict and help control system failures, and to enhance performance of geologic storage. GeoMechanics Technologies is developing enhanced simulation and risk analysis approaches to assess and

242

Irene Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irene Station, African Weather Bureau Irene Station, African Weather Bureau The photos on this site come from the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Additional photos can be found on the SHADOZ Project Web Site. Photo of the Dobson 89 Instrument The Irene Weather Office Agnes Phahlane sits behind the Dobson and collects Total Ozone Data The lab at the Irene station Cal Archer Prepares an ozonesonde Flight Preparations The balloon is readied The release Back to the SAFARI 2000 Photo Page Index Other Sites: Skukuza, MISR Validation Site | Skukuza, Eddy Covariance Site | C-130 Flight Photos | Sua Pan Site | Irene Weather Station | Fire Studies | Kalahari Transect | Kalahari Transect Sites for Canopy Structure Data | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data

243

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive Monitoring and Uncertainty Assessment of CO 2 Plume Migration DOE-FE0004962 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin

244

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basin-Scale Leakage Risks from Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on CCS Energy Market Competitiveness Catherine A. Peters Jeffery P. Fitts Michael A. Celia Princeton University Paul D. Kalb Vatsal Bhatt Brookhaven National Laboratory Elizabeth J. Wilson Jeffrey M. Bielicki Melisa Pollak University of Minnesota DOE Award DE-FE0000749 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to CCUS research program * Project Goals & Objectives * Technical Status  Thrust I - Reservoir-scale simulations of leakage potential with permeability evolution

245

Project Description  

Broader source: Energy.gov (indexed) [DOE]

Project Description Project Description The Energy Policy Act of 2005 (EPAct 2005), the Energy Independence and Security Act of 2007 (EISA 2007), and Presidential Executive Order 13423 all contain requirements for Federal facilities to decrease energy consumption and increase the use of renewable energy by the year 2015. To provide leadership in meeting these requirements, DOE, in partnership with the General Services Administration (GSA), has installed a rooftop solar electric, or PV, system on the roof of DOE's headquarters in Washington, D.C. The 205 kilowatt (kW) installation is one of the largest of its kind in the Nation's capital. A display in the For- restal building will show the power output of the PV system during the day and the energy produced over

246

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Modeling CO for Modeling CO 2 Processes: Pressure Management, Basin-Scale Models, Model Comparison, and Stochastic Inversion ESD09-056 Jens T. Birkholzer with Abdullah Cihan, Marco Bianchi, Quanlin Zhou, Xiaoyi Liu, Sumit Mukhopadhyay, Dorothee Rebscher, Barbara Fialeix Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview and Technical Status - Task 1: Optimization of Brine Extraction for Pressure Management and Mitigation - Task 2: Basin-scale Simulation of CO 2 Storage in the Northern Plains - Prairie Basal Aquifer - Task 3: Sim-SEQ Model Comparison

247

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beneficial Use of CO Beneficial Use of CO 2 in Precast Concrete Production DE-FE0004285 Yixin Shao, Yaodong Jia Liang Hu McGill University 3H Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation outline * Goals and objectives * Benefits to the program * Project overview * Technical status * Accomplishment to date * Summary 2 Objective Masonry blocks Fiber-cement panels Prefabricated buildings Concrete pipes To develop a carbonation process to replace steam curing in precast concrete production for energy reduction, and carbon storage and utilization. Goals * CO 2 sequestration capacity by cement:

248

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Kansas Center for Research University of Kansas Center for Research Kansas Geological Survey U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 Presentation Outline * Benefits, objectives, overview * Methods * Background & setting * Technical status * Accomplishments * Summary Benefit to the Program * Program goal addressed: Develop technologies that will support the industries' ability to predict CO 2 storage capacity in geologic formations to within ± 30 percent. * Program goal addressed: This project will confirm - via a horizontal test boring - whether fracture attributes derived from 3-D seismic PSDM Volumetric Curvature (VC) processing are real. If

249

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project benefits and objectives * Carbon reactivity studies * Catalyst mechanism studies * Catalyst development * Test results * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

250

FUSRAP Project  

Office of Legacy Management (LM)

Project Project 23b 14501 FUSRAP TECHNICAL BULLETIN N O . - R 3 v . L DATE: 1.2 9-99 SUBJECT : Pr.pec.d BY T r m L u d Approval Summary of the results for the Springdale characterization activities performed per WI-94-015, Rev. 0. TUO separate radiological characterization surveys and a limited cherical characterization survey were performed on the Springdale Site in Octcjer and December, 1993. The design of the radiological surveys were to supplement and define existing ORNL surveys. The limited cher.ica1 characterization survey was performed to assist in the completion of waste disposal paperwork. Radiological contamination is primarily ir. the 'belt cutting and belt fabrication'areas of the building with a small erea of contamination in the south end of the building. The chemiccl sac~le

251

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0-22, 2013 0-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Advanced simulation tool for quantifying transport in porous and fractured geological formations during CO 2 sequestration that includes all mechanisms: convection, diffusion, dissolution and chemical reactions * A simulator that can fully model these processes does not currently exist * Simulator will contribute to our ability to predict CO 2 storage capacity in geologic formations, to within ±30 percent 4 Project Overview: Goals and Objectives Comprehensive reservoir simulator for investigation of CO 2 non-isothermal, multiphase flow and long-term storage in

252

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas J. Wolery Thomas J. Wolery Lawrence Livermore National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 LLNL-PRES-574632 2 Team Members * Roger Aines * Bill Bourcier * Tom Wolery * Tom Buscheck * Tom Wolfe (consultant) * Mike DiFilippo (consultant) * Larry Lien (Membrane Development Specialists) 3 Presentation Outline * Overview of Active CO 2 Reservoir Management (ACRM) * Subsurface Reservoir Management: Made Possible by Brine Production, Yielding Many Benefits * Brine Disposal Options - What brines are out there? - What are the treatment options? 4 Benefit to the Program * This project is identifying and evaluating

253

Project 140  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vision 21 Vision 21 PRIMARY PARTNERS Nexant, Inc San Francisco, CA Los Alamos National Laboratory Los Alamos, NM PARTICIPANTS SIMTECHE Redding, CA TOTAL ESTIMATED COST $9,076,621 CONTACTS Michael Knaggs National Energy Technology Laboratory 304-285-4926 Michael.Knaggs@netl.doe.gov Sam Tam Nexant, Inc. 415-912-2183 sstam@nexant.com Robert Currier Los Alamos National Laboratory 505-665-3601 currier@lanl.gov NOVEL PROCESS FOR UPGRADING COAL SYNGAS Description Efficient removal of carbon dioxide from coal syngas is a key technical challenge for next-generation power plants. Nexant, Inc. and Los Alamos National Laboratory (LANL) are developing a low temperature process owned by SIMTECHE, which captures carbon dioxide by formation of gas hydrates. The process has potential for being both less energy-intensive

254

Project 259  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kwang Y. Lee, Stuart S. Yin, Kwang Y. Lee, Stuart S. Yin, and Andre Boheman The Pennsylvania State University Department of Electrical Engineering University Park, PA 16802 814-865-2621 kwanglee@psu.edu INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES Description The objective of the proposed work is to develop an intelligent distributed fiber optic-based sensor system for real-time monitoring of temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NO X . The basic approach in developing the proposed sensor system is three-fold:

255

Accelerating projects  

SciTech Connect (OSTI)

This chapter describes work at ORNL in the period around 1950, when the laboratory was evolving from its original mission of research aimed at producing the atomic bomb, to a new mission, which in many ways was unclear. The research division from Y-12 merged with the laboratory, which gave an increased work force, access to a wide array of equipment, and the opportunity to work on a number of projects related to nuclear propulsion. The first major project was for a nuclear aircraft. From work on this program, a good share of the laboratories work in peaceful application of nuclear energy would spring. A major concern was the development of light weight shielding to protect the crew and materials in such a plane. To do such shielding work, the laboratory employed existing, and new reactors. The original plans called for the transfer of reactor work to Argonne, but because of their own research load, and the needs of the lab, new reactor projects were started at the lab. They included the Low Intensity Test Reactor, the Swimming Pool Reactor, the Bulk Shielding Reactor, the Tower Shielding Facility, and others. The laboratory was able to extend early work on calutrons to accelerator development, pursuing both electrostatic accelerators and cyclotrons. The aircraft project also drove the need for immense quantities of scientific data, with rapid analysis, which resulted the development of divisions aimed at information support and calculational support. The laboratory also expanded its work in the effects of radiation and cells and biological systems, as well as in health physics.

Not Available

1992-01-01T23:59:59.000Z

256

Microsoft Word - Esquatzel_Project_2011.doc  

Broader source: Energy.gov (indexed) [DOE]

James Hall James Hall Project Manager - TPC-TPP-4 Proposed Action: Esquatzel Project Budget Information: WO# 257267, Task 01 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7 "Acquisition, installation, operation, and removal of communication systems, data processing equipment, and similar electronic equipment." Location: Franklin County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: In response to Green Energy Today's small generator interconnection request, BPA is planning to integrate their 1.1-MW Esquatzel Hydro Generation Project into its balancing authority (BA). The proposed point of interconnection is at Pole 66 G 1229 on the Bureau of Reclamation's

257

Moab Reaches 40-Percent Mark in Tailings Removal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Moab Reaches 40-Percent Mark in Tailings Removal Moab Reaches 40-Percent Mark in Tailings Removal Moab Reaches 40-Percent Mark in Tailings Removal December 24, 2013 - 12:00pm Addthis A haul truck carrying a container is loaded with mill tailings at the Moab site. Once loaded and lidded, the container will be placed on a railcar for shipment by train to the Crescent Junction disposal site. A haul truck carrying a container is loaded with mill tailings at the Moab site. Once loaded and lidded, the container will be placed on a railcar for shipment by train to the Crescent Junction disposal site. MOAB, Utah - The Moab Uranium Mill Tailings Remedial Action Project had a productive year, despite continued budget constraints and a first-ever, three-month curtailment of shipping operations last winter. On June 18, the project reached a significant milestone of having shipped 6

258

Acid dyes removal using low cost adsorbents  

Science Journals Connector (OSTI)

Dyestuff production units and dyeing units have always had pressing need techniques that allow economical pre-treatment for colour in the effluent. The effectiveness of adsorption for dye removal from wastewaters has made it an ideal alternative to other expensive treatment options. Removal of acid green

A.H. Aydin; Y. Bulut; O. Yavuz

2004-01-01T23:59:59.000Z

259

Research Projects | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Projects Basic Energy Science Projects AA (Fossil Energy) Projects EERE-VT Projects EERE-ED Projects ARPA-E Projects...

260

COST OF MERCURY REMOVAL IN IGCC PLANTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost of Mercury Removal Cost of Mercury Removal in an IGCC Plant Final Report September 2002 Prepared for: The United States Department of Energy National Energy Technology Laboratory By: Parsons Infrastructure and Technology Group Inc. Reading, Pennsylvania Pittsburgh, Pennsylvania DOE Product Manager: Gary J. Stiegel DOE Task Manager: James R. Longanbach Principal Investigators: Michael G. Klett Russell C. Maxwell Michael D. Rutkowski PARSONS The Cost of Mercury Removal in an IGCC Plant Final Report i September 2002 TABLE OF CONTENTS Section Title Page 1 Summary 1 2 Introduction 3 3 Background 4 3.1 Regulatory Initiatives 4 3.2 Mercury Removal for Conventional Coal-Fired Plants 4 3.3 Mercury Removal Experience in Gasification 5 3.4 Variability of Mercury Content in Coal 6 4 Design Considerations 7 4.1 Carbon Bed Location

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Tritium Removal from Carbon Plasma Facing Components  

SciTech Connect (OSTI)

Tritium removal is a major unsolved development task for next-step devices with carbon plasma-facing components. The 2-3 order of magnitude increase in duty cycle and associated tritium accumulation rate in a next-step tokamak will place unprecedented demands on tritium removal technology. The associated technical risk can be mitigated only if suitable removal techniques are demonstrated on tokamaks before the construction of a next-step device. This article reviews the history of codeposition, the tritium experience of TFTR (Tokamak Fusion Test Reactor) and JET (Joint European Torus) and the tritium removal rate required to support ITER's planned operational schedule. The merits and shortcomings of various tritium removal techniques are discussed with particular emphasis on oxidation and laser surface heating.

C.H. Skinner; J.P. Coad; G. Federici

2003-11-24T23:59:59.000Z

262

BOA: Asbestos pipe insulation removal robot system. Phase 1  

SciTech Connect (OSTI)

The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

Schempf, H.; Bares, J.E.

1995-02-01T23:59:59.000Z

263

NITROGEN REMOVAL FROM NATURAL GAS  

SciTech Connect (OSTI)

The objective of this project was to develop a membrane process for the denitrogenation of natural gas. Large proven reserves in the Lower-48 states cannot be produced because of the presence of nitrogen. To exploit these reserves, cost-effective, simple technology able to reduce the nitrogen content of the gas to 4-5% is required. Technology applicable to treatment of small gas streams (below 10 MMscfd) is particularly needed. In this project membranes that selectively permeate methane and reject nitrogen in the gas were developed. Preliminary calculations show that a membrane with a methane/nitrogen selectivity of 3 to 5 is required to make the process economically viable. A number of polymer materials likely to have the required selectivities were evaluated as composite membranes. Polyacetylenes such as poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(4-methyl-2-pentyne) [PMP] had high selectivities and fluxes, but membranes prepared from these polymers were not stable, showing decreasing flux and selectivity during tests lasting only a few hours. Parel, a poly(propylene oxide allyl glycidyl ether) had a selectivity of 3 at ambient temperatures and 4 or more at temperatures of {minus}20 C. However, Parel is no longer commercially available, and we were unable to find an equivalent material in the time available. Therefore, most of our experimental work focused on silicone rubber membranes, which have a selectivity of 2.5 at ambient temperatures, increasing to 3-4 at low temperatures. Silicone rubber composite membranes were evaluated in bench-scale module tests and with commercial-scale, 4-inch-diameter modules in a small pilot plant. Over six days of continuous operation at a feed gas temperature of {minus}5 to {minus}10 C, the membrane maintained a methane/nitrogen selectivity of about 3.3. Based on the pilot plant performance data, an analysis of the economic potential of the process was prepared. We conclude that a stand-alone membrane process is the lowest-cost technology for small gas streams containing less than 10% nitrogen. The membrane process can recover more than 60-70% of the hydrocarbon content of the gas at a cost of $0.60-0.70/Mscfd. The capital cost of the process is about $100-200/Mscf. A number of small operators appear to be ready to use the technology if these costs can be demonstrated in the field. A second, and perhaps better, application of the technology is to combine the membrane process with a cryogenic process to treat large gas streams containing 10-20% nitrogen. The combination process achieves significant synergies. The membrane process performs a bulk separation of the gas, after which the cryogenic process treats the membrane residue (nitrogen-enriched) gas to recover more methane. Overall, hydrocarbon recoveries are greater than 95%. The capital cost of the combination process is lower than that of either process used alone and the processing costs are in the range $0.30-0.40/Mscf. This operating cost would be attractive to many gas producers. MTR is collaborating with a producer of cryogenic systems to further develop the combination process. A number of innovations in membrane process designs were made during the project; four U.S. patents covering various aspects of the technology were filed and issued.

K.A. Lokhandwala; M.B. Ringer; T.T. Su; Z. He; I. Pinnau; J.G. Wijmans; A. Morisato; K. Amo; A. DaCosta; R.W. Baker; R. Olsen; H. Hassani; T. Rathkamp

1999-12-31T23:59:59.000Z

264

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

William Bourcier William Bourcier Lawrence Livermore National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Saline Aquifer Brine Production Well Brine Injection Well Chiller Pretreatment Desalination Brine Permeate To power plant or other use Storage pump CO 2 injection Concept is to extract and desalinate aquifer brines to create fresh water and space for CO 2 storage cap-rock 3 Presentation Outline * Overview, Purpose, Goals and Benefits * Technical status - Brine treatment and disposition - Reservoir management * Accomplishments * Summary and Planned work Goals and Objectives Technical Goals Potential advantages of brine

265

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metrics for Screening CO Metrics for Screening CO 2 Utilization Processes Peter Kabatek Energy Sector Planning and Analysis (ESPA) Services / WorleyParsons U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * NETL's Carbon Storage Program * Introduction of the metrics * Review of the case study technology * Application of metrics to the case study technology * Discussion of metrics interpretation and grouping 3 NETL Carbon Storage Program * The Carbon Storage Program contains three key elements: - Infrastructure - Global Collaborations - Core Research and Development: * Monitoring, Verification and Accounting (MVA) * Geologic Storage

266

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Reservoir Simulation Model * Intelligent Leakage Detection System (ILDS) * Accomplishments * Summary Objective * Develop an in-situ CO 2 leak detection technology based on the concept of Smart Fields. - Using real-time pressure data from permanent downhole gauges to estimate the location and the rate of CO 2 leakage. CO2 Leakage(X,Y,Q) Artificial Intelligence & Data Mining Industrial Advisory Committee (IAC) * Project goes through continuous peer-review by an Industrial Review Committee. * Meetings: - November 6 th 2009 : * Conference call * Site selection criteria - November 17 th 2009: * A meeting during the Regional Carbon Sequestration Partnership Meeting in Pittsburgh

267

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Factors Influencing Factors Influencing CO 2 Storage Capacity and Injectivity in Eastern Gas Shales Contract No. DE-FE0004633 Michael Godec, Vice President Advanced Resources International mgodec@adv-res.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Benefits * Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefits to the Program * Program Goals Addressed - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

268

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training and Research Peter M. Walsh University of Alabama at Birmingham U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CCUS Pittsburgh, Pennsylvania August 21-23, 2012 DE-FE0002224 * Evaluation of the sealing capacity of caprocks serving as barriers to upward migration of CO 2 sequestered in geologic formations. * Education and training of undergraduate and graduate students, through independent research on geologic sequestration. * Education, through an advanced undergraduate/graduate level course on coal combustion and gasification, climate change, and carbon sequestration. * Simulation of CO 2 migration and trapping in storage

269

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building the Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction - Objective - Industrial Review Committee - Background * Steps Involved - Geological and Reservoir Simulation Modeling - Leakage Modeling & Real-Time Data Processing - Pattern Recognition & Intelligent Leakage Detection System (ILDS) * Accomplishments to Date * Summary Objective * Develop an in-situ CO 2 leak detection technology based on the concept of Smart Fields. - Using real-time pressure data from permanent downhole gauges to estimate the location and the rate of CO 2 leakage. Industrial Advisory Committee (IAC) * Project goes through continuous peer-review by an Industrial Review Committee. * Meetings: - November 6 th 2009 :

270

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix Introduction * Most storage modeling studies assume a discrete reservoir/caprock interface with simple (uniform) flow conditions. * We address the question of whether or not heterogeneities at the interface influence transmission of CO 2 into the caprock 3 4 Reservoir Caprock Reservoir Introduction The nature of reservoir/caprock interfaces 4 Organization 5 Peter Mozley (PD/PI) NMT Sedimentology James Evans (Co-PI) USU Structure Thomas Dewers (Co-I) Jason Heath (Staff) SNL Modeling Mark Person (Cooperating Scientist) NMT Modeling Stefan Raduha NMT Sedimentology

271

Part II: Project Summaries Project Summaries  

E-Print Network [OSTI]

Part II: Project Summaries Part II Project Summaries #12 generally cannot be achieved for reasonable computational cost. Applications that require modeling, and in nondestructive testing. The objective of this project is to advance the state of the art in electromagnetic

Perkins, Richard A.

272

Project Rulison  

Office of Legacy Management (LM)

Rulison Rulison 1970 Environmerstal Surveillance Summary Report J - - Colorado Department of Health DIVISION OF OCCUPATIONAL AND RADIOLOGICAL HEALTH DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. STATE OF COLORADO P R O J E C T R U L I S O N Environments 1 S u r v e i l l a n c e Summary R e p o r t C o l o r a d o D e p a r t m e n t o f H e a l t h D i v i s i o n o f O c c u p a t i o n a l and R a d i o l o g i c a l 3 e a l t h This page intentionally left blank FOREWORD Project Rulison is an experimental Plowshare project undertaken cooperatively by the Atomic Energy Commission (AEC) and the Department of Interior for the government, and Austral Oil Company and CER Geo- nuclear Corporation for private industry. As required by law, the AEC

273

Microfabrication Project Proposal Form Principle Investigator: (Person responsible for project)  

E-Print Network [OSTI]

Microfabrication Project Proposal Form Principle Investigator: (Person responsible for project: ___________________________________ Department: _____________________ _________________ __ Phone Number: _________________________ Project Information: Project Title: ________________________________________________________________ Funding Agency

274

PROCEDURES FOR ARC PROJECTS  

E-Print Network [OSTI]

PROCEDURES FOR ARC PROJECTS Revised - May 2013 Agricultural Research Center Washington State University #12;Table of Contents THE PROJECT SYSTEM, AN INTRODUCTION................................................................................. 5 DEVELOPING AN ARC PROJECT

Collins, Gary S.

275

U.S. Department of Energy DOE/PC90542-T1 THE REMOVAL OF SO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy DOE/PC90542-T1 THE REMOVAL OF SO 2 USING GAS SUSPENSION ABSORPTION TECHNOLOGY DEMONSTRATION PROJECT A DOE ASSESSMENT Prepared by: The Office of Clean Coal technology Pittsburgh Energy Technology Center Pittsburgh, PA 15236 September 1996 EXECUTIVE SUMMARY This document serves as a DOE post-project assessment of a project in Round 3 of the Clean Coal Technology (CCT) Demonstration Program titled, "Demonstration of SO 2 Removal Using Gas Suspension Absorption Technology." In October 1990, AirPol Inc. entered into a cooperative agreement to conduct the study, with the Tennessee Valley Authority (TVA) as the host and co-sponsor. The 10 MWe plant scale demonstration was conducted from November 1992 to March 1994 at TVA's National Center for Emissions

276

SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS  

SciTech Connect (OSTI)

The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley Authority, and Dravo Lime, Inc. Sulfuric acid controls are becoming of increasing interest to power generators with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NO{sub x} control on many coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project previously tested the effectiveness of furnace injection of four different calcium-and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents were tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide byproduct slurry produced from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization system. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm the effectiveness of the sorbents tested over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP, Unit 3, and the second test was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant testing provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. This report presents the results from those long-term tests. The tests determined the effectiveness of injecting commercially available magnesium hydroxide slurry (Gavin Plant) and byproduct magnesium hydroxide slurry (both Gavin Plant and BMP) for sulfuric acid control. The results show that injecting either slurry could achieve up to 70 to 75% overall sulfuric acid removal. At BMP, this overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NOX control than at removing SO{sub 3} formed in the furnace. The long-term tests also determined balance-of-plant impacts from slurry injection during the two tests. These include impacts on boiler back-end temperatures and pressure drops, SCR catalyst properties, ESP performance, removal of other flue gas species, and flue gas opacity. For the most part the balance-of-plant impacts were neutral to positive, although adverse effects on ESP performance became an issue during the BMP test.

Gary M. Blythe; Richard McMillan

2002-07-03T23:59:59.000Z

277

In situ removal of contamination from soil  

DOE Patents [OSTI]

A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.

Lindgren, E.R.; Brady, P.V.

1997-10-14T23:59:59.000Z

278

NEPA COMPLIANCE SURVEY Project Information Project Title: South Compost Facility #2 Da  

Broader source: Energy.gov (indexed) [DOE]

South Compost Facility #2 Da South Compost Facility #2 Da te: 1-6-10 DOE Code: 6730.020.0000 Contracto r Code: 8067-788 Project Lead: Anthony Bowler Project Ove rview The purpose of the project is to build an additional compos ling facility at RMOTC to allow for 1. Bnef project description [include anything that increased soil remediation capabilities. The project will involve removing the top soil and placing could impact the environment] it adjacent to the operational area ,in a "signed" pile for reclamation . Additional scraping of the 2. Legal location area (6"-8'1 will generate material which will be used to erect a 2' berm around the location to 3. Duration of the project control runon/runoff. A perimeter fence and a locking gate will be installed around the facility's

279

Project 371  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brent Marquis Brent Marquis Project Manager Sensor Research and Development 17 Godfrey Dr. Orono, ME. 04473 207-866-0100 ext. 241 SEMI-CONDUCTOR METAL OXIDE TECHNOLOGY FOR IN SITU DETECTION OF COAL-FIRED COMBUSTION GASES Description Sensor Research and Development Corporation is developing a robust prototype sensor system for in situ, real-time detection, identification, and measurement of coal-fired combustion gases. The sensor system is comprised of several unique semi-conducting metal oxide (SMO) sensor arrays in tandem with novel gas prefiltration techniques. The sensor array will be able to selectively detect and measure nitric oxide (NO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), and ammonia (NH 3 ). The SMO sensor array is the heart of the combustion gas analyzer being developed

280

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ketzin Collaboration Ketzin Collaboration ESD-09-056 Barry Freifeld Earth Sciences Division Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and objectives * Success Criteria * Technical Status * Latest developments in Integrated Monitoring * Summary and Lessons Learned 3 Image from: www.co2ketzin.de 4 Benefit to the Program * Program goal being addressed: - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * The Ketzin collaboration leverages information gained through the mid-scale geological sequestration experiment in Ketzin, Germany.

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Project 298  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reaction Engineering Reaction Engineering International Salt Lake City, UT www.reaction-eng.com CONTACTS Bruce W. Lani Project Manager National Energy Technology Laboratory 412-386-5819 bruce.lani@netl.doe.gov Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory 412-386-6134 thomas.feeley@netl.doe.gov Michael Bockelie Reaction Engineering International 801-364-69255 bockelie@reaction-eng.com WEBSITE http://www.netl.doe.gov NO X CONTROL OPTIONS AND INTEGRATION FOR U.S. COAL FIRED BOILERS (RICH REAGENT INJECTION) Background Enacted regulations pertaining to the NO X SIP Call and potential future regulations in proposed legislation such as the President's Clear Skies Act or EPA's Clean Air Interstate Rule require power producers to seek the most cost effective methods to achieve compliance. In order to address present and

282

Project 398  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Gasification Technologies CONTACTS Gary J. Stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Ronald Breault Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4486 ronald.breault@netl.doe.gov Michael Swanson Principal Investigator University of North Dakota Energy and Environmental Research Center 15 North 23rd Street P.O. Box 9018 Grand Forks, ND 58202 701-777-5239 mswanson@eerc.und.nodak.edu ADVANCED HIGH TEMPERATURE, HIGH-PRESSURE TRANSPORT REACTOR Description Today, coal supplies over 55 percent of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being

283

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jennifer A. Kozak, Jennifer A. Kozak, 1,2 Dr. Fritz Simeon, 2 Prof. T. Alan Hatton,* ,2 and Prof. Timothy F. Jamison* ,1 1 Department of Chemistry and 2 Department of Chemical Engineering Massachusetts Institute of Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation, Goals, Objectives * Background * Cyclic Carbonate Synthesis via Catalytic Coupling of CO 2 and Epoxides * New Catalysts and Reaction Scope * Mechanism - A New Paradigm for Activating Epoxides * Conclusions 3 Benefit to the Program * Identify the Program goals being addressed. - Develop technologies to demonstrate that 99 percent

284

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Verification and Accounting of Geologic Carbon Sequestration Using a Field Ready 14 C Isotopic Analyzer DEFE 0001116 Bruno D.V. Marino PhD CEO, Founder Planetary Emissions Management, Inc. 485 Massachusetts Ave. Cambridge, MA 02139 bruno.marino@pem-carbon.com www.pem-carbon.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Benefits of a 14 CO 2 Field Analyzer to DOE MVA Program Goals Program Goals: 99% Containment Identify/Quantify CCS Credits Direct Tracking Verification Tight/Leaky Account for Natural Baseline MVA Atmosphere MVA Groundwater Ecosystem Health, Community Safety

285

Project 339  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Jenny Tennant Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4830 jenny.tennant@netl.doe.gov Dr. Tomasz Wiltowski Southern Illinios University Dept. of Mechanical Engineering & Energy Processes Carbondale, IL 62901-4709 618-536-5521 tomek@siu.edu QUALIFICATIONS OF CANDLE FILTERS FOR COMBINED CYCLE COMBUSTION APPLICATIONS Background In order to make oxygen-fired combined cycle combustion feasible, it is necessary to have a reliable high temperature particulate cleanup system. It is well established

286

Project 350  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrates Gas Hydrates CONTACTS Ray Boswell Acting Technology Manager Gas Technology Management Division 304-285-4541 ray.boswell@netl.doe.gov James Ammer Director Gas Technology Management Division 304-285-4383 james.ammer@netl.doe.gov Kelly Rose Project Manager Gas Technology Management Division 304-285-4157 kelly.rose@netl.doe.gov Joseph Wilder Research Group Leader Simulation, Analysis and Computational Science Division 304-285-0989 joseph.wilder@netl.doe.gov NETL - DIRECTING THE DEVELOPMENT OF WORLD-CLASS GAS HYDRATE RESERVOIR SIMULATORS Development of reliable simulators that accurately predict the behavior methane hydrates in nature is a critical component of NETL's program to appraise the gas supply potential of hydrates. NETL is leading the development of a suite of modeling tools that are providing

287

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building the Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix Introduction * Most storage modeling studies involve a caprock/reservoir interface, and assume a discrete contact with simple (uniform) flow conditions. * We address the question of whether or not heterogeneities at the interface influence transmission of CO 2 into the caprock 3 Introduction The nature of reservoir/caprock interfaces 4 Triassic-Jurassic Strata, San Rafael Swell, UT Organization 5 Peter Mozley (PD/PI) NMT Sedimentology James Evans (Co-PI) USU Structure Thomas Dewers (Co-I) Jason Heath (Staff) SNL Modeling Mark Person

288

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Verification and Verification and Accounting of Geologic Carbon Sequestration Using a Field Ready 14 C Isotopic Analyzer CCS Public Outreach: Pathway to Tradable CCS Securities DEFE 0001116 Bruno D.V. Marino PhD CEO, Founder Planetary Emissions Management, Inc. One Broadway, 14 th Floor Cambridge, MA 02142 bruno.marino@pem-carbon.com www.pem-carbon.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 All RIGHTS RESERVED © Benefits: Public Outreach CCS-MVA LINKED TRADABLE SECURITY Increase Public Confidence in CCS Increase Public involvement in CCS "Leakage Rate" Product Distinct from GHG "Credits"

289

PROJECT TITLE:  

Broader source: Energy.gov (indexed) [DOE]

Richmond Richmond PROJECT TITLE: EECBG - Solar Compactors and Recycling Units Page 1 of2 STATE: VA Funding Opportunity Announcement Number DE-FOA-0000013 Procurement Instrument Number DE-EE0000878 NEPA Control Number cm Number GFO-0000878-003 0 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical assistance to individuals (such as builders, owners, consultants, designers), organizations (such as utilities), and state

290

Project 370  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

crshadd@sandia.gov crshadd@sandia.gov O 2 /CO 2 RECYCLE COAL COMBUSTION TO MINIMIZE POLLUTANTS Description O 2 /CO 2 recycle coal combustion is a promising, retrofittable technique for electric power production, while producing a nearly pure stream of CO 2 for subsequent use or sequestration. Most pollutant emissions, including NO x , are lower in this process, compared to conventional pulverized coal combustion. However, laboratory and pilot-scale tests to date have shown a wide variation in the fractional reduction of NO x when adopting this technology, suggesting that further improvements in NO x reduction are possible, given a better understanding of the dominant routes of NO x production and destruction in these systems. Goals The goal of this project is to determine the relative influence of three different

291

Project 346  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sara Pletcher Sara Pletcher Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-385-4236 sara.pletcher@netl.doe.gov Gary M. Blythe URS Corporation PO Box 201088 Austin, TX 78720 512-419-5321 gary_blythe@urscorp.com BENCH SCALE KINETICS OF MERCURY REACTIONS IN FGD LIQUORS Background When research into the measurement and control of Hg emissions from coal-fired power plants began in earnest in the early 1990s, it was observed that oxidized mercury can be scrubbed at high efficiency in wet FGD systems, while elemental mercury cannot. In many cases, elemental mercury concentrations were observed to increase slightly across wet FGD systems, but this was typically regarded as within the variability of the measurement methods. However, later measurements have

292

Project 261  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOVEL CORROSION SENSOR FOR ADVANCED NOVEL CORROSION SENSOR FOR ADVANCED FOSSIL ENERGY POWER SYSTEMS Description The overall objective of this proposed project is to develop a new technology for on-line corrosion monitoring based on an innovative concept. The specific objectives and corresponding tasks are (1) develop the sensor and electronic measurement system; (2) evaluate and improve the system in a laboratory muffle furnace; and (3) evaluate and improve the system through tests conducted in a pilot-scale coal combustor (~1 MW). Fireside corrosion refers to the metal loss caused by chemical reactions on surfaces exposed to the combustion environment. Such corrosion is the leading mechanism for boiler tube failures and is a serious concern for current and future energy plants due to the introduction of technologies targeting emissions

293

Project 278  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Karen Cohen Karen Cohen Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6667 karen.cohen@netl.doe.gov Ken Nemeth Executive Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 nemeth@sseb.org Sequestration SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB) Background The U.S. Department of Energy has selected the seven partnerships of state agencies, universities, and private companies that will form the core of a nationwide network that will help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. All together, the partnerships include more than 240 organizations, spanning 40 states, three Indian nations, and

294

FLUXNET Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation > FLUXNET Validation > FLUXNET The FLUXNET Project Overview [FLUXNET Logo] FLUXNET is a global network of micrometeorological tower sites that use eddy covariance methods to measure the exchanges of carbon dioxide, water vapor, and energy between terrestrial ecosystems and the atmosphere. More that 500 tower sites from about 30 regional networks across five continents are currently operating on a long-term basis. The overarching goal of FLUXNET is to provide information for validating remote sensing products for net primary productivity (npp), evaporation, and energy absorption. FLUXNET provides information to FLUXNET investigators and to the public. The primary functions of FLUXNET are: To provide information about tower location, site characteristics, data availability, and where to obtain the data

295

Project 296  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

McDermott Technology McDermott Technology Alliance, OH www.mcdermott.com CONTACTS Bruce W. Lani Project Manager National Energy Technology Laboratory 412-386-5819 bruce.lani@netl.doe.gov Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory 412-386-6134 thomas.feeley@netl.doe.gov Hamid Farzan Babcock & Wilcox Company 330-860-6628 HFarzan@babcock.com WEBSITE http://www.netl.doe.gov NO X CONTROL FOR UTILITY BOILER OTR COMPLIANCE Background Enacted regulations pertaining to the NO X SIP Call and potential future regulations in proposed legislation such as the President's Clear Skies Act or EPA's Clean Air Interstate Rule require power producers to seek the most cost effective methods to achieve compliance. In order to address present and anticipated NO X emissions control legislation targeting the current fleet of U.S. coal-fired boilers, the Department

296

Project 397  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Gasification Technologies CONTACTS Gary J. Stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov John Stipanovich Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6027 john.stipanovich@netl.doe.gov Derek Aldred Principal Investigator Stamet, Inc. 8210 Lankershim Blvd. #9 North Hollywood, CA 91605 818-768-1025 dlaldred@stametinc.com CONTINUOUS PRESSURE INJECTION OF SOLID FUELS INTO ADVANCED COMBUSTION SYSTEM PRESSURES Description Operators and designers of high-pressure combustion systems universally agree that one of the major problems inhibiting the success of this technology relates to solid

297

Project 303  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONCEPTUAL DESIGN OF OXYGEN-BASED CONCEPTUAL DESIGN OF OXYGEN-BASED PC BOILER Background Because of growing concern that a link exists between global climatic change and emission of greenhouse gases, such as CO 2 , it is prudent to develop new coal combustion technologies to meet future emissions standards, should it become necessary to limit CO 2 emissions to the atmosphere. New technology is needed to ensure that the U.S. can continue to generate power from its abundant domestic coal resources. This project will design an optimized combustion furnace to produce a low-cost, high-efficiency power plant that supports the U.S. Department of Energy's (DOE) goal of developing advanced combustion systems that have the potential to control CO 2 through an integrated power system that produces a concentrated

298

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geologic Geologic Characterization of the Triassic Newark Basin of Southeastern New York and Northern New Jersey (DE-FE0002352) Daniel J. Collins, PG, RG Sandia Technologies, LLC U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 * Acknowledgment: This material is based upon work supported by the Department of Energy [National Energy Technology Laboratory] under Award Number DE- FE0002352, Contract No. 18131 from the New York State Energy Research & Development Authority [NYSERDA], and "In Kind" Cost Share from Schlumberger Carbon Services, Weatherford Laboratories, National Oilwell Varco, New York State Museum, and Rutgers University.

299

Project 143  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

George Rizeq George Rizeq Principal Investigator GE Global Research 18A Mason Irvine, CA 92618 949-330-8973 rizeq@research.ge.com FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF HYDROGEN AND SEQUESTRATION-READY CARBON DIOXIDE Description Projections of increased demands for energy worldwide, coupled with increasing environmental concerns have given rise to the need for new and innovative technologies for coal-based energy plants. Incremental improvements in existing plants will likely fall short of meeting future capacity and environmental needs economically. Thus, the implementation of new technologies at large scale is vital. In order to prepare for this inevitable paradigm shift, it is necessary to have viable alternatives that have been proven both theoretically and experimentally

300

Project 270  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SILICON CARBIDE MICRO-DEVICES FOR SILICON CARBIDE MICRO-DEVICES FOR COMBUSTION GAS SENSING UNDER HARSH CONDITIONS Description Reducing pollution and improving energy efficiency require sensitive, rugged sensors that can quantitatively detect gases that are produced in advanced combustion systems. Most materials cannot withstand the high temperature, chemically reactive environments encountered in power plants. This project is focused on developing solid state sensors based on the wide bandgap semiconductor silicon carbide (SiC), which can tolerate high temperatures and pressures as well as corrosive gases. Drawing upon the tools of semiconductor physics, surface science and chemistry, at the level of individual atoms and molecules, an understanding of the underlying physical mechanisms leading to

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

1 1 July 2011 Doc. No. S07978 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: April 1-June 30, 2011 This report summarizes project status and activities implemented April through June 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental Protection Agency (EPA) National Priorities List (NPL) in 1989 and 1986, respectively. The U.S. Department of Energy (DOE) implemented remedial actions at the MVP in 1986 and at the MMTS in 1989, to conform to requirements of the Comprehensive Environmental Response, Compensation, and Liability

302

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

FFA Quarterly Report: April 1-June 30, 2009 FFA Quarterly Report: April 1-June 30, 2009 July 2009 Doc. No. S05572 Page 1 Monticello National Priorities List Sites Federal Facilities Agreement (FFA) Quarterly Report: April 1-June 30, 2009 This report summarizes project status and activities implemented April through June 2009, and provides a schedule of near-term activities for the Monticello Mill Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) sites. This report also includes disposal cell and Pond 4 leachate collection data, quarterly site inspection reports, site meteorological data, and a performance summary for the ex situ groundwater treatment system. 1.0 MMTS Activities/Status 1.1 Disposal Cell and Pond 4 * Monthly and quarterly inspections of the repository identified livestock damage to a

303

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

31, 2011 31, 2011 April 2011 Doc. No. S07666 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: January 1-March 31, 2011 This report summarizes project status and activities implemented January through March 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental Protection Agency (EPA) National Priorities List (NPL) in 1989 and 1986, respectively. The U.S. Department of Energy (DOE) implemented remedial actions at the MVP in 1986 and at the MMTS in 1989, to conform to requirements of the Comprehensive Environmental Response, Compensation, and Liability

304

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RISK ASSESSMENT AND MONITORING OF RISK ASSESSMENT AND MONITORING OF STORED CO 2 IN ORGANIC ROCKS UNDER NON- EQUILIBRIUM CONDITIONS DOE (NETL) Award Number: DE-FE0002423 Investigator: Vivak (Vik) Malhotra DOE supported undergraduate student participants: Jacob Huffstutler, Ryan Belscamper, Stephen Hofer, Kyle Flannery,, Bradley Wilson, Jamie Pfister, Jeffrey Pieper, Joshua T. Thompson, Collier Scalzitti-Sanders, and Shaun Wolfe Southern Illinois University-Carbondale Carbondale, Illinois 62901-4401 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Carbon Storage Program * Program goals being addressed: - To attempt to answer whether CO

305

Project Status  

Broader source: Energy.gov (indexed) [DOE]

Hybrid Generation Simulator Hybrid Generation Simulator HybSim© 1.0 DAVID TRUJILLO SANDIA NATIONAL LABORATORY Presented by Joshua Bartlett - University of Michigan Introduction * HybSim© 1.0 copyrighted 2006 * First license to University of Michigan Introduction HybSim© Model What - "Hybrid Simulator"; Tool designed to evaluate the economic and environmental benefits of adding renewable energy to the fossil fuel generation mix in remote and difficult-accessible locations. Why - Benefits of energy storage, decision analysis, risk analysis, load growth issues, load management, economic analysis, planning (what-ifs) Who - Availability to coops, field techs, project managers, administrative personnel Where - Remote villages, military installations, remote industrial systems; any climate

306

PROJECT TITLE:  

Broader source: Energy.gov (indexed) [DOE]

Baltimore Baltimore PROJECT TITLE: EECBG - GHG Scrubbing System Page 1 of2 STATE: MD Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-EE0000738 GFO-0000738-002 0 Based all my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: All Technical advice and planning assistance to international, national, state, and local organizations. 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

307

Project 328  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 CONTACTS Gary J. Stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Jenny Tennant Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4830 Jenny.Tennant@netl.doe.gov Gasification Technologies Conceptual drawing of Rocketdyne's gasification system ADVANCED GASIFICATION SYSTEMS DEVELOPMENT Description Rocketdyne will apply rocket engine technology to gasifier design, allowing for a paradigm shift in gasifier function, resulting in significant improvements in capital and maintenance costs. Its new gasifier will be an oxygen-blown, dry-feed, plug-flow entrained reactor able to achieve carbon conversions of nearly 100 percent by rapidly heating low coal particles

308

Project 199  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heino Beckert Heino Beckert Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4132 heino.beckert@netl.doe.gov Ramin Yazdani Senior Civil Engineer Yolo County Planning and Public Works Department 292 West Beamer Street Woodland, CA 95695 530-666-8848 ryazdani@yolocounty.org Sequestration Yolo County Landfill Methane Production Compared to Other Landfills FULL-SCALE BIOREACTOR LANDFILL Background Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for the disposal of about 217 million tons of waste annually (U.S. EPA, 1997). The annual production of municipal waste in the United States has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and

309

Project 258  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MONITORING POWER PLANT EFFICIENCY USING MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED PHOTOACOUSTIC EFFECT TO MEASURE UNBURNED CARBON Objective The objective of this project is to explore the use of the microwave-excited photoacoustic (MEPA) effect for quantitative analysis of unburned carbon in fly ash, an extremely important parameter to the electric utility industry. Specific objectives include: * Determine factors that influence accuracy and precision of the MEPA effect; * Evaluate the microwave spectra of fly ash and other divided solids of importance to the power industry; and * Determine the feasibility of an on-line carbon-in-ash monitor based on the MEPA effect. Benefits High carbon levels in coal ash indicate poor combustion efficiency, resulting in additional fuel requirements and higher emissions of pollutants, such as acid-rain

310

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

09 09 January 2010 Doc. No. S06172 Page 1 1.3 Peripheral Properties (Private and City-Owned) * No land use or supplemental standards compliance issues were observed or reported by LTSM on-site staff. Monticello National Priorities List Sites Federal Facilities Agreement (FFA) Quarterly Report: October 1-December 31, 2009 This report summarizes project status and activities implemented October through December 2009, and provides a schedule of near-term activities for the Monticello Mill Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) sites. This report also includes disposal cell and Pond 4 leachate collection data, quarterly site inspection reports, site meteorological data, and a performance summary for the ex situ groundwater treatment system.

311

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water-Rock Interactions Water-Rock Interactions and the Integrity of Hydrodynamic Seals FWP FE-10-001 Bill Carey Los Alamos National Laboratory Los Alamos, NM U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program Goal: Ensure retention of 99% of injected CO 2 * Focus: Wellbore integrity * Approach: Use field, experimental and computational methods - Determine long-term compatibility of wellbore materials with CO 2 - Determine leakage mechanisms - Predict well performance * Benefit: The research will provide a basis for evaluating the long-term performance of wells, guide remediation

312

Project 333  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

José D. Figueroa José D. Figueroa Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4966 jose.figueroa@netl.doe.gov C. Jeffrey Brinker Sandia Fellow, Sandia National Laboratories Professor of Chemical & Nuclear Engineering The University of New Mexico Advanced Materials Laboratory 1001 University Blvd. SE, Suite 100 Albuquerque, NM 87106 505-272-7627 cjbrink@sandia.gov Sequestration NOVEL DUAL FUNCTIONAL MEMBRANE FOR CONTROLLING CARBON DIOXIDE EMISSIONS FROM FOSSIL FUELED POWER PLANTS Background There is growing concern among climate scientists that the buildup of greenhouse gases (GHG), particularly carbon dioxide, in the atmosphere is affecting the global climate in ways that could have serious consequences. One approach to reducing GHG emissions

313

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

© 2012 Paulsson, Inc. (PI) Development of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration DE-FE0004522 Björn N.P. Paulsson Paulsson, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 ® © 2012 Paulsson, Inc. (PI) © 2012 Paulsson, Inc. (PI) * Goals: Design, build, and test a high performance borehole seismic receiver system to allow cost effective geologic Carbon Capture and Storage (CCS) * Objectives: A: Develop technology to allow deployment of a 1,000 level drill pipe deployed 3C Fiber Optic Geophone (FOG) receiver array for deep

314

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Space Geodesy and Geochemistry Space Geodesy and Geochemistry Applied to Monitoring and Verification of Carbon Capture and Storage Award # DE-FE0002184 Peter Swart University of Miami Tim Dixon University of South Florida U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * What is the Award For? * What Research Work is being Supported? * Geochemical Research What is the Award For? * Provides Support for the Training of Two Graduate Students - Student 1: Involved in analysis of SAR images - Student 2: Involved in modeling of sub-surface geochemistry and application of models for policy decisions

315

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fluid-driven fracture fluid-driven fracture DE-FE0002020 Joseph F. Labuz Civil Engineering University of Minnesota U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits statement * Goal, objectives * Technical status: fracture code, experimental results (poro, AE) * Accomplishments * Summary 0 50 100 150 200 250 300 350 0.00 0.05 0.10 0.15 0.20 Lateral displacement [mm] Load [kN] 0 300 600 900 1200 1500 AE events inelastic deformation peak 3 Benefit to the Program * Goal: develop technologies to predict CO2 storage capacity in geologic formations. * Benefits statement: develop 3D boundary element code & experimental techniques

316

PROJECT RULISON  

Office of Legacy Management (LM)

17 17 RADIOLOGICAL OPERATIONS I I ' iL ROLLUP PLAN INTRODUCT ION se of t h i s rollup i s t o remove f r & the Rulison s i r e which have radioactive contamination in excess of c l e a n u F ~ r i t e r i a provided by AEC Headquarters and are.not . needed fon future operations a t the s i t e . i I TABLE O F CONTENTS S e c t i o n . T i t l e . R a d i a t i o n Monitoring P l a n A. P e r s o n n e l Monitoring B. M a t e r i a l and Hardware 11. Decontamination and D i s p o s a l ir- A. D i s p o s a l - B. Equipment I jc. S o i l i ! Water D i s p o s a l [ b, F l a r e S t a c k and Shipping Procedures B. ~ r r a n ~ & a ~ s f o r . S h i p p i n g , e t c . \ \ . ' 7 ) Sampling I \ - / A. S o i l B. Water C. V e g e t a t i o n D. A i r Sampling n V. Long-Tern S u r v e i l l h c d d r o g r a m r - V I . F i n a l S i t e Survey and ~ e g ~ r t d I ' 0 , *d 1 1 Appendix A - Rollup and D i s p o s a l Guides '.;I

317

Hungary HEU removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

removal | National Nuclear Security Administration removal | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > content > Four-Year Plan > Hungary HEU removal Hungary HEU removal Location Hungary United States 47° 11' 51.6336" N, 19° 41' 15" E See map: Google Maps Printer-friendly version Printer-friendly version Javascript is required to view this map.

318

Mexico HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Removal | National Nuclear Security Administration Removal | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > content > Four-Year Plan > Mexico HEU Removal Mexico HEU Removal Location Mexico United States 24° 24' 35.298" N, 102° 49' 55.3116" W See map: Google Maps Printer-friendly version Printer-friendly version Javascript is required to view this map.

319

Kazakhstan HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Kazakhstan HEU Removal | National Nuclear Security Administration Kazakhstan HEU Removal | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > content > Four-Year Plan > Kazakhstan HEU Removal Kazakhstan HEU Removal Location Kazakhstan United States 48° 59' 44.1492" N, 67° 3' 37.9692" E See map: Google Maps Printer-friendly version Printer-friendly version

320

Sweden Plutonium Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Sweden Plutonium Removal | National Nuclear Security Administration Sweden Plutonium Removal | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > content > Four-Year Plan > Sweden Plutonium Removal Sweden Plutonium Removal Location Sweden United States 62° 24' 4.4136" N, 15° 22' 51.096" E See map: Google Maps Printer-friendly version Printer-friendly version

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Method of removing polychlorinated biphenyl from oil  

DOE Patents [OSTI]

Polychlorinated biphenyls are removed from oil by extracting the biphenyls into methanol. The mixture of methanol and extracted biphenyls is distilled to separate methanol therefrom, and the methanol is recycled for further use in extraction of biphenyls from oil.

Cook, G.T.; Holshouser, S.K.; Coleman, R.M.; Harless, C.E.; Whinnery, W.N. III

1982-03-17T23:59:59.000Z

322

Part removal of 3D printed parts  

E-Print Network [OSTI]

An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

Pea Doll, Mateo

2014-01-01T23:59:59.000Z

323

Turkey HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Turkey HEU Removal | National Nuclear Security Administration Turkey HEU Removal | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > content > Four-Year Plan > Turkey HEU Removal Turkey HEU Removal Location Turkey United States 38° 26' 50.2044" N, 40° 15' 14.0616" E See map: Google Maps Printer-friendly version Printer-friendly version

324

Project Management Lessons Learned  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

2008-08-05T23:59:59.000Z

325

Laser removal of sludge from steam generators  

DOE Patents [OSTI]

A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

Nachbar, Henry D. (Ballston Lake, NY)

1990-01-01T23:59:59.000Z

326

Oil removal from water via adsorption  

E-Print Network [OSTI]

WILLIAM EDWARD JACOBS 1974 OIL REMOVAL FROM WATER VIA ADSORPTION A Thesis by WILLIAM EDWARD JACOBS Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1973 Major Subject: Civil Engineering OIL REMOVAL FROM WATER VIA ADSORPTION A Thesis by WILLIAM EDWARD JACOBS Approved as to style and content by: C airman of Committee ea o Department m er Member Memb December 1973 ABSTRACT Oil...

Jacobs, William Edward

2012-06-07T23:59:59.000Z

327

Western Interconnection Synchrophasor Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies Synchrophasor measurements are a type of...

328

Windy Gap Firming Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure projects Interconnection OASIS OATT Windy Gap Firming Project, Final Environmental Impact Statement, DOEEIS-0370 (cooperating agency) Western's proposed...

329

Lead removal by using carbon nanotubes  

Science Journals Connector (OSTI)

Exposure to lead (Pb) can cause anemia, diseases of the liver and kidneys, brain damage and ultimately death. For these reasons, heavy metals must be removed as much as possible from water. The removal of Pb (II) ions from aqueous solution using carbon nanotubes (CNT) as the adsorbent was investigated. The effects of pH were studied at 25C. Batch mode adsorption study has revealed that the removal of Pb (II) ions was maximum (85% removal) at pH 5 and achieved 83% removal at 40 mg/L of CNTs. The adsorption continuously increased in the pH range of 3-5, beyond which the adsorption could not be carried out due to the precipitation of metal. This study was also supported by characterisation of CNTs using FESEM. The characterisation suggested that at acidic condition (pH 5), the surfaces of CNTs are more aligned and well-integrated compared to CNTs at different pHs. Finally, it can be concluded that CNTs could be a potential adsorbent for the removal of Pb from wastewater.

A.A. Muataz; M. Fettouhi; A. Al-Mammum; N. Yahya

2009-01-01T23:59:59.000Z

330

Project Title Project Sponsor (funding agency)  

E-Print Network [OSTI]

and procedures applicable to the above project; and we confirm that the PI is eligible to apply in accordance Project Title Project Sponsor (funding agency) Declaration of Principal Investigator (PI) I certify that: I agree that my participation in the project must be in accordance with all

Saskatchewan, University of

331

Livingston Solar Canopy Project The Project  

E-Print Network [OSTI]

Livingston Solar Canopy Project The Project: This project entails the installation of more than 40,000 high efficiency solar panels on canopy structures over two major surface parking areas. In conjunction with the existing 1.4 megawatt solar energy facility on this campus, this project will generate

Delgado, Mauricio

332

MULTIPLE POLLUTANT REMOVAL USING THE CONDENSING HEAT EXCHANGER  

SciTech Connect (OSTI)

The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon covered condensing heat exchanger is adapted to remove certain flue gas constituents, both particulate and gaseous, while recovering low level heat. The pollutant removal performance and durability of this device is the subject of a USDOE sponsored program to develop this technology. The program was conducted under contract to the United States Department of Energy?s Fossil Energy Technology Center (DOE-FETC) and was supported by the Ohio Coal Development Office (OCDO) within the Ohio Department of Development, the Electric Power Research Institute?s Environmental Control Technology Center (EPRI-ECTC) and Babcock and Wilcox - a McDermott Company (B&W). This report covers the results of the first phase of this program. This Phase I project has been a two year effort. Phase I includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MWt. The other task studied the durability of the Teflon covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. Although soda ash was shown to be the most effective reagent for acid gas absorption, comparative cost analyses suggested that magnesium enhanced lime was the most promising avenue for future study. The durability of the Teflon covered heat exchanger tubes was studied on a pilot-scale single- stage condensing heat exchanger (CHX ). This device was operated under typical coal-fired flue gas conditions on a continuous basis for a period of approximately 10 months. Data from the test indicate that virtually no decrease in Teflon thickness was observed for the coating on the first two rows of heat exchanger tubes, even at high inlet particulate loadings. Evidence of wear was present only at the microscopic level, and even then was very minor in severity.

B.J. JANKURA; G.A. KUDLAC; R.T. BAILEY

1998-06-01T23:59:59.000Z

333

Chopwell Wood Health Project  

E-Print Network [OSTI]

Chopwell Wood Health Project An innovative project of school visits and General Practitioner. The project took place at Chopwell Wood a 360 hectare mixed woodland managed by the Forestry Commission to carry on being involved in the project. Next stage of the project Although the project leader has now

334

Sustainability Project Fund Application Form Requirements Project Title  

E-Print Network [OSTI]

Sustainability Project Fund Application Form Requirements Project Title: Budget Requested: Applicant/Project Leader: Faculty/Department: Email: Daytime Phone: Project Team: (Please include. Project Overview Project summary: · Provide a brief background, describing the project, objectives

Volesky, Bohumil

335

Report: EMAB Acquisition and Project Management Subcommittee Report  

Broader source: Energy.gov (indexed) [DOE]

SECOND INTERIM REPORT TO THE SECOND INTERIM REPORT TO THE ENVIRONMENTAL MANAGEMENT ADVISORY BOARD Removal of EM Projects from the GAO High Risk List: Strategies for Improving the Effectiveness of Project and Contract Management in the Office of Environmental Management Submitted by the EMAB Acquisition and Project Management Subcommittee June 23, 2011 Background: On March 31, 2010, Dr. Inés Triay, Assistant Secretary for the U.S. Department of Energy's (DOE) Office of Environmental Management (EM), tasked the Environmental Management Advisory Board (EMAB or Board) to provide observations and recommendations regarding EM's updated strategy for reducing project and contract risks, and removing EM projects from the Government Accountability Office's (GAO) High Risk List. In response to this charge, members

336

Removal of \\{PAHs\\} with surfactant-enhanced soil washing: Influencing factors and removal effectiveness  

Science Journals Connector (OSTI)

PAH removal with surfactant enhanced washing was investigated through a series of laboratory tests to examine the effect of stirring speed, washing time, surfactant concentration, liquid/solid ratio, temperature, and on-and-off mode. The first four factors show significant influence on the PAH removal while the latter two do not. Total removal ratio and a new proposed parameter, solubilization percentage, are used to evaluate the effectiveness quantitatively.

Sheng Peng; Wei Wu; Jiajun Chen

2011-01-01T23:59:59.000Z

337

Engineering development of selective agglomeration: Trace element removal study  

SciTech Connect (OSTI)

Southern Company Services, Inc., (SCS) was contracted in 1989 by the US Department of Energy (DOE) to develop a commercially acceptable selective agglomeration technology to enhance the use of high-sulfur coals by 1993. The project scope involved development of a bench-scale process and components, as well as the design, testing, and evaluation of a proof-of-concept (POC) facility. To that end, a two-ton-per-hour facility was constructed and tested near Wilsonville, Alabama. Although it was not the primary focus of the test program, SCS also measured the ability of selective agglomeration to remove trace elements from coal. This document describes the results of that program.

Not Available

1993-09-01T23:59:59.000Z

338

PROJECT MANAGEMENT PLANS Project Management Plans  

Broader source: Energy.gov (indexed) [DOE]

MANAGEMENT PLANS MANAGEMENT PLANS Project Management Plans  Overview  Project Management Plan Suggested Outline Subjects  Crosswalk between the Suggested PMP Outline Subjects and a Listing of Project Planning Elements  Elements of Deactivation Project Planning  Examples From Project Management Plans Overview The purpose here is to assist project managers and project planners in creating a project plan by providing examples and pointing to information that have been successfully used by others in the past. Section 4.2 of DOE Guide 430.1-3, DEACTIVATION IMPLEMENTATION GUIDE discusses the content and purpose of deactivation project management plans. It is presented as a suggested outline followed by other potential subjects. For the convenience of readers, that information is repeated below.

339

Evaluation of Passive and Active Soot Filters for Removal of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Passive and Active Soot Filters for Removal of Particulate Emissions from Diesel Engines Evaluation of Passive and Active Soot Filters for Removal of Particulate Emissions from...

340

High Metal Removal Rate Process for Machining Difficult Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Metal Removal Rate Process for Machining Difficult Materials High Metal Removal Rate Process for Machining Difficult Materials highmetalremovalprocessfactsheet.pdf More...

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

342

Oak Ridge Removes Laboratory's Greatest Source of Groundwater...  

Broader source: Energy.gov (indexed) [DOE]

Removes Laboratory's Greatest Source of Groundwater Contamination Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination May 1, 2012 - 12:00pm Addthis Workers...

343

Vehicle Technologies Office Merit Review 2014: Removing Barriers...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review 2014: Removing Barriers, Implementing Policies and Advancing Alternative Fuels Markets in New England Vehicle Technologies Office Merit Review 2014: Removing Barriers,...

344

Advanced Water Removal via Membrane Solvent Extraction | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Removal via Membrane Solvent Extraction Advanced Water Removal via Membrane Solvent Extraction advwaterremovalmse.pdf More Documents & Publications Advance Patent Waiver...

345

Biochemical Removal of HAP Precursors from Coal  

SciTech Connect (OSTI)

Column biooxidation tests with Kentucky coal confirmed results of earlier shake flask tests showing significant removal from the coal of arsenic, selenium, cobalt, manganese, nickel and cadmium. Rates of pyrite biooxidation in Kentucky coal were only slightly more than half the rates found previously for Indiana and Pittsburgh coals. Removal of pyrite from Pittsburgh coal by ferric ion oxidation slows markedly as ferrous ions accumulate in solution, requiring maintenance of high redox potentials in processes designed for removal of pyrite and hazardous air pollutant (HAP) precursors by circulation of ferric solutions through coal. The pyrite oxidation rates obtained in these tests were used by Unifield Engineering to support the conceptual designs for alternative pyrite and HAP precursor bioleaching processes for the phase 2 pilot plant. Thermophilic microorganisms were tested to determine if mercury could be mobilized from coal under elevated growth temperatures. There was no evidence for mercury removal from coal under these conditions. However, the activity of the organisms may have liberated mercury physically. It is also possible that the organisms dissolved mercury and it readsorbed to the clay preferentially. Both of these possibilities are undergoing further testing. The Idaho National Engineering and Environmental Laboratory?s (INEEL) slurry column reactor was operated and several batches of feed coal, product coal, waste solids and leach solutions were submitted to LBL for HAP precursor analysis. Results to date indicate significant removal of mercury, arsenic and other HAP precursors in the combined physical-biological process.

Gregory J. Olson

1997-05-12T23:59:59.000Z

346

Method of making thermally removable polyurethanes  

DOE Patents [OSTI]

A method of making a thermally-removable polyurethane material by heating a mixture of a maleimide compound and a furan compound, and introducing alcohol and isocyanate functional groups, where the alcohol group and the isocyanate group reacts to form the urethane linkages and the furan compound and the maleimide compound react to form the thermally weak Diels-Alder adducts that are incorporated into the backbone of the urethane linkages during the formation of the polyurethane material at temperatures from above room temperature to less than approximately 90.degree. C. The polyurethane material can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The polyurethane material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

Loy, Douglas A. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); McElhanon, James R. (Livermore, CA); Saunders, Randall S. (late of Albuquerque, NM); Durbin-Voss, Marvie Lou (Albuquerque, NM)

2002-01-01T23:59:59.000Z

347

Nitrate removal from drinking water -- Review  

SciTech Connect (OSTI)

Nitrate concentrations in surface water and especially in ground water have increased in Canada, the US, Europe, and other areas of the world. This trend has raised concern because nitrates cause methemoglobiinemia in infants. Several treatment processes including ion exchange, biological denitrification, chemical denitrification, reverse osmosis, electrodialysis, and catalytic denitrification can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that ion exchange and biological denitrification are more acceptable for nitrate removal than reverse osmosis. Ion exchange is more viable for ground water while biological denitrification is the preferred alternative for surface water. This paper reviews the developments in the field of nitrate removal processes.

Kapoor, A.; Viraraghavan, T. [Univ. of Regina, Saskatchewan (Canada)

1997-04-01T23:59:59.000Z

348

Removal of 2-Aminophenol Using Novel Adsorbents  

Science Journals Connector (OSTI)

The positive values of entropy show the increased randomness at solid/solution interface with some structural changes in the adsorbate and adsorbent and the affinity of adsorbents toward 2AP. ... Upon doubling the adsorbent amount from 10 to 20 g/L, the amount of phenol adsorbed also increases by almost two-fold. ... It is quite evident that, after 6 h of equilibrium, 27% of the total 2-aminophenol is removed by 10 g/L of the adsorbent slag, while 20 g/L of slag removed 37% of 2-aminophenol and 30 g/L of adsorbent adsorbs 42% under identical experimental conditions. ...

Vinod K. Gupta; Dinesh Mohan; Suhas; Kunwar P. Singh

2006-01-04T23:59:59.000Z

349

Process for removing metals from water  

DOE Patents [OSTI]

A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions. 2 tabs.

Napier, J.M.; Hancher, C.M.; Hackett, G.D.

1987-06-29T23:59:59.000Z

350

Project Sponsor Professor Peter  

E-Print Network [OSTI]

Project Sponsor Professor Peter McGearoge Project Director Nicki Matthew Audit / Quality Mazars Architect IT ServicesProcess Owners Build Team Lead Nicki Matthew Project Manager ­ Unit4 Joe Cairney Student Lifecycle Project Board InfrastructureDBA's TBC TBC TBC Process 1 Process 2 Project Sponsor ­ Unit

Levi, Ran

351

Project Structure Elke Karrenberg  

E-Print Network [OSTI]

Project Structure Elke Karrenberg Project Manager, Head of Personnel Development Phone +49 6131 39-20634 Dr. Jana Leipold Project Staff, Personnel Development Consultant Phone +49 6131 39-25433 Antje Swietlik Project Staff Phone +49 6131 39-20140 Project Office JGU Leadership Forum Universitatis 3, Room 00

Kaus, Boris

352

PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples  

Broader source: Energy.gov (indexed) [DOE]

Organization Examples Organization Examples Example 8 4.0 PROJECT ORGANIZATION Chapter 4.0 describes the principle project organizations, including their responsibilities and relationships. Other organizations, that have an interest in the project, also are described. 4.1 Principal Project Organizations and Responsibilities The management organization for the 324/327 Buildings Stabilization/Deactivation Project represents a partnership between four principal project organizations responsible for the project. The four project organizations and their associated summary responsibilities are described in the following paragraphs. 4.1.1 U.S. Department of Energy, Headquarters (HQ) The DOE-HQ Office of Nuclear Material and Facility Stabilization (EM-60) is primarily responsible for policy and budget decisions

353

Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 FEBRUARY 2008 6 FEBRUARY 2008 Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant * Bottom left: AES Greenidge Power Plant * Bottom right: Presque Isle Power Plant A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Consol Energy * Pegasus Technologies * We Energies  Mercury Control Demonstration Projects Executive Summary ............................................................................ 4 Background ......................................................................................... 5 Mercury Removal Projects ................................................................ 7 TOXECON(tm) Retrofit For Mercury and Multi-Pollutant Control on Three 90-MW Coal-Fired Boilers ........................................7

354

Low-quality natural gas sulfur removal/recovery  

SciTech Connect (OSTI)

A significant fraction of U.S. natural gas reserves are subquality due to the presence of acid gases and nitrogen; 13% of existing reserves (19 trillion cubic feed) may be contaminated with hydrogen sulfide. For natural gas to be useful as fuel and feedstock, this hydrogen sulfide has to be removed to the pipeline specification of 4 ppm. The technology used to achieve these specifications has been amine, or similar chemical or physical solvent, absorption. Although mature and widely used in the gas industry, absorption processes are capital and energy-intensive and require constant supervision for proper operation. This makes these processes unsuitable for treating gas at low throughput, in remote locations, or with a high concentration of acid gases. The U.S. Department of Energy, recognizes that exploitation of smaller, more sub-quality resources will be necessary to meet demand as the large gas fields in the U.S. are depleted. In response to this need, Membrane Technology and Research, Inc. (MTR) has developed membranes and a membrane process for removing hydrogen sulfide from natural gas. During this project, high-performance polymeric thin-film composite membranes were brought from the research stage to field testing. The membranes have hydrogen sulfide/methane selectivities in the range 35 to 60, depending on the feed conditions, and have been scaled up to commercial-scale production. A large number of spiral-wound modules were manufactured, tested and optimized during this project, which culminated in a field test at a Shell facility in East Texas. The short field test showed that membrane module performance on an actual natural gas stream was close to that observed in the laboratory tests with cleaner streams. An extensive technical and economic analysis was performed to determine the best applications for the membrane process. Two areas were identified: the low-flow-rate, high-hydrogen-sulfide-content region and the high-flow-rate, high-hydrogen-sulfide-content region. In both regions the MTR membrane process will be combined with another process to provide the necessary hydrogen sulfide removal from the natural gas. In the first region the membrane process will be combined with the SulfaTreat fixed-bed absorption process, and in the second region the membrane process will be combined with a conventional absorption process. Economic analyses indicate that these hybrid processes provide 20-40% cost savings over stand-alone absorption technologies.

K. Amo; R.W. Baker; V.D. Helm; T. Hofmann; K.A. Lokhandwala; I. Pinnau; M.B. Ringer; T.T. Su; L. Toy; J.G. Wijmans

1998-01-29T23:59:59.000Z

355

CS348 Project 1 Oracle Project  

E-Print Network [OSTI]

CS348 Project 1 Oracle Project Due Date: 2/12/2009 You are going to use Oracle to design a simple; if nothing else, mark each query with its number. Turnin You may turn in the project for grading using the procedure described below. Run the following shell command (see 'man turnin' for details): turnin -c cs348

Elmagarmid, Ahmed K.

356

Part II: Project Summaries Project Summaries  

E-Print Network [OSTI]

Part II: Project Summaries Part II Project Summaries #12;22 Math & Computational Sciences Division generally cannot be achieved for reasonable computational cost. Applications that require modeling of this project is to advance the state of the art in electromagnetic computations by eliminating three existing

Perkins, Richard A.

357

DOE/NETL's Phase II Plans for Full-Scale Mercury Removal Technology Field-Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase II Plans for Full-Scale Phase II Plans for Full-Scale Mercury Removal Technology Field-Testing Air Quality III September 12, 2002 Arlington, Va Scott Renninger, Project Manager for Mercury Control Technology Enviromental Projects Division Presentation Outline * Hg Program goals & objectives * Focus on Future Hg control R&D * Q&As President Bush's Clear Skies Initiative Current Mid-Term 2008-2010 2018 SO 2 11 million tons 4.5 million tons 3 million tons NOx 5 million tons 2.1 million tons 1.7 million tons Mercury 48 tons 26 tons 15 tons Annual U.S. Power Plant Emissions Mercury Control * Developing technologies ready for commercial demonstration: - By 2005, reduce emissions 50-70% - By 2010, reduce emissions by 90% - Cost 25-50% less than current estimates 2000 Year 48 Tons $2 - 5 Billion @ 90% Removal w/Activated

358

Project 1640 Palomar Procedures  

E-Print Network [OSTI]

Project 1640 Palomar Procedures Version 0.1 7/7/08 2:11:08 PM #12;2 Project 1640 Design and Operations Table of Contents Project 1640..................................................................................................................... 1 Palomar Procedures

359

Projects | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects Projects All 1703 1705 ATVM Current Portfolio 32.4 B in Loans 55 K Jobs Current Portfolio Loans 32.4 B Jobs 55,000 Loan Program Office Projects 1703 1705 ATVM...

360

Getting projects in gear  

Science Journals Connector (OSTI)

......week for most projects - to review progress against the plan. Use a standard agenda. Document and agree...achievements. Ensure that review and quality assurance processes...of the high level project plan. Make sure that the project......

John Lawlor

2001-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

project.m  

E-Print Network [OSTI]

function project(u,w) %last updated 5/9/94 %PROJECT Projecting vector U onto vector W orthogonally. Vectors % U and W can be either a pair of 2D or 3D...

362

Project Selection - Record Keeping  

E-Print Network [OSTI]

4-H members have many project areas to choose from, depending on where they live. Members should consult with their parents and 4-H leaders when choosing a project. This publication outlines project considerations....

Howard, Jeff W.

2005-05-10T23:59:59.000Z

363

Improving Project Management  

Broader source: Energy.gov [DOE]

On December 19, 2014, the Energy Department released its "Improving Project Management" report, a roadmap to transformation in funding, culture, project ownership, independent oversight and front-end planning from experienced project management leaders.

364

Contract/Project Management  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

65% 100% Five projects >100M achieved CD-2 in FY10. PDRI represents Project Definition Index Rating. 5. TRA Use: By end of FY11, 80% of projects >750M will implement TRA no...

365

Process removes Sr from nuclear wastes  

Science Journals Connector (OSTI)

Process removes Sr from nuclear wastes ... Scientists at Argonne National Laboratory have devised a chemical process for extracting and recovering strontium-90 from liquid nuclear wastes. ... Argonne chemist E. Philip Horwitz, head of the team, says it could be a significant aid in managing such radioactive wastes. ...

WARD WORTHY

1990-09-10T23:59:59.000Z

366

Removing dissolved inorganic contaminants from water  

SciTech Connect (OSTI)

This article describes the physicochemical treatment processes typically used to remove the more common inorganic contaminants from water and wastewater. These are precipitation, coprecipitation, adsorption, ion exchange, membrane separations by reverse osmosis and electrodialysis, and combinations of these processes. The general criteria for process selection are discussed, and the processes and their typical applications are described.

Clifford, D.; Subramonian, S.; Sorg, T.J.

1986-11-01T23:59:59.000Z

367

Method for Removing Precipitates in Biofuel  

Energy Innovation Portal (Marketing Summaries) [EERE]

At ORNL the application of ultrasonic energy, or sonication, has been shown to successfully remove or prevent the formation of 5090% of the precipitates in biofuels. Precipitates can plug filters as biodiesel is transported from one location to another, and often cannot be detected by visual inspection....

2010-12-08T23:59:59.000Z

368

Automatic Red Eye Removal for Digital Photography  

E-Print Network [OSTI]

Chapter 1 Automatic Red Eye Removal for Digital Photography FRANCESCA GASPARINI DISCo, Dipartimento The red eye effect is a well known problem in photography. It is often seen in amateur shots taken with a built-in flash, but the problem is also well known to professional photographers. Red eye is the red

Schettini, Raimondo

369

Plastic bottles > Remove lids (not recyclable)  

E-Print Network [OSTI]

Plastic bottles Please: > Remove lids (not recyclable) > Empty bottles > Rinse milk bottles, & other bottles if possible > Squash bottles www.st-andrews.ac.uk/estates/environment All types of plastic bottle accepted Clear, opaque and coloured bottles Labels can remain on X No plastic bags X No plastics

Brierley, Andrew

370

ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM  

SciTech Connect (OSTI)

This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized.

Unknown

2000-09-15T23:59:59.000Z

371

Removable partial overdentures for the irradiated patient  

SciTech Connect (OSTI)

Patients who have received radiotherapy to the head and neck area must avoid dental extractions and seek simplicity in treatment and home care follow-up. For partially edentulous patients, removable partial overdenture therapy can fulfill these goals while maintaining the high level of function and aesthetics desired by patients.11 references.

Rosenberg, S.W. (New York Univ. School of Dentistry, NY (USA))

1990-10-01T23:59:59.000Z

372

Method of preparation of removable syntactic foam  

DOE Patents [OSTI]

Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications.

Arnold, Jr., Charles (Albuquerque, NM); Derzon, Dora K. (Albuquerque, NM); Nelson, Jill S. (Albuquerque, NM); Rand, Peter B. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

373

ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project  

SciTech Connect (OSTI)

Radiation has existed everywhere in the environment since the Earth's formation - in rocks, soil, water, and plants. The mining and processing of naturally occurring radioactive materials for use in medicine, power generation, consumer products, and industry inevitably generate emissions and waste. Radiological measuring devices have been used by industry for years to measure for radiation in undesired locations or simply identify radioactive materials. Since the terrorist attacks on the United States on 9-11-01 these radiation measuring devices have proliferated in many places in our nation's commerce system. DOE, TVA, the Army Corps and ORNL collaborated to test the usefulness of these devices in our nation's waterway system on this project. The purpose of the Watts Bar Dam ORNL Trusted Corridors project was to investigate the security, safety and enforcement needs of local, state and federal government entities for state-of-the-art sensor monitoring in regards to illegal cargo including utilization of the existing infrastructure. TVA's inland waterways lock system is a recognized and accepted infrastructure by the commercial carrier industry. Safety Monitoring activities included tow boat operators, commercial barges and vessels, recreational watercraft and their cargo, identification of unsafe vessels and carriers, and, monitoring of domestic and foreign commercial vessels and cargo identification. Safety Enforcement activities included cargo safety, tracking, identification of hazardous materials, waterway safety regulations, and hazardous materials regulations. Homeland Security and Law Enforcement Applications included Radiological Dispersive Devices (RDD) identification, identification of unsafe or illicit transport of hazardous materials including chemicals and radiological materials, and screening for shipments of illicit drugs. In the Fall of 2005 the SensorNet funding for the project expired. After several unsuccessful attempts to find a Federal sponsor to continue with the project, the Watts Bar Dam Project was canceled and the Exploranium radiation monitors were removed from the doors of Watts Bar Dam in early 2006. The DHS Domestic Nuclear Detection Office decided to proceed with a Pilot building on the ORNL work performed at the TN and SC weigh stations in the highway sector of the Trusted Corridors project and eventually expanded it to other southern states under the name of Southeastern Corridor Pilot Project (SETCP). Many of the Phase I goals were achieved however real-world test data of private watercraft and barges was never obtained.

Walker, Randy M [ORNL; Gross, Ian G [ORNL; Smith, Cyrus M [ORNL; Hill, David E [ORNL

2011-11-01T23:59:59.000Z

374

NHMRC Alert 3-Project Grants, Career Development Fellowships and Translating Research into Practice (TRIP) Fellowships  

E-Print Network [OSTI]

: Removal of CIA Greatest Time Commitment b) Clarification of Percentage NHMRC Research Time c) Cure Cancer Update: Removal of CIA Greatest Time Commitment The NHMRC has advised that the requirement for Chief Teams). CIA must still demonstrate leadership over the project conduct and their role in driving

New South Wales, University of

375

LIFAC sorbent injection desulfurization demonstration project  

SciTech Connect (OSTI)

In December 1990, the US Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round 3). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled LIFAC Sorbent Injection Desulfurization Demonstration Project.'' The host site for this $17 million, three-phase project is Richmond Power and Light's Whitewater Valley Unit No. 2 in Richmond, Indiana. The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75--80% of the sulfur dioxide (SO{sub 2}) in the flue gas. In November 1990, after a ten (10) month negotiation period, LIFAC NA and the US DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the first Technical Progress Report covering the period from project execution through the end of December 1990. Due to the power plant's planned outage schedule, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in August 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.

Not Available

1991-01-01T23:59:59.000Z

376

Project Finance and Investments  

Broader source: Energy.gov [DOE]

Plenary III: Project Finance and Investment Project Finance and Investments Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture

377

RM Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

include the Fryingpan-Arkansas Project and the Pick-Sloan Missouri Basin Program--Western Division. The projects' marketing and rate-setting functions were integrated in...

378

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

379

Contract/Project Management  

Energy Savers [EERE]

1 st Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

380

Sandia National Laboratories: Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The projects below are a few of the projects that IMS is supporting. Advanced Hypersonic Weapon (AHW) The Advanced Hypersonic Weapon (AHW) Program is a technology...

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Leafs Enrolled to Date EV Project Chevrolet Volts Enrolled to Date EV Project Smart Electric Drives Enrolled to Date Distance Driven (mi) Phoenix, AZ Metropolitan Area 274...

382

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Leafs Enrolled to Date EV Project Chevrolet Volts Enrolled to Date EV Project Smart Electric Drives Enrolled to Date Distance Driven (mi) Phoenix, AZ Metropolitan Area 259...

383

Project Risk Management:.  

E-Print Network [OSTI]

?? The recent increase in international projects has resulted in higher risk along with difficulties in control and coordination. Effective project management can therefore be (more)

Koelmeyer, Chris

2013-01-01T23:59:59.000Z

384

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

3 First Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2013 Target FY 2013 Final FY...

385

Falls Creek Hydroelectric Project  

SciTech Connect (OSTI)

This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

2007-06-12T23:59:59.000Z

386

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Report Project to date through March 2013 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity...

387

Portsmouth Paducah Project Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

process equipment, and removal of PCB and lube oils. The United States Enrichment Corporation (USEC) is currently performing Cold Shutdown work activities under contract to DOE....

388

Portsmouth Paducah Project Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Restoration Scrap Metal Inactive Facility Removal Legacy Waste Gas Centrifuge Plant-GCEP Tc-99 Cleaning Cold Shutdown D&D Planning and Future Vision Uranium Management Center...

389

ASUWT JUDICIAL BOARD REMOVAL PROCESS "The ASUWT President shall establish and preside over the removal process, which shall commence  

E-Print Network [OSTI]

should not be removed. Additional time to submit supporting information may be requested and approvedASUWT JUDICIAL BOARD REMOVAL PROCESS "The ASUWT President shall establish and preside over the removal process, which shall commence within five (5) days after the Senate vote to bring removal

Borenstein, Elhanan

390

Performance evaluation of the PITBULL{trademark} pump for the removal of hazardous waste  

SciTech Connect (OSTI)

One objective of the Waste Removal Project at the Department of Energy`s Savannah River Site (SRS) is to explore methods to successfully remove waste heels that will remain in the high-level waste tanks after bulk waste removal has been completed. Tank closure is not possible unless this residue is removed. As much as 151,000 liters of residue can remain after a conventional waste removal campaign. The waste heels can be comprised of sludge, zeolite, and silica. The heels are generally hardened or compacted insoluble particulate with relatively rapid settling velocities. A PITBULL{trademark} pump is being considered by SRS to retrieve sludge-type waste from Tank 19. Sections 1 through 4 of this report present the scope and objectives of the test program, describe the principles of operation of the PITBULL, and present the test approach, set-up, and instrumentation. Test results, including pumping rates with water and slurry, are provided in Section 5, along with considerations for remote operation. Conclusions and recommendations are provided in Section 6.

Hatchell, B.K.; Combs, W.H.; Hymas, C.R.; Powell, M.R.; Rinker, M.W.; White, M.

1998-09-01T23:59:59.000Z

391

Removal site evaluation report on Building 7602 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This removal site evaluation report for Building 7602 at Oak Ridge National Laboratory was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the facility pose a substantial risk to human health or the environment (i.e., a high probability of adverse effects) and whether remedial site evaluations or removal actions are, therefore, required. The scope of the project included (1) a search for, and review of, readily available historical records regarding operations and use of the facility (including hazardous substance usage and existing contamination); (2) interviews with facility personnel concerning current and past practices; and (3) a brief walk-through to visually inspect the facility and identify existing hazard areas requiring maintenance actions, removal actions, or remedial evaluation. The results of the removal site evaluation indicate that areas associated with Building 7602 pose no imminent hazards requiring maintenance actions. Adequate engineering and administrative controls are in place and enforced within the facility to ensure worker and environmental protection. Current actions that are being taken to prevent further release of contamination and ensure worker safety within Building 7602 are considered adequate until decontamination and decommissioning activities begin. Given the current status and condition of Building 7602, this removal site evaluation is considered complete and terminated.

NONE

1996-09-01T23:59:59.000Z

392

Small-Scale Ion Exchange Removal of Cesium and Technetium from Envelope B Hanford Tank 241-AZ-102  

SciTech Connect (OSTI)

The pretreatment process for the Hanford River Protection Project Waste Treatment Plant is to provide decontaminated Low-Activity Waste and concentrated elute streams for vitrification into low- and high-activity waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, strontium, transuranics, cesium, and technetium.

King, W.D.

2001-02-15T23:59:59.000Z

393

Project of the Month | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 1, 2010 June 1, 2010 CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS Aiken, SC - Construction of a key cleanup facility at the Savannah River Site (SRS) is gaining some serious ground given the remarkable building progress since Fall 2009. Construction and operation of the Salt Waste Processing Facility (SWPF) is among the U.S. Department of Energy's (DOE) highest cleanup priorities. April 1, 2010 An operator uses robotic manipulators to process RH TRU. WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment

394

Project of the Month | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project of the Month Project of the Month Project of the Month RSS January 1, 2013 Members of the team that helped safely close the Toxic Substances Control Act Incinerator at Oak Ridge gather for a photo. The team is from URS|CH2M, Oak Ridge, the prime contractor for the Oak Ridge Office of Environmental Management. One-of-a-Kind Facility Now in Safe Shutdown OAK RIDGE, Tenn. - Oak Ridge's East Tennessee Technology Park (ETTP) is home to many unique facilities, each constructed for a specific purpose. Today, almost all of the facilities at the site are in the process of being safely cleaned, shut down and removed. November 1, 2012 Umatilla Tribes Department of Science and Engineering Director Stuart Harris, far right, explains the purpose of the Tribes' greenhouses to Senior Advisor for Environmental Management David Huizenga, center, and Richland Operations Office Manager Matt McCormick.

395

Progress in two major CCPI projects  

SciTech Connect (OSTI)

Two projects under the US Department of Energy (DOE) sponsored Clean Coal Power initiative have made significant progress in demonstrating new technologies to remove mercury from coal and enhance use of low-Btu lignite coals while increasing energy efficiency. The Wisconsin Electricity Power Company is demonstrating the TOXECON{trademark} mercury control process at its Presque Isle Power Plant near Marquette, Michigan, while Great River Energy (GRE) is showing the viability of lignite fuel enhancement at its Coal Creek Station in Underwood, North Dakota. Both projects were awarded in 2004 under Round I of the Clean Coal Power Initiative. Elsewhere in the program, six projects are in various phases of planning or operation. Plans for a third round under the CCPI were announced on May 23, 2007. 2 figs.

NONE

2007-07-01T23:59:59.000Z

396

Portsmouth Paducah Project Office | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth Paducah Project Office Portsmouth Paducah Project Office Portsmouth Paducah Project Office A rainbow appears over the Paducah Site's East End Smelter, a 21,000-square-foot complex used until the 1980s to smelt metal. Recovery Act workers used heavy equipment to demolish the smelter in September 2010, a year ahead of schedule and $10 million under budget. A rainbow appears over the Paducah Site's East End Smelter, a 21,000-square-foot complex used until the 1980s to smelt metal. Recovery Act workers used heavy equipment to demolish the smelter in September 2010, a year ahead of schedule and $10 million under budget. Second-shift Recovery Act workers at the Paducah Site use scissor lifts and metal saws to remove the outer cover of old uranium hexafluoride process tie lines linking C-410 with other parts of the Paducah Gaseous Diffusion Plant.

397

Statement of Project Objectives  

Broader source: Energy.gov [DOE]

Statement of Project Objectives, from the Tool Kit Framework: Small Town University Energy Program (STEP).

398

West Valley Demonstration Project  

Broader source: Energy.gov [DOE]

West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here.

399

Ultracomputer Research Project  

SciTech Connect (OSTI)

This document presents significant accomplishments made on the Ultracomputer Research Project during CY92.

Gottlieb, A.

1992-10-01T23:59:59.000Z

400

Fairbanks Geothermal Energy Project  

Broader source: Energy.gov [DOE]

Fairbanks Geothermal Energy Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Project #31: Connecticut River  

Science Journals Connector (OSTI)

GEOMORPHIC SETTING: At the project location, the Connecticut River has an annual average discharge of...

Wendi Goldsmith; Donald Gray; John McCullah

2014-01-01T23:59:59.000Z

402

Desert Peak EGS Project  

Broader source: Energy.gov [DOE]

Desert Peak EGS Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

403

Geysers Project Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Geysers Project Geothermal Project Project Location Information Coordinates 38.790555555556°, -122.75583333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.790555555556,"lon":-122.75583333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Improved Processes to Remove Naphthenic Acids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Processes to Remove Naphthenic Acids Improved Processes to Remove Naphthenic Acids Final Technical Report (From October 1, 2002 to September 30, 2005) Principle Authors Aihua Zhang, Qisheng Ma, Kangshi Wang, Yongchun Tang (co-PI), William A. Goddard (PI), Date Report was issued: December 9, 2005 DOE Award number: DE-FC26-02NT15383 Name and Address of Submitting Organization California Institute of Technology 1200 East California Blvd., Pasadena, CA91125 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

405

Removal of arsenic compounds from petroliferous liquids  

DOE Patents [OSTI]

Described is a process for removing arsenic from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic bound to it from contacting petroliferous liquid as described above and involves: a. treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10 and, b. separating the solids and liquids from each other. Preferably the regeneration treatment is in two steps wherein step (a) is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, steps (a) and (b) are repeated using a bicarbonate.

Fish, Richard H. (Berkeley, CA)

1985-01-01T23:59:59.000Z

406

Improve reformer operation with trace sulfur removal  

SciTech Connect (OSTI)

Modern bimetallic reforming catalysts typically have feed specifications for sulfur of 0.5 to 1 wppm in the reformer naphtha carge. Sulfur in the raw naphtha is reduced to this level by naphtha hydrotreating. While most naphtha hydrotreating operations can usually obtain these levels without substantial problems. It is difficult to obtain levels much below 0.5 to 1 wppm with this process. Revamp of a constrained existing hydrotreater to reduce product sulfur slightly can be extremely costly typically entailing replacement or addition of a new reactor. At Engelhard the authors demonstrated that if the last traces of sulfur remaining from hydrotreating can be removed, the resulting ultra-low sulfur feed greatly improves the reformer operation and provides substantial economic benefit to the refiner. Removal of the remaining trace sulfur is accomplished in a simple manner with a special adsorbent bed, without adding complexity to the reforming operation.

McClung, R.G.; Novak, W.J.

1987-01-01T23:59:59.000Z

407

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

2 2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% - Two projects completed in the 2 nd Qtr FY09. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A Near-term Baselines established for all EM cleanup projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12, respectively.

408

Process for removing mercury from aqueous solutions  

DOE Patents [OSTI]

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, John M. (Oak Ridge, TN); Napier, John M. (Oak Ridge, TN); Makarewicz, Mark A. (Knoxville, TN); Meredith, Paul F. (Knoxville, TN)

1986-01-01T23:59:59.000Z

409

REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN  

SciTech Connect (OSTI)

U.S. Department of Energys National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRIs Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSAs Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

Dunn, Kerry A. [Savannah River National Laboratory; Bellamy, J. Steve [Savannah River National Laboratory; Chandler, Greg T. [Savannah River National Laboratory; Iyer, Natraj C. [U.S. Department of Energy, National Nuclear Security Administration, Office of; Koenig, Rich E.; Leduc, D. [Savannah River National Laboratory; Hackney, B. [Savannah River National Laboratory; Leduc, Dan R. [Savannah River National Laboratory

2013-08-18T23:59:59.000Z

410

Removal of copper from ferrous scrap  

DOE Patents [OSTI]

A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

Blander, M.; Sinha, S.N.

1987-07-30T23:59:59.000Z

411

Process for removing mercury from aqueous solutions  

DOE Patents [OSTI]

A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

1985-03-04T23:59:59.000Z

412

Removal of copper from ferrous scrap  

DOE Patents [OSTI]

A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

Blander, Milton (12833 S. 82nd Ct., Palos Park, IL 60464); Sinha, Shome N. (5748 Drexel, 2A, Chicago, IL 60637)

1990-01-01T23:59:59.000Z

413

(SSS)Project Dashboard 2014-09-25.xls  

Broader source: Energy.gov (indexed) [DOE]

G 1.05 1.05 4 EM CH2M Hill Plateau Remediation Company 15-D-401 KW Basin Sludge Removal Project 308,273,000 308,273,000 R NR NR 5 EM CH2M Hill - B&W West Valley,...

414

The use of ethanol to remove sulfur from coal. Final report, September 1991--December 1992; Revision  

SciTech Connect (OSTI)

The initial technical goal in the project was to develop a chemical method for the cost effective removal of both inorganic and organic sulfur from Ohio coals. Verifying and using a process of reacting ethanol vapors with coal under conditions disclosed in U.S. Patent 4,888,029, the immediate technical objectives were to convert a small scale laborative batch process to a larger scale continuous process which can serve as the basis for commercial development of the technology. This involved getting as much information as possible from small scale batch autoclave or fluid bed laboratory reactors for use in pilot plant studies. The laboratory data included material balances on the coal and sulfur, temperature and pressure ranges for the reaction, minimum reaction times at different conditions, the effectiveness of different activators such as oxygen and nitric oxide, the amount and nature of by-products such as sulfur dioxide, hydrogen sulfide and acetaldehyde, the effect of coal particle size on the speed and completeness of the reaction, and the effectiveness of the reaction on different Ohio coals. Because the laboratory experiments using the method disclosed in U.S. 4,888,029 were not successful, the objective for the project was changed to develop a new laboratory process to use ethanol to remove sulfur from coal. Using copper as a catalyst and as an H{sub 2}S scavenger, a new laboratory procedure to use ethanol to remove sulfur from coal has been developed at Ohio University and a patent application covering this process was filed in March, 1993. The process is based on the use of copper as a catalyst for the dehydrogenation of ethanol to produce nascent hydrogen to remove sulfur from the coal and the use of copper as a scavenger to capture the hydrogen sulfide formed from the sulfur removed from coal.

Savage, R.L.; Lazarov, L.K.; Prudich, M.E.; Lange, C.A.; Kumar, N.

1994-03-10T23:59:59.000Z

415

Summer Projects 2013 Major Capital Projects  

E-Print Network [OSTI]

FANNIN AND MAIN · NEW CONTINENTAL CROSSWALK STRIPING · NEW STREET TREES, PEDESTRIAN LIGHTS and Installation #12;Summer Projects City of Houston Projects #12;Main Street Intersections #12;Main Street AND FURNISHINGS · REDUCE CLUTTER AT CORNERS, RELOCATE UTILITIES WHEN POSSIBLE #12;Main Street Intersections #12

Alvarez, Pedro J.

416

Project Description: page 1 Project Description  

E-Print Network [OSTI]

Project Description: page 1 Project Description I. Introduction: Josephson junction networks Over the past 25 years, superconducting Josephson junctions have gradually become one of the major topics standards. Our research uses Josephson junctions as model systems for problems in nonlinear and neural

Segall, Ken

417

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Third Quarter Third Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target FY 2010 Forecast FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 71% Line Item 70% Pre-CAP 100% Post-CAP This is a projection based on a 3-year rolling average (FY08 to FY10). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 2b. EM Cleanup (Soil and Groundwater Remediation,

418

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

1 1 st Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% - No 1 st Qtr FY09 completions. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A Near-term Baselines established for all EM cleanup projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12, respectively. 85% Line Item

419

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

4 4 th Quarter Metrics Final Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% 73% This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A This metric has been overcome by events. Beginning in FY10, EM projects are to be measured against metric #1 above. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12,

420

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

3 3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% 72% This is a 3-year rolling average (FY07 to FY09). No 3 rd qtr FY09 completions. 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A Near-term Baselines established for all EM cleanup projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12, respectively. 85% Line Item

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

8 4 8 4 th Quarter Metrics Final Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2008 Target FY 2008 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 75% 76% This is a 3-year rolling average Data includes FY06 to FY08. (37/48) 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125% of NTB TPC by FY12. Establish Baseline N/A Near-term Baselines established for all EM cleanup projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup projects by FY11 and FY12, respectively.

422

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

1 1 st Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target 1st Qtr FY 2010 Actual FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 73% Line Item 70% Pre-CAP 100% Post-CAP This is a projection based on a 3-year rolling average (FY08 to FY10). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 2b. EM Cleanup (Soil and Groundwater Remediation,

423

PARS II On Hold Projects, V-2013-04-02 Page 1 PARS II Process Document  

Broader source: Energy.gov (indexed) [DOE]

On Hold Projects, V-2013-04-02 Page 1 On Hold Projects, V-2013-04-02 Page 1 PARS II Process Document ON HOLD PROJECTS - Place On Hold, Re-Activate, and Cancel PURPOSE The purpose of this document is to describe the process of placing active pre CD-2 capital asset projects on hold, removing projects from hold through re-activation or cancellation, and reporting of these projects in PARS II. SCOPE This process applies to active pre CD-2 capital asset projects and On Hold Pre CD-2 Capital Asset Projects only that were identified by the project team and approved by Acquisition Executive (AE), or Secretarial Acquisition Executive (SAE) for Major Systems Projects, as on hold. PROCESS The goal of the process is to ensure adherence to rules identified by Change Review Board (CRB) for placing

424

Project Project Funding Operational & Maintenance Costs Univ. Project Title GSF Brief Description of Project Location Amount Source  

E-Print Network [OSTI]

Project Project Funding Operational & Maintenance Costs Univ. Project Title GSF Brief Description of Project Location Amount Source UF Minor Projects for UF 50,000 Minor projects for facilities located and education. Typical projects consist of Gainesville/ Typical projects other funding greenhouses, general

Slatton, Clint

425

PROJECT MANGEMENT PLAN EXAMPLES Project Execution Example  

Broader source: Energy.gov (indexed) [DOE]

Project Execution Example Project Execution Example Example 73 6.3 Project Approach The overall schedule strategy for the PFP project includes ongoing minimum safe activities, combined with stabilization of materials followed by materials disposition, and subsequent transition of the PFP complex to a decommissioned state. The PFP material stabilization baseline was developed using a functionally-based work WBS. The WBS defines all activities required to take each material stream from their current location/conditions through stabilization (as required), and disposition the stabilized material as solid waste for shipment to WIPP or as product material for shipment to SRS. Initially, workshops were held with subject matter experts, project managers, schedulers, and support personnel (experts in the

426

Energy Efficient Electronics Cooling Project  

SciTech Connect (OSTI)

Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

2012-02-17T23:59:59.000Z

427

FCT Technology Validation: Integrated Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Projects to Integrated Projects to someone by E-mail Share FCT Technology Validation: Integrated Projects on Facebook Tweet about FCT Technology Validation: Integrated Projects on Twitter Bookmark FCT Technology Validation: Integrated Projects on Google Bookmark FCT Technology Validation: Integrated Projects on Delicious Rank FCT Technology Validation: Integrated Projects on Digg Find More places to share FCT Technology Validation: Integrated Projects on AddThis.com... Home Transportation Projects Stationary/Distributed Generation Projects Integrated Projects DOE Projects Non-DOE Projects Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Manufacturing Codes & Standards Education Systems Analysis Contacts Integrated Projects To maximize overall system efficiencies, reduce costs, and optimize

428

United Kingdom HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

HEU Removal United Kingdom HEU Removal Location United Kingdom United States 52 24' 15.1416" N, 1 34' 55.3116" W See map: Google Maps Javascript is required to view this map...

429

Hanford Begins New Campaign to Remove Excess Water from Double...  

Energy Savers [EERE]

Hanford Begins New Campaign to Remove Excess Water from Double-Shell Tanks Hanford Begins New Campaign to Remove Excess Water from Double-Shell Tanks September 30, 2014 - 12:00pm...

430

Removing nuclear waste, one shipment at a time  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Removing nuclear waste, one shipment at a time Removing nuclear waste, one shipment at a time The Lab's 1,000th shipment of transuranic waste recently left Los Alamos, on its way...

431

Process for removing technetium from iron and other metals  

DOE Patents [OSTI]

A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag. 4 figs.

Leitnaker, J.M.; Trowbridge, L.D.

1999-03-23T23:59:59.000Z

432

EM's SPRU Celebrates Waste Removal Success, Safety Milestone...  

Office of Environmental Management (EM)

EM's SPRU Celebrates Waste Removal Success, Safety Milestone EM's SPRU Celebrates Waste Removal Success, Safety Milestone February 27, 2014 - 12:00pm Addthis Members of the EM and...

433

Phase III Proposed Early Restoration Project Alabama Florida Louisiana Mississippi Texas  

E-Print Network [OSTI]

are proposing six recreational use projects in Bay County. As a result of the Deepwater Horizon oil spill Access along Florida's Gulf Coast: City of Mexico Beach Marina project would remove and replace eighteen surface and increasing the width at the existing Mexico Beach Canal Park boat ramp in the City of Mexico

434

Idaho Site Closes Out Decontamination and Decommissioning Project about  

Broader source: Energy.gov (indexed) [DOE]

Site Closes Out Decontamination and Decommissioning Project Site Closes Out Decontamination and Decommissioning Project about $440 Million under Cost Idaho Site Closes Out Decontamination and Decommissioning Project about $440 Million under Cost November 8, 2012 - 12:00pm Addthis Workers demolish the Test Area North Hot Shop Complex, shown here. Workers demolish the Test Area North Hot Shop Complex, shown here. Crews demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. Crews demolish CPP-601, a building used during used nuclear fuel reprocessing at the Idaho Nuclear Technology and Engineering Center. The Engineering Test Reactor vessel is shown here removed, loaded and ready for transport to the on-site landfill. The Engineering Test Reactor vessel is shown here removed, loaded and ready

435

PROJECT MANGEMENT PLAN EXAMPLES  

Broader source: Energy.gov (indexed) [DOE]

Baselines - Baselines - Performance Baseline Examples Example 34 6.0 PROJECT BASELINE This section presents a summary of the PFP Stabilization and Deactivation Project baseline, which was prepared by an inter- contractor team to support an accelerated planning case for the project. The project schedules and associated cost profiles presented in this section are compared to the currently approved project baseline, as contained in the Facility Stabilization Project Fiscal Year 1999 Multi-Year Work Plan (MYWP) for WBS 1.4 (FDH 1998). These cost and schedule details will provide the basis for a baseline change request that will be processed to revise the MYWP, consistent with the accelerated project plan presented below. 6.1 Project Baseline Overview This section of the IPMP presents the PFP baseline cost and schedule summary. The currently approved PFP Stabilization and

436

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Second Quarter Second Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & Post-CAP Forecast Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 78% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of Projects completed within 110% of CD-2 TPC by FY12. 2b. EM Cleanup (Soil and Groundwater Remediation,

437

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

First Quarter First Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Actual & Forecast FY 2011 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 79% Line Item 71% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of Projects completed within 110% of CD-2 TPC by FY12. 2b. EM Cleanup (Soil and Groundwater Remediation,

438

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Third Quarter Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & Post-CAP Forecast Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 78% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of Projects completed within 110% of CD-2 TPC by FY12. 2b. EM Cleanup (Soil and Groundwater Remediation,

439

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Fourth Quarter Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Actual FY 2011 Pre- & Post-CAP Actual Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 77% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of Projects completed within 110% of CD-2 TPC by FY12. 2b. EM Cleanup (Soil and Groundwater Remediation,

440

Rank Project Name Directorate,  

E-Print Network [OSTI]

Rank Project Name Directorate, Dept/Div and POC Cost Savings Payback (Years) Waste Reduction 1 NATIONAL LABORATORY FY02 Funded Pollution Prevention Projects 0.4 Years (~5 months) #12;

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The 4-H Project  

E-Print Network [OSTI]

As a 4-H volunteer, you will find that projects are useful tools for teaching a wide variety of skills to young people. This publication will help you plan and evaluate 4-H learning projects....

Howard, Jeff W.

2005-05-10T23:59:59.000Z

442

Information Technology Project Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1 approved 1-16-2013.

2012-12-03T23:59:59.000Z

443

Information Technology Project Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1, dated 1-16-2013, cancels DOE O 415.1.

2012-12-03T23:59:59.000Z

444

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Fourth Quarter Fourth Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 69% Line Item 67% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY08 to FY10). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre- RAC/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 2b. EM Cleanup (Soil and Groundwater Remediation,

445

Page 1 of 26 INDEPENDENT PROJECT  

E-Print Network [OSTI]

Page 1 of 26 INDEPENDENT PROJECT EVALUATION PROJECT NAME: HIVE PROOF-OF- CONCEPT PROJECT PROJECT ............................................................................................................................................3 The Project..............................................................................................................................................3 Project Objectives and Achievements

Evans, Paul

446

Research Project Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Project Description No job description found Current Research Opportunities Viral Hepatitis Prevention Fellowship Climate Change Communication Internship Applied Molecular...

447

WIPP Projects Interative Map  

Broader source: Energy.gov [DOE]

View WIPP Projects in a larger map. To report corrections, please emailWeatherizationInnovation@ee.doe.gov.

448

GHPsRUS Project  

SciTech Connect (OSTI)

The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

Battocletti, Liz

2013-07-09T23:59:59.000Z

449

Gasification Systems Project Portfolio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2014 Gasification Systems Project Portfolio News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International...

450

SPRU Removes High-Risk Radioactive Waste  

Broader source: Energy.gov [DOE]

NISKAYUNA, N.Y. EMs Separations Process Research Unit (SPRU) Disposition Project completed a significant waste-treatment campaign in February that involved the solidification of approximately 9,700 gallons of contaminated sludge and 14 shipments of the waste off-site for permanent disposal.

451

Removal of arsenic compounds from petroliferous liquids  

DOE Patents [OSTI]

The present invention in one aspect comprises a process for removing arsenic from petroliferous-derived liquids by contacting said liquid with a divinylbenzene-crosslinked polystyrene polymer (i.e. PS-DVB) having catechol ligands anchored to said polymer, said contacting being at an elevated temperature. In another aspect, the invention is a process for regenerating spent catecholated polystyrene polymer by removal of the arsenic bound to it from contacting petroliferous liquid in accordance with the aspect described above which regenerating process comprises: (a) treating said spent catecholated polystyrene polymer with an aqueous solution of at least one member selected from the group consisting of carbonates and bicarbonates of ammonium, alkali metals, and alkaline earth metals, said solution having a pH between about 8 and 10, and said treating being at a temperature in the range of about 20/sup 0/ to 100/sup 0/C; (b) separating the solids and liquids from each other. In a preferred embodiment the regeneration treatment is in two steps wherein step: (a) is carried out with an aqueous alcoholic carbonate solution which includes at least one lower alkyl alcohol, and, steps (c) and (d) are added. Steps (c) and (d) comprise: (c) treating the solids with an aqueous alcoholic solution of at least one ammonium, alkali or alkaline earth metal bicarbonate at a temperature in the range of about 20 to 100/sup 0/C; and (d) separating the solids from the liquids.

Fish, R.H.

1984-04-06T23:59:59.000Z

452

Process for removing polychlorinated biphenyls from soil  

DOE Patents [OSTI]

The present invention relates to a method of removing polychlorinated biphenyls from soil. The polychlorinated biphenyls are extracted from the soil by employing a liquid organic solvent dispersed in water in the ratio of about 1:3 to 3:1. The organic solvent includes such materials as short-chain hydrocarbons including kerosene or gasoline which are immiscible with water and are nonpolar. The organic solvent has a greater affinity for the PCB's than the soil so as to extract the PCB's from the soil upon contact. The organic solvent phase is separated from the suspended soil and water phase and distilled for permitting the recycle of the organic solvent phase and the concentration of the PCB's in the remaining organic phase. The present process can be satisfactorily practiced with soil containing 10 to 20% petroleum-based oils and organic fluids such as used in transformers and cutting fluids, coolants and the like which contain PCB's. The subject method provides for the removal of a sufficient concentration of PCB's from the soil to provide the soil with a level of PCB's within the guidelines of the Environmental Protection Agency.

Hancher, C.W.; Saunders, M.B.; Googin, J.M.

1984-11-16T23:59:59.000Z

453

Kansas Advanced Semiconductor Project  

SciTech Connect (OSTI)

KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

2007-09-21T23:59:59.000Z

454

Fundamental Aeronautics Hypersonics Project  

E-Print Network [OSTI]

Fundamental Aeronautics Hypersonics Project Reference Document Principal Investigator: James and detailed content of a comprehensive Fundamental Aeronautics Hypersonics research project. It contains) Hypersonic Project is based on the fact that all access to earth or planetary orbit, and all entry into earth

455

Project Website Information Architecture  

E-Print Network [OSTI]

Project Website Information Architecture Overview Purpose: To describe up front what your initiative/project does. This section does not need to literally be called "Overview;" you can come up with anther suitable title that is more specific to your project. Examples of what to include: Information

456

Project Scheduling (3) Corequisite  

E-Print Network [OSTI]

) CMGT 111 Construction Materials & Methods Lab (1) CMGT 460 Project Cost Controls (3) FA SP CMGT 320 FASYMBOLS CMGT 417 Project Scheduling (3) Corequisite Offered FALL Only CMGT 240 Intro) CMGT 475 Construction Project Management (3) MATH 108 College Algebra (4) Construction Elective

Barrash, Warren

457

Project Scheduling (3) Corequisite  

E-Print Network [OSTI]

460 Project Cost Controls (3) FA SP FA CE 210/211 Surveying & Lab (3) CMGT 410 Concrete FormworkSYMBOLS CMGT 417 Project Scheduling (3) Corequisite Offered FALL Only CMGT 240 Intro Construction Project Management (3) MATH 108 College Algebra (4) MGMT 301 Leadership Skills (3) ENGL 101

Barrash, Warren

458

New Project Opportunities  

E-Print Network [OSTI]

/year. Most projects will be sponsored by between four and ten companies. The cost of participation may changeNew Project Opportunities PIMS: Porphyry Indicator Minerals The characteristics and relative, the next phase of this project has started and MDRU are looking for industry partners. Exploring Lithocaps

Michelson, David G.

459

NEPA COMPLIANCE SURVEY Project Information Project Title:  

Broader source: Energy.gov (indexed) [DOE]

New power Line for new generator at ten sleep New power Line for new generator at ten sleep Dat e: 12114/10 DOE Code: Contractor Code: Project Lead: Mike Preston Project Overview 1. Brief project description (include Extend 3 phase power line from (existing) pole 99 to the Ten Sleep location for a new generator. The anything that could impact the transformer bank at the WDF will be dismantled, the line extended overhead, across 5 new power poles, to environment) the Ten Sleep Battery and the bank will be reassembled there. The new guy anchor at pole 99 will be located outside Palustrine wetlands. The line will be 34.5/19.920 KV, approximately 1,200 feet in length. 2. Legal location Ground disturbance will be minimal and have very little potential to affect the environment. 3. Duration of the project

460

FY09 WDI PROJECT FUNDING CUNY Unit Project Name  

E-Print Network [OSTI]

FY09 WDI PROJECT FUNDING CUNY Unit Project Name International Trade Operation & Procedures Program Simulation Lab College Initiative Bridge Program Workshop Project for Direct Care Workers Green Initiatives

Rosen, Jay

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Project W-320, 241-C-106 sluicing: Civil/structural calculations. Volume 3  

SciTech Connect (OSTI)

This supporting document has been prepared to make the FDNW civil/structural calculations for Project W-320 readily retrievable. The Equipment Removal System (ERS) has been identified by WHC as not having any safety class 1 items present in the tank pits during equipment removal activities, Documentation of this finding is provided in Letter of Instruction 3/1 Analysis Requirements for Project W-320 Equipment Removal System (REF: LOI KGS-94-013). Based on this specific direction from WHC, 3/1 analysis for any component of the Project W-320 ERS is required. No further documentation of non-safety impacting safety items is required per DOE-RL Audit finding No.90-02, and filing of this memorandum in the W-320 project files satisfies the intent of the referenced DOE observation.

Bailey, J.W.

1998-07-24T23:59:59.000Z

462

MASTER OF SCIENCE Enterprise Project  

E-Print Network [OSTI]

MASTER OF SCIENCE Enterprise Project Management PROJECT YOUR FUTURE #12;Stevens Project Management Legacy Master of Science in Enterprise Project Management At Stevens, we understand the value of project in project management, Stevens was the third university worldwide to receive global project management

Yang, Eui-Hyeok

463

NEPA COMPLIANCE SURVEY Project Information Project Title: T-1-21 Restoration  

Broader source: Energy.gov (indexed) [DOE]

1-21 Restoration 1-21 Restoration Date: 12-22-2010 DOE Code: Contractor Code: Project Lead : Bernard Winfree Project Overview 1. What are the environmental The existing building will be removed from the site. A backhoe will be used to dig up the manifold piping, impacts? after all possible fluids have been sucked out of the piping. We will then cut off the pipes at the lowest 2. What is the legal location? possible point At this time a com posit soil sample will be taken of the area. When the samples come back under the established limits, we will backfill the hole with the existing materials and recontour the site to 3. What is the duration of the project? perexisting conditions. Reseeding will be initiated when the proper seed mix is established. This is an

464

Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovative Fossil Fuel Power Innovative Fossil Fuel Power Plants with CO 2 Removal Technical Report EPRI Project Manager N. A. H. Holt EPRI * 3412 Hillview Avenue, Palo Alto, California 94304 * PO Box 10412, Palo Alto, California 94303 * USA 800.313.3774 * 650.855.2121 * askepri@epri.com * www.epri.com Evaluation of Innovative Fossil Fuel Power Plants with CO 2 Removal 1000316 Interim Report, December 2000 Cosponsors U. S. Department of Energy - Office of Fossil Energy 19901 Germantown Road Germantown, Maryland 20874 U.S. Department of Energy/NETL 626 Cochrans Mill Road PO Box 10940 Pittsburgh, Pennsylvania 15236-0940 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH

465

Intermediate-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102  

SciTech Connect (OSTI)

Ion exchange tests have been completed at the Savannah River Technology Center for British Nuclear Fuels Limited, Inc. as part of the Hanford River Protection Project. Radioactive cesium and technetium (pertechnetate form only) were removed by ion exchange from a sample of Envelope C salt solution from Hanford Tank 241-AN-102 (sample volume: approximately 17 L at 4.8 M Na plus). The original sample was diluted and subjected to strontium/transuranics (Sr/TRU) precipitation and filtration processes before ion exchange processing was performed. Batch contact and column tests for the ion exchange removal of cesium and technetium were then completed on the Sr/TRU-decontaminated product. Previous ion exchange tests were conducted on a smaller portion (0.5 L) of the Tank 241-AN-102 supernate sample, which had been similarly pretreated, and the results were reported in a separate document.

King, W.D.

2001-02-15T23:59:59.000Z

466

Intermediate-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102  

SciTech Connect (OSTI)

Ion exchange tests have been completed at the Savannah River Technology Center for British Nuclear Fuels Limited, Inc. as part of the Hanford River Protection Project. Radioactive cesium and technetium (pertechnetate form only) were removed by ion exchange from a sample of Envelope C salt solution from Hanford Tank 241-AN-102 (sample volume: approximately 18 L at 4.8 M Na plus). The original sample was diluted and subjected to strontium/transuranics (Sr/TRU) precipitation and filtration processes before ion exchange processing was performed. Batch contact and column tests for the ion exchange removal of cesium and technetium were then completed on the Sr/TRU-decontaminated product. Previous ion exchange tests were conducted on a smaller portion (0.5 L) of the Tank 241-AN-102 supernate sample, which had been similarly pretreated, and the results were reported in a separate document.

King, W.D.

2001-09-10T23:59:59.000Z

467

EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook,  

Broader source: Energy.gov (indexed) [DOE]

37: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, 37: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR SUMMARY This project would replace aging equipment at BPA's Celilo converter station and to upgrade equipment on the Celilo-Sylmar 500-kilovolt (kV) transmission line from the Celilo converter station in The Dalles, Oregon to the Nevada-Oregon border. As part of the project, BPA would remove and salvage the converter terminals 1 and 2 at its Celilo converter station and install a new two-converter terminal. A 20-acre expansion of the existing substation would accommodate the new terminal equipment. About 265 miles of transmission towers on the Celilo-Sylmar 500-kV transmission line would be

468

Massive Hanford Test Reactor Removed- Plutonium Recycle Test Reactor removed from Hanfords 300 Area  

Broader source: Energy.gov [DOE]

RICHLAND, WA Hanfords River Corridor contractor, Washington Closure Hanford, has met a significant cleanup challenge on the U.S. Department of Energys (DOE) Hanford Site by removing a 1,082-ton nuclear test reactor from the 300 Area.

469

Hanford Deep Dig Removes Contaminated Soil | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Deep Dig Removes Contaminated Soil Deep Dig Removes Contaminated Soil Hanford Deep Dig Removes Contaminated Soil March 11, 2013 - 12:00pm Addthis An aerial view of Hanford’s D Area shows the D Reactor (lower left) and DR Reactor. Workers are digging 85 feet to groundwater at two sites there to remove chromium contamination. An aerial view of Hanford's D Area shows the D Reactor (lower left) and DR Reactor. Workers are digging 85 feet to groundwater at two sites there to remove chromium contamination. Workers remove soil contaminated with sodium dichromate to prevent the chemical from reaching the groundwater and eventually the Columbia River. Workers remove soil contaminated with sodium dichromate to prevent the chemical from reaching the groundwater and eventually the Columbia River.

470

EM Employs Innovative Technology to Remove Radioactive Sludge | Department  

Broader source: Energy.gov (indexed) [DOE]

Employs Innovative Technology to Remove Radioactive Sludge Employs Innovative Technology to Remove Radioactive Sludge EM Employs Innovative Technology to Remove Radioactive Sludge September 1, 2012 - 12:00pm Addthis Testing and equipment simulations ensure first-of-a-kind technological processes for sludge removal can be conducted safely and efficiently. Testing and equipment simulations ensure first-of-a-kind technological processes for sludge removal can be conducted safely and efficiently. RICHLAND, Wash. - The Richland Operations Office and contractor CH2M HILL Plateau Remediation Company successfully removed a portion of a highly radioactive sludge from underwater storage in a large basin adjacent to the K West reactor at the Hanford site this month. In that milestone, workers removed sludge originating from knock-out pots,

471

Hanford Deep Dig Removes Contaminated Soil | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hanford Deep Dig Removes Contaminated Soil Hanford Deep Dig Removes Contaminated Soil Hanford Deep Dig Removes Contaminated Soil March 11, 2013 - 12:00pm Addthis An aerial view of Hanford’s D Area shows the D Reactor (lower left) and DR Reactor. Workers are digging 85 feet to groundwater at two sites there to remove chromium contamination. An aerial view of Hanford's D Area shows the D Reactor (lower left) and DR Reactor. Workers are digging 85 feet to groundwater at two sites there to remove chromium contamination. Workers remove soil contaminated with sodium dichromate to prevent the chemical from reaching the groundwater and eventually the Columbia River. Workers remove soil contaminated with sodium dichromate to prevent the chemical from reaching the groundwater and eventually the Columbia River.

472

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

First Quarter First Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 84% Construction 83% Cleanup 85% 77% Pre-CAP 86% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost. Contract/Project Management Performance Metrics FY 2012 Target FY 2012 1st Qtr Actual Comment Certified EVM Systems: Post CD-3, (greater than $20 million). 95%* 94% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects

473

Project Name/Description  

Broader source: Energy.gov (indexed) [DOE]

RCA CM-3 Risk Management RCA CM-3 Risk Management Projects/Programs - RMPs, Tools, and SMEs Project Name/Description (see note below) DOE Program DOE RMP Contractor RMP Combined RMP Tools Database/Risk Analysis SMEs Federal/M&O/Consultant Integrated Biorefinery Research Facility Project EE X Research Support Facility Project EE X National Synchrotron Light Source II Project SC X 12 GeV Upgrade Project (TJL) SC X Physical Sciences Facility Project (PNNL) SC X P6, Pertmaster, Excel Mike Shay, Jason Gatelum ITER SC X (internation al pgm) P6, Pertmaster, Risk Checklist, Risk Assessor Handbook John Tapia, Colin Williams, Allen Bishop SING & SING II (SNS, OR) SC X Excel, Analytic Hierarchy, P6 Barbara Thibadeau Modernization of Lab Fac. (ORNL)

474

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Second Quarter Second Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 88% Construction 87% Cleanup 89% 77% Pre-CAP 92% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost. Contract/Project Management Performance Metrics FY 2012 Target FY 2012 2nd Qtr Actual Comment Certified EVM Systems: Post CD-3, (greater than $20 million). 95%* 96% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects

475

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Fourth Quarter Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Final FY 2012 Pre- & Post-CAP Final Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 86% Construction 87% Cleanup 84% 77% Pre-CAP 89% Post-CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost. Contract/Project Management Performance Metrics FY 2012 Target FY 2012 4th Qtr Actual Comment Certified EVM Systems: Post CD-3, (greater than $20 million). 95%* 100% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects

476

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

Third Quarter Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 87% Construction 87% Cleanup 87% 77% Pre-CAP 90% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost. Contract/Project Management Performance Metrics FY 2012 Target FY 2012 3rd Qtr Actual Comment Certified EVM Systems: Post CD-3, (greater than $20 million). 95%* 98% EVM represents Earned Value Management. Certified FPD's at CD-1: Projects

477

RENOTER Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RENOTER Project RENOTER Project Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE...

478

Regenerable Hydrogen Chloride Removal Sorbent and Regenerable Multifunctional Hydrogen Sulfide and Hydrogen Chloride Removal Sorbent for High Temperature Gas Streams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Chloride and Hydrogen Sulfide Hydrogen Chloride and Hydrogen Sulfide Removal Sorbents for High Temperature Gas Streams Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,767,000 entitled "Regenerable Hydrogen Chloride Removal Sorbent and Regenerable Multifunctional Hydrogen Sulfide and Hydrogen Chloride Removal Sorbent for High Temperature Gas Streams." Disclosed in this patent is the invention of a unique regenerable sorbent process that can remove contaminants from gas produced by the gasification of fossil fuels. Specifically, the process removes hydrogen chloride by using the regenerable sorbent and simultaneously extracts hydrogen chloride compounds and hydrogen

479

Confined Zone Dispersion Project: A DOE assessment  

SciTech Connect (OSTI)

The goal of the US Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept (POC) stage. This document serves as a DOE post-project assessment of the Confined Zone Dispersion Project in CCT Round 3. In 1990, Bechtel Corporation entered into a cooperative agreement to conduct the demonstration project. The Seward Power Station of Pennsylvania Electric Company (now GPU Genco) was the host site. DOE funded 43 percent of the total project cost of $12,173,000. The project was started in June 1990 and was scheduled to be completed in June 1993. As a result of various operating problems, the schedule was extended into 1994 without additional cost to DOE. Bechtel provided the additional financing and GPU Genco provided electricity, steam, and water to operate the unit. The independent evaluation contained herein is based primarily on information from Bechtel's final technical report (1994) as well as other references cited. Confined Zone Dispersion (CZD) is a flue gas desulfurization (FGD) process that removes sulfur dioxide (SO{sub 2}). A finely atomized slurry of reactive lime, calcium hydroxide or Ca(OH){sub 2} is injected into the flue-gas duct work, between the air preheater and the second-stage ESP. The lime reacts with the SO{sub 2}, forming dry solid reaction products. The downstream ESP captures the 2 reaction products along with the fly ash entrained in the flue gas. The CZD process was demonstrated on Unit 5, a 147-MWe utility unit with two flue gas ducts. One of the ducts was extended to provide the requisite residence time and retrofitted with the CZD lime injection equipment.

NONE

1999-11-30T23:59:59.000Z

480

Removing sulphur oxides from a fluid stream  

DOE Patents [OSTI]

A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

2014-04-08T23:59:59.000Z

Note: This page contains sample records for the topic "removal project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)  

E-Print Network [OSTI]

BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Project Title: Beacon Solar Energy Project and operate the Beacon Solar Energy Project (Beacon). Location: The project is located in eastern Kern County;BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Licensing: The Beacon project would have a nominal

482

Field Projects: Durango, Colorado | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Long-Term Surveillance - Operations and Maintenance Long-Term Surveillance - Operations and Maintenance » Permeable Reactive Barriers » Field Projects: Durango, Colorado Field Projects: Durango, Colorado Personnel from Sandia National Laboratories in New Mexico installed four permeable reactive barriers PRBs at the Durango, Colorado, Uranium Mill Tailings Radiation Control Act Title I site in October 1995. These PRBs are managed by LM. Foamed zero-valent (ZVI) iron bricks produced by Cercona of America, steel wool, and granular iron have been used as reactive media to remove ammonium, arsenic, cadmium, chromium, manganese, molybdenum, nitrate, radium-226, selenium, uranium, vanadium, and zinc contamination from leachate exiting the uranium mill tailings disposal cell. After passing through the ZVI, the leachate contaminant levels meet the

483

Categorical Exclusion 4598: Security Upgrade Project  

Broader source: Energy.gov (indexed) [DOE]

Determination Form Determination Form Proposed Action Title: Security Upgrade Project (4598) Program or Field Office~ Y·12 Site Office LocationCs) CCjty/County/State): Oak Ridge. Anderson County, Tennessee Proposed Action Description: PAGE 04 / 04 r~:·:~~s ·'-u ~'irllO:.'~~b ., .. y " ~e ··· ., ;:;;,il ,;: ; I·;;;:;;,; ;I ,' .: :~~. ,U,Illll\;: , "':ll ,l3~ . ~~~~ 1 ~; The proposed action is to add fence posts and run razor wire in various fence locations throughout the site. This project will not require excavation. This activity will disturb gravel but will not remove gravel and soil from post holes which will be placed back in the same area. Cat.eg,orieal Exc!usion(s) ,Mp!i.cd: 81.3- Routine maintenance

484

Field Projects: Monticello, Utah | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Long-Term Surveillance - Operations and Maintenance Long-Term Surveillance - Operations and Maintenance » Permeable Reactive Barriers » Field Projects: Monticello, Utah Field Projects: Monticello, Utah A permeable reactive barrier (PRB) of zero-valent iron is helping to clean up groundwater at a former uranium and vanadium ore processing mill at Monticello, Utah. LM managed remediation of tailings and tailings-contaminated material at this site. Cleanup of the mill site is regulated under the Comprehensive Environmental Response, Compensation, and Liability Act. Arsenic, molybdenum, nitrate, selenium, uranium, and vanadium are contaminants of concern in groundwater at the site. An Interim Record of Decision designated emplacement of a PRB hydraulically downgradient of the mill site to remove these contaminants. Results of both laboratory and

485

Project Surveillance and Maintenance Plan. [UMTRA Project  

SciTech Connect (OSTI)

The Project Surveillance and Maintenance Plan (PSMP) describes the procedures that will be used by the US Department of Energy (DOE), or other agency as designated by the President to verify that inactive uranium tailings disposal facilities remain in compliance with licensing requirements and US Environmental Protection Agency (EPA) standards for remedial actions. The PSMP will be used as a guide for the development of individual Site Surveillance and Maintenance Plans (part of a license application) for each of the UMTRA Project sites. The PSMP is not intended to provide minimum requirements but rather to provide guidance in the selection of surveillance measures. For example, the plan acknowledges that ground-water monitoring may or may not be required and provides the (guidance) to make this decision. The Site Surveillance and Maintenance Plans (SSMPs) will form the basis for the licensing of the long-term surveillance and maintenance of each UMTRA Project site by the NRC. Therefore, the PSMP is a key milestone in the licensing process of all UMTRA Project sites. The Project Licensing Plan (DOE, 1984a) describes the licensing process. 11 refs., 22 figs., 8 tabs.

Not Available

1985-09-01T23:59:59.000Z

486

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal  

SciTech Connect (OSTI)

The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

Nick Degenstein; Minish Shah; Doughlas Louie

2012-05-01T23:59:59.000Z

487

Power System Equipment Module Test Project  

SciTech Connect (OSTI)

The technology of electric power generation when applying the binary process to hydrothermal resources had not yet been demonstrated in the United States. Accordingly, on November 10, 1977, the Electric Power Research Institute and the Department of Energy, acting through the Lawrence Berkeley Laboratory, agreed to cofund the Power System Equipment Module Test Project. The Power System Equipment Module Test Project consisted of a field test program to accomplish the objectives listed below while heating hydrocarbon fluids to above their critical points, expanding these fluids, and subsequently, condensing them below their critical points: (1) Verify the performance of state-of-the-art heat exchangers in geothermal service; (2) Verify the heat exchangers' performance heating either selected pure light hydrocarbons or selected mixtures of light hydrocarbons in the vicinity of their respective critical pressures and temperatures; (3) Establish overall heat transfer coefficients that might be used for design of commercial-size geothermal power plants using the same geothermal brine and light hydrocarbon working fluids; (4) Perform and investigate the above under representative fluid operating conditions during which the production wells would be pumped. The project was accomplished by diverting approximately 200 gpm of the flow from one of Magma Power Company's geothermal wells in the East Mesa Geothermal Field. After the heat was removed from the geothermal brine flow, the cooled flow was returned to Magma Power Company and recombined with the main brine stream for disposal by reinjection. Approximately five thermal megawatts was transferred from geothermal brine to hydrocarbon working fluids in a closed system. This heat was removed from the working fluids in a condenser and subsequently rejected to the environment by a wet cooling tower. The thermodynamic performance of both the working fluids and the system components was measured during the test program to achieve the project's objectives.

Schilling, J.R.

1980-12-01T23:59:59.000Z

488

Carbon dioxide removal and capture for landfill gas up-grading  

Science Journals Connector (OSTI)

Within the frame of an EC financially supported project - LIFE05 ENV/IT/000874 GHERL (Greenhouse Effect Reduction from Landfill)a pilot plant was set up in order to demonstrate the feasibility of applying chemical absorption to remove carbon dioxide from landfill gas. After proper upgrading - basically removal of carbon dioxide, hydrogen sulphide, ammonia and other trace gas compoundthe gas might be fed into the distribution grid for natural gas or used as vehicle fuel, replacing a fossil fuel thus saving natural resources and carbon dioxide emissions. Several experiences in Europe have been carried out concerning the landfill gas - and biogas from anaerobic digestion - quality up-grading through CO2 removal, but in all of them carbon dioxide was vented to the atmosphere after separation, without any direct benefit in terms of greenhouse gases reduction. With respect to those previous experiences, in this work the attention was focused on CO2 removal from landfill gas with an effective capture process, capable of removing carbon dioxide from atmosphere, through a globally carbon negative process. In particular, processes capable of producing final solid products were investigated, with the aim of obtaining as output solid compounds which can be either used in the chemical industry or disposed off. The adopted absorption process is based on using aqueous solutions of potassium hydroxide, with the final aim of producing potassium carbonate. Potassium carbonate is a product which has several applications in the chemical industry if obtained with adequate quality. It can be sold as a pulverised solid, or in aqueous solution. Several tests were carried out at the pilot plant, which was located at a landfill site, in order to feed it with a fraction of the on-site collected landfill gas. The results of the experimental campaign are reported, explained and commented in the paper. Also a discussion on economic issues is presented.

Lidia Lombardia; Andrea Corti; Ennio Carnevale; Renato Baciocchi; Daniela Zingaretti

2011-01-01T23:59:59.000Z

489

River Protection Project (RPP) Project Management Plan  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.

SEEMAN, S.E.

2000-04-01T23:59:59.000Z

490

PROJECT PLANNING TEMPLATE  

Broader source: Energy.gov (indexed) [DOE]

Plan i Issue Date: 4/24/2009 Plan i Issue Date: 4/24/2009 U.S. Department of Energy Office of Engineering and Construction Management Project Plan for the Project Assessment and Reporting System (PARS II) Version 2.0a (Public) April 20, 2009 Submitted by: Energy Enterprises Solutions 20440 Century Blvd. Suite 150 Germantown, MD 20874 Phone 301-916-0050 Fax 301-916-0066 www.eesllc.net PARS II Project Plan ii Issue Date: 4/24/2009 Title Page Document Name: Project Plan for the Project Assessment and Reporting System (PARS II), V2.0a Publication Date: April 24, 2009 Contract Number: DE-AT01-06IM00102 Project Number: 1ME07, CLIN 2 Prepared by: Judith Bernsen, PMC, LLC Kai Mong, Energy Enterprise Solutions, LLC

491

Manhattan Project: Library  

Office of Scientific and Technical Information (OSTI)

LIBRARY LIBRARY Resources A number of government publications relating to the Manhattan Project are available either as web pages or as .pdf documents. Cover of the Manhattan Project publication Department of Energy Publications Fehner and Gosling, Origins of the Nevada Test Site Fehner and Gosling, Battlefield of the Cold War: The Nevada Test Site Gosling, Manhattan Project, 1999 Gosling, Manhattan Project, 2010 Harnessed Atom United States Nuclear Tests, 1945-1992 Wahlen, History of 100-B Area Los Alamos National Laboratory Publications Bainbridge, Trinity Fakley, "The British Mission" Hawkins, MDH: Project Y, Vol. 1 Los Alamos: Beginning of an Era, 1943-1945 Malik, Yields of Hiroshima and Nagasaki "Oppenheimer Years" Serber, Los Alamos Primer Truslow, MDH: Project Y, Vol. 2

492

DSW Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Projects Contact DSW Customers Customer Meetings Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Power Projects Contact DSW Customers Customer Meetings Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates DSW Power Projects Boulder Canyon: Straddling the Colorado River near the Arizona-Nevada border, Hoover Dam in Boulder Canyon creates Lake Mead. River waters turning turbines at Hoover Powerplant produce about 2,074 MW--enough electricity for nearly 8 million people. Western markets this power to public utilities in Arizona, California and Nevada over 53.30 circuit-miles of transmission line. Central Arizona: Authorized in 1968, the Central Arizona Project in Arizona and western New Mexico was built to improve water resources in the Colorado River Basin. Segments of the authorization allowed for Federal participation in the Navajo Generating Station. The Federal share of the powerplant's combined capacity is 547 MW.

493

Project Execution Plan RM  

Broader source: Energy.gov (indexed) [DOE]

Project Execution Plan (PEP) Review Module Project Execution Plan (PEP) Review Module March 2010 CD-0 O 0 OFFICE OF P C CD-1 F ENVIRO Standard R Project E Rev Critical Decis CD-2 M ONMENTAL Review Plan Execution view Module sion (CD) Ap CD March 2010 L MANAGE n (SRP) n Plan e pplicability D-3 EMENT CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM project review process encompasses key milestones established by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assets, DOE-STD-1189-2008,

494

FIFE Project Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Follow-On Follow-On The First ISLSCP Field Experiment (FIFE) Follow-On Project FIFE Follow-On Overview [FIFE Logo] The FIFE Follow-On project was a large-scale climatology project conducted on the Konza Prairie in Kansas from 1990 through 1993. It includes additional analysis of the data collected in the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) from 1987 through 1989, as well as additional field measurements. The over-arching goal of the FIFE Follow-On project was to develop a physically based approach for using satellite remote-sensing systems. More specifically the project focused on: understanding the biophysical processes controlling the fluxes of exchanges of radiation, moisture, and carbon dioxide between the land

495

Project Funding | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project Funding Project Funding Project Funding Federal energy projects require funding to generate results. Carefully matching available funding options with specific project needs can make the difference between a stalled, unfunded project and a successful project generating energy and cost savings. The Federal Energy Management Program (FEMP) supports Federal agencies identify, obtain, and implement project funding for energy projects through: Energy Savings Performance Contracts ESPC ENABLE Process Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements Energy Incentive Programs. Federal agencies can choose the funding options that best fits for their project needs. For an overview of available funding options and strategies, read the FEMP Project Funding Quick Guide.

496

Renewable Project Overview  

Broader source: Energy.gov (indexed) [DOE]

Project Overview Project Overview Federal Utility Partnership Working Group 5/6/09 Chandra Shah, NREL 303-384-7557, chandra.shah@nrel.gov National Renewable Energy Laboratory Innovation for Our Energy Future Presentation Overview Federal and utility renewable requirements Power Purchase Agreements (PPA) Western Area Power Administration Federal Renewable Program UESC and renewables * Participating in utility renewable programs - Opportunity Announcement process Renewable projects implemented using appropriations National Renewable Energy Laboratory Innovation for Our Energy Future Biomass Resource

497

Active Project Justification Statements  

Broader source: Energy.gov (indexed) [DOE]

Project Justification Statements Project Justification Statements Date Received PJS Number Title Owner / Author Status ORG Due Date 10/26/2012 PJS-2012-007 Cost Benefit Analysis for Nuclear Facility Accident Prevention or Mitigation Design Options, Project Justification 1/9/2013 PJS-2013-01 DOE HDBK of Optimizing Radiation Protection of the Public and the Environment 6/24/2013 PJS-2013-03 Review and Approval of Nuclear Facility

498

Investor Confidence Project  

E-Print Network [OSTI]

projects (under $1MM), Lighter engineering requirements V1 Released September 2013 Targeted Commercial Single Measure or Non-Interactive Retrofits Release Date Dec 2013 Multifamily Release Q1 2014 Quality Assurance Protocol Currently in BETA...Environmental Defense Funds Investor Confidence Project Delivering Investment Quality Energy Efficiency to Market ESL-KT-13-12-38 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Investor Confidence Project...

Golden, M.

2013-01-01T23:59:59.000Z

499

Rooftop Unit Network Project  

Broader source: Energy.gov (indexed) [DOE]

Network Project Network Project RTU Network Project Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Packaged air conditioners and heat pumps (RTUs) are used in about 58% of all cooled commercial buildings, serving about 69% of the cooled commercial building floor space (EIA 2003) - Navigant estimates packaged A/C uses 0.9 quads of electricity for cooling annually and

500

Operations Cost Allocation Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operations Consolidation Project Operations Consolidation Project Operations Consolidation Project (OCP) Cost Allocation Presentation - September 20, 2011 OCP Cost Allocation Customer Presentation List of Acronyms OCP Cost Allocation Spreadsheets OCP Cost Allocation Customer Presentation - Questions and Answers - September 19 - 20, 2011 Additional Questions and Answers Customer Comments/Questions and Answers: Arizona Municipal Power Users Association Arizona Power Authority Central Arizona Project Colorado River Commission Colorado River Energy Distributors Association City of Gilbert, AZ Irrigation and Electrical Districts Association of Arizona Town of Marana, AZ City of Mesa, AZ Town of Wickenburg, AZ Western's Final Decision Regarding the Long-Term Cost Allocation Methodology for Operations Staff Costs