Powered by Deep Web Technologies
Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Catalyst regeneration process including metal contaminants removal  

DOE Patents (OSTI)

Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

Ganguli, Partha S. (Lawrenceville, NJ)

1984-01-01T23:59:59.000Z

2

Removing Barriers to Interdisciplinary Research  

E-Print Network (OSTI)

A significant amount of high-impact contemporary scientific research occurs where biology, computer science, engineering and chemistry converge. Although programmes have been put in place to support such work, the complex dynamics of interdisciplinarity are still poorly understood. In this paper we interrogate the nature of interdisciplinary research and how we might measure its "success", identify potential barriers to its implementation, and suggest possible mechanisms for removing these impediments.

Naomi Jacobs; Martyn Amos

2010-12-19T23:59:59.000Z

3

Process for selected gas oxide removal by radiofrequency catalysts  

DOE Patents (OSTI)

This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

Cha, Chang Y. (3807 Reynolds St., Laramie, WY 82070)

1993-01-01T23:59:59.000Z

4

NREL: Biomass Research - Chemical and Catalyst Science Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Catalyst Science Projects Chemical and Catalyst Science Projects A photo of a large white tank the size of a water heater. Several metal fittings stick out of the sides of the tank. Thin tubes are attached to some of the fittings and lead to flow meters and other metal pipes. Researchers use experimental data from this four-inch fluidized bed reactor to develop and validate gasification process models. NREL uses chemical analysis to study biomass-derived products online during the conversion process. Catalysts are used in the thermochemical conversion process to convert tars (a byproduct of gasification) to syngas and to convert syngas to liquid transportation fuels. Among the chemical and catalyst science projects at NREL are: Catalyst Fundamentals NREL is working to develop and understand the performance of catalyst and

5

Process for selected gas oxide removal by radiofrequency catalysts  

DOE Patents (OSTI)

This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

Cha, C.Y.

1993-09-21T23:59:59.000Z

6

NREL: Biomass Research - Chemical and Catalyst Science Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Catalyst Science Capabilities Chemical and Catalyst Science Capabilities A photo of a man in a white lab coat and dark goggles looking at a microscope. A bright green light shines down from the microscope lens and illuminates a round glass tray containing small white beads. The Laser Raman Spectrometer is used to obtain phase and structural identification information for catalysts used in the thermochemical conversion process. NREL researchers use chemical and catalyst science to assess and improve biochemical and thermochemical conversion throughout the processes, from analyzing feedstocks to improving the yield of desired end products. Catalyst Science Syngas produced during gasification contains tars that are contaminants, but these tars can be reformed to more syngas using tar-reforming

7

SUPPORTED LIQUID CATALYSTS FOR REMOVAL OF HIGH TEMPERATURE FUEL CELL CONTAMINANTS  

DOE Green Energy (OSTI)

A novel catalytic synthesis gas oxidation process using molten carbonate salts supported on compatible fluidized iron oxide particles (supported-liquid-phase-catalyst (SLPC) fluidized bed process) was investigated. This process combines the advantages of large scale fluidized bed processing with molten salt bath oxidation. Molten salt catalysts can be supported within porous fluidized particles in order to improve mass transfer rates between the liquid catalysts and the reactant gases. Synthesis gas can be oxidized at reduced temperatures resulting in low NO{sub x} formation while trace sulfides and halides are captured in-situ. Hence, catalytic oxidation of synthesis gas can be carried out simultaneously with hot gas cleanup. Such SLPC fluidized bed processes are affected by inter-particle liquid capillary forces that may lead to agglomeration and de-fluidization of the bed. An understanding of the origin and strength of these forces is needed so that they can be overcome in practice. Process design is based on thermodynamic free energy minimization calculations that indicate the suitability of eutectic Na{sub 2}CO{sub 3}/K{sub 2}CO{sub 3} mixtures for capturing trace impurities in-situ (< 1 ppm SO{sub x} released) while minimizing the formation of NO{sub x}(< 10 ppm). Iron oxide has been identified as a preferred support material since it is non-reactive with sodium, is inexpensive, has high density (i.e. inertia), and can be obtained in various particle sizes and porosities. Force balance modeling has been used to design a surrogate ambient temperature system that is hydrodynamically similar to the real system, thus allowing complementary investigation of the governing fluidization hydrodynamics. The primary objective of this research was to understand the origin of and to quantify the liquid capillary interparticle forces affecting the molten carbonate SLPC fluidized bed process. Substantial theoretical and experimental exploratory results indicate process feasibility. The potential environmental gain from success is enormous, impacting all areas of the world where coal is burned to supply steam or direct industrial heat. Project success may lead to an integrated combustion system providing for simultaneous catalytic oxidation and hot gas cleanup of raw synthesis gas from an upstream coal gasifier.

Alan W. Weimer (PI); Peter Czerpak; Patrick Hilbert

2000-01-01T23:59:59.000Z

8

Proton Delivery and Removal in [Ni(PR2NR?2)2]2+ Hydrogen Production and Oxidation Catalysts  

SciTech Connect

To examine the role of proton delivery and removal in the electrocatalytic oxidation and production of hydrogen by [Ni(PR2NR´)2]2+ (where PR2NR´2 is 1,5-R´-3,7-R-1,5-diaza-3,7-diphosphacyclooctane), we report experimental and theoretical studies of the intermolecular proton exchange reactions underlying the isomerization of [Ni(PCy2NBn2H)2]2+ (Cy = cyclohexyl, Bn = benzyl) species formed during the stochiometric oxidation of H2 by [NiII(PCy2NBn2)2]2+ or the protonation of [Ni0(PCy2NBn2)2]. The three isomers formed differ by the position of the N-H bond with respect to the nickel (endo-endo, endo-exo, or exo-exo) and only the endo-endo isomer is catalytically active. We have found that the rate of isomerization is limited by proton removal from and delivery to the complex. In particular, steric hindrance disfavors the catalytically active protonation site (endo to the metal) in favor of inactive protonation (exo to the metal). The ramifications to catalysis of poor accessibility of the endo site and protonation at the exo site are discussed. In hydrogen oxidation, deprotonation of the sterically hindered endo position by an external base may lead to slow catalytic turnover. As for hydrogen production, the limited accessibility of the endo position can result in the formation of exo protonated species, which must undergo one or more isomerization steps to generate the catalytically active endo protonated species. These studies highlight the importance of precise proton delivery, and the mechanistic details described herein will guide future catalyst design. This research was carried out in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. WJS was funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory; and the Jaguar supercomputer at Oak Ridge National Laboratory (INCITE 2008-2011 award supported by the Office of Science of the U.S. DOE under Contract No. DE-AC0500OR22725).

O'Hagan, Molly J.; Ho, Ming-Hsun; Yang, Jenny Y.; Appel, Aaron M.; Rakowski DuBois, Mary; Raugei, Simone; Shaw, Wendy J.; DuBois, Daniel L.; Bullock, R. Morris

2012-11-28T23:59:59.000Z

9

Research Approach for Aging and Evaluating Diesel Exhaust catalysts  

DOE Green Energy (OSTI)

To determine the impact of diesel fuel sulfur levels on emissions control devices that could lower emissions of oxides of nitrogen (NOX) and particulate matter (PM) from on-highway trucks and buses in the 2002-2004 model years. West Virginia University is evaluating: - Diesel Oxidation Catalysts - Lean NOX Catalysts

Wayne, Scott

2000-08-20T23:59:59.000Z

10

Removal and Transformation of Sulfur Species During Regeneration of Poisoned Nickel Biomass Conditioning Catalysts  

DOE Green Energy (OSTI)

Sulfur K-edge XANES was used to monitor sulfur species transforming from sulfides to sulfates during steam + air regeneration on a Ni/Mg/K/Al{sub 2}O{sub 3} catalyst used to condition biomass-derived syngas. The catalyst was tested for multiple reaction/regeneration cycles. Post-reaction samples showed the presence of sulfides on the H{sub 2}S-poisoned nickel catalyst. Although some gaseous sulfur species were observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst and a transformation from sulfides to sulfates was observed. The subsequent H{sub 2} reduction led to a partial reduction of sulfates back to sulfides. A proposed reaction sequence is presented and recommended regeneration strategies are discussed.

Yung, M. M.; Cheah, S.; Kuhn, J. N.; Magrini-Bair, K. A.

2012-01-01T23:59:59.000Z

11

Laser Catalyst  

INL’s Laser Catalyst is a method for removing contaminant matter from a porous material. A polymer material is applied to a contaminated surface and ...

12

NREL Patents a Catalyst that Removes Syngas Tar, Boosting the Economics of Biofuels (Fact Sheet)  

DOE Green Energy (OSTI)

NREL has patented a catalyst that reforms tar into syngas, a breakthrough that can accelerate the process of getting biomass ready for fuel synthesis and use as a drop-in fuel.

Not Available

2013-08-01T23:59:59.000Z

13

Research Article HZSM-5 Catalyst for Cracking Palm Oil to Gasoline: A Comparative Study with and without Impregnation  

E-Print Network (OSTI)

It is important to develop a renewable source of energy to overcome a limited source fossil energy. Palm oil is a potential alternative and environmental friendly energy resource in Indonesia due to high production capacity of this vegetable oil. The research studied effect of catalyst to selectivity of biofuel product from cracking of palm oil. The catalyst consisted of HZSM-5 catalyst with or without impregnation. The research was conducted in two steps, namely catalyst synthesized and catalytic cracking process. HZSM-5 was synthesized using Plank methods. The characterization of the synthesized catalysts used AAS (Atomic Absorption Spectroscopy) and BET (Brunaueur Emmet Teller). The cracking was carried out in a fixed bed microreactor with diameter of 1 cm and length of 16 cm which was filled with 0.6 gram catalyst. The Ni/HZSM-5 catalyst was recommended for cracking palm oil for the high selectivity to gasoline. © 2013

Achmad Roesyadi; Danawati Hariprajitno; N. Nurjannah; Santi Dyah Savitri

2012-01-01T23:59:59.000Z

14

Researchers hope better catalysts lead to better ways of converting...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy (DOE) in 2009 as a special Energy Frontier Research Center (EFRC), in which scientists from both academic institutions and government labs were asked to...

15

Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345  

DOE Green Energy (OSTI)

The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

Ghirardi, M.; Svedruzic, D.

2013-07-01T23:59:59.000Z

16

Catalyst Modeling and CLEERS - Emissions & Emission Controls...  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalyst Modeling and CLEERS A large part of ORNL's efforts in catalyst research are geared toward model development of catalyst devices and engine systems. Experimental data...

17

Research on the Forecast Model of the Boron Removal from ...  

Science Conference Proceedings (OSTI)

A New Centrifuge CVD Reactor that will Challenge the Siemens Process ... Boron Removal from Silicon Melts by H2O/H2 Gas Blowing – Gas-phase Mass ...

18

METHOD OF PURIFYING CATALYSTS  

DOE Patents (OSTI)

It has been fuund that the presence of chlorine as an impurity adversely affects the performance of finely divided platinum catalysts such as are used in the isotopic exchange process for the production of beavy water. This chlorine impurity may be removed from these catalysts by treating the catalyst at an elevated temperature with dry hydrogen and then with wet hydrogen, having a hydrogen-water vapor volume of about 8: 1. This alternate treatment by dry hydrogen and wet hydrogen is continued until the chlorine is largely removed from the catalyst.

Joris, G.G.

1958-09-01T23:59:59.000Z

19

08-ERD-071 Final Report: New Molecular Probes and Catalysts for Bioenergy Research  

DOE Green Energy (OSTI)

A major thrust in bioenergy research is to develop innovative methods for deconstructing plant cell wall polymers, such as cellulose and lignin, into simple monomers that can be biologically converted to ethanol and other fuels. Current techniques for monitoring a broad array of cell wall materials and specific degradation products are expensive and time consuming. To monitor various polymers and assay their breakdown products, molecular probes for detecting specific carbohydrates and lignins are urgently needed. These new probes would extend the limited biochemical techniques available, and enable realtime imaging of ultrastructural changes in plant cells. Furthermore, degradation of plant biomass could be greatly accelerated by the development of catalysts that can hydrolyze key cell wall polysaccharides and lignin. The objective of this project was to develop cheap and efficient DNA reagents (aptamers) used to detect and quantify polysaccharides, lignin, and relevant products of their breakdown. A practical goal of the research was to develop electrochemical aptamer biosensors, which could be integrated into microfluidic devices and used for high-throughput screening of enzymes or biological systems that degrade biomass. Several important model plant cell wall polymers and compounds were targeted for specific binding and purification of aptamers, which were then tested by microscopic imaging, circular dichroism, surface plasmon resonance, fluorescence anisotropy, and electrochemical biosensors. Using this approach, it was anticiated that we could provide a basis for more efficient and economically viable biofuels, and the technologies established could be used to design molecular tools that recognize targets sought in medicine or chemical and biological defense projects.

Thelen, M P; Rowe, A A; Siebers, A K; Jiao, Y

2011-03-07T23:59:59.000Z

20

System for reactivating catalysts  

DOE Patents (OSTI)

A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

Ginosar, Daniel M. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID); Anderson, Raymond P. (Idaho Falls, ID)

2010-03-02T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Catalyst systems and uses thereof  

DOE Patents (OSTI)

A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

Ozkan, Umit S. (Worthington, OH); Holmgreen, Erik M. (Columbus, OH); Yung, Matthew M. (Columbus, OH)

2012-07-24T23:59:59.000Z

22

Oxidation catalyst  

DOE Patents (OSTI)

The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

2010-11-09T23:59:59.000Z

23

Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts  

DOE Patents (OSTI)

A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

Gangwal, Santosh (Cary, NC); Jothimurugesan, Kandaswamy (Hampton, VA)

1999-01-01T23:59:59.000Z

24

Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts  

DOE Patents (OSTI)

A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

Gangwal, S.; Jothimurugesan, K.

1999-07-27T23:59:59.000Z

25

Attrition Resistant Iron-Based Fischer-Tropsch Catalysts  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRS) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modem coal gasifiers. This is because in addition to reasonable F-T activity, the FT catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.

Jothimurugesan, K. [Hampton Univ., VA (United States). Dept. of Chemical Engineering; Goodwin, J.G. [Univ. of Pittsburgh, PA (United States). Chemical and Petroleum Engineering Dept.; Spivey, J.J.; Gangwal, S.K. [Research Triangle Inst., NC (United States)

1997-03-26T23:59:59.000Z

26

Catalytic reforming catalyst  

Science Conference Proceedings (OSTI)

An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

Buss, W.C.; Kluksdahl, H.E.

1980-12-09T23:59:59.000Z

27

Researching Fe catalyst suitable for CO{sub 2}-containing syngas for Fischer-Tropsch synthesis  

Science Conference Proceedings (OSTI)

Fischer-Tropsch (FT) synthesis is a technology to produce liquid fuels from coal, natural gas, and biomass as an alternate to crude oil. However, the quantity of emitted CO{sub 2} from the FT process consisting of syngas preparation, FT synthesis, and product workup is one of the serious disadvantages of FT process. The conversion of CO{sub 2} into hydrocarbons is one of the promising methods to decrease CO{sub 2} emissions. Effects of promoter addition on the activity of precipitated Fe catalysts for the conversion of CO{sub 2} were studied using pure CO{sub 2} and CO{sub 2}-containing syngas feeds. The results suggested that CO{sub 2} can be activated by suitable promoter(s) for hydrocarbon synthesis at low temperature. Low K content is suitable for increasing hydrocarbon yield. The Fe catalysts promoted by equal Zn and Cu have higher CO and CO{sub 2} conversion and decreased CH{sub 4} selectivity. 36 refs., 7 figs., 3 tabs.

Wensheng Ning; Naoto Koizumi; Muneyoshi Yamada [Zhejiang University of Technology, Hangzhou (China). College of Chemical Engineering and Materials Science

2009-09-15T23:59:59.000Z

28

NETL: News Release - DOE Seeks Cost-Shared Research Proposals to Remove  

NLE Websites -- All DOE Office Websites (Extended Search)

March 20, 2000 March 20, 2000 DOE Seeks Cost-Shared Research Proposals to Remove Mercury From Coal-Fired Power Plants With the Environmental Protection Agency expected to decide in December whether to regulate mercury emissions from coal-burning boilers, the U.S. Department of Energy has kicked off a new effort to develop more affordable pollution control technologies that can remove mercury from power plant flue gases. The Energy Department, through its National Energy Technology Laboratory, has issued a solicitation offering up to $13 million over three years for industry proposals on cost-cutting mercury-control methods for coal-based power systems. Currently no technology exists that can uniformly control mercury from power plant flue gas emissions. The effectiveness of existing flue gas emission controls in removing mercury can vary considerably from plant to plant, or even from boiler to boiler. With today's technologies, mercury removal can range from essentially no control to as high as 90 percent.

29

Information Technology Solutions Designer Catalysts for ...  

petroleum industry’s “workhorse” catalysts for upgrading heavy petroleum feed stocks and removing sulfur, nitrogen and other pollutants from fuels.

30

Program on Technology Innovation: Bench-Scale Evaluation of an Ammonia Slip Destruction Catalyst at Intermediate and Post SCR Reacto r Conditions  

Science Conference Proceedings (OSTI)

Reducing ammonia slip from selective catalytic reduction (SCR) systems may allow unit operators to maintain or increase NOx removal efficiencies by increasing reagent flow rates without affecting downstream equipment or ash contamination. This research project is studying the performance of a near-commercial ammonia destruction catalyst using a gas-fired bench-scale reactor. A test program was designed to evaluate the catalyst at different NH3 to NOx ratios, flue gas temperatures, and catalyst volumes. C...

2011-06-21T23:59:59.000Z

31

ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H2 ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. A catalyst with 12 wt % binder silica was found to have the highest attrition resistance. F-T reaction studies over 100 hours in a fixed-bed reactor showed that this catalyst maintained around 95 % CO conversion with a methane selectivity of less than 7 wt % and a C5 + selectivity of greater than 73 wt %. The effect of adding precipitated silica from 0 to 20 parts by weight to this catalyst (containing 12 wt % binder silica) was also studied. Addition of precipitated silica was found to be detrimental to attrition resistance and resulted in increased methane and reduced wax formation. An HPR series of proprietary catalysts was prepared to further improve the attrition resistance. Based on the experience gained, a proprietary HPR-43 catalyst has been successfully spray dried in 500 g quantity. This catalyst showed 95 % CO conversion over 125 h and had less than 4 % methane selectivity. Its attrition resistance was one of the highest among the catalyst tested.

James G. Goodwin, Jr.; James J. Spivey; K. Jothimurugesan; Santosh K. Gangwal

1999-03-29T23:59:59.000Z

32

Diesel Fuel Sulfur Effects on the Performance of Diesel Oxidation Catalysts  

DOE Green Energy (OSTI)

Research focus: - Impact of sulfur on: Catalyst performance; Short term catalyst durability. This presentation summarizes results from fresh catalyst performance evaluations - WVU contracted to conduct DOC and Lean NOx catalyst testing for DECSE DECSE program. (experimental details discussed previously)

Whitacre, Shawn D.

2000-08-20T23:59:59.000Z

33

IMPROVED PROCESSES TO REMOVE NAPHTHENIC ACIDS  

SciTech Connect

In the first year of this project, we have established our experimental and theoretical methodologies for studies of the catalytic decarboxylation process. We have developed both glass and stainless steel micro batch type reactors for the fast screening of various catalysts with reaction substrates of model carboxylic acid compounds and crude oil samples. We also developed novel product analysis methods such as GC analyses for organic acids and gaseous products; and TAN measurements for crude oil. Our research revealed the effectiveness of several solid catalysts such as NA-Cat-1 and NA-Cat-2 for the catalytic decarboxylation of model compounds; and NA-Cat-5{approx}NA-Cat-9 for the acid removal from crude oil. Our theoretical calculations propose a three-step concerted oxidative decarboxylation mechanism for the NA-Cat-1 catalyst.

Aihua Zhang; Qisheng Ma; William A. Goddard; Yongchun Tang

2004-04-28T23:59:59.000Z

34

Oxyhydrochlorination catalyst  

DOE Patents (OSTI)

An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

Taylor, Charles E. (Pittsburgh, PA); Noceti, Richard P. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

35

Attrition resistant catalysts for slurry-phase Fischer-Tropsch process  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T because they are relatively inexpensive and possess reasonable activity for F-T synthesis (FTS). Their most advantages trait is their high water-gas shift (WGS) activity compared to their competitor, namely cobalt. This enables Fe F-T catalysts to process low H{sub 2}/CO ratio synthesis gas without an external shift reaction step. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, make the separation of catalyst from the oil/wax product very difficult if not impossible, an d result in a steady loss of catalyst from the reactor. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance.

K. Jothimurugesan

1999-11-01T23:59:59.000Z

36

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Catalysis is the key fundamental ingredient to convert elemental mercury in coal-fired power stations into its oxidized forms that are more easily captured by sorbents, ESPs, baghouses, and wet scrubbers, whether the catalyst be unburned carbon (UBC) in the ash or vanadium pentoxide in SCR catalysts. This project has investigated several different types of catalysts that enhance mercury oxidation in several different ways. The stated objective of this project in the Statement of Objectives included testing duct-injection catalysts, catalyst-sorbent hybrids, and coated low-pressure-drop screens. Several different types of catalysts were considered for duct injection, including different forms of iron and carbon. Duct-injection catalysts would have to be inexpensive catalysts, as they would not be recycled. Iron and calcium had been shown to catalyze mercury oxidation in published bench-scale tests. However, as determined from results of an on-going EPRI/EPA project at Southern Research, while iron and calcium did catalyze mercury oxidation, the activity of these catalysts was orders of magnitude below that of carbon and had little impact in the short residence times available for duct-injected catalysts or catalyst-sorbent hybrids. In fact, the only catalyst found to be effective enough for duct injection was carbon, which is also used to capture mercury and remove it from the flue gas. It was discovered that carbon itself is an effective catalyst-sorbent hybrid. Bench-scale carbon-catalyst tests were conducted, to obtain kinetic rates of mercury adsorption (a key step in the catalytic oxidation of mercury by carbon) for different forms of carbon. All carbon types investigated behaved in a similar manner with respect to mercury sorption, including the effect of temperature and chlorine concentration. Activated carbon was more effective at adsorbing mercury than carbon black and unburned carbon (UBC), because their internal surface area of activated carbon was greater. Catalyst coating of low-pressure-drop screens was of particular interest as this project was being developed. However, it was discovered that URS was already heavily involved in the pursuit of this same technology, being funded by DOE, and reporting significant success. Hence, testing of SCR catalysts became a major focus of the project. Three different commercial SCR catalysts were examined for their ability to oxidize mercury in simulated flue-gas. Similar performance was observed from each of the three commercial catalysts, both in terms of mercury oxidation and SO{sub 3} generation. Ammonia injection hindered mercury oxidation at low HCl concentrations (i.e., {approx}2 ppmv), yet had little impact on mercury oxidation at higher HCl concentrations. On the other hand, SO{sub 2} oxidation was significantly reduced by the presence of ammonia at both low and high concentrations of HCl.

Thomas K. Gale

2006-06-30T23:59:59.000Z

37

DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS  

SciTech Connect

Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. Evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with methane. Since the replacement of ammonia by methane is commercially very attractive, in this project, the effect of promoters on the activity and selectivity of copper oxide/cerium oxide-based catalysts and the reaction mechanism for the SCR with methane was investigated. Unpromoted and promoted catalysts were investigated for their SCR activity with methane in a microreactor setup and also, by the temperature-programmed desorption (TPD) technique. The results from the SCR experiments indicated that manganese is a more effective promoter than the other metals (Rh, Li, K, Na, Zn, and Sn) for the supported copper oxide-ceria catalysts under study. The effectiveness of the promoter increased with the increase in Ce/Cu ratio. Among the catalysts tested, the Cu1Ce3 catalyst promoted with 1 weight % Mn was found to be the best catalyst for the SCR of NO with methane. This catalyst was subjected to long-term testing at the facilities of our industrial partner TDA Research. TDA report indicated that the performance of this catalyst did not deteriorate during 100 hours of operation and the activity and selectivity of the catalyst was not affected by the presence of SO{sub 2}. The conversions obtained by TDA were significantly lower than those obtained at Hampton University due to the transport limitations on the reaction rate in the TDA reactor, in which 1/8th inch pellets were used while the Hampton University reactor contained 250-425-{micro}m catalyst particles. The selected catalyst was also tested at the TDA facilities with high-sulfur heavy oil as the reducing agent. Depending on the heavy oil flow rate, up to 100% NO conversions were obtained. The temperature programmed desorption studies a strong interaction between manganese and cerium. Presence of manganese not only enhanced the reduction rate of NO by methane, but also significantly improved the N{sub 2} selectivity. To increase the activity of the Mn-promoted catalyst, the manganese content of the catalyst need to be optimized and different methods of catalyst preparation and different reactor types need to be investigated to lower the transport limitations in the reactor.

Ates Akyurtlu; Jale F. Akyurtlu

2003-11-30T23:59:59.000Z

38

Novel catalyst for selective NOx reduction using hydrocarbons ...  

This invention discloses a catalyst and process for removing nitrogen oxides from exhaust streams under lean burn conditions using hydrocarbons as the reductant.

39

Photo-oxidation catalysts  

DOE Patents (OSTI)

Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

2009-07-14T23:59:59.000Z

40

Shape-selective catalysts for Fischer-Tropsch chemistry : iron-containing particulate catalysts. Activity report : January 1, 2001 - December 31, 2004.  

DOE Green Energy (OSTI)

Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry--specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It is desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The goal is to produce shape-selective catalysts that have the potential to limit the formation of longchain products and yet retain the active metal sites in a protected 'cage'. This cage also restricts their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. This activity report centers upon this first stage of experimentation with particulate FT catalysts. (For reference, a second experimental stage is under way to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes.) To date, experimentation has centered upon the evaluation of a sample of iron-based, spray-dried catalyst prepared by B.H. Davis of the Center of Applied Energy Research (CAER) and samples of his catalyst onto which inorganic 'shells' were deposited. The reference CAER catalyst contained a high level of dispersed fine particles, a portion of which was removed by differential settling. Reaction conditions have been established using a FT laboratory unit such that reasonable levels of CO conversion can be achieved, where therefore a valid catalyst comparison can be made. A wide range of catalytic activities was observed with SiO{sub 2}-coated FT catalysts. Two techniques were used for SiO{sub 2}coating. The first involved a caustic precipitation of SiO{sub 2} from an organo-silicate onto the CAER catalyst. The second was the acidic precipitation of an organo-silicate with aging to form fractal particles that were then deposited onto the CAER catalyst. Several resulting FT catalysts were as active as the coarse catalyst on which they were prepared. The most active ones were those with the least amount of coating, namely about 2.2 wt% SiO{sub 2}. In the case of the latter acid technique, the use of HCl and HNO{sub 3} was much more effective than that of H{sub 2}SO{sub 4}. Scanning electron microscopy (SEM) was used to observe and analyze as-received and treated FT catalysts. It was observed that (1) spherical particles of CAER FT catalyst were made up of agglomerates of particles that were, in turn, also agglomerates; (2) the spray drying process of CAER apparently concentrated the Si precursor at the surface during drying; (3) while SEM pointed out broad differences in the appearance of the prepared catalyst particles, there was little indication that the catalysts were being uniformly coated with a cage-like protective surface, with perhaps the exception of HNO{sub 3}-precipitated catalyst; and (4) there was only a limited penetration of carbon (i.e., CO) into the FT catalyst during the conditioning and FT reaction steps.

Cronauer, D.; Chemical Engineering

2006-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mixed Alcohol Synthesis Catalyst Screening  

DOE Green Energy (OSTI)

National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

Gerber, Mark A.; White, James F.; Stevens, Don J.

2007-09-03T23:59:59.000Z

42

ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. A catalyst with 12 wt % binder silica was found to have the highest attrition resistance. F-T reaction studies over 100 hours in a fixed-bed reactor showed that this catalyst maintained around 95 % CO conversion with a methane selectivity of less than 7 wt % and a C{sub 5}{sup +} selectivity of greater than 73 wt %. The effect of adding precipitated silica from 0 to 20 parts by weight to this catalyst (containing 12 wt % binder silica) was also studied. Addition of precipitated silica was found to be detrimental to attrition resistance and resulted in increased methane and reduced wax formation.

JAMES G. GOODWIN, JR.; JAMES J. SPIVEY; K. JOTHIMURUGESAN; SANTOSH K. GANGWAL

1998-09-17T23:59:59.000Z

43

Catalysts for oxidation of mercury in flue gas  

DOE Patents (OSTI)

Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2010-08-17T23:59:59.000Z

44

Thief Carbon Catalyst for Oxidation of Mercury in Effluent Stream  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Catalyst for Oxidation of Mercury in Effluent Carbon Catalyst for Oxidation of Mercury in Effluent Stream Contact NETL Technology Transfer Group techtransfer@netl.doe.gov January 2012 Significance * Oxidizes heavy metal contaminants, especially mercury, in gas streams * Uses partially combusted coal ("Thief" carbon) * Yields an inexpensive catalyst * Cheap enough to be a disposable catalyst * Cuts long-term costs * Simultaneously addresses oxidation and adsorption issues Applications * Any process requiring removal of heavy

45

Thief carbon catalyst for oxidation of mercury in effluent stream  

DOE Patents (OSTI)

A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2011-12-06T23:59:59.000Z

46

Stabilization of Nickel Metal Catalysts for Aqueous Processing ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Stabilization of Nickel Metal Catalysts for Aqueous Processing Systems. ...

47

Catalyst activator  

DOE Patents (OSTI)

A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

McAdon, Mark H. (Midland, MI); Nickias, Peter N. (Midland, MI); Marks, Tobin J. (Evanston, IL); Schwartz, David J. (Lake Jackson, TX)

2001-01-01T23:59:59.000Z

48

Catalyst regeneration apparatus with radial flow distribution  

Science Conference Proceedings (OSTI)

Apparatus is described for regenerating spent hydrocarbon conversion catalyst. Catalyst particles in a vertically-elongated movable tapered bed are contacted with a hot oxygen-containing gas stream in order to remove, by means of combustion, coke which accumulated on the catalyst particles while they were used in a hydrocarbon conversion zone. Catalyst moves downward under the influence of gravity. The catalyst bed is tapered such that the thickness of the bed, in a dimension which is transverse to the direction of catalyst movement, varies from a minimum at the top of the tapered bed to a maximum at the bottom of the tapered bed. Gas passes through the tapered bed in a direction which is substantially transverse to the direction of catalyst movement. Substantially, all of the catalyst in the bed is in contact with the flowing gas. The variation in bed thickness causes a varying gas flow rate through the bed, from a maximum flow rate at the top of the tapered bed to a minimum flow rate at the bottom of the tapered bed and reduces the time that catalyst is exposed to high temperature gases. This flow pattern results in the delivery of oxygen in a manner which more closely matches the oxygen requirement for combustion at each point in the tapered bed. Advantages of the invention include increased coke burning capacity and longer catalyst life. Catalytic reforming is an example of a hydrocarbon conversion process in which the invention may be advantageously employed. 9 figs.

Sechrist, P.A.; Koves, W.J.

1994-01-11T23:59:59.000Z

49

More Economical Sulfur Removal for Fuel Processing Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

enabled TDA to develop and commercialize its direct oxidation process-a simple, catalyst-based system for removing sulfur from natural gas and petroleum-that was convenient and economical enough for smaller fuel processing plants to use. TDA Research, Inc. (TDA) of Wheat Ridge, CO, formed in 1987, is a privately-held R&D company that brings products to market either by forming internal business

50

Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility  

SciTech Connect

A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

2012-09-30T23:59:59.000Z

51

Nano-Structured Nobel Metal Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Nobel Metal Catalysts Nobel Metal Catalysts for Hydrocarbon Reforming Opportunity Research is active on the patent pending technology, titled "Nano- Structured Nobel Metal Catalysts Based on Hexametallate Architecture for the Reforming of Hydrocarbon Fuels." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Methods for generating synthesis gas from hydrocarbon feedstocks routinely involve the use of a catalyst-a material that speeds up the reaction, but itself is not consumed-to make this process economically feasible. Sulfur, higher hydrocarbons, and olefins present a major technical challenge since these components can deactivate conventional

52

Nuclear fuels technologies: Thermally induced gallium removal system (TIGRS), fiscal year 1998 research and development test plan  

SciTech Connect

This document details the research and development (R and D) activities that will be conducted in Fiscal Year 1998 (FY98) by the Thermally Induced Gallium Removal System (TIGRS) team for the Department of Energy Office of Fissile Materials Disposition. This work is a continuation and extension of experimental activities that have been conducted in support of using weapons-derived plutonium in the fabrication of mixed-oxide (MOX) nuclear fuel for reactor-based plutonium disposition. The ultimate purpose of this work is to demonstrate adequate Thermally Induced Gallium Removal with a prototypic system. This Test Plan presents more than the FY98 R and D efforts in order to frame the Task in its entirety. To achieve the TIGRS Program objectives, R and D activities during the next two years will be focused on (1) process development leading to a prototypic TIGRS design, and (2) prototypic TIGRS design and testing leading to and including a prototypic demonstration of TIGRS operation. Both the process development and system testing efforts will consist of a series of surrogate-based cold tests and plutonium-based hot tests. Some of this testing has already occurred and will continue into FY99.

Buksa, J.J.; Butt, D.P.; Chidester, K.; DeMuth, S.F.; Havrilla, G.J.; James, C.A.; Kolman, D.G.

1997-12-24T23:59:59.000Z

53

Solid Catalyst – Alkylation  

This is a method used to reactivate solid/liquid catalysts used in INL’s super critical process to produce alkylates. The method brings the catalyst ...

54

Single-layer transition metal sulfide catalysts  

SciTech Connect

Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

Thoma, Steven G. (Albuquerque, NM)

2011-05-31T23:59:59.000Z

55

Single-layer transition metal sulfide catalysts  

DOE Patents (OSTI)

Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

Thoma, Steven G. (Albuquerque, NM)

2011-05-31T23:59:59.000Z

56

Geothermal hydrogen sulfide removal  

DOE Green Energy (OSTI)

UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

Urban, P.

1981-04-01T23:59:59.000Z

57

DYNAMOMETER EVALUATION OF PLASMA-CATALYST FOR DIESEL NOX REDUCTION  

DOE Green Energy (OSTI)

A three-stage plasma-catalyst system was developed and tested on an engine dynamometer. Previous laboratory testing suggested high NOx efficiency could be obtained. With hexene reductant added to the exhaust, over 90% NOx reduction was observed. However, with diesel or Fischer-Tropsch reductant the catalyst efficiency rapidly dropped off. Heating the catalyst in air removed brown deposit from the surface and restored conversion efficiency. Following the engine tests, the used catalysts were evaluated. BET surface area decreased, and TPD revealed significant storage. This storage appears to be partly unburned diesel fuel that can be removed by heating to around 250-300 C, and partly hydrocarbons bonded to the surface that remain in place until 450-500 C. Laboratory testing with propene reductant demonstrated that the catalyst regains efficiency slowly even when operating temperature does not exceed 300 C. This suggests that control strategies may be able to regenerate the catalyst by occasional moderate heating.

Hoard, J; Schmieg, S; Brooks, D; Peden, C; Barlow, S; Tonkyn, R

2003-08-24T23:59:59.000Z

58

Electrochemical catalyst recovery method  

DOE Patents (OSTI)

A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

Silva, Laura J. (Richland, WA); Bray, Lane A. (Richland, WA)

1995-01-01T23:59:59.000Z

59

Electrochemical catalyst recovery method  

DOE Patents (OSTI)

A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

Silva, L.J.; Bray, L.A.

1995-05-30T23:59:59.000Z

60

Nanostructured Basic Catalysts: Opportunities for Renewable Fuels  

SciTech Connect

This research studied and developed novel basic catalysts for production of renewable chemicals and fuels from biomass. We focused on the development of unique porous structural-base catalysts zeolites. These catalysts were compared to conventional solid base materials for aldol condensation, that were being commercialized for production of fuels from biomass and would be pivotal in future biomass conversion to fuels and chemicals. Specifically, we had studied the aldolpyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our research has indicated that the base strength of framework nitrogen in nitrogen substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

Conner, William C; Huber, George; Auerbach, Scott

2009-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Catalyst for hydrotreating carbonaceous liquids  

DOE Patents (OSTI)

A catalyst for denitrogenating and desulfurating carbonaceous liquid such as solvent refined coal includes catalytic metal oxides impregnated within a porous base of mostly alumina with relatively large pore diameters, surface area and pore volume. The base material includes pore volumes of 0.7-0.85 ml/g, surface areas of 200-350 m.sup.2 /g and pore diameters of 85-200 Angstroms. The catalytic metals impregnated into these base materials include the oxides of Group VI metals, molybdenum and tungsten, and the oxides of Group VIII metals, nickel and cobalt, in various combinations. These catalysts and bases in combination have effectively promoted the removal of chemically combined sulfur and nitrogen within a continuous flowing mixture of carbonaceous liquid and hydrogen gas.

Berg, Lloyd (Bozeman, MT); McCandless, Frank P. (Bozeman, MT); Ramer, Ronald J. (Idaho Falls, ID)

1982-01-01T23:59:59.000Z

62

Tungsten Cathode Catalyst for PEMFC  

DOE Green Energy (OSTI)

Final report for project to evaluate tungsten-based catalyst as a cathode catalyst for PEM cell applications.

Joel B. Christian; Sean P. E. Smith

2006-09-22T23:59:59.000Z

63

Glossary Term - Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Bohr Radius Previous Term (Bohr Radius) Glossary Main Index Next Term (Ceres) Ceres Catalyst A catalyst is a substance that increases the speed of a chemical reaction without being...

64

Catalyst Management Planning  

Science Conference Proceedings (OSTI)

Catalyst used in selective catalytic reduction (SCR) systems for NOx control in coal-fired power plants is susceptible to deactivation over time due to exposure to trace elements contained in the coal. In order to sustain the levels of NOx reduction needed to comply with regulatory requirements, periodic replacement of the catalyst modules with new or regenerated catalyst is an essential element in operating an SCR system. Catalyst management planning is a process whereby decisions are made about when ca...

2010-12-21T23:59:59.000Z

65

Vanadium catalysts break down biomass for fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. Get Expertise Researcher Susan Hanson Inorganic Isotope & Actinide Chem Email Researcher Ruilian Wu Bioenergy & Environmental Science Email Researcher Louis "Pete" Silks Bioenergy & Environmental Science Email Vanadium is an inexpensive, earth-abundant metal that is well suited for promoting oxidations in air. Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is

66

Model Catalysts: Simulating the Complexities of Heterogeneous Catalysts  

Science Conference Proceedings (OSTI)

Surface-science investigations have contributed significantly to heterogeneous catalysis in the past several decades. Fundamental studies of reactive systems on metal single crystals have aided researchers in understanding the effect of surface structure on catalyst reactivity and selectivity for a number of important reactions. Recently, model systems, consisting of metal clusters deposited on planar oxide surfaces, have facilitated the study of metal particle-size and support effects. These model systems not only are useful for carrying out kinetic investigations, but are also amenable to surface spectroscopic techniques, thus enabling investigations under realistic pressures and at working temperatures. By combining surface-science characterization methods with kinetic measurements under realistic working conditions, researchers are continuing to advance the molecular-level understanding of heterogeneous catalysis and are narrowing he pressure and material gap between model and real-world catalysts.

Gao, Feng; Goodman, D. W.

2012-05-01T23:59:59.000Z

67

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. Three different SCR catalysts are being studied. These are honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts are manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Test methods and experimental procedures were developed for current and future testing. The methods and procedures equalize factors influencing mercury adsorption and oxidation (surface area, catalyst activity, and pore structure) that normally differ for each catalyst type. Initial testing was performed to determine the time necessary for each catalyst to reach surface-adsorption equilibrium. In addition, the fraction of Hg oxidized by each of the SCR catalyst types is being investigated, for a given amount of catalyst and flow rate of mercury and flue gas. The next major effort will be to examine the kinetics of mercury oxidation across the SCR catalysts with respect to changes in mercury concentration and with respect to HCl concentration. Hg-sorption equilibrium times will also be investigated with respect to ammonia concentration in the simulated flue gas.

Jared W. Cannon; Thomas K. Gale

2004-12-31T23:59:59.000Z

68

Hydroprocessing of solvent-refined coal: catalyst-screening results  

SciTech Connect

This report presents the results of screening four catalysts for hydroprocessing a 50 wt% mixture of SRC-I in a prehydrogenated creosote oil using a continuous flow unit. All catalysts employed were nickel-molybdates with varying properties. Reaction conditions were 2000 psi, 8 SCFH of hydrogen, volume hourly space velocity of 0.6 to 1.0 cc of SRC-I/hr/cc of catalyst, and 48 hours at 750/sup 0/F followed by 72 hours at 780/sup 0/F. The results indicate that the Shell 324 catalyst is best for hydrogenation of the feedstock but only marginally better than CB 81-44 for denitrogenation. The CB 81-44 catalyst may be slightly better than Shell 324 for the conversion of the +850/sup 0/F fraction of the feedstock. Desulfurization was uniformly high for all catalysts. Catalysts with a bimodal pore size distribution (i.e., SMR7-6137(1)) appear to be better for denitrogenation than unimodal catalysts (i.e., SMR7-6137(4)) containing the same metals loading. Unimodal catalysts (i.e., Shell 324) with higher metals loadings are comparable to bimodal catalysts (i.e., CB 81-44) containing less metals. The results indicate that pore size distribution and metals loading are important parameters for high activity. Catalysts with a unimodal pore volume distribution are capable of being restored to their original state, while bimodal ones experience a loss in surface area and pore volume and an increase in pellet density. This is attributed to the more efficient use of the interior surface area of the catalyst, which results in higher accumulation of coke and metals. Since coke can be removed via controlled oxidation, the irreversible loss is due to the higher concentrations of metals in the catalyst.

Stiegel, G.J.; Tischer, R.E.; Polinski, L.M.

1982-03-01T23:59:59.000Z

69

NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS  

DOE Green Energy (OSTI)

This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O'Dowd; Dr. Hien Pham; Jian Xu

2001-01-07T23:59:59.000Z

70

Methods of making textured catalysts  

SciTech Connect

A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

Werpy, Todd (West Richland, WA); Frye, Jr., John G. (Richland, WA); Wang, Yong (Richland, WA); Zacher, Alan H. (Kennewick, WA)

2010-08-17T23:59:59.000Z

71

Improving and inventing catalysts with computers  

Science Conference Proceedings (OSTI)

Catalytic aftertreatment emerged as the only promising technology. As no catalyst existed at that time, a new catalyst-process had to be developed. A major industry-wide research effort was mounted which, in the case of General Motors alone involved testing of over 1,500 catalyst formulations, submitted by some 82 prospective catalyst manufacturers, involving over 5,000 General Motors employees, and 22 million test miles before the catalyst was commercialized in the fall of 1974. Computational methods can provide major inroads. Deterministic modeling of kinetics and transport can be carried out with increasingly more detail as computational speed increases. At present, new catalyst design still must proceed through a stage of conceptualization and invention that is not readily modeled. It is driven by experts who successfully employ heuristics (a set of empirical rules gained through time and experience). Through inherently nondeterministic and provisional, heuristics can be addressed computationally with expert or knowledge-based systems. This is one way for the computer to help solve catalyst design problems.

Foley, H.C.; Lowenthal, E.E. (Univ. of Delaware, Newark, DE (United States). Center for Catalytic Science and Technology)

1994-08-01T23:59:59.000Z

72

Selective methane oxidation over promoted oxide catalysts  

DOE Green Energy (OSTI)

Principal accomplishments have been achieved in all three areas of selective catalytic oxidation of methane that have been pursued in this research project. These accomplishments are centered on the development of catalyst systems that produce high space time yields of C{sub 2} hydrocarbon products, formaldehyde, and methanol from methane/air mixtures at moderate temperatures and at ambient pressure. The accomplishments can be summarized as the following: the SO{sub 4}{sup 2{minus}}/SrO/La{sub 2}O{sub 3} catalyst developed here has been further optimized to produce 2 kg of C{sub 2} hydrocarbons/kg catalyst/hr at 550C; V{sub 2}O{sub 5}SiO{sub 2} catalysts have been prepared that produce up to 1.5 kg formaldehyde/kg catalyst/hr at 630C with CO{sub 2} selectivities; and a novel dual bed catalyst system has been designed and tested that produces over 100 g methanol/kg catalyst/hr at 600C.

Klier, K.; Herman, R.G.

1995-06-01T23:59:59.000Z

73

Modeling of selective catalytic reduction (SCR) of nitric oxide with ammonia using four modern catalysts  

E-Print Network (OSTI)

In this work, the steady-state performance of zeolite-based Cu-ZSM-5, vanadium based honeycomb monolith catalysts (V), vanadium-titanium based pillared inter layered clay catalyst (V-Ti PLIC) and vanadium-titanium-tungsten-based honeycomb monolith catalysts (V-Ti-W) was investigated in the selective catalytic reduction process (SCR) for NO removal using NH3 in presence of oxygen. The objective is to obtain the expression that would predict the conversion performance of the catalysts for different values of the SCR process parameters, namely temperature, inlet oxygen concentration and inlet ammonia concentration. The NOx emission, its formation and control methods are discussed briefly and then the fundamentals of the SCR process are described. Heat transfer based and chemical kinetics based SCR process models are discussed and widely used rate order based model are reviewed. Based on the experimental data, regression analysis was performed that gives an expression for predicting the SCR rate for the complete temperature range and the rate order with respect to inlet oxygen and ammonia concentration. The average activation energy for the SCR process was calculated and optimum operating conditions were determined for each of the catalyst. The applicable operating range for the catalyst depends on the NO conversion as well as on the ammonia slip and the N2O and NO2 emission. The regression analysis was repeated for the applicable range and an expression was obtained that can be used to estimate the catalyst performance. For the Cu-ZSM-5, the best performance was observed for 400oC, 660 ppm inlet ammonia concentration and 0.1% inlet oxygen concentration. For the V based honeycomb monolith catalyst, the best performance was observed for 300oC, 264 ppm inlet ammonia concentration and 3% inlet oxygen concentration. For the V-Ti based PLIC catalyst, the best performance was observed for 350oC, 330 ppm inlet ammonia concentration and 3% inlet oxygen concentration. For the V-Ti-W based honeycomb monolith catalyst, the best performance was observed for 300oC, 330 ppm inlet ammonia concentration and 3% inlet oxygen concentration. The conversion performance of all of these catalysts is satisfactory for the industrial application. At the operating conditions listed above, the N2O emission is less than 20 ppm and the NO2 emission is less than 10 ppm. The results were validated by comparing the findings with the similar work by other research groups. The mechanism of SCR process is discussed for each of the catalyst. The probable reactions are listed and adsorption and desorption process are studied. The various mechanisms proposed by the researchers are discussed briefly. It is concluded that V-Ti-W and Cu-ZSM-5 catalyst are very promising for SCR of NOx. The expressions can be used to estimate the conversion performance and can be utilized for optimal design and operation. The expressions relate the SCR rate to the input parameters such as temperature and inlet oxygen and ammonia concentration hence by controlling these parameters desired NOx reduction can be achieved with minimal cost and emission.

Sharma, Giriraj

2004-08-01T23:59:59.000Z

74

NREL Team Creates High-Activity, Durable Platinum Extended Surface Catalyst for Fuel Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Researchers with NREL's Fuel Cell team showed that platinum can replace copper nanowires in such a way that high-surface-area and high-specific-activity catalysts are produced, potentially allowing for lower-cost catalysts.

Not Available

2011-02-01T23:59:59.000Z

75

Nanostructured catalyst supports  

DOE Patents (OSTI)

The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

2012-10-02T23:59:59.000Z

76

Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

of Reforming Hydrocarbon Fuels Using of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts Contact NETL Technology Transfer Group techtransfer@netl.doe.gov May 2012 Opportunity Research is currently active on the technology "Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview This invention discloses a method to reform hydrocarbon fuels using hexa- aluminate catalysts. In general, the method successfully disrupts the forma- tion of carbon that leads to the deactivation of the catalyst, a key element in the reforming of hydrocarbon fuels. When researchers are designing catalysts to reform hydrocarbon fuels, one

77

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal are being performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation correlations will be developed for each catalyst. The contributions of temperature are also being investigated. SO2 oxidation is also being investigated for each test condition.

Thomas K. Gale

2005-12-31T23:59:59.000Z

78

Ion Removal  

INL’s ion removal technology leverages the ability of phosphazene polymers discriminate between water and metal ions, which allows water to pass ...

79

Catalyst for microelectromechanical systems microreactors  

DOE Patents (OSTI)

A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

Morse, Jeffrey D. (Martinez, CA); Sopchak, David A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Reynolds, John G. (San Ramon, CA); Satcher, Joseph H. (Patterson, CA); Gash, Alex E. (Brentwood, CA)

2011-11-15T23:59:59.000Z

80

Catalyst for microelectromechanical systems microreactors  

DOE Patents (OSTI)

A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

Morse, Jeffrey D. (Martinez, CA); Sopchak, David A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Reynolds, John G. (San Ramon, CA); Satcher, Joseph H. (Patterson, CA); Gash, Alex E. (Brentwood, CA)

2010-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Catalysts and method  

DOE Patents (OSTI)

An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

Taylor, Charles E. (Pittsburgh, PA); Noceti, Richard P. (Pittsburgh, PA)

1991-01-01T23:59:59.000Z

82

Uranium-Based Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium-Based Catalysts S. H. Overbury, Cyrus Riahi-Nezhad, Zongtao Zhang, Sheng Dai, and Jonathan Haire Oak Ridge National Laboratory* P.O. Box 2008 Oak Ridge, Tennessee...

83

Epoxidation catalyst and process  

DOE Patents (OSTI)

Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

Linic, Suljo (Ann Arbor, MI); Christopher, Phillip (Ann Arbor, MI)

2010-10-26T23:59:59.000Z

84

Crystalline titanate catalyst supports  

DOE Patents (OSTI)

A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

Anthony, Rayford G. (Bryan, TX); Dosch, Robert G. (Albuquerque, NM)

1993-01-01T23:59:59.000Z

85

Crystalline titanate catalyst supports  

DOE Patents (OSTI)

A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

Anthony, R.G.; Dosch, R.G.

1991-12-31T23:59:59.000Z

86

Crystalline titanate catalyst supports  

DOE Patents (OSTI)

A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

Anthony, R.G.; Dosch, R.G.

1993-01-05T23:59:59.000Z

87

Plasmatron-catalyst system  

DOE Patents (OSTI)

A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

Bromberg, Leslie (Sharon, MA); Cohn, Daniel R. (Chestnut Hill, MA); Rabinovich, Alexander (Swampscott, MA); Alexeev, Nikolai (Moscow, RU)

2007-10-09T23:59:59.000Z

88

Catalyst system comprising a first catalyst system tethered to a supported catalyst  

DOE Patents (OSTI)

The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

Angelici, Robert J. (Ames, IA); Gao, Hanrong (Ames, IA)

1998-08-04T23:59:59.000Z

89

IMPROVED PROCESSES TO REMOVE NAPHTHENIC ACIDS  

Science Conference Proceedings (OSTI)

In the second year of this project, we continued our effort to develop low temperature decarboxylation catalysts and investigate the behavior of these catalysts at different reaction conditions. We conducted a large number of dynamic measurements with crude oil and model compounds to obtain the information at different reaction stages, which was scheduled as the Task2 in our work plan. We developed a novel adsorption method to remove naphthenic acid from crude oil using naturally occurring materials such as clays. Our results show promise as an industrial application. The theoretical modeling proposed several possible reaction pathways and predicted the reactivity depending on the catalysts employed. From all of these studies, we obtained more comprehensive understanding about catalytic decarboxylation and oil upgrading based on the naphthenic acid removal concept.

Aihua Zhang; Qisheng Ma; Kangshi Wang, William A. Goddard, Yongchun Tang

2005-05-05T23:59:59.000Z

90

2012 Long-Term Tracking of Regenerated Selective Catalytic Reduction Catalyst Performance  

Science Conference Proceedings (OSTI)

The use of regenerated selective catalytic reduction (SCR) catalyst has become quite commonplace in the utility industry over the past several years. As a result, a clear understanding of the long-term performance of regenerated catalysts is needed so that informed purchasing decisions can be made and accurate catalyst management plans can be developed. The Electric Power Research Institute (EPRI) and others have evaluated the initial performance of regenerated catalysts in numerous studies, but ...

2012-12-03T23:59:59.000Z

91

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, October 1, 1994--December 31, 1994  

SciTech Connect

This report describes research on the oxidative coupling of methane and catalysts involved in coal gasification. Topics include methane pyrolysis and catalysts, and magnetic properties of the coal gasification catalyst Ca-Ni-K-O system.

Iglesia, E.; Perry, D.L.; Heinemann, H.

1994-12-01T23:59:59.000Z

92

Separation of catalyst from Fischer-Tropsch slurry  

DOE Green Energy (OSTI)

In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by slurring them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation.

White, Curt M. (Pittsburgh, PA); Quiring, Michael S. (Katy, TX); Jensen, Karen L. (Pittsburgh, PA); Hickey, Richard F. (Bethel Park, PA); Gillham, Larry D. (Bartlesville, OK)

1998-10-27T23:59:59.000Z

93

Separation of catalyst from Fischer-Tropsch slurry  

DOE Patents (OSTI)

In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst-free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by mixing them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation. 2 figs.

White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.

1998-10-27T23:59:59.000Z

94

Down-flow moving-bed gasifier with catalyst recycle  

DOE Patents (OSTI)

The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction.

Halow, J.S.

1996-12-31T23:59:59.000Z

95

Down-flow moving-bed gasifier with catalyst recycle  

DOE Patents (OSTI)

The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction.

Halow, John S. (Waynesburg, PA)

1999-01-01T23:59:59.000Z

96

Corrosion protection of reforming equipment during regeneration of the catalyst  

Science Conference Proceedings (OSTI)

The authors discuss the important process of catalytic reforming to produce the basic components of high-octane gasolines and aromatic hydrocarbons in petroleum chemistry. Wide use is made of two-stage oxidative regeneration--coke burning and oxychlorination. This increases the activity of the catalysts. The authors developed a two-stage industrial method of corrosion protection for the low-temperature equipment of catalytic reforming plants during catalyst regeneration. The system is washed, before catalyst regeneration, with an aqueous solution of KLOE-15 in order to remove corrosion products already present. During catalyst regeneration, KLOE-15 and a neutralizing additive are fed in. The method is technically simple and economically effective, and has been introduced in a number of petroleum refineries.

Altsybeeva, A.I.; Andreeva, G.A.; Prasolova, O.N.; Ratner, E.M.; Reshetnikov, S.M.; Teslya, B.M.

1986-01-01T23:59:59.000Z

97

Down-flow moving-bed gasifier with catalyst recycle  

DOE Patents (OSTI)

The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction. 1 fig.

Halow, J.S.

1999-04-20T23:59:59.000Z

98

Program on Technology Innovation: Field Evaluations of Entrained Flow NOx Catalyst Concept  

Science Conference Proceedings (OSTI)

EPRI has been actively evaluating and developing advanced catalyst concepts for NOx reduction that are more effective and have potential in achieving near zero emissions. The concept called NOMERCTM involves the entrained flow of pulverized SCR catalyst for NOx reduction combined with activated carbon injection for removing mercury from the flue gas stream at coal-fired utilities. The entrained flow removal process is a novel concept and has been proven to work in a previous proof of concept test. This r...

2006-03-27T23:59:59.000Z

99

ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS  

SciTech Connect

Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away from fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of FeFT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction.

K. Jothimurugesan; James G. Goodwin, Jr.; Santosh K. Gangwal

1999-10-01T23:59:59.000Z

100

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. The testing was performed at Southern Research's Catalyst Test Facility, a bench-scale reactor capable of simulating gas-phase reactions occurring in coal-fired utility pollution-control equipment. Three different SCR catalysts are currently being studied in this project - honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Methods and procedures for experimental testing continue to be developed to produce the highest quality mercury-oxidation data. Most experiments so far have focused on testing the catalysts in a simulated Powder River Basin (PRB) flue-gas environment, which contains lower sulfur and chlorine than produced by other coals. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal will be performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation graph will be developed for each catalyst. The contributions of temperature and later sulfur will be investigated after this is complete. Also, last quarter's tests showed a potential linear relationship between SO3 conversion and mercury oxidation. As a result, SO3 samples will be taken more frequently to investigate each catalyst's ability to selectively oxidize mercury.

Alex J. Berry; Thomas K. Gale

2005-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Supported organoiridium catalysts for alkane dehydrogenation  

DOE Patents (OSTI)

Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

2013-09-03T23:59:59.000Z

102

Long-Term Testing of Rhodium-Based Catalysts for Mixed Alcohol Synthesis – 2013 Progress Report  

SciTech Connect

The U.S. Department of Energy’s Pacific Northwest National Laboratory has been conducting research since 2005 to develop a catalyst for the conversion of synthesis gas (carbon monoxide and hydrogen) into mixed alcohols for use in liquid transportation fuels. Initially, research involved screening possible catalysts based on a review of the literature, because at that time, there were no commercial catalysts available. The screening effort resulted in a decision to focus on catalysts containing rhodium and manganese. Subsequent research identified iridium as a key promoter for this catalyst system. Since then, research has continued to improve rhodium/manganese/iridium-based catalysts, optimizing the relative and total concentrations of the three metals, examining baseline catalysts on alternative supports, and examining effects of additional promoters. Testing was continued in FY 2013 to evaluate the performance and long-term stability of the best catalysts tested to date. Three tests were conducted. A long-term test of over 2300 hr duration at a single set of operating conditions was conducted with the best carbon-supported catalyst. A second test of about 650 hr duration at a single set of operating conditions was performed for comparison using the same catalyst formulation on an alternative carbon support. A third test of about 680 hr duration at a single set of operating conditions was performed using the best silica-supported catalyst tested to date.

Gerber, Mark A.; Gray, Michel J.; Thompson, Becky L.

2013-09-23T23:59:59.000Z

103

Partial oxidation catalyst  

DOE Patents (OSTI)

A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

Krumpelt, Michael (Naperville, IL); Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Doshi, Rajiv (Downers Grove, IL)

2000-01-01T23:59:59.000Z

104

Catalyst, method of making, and reactions using the catalyst  

DOE Patents (OSTI)

The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

2002-08-27T23:59:59.000Z

105

Catalyst, method of making, and reactions using the catalyst  

DOE Patents (OSTI)

The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

2009-03-03T23:59:59.000Z

106

Catalyst, Method Of Making, And Reactions Using The Catalyst  

DOE Patents (OSTI)

The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

Tonkovich, Anna Lee Y. (Pasco, WA); Wang, Yong (Richland, WA); Gao, Yufei (Kennewick, WA)

2004-07-13T23:59:59.000Z

107

Intermittency on catalysts  

E-Print Network (OSTI)

The present paper provides an overview of results obtained in four recent papers by the authors. These papers address the problem of intermittency for the Parabolic Anderson Model in a \\emph{time-dependent random medium}, describing the evolution of a ``reactant'' in the presence of a ``catalyst''. Three examples of catalysts are considered: (1) independent simple random walks; (2) symmetric exclusion process; (3) symmetric voter model. The focus is on the annealed Lyapunov exponents, i.e., the exponential growth rates of the successive moments of the reactant. It turns out that these exponents exhibit an interesting dependence on the dimension and on the diffusion constant.

J. Gaertner; F. den Hollander; G. Maillard

2007-06-08T23:59:59.000Z

108

Intermittency on catalysts  

E-Print Network (OSTI)

The present paper provides an overview of results obtained in four recent papers by the authors. These papers address the problem of intermittency for the Parabolic Anderson Model in a \\emph{time-dependent random medium}, describing the evolution of a 'reactant'' in the presence of a ``catalyst''. Three examples of catalysts are considered: (1) independent simple random walks; (2) symmetric exclusion process; (3) symmetric voter model. The focus is on the annealed Lyapunov exponents, i.e., the exponential growth rates of the successive moments of the reactant. It turns out that these exponents exhibit an interesting dependence on the dimension and on the diffusion constant.

Gärtner, J; Maillard, G

2007-01-01T23:59:59.000Z

109

Building Technologies Office: Appliances Research  

NLE Websites -- All DOE Office Websites (Extended Search)

team conducts research into residential and commercial appliances. By partnering with industry, researchers, and other stakeholders, the Department of Energy acts as a catalyst...

110

Process of making supported catalyst  

DOE Patents (OSTI)

Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.

Schwarz, James A. (Fayetteville, NY); Subramanian, Somasundaram (Melvindale, MI)

1992-01-01T23:59:59.000Z

111

WILDLAND ROAD REMOVAL: RESEARCH NEEDS  

E-Print Network (OSTI)

Service. 2003. Road decommissioning monitoring report 2002.management agencies are decommissioning roads to mitigateto ten percent by decommissioning up to 160,000 kilometers

Switalski, T. Adam; Bissonette, John A.; DeLuca, Tom H.; Luce, Charles H.; Madej, Mary Ann

2003-01-01T23:59:59.000Z

112

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

DOE Green Energy (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained at 116-129 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is

K. C. Kwon

2007-09-30T23:59:59.000Z

113

Zinc sulfide liquefaction catalyst  

DOE Patents (OSTI)

A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

Garg, Diwakar (Macungie, PA)

1984-01-01T23:59:59.000Z

114

Catalysts for hydrocarbon conversion  

Science Conference Proceedings (OSTI)

Catalyst, particularly useful in catalytic reforming and for producing highly pure aromatic hydrocarbons, comprising an alumina carrier and containing, expressed in proportion of the weight of the alumina carrier: 005 to 1% of platinum 01 to 4% of gallium, indium or thallium 01 to 2% of tungsten, and 1 to 10% of halogen.

Le P. J.; Malmaison, R.; Marcilly, C.; Martino, G.; Miquel, J.

1980-08-12T23:59:59.000Z

115

Transformation of Sulfur Species during Steam/Air Regeneration on a Ni Biomass Conditioning Catalyst  

DOE Green Energy (OSTI)

Sulfur K-edge XANES identified transformation of sulfides to sulfates during combined steam and air regeneration on a Ni/Mg/K/Al2O3 catalyst used to condition biomass-derived syngas. This catalyst was tested over multiple reaction/regeneration/reduction cycles. Postreaction catalysts showed the presence of sulfides on H2S-poisoned sites. Although H2S was observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst, and a transformation from sulfides to sulfates was observed. Following the oxidative regeneration, the subsequent H2 reduction led to a partial reduction of sulfates back to sulfides, indicating the difficulty and sensitivity in achieving complete sulfur removal during regeneration for biomass-conditioning catalysts.

Yung, M. M.; Cheah, S.; Magrini-Bair, K.; Kuhn, J. N.

2012-07-06T23:59:59.000Z

116

Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis -- 2011 Progress Report  

SciTech Connect

Pacific Northwest National Laboratory has been conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). In recent years, this research has primarily involved the further development of catalysts containing rhodium and manganese based on the results of earlier catalyst screening tests. Research during FY 2011 continued to examine the performance of RhMn catalysts on alternative supports including selected zeolite, silica, and carbon supports. Catalyst optimization continued using both the Davisil 645 and Merck Grade 7734 silica supports. Research also was initiated in FY 2011, using the both Davisil 645 silica and Hyperion CS-02C-063 carbon supports, to evaluate the potential for further improving catalyst performance, through the addition of one or two additional metals as promoters to the catalysts containing Rh, Mn, and Ir.

Gerber, Mark A.; Gray, Michel J.; Albrecht, Karl O.; Rummel, Becky L.

2011-10-01T23:59:59.000Z

117

Sulfur condensation in Claus catalyst  

SciTech Connect

The heterogeneous reactions in which catalyst deactivation by pore plugging occur are listed and include: coke formation in petroleum processing, especially hydrocracking and hydrodesulfurization catalysts; steam reforming and methnation catalysts; ammonia synthesis catalyst; and automobile exhause catalysts. The authors explain how the Claus process converts hydrogen sulfide produced by petroleum desulfurization units and gas treatment processes into elemental sulfur and water. More than 15 million tons of sulfur are recovered annually by this process. Commercial Claus plants appear to operate at thermodynamic equilibrium. Depending on the H2S content of the feed and the number of reactors, total H2S conversion to elemental sulfur can exceed 95%.

Schoffs, G.R.

1985-02-01T23:59:59.000Z

118

Molybdenum sulfide/carbide catalysts  

DOE Patents (OSTI)

The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

Alonso, Gabriel (Chihuahua, MX); Chianelli, Russell R. (El Paso, TX); Fuentes, Sergio (Ensenada, MX); Torres, Brenda (El Paso, TX)

2007-05-29T23:59:59.000Z

119

Project Catalyst | Open Energy Information  

Open Energy Info (EERE)

Project Catalyst Project Catalyst Jump to: navigation, search Name Project Catalyst Agency/Company /Organization ClimateWorks, European Climate Foundation Sector Climate, Energy, Land Focus Area Energy Efficiency, Forestry Website http://www.project-catalyst.in References Project Catalyst[1] Project Catalyst Screenshot Contents 1 About 2 Resources 2.1 Tools 2.2 Programs 3 References About "Project Catalyst is an initiative of the ClimateWorks Foundation. ClimateWorks is a global, nonprofit philanthropic foundation headquartered in San Francisco, California with a network of affiliated foundations in China, India, the US, and the European Union. The ClimateWorks family of organizations focus on enacting policies that reduce greenhouse gas emissions through three general policy areas: energy efficiency standards,

120

Nanoporous Au: an unsupported pure gold catalyst?  

Science Conference Proceedings (OSTI)

The unique properties of gold especially in low temperature CO oxidation have been ascribed to a combination of various effects. In particular, particle sizes below a few nm and specific particle-support interactions have been shown to play important roles. On the contrary, recent reports revealed that monolithic nanoporous gold (npAu) prepared by leaching a less noble metal, such as Ag, out of the corresponding alloy can also exhibit remarkably high catalytic activity for CO oxidation, even though no support is present. Therefore, it was claimed to be a pure and unsupported gold catalyst. We investigated npAu with respect to its morphology, surface composition and catalytic properties. In particular, we studied the reaction kinetics for low temperature CO oxidation in detail taking mass transport limitation due to the porous structure of the material into account. Our results reveal that Ag, even if removed almost completely from the bulk, segregates to the surface resulting in surface concentrations of up to 10 at%. Our data suggest that this Ag plays a significant role in activation of molecular oxygen. Therefore, npAu should be considered as a bimetallic catalyst rather than a pure Au catalyst.

Wittstock, A; Neumann, B; Schaefer, A; Dumbuya, K; Kuebel, C; Biener, M; Zielasek, V; Steinrueck, H; Gottfried, M; Biener, J; Hamza, A; B?umer, M

2008-09-04T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Oxygen Atoms Display Novel Behavior on Common Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

11, 2008 11, 2008 Oxygen Atoms Display Novel Behavior on Common Catalyst Like waltzing dancers, the two atoms of an oxygen molecule usually behave identically when they separate on the surface of a catalyst. However, new research from the Environmental Molecular Sciences Laboratory reveals that on a particular catalyst, the oxygen atoms act like a couple dancing the tango: one oxygen atom plants itself while the other shimmies away, probably with energy partially stolen from the stationary one. Scientists from EMSL and Pacific Northwest National Laboratory discovered this unanticipated behavior while studying how oxygen interacts with reduced titanium oxide, a popular catalyst and a model oxide. Their research began with a slice of titanium oxide crystal, oriented so that titanium and oxygen

122

Mixed Alcohol Synthesis Catalyst Screening 2007 Progress Report  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory (PNNL) and National Renewable Energy Laboratory (NREL) are researching the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is obtaining commercially available mixed alcohol or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. The most promising catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. After a review of the literature in 2006 and conversations with companies that produce catalysts, it was determined that no commercial mixed-alcohol synthesis catalysts were available. One manufacturer supplied a modified methanol catalyst that was tested in the PNNL laboratory-scale system and provided to NREL for further testing. PNNL also prepared and tested the behavior of 10 other catalysts representing the distinct catalyst classes for mixed alcohol syntheses. Based on those results,testing in 2007 focused on the performance of the rhodium-based catalysts. The effects of adding promoters to the rhodium catalysts in addition to the manganese already being used were examined. The iron and rhenium promoters both stood out as achieving higher carbon selectivities , followed by Cu. Iridium and Li, on the other hand, had low carbon selectivity ratios of 0.27 and 0.22, respectively. Although testing of candidate promoters is not complete, it appears that Ir and Li promoters warrant further optimization and possibly combination to further improve STYs and carbon selectivities to C2+ oxygenates. However, using these promoters, it will be necessary to incorporate a separate hydrogenation catalyst to improve the yield of C2+ alcohols with respect to the other oxygenates. Fe, Re, and Cu stand out as possible candidates in this respect, but additional research is needed to examine whether they can be combined with the other promoters on the Rh-based catalyst or need to be optimized on a separate catalyst support that is either physically mixed or used in series with the promoted Rh-based catalyst.

Gerber, Mark A.; White, J. F.; Gray, Michel J.; Stevens, Don J.

2007-11-01T23:59:59.000Z

123

Development of Silica/Vanadia/ Titania Catalysts for Removal of  

E-Print Network (OSTI)

(subbituminous or lignite) coals. Therefore, need exists for a low cost Hg oxidation/capturing process. Activated power plants. However, the incremental cost of Hg control via ACI is estimated to range from $3810. This superior oxidation capability is advantageous to power plants equipped with wet-scrubbers where oxidized Hg

Li, Ying

124

Catalytic partial oxidation of methane to synthesis gas over Ni-based catalysts. 1: Catalyst performance characteristics  

SciTech Connect

The catalytic partial oxidation of methane to synthesis gas was studied over various Ni-based catalysts. It was found that, in contrast to conventional Ni catalysts which show continuous deactivation with time on stream, the Ni/La{sub 2}O{sub 3} catalyst exhibits good activity and excellent stability, using the stoichiometric ratio of CH{sub 4}/O{sub 2} (=2). Kinetic results indicate that the reaction over the Ni/La{sub 2}O{sub 3} catalyst follows mainly the sequence of total oxidation to CO{sub 2} and H{sub 2}O, followed by reforming reactions to synthesis gas, while CO formation via the direct route is observed at very low oxygen partial pressures. Chemisorption and FTIR studies show that the enhanced stability of the Ni/La{sub 2}O{sub 3} catalyst is related to decoration of the Ni crystallites with lanthanum species, primarily oxycarbonates, which favor removal of excess carbon deposition and impart the catalyst its stability characteristics.

Tsipouriari, V.A.; Zhang, Z.; Verykios, X.E. [Univ. of Patras (Greece). Dept. of Chemical Engineering

1998-10-01T23:59:59.000Z

125

Sustainability in Research: Chemistry Researcher Title Respective Activities  

E-Print Network (OSTI)

Synthesis of Biodiesel Using Recyclable Catalyst One of the research areas in the Bennett lab focuses on the synthesis of biodiesel using recyclable catalysts. Dr. Bennett and her undergraduate students use organic bases as recyclable catalysts for the biodiesel reaction while adhering to the Principles of Green

Rose, Annkatrin

126

CATALYSTS FOR HIGH CETANE ETHERS AS DIESEL FUELS  

DOE Green Energy (OSTI)

A tungstena-zirconia (WZ) catalyst has been investigated for coupling methanol and isobutanol to unsymmetrical ethers, i.e. methyl isobutyl ether (MIBE) and compared with earlier studied sulfated-zirconia (SZ) and Nafion-H catalysts. In all cases, the ether synthesis mechanism is a dual site S{sub N}2 process involving competitive adsorption of reactants on proximal acid sites. At low reaction temperatures, methylisobutylether (MIBE) is the predominant product. However, at temperatures >135 C the WZ catalyst is very good for dehydration of isobutanol to isobutene. The surface acid sites of the WZ catalyst and a Nafion-H catalyst were diagnosed by high resolution X-ray photoelectron spectroscopy (XPS) of N 1s shifts after adsorption of amines. Using pyridine, ethylenediamine, and triethylamine, it is shown that WZ has heterogeneous strong Broensted acid sites. Theoretical study located the transition state of the alcohol coupling reaction on proximal Broensted acid sites and accounted well for XPS core-level shifts upon surface acid-base interactions. While computations have not been carried out with WZ, it is shown that the SZ catalyst is a slightly stronger acid than CF{sub 3}SO{sub 3}H (a model for Nafion-H) by 1.3-1.4 kcal/mol. A novel sulfated zirconia catalyst having proximal strong Broensted acid sites was synthesized and shown to have significantly enhanced activity and high selectivity in producing MIBE or isobutene from methanol/isobutanol mixtures. The catalyst was prepared by anchoring 1,2-ethanediol bis(hydrogen sulfate) salt precursor onto zirconium hydroxide, followed by calcination to remove the -(CH{sub 2}CH{sub 2})- bridging residues.

Kamil Klier; Richard G. Herman; Heock-Hoi Kwon; James G. C. Shen; Qisheng Ma; Robert A. Hunsicker; Andrew P. Butler; Scott J. Bollinger

2003-03-01T23:59:59.000Z

127

Binary ferrihydrite catalysts  

DOE Patents (OSTI)

A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

Huffman, G.P.; Zhao, J.; Feng, Z.

1996-12-03T23:59:59.000Z

128

Fluorination process using catalysts  

DOE Patents (OSTI)

A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

Hochel, R.C.; Saturday, K.A.

1983-08-25T23:59:59.000Z

129

Binary ferrihydrite catalysts  

DOE Patents (OSTI)

A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

Huffman, Gerald P. (Lexington, KY); Zhao, Jianmin (Lexington, KY); Feng, Zhen (Lexington, KY)

1996-01-01T23:59:59.000Z

130

Fluorination process using catalyst  

DOE Patents (OSTI)

A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

Hochel, Robert C. (Aiken, SC); Saturday, Kathy A. (Aiken, SC)

1985-01-01T23:59:59.000Z

131

EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING  

SciTech Connect

The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation.

HALGREN DL

2008-07-30T23:59:59.000Z

132

Dispersion enhanced metal/zeolite catalysts  

DOE Patents (OSTI)

Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

Sachtler, Wolfgang M. H. (Evanston, IL); Tzou, Ming-Shin (Evanston, IL); Jiang, Hui-Jong (Evanston, IL)

1987-01-01T23:59:59.000Z

133

Fischer-Tropsch Synthesis on Ceramic Monolith-Structured Catalysts  

SciTech Connect

This paper reports recent research results about impact of different catalyst bed configurations on FT reaction product distribution. A CoRe/?-alumina catalyst is prepared in bulk particle form and tested in the packed bed reactor at a size of 60 to 100 mesh. The same catalyst is ball milled and coated on a ceramic monolith support structure of channel size about 1mm. The monolith catalyst module is tested in two different ways, as a whole piece and as well-defined channels. Steady-state reaction conversion is measured at various temperatures under constant H2/CO feed ratio of 2 and reactor pressure of 25 bar. Detailed product analysis is performed. Significant formation of wax is evident with the packed particle bed and with the monolith catalyst that is improperly packed. By contrast, the wax formation is not detected in the liquid product by confining the reactions inside the monolith channel. This study presents an important finding about the structured catalyst/reactor system that the product distribution highly depends on the way how the structured reactor is set up. Even if the same catalyst and same reaction conditions (T, P, H2/oil ratio) are used, hydrodynamics (or flow conditions) inside a structured channel can have a significant impact on the product distribution.

Wang, Yong; Liu, Wei

2009-02-01T23:59:59.000Z

134

Oxygen-reducing catalyst layer  

DOE Patents (OSTI)

An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

O' Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O' Neill, David G. (Lake Elmo, MN)

2011-03-22T23:59:59.000Z

135

Separation of Fischer-Tropsch wax from catalyst using supercritical fluid extraction. Quarterly technical progress report, 1 January 1996--31 March 1996  

DOE Green Energy (OSTI)

The objective of this research project is to evaluate the potential of supercritical fluid extraction for separating the catalyst slurry of a Fischer-Tropsch (F-T) slurry bubble column (SBC) reactor into two fractions: (1) a catalyst-free wax containing less than 10 ppm particulate matter and (2) a concentrated catalyst slurry that is ready for recycle or regeneration. The wax will be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200--300 {degrees}C. Initial work is being performed using n-hexane as the solvent. The success of the project depends on two major factors. First, the supercritical solvent must be able to dissolve the F-T wax; furthermore, this must be accomplished without entraining the solid catalyst. Second, the extraction must be controlled so as not to favor the removal of the low molecular weight wax compounds, i.e., a constant carbon-number distribution of the alkanes in the wax slurry must be maintained at steady-state column operation. During this quarter work focused on task 1b, experimental measurement of selected model systems. Vapor-liquid equilibrium experiments for the n- hexane/squalane system, which we initiated in the previous quarter, were continued and results are discussed in this report.

Joyce, P.C.; Thies, M.C.

1996-09-01T23:59:59.000Z

136

Separation of Fischer-Tropsch wax from catalyst using supercritical fluid extraction. Quarterly technical progress report, April 1, 1996--June 30, 1996  

DOE Green Energy (OSTI)

The objective of this research project is to evaluate the potential of SCF extraction for separating the catalyst slurry of a Fischer- Tropsch (F-T) slurry bubble column (SBC) reactor into two fractions: (1) a catalyst-free wax containing less than 10 ppm particulate matter and (2) a concentrated catalyst slurry that is ready for recycle or regeneration. The wax will be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300{degrees}C. Initial work is being performed using n-hexane as the solvent. The success of the project depends on two major factors. First, the supercritical solvent must be able to dissolve the F-T wax; furthermore, this must be accomplished without entraining the solid catalyst. Second, the extraction must be controlled so as not to favor the removal of the low molecular weight wax compounds, i.e., a constant carbon-number distribution of the alkanes in the wax slurry must be maintained at steady-state column operation. To implement our objectives, the following task structure is being implemented: Task 1 equilibrium solubility measurements; Task 2 thermodynamic modeling; and Task 3 process design studies. Progress reports are presented for each task.

Joyce, P.C.; Thies, M.C.

1996-11-01T23:59:59.000Z

137

Catalyst Renewables | Open Energy Information  

Open Energy Info (EERE)

Zip 75204 Product Pursue projects with low technical risk, stable fuel supply and prices, and long-term power purchase agreements References Catalyst Renewables1 LinkedIn...

138

Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided Fundamental Atomistic Insights  

SciTech Connect

Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, various Ni alloy catalysts as potential carbon tolerant reforming catalysts. The alloy catalysts were synthesized and tested in steam reforming and partial oxidation of methane, propane, and isooctane. We demonstrated that the alloy catalysts are much more carbon-tolerant than monometallic Ni catalysts under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by two characteristics: (a) knowledge-based, bottomup approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) the focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

Suljo Linic

2008-12-31T23:59:59.000Z

139

Fuel cell applications for novel metalloporphyrin catalysts  

DOE Green Energy (OSTI)

This project utilized Computer-Aided Molecular Design (CAMD) to develop a new class of metalloporphyrin materials for use as catalysts for two fuel cell reactions. The first reaction is the reduction of oxygen at the fuel cell cathode, and this reaction was the main focus of the research. The second reaction we attempted to catalyze was the oxidation of methanol at the anode. Two classes of novel metalloporphyrins were developed. The first class comprised the dodecaphenylporphyrins whose steric bulk forces them into a non-planar geometry having a pocket where oxygen or methanol is more tightly bound to the porphyrin than it is in the case of planar porphyrins. Significant improvements in the catalytic reduction of oxygen by the dodecaphenyl porphyrins were measured in electrochemical cells. The dodecaphenylporphyrins were further modified by fluorinating the peripheral phenyl groups to varying degrees. The fluorination strongly affected their redox potential, but no effect on their catalytic activity towards oxygen was observed. The second class of porphyrin catalysts was a series of hydrogen-bonding porphyrins whose interaction with oxygen is enhanced. Enhancements in the interaction of oxygen with the porphyrins having hydrogen bonding groups were observed spectroscopically. Computer modeling was performed using Molecular Simulations new CERIUS2 Version 1.6 and a research version of POLYGRAF from Bill Goddard`s research group at the California Institute of Technology. We reoptimized the force field because of an error that was in POLYGRAF and corrected a problem in treatment of the metal in early versions of the program. This improved force field was reported in a J. Am. Chem. Soc. manuscript. Experimental measurements made on the newly developed catalysts included the electrochemical testing in a fuel cell configuration and spectroscopic measurements (UV-Vis, Raman and XPS) to characterize the catalysts.

Ryba, G.; Shelnutt, J.; Doddapaneni, N.; Zavadil, K.

1997-04-01T23:59:59.000Z

140

Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis -- 2010 Progress Report  

SciTech Connect

Pacific Northwest National Laboratory has been conducting research for the U.S. Department of Energy, Energy Efficiency Renewable Energy, Biomass Program to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas. In recent years this research has primarily involved the further development of a silica-supported catalyst containing rhodium and manganese that was selected from earlier catalyst screening tests. A major effort during 2010 was to examine alternative catalyst supports to determine whether other supports, besides the Davisil 645 silica, would improve performance. Optimization of the Davisil 645 silica-supported catalyst also was continued with respect to candidate promoters iridium, platinum, and gallium, and examination of selected catalyst preparation and activation alternatives for the baseline RhMn/SiO2 catalyst.

Gerber, Mark A.; Gray, Michel J.; Albrecht, Karl O.; White, J. F.; Rummel, Becky L.; Stevens, Don J.

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Water Uptake in PEMFC Catalyst Layers  

E-Print Network (OSTI)

Water Uptake in PEMFC Catalyst Layers H. P. Gunterman, a A.membrane fuel-cell catalyst layers are characterized in thecurves indicate that the catalyst layers tested are highly

Gunterman, Haluna P.

2013-01-01T23:59:59.000Z

142

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. The testing was performed at Southern Research's Catalyst Test Facility, a bench-scale reactor capable of simulating gas-phase reactions occurring in coal-fired utility pollution-control equipment. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Methods and procedures for experimental testing continue to be developed to produce the highest quality mercury-oxidation data. During this past quarter, it was discovered that long periods (12 - 24 hours) are required to equilibrate the catalysts in the system. In addition, after the system has been equilibrated, operational changes to temperature, gas concentration, or flow rate shifts the equilibrium, and steady-state must be reestablished, which can require as much as twelve additional hours per condition change. In the last quarter of testing, it was shown that the inclusion of ammonia had a strong effect on the oxidation of mercury by SCR catalysts, both in the short-term (a transitional period of elemental and oxidized mercury off gassing) and the long-term (less steady-state mercury oxidation). All experiments so far have focused on testing the catalysts in a simulated Powder River Basin (PRB) flue-gas environment, which contains lower sulfur and chlorine than produced by other coals. In the next quarter, parametric testing will be expanded to include flue gases simulating power plants burning Midwestern and Eastern coals, which are higher in sulfur and chlorine. Also, the isolation of such gases as hydrogen chloride (HCl), ammonia (NH{sub 3}), and sulfur trioxide (SO{sub 3}) will be investigated. All of these efforts will be used to examine the kinetics of mercury oxidation across the SCR catalysts with respect to flue gas composition, temperature, and flow rate.

Jared W. Cannon; Thomas K. Gale

2005-06-30T23:59:59.000Z

143

Advanced NOx Emissions Control: Control Technology - SCR Catalyst Blinding  

NLE Websites -- All DOE Office Websites (Extended Search)

SCR Catalyst Blinding SCR Catalyst Blinding University of North Dakota Energy and Environmental Research Center (UND-EERC) is determining the potential of low-rank coal ash to cause blinding or masking of selective catalytic reduction (SCR) catalysts. A secondary goal will be to determine the degree of elemental mercury conversion across the catalysts. Specific objectives include (1) identify candidate coals and blends for testing under bench-scale conditions, (2) conduct bench-scale testing to screen coals and identify key conditions for full-scale testing, (3) design and construct an SCR slipstream test chamber for sampling at full-scale facilities, (4) conduct testing at full-scale testing, (5) identify SCR blinding mechanisms, rates, and cleaning methods as well as mercury conversion efficiencies, and (6) interpret data, prepare a report, and attend sponsor meetings to present information and recommendations.

144

Novel Reforming Catalysts  

Science Conference Proceedings (OSTI)

Aqueous phase reforming is useful for processing oxygenated hydrocarbons to hydrogen and other more useful products. Current processing is hampered by the fact that oxide based catalysts are not stable under high temperature hydrothermal conditions. Silica in the form of structured MCM-41 is thermally a more stable support for Co and Ni than conventional high surface area amorphous silica but hydrothermal stability is not demonstrated. Carbon nanotube supports, in contrast, are highly stable under hydrothermal reaction conditions. In this project we show that carbon nanotubes are stable high activity/selectivity supports for the conversion of ethylene glycol to hydrogen.

Pfefferle, Lisa D; Haller, Gary L

2012-10-16T23:59:59.000Z

145

Molecular water oxidation catalyst  

DOE Patents (OSTI)

A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

Gratzel, Michael (St. Sulpice, CH); Munavalli, Shekhar (Bel Air, MD); Pern, Fu-Jann (Lakewood, CO); Frank, Arthur J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

146

Cisco Catalyst 4503-E, Catalyst 4506-E, Catalyst 4507R-E ...  

Science Conference Proceedings (OSTI)

... The following figures illustrate the installation of the opacity shields for each platform. Figure 5: Catalyst 4503-E Opacity Shield Installation Page 23. ...

2013-07-18T23:59:59.000Z

147

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

DOE Green Energy (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in an oven at 120-155 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio

K.C. Kwon

2009-09-30T23:59:59.000Z

148

Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations  

Science Conference Proceedings (OSTI)

The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

Presto, A.A.; Granite, E.J

2008-07-01T23:59:59.000Z

149

Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics  

DOE Green Energy (OSTI)

This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Br�������¸nsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.

Kamil Klier; Richard G. Herman

2005-11-30T23:59:59.000Z

150

Surface Modified Coals for Enhanced Catalyst Dispersion and Liquefaction  

SciTech Connect

The aim of this study is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on to the coal. During this reporting period, liquefaction experiments were conducted with the raw coal and catalyst loaded samples. Pretreatment of the coal and catalyst-loaded samples were done using the surfactants presented in previous reports. Liquefaction samples were tested using 6.6 g of solvent, 3.3 g coal, 6.9 MPa ambient hydrogen pressure, 425 0 C and 30 minutes. The liquid and solid products were removed from the reactor using tetrahydrofuran (THF). Coal conversions were calculated based on THF and heptane solubility. The results showed that in the absence of a catalyst, 33.8% heptane solubles was obtained with the parent coal compared to 27.8% and 27.3% with the SDS and DDAB surfactants. The presence of molybdenum, as expected, resulted in enhanced heptane solubles with or without surfactants. In the absence of surfactants, 50% heptane solubles was obtained compared to 40-47% with surfactants. Thus, it appears that pretreatment, unexpectedly, had a negative effect on liquefaction activity. It is unclear if the observed differences in results are significant. Clearly, additional experiments are needed before any firm deductions and conclusions can be drawn from the results.

Yaw D. Yeboah

1998-12-04T23:59:59.000Z

151

Water Uptake in PEMFC Catalyst Layers  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Uptake in PEMFC Catalyst Layers Title Water Uptake in PEMFC Catalyst Layers Publication Type Journal Article LBNL Report Number LBNL-5322E Year of Publication 2011 Authors...

152

Non-Noble Metal Water Electrolysis Catalysts  

This invention comprises an inexpensive catalyst system for water electrolyzers by replacing the noble-metal catalysts that are typically used in ...

153

Transition metal sulfide loaded catalyst  

DOE Patents (OSTI)

A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

Maroni, Victor A. (Naperville, IL); Iton, Lennox E. (Downers Grove, IL); Pasterczyk, James W. (Westmont, IL); Winterer, Markus (Westmont, IL); Krause, Theodore R. (Lisle, IL)

1994-01-01T23:59:59.000Z

154

Transition metal sulfide loaded catalyst  

DOE Patents (OSTI)

A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

1994-04-26T23:59:59.000Z

155

Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts  

DOE Green Energy (OSTI)

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2} in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is mai

K. C. Kwon

2006-09-30T23:59:59.000Z

156

Mercury Oxidation Behavior of a New Advanced Selective Catalytic Reduction Catalyst Formulation  

Science Conference Proceedings (OSTI)

Industry data have indicated that along with NOx reduction, selective catalytic reduction (SCR) technology has the potential for oxidizing mercury, providing enhanced removal in downstream systems. In recent years there has been an incentive to develop SCR catalyst formulations that maximize mercury oxidation while retaining their deNOx and SO2 conversion properties. The subject test program sought to evaluate the mercury oxidation performance of Hitachis new Triple Action Catalyst (TRAC) as a function o...

2011-07-12T23:59:59.000Z

157

Materials - Catalysts for Diesel Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing denox monolith Argonne's deNOx catalyst can be prepared as a powder or a monolith. chris marshall Principal investigator Chris Marshall shows the monolith form of the Argonne deNOx catalyst with a sensor inserted for testing. doug longman Mechanical engineer Doug Longman inserts the instrumented deNOx catalyst monolith into the aftertreatment chamber of Argonne's heavy-duty Caterpillar diesel test engine. Background Diesel engines, while efficient, produce many undesirable combustion byproducts in their exhaust. While we tend to think of the sooty exhaust products we see as the bad stuff, it is the less-visible exhaust products such as nitrogen oxides (NOx) that create bigger problems.

158

Mitigation of Sulfur Effects on a Lean NOx Trap Catalyst by Sorbate Reapplication  

DOE Green Energy (OSTI)

Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping. Natural gas combusted over partial oxidation catalysts in the exhaust can be used to obtain the rich exhaust conditions necessary for catalyst regeneration. Thus, the lean NOx trap technology is well suited for lean natural gas engine applications. One potential limitation of the lean NOx trap technology is sulfur poisoning. Sulfur compounds directly bond to the NOx trapping sites of the catalyst and render them ineffective; over time, the sulfur poisoning leads to degradation in overall NOx reduction performance. In order to mitigate the effects of sulfur poisoning, a process has been developed to restore catalyst activity after sulfur poisoning has occurred. The process is an aqueous-based wash process that removes the poisoned sorbate component of the catalyst. A new sorbate component is reapplied after removal of the poisoned sorbate. The process is low cost and does not involve reapplication of precious metal components of the catalyst. Experiments were conducted to investigate the feasibility of the washing process on a lean 8.3-liter natural gas engine on a dynamometer platform. The catalyst was rapidly sulfur poisoned with bottled SO2 gas; then, the catalyst sorbate was washed and reapplied and performance was re-evaluated. Results show that the sorbate reapplication process is effective at restoring lost performance due to sulfur poisoning. Specific details relative to the implementation of the process for large stationary natural gas engines will be discussed.

Parks, II, James E [ORNL

2007-01-01T23:59:59.000Z

159

Accelerated deployment of nanostructured hydrotreating catalysts. Final CRADA Report.  

Science Conference Proceedings (OSTI)

Nanomanufacturing offers an opportunity to create domestic jobs and facilitate economic growth. In response to this need, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy issued a Research Call to develop nanomanufacturing capabilities at the National Laboratories. High performance catalysts represent a unique opportunity to deploy nanomanufacturing technologies. Re-refining of used lube oil offers an opportunity to create manufacturing jobs and decrease dependence on imported petroleum. Improved catalysts are required to produce a better quality product, decrease environmental impact, extend catalyst life, and improve overall economics of lube oil re-refining. Argonne National Laboratory (Argonne) in cooperation with Universal Lubricants, Inc. (ULI) and Chemical Engineering Partners (CEP) have carried out a Cooperative Research and Development Agreement (CRADA) to prepare nanostructured hydrotreating catalysts using atomic layer deposition (ALD) to exhibit superior performance for the re-refining of used lube oil. We investigated the upgrading of recycled lube oil by hydrogenation using commercial, synthetically-modified commercial catalysts, and synthesized catalysts. A down-flow (trickle bed) catalytic unit was used for the hydrogenation experiments. In addition to carrying out elemental analyses of the various feed and product fractions, characterization was undertaken using H{sup 1} and C{sup 13} NMR. Initially commercial were evaluated. Second these commercial catalysts were promoted with precious metals using atomic layer deposition (ALD). Performance improvements were observed that declined with catalyst aging. An alternate approach was undertaken to deeply upgrade ULI product oils. Using a synthesized catalyst, much lower hydrogenation temperatures were required than commercial catalysts. Other performance improvements were also observed. The resulting lube oil fractions were of high purity even at low reaction severity. The products recovered from both the ALD and other processes were water-white (even those from the low temperature, low residence time (high space velocity), low conversion runs). These results indicate that highly upgraded recycle lube oils can be produced using ALD-deposited active metal catalysts. The use of H{sup 1} and C{sup 13} NMR for the characterization of the treated lube oils has been shown to be effective.

Libera, J.A.; Snyder, S.W.; Mane, A.; Elam, J.W.; Cronauer, D.C.; Muntean, J.A.; Wu, T.; Miller, J.T. (Chemical Sciences and Engineering Division); ( ES)

2012-08-27T23:59:59.000Z

160

Method for producing hydrocarbon fuels from heavy polynuclear hydrocarbons by use of molten metal halide catalyst  

DOE Patents (OSTI)

In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst, thereafter separating at least a substantial portion of the carbonaceous material associated with the reaction mixture from the spent molten metal halide and thereafter regenerating the metal halide catalyst, an improvement comprising contacting the spent molten metal halide catalyst after removal of a major portion of the carbonaceous material therefrom with an additional quantity of hydrogen is disclosed.

Gorin, Everett (San Rafael, CA)

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Characterization of active sites in zeolite catalysts  

DOE Green Energy (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Atomic-level details of the interaction of adsorbed molecules with active sites in catalysts are urgently needed to facilitate development of more effective and/or environmentally benign catalysts. To this end the authors have carried out neutron scattering studies combined with theoretical calculations of the dynamics of small molecules inside the cavities of zeolite catalysts. The authors have developed the use of H{sub 2} as a probe of adsorption sites by observing the hindered rotations of the adsorbed H{sub 2} molecule, and they were able to show that an area near the four-rings is the most likely adsorption site for H{sub 2} in zeolite A while adsorption of H{sub 2} near cations located on six-ring sites decreases in strength as Ni {approximately} Co > Ca > Zn {approximately} Na. Vibrational and rotational motions of ethylene and cyclopropane adsorption complexes were used as a measure for zeolite-adsorbate interactions. Preliminary studies of the binding of water, ammonia, and methylamines were carried out in a number of related guest-host materials.

Eckert, J. [Los Alamos National Lab., NM (United States); Bug, A. [Swarthmore Coll., PA (United States); Nicol, J.M. [MOLTECH (United States)] [and others

1997-11-01T23:59:59.000Z

162

Catalysts for upgrading coal-derived liquids. Quarterly report, October 1-December 31, 1980  

DOE Green Energy (OSTI)

A linear relationship represents the hydrogenation activity decay of catalysts used in four experimental runs reported previously. The weight percent hydrogen in the reactor product oils plotted against oil-catalyst contact time for experimental runs ZBB, ZBC, ZBD, and ZBE reveals a linear decay rate of 0.0083 wt% hydrogen per hour. This is one quantitative measure of catalyst activity decay. The data for the plot incorporate three different catalysts or combinations used to process a PAMCO liquid at 1500 psig, 435C and LVHST of 2 hours. The data set covers run duration of up to 120 hours of oil-catalyst contact. An air driven hydrogen compressor was installed in the Catalyst Life Test Unit to reduce the costs associated with bottle hydrogen. Minor repairs were made on the oil feed pump. Five experimental runs were made with Shell 324 NiMo/Al catalyst using two feedstocks: (1) 40 wt% EDS/EDS raw solvent and (2) 30 wt% SRC-I creosote oil. The EDS feed oil proved to be rather easily hydrotreated as evidenced by 82 to 100% nitrogen removal, essentially complete desulfurization and no catalyst activity decay during 260 hours of continuous operation. Rapid coking resulted from the highly hydrogen deficient SRC/creosote mixture. The Shell 324 catalyst gave excellent hydrogenation of both liquids by increasing the hydrogen content of the product oils by about 3.8 wt%. This catalyst will be used in future studies; however, a new feedstock consisting of 30 wt% SRC-I/PAMCO process solvent will be assessed for use in catalyst decay mechanism studies.

Crynes, B.L.

1981-01-14T23:59:59.000Z

163

Selective methane oxidation over promoted oxide catalysts. Topical report, September 8, 1992--September 7, 1996  

DOE Green Energy (OSTI)

The objective of this research was to selectively oxidize methane to C{sub 2} hydrocarbons and to oxygenates, in particular formaldehyde and methanol, in high space time yields using air at the oxidant under milder reaction conditions that heretofore employed over industrially practical oxide catalysts. The research carried out under this US DOE-METC contract was divided into the following three tasks: Task 1, maximizing selective methane oxidation to C{sub 2}{sup +} products over promoted SrO/La{sub 2}O{sub 3} catalysts; Task 2, selective methane oxidation to oxygenates; and Task 3, catalyst characterization and optimization. Principal accomplishments include the following: the 1 wt% SO{sub 4}{sup 2{minus}}/SrO/La{sub 2}O{sub 3} promoted catalyst developed here produced over 2 kg of C{sub 2} hydrocarbons/kg catalyst/hr at 550 C; V{sub 2}O{sub 5}/SiO{sub 2} catalysts have been prepared that produce up to 1.5 kg formaldehyde/kg catalyst/hr at 630 C with low CO{sub 2} selectivities; and a novel dual bed catalyst system has been designed and utilized to produce over 100 g methanol/kg catalyst/hr at 600 C with the presence of steam in the reactant mixture.

Klier, K.; Herman, R.G.

1996-12-31T23:59:59.000Z

164

COMPARISON OF PLASMA-CATALYST AND ACTIVE LEAN NOx CATALYST  

DOE Green Energy (OSTI)

A number of NO{sub x} control systems are being discussed for potential application to diesel engines. Unfortunately, it can be difficult to compare systems on an equal basis because data are run under different conditions, or reported against different test cycles, or not shown over a range of operating conditions. In addition, the fuel consumption penalty associated with the NO{sub x} control technologies is not always reported. In this paper, we compare two diesel NO{sub x} aftertreatment systems: (1) Plasma-Catalyst (PC): a nonthermal plasma followed by a catalyst; and (2) Active Lean NO{sub x} Catalyst (ALNC): a NO{sub x} catalyst designed to selectively reduce NO{sub x} using hydrocarbon (HC) in the form of diesel fuel. Fuel is added to the exhaust to increase HC above normal diesel levels. These systems will be described in more detail in this report.

Hoard, John

2000-08-20T23:59:59.000Z

165

Chalcogen catalysts for polymer electrolyte fuel cell  

DOE Patents (OSTI)

A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

Zelenay, Piotr (Los Alamos, NM); Choi, Jong-Ho (Los Alamos, NM); Alonso-Vante, Nicolas (France, FR); Wieckowski, Andrzej (Champaign, IL); Cao, Dianxue (Urbana, IL)

2010-08-24T23:59:59.000Z

166

Textured Metal Catalysts for Heterogeneous Catalysis ...  

Biomass and Biofuels Advanced Materials Textured Metal Catalysts for Heterogeneous Catalysis Pacific Northwest National Laboratory. Contact ...

167

Stabilization of Nickel Metal Catalysts for Aqueous ...  

Biomass and Biofuels Stabilization of Nickel Metal Catalysts for Aqueous Processing Systems Pacific Northwest National Laboratory.

168

Chemical interactions in multimetal/zeolite catalysts  

SciTech Connect

This report treats four subject areas: PtCu/NaY and Pd/Cu/NaY catalysts; reducibility of Ni in PdNi/NaY catalysts; CO hydrogenation over PdNi/NaY catalysts; and PdFe/NaY, Ga/H-ZSM5 and PtGa/H-ZSM5 catalysts.

Sachtler, W.M.H.

1992-02-07T23:59:59.000Z

169

Octahedral molecular sieve sorbents and catalysts  

DOE Patents (OSTI)

Octahedral molecular sieve sorbents and catalysts are disclosed, including silver hollandite and cryptomelane. These materials can be used, for example, to catalyze the oxidation of CO.sub.x (e.g., CO), NO.sub.x (e.g., NO), hydrocarbons (e.g., C.sub.3H.sub.6) and/or sulfur-containing compounds. The disclosed materials also may be used to catalyze other reactions, such as the reduction of NO.sub.2. In some cases, the disclosed materials are capable of sorbing certain products from the reactions they catalyze. Silver hollandite, in particular, can be used to remove a substantial portion of certain sulfur-containing compounds from a gas or liquid by catalysis and/or sorption. The gas or liquid can be, for example, natural gas or a liquid hydrocarbon.

Li, Liyu [Richland, WA; King, David L [Richland, WA

2010-04-20T23:59:59.000Z

170

High Temperature Membrane & Advanced Cathode Catalyst Development  

DOE Green Energy (OSTI)

Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

Protsailo, Lesia

2006-04-20T23:59:59.000Z

171

Necessary conditions on entanglement catalysts  

E-Print Network (OSTI)

Given a pure state transformation $\\psi\\mapsto\\phi$ restricted to entanglement-assisted local operations with classical communication, we determine a lower bound for the dimension of a catalyst allowing that transformation. Our bound is stated in terms of the generalised concurrence monotones (the usual concurrence of two qubits is one such monotone). We further provide tools for deriving further conditions upon catalysts of pure state transformations.

Sanders, Yuval

2009-01-01T23:59:59.000Z

172

Necessary conditions on entanglement catalysts  

E-Print Network (OSTI)

Given a pure state transformation $\\psi\\mapsto\\phi$ restricted to entanglement-assisted local operations with classical communication, we determine a lower bound for the dimension of a catalyst allowing that transformation. Our bound is stated in terms of the generalised concurrence monotones (the usual concurrence of two qubits is one such monotone). We further provide tools for deriving further conditions upon catalysts of pure state transformations.

Yuval Sanders; Gilad Gour

2009-04-14T23:59:59.000Z

173

Creating a culture of assessment: A catalyst for organizational change  

E-Print Network (OSTI)

Culture of Assessment: A Catalyst for Organizational ChangeCulture of Assessment: A Catalyst for Organizational ChangeCulture of Assessment: A Catalyst for Organizational Change

Lakos, Amos; Phipps, Shelley

2004-01-01T23:59:59.000Z

174

Catalyst-infiltrated supporting cathode for thin-film SOFCs  

E-Print Network (OSTI)

LBNL-55226 Catalyst-Infiltrated Supporting Cathode for Thin-demonstrate that cobalt catalyst-infiltrated LSM can beinfiltrating nano- sized catalyst particles into its pores

Yamahara, Keiji; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

2004-01-01T23:59:59.000Z

175

Studies of Various Hydrocarbon Conversion Reactions on Pt Catalysts  

E-Print Network (OSTI)

observed after reduction on tetrahedral and cubic catalysts.Prepared catalysts………..…….……………………. ………………..……..35reactions on shape controlled catalysts………………………………22 3.1.

Kaneko, Shinji

2011-01-01T23:59:59.000Z

176

Business Case Slide 22: High-Value: Catalysts - Description  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysts - Description Graduate student examining candidate DU-bearing catalyst Graduate student examining candidate DU-bearing catalyst Description Use DUO2 to catalyze chemical...

177

Business Case Slide 24: High-Value: Catalysts - Program Focus  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysts - Program Focus Program Focus Off-gas cleanup catalysts (ORNL) Best form and substrate, effect of impurities Desulfurization catalyst (Rutgers) Proof-of-principle...

178

Cyclic process for producing methane with catalyst regeneration  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. For practical commercial operations utilizing the two-step process of the invention of a cyclic basis, nickel, cobalt, ruthenium, thenium and alloys thereof are especially prepared for use in a metal state, with CO disproportionation being carried out at temperatures up to about 350.degree. C. and with the conversion of active surface carbon to methane being carried out by reaction with steam. The catalyst is employed in such cyclic operations without the necessity for employing a regeneration step as part of each processing cycle. Inactive carbon or coke that tends to form on the catalyst over the course of continuous operations utilizing such cyclic process is effectively and advantageously removed, on a periodic basis, in place of conventional burn off with an inert stream containing a low concentration of oxygen.

Frost, Albert C. (Congers, NY); Risch, Alan P. (New Fairfield, CT)

1980-01-01T23:59:59.000Z

179

Haloporphyrins and their preparation and use as catalysts  

DOE Patents (OSTI)

The invention provides novel catalyst compositions, useful in the oxidation of hydrocarbons with air or oxygen to form hydroxy-group containing compounds and in the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of hydrocarbons is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of hydrocarbons and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of hydrocarbons and decomposition of alkyl hydroperoxides.

Ellis, P.E. Jr.; Lyons, J.E.

1997-09-02T23:59:59.000Z

180

NETL: Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent and Catalyst Preparation Facilities Sorbent and Catalyst Preparation Facilities NETL researchers are seeking technical solutions to pressing problems related to fossil fuel extraction, processing, and utilization. To this end, laboratory-scale facilities are used to prepare, test, and analyze sorbents and catalysts used in fixed-, moving-, and fluid-bed reactors — three types of reactors often used in advanced fossil-fueled power plants. Equipment in these facilities is also available for standard American Society for Testing and Materials (ASTM) attrition tests, crush measurements, and particle size analysis to confirm the suitability of the sorbents and catalysts for their intended applications. NETL researchers use these facilities in conjunction with facilities for sorbent/catalyst bench-scale testing and for in-situ (in-place) reaction studies. In 2000, NETL received an R&D 100 Award for its RSV-1 Regenerable Desulfurization Sorbent. The process for preparation of this sorbent has been patented, licensed, and published.

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period April 1, 2003 through June 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the seventh full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit, conducting catalyst activity measurements, installing sonic horns for on-line catalyst cleaning, and installing the fourth catalyst, all for the GRE Coal Creek site. CPS began installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter. Laboratory efforts were conducted to support catalyst selection for that second pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-07-01T23:59:59.000Z

182

Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994  

DOE Green Energy (OSTI)

This project was initiated because the supply of isobutylene had been identified as a limitation on the production of methyl-t-butyl ether, a gasoline additive. Prior research on isobutylene synthesis had been at low conversion (less than 5%) or extremely high pressures (greater than 300 bars). The purpose of this research was to optimize the synthesis of a zirconia based catalyst, determine process conditions for producing isobutylene at pressures less than 100 bars, develop kinetic and reactor models, and simulate the performance of fixed bed, trickle bed and slurry flow reactors. A catalyst, reactor models and optimum operating conditions have been developed for producing isobutylene from coal derived synthesis gas. The operating conditions are much less severe than the reaction conditions developed by the Germans during and prior to WWII. The low conversion, i.e. CO conversion less than 15%, have been perceived to be undesirable for a commercial process. However, the exothermic nature of the reaction and the ability to remove heat from the reactor could limit the extent of conversion for a fixed bed reactor. Long residence times for trickle or slurry (bubble column) reactors could result in high CO conversion at the expense of reduced selectivities to iso C{sub 4} compounds. Economic studies based on a preliminary design, and a specific location will be required to determine the commercial feasibility of the process.

Anthony, R.G.; Akgerman, A.; Philip, C.V.; Erkey, C.; Feng, Z.; Postula, W.S.; Wang, J.

1995-03-01T23:59:59.000Z

183

Catalyst for coal liquefaction process  

SciTech Connect

An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

Huibers, Derk T. A. (Pennington, NJ); Kang, Chia-Chen C. (Princeton, NJ)

1984-01-01T23:59:59.000Z

184

CO HYDROGENATION OVER CLEAN AND OXIDIZED RHODIUM FOIL AND SINGLE CRYSTAL CATALYSTS. CORRELATIONS OF CATALYST ACTIVITY, SELECTIVITY AND SURFACE COMPOSITION  

E-Print Network (OSTI)

AND OXIDIZED RHODIUM FOIL AND SINGLE CRYSTAL CATALYSTS.CORRELATIONS OF CATALYST ACTIVITY, SELECTIVITY AND SURFACEobserved over the clean Rh catalysts during the catalyzed

Castner, D.G.

2012-01-01T23:59:59.000Z

185

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period July 1, 2003 through September 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the eighth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit at the GRE Coal Creek site with all four catalysts in service and sonic horns installed for on-line catalyst cleaning. During the quarter, a catalyst activity measurement trip and mercury SCEM relative accuracy tests were completed, and catalyst pressure drop was closely monitored with the sonic horns in operation. CPS completed the installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter, and the four catalysts to be tested in that unit were ordered. The pilot unit was started up with two of the four catalysts in service late in August, and initial catalyst activity results were measured in late September. The other two catalysts will not become available for testing until sometime in October. This technical progress report details these efforts at both sites.

Gary M. Blythe

2003-10-01T23:59:59.000Z

186

NREL: Biomass Research - Josh Schaidle  

NLE Websites -- All DOE Office Websites (Extended Search)

Josh Schaidle Josh Schaidle Photo of Josh Schaidle Josh Schaidle works in the Thermochemical Catalysis Research and Development group, headed by Jesse Hensley. He manages a $500,000 per year task focused on developing catalysts, processes, and reactor systems for the catalytic upgrading of pyrolysis products to produce fungible transportation fuels. Research Interests Biomass conversion to fuels and chemicals Environmentally-sustainable engineering practices Photochemical and electrochemical routes for fuel production Rational design of catalysts through the combination of experiment and theory Early transition metal carbide and nitride catalysts Process design and optimization Life-cycle Assessment (LCA) Catalysts for automotive exhaust treatment Education Ph.D., Chemical Engineering; Concentration in Environmental

187

Improvement of Pt/C/PTFE catalyst type used for hydrogen isotope separation  

Science Conference Proceedings (OSTI)

The CANDU reactor from the Nuclear Power plant Cernavoda (Romania)) is the most powerful tritium source from Europe. This reactor is moderated and cooled by heavy water that becomes continuously contaminated with tritium. Because of this reason, the National R and amp;D Inst. for Cryogenic and Isotopic Technologies developed a detritiation technology based on catalytic isotopic exchange and cryogenic distillation. The main effort of our Inst. was focused on finding more efficient catalysts with a longer operational life. Some of the tritium removal processes involved in Fusion Science and Technology use this type of catalyst 1. Several Pt/C/PTFE hydrophobic catalysts that could be used in isotopic exchange process 2,3,4 were produced. The present paper presents a comparative study between the physical and morphological properties of different catalysts manufactured by impregnation at our institute. The comparison consists of a survey of specific surface, pores volume and pores distribution. (authors)

Vasut, F.; Preda, A.; Zamfirache, M.; Bornea, A. M.; Stefanescu, I.; Pearsica, C. [INC-DTCI, ICSI Rm. Valcea, Uzinei Street 4, Rm. Valcea (Romania)

2008-07-15T23:59:59.000Z

188

Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles  

Science Conference Proceedings (OSTI)

A fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of operation since the reaction is highly exothermic. Consequently, heavy wax products in one approach may be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase iron-based FTS and is a key factor for optimizing operating costs. The separation problem is further compounded by attrition of iron catalyst particles and the formation of ultra-fine particles.

Amitava Sarkar; James K. Neathery; Burtron H. Davis

2006-12-31T23:59:59.000Z

189

It Takes a Village: Students as a Catalyst for Conservation  

NLE Websites -- All DOE Office Websites (Extended Search)

It Takes a Village: Students as a Catalyst for Conservation It Takes a Village: Students as a Catalyst for Conservation Speaker(s): Julie Osborn Date: January 23, 2006 - 12:00pm Location: 90-3122 Successful conservation projects must address human influences on species and their habitat by integrating local residents into the conservation solution. Involving local students in research can serve as a catalyst to gain community participation in protection efforts; educate those who have the most immediate connection to the issues; and empower individuals with tangible ways they can contribute to conservation. Effective community response requires the collaboration of educational institutions, NGOs, landowners, government agencies, and individual community members. Ecology Project International (EPI) has integrated local students in conservation

190

Catalyst dispersion and activity under conditions of temperature- staged liquefaction  

DOE Green Energy (OSTI)

The general objectives of this research are (1) to investigate the use of highly dispersed catalysts for the pretreatment of coal by mild hydrogenation, (2) to identify the active forms of the catalysts under reaction conditions and (3) to clarify the mechanisms of catalysis. The ultimate objective is to ascertain if mild catalytic hydrogenation resulting in very limited or no coal solubilization is an advantageous pretreatment for the transformation of coal into transportable fuels. The experimental program will focus upon the development of effective methods of impregnating coal with catalysts, evaluating the conditions under which the catalysts are most active and establishing the relative impact of improved impregnation on conversion and product distributions obtained from coal hydrogenation. Liquefaction experiments of solvent-treated and untreated Blind Canyon (DECS-6) and Texas lignite (DECS-1) have been performed using ammonium tetrathiomolybdate (ATTM) and bis (dicarbonylcyclopentadienyl) iron (CPI) as catalyst precursors using temperature-staged conditions (275{degrees}C, 30 min; 425{degrees}C, 30 min). Solid state {sup 13}C NMR analysis was carried out for each coal and for selected residues. 12 refs., 14 figs., 9 tabs.

Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

1991-09-01T23:59:59.000Z

191

Catalyst containing oxygen transport membrane  

Science Conference Proceedings (OSTI)

A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

2012-12-04T23:59:59.000Z

192

Catalysts for improved fuel processing  

DOE Green Energy (OSTI)

This report covers our technical progress on fuel processing catalyst characterization for the specific purpose of hydrogen production for proton-exchange-membrane (PEM) fuel cells. These development efforts support DOE activities in the development of compact, transient capable reformers for on-board hydrogen generation starting from candidate fuels. The long-term objective includes increased durability and lifetime, in addition to smaller volume, improved performance, and other specifications required meeting fuel processor goals. The technical barriers of compact fuel processor size, transient capability, and compact, efficient thermal management all are functions of catalyst performance. Significantly, work at LANL now tests large-scale fuel processors for performance and durability, as influenced by fuels and fuel constituents, and complements that testing with micro-scale catalyst evaluation which is accomplished under well controlled conditions.

Borup, R.L.; Inbody, M.A. [and others

2000-09-01T23:59:59.000Z

193

Novel platinum/carbon catalysts with cluster size control for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project overview - Cluster chemistry - Catalysts and supports * Experimental - Novel catalyst preparation * Results - Metal cluster size - Electrochemical properties * Summary...

194

Advanced Cathode Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Research 1 HFCIT Program Kick-off Meeting, Arlington, VA, February 13-14, 2007 Program Kick-off Meeting Arlington, Virginia, February 13-14, 2007 Advanced Cathode...

195

Catalysts for carbon and coal gasification  

DOE Patents (OSTI)

Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

McKee, Douglas W. (Burnt Hills, NY); Spiro, Clifford L. (Scotia, NY); Kosky, Philip G. (Schenectady, NY)

1985-01-01T23:59:59.000Z

196

SELECTIVE REDUCTION OF NOX IN OXYGEN RICH ENVIRONMENTS WITH PLASMA-ASSISTED CATALYSIS: CATALYST DEVELOPMENT AND MECHANISTIC STUDIES  

DOE Green Energy (OSTI)

The control of NOx (NO and NO2) emissions from so-called ''lean-burn'' vehicle engines remains a challenge. In recent years, there have been a number of reports that show that a plasma device combined with a catalyst can reduce as high as 90% or more of NOx in simulated diesel and other ''lean-burn'' exhaust. In the case of propylene containing simulated diesel exhaust, the beneficial role of a plasma treatment is now thought to be due to oxidation of NO to NO2, and the formation of partially oxidized hydrocarbons that are more active for the catalytic reduction of NO2 than propylene. Thus, the overall system can be most usefully described as hydrocarbon selective catalytic reduction (SCR) enhanced by 'reforming' the exhaust with a non-thermal plasma (NTP) device. For plasma-enhanced catalysis, both zeolite- and alumina-based materials have shown high activity, albeit in somewhat different temperature ranges, when preceded by an NTP reactor. This paper will briefly describe our research efforts aimed at optimizing the catalyst materials for NTP-catalysis devices based, in part, on our continuing studies of the NTP- and catalytic-reaction mechanisms. Various alkali- and alkaline earth-cation-exchanged Y zeolites have been prepared, their material properties characterized, and they have been tested as catalytic materials for NOx reduction in laboratory NTP-catalysis reactors. Interestingly, NO2 formed in the plasma and not subsequently removed over these catalysts, will back-convert to NO, albeit to varying extents depending upon the nature of the cation. Besides this comparative reactivity, we will also discuss selected synthesis strategies for enhancing the performance of these zeolite-based catalyst materials. A particularly important result from our mechanistic studies is the observation that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of NOx to N2. Indeed, acetaldehyde has been found to be especially effective in the thermal reduction of both NO and NO2 over Ba- and Na-Y zeolite catalysts.

Peden, C; Barlow, S; Hoard, J; Kwak, J; *Balmer-Millar, M; *Panov, A; Schmieg, S; Szanyi, J; Tonkyn, R

2003-08-24T23:59:59.000Z

197

Bench-scale studies on gasification of biomass in the presence of catalysts  

DOE Green Energy (OSTI)

This report summarizes the results of bench-scale studies on the development of catalysts for conversion of biomass to specific gas products. The primary objective of these studies was to define operating conditions that allow long lifetimes for secondary catalysts used in biomass gasification. Nickel-based catalysts that were found to be active for conversion of wood to synthesis gases in previous studies were evaluated. These catalysts remained active indefinitely in laboratory studies but lost activity rapidly when evaluated in a process research unit. Bench-scale equipment was designed and installed to resolve the differences between laboratory and PRU results. Primary catalysts (alkali carbonates) were also evaluated for their effectiveness in improving conversion yields from biomass gasification. 21 refs., 27 figs., 19 tabs.

Mudge, L.K.; Baker, E.G.; Brown, M.D.; Wilcox, W.A.

1987-11-01T23:59:59.000Z

198

WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS  

DOE Green Energy (OSTI)

The kinetics of water-gas shift were studied over ferrochrome catalysts under conditions with high carbon dioxide partial pressures, such as would be expected in a membrane reactor. The catalyst activity is inhibited by increasing carbon dioxide partial pressure. A microkinetic model of the reaction kinetics was developed. The model indicated that catalyst performance could be improved by decreasing the strength of surface oxygen bonds. Literature data indicated that adding either ceria or copper to the catalyst as a promoter might impart this desired effect. Ceria-promoted ferrochrome catalysts did not perform any better than unpromoted catalyst at the conditions tested, but copper-promoted ferrochrome catalysts did offer an improvement over the base ferrochrome material. A different class of water-gas shift catalyst, sulfided CoMo/Al{sub 2}O{sub 3} is not affected by carbon dioxide and may be a good alternative to the ferrochrome system, provided other constraints, notably the requisite sulfur level and maximum temperature, are not too limiting. A model was developed for an adiabatic, high-temperature water-gas shift membrane reactor. Simulation results indicate that an excess of steam in the feed (three moles of water per mole of CO) is beneficial even in a membrane reactor as it reduces the rate of adiabatic temperature rise. The simulations also indicate that much greater improvement can be attained by improving the catalyst as opposed to improving the membrane. Further, eliminating the inhibition by carbon dioxide will have a greater impact than will increasing the catalyst activity (assuming inhibition is still operative). Follow-up research into the use of sulfide catalysts with continued kinetic and reactor modeling is suggested.

Carl R.F. Lund

2002-08-02T23:59:59.000Z

199

On-line regeneration of hydrodesulfurization catalyst  

DOE Patents (OSTI)

A hydrotreating catalyst is regenerated as it concurrently hydrotreats a hydrocarbon fuel by introducing a low concentration of oxygen into the catalyst bed either continuously or periodically. At low oxygen concentrations the carbon deposits on the catalyst are burned off without harming the catalyst and without significantly affecting the hydrotreating process. In a preferred embodiment the hydrotreating process is hydrodesulfurization, and regenerating is done periodically with oxygen concentrations between 0.1 and 0.5 volume percent.

Preston, Jr., John L. (Hebron, CT)

1980-01-01T23:59:59.000Z

200

Nanosegregated Surfaces as Catalysts for Fuel Cells  

limitations for the oxygen reduction reaction. The result is a catalyst particularly advantageous for use in polymer electrolyte fuel cells.

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Database - Selective Catalytic Reduction Catalyst Deactivation Rates  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) catalyst deactivation is a critical parameter controlling to a large extent achievable catalyst life, as well as overall SCR system performance. Accurate assessment and prediction of catalyst deactivation is required to adequately manage reactor potential. EPRI has on-going efforts underway aimed at better understanding the factors that affect catalyst deactivation, especially as a function of fuel, boiler design, and boiler operating conditions, in hopes of ...

2013-11-06T23:59:59.000Z

202

Catalyst-assisted Probabilistic Entanglement Transformation  

E-Print Network (OSTI)

We are concerned with catalyst-assisted probabilistic entanglement transformations. A necessary and sufficient condition is presented under which there exist partial catalysts that can increase the maximal transforming probability of a given entanglement transformation. We also design an algorithm which leads to an efficient method for finding the most economical partial catalysts with minimal dimension. The mathematical structure of catalyst-assisted probabilistic transformation is carefully investigated.

Yuan Feng; Runyao Duan; Mingsheng Ying

2004-04-27T23:59:59.000Z

203

Biomass Catalyst Characterization Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

Not Available

2011-07-01T23:59:59.000Z

204

Attrition Resistant Catalyst Materials for Fluid Bed ...  

Biomass and Biofuels Attrition Resistant Catalyst Materials for Fluid Bed Applications National Renewable Energy Laboratory. Contact NREL About This ...

205

Nanostructured Water Oxidation Catalysts - Energy Innovation ...  

Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts. Angewandte Chemie International Edition. Vol. 28: ...

206

Metal/ceria water-gas shift catalysts for automotive polymer electrolyte fuel cell system.  

DOE Green Energy (OSTI)

Polymer electrolyte fuel cell (PEFC) systems are a leading candidate for replacing the internal combustion engine in light duty vehicles. One method of generating the hydrogen necessary for the PEFC is reforming a liquid fuel, such as methanol or gasoline, via partial oxidation, steam reforming, or autothermal reforming (a combination of partial oxidation and steam reforming). The H{sub 2}-rich reformate can contain as much as 10% carbon monoxide. Carbon monoxide has been shown to poison the platinum-based anode catalyst at concentrations as low as 10 ppm,1 necessitating removal of CO to this level before passing the reformate to the fuel cell stack. The water-gas shift (WGS) reaction, CO + H{sub 2}O {rightleftharpoons} CO{sub 2} + H{sub 2}, is used to convert the bulk of the reformate CO to CO{sub 2}. Industrially, the WGS reaction is conducted over two catalysts, which operate in different temperature regimes. One catalyst is a FeCr mixed oxide, which operates at 350-450 C and is termed the high-temperature shift (HTS) catalyst. The second catalyst is a CuZn mixed oxide, which operates at 200-250 C and is termed the low-temperature shift (LTS) catalyst. Although these two catalysts are used industrially in the production of H{sub 2} for ammonia synthesis, they have major drawbacks that make them unsuitable for transportation applications. Both the LTS and the HTS catalysts must first be ''activated'' before being used. For example, the copper in the copper oxide/zinc oxide LTS catalyst must first be reduced to elemental copper in situ before it becomes active for the WGS reaction. This reduction reaction is exothermic and must be carried out under well- controlled conditions using a dilute hydrogen stream (1 vol% H{sub 2}) to prevent high catalyst temperatures, which can result in sintering (agglomeration) of the copper particles and loss of active surface area for the WGS reaction. Also, once the catalyst has been activated by reduction, it must be protected from exposure to ambient air to prevent re-oxidation of the copper. The activated catalyst must also be protected from the condensation of liquids, for example, during start-up or transient operation. For these reasons, a more thermally rugged catalyst is needed which has sufficient activity to operate at the low temperatures that are thermodynamically necessary to achieve low CO concentrations.

Myers, D. J.; Krebs, J. F.; Carter, J. D.; Kumar, R.; Krumpelt, M.

2002-01-11T23:59:59.000Z

207

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time period January 1, 2003 through March 31, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the sixth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the pilot unit with three catalysts, conducting catalyst activity measurements, and procuring the fourth catalyst, all for the GRE Coal Creek pilot unit site. Laboratory efforts were also conducted to support catalyst selection for the second pilot unit site, at CPS' Spruce Plant. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-05-01T23:59:59.000Z

208

Engine Removal Projection Tool  

DOE Green Energy (OSTI)

The US Navy has over 3500 gas turbine engines used throughout the surface fleet for propulsion and the generation of electrical power. Past data is used to forecast the number of engine removals for the next ten years and determine engine down times between removals. Currently this is done via a FORTRAN program created in the early 1970s. This paper presents results of R&D associated with creating a new algorithm and software program. We tested over 60 techniques on data spanning 20 years from over 3100 engines and 120 ships. Investigated techniques for the forecast basis including moving averages, empirical negative binomial, generalized linear models, Cox regression, and Kaplan Meier survival curves, most of which are documented in engineering, medical and scientific research literature. We applied those techniques to the data, and chose the best algorithm based on its performance on real-world data. The software uses the best algorithm in combination with user-friendly interfaces and intuitively understandable displays. The user can select a specific engine type, forecast time period, and op-tempo. Graphical displays and numerical tables present forecasts and uncertainty intervals. The technology developed for the project is applicable to other logistic forecasting challenges.

Ferryman, Thomas A.; Matzke, Brett D.; Wilson, John E.; Sharp, Julia L.; Greitzer, Frank L.

2005-06-02T23:59:59.000Z

209

Spray drying and attrition behavior of iron catalysts for slurry phase Fischer-Tropsch synthesis  

E-Print Network (OSTI)

This thesis describes results of a study aimed at developing and evaluating attrition resistant iron catalysts prepared by spray drying technique. These catalysts are intended for Fischer-Tropsch (F-T) synthesis in a slurry bubble column reactor (SBCR). One of the major challenges associated with the use of SBCR for this purpose is the problem of catalyst/wax separation. If the catalyst particles break up into smaller ones during the F-T synthesis, these small particles (>5-10 ?m in diameter) will cause problems with the catalyst/wax separation. Several research groups have worked on development of attrition resistant spray-dried iron catalysts, and methodology to measure and predict their attrition behavior. However, these attrition tests were not conducted under conditions representative of those encountered in a SBCR. In this work, the attrition behavior of six spray-dried catalysts and two precipitated catalysts was evaluated under slurry reaction conditions in a stirred tank slurry reactor (STSR). Spray-dried catalysts used in this study were prepared at Texas A&M University (TAMU) and at Hampton University (HU), employing different preparation procedures and silica sources (potassium silicate, tetraethyl orthosilicate or colloidal silica). The attrition properties of F-T catalysts were determined by measuring particle size distribution (PSD) of catalysts before and after F-T synthesis in the STSR. This provides a direct measure of changes in particle size distribution in the STSR, and accounts for both physical and chemical attrition effects. Also, scanning electron microscopy (SEM) was used to investigate the mechanism of attrition - erosion vs. fracture, and to obtain morphological characteristics of catalysts. Spray dried 100Fe/3Cu/5K/16SiO2 catalyst (WCS3516-1), prepared from wet precursors using colloidal silica as the silica source, was the best in terms of its attrition strength. After 337 hours of F-T synthesis in the STSR, the reduction in the average particle size and generation of particles less than 10 ?m in diameter were found to be very small. This indicates that both particle fracture and erosion were insignificant during testing in the STSR. All other catalysts, except one of the spray dried catalysts synthesized at Hampton University, also had a good attrition resistance and would be suitable for use in slurry reactors for F-T synthesis.

Carreto Vazquez, Victor Hugo

2003-08-01T23:59:59.000Z

210

Selective Catalytic Reduction (SCR) Catalyst Reconditioning as Part of Catalyst Management  

Science Conference Proceedings (OSTI)

Previous EPRI work on catalyst reconditioning for selective catalytic reduction (SCR) systems sought to offer guidance to catalyst users as to the expected performance of reconditioned catalysts, both in the short term and long term, as well as to offer guidance as to the actual processes used for catalyst reconditioning. The present work seeks to compile these past efforts into a single document offering maximum utility to catalyst end users. In addition, the report updates previous findings where pract...

2009-12-21T23:59:59.000Z

211

Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided by Fundamental Atomistics Insights  

SciTech Connect

Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a novel hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, Sn/Ni alloy as a potential carbon tolerant reforming catalyst. Sn/Ni alloy was synthesized and tested in steam reforming of methane, propane, and isooctane. We demonstrated that the alloy catalyst is carbon-tolerant under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by a few characteristics: (a) Knowledge-based, bottom-up approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) The focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

Suljo Linic

2006-08-31T23:59:59.000Z

212

Evaluation of fine-particle size catalysts using bituminous and subbituminous coals  

SciTech Connect

The objectives of Sandia`s fine-particle size catalyst testing project are to evaluate and compare the activities of fine-particle size catalysts being developed in DOE/PETC`s Advanced Research Coal Liquefaction Program by using Sandia`s standard coal liquefaction test procedures. The first test procedure uses bituminous coal (DECS-17 Blind Canyon coal), phenanthrene as the reaction solvent, and a factorial experimental design that is used to evaluate catalysts over ranges of temperature, time, and catalyst loading. The best catalyst evaluated to date is West Virginia University`s iron catalyst that was impregnated onto the coal. Current work is aimed at developing a standard test procedure using subbituminous Wyodak coal. Ibis test is being developed using Pacific Northwest Laboratories` 6-line ferrihydrite catalyst and coal samples impregnated with either molybdenum or iron at Argonne National Laboratories. Results of testing catalysts with bituminous coal will be summarized and the development of the subbituminous coal test procedure will be presented.

Stohl, F.V.; Diegert, K.V.; Goodnow, D.C.

1996-06-01T23:59:59.000Z

213

Catalysts for coal liquefaction processes  

SciTech Connect

Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

Garg, Diwakar (Macungie, PA)

1986-01-01T23:59:59.000Z

214

Catalysts for coal liquefaction processes  

DOE Patents (OSTI)

Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

Garg, D.

1986-10-14T23:59:59.000Z

215

Perovskite catalysts for oxidative coupling  

DOE Patents (OSTI)

Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

Campbell, K.D.

1991-06-25T23:59:59.000Z

216

Enzyme catalysts for a biotechnology-based chemical industry. Quarterly progress report, September 29--December 28, 1997  

DOE Green Energy (OSTI)

The goal of this research is to engineer enzymes to be efficient and economically attractive catalysts for the chemical industry. The author is attempting to demonstrate generally-applicable approaches to enzyme improvement as well as develop specific catalysts for potential industrial application. In this report attention is focused on random mutagenesis of pNB esterase -- improved activity and stability. The most thermostable esterases obtained by sequential random mutagenesis (6H7) and random mutagenesis plus recombination (6sF9) each contain 9 amino acid mutations and a number of silent mutations, relative to the wild-type sequence. Eight of the mutations are present in both genes, for a total of ten potentially adaptive mutations. Because several of these mutations occurred in the same generation, it is difficult to identify the mutations responsible for the increases in activity and stability. In order to aid in this identification, the thermostable genes were recombined with the wild-type gene, in hopes of removing neutral mutations. The gene from the first-generation variant, with five amino acid substitutions was also recombined with wild-type.

Arnold, F.H.

1998-01-15T23:59:59.000Z

217

Thermal removal of mercury in spent powdered activated carbon from TOXECON process  

SciTech Connect

This research developed and demonstrated a technology to liberate Hg adsorbed onto powdered activated carbon (PAC) by the TOXECON process using pilot-scale high temperature air slide (HTAS) and bench-scale thermogravimetric analyzer (TGA). The HTAS removed 65, 83, and 92% of Hg captured with PAC when ran at 900{sup o}F, 1,000{sup o}F, and 1,200 {sup o}F, respectively, while the TGA removed 46 and 100% of Hg at 800 {sup o}F and 900{sup o}F, respectively. However, addition of CuO-Fe{sub 2}O{sub 3} mixture and CuCl catalysts enhanced Hg removal and PAC regeneration at lower temperatures. CuO-Fe{sub 2}O{sub 3} mixture performed better than CuCl in PAC regeneration. Scanning electron microscopy images and energy dispersive X-ray analysis show no change in PAC particle aggregation or chemical composition. Thermally treated sorbents had higher surface area and pore volume than the untreated samples indicating regeneration. The optimum temperature for PAC regeneration in the HTAS was 1,000{sup o}F. At this temperature, the regenerated sorbent had sufficient adsorption capacity similar to its virgin counterpart at 33.9% loss on ignition. Consequently, the regenerated PAC may be recycled back into the system by blending it with virgin PAC.

Okwadha, G.D.O.; Li, J.; Ramme, B.; Kollakowsky, D.; Michaud, D. [University of Wisconsin, Milwaukee, WI (United States)

2009-10-15T23:59:59.000Z

218

Membrane catalyst layer for fuel cells  

DOE Patents (OSTI)

A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 {mu}m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm{sup 2}. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

Wilson, M.S.

1991-02-19T23:59:59.000Z

219

Autothermal reforming catalyst having perovskite structure  

DOE Patents (OSTI)

The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

Krumpel, Michael (Naperville, IL); Liu, Di-Jia (Naperville, IL)

2009-03-24T23:59:59.000Z

220

Attrition and carbon formation on iron catalysts  

DOE Green Energy (OSTI)

A serious engineering problem that needs to be addressed in the scale-up of slurry-phase, Fischer-Tropsch reactors is attrition of the precipitated iron catalyst. Attrition, which can break down the catalyst into particles too small to filter, results from both mechanical and chemical forces. This study examines the chemical causes of attrition in iron catalysts. A bench-scale, slurry-phase CSTR is used to simulate operating conditions that lead to attrition of the catalyst. The average particle size and size distribution of the catalyst samples are used to determine the effect of slurry temperature, reducing gas, gas flow rate and time upon attrition of the catalyst. Carbon deposition, a possible contributing factor to attrition, has been examined using gravimetric analysis and TEM. Conditions affecting the rate of carbon deposition have been compared to those leading to attrition of the precipitated iron catalyst.

Kohler, S.D.; Harrington, M.S.; Jackson, N.B. [Sandia National Labs., Albuquerque, NM (United States); Shroff, M.; Kalakkad, D.S.; Datye, A.K. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Turbomachinery debris remover  

DOE Patents (OSTI)

An apparatus for removing debris from a turbomachine. The apparatus includes housing and remotely operable viewing and grappling mechanisms for the purpose of locating and removing debris lodged between adjacent blades in a turbomachine.

Krawiec, Donald F. (Pittsburgh, PA); Kraf, Robert J. (North Huntingdon, PA); Houser, Robert J. (Monroeville, PA)

1988-01-01T23:59:59.000Z

222

Stability and Lifetime of K-CoMoSx Mixed Alcohol Catalysts  

SciTech Connect

Researchers have studied sulfide-type catalysts for the production of mixed alcohols from synthesis gas for several decades. Despite many advances in the art, these processes are not yet commercial, due in large part to mediocre economics and the added risk associated with uncertainty in catalyst lifetime. This talk will outline some recent studies in the lifetime and stability of K-CoMoSx-type mixed alcohol catalysts. Specifically, studies of long term operation (> 3000h), sulfiding agents, simulated methanol recycle, and morphology (probed via XRD and XPS) will be discussed, with the conclusion that these materials are likely to exhibit acceptable lifetimes in continuous operation.

Hensley, J. E.; Ruddy, D.; Schaidle, J.; Ferrell, J.; Thibodeaux, J.

2013-01-01T23:59:59.000Z

223

Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System  

SciTech Connect

This document presents and discusses results from Cooperative Agreement DE-FC26-06NT42778, 'Full-scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System,' which was conducted over the time-period July 24, 2006 through June 30, 2010. The objective of the project was to demonstrate at full scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in pulverized-coal-fired flue gas. Oxidized mercury is removed downstream in wet flue gas desulfurization (FGD) absorbers and collected with the byproducts from the FGD system. The project was co-funded by EPRI, the Lower Colorado River Authority (LCRA), who also provided the host site, Great River Energy, Johnson Matthey, Southern Company, Salt River Project (SRP), the Tennessee Valley Authority (TVA), NRG Energy, Ontario Power and Westar. URS Group was the prime contractor and also provided cofunding. The scope of this project included installing and testing a gold-based catalyst upstream of one full-scale wet FGD absorber module (about 200-MW scale) at LCRA's Fayette Power Project (FPP) Unit 3, which fires Powder River Basin coal. Installation of the catalyst involved modifying the ductwork upstream of one of three wet FGD absorbers on Unit 3, Absorber C. The FGD system uses limestone reagent, operates with forced sulfite oxidation, and normally runs with two FGD modules in service and one spare. The full-scale catalyst test was planned for 24 months to provide catalyst life data. Over the test period, data were collected on catalyst pressure drop, elemental mercury oxidation across the catalyst module, and mercury capture by the downstream wet FGD absorber. The demonstration period began on May 6, 2008 with plans for the catalyst to remain in service until May 5, 2010. However, because of continual increases in pressure drop across the catalyst and concerns that further increases would adversely affect Unit 3 operations, LCRA decided to end the demonstration early, during a planned unit outage. On October 2, 2009, Unit 3 was taken out of service for a fall outage and the catalyst upstream of Absorber C was removed. This ended the demonstration after approximately 17 months of the planned 24 months of operation. This report discusses reasons for the pressure drop increase and potential measures to mitigate such problems in any future application of this technology. Mercury oxidation and capture measurements were made on Unit 3 four times during the 17-month demonstration. Measurements were performed across the catalyst and Absorber C and 'baseline' measurements were performed across Absorber A or B, which did not have a catalyst upstream. Results are presented in the report from all four sets of measurements during the demonstration period. These results include elemental mercury oxidation across the catalyst, mercury capture across Absorber C downstream of the catalyst, baseline mercury capture across Absorber A or B, and mercury re-emissions across both absorbers in service. Also presented in the report are estimates of the average mercury control performance of the oxidation catalyst technology over the 17-month demonstration period and the resulting mercury control costs.

Gary Blythe; Jennifer Paradis

2010-06-30T23:59:59.000Z

224

Evaluation of Promoters for Rhodium-Based Catalysts for Mixed Alcohol Synthesis  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory (PNNL) and National Renewable Energy Laboratory (NREL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially-available catalysts or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially-available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. A total of 28 tests were conducted to evaluate 22 different promoters as well as an unpromoted catalyst. The following general trends were observed for the test results: • The highest carbon selectivity to C2+ oxygenates occurred at the lowest reaction temperatures and accompanying lowest space time yields (STYs). • The lowest carbon selectivity to C2+ oxygenates occurred at the highest reaction temperatures because of high carbon conversion to hydrocarbons. • The highest C2+-oxygenate STYs occurred between 300°C and 325°C, with the gas hourly space velocity (GHSV) adjusted when necessary to maintain carbon conversion ranges between ~ 30 and 40 percent. Higher carbon selectivity to hydrocarbons at higher temperatures resulted in lower C2+-oxygenate STYs. • When catalysts were heated to between 300°C and 325°C the catalysts showed evidence of some deactivation with respect to C2+ oxygenate productivity, accompanied by reduced chain growth for the hydrocarbon products. The degree of deactivation and the temperature at which it occurred varied between the different catalysts tested. Of all of the catalysts evaluated, the Li-promoted catalysts had the highest carbon selectivity to C2+ oxygenates (47 percent) under the conditions at which the maximum C2+-oxygenate STYs were obtained.

Gerber, Mark A.; White, James F.; Gray, Michel J.; Stevens, Don J.

2008-12-08T23:59:59.000Z

225

Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst  

DOE Patents (OSTI)

A method is provided for removing ammonia from the sour water stream of a coal gasification process. The basic steps comprise stripping the ammonia from the sour water; heating the stripped ammonia to a temperature from between 400.degree. to 1,000.degree. F; passing the gaseous ammonia through a reactor containing a sulfided catalyst to produce elemental hydrogen and nitrogen; and scrubbing the reaction product to obtain an ammonia-free gas. The residual equilibrium ammonia produced by the reactor is recycled into the stripper. The ammonia-free gas may be advantageously treated in a Claus process to recover elemental sulfur. Iron sulfide or cobalt molybdenum sulfide catalysts are used.

Matthews, Charles W. (Denver, CO)

1977-01-01T23:59:59.000Z

226

Graphitic packing removal tool  

DOE Patents (OSTI)

Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

Meyers, K.E.; Kolsun, G.J.

1996-12-31T23:59:59.000Z

227

Catalyst for selective conversion of synthesis gas and method of making the catalyst  

DOE Patents (OSTI)

A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Macungie, PA)

1986-01-01T23:59:59.000Z

228

Supported fischer-tropsch catalyst and method of making the catalyst  

DOE Patents (OSTI)

A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

Dyer, Paul N. (Allentown, PA); Pierantozzi, Ronald (Orefield, PA); Withers, Howard P. (Douglassville, PA)

1987-01-01T23:59:59.000Z

229

PILLARED CLAYS AS SUPERIOR CATALYSTS FOR SELECTIVE CATALYTIC REDUCTION OF NITRIC OXIDE  

DOE Green Energy (OSTI)

Removal of NO{sub x} (NO + NO{sub 2}) from exhaust gases is a challenging subject. V{sub 2}O{sub 5}-based catalysts are commercial catalysts for selective catalytic reduction (SCR) with NH{sub 3} for stationary sources. However, for diesel and lean-burn gasoline engines in vehicles, hydrocarbons would be the preferred reducing agents over NH{sub 3} because of the practical problems associated with the use of NH{sub 3} (i.e., handling and slippage through the reactor). The noble-metal three-way catalysts are not effective under these conditions. The first catalyst found to be active for selective catalytic reduction of NO by hydrocarbons in the presence of excess oxygen was copper exchanged ZSM-5 and other zeolites, reported in 1990 by Iwamoto in Japan and Held et al. in Germany. Although Cu-ZSM-5 is very active and the most intensively studied catalyst, it suffers from severe deactivation in engine tests, mainly due to H{sub 2}O and SO{sub 2}. In this project, we found that ion-exchanged pillared clays and MCM-41 catalysts showed superior SCR activities of NO with hydrocarbon. All Cu{sup 2+}-exchanged pillared clays showed higher SCR activities than Cu-ZSM-5 reported in the literature. In particular, H{sub 2}O and SO{sub 2} only slightly deactivated the SCR activity of Cu-TiO{sub 2}-PILC, whereas severe deactivation was observed for Cu-ZSM-5. Moreover, Pt/MCM-41 provided the highest specific NO reduction rates as compared with other Pt doped catalysts, i.e., Pt/Al{sub 2}O{sub 3}, Pt/SiO{sub 2} and Pt/ZSM-5. The Pt/MCM-41 catalyst also showed a good stability in the presence of H{sub 2}O and SO{sub 2}.

R.Q. Long; N. Tharappiwattananon; W.B. Li; R.T. Yang

2000-09-01T23:59:59.000Z

230

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period October 1, 2002 through December 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future fullscale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fifth full reporting period for the subject Cooperative Agreement. During this period, project efforts included starting up the pilot unit with three catalysts at the first site, conducting catalyst activity measurements, completing comprehensive flue gas sampling and analyses, and procuring additional catalysts for the pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-01-21T23:59:59.000Z

231

Intermittency on catalysts: voter model  

E-Print Network (OSTI)

In this paper we study intermittency for the parabolic Anderson equation with a space-time random potential describing the evolution of a "reactant" under the influence of a "catalyst", where the catalyst is given by the voter model with opinions 0 and 1 that are updated according to a random walk transition kernel starting from either the Bernoulli measure or the equilibrium measure. We show that the annealed Lyapunov exponents of the solution are trivial when the random walk is not strongly transient, but display an interesting dependence on the diffusion constant when the random walk is strongly transient. Compared with our earlier work, the main obstacle is the non-reversibility of the voter model dynamics, since this precludes the application of spectral techniques. The duality with coalescing random walks is key to our analysis, and leads to a representation formula for the Lyapunov exponents that allows for the application of large deviation techniques.

Gärtner, J; Maillard, G

2009-01-01T23:59:59.000Z

232

Pyrochlore-Based Catalysts for Syngas-Derived Alcohol Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Pyrochlore-Based Catalysts for Syngas-Derived Pyrochlore-Based Catalysts for Syngas-Derived Alcohol Synthesis Contact NETL Technology Transfer Group techtransfer@netl.doe.gov PON-13-006 August 2013 Opportunity This technology provides an advantageous means to convert syngas into a class of chemicals known as higher oxygenates as well as other long-chain hydrocarbons. Research is currently active on this patent-pending technology "Method of CO and/or CO2 Hydrogenation Using Doped Mixed Metal Oxides." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Significance * Improves the conversion of syngas from natural gas, coal, or biomass * Enhances the potential use of oxygenates as

233

Polymer-based catalysts. Progress report, July 1, 1980-June 30, 1981  

Science Conference Proceedings (OSTI)

Research carried out under this contract period has centered around the following: (1) developing methods for probing active site mobility, macroenvironment, microenvironment and efficiency of triphase catalysts, (2) preparing and evaluating a variety of polyether-based triphase catalysts, (3) synthesizing key monomers from which sequestered ligands are to be prepared, and (4) demonstrating the synthetic utility of simple poly(acrylamide) gels as solid phase cosolvents.

Regen, S.L.

1981-02-01T23:59:59.000Z

234

Copper-containing zeolite catalysts  

DOE Patents (OSTI)

A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

Price, G.L.; Kanazirev, V.

1996-12-10T23:59:59.000Z

235

Copper-containing zeolite catalysts  

DOE Patents (OSTI)

A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

Price, Geoffrey L. (Baton Rouge, LA); Kanazirev, Vladislav (Sofia, BG)

1996-01-01T23:59:59.000Z

236

The Use of Soluble Polyolefins as Supports for Transition Metal Catalysts  

E-Print Network (OSTI)

The use of polymer supports for transition metal catalysts are very important and useful in synthetic organic chemistry as they make possible the separation and isolation of catalysts and products quite easy. These polymer-bound ligands/catalysts/reagents can, often, be recovered and recycled numerous times and typically yield products in high purity, negating the need for further purification steps (i.e. column chromatography). Because of this, interest in these systems has garnered international attention in the scientific community as being “Green”. Historically, insoluble, polymer-supports (i.e. Merrifield resin) were used to develop recoverable catalysts. This has the advantage of easy separation and isolation from products after a reaction; because of their insolubility, such supported catalysts can be easily removed by gravity filtration. However, these catalysts often have relatively poor reactivity and selectivity when compared to homogeneous catalysts. Because of this disadvantage, our lab has had interest in the development of soluble polymer-supports for transition metal catalysts. We have developed several separation methods for these soluble polymer-bound catalysts. These include thermomorphic liquid/liquid and solid/liquid as well as latent biphasic liquid/liquid separation techniques. This dissertation describes the use of both, latent biphasic liquid/liquid separation systems and thermomorphic solid/liquid separation systems. In order to perform a latent biphasic iii liquid/liquid separation, a polymer-bound catalyst must have a very high selectivity for one liquid phase over the other. Our lab has pioneered the use of polyisobutylene (PIB) oligomers as supports for transition metal catalysts. Previous work has shown that these oligomers are > 99.96 % phase selectively soluble in nonpolar solvents. This has allowed us to prepare PIB-supported salen Cr(III) complexes that can be used in a latent biphasic liquid/liquid solvent system. The synthesis of these complexes is quite straightforward and such species can be characterized using solution state 1H and 13C NMR spectroscopy. Also, these complexes can be used to catalyze the ring opening of meso epoxides with azidotrimethylsilane (TMS-N3) and can be recovered and recycled up to 6 times, with no loss in catalytic activity. To perform a thermomorphic solid/liquid separation, a polymer-bound catalyst that is completely insoluble at room temperature but soluble upon heating must be used. Our lab has pioneered the use of polyethylene oligomers (PEOlig) as supports for transition metal catalysts. Such PEOlig-supported catalysts are able perform homogeneous catalytic reactions at elevated temperatures (ca. 65 ?C), but, upon cooling, precipitate out of solution as solids while the products stay in solution. This process allows for the easy separation of a solid catalyst from the product solution. Described herein, is the development of PEOlig-supported salen-Cr(III) complexes and PEOlig-supported NHC-Ru complexes. The preparation of these complexes is also straightforward and such species can be characterized using solution state variable temperature (VT) 1H and 13C NMR spectroscopy. In the case of the PEOlig-supported salen-Cr(III) complex, it was found to be a recoverable/recyclable catalyst for the ring opening of epoxides with TMS-N3 and could be reused 6 times with no loss in activity. The PE-supported NHC-Ru complex was able to be used as a recyclable ring closing metathesis (RCM) catalyst and could be used up to 10 times.

Hobbs, Christopher Eugene

2011-08-01T23:59:59.000Z

237

The Existence of Quantum Entanglement Catalysts  

E-Print Network (OSTI)

Without additional resources, it is often impossible to transform one entangled quantum state into another with local quantum operations and classical communication. Jonathan and Plenio [Phys. Rev. Lett. 83, 3566(1999)] presented an interesting example showing that the presence of another state, called a catalyst, enables such a transformation without changing the catalyst. They also pointed out that in general it is very hard to find an analytical condition under which a catalyst exists. In this paper we study the existence of catalysts for two incomparable quantum states. For the simplest case of $2\\times 2$ catalysts for transformations from one $4\\times 4$ state to another, a necessary and sufficient condition for existence is found. For the general case, we give an efficient polynomial time algorithm to decide whether a $k\\times k$ catalyst exists for two $n\\times n$ incomparable states, where $k$ is treated as a constant.

Xiaoming Sun; Runyao Duan; Mingsheng Ying

2003-11-19T23:59:59.000Z

238

Electric Power Research Institute, Environmental Control Technology Center report to the Steering Committee. Final technical report  

Science Conference Proceedings (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Trace Element Removal (TER) test block, and a simultaneous testing of the Lime Forced Oxidation process with DBA addition (LDG). At the end of the month, a series of Duct Injection tests began in a study to determine the efficiencies of alkaline injection for removing trace elements (mercury). On the Cold-Side Selective Catalytic Reduction (SCR) unit, low temperature performance testing continued this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and SO{sub 3} generation across the catalysts installed in the SCR reactor. This report describes the status of the facilities and test activities at the pilot and mini-pilot plants.

NONE

1995-07-01T23:59:59.000Z

239

Regenerated Plate Type SCR Catalyst Performance  

Science Conference Proceedings (OSTI)

Selective Catalytic Reduction (SCR) technology has become the technology of choice for meeting stringent nitrogen oxides (NOX) emission limits for many coal fired electric generating plants. With the aging of the domestic SCR fleet, the average age of catalysts currently in use has increased; and many facilities are now considering replacement or regeneration of the catalyst materials. Facilities planning to integrate SCR catalyst regeneration into their operations need to understand the overall performa...

2009-01-26T23:59:59.000Z

240

SCR Catalyst Management for Mercury Control  

Science Conference Proceedings (OSTI)

A number of EPRI projects conducted over the past several years have examined the effects of SCR catalyst on mercury speciation. These projects have focused on the various factors influencing mercury oxidation, related to both the flue gas conditions and the catalysts themselves. However, the majority of these studies have only examined the speciation at the SCR inlet and outlet. Much less is known about the interlayer speciation, however, which is very important when developing catalyst management ...

2012-11-16T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mercury Oxidation Performance of Advanced SCR Catalyst  

Science Conference Proceedings (OSTI)

The ability of selective catalytic reduction (SCR) catalysts to oxidize mercury is an important aspect of many utilities’ mercury control strategies. Improved SCR mercury oxidation will facilitate its capture in downstream wet–flue gas desulfurization systems and will generally result in lower emission rates. Recently, catalyst manufacturers have attempted to maximize mercury oxidation through advanced catalyst formulations.This study documents the performance of an advanced ...

2012-12-31T23:59:59.000Z

242

Shape selective catalysts for F-T chemistry. Interim report : January 2001 - December 2002.  

DOE Green Energy (OSTI)

Argonne National Laboratory (ANL) is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (F-T) chemistry, specifically the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to F-T catalysts needing high activity, it is desirable that they have high selectivity and stability with respect to both mechanical strength and aging properties. In this project, selectivity is directed toward the production of diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. Shape-selective catalysts have the potential to both limit the formation of long-chain products and yet retain the active metal sites in a protected ''cage.'' This cage also restricts their loss by attrition during use in slurry-bed reactors. Experimentation has included evaluation of samples of (1) iron-based F-T catalysts prepared at Argonne National Laboratory, (2) iron-based F-T catalysts prepared by B.H. Davis of the Center of Applied Energy Research (CAER), (3) the Davis catalyst that were sized by differential gravity separation, and (4) the Davis catalyst onto which inorganic or catalytic ''shells'' were deposited. The ANL-prepared samples had a wide range of particle size and were irregular in shape. A sizeable portion of the samples provided by Davis were spherical, because they had been prepared by spray-drying. To compare the catalytic activities of the samples, we used a micro-scale fixed-bed reactor system for F-T runs of low conversion to avoid thermal and mass transfer effects. In summary, the highest activity was that of the original Davis catalyst; additional research must be carried out to generate more permeable surface cages. A number of approaches that have been published for other applications will be tested.

Cronauer, D. C.

2003-01-29T23:59:59.000Z

243

Evaluation of coal minerals and metal residues as coal-liquefaction catalysts. Final report  

DOE Green Energy (OSTI)

The catalytic activity of various minerals, metallic wastes, and transition metals was investigated in the liquefaction of various coals. The effects of coal type, process variables, coal cleaning, catalyst addition mode, solvent quality, and solvent modification on coal conversion and oil production were also studied. Coal conversion and oil production improved significantly by the addition of pyrite, reduced pyrite, speculite, red mud, flue dust, zinc sulfide, and various transition metal compounds. Impregnation and molecular dispersion of iron gave higher oil production than particulate incorporation of iron. However, the mode of molybdenum addition was inconsequential. Oil production increased considerably both by adding a stoichiometric mixture of iron oxide and pyrite and by simultaneous impregnation of coal with iron and molybdenum. Hydrogenation activity of disposable catalysts decreased sharply in the presence of nitrogen compounds. The removal of heteroatoms from process solvent improved thermal as well as catalytic coal liquefaction. The improvement in oil production was very dramatic with a catalyst.

Garg, D.; Givens, E. N.; Schweighardt, F. K.; Tarrer, A. R.; Guin, J. A.; Curtis, C. W.; Huang, W. J.; Shridharani, K.; Clinton, J. H.

1982-02-01T23:59:59.000Z

244

Hydrocarbon synthesis catalyst and method of preparation  

DOE Patents (OSTI)

A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.

Sapienza, Richard S. (Shoreham, NY); Sansone, Michael J. (Summit, NJ); Slegeir, William A. R. (Hampton Bays, NY)

1983-08-02T23:59:59.000Z

245

Process for coal liquefaction using electrodeposited catalyst  

DOE Patents (OSTI)

A process for the liquefaction of solid hydrocarbonaceous materials is disclosed. Particles of such materials are electroplated with a metal catalyst and are then suspended in a hydrocarbon oil and subjected to hydrogenolysis to liquefy the solid hydrocarbonaceous material. A liquid product oil is separated from residue solid material containing char and the catalyst metal. The catalyst is recovered from the solid material by electrolysis for reuse. A portion of the product oil can be employed as the hydrocarbon oil for suspending additional particles of catalyst coated solid carbonaceous material for hydrogenolysis.

Moore, Raymond H. (Richland, WA)

1978-01-01T23:59:59.000Z

246

Heterogeneous Catalyst for Improved Selectivity of Biomass ...  

Technology Marketing Summary. In today’s industrial processes, heterogeneous catalysts are widely used because of their stability and ease of ...

247

Available Technologies: Catalyst Patterning for Scalable CVD ...  

Nano- & Micro-technology; Software and IT ; Licensing Interest Form Receive Customized Tech Alerts. Catalyst Patterning for Scalable CVD Growth of Graphene Nanoribbon.

248

Attrition resistant fluidizable reforming catalyst - Energy ...  

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and ...

249

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When...

250

Polyfunctional catalyst for processiing benzene fractions  

SciTech Connect

A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

251

Moessbauer spectroscopy studies of iron-catalysts used in Fischer-Tropsch (FT) processes. Quarterly technical progress report, January--March 1996  

DOE Green Energy (OSTI)

Texas A and M University has been developing Fischer-Tropsch catalysts which are active at a low H{sub 2}/CO ratio of 0.67. It is of interest to find out any relationships that may exist between the iron phases that are produced during activation and FT synthesis and the activity of the catalysts. Moessbauer spectroscopy investigations were carried out on 13 iron-based catalysts during the period under review. The catalysts were taken from fixed bed reactors at the end of the tests. All the catalysts were mixed with glass beads. The glass beads were removed to a large extent by a hand held magnet. For each run, samples were taken from both top and bottom of the reactor to find out whether there are any differences between the two samples taken from different regions of the reactor. The catalysts with 24 parts of SiO{sub 2} were reduced with H{sub 2} at 250C for 24h, and the catalysts with 16 parts of SiO{sub 2} were reduced with H{sub 2} at 240C for 2h. All the test were carried out at 250C, 200 psig, 2.0nL(syngas)/g-cat/h with H{sub 2}/CO feed ratio of 0.67. The compositions of the catalysts studied are given in a table. Three catalysts consisted of Ca in addition to Cu and K.

Huffman, G.P.; Rao, K.R.P.M.

1996-07-01T23:59:59.000Z

252

On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids.  

SciTech Connect

Supported palladium catalysts are effective catalysts for the hydrogen-free decarboxylation of fatty acids. However, the catalysts deactivate severely after one use. Here, the recyclability of a well-defined, mesoporous silica-supported palladium nanoparticle catalyst is evaluated in the batch decarboxylation of stearic acid at 300 C under inert atmosphere, producing n-heptadecane. The nature of the catalyst deactivation is examined in detail via an array of characterization techniques. X-ray photoelectron spectroscopy (XPS) demonstrates that little palladium surface oxidation occurs over the course of the reaction, and a combination of X-ray absorption spectroscopy and transmission electron microscopy (TEM) suggests negligible particle sintering or agglomeration. Physisorption and chemisorption measurements demonstrate substantial loss in total surface area and porosity as well as accessible palladium surface area with these losses attributed to significant organic deposition on the catalyst, as verified via thermogravimetric analysis. High temperature calcination is applied to combust and remove these residues, but resultant nanoparticle agglomeration is significant. Solid state nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT-IR) and solid dissolution followed by organic extraction methodologies demonstrate that the carbonaceous deposits are not coke but rather strongly adsorbed reactants and products. Detrimental coke formation, as suggested by prior literature, is verified to be absent, as extraction of the surface-deposited organic species yields nearly complete recovery of the total surface area, pore volume, and active palladium surface area. Furthermore, the regenerated catalyst exhibits a corresponding significant recovery of decarboxylation activity.

Ping, E. W.; Pierson, J.; Wallace, R.; Miller, J. T.; Fuller, T. F.; Jones, C. W. (Chemical Sciences and Engineering Division); (Georgia Institute of Technology)

2011-04-15T23:59:59.000Z

253

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the second set of mercury measurements was made after the catalysts had been exposed to flue gas for about 2,000 hours. There was good agreement between the Ontario Hydro measurements and the SCEM measurements. Carbon trap measurements of total mercury agreed fairly well with the SCEM. There did appear to be some loss of mercury in the sampling system toward the end of the sampling campaign. NO{sub x} reductions across the catalysts ranged from 60% to 88%. Loss of total mercury across the commercial catalysts was not observed, as it had been in the March/April test series. It is not clear whether this was due to aging of the catalyst or to changes in the sampling system made between March/April and August. In the presence of ammonia, the blank monolith showed no oxidation. Two of the commercial catalysts showed mercury oxidation that was comparable to that in the March/April series. The other three commercial catalysts showed a decrease in mercury oxidation relative to the March/April series. Oxidation of mercury increased without ammonia present. Transient experiments showed that when ammonia was turned on, mercury appeared to desorb from the catalyst, suggesting displacement of adsorbed mercury by the ammonia.

Constance Senior; Temi Linjewile

2003-10-31T23:59:59.000Z

254

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-04NT41992, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems'', during the time-period January 1 through March 31, 2006. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, EPRI, Great River Energy (GRE), TXU Generation Company LP, the Southern Company, and Duke Energy. URS Group is the prime contractor. The mercury control process under development uses honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The current project is testing previously identified catalyst materials at pilot scale and in a commercial form to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months or longer at each of two sites to provide longer-term catalyst life data. Pilot-scale wet FGD tests are being conducted periodically at each site to confirm the ability to scrub the catalytically oxidized mercury at high efficiency. This is the ninth reporting period for the subject Cooperative Agreement. During this period, project efforts primarily consisted of operating the catalyst pilot units at the TXU Generation Company LP's Monticello Steam Electric Station and at Georgia Power's Plant Yates. Two catalyst activity measurement trips were made to Plant Yates during the quarter. This Technical Progress Report presents catalyst activity results from the oxidation catalyst pilot unit at Plant Yates and discusses the status of the pilot unit at Monticello.

Gary M. Blythe

2006-03-31T23:59:59.000Z

255

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-04NT41992, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems'', during the time-period January 1 through March 31, 2006. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, EPRI, Great River Energy (GRE), TXU Generation Company LP, the Southern Company, and Duke Energy. URS Group is the prime contractor. The mercury control process under development uses honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The current project is testing previously identified catalyst materials at pilot scale and in a commercial form to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months or longer at each of two sites to provide longer-term catalyst life data. Pilot-scale wet FGD tests are being conducted periodically at each site to confirm the ability to scrub the catalytically oxidized mercury at high efficiency. This is the ninth reporting period for the subject Cooperative Agreement. During this period, project efforts primarily consisted of operating the catalyst pilot units at the TXU Generation Company LP's Monticello Steam Electric Station and at Georgia Power's Plant Yates. Two catalyst activity measurement trips were made to Plant Yates during the quarter. This Technical Progress Report presents catalyst activity results from the oxidation catalyst pilot unit at Plant Yates and discusses the status of the pilot unit at Monticello.

Gary M. Blythe

2006-03-31T23:59:59.000Z

256

Heterogeneous Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction on Multifunctional Pd Catalysts  

Science Conference Proceedings (OSTI)

Temperature programmed reaction and scanning transmission electron microscopy experiments were applied to prove the requirement of two different catalyst functionalities for the reduction of CO2 with hydrogen on Pd/Al2O3 and Pd/MWCNT catalysts. The research described in this paper was supported by the Laboratory Directed Research and Development (LDRD) program of the Pacific Northwest National Laboratory (PNNL) and was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is operated for the US DOE by Battelle Memorial Institute.

Kwak, Ja Hun; Kovarik, Libor; Szanyi, Janos

2013-11-01T23:59:59.000Z

257

Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts  

E-Print Network (OSTI)

R. Structure of Metallic Catalysts ; Academic Press: London,pretreatments of the Rh catalysts and analyzing thea Pt(octahedra)/SBA-15 catalyst increased from 0.01 to 28

Coble, Inger M

2008-01-01T23:59:59.000Z

258

Focussing the view on Nature's water-splitting catalyst  

E-Print Network (OSTI)

formation in synthetic Mn-catalyst. Inorg. Chem. 43, 264-Nature’s water-splitting catalyst Samir Zein 1,2 , Leonid V.Nature’s water splitting catalyst Abstract About 3 billion

Yano, Junko

2008-01-01T23:59:59.000Z

259

Catalyst dispersion and activity under conditions of temperature-staged liquefaction  

DOE Green Energy (OSTI)

The general objectives of this research are (1) to investigate the use of highly dispersed catalysts for the pretreatment of coal by mild hydrogenation, (2) to identify the active forms of the catalysts under reaction conditions and (3) to clarify the mechanisms of catalysis. The ultimate objective is to ascertain if mild catalytic hydrogenation resulting in very limited or no coal solubilization is an advantageous pretreatment for the transformation of coal into transportable fuels. The experimental program will focus upon the development of effective methods of impregnating coal with catalysts, evaluating the conditions under which the catalysts are most active and establishing the relative impact of improved impregnation on conversion and product distributions obtained from coal hydrogenation.

Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

1992-02-01T23:59:59.000Z

260

Attrition resistant fluidizable reforming catalyst  

DOE Patents (OSTI)

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

2011-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Formation of alcohol conversion catalysts  

DOE Patents (OSTI)

The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

Wachs, Israel E. (Bridgewater, NJ); Cai, Yeping (Louisville, KY)

2001-01-01T23:59:59.000Z

262

Organoclay Sorbent for Removal of Carbon Dioxide from Gas ...  

Organoclay Sorbent for Removal of Carbon Dioxide from Gas ... required for sequestration, an area of research identified as a high priority

263

Removal of Last Remaining HEU from Vietnam - Time Lapse Video...  

NLE Websites -- All DOE Office Websites (Extended Search)

(MOST) and the Russian Federation successfully removed 11 kilograms of highly enriched uranium (HEU) from the Dalat Nuclear Research Institute. This is the eleventh country...

264

Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases  

DOE Patents (OSTI)

A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

Clay, David T. (Longview, WA); Lynn, Scott (Walnut Creek, CA)

1976-10-19T23:59:59.000Z

265

Device for removing blackheads  

DOE Patents (OSTI)

A device for removing blackheads from pores in the skin having a elongated handle with a spoon shaped portion mounted on one end thereof, the spoon having multiple small holes piercing therethrough. Also covered is method for using the device to remove blackheads.

Berkovich, Tamara (116 N. Wetherly Dr., Suite 115, Los Angeles, CA)

1995-03-07T23:59:59.000Z

266

Silica Scaling Removal Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Silica Scaling Removal Process Silica Scaling Removal Process Silica Scaling Removal Process Scientists at Los Alamos National Laboratory have developed a novel technology to remove both dissolved and colloidal silica using small gel particles. Available for thumbnail of Feynman Center (505) 665-9090 Email Silica Scaling Removal Process Applications: Cooling tower systems Water treatment systems Water evaporation systems Potential mining applications (produced water) Industry applications for which silica scaling must be prevented Benefits: Reduces scaling in cooling towers by up to 50% Increases the number of cycles of concentration substantially Reduces the amount of antiscaling chemical additives needed Decreases the amount of makeup water and subsequent discharged water (blowdown) Enables considerable cost savings derived from reductions in

267

A Novel Nanobio Catalyst for Biofuels | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Multiple Crystal Cavities for Unlimited X-ray Energy Resolution and Multiple Crystal Cavities for Unlimited X-ray Energy Resolution and Coherence An Intriguing Twist in the Structure of a Cobalt Oxide Catalyst Breaking Records in Neurological Microradiology Exposing Valence-Bond Model Inadequacies Plants' Rapid Response System Revealed Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed A Novel Nanobio Catalyst for Biofuels AUGUST 27, 2012 Bookmark and Share Core shell nanoparticle inside Apo. Nanoparticles synthesized from noble metals such as ruthenium, rhodium, palladium, silver (Ag), osmium, iridium, platinum, and gold (Au) are attracting increased attention by researchers around the world looking for

268

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period July 1, 2002 through September 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The coprecipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fourth full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to completing, installing and starting up the pilot unit, completing laboratory runs to size catalysts, and procuring catalysts for the pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2002-10-04T23:59:59.000Z

269

SEPARATION OF FISCHER-TROPSCH WAX FROM CATALYST BY SUPERCRITICAL EXTRACTION  

DOE Green Energy (OSTI)

The objective of this research project is to evaluate the potential of supercritical fluid (SCF) extraction for the recovery and fractionation of the wax product from the slurry bubble column (SBC) reactor of the Fischer-Tropsch (F-T) process. The wax, comprised mostly of branched and linear alkanes with a broad molecular weight distribution up to C{sub 100}, will be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300 C. Initial work is being performed using n-hexane as the solvent. The success of the project depends on two factors. First, the supercritical solvent must be able to dissolve the F-T wax; furthermore, this must be accomplished at conditions that do not entrain the solid catalyst. Second, the extraction must be controlled so as not to favor the removal of the low molecular weight wax compounds. That is, a constant carbon-number distribution in the wax slurry must be maintained at steady-state column operation. Three major tasks are being undertaken to evaluate our proposed SCF extraction process. Task 1: Equilibrium solubility measurements for model F-T wax components in supercritical fluids at conditions representative of those in a SBC reactor. Task 2: Thermodynamic modeling of the measured VLE data for extending our results to real wax systems. Task 3: Process design studies of our proposed process. Additional details of the task structure are given.

MARK C. THIES; PATRICK C. JOYCE

1998-07-31T23:59:59.000Z

270

SEPARATION OF FISCHER-TROPSCH WAX FROM CATALYST BY SUPERCRITICAL EXTRACTION  

DOE Green Energy (OSTI)

The objective of this research project is to evaluate the potential of supercritical fluid (SCF) extraction for the recovery and fractionation of the wax product from the slurry bubble column (SBC) reactor of the Fischer-Tropsch (F-T) process. The wax, comprised mostly of branched and linear alkanes with a broad molecular weight distribution up to C{sub 100}, will be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300 C. Initial work is being performed using n-hexane as the solvent. The success of the project depends on two factors. First, the supercritical solvent must be able to dissolve the F-T wax; furthermore, this must be accomplished at conditions that do not entrain the solid catalyst. Second, the extraction must be controlled so as not to favor the removal of the low molecular weight wax compounds. That is, a constant carbon-number distribution in the wax slurry must be maintained at steady-state column operation. Three major tasks are being undertaken to evaluate our proposed SCF extraction process. Task 1: Equilibrium solubility measurements for model F-T wax components in supercritical fluids at conditions representative of those in a SBC reactor. Task 2: Thermodynamic modeling of the measured VLE data for extending our results to real wax systems. Task 3: Process design studies of our proposed process. Additional details of the task structure are given.

MARK C. THIES; PATRICK C. JOYCE

1998-10-31T23:59:59.000Z

271

Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol...  

NLE Websites -- All DOE Office Websites (Extended Search)

Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells A direct methanol fuel cell...

272

A Goldilocks Catalyst: Nanocluster 'just right' for Recycling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Goldilocks Catalyst A Goldilocks Catalyst Nanocluster 'just right' for recycling carbon dioxide February 21, 2011 | Tags: Chemistry, Energy Technologies, Franklin Contact: John...

273

Self-oscillations on a partially wetted catalyst pellet in ? ...  

Science Conference Proceedings (OSTI)

and the vapor–gas phases on wetted and dry catalyst pellets, respectively. ... perature and flooding states of the catalyst pellet was first observed, which were ...

274

Catalysts for Oxidation of Mercury in Flue Gas  

Disclosed in this patent are catalysts for the oxidation of elemental mercury in flue gas. These novel catalysts include iridium (Ir), ...

275

Novel metalloporphyrin catalysts for the oxidation of hydrocarbons  

DOE Green Energy (OSTI)

Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented.

Showalter, M.C.; Nenoff, T.M.; Shelnutt, J.A.

1996-11-01T23:59:59.000Z

276

Membrane catalyst layer for fuel cells  

DOE Patents (OSTI)

A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

Wilson, Mahlon S. (Los Alamos, NM)

1993-01-01T23:59:59.000Z

277

Integrated current collector and catalyst support  

DOE Patents (OSTI)

An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

Bregoli, Lawrence J. (Southwick, MA)

1985-10-22T23:59:59.000Z

278

Improved catalysts for carbon and coal gasification  

DOE Patents (OSTI)

This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

McKee, D.W.; Spiro, C.L.; Kosky, P.G.

1984-05-25T23:59:59.000Z

279

Ligand iron catalysts for selective hydrogenation  

SciTech Connect

Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

Casey, Charles P. (Madison, WI); Guan, Hairong (Cincinnati, OH)

2010-11-16T23:59:59.000Z

280

Methane oxidation over dual redox catalysts  

SciTech Connect

The objective of this research is to develop approaches to direct catalytic oxidation of methane over oxides that are doubly doped with transition metal ions. The desired process aims at employing a double redox mechanism, where one redox couple is utilized for activation of oxygen and another for the trapping of CH{sub 3} radicals. The methyl radicals can either recombine, giving C{sub 2} hydrocarbons, or be converted, via electron transfer reaction, to carbocations. The latter species can react with surface OH{sup {minus}} groups to form methanol or formaldehyde. To choose from several possible catalytic systems, this research initially involved the characterization of the micromorphology and crystalline dimensions of zinc oxide catalysts doped with Cu, Fe, and Sn by scanning electron microscopy. In addition, the determination of surface composition and oxidation states by X-ray photoelectron spectroscopy was carried out. A newly constructed high temperature catalytic testing system has been calibrated (flow meters and temperature controllers), tested for possible gas leaks and integrated with a gas chromatographic analytical unit. A preliminary catalytic test study over a Cu/Fe/ZnO sample was performed. The following products of the methane coupling reaction was found: C{sub 2}H{sub 6}, C{sub 2}H{sub 4} and H{sub 2}O together with CO{sub 2}. The maximum space time yield of 14 mmol C{sub 2} hydrocarbons/g cat/h was obtained at 848{degrees}C.

Klier, K.; Herman, R.G.; Sojka, Z.

1989-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

Constance Senior

2004-12-31T23:59:59.000Z

282

Improved Processes to Remove Naphthenic Acids  

Science Conference Proceedings (OSTI)

In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorption experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.

Aihua Zhang; Qisheng Ma; Kangshi Wang; Yongchun Tang; William A. Goddard

2005-12-09T23:59:59.000Z

283

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

with a focus on improving the performance and durability and reducing the cost of fuel cell components and systems. Research efforts involve: Developing advanced catalysts,...

284

Process for magnetic beneficiating petroleum cracking catalyst  

DOE Patents (OSTI)

A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

Doctor, Richard D. (Lisle, IL)

1993-01-01T23:59:59.000Z

285

Process for magnetic beneficiating petroleum cracking catalyst  

DOE Patents (OSTI)

A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

Doctor, R.D.

1993-10-05T23:59:59.000Z

286

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This final report presents and discusses results from a mercury control process development project entitled ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems''. The objective of this project was to demonstrate at pilot scale a mercury control technology that uses solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. Oxidized mercury is removed in downstream wet flue gas desulfurization (FGD) absorbers and leaves with the FGD byproducts. The goal of the project was to achieve 90% oxidation of elemental mercury in the flue gas and 90% overall mercury capture with the downstream wet FGD system. The project was co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) under Cooperative Agreement DE-FC26-01NT41185. Great River Energy (GRE) and City Public Service (now CPS Energy) of San Antonio were also project co-funders and provided host sites. URS Group, Inc. was the prime contractor. Longer-term pilot-scale tests were conducted at two sites to provide catalyst life data. GRE provided the first site, at their Coal Creek Station (CCS), which fires North Dakota lignite, and CPS Energy provided the second site, at their Spruce Plant, which fires Powder River Basin (PRB) coal. Mercury oxidation catalyst testing began at CCS in October 2002 and continued through the end of June 2004, representing nearly 21 months of catalyst operation. An important finding was that, even though the mercury oxidation catalyst pilot unit was installed downstream of a high-efficiency ESP, fly ash buildup began to plug flue gas flow through the horizontal catalyst cells. Sonic horns were installed in each catalyst compartment and appeared to limit fly ash buildup. A palladium-based catalyst showed initial elemental mercury oxidation percentages of 95% across the catalyst, declining to 67% after 21 months in service. A carbon-based catalyst began with almost 98% elemental mercury oxidation across the catalyst, but declined to 79% oxidation after nearly 13 months in service. The other two catalysts, an SCR-type catalyst (titanium/vanadium) and an experimental fly-ash-based catalyst, were significantly less active. The palladium-based and SCR-type catalysts were effectively regenerated at the end of the long-term test by flowing heated air through the catalyst overnight. The carbon-based catalyst was not observed to regenerate, and no regeneration tests were conducted on the fourth, fly-ash-based catalyst. Preliminary process economics were developed for the palladium and carbon-based catalysts for a scrubbed, North Dakota lignite application. As described above, the pilot-scale results showed the catalysts could not sustain 90% or greater oxidation of elemental mercury in the flue gas for a period of two years. Consequently, the economics were based on performance criteria in a later DOE NETL solicitation, which required candidate mercury control technologies to achieve at least a 55% increase in mercury capture for plants that fire lignite. These economics show that if the catalysts must be replaced every two years, the catalytic oxidation process can be 30 to 40% less costly than conventional (not chemically treated) activated carbon injection if the plant currently sells their fly ash and would lose those sales with carbon injection. If the plant does not sell their fly ash, activated carbon injection was estimated to be slightly less costly. There was little difference in the estimated cost for palladium versus the carbon-based catalysts. If the palladium-based catalyst can be regenerated to double its life to four years, catalytic oxidation process economics are greatly improved. With regeneration, the catalytic oxidation process shows over a 50% reduction in mercury control cost compared to conventional activated carbon injection for a case where the plant sells its fly ash. At Spruce Plant, mercury oxidation catalyst testing began in September 2003 and continued through the end of April 2005, interrupted only by a

Richard Rhudy

2006-06-30T23:59:59.000Z

287

Actinide removal from nitric acid waste streams  

SciTech Connect

Actinide separations research at the Rocky Flats Plant (RFP) has found ways to significantly improve plutonium secondary recovery and americium removal from nitric acid waste streams generated by plutonium purification operations. Capacity and breakthrough studies show anion exchange with Dowex 1x4 (50 to 100 mesh) to be superior for secondary recovery of plutonium. Extraction chromatography with TOPO(tri-n-octyl-phosphine oxide) on XAD-4 removes the final traces of plutonium, including hydrolytic polymer. Partial neutralization and solid supported liquid membrane transfer removes americium for sorption on discardable inorganic ion exchangers, potentially allowing for non-TRU waste disposal.

Muscatello, A.C.; Navratil, J.D.

1986-01-01T23:59:59.000Z

288

Nanostructured carbide catalysts for the hydrogen economy  

Science Conference Proceedings (OSTI)

The above quote, taken from the executive summary of the Report from the US DOE Basic Energy Sciences Workshop held August 6–8, 2007,[1] places in context the research carried out at the University of California, Santa Barbara, which is reported in this document. The enormous impact of heterogeneous catalysis is exemplified by the Haber process for the synthesis of ammonia, which consumes a few % of the world’s energy supply and natural gas, and feeds as many as a third of the world’s population. While there have been numerous advances in understanding the process,[2] culminating in the awarding of the Nobel Prize to Gerhard Ertl in 2007, it is interesting to note that the catalysts themselves have changed very little since they were discovered heuristically in the the early part of the 20th century. The thesis of this report is that modern materials chemistry, with all the empirical knowledge of solid state chemistry, combined with cutting edge structural tools, can help develop and better heterogeneous catalysis. The first part of this report describes research in the area of early transition metal carbides (notably of Mo and W), potentially useful catalysts for water gas shift (WGS) and related reactions of use to the hydrogen economy. Although these carbides have been known to be catalytically useful since the 1970s,[3] further use of these relatively inexpensive materials have been plagued by issues of low surface areas and ill-defined, and often unreactive surfaces, in conjunction with deactivation. We have employed for the first time, a combination of constant-wavelength and time-of-flight neutron scattering, including a total scattering analysis of the latter data, to better understand what happens in these materials, in a manner that for the first time, reveals surface graphitic carbon in these materials in a quantitative manner. Problems of preparation, surface stability, and irreversible reactivity have become manifest in this class of materials that discourage us from pursuing these materials further.

Ram Seshadri, Susannah Scott, Juergen Eckert

2008-07-21T23:59:59.000Z

289

Porosimetric study of catalyst layer of polymer electrolyte fuel cells.  

DOE Green Energy (OSTI)

The porosimetry of the catalyst layer made by the 'decal process' was studied using mercury porosirnetry. The comparison of the porosimetric profiles between the carbon powder and the catalyst supported on carbon suggests that the loading of the catalyst onto the Vulcan XC-72 carbon changes the porosimetry of the catalyst/carbon. The porosimetry of the catalyst layer depends on the catalyst used and the Nafion content. Boiling the catalyst layer effectively increases the pore area and the porosity of the catalyst layer. The correlation of porosimetric data with performance of catalyst layers suggests that the Nafion content in catalyst layers plays a vital role on the structure of catalyst layer such as pore size and pore distribution and further influences the performance of PE:FC.

Xie, J. (Jian); Wilson, K. V. (Kennard V.); Zawodzinski, T. A. (Thomas A.), Jr.

2002-01-01T23:59:59.000Z

290

Continuous sulfur removal process  

DOE Patents (OSTI)

A continuous process for the removal of hydrogen sulfide from a gas stream using a membrane comprising a metal oxide deposited on a porous support is disclosed. 4 figures.

Jalan, V.; Ryu, J.

1994-04-26T23:59:59.000Z

291

Evaluation of fine-particle size catalysts using standard test procedures  

SciTech Connect

The goal of this project is to evaluate and compare the activities/selectivities of fine-particle size catalysts being developed in the DOE/PETC Advanced Research (AR) Liquefaction Program by using standard coal liquefaction activity test procedures. Since bituminous and subbituminous coals have significantly different properties, it is feasible that catalysts may perform differently with these coal types. Because all previous testing has been done with the DECS-17 Blind Canyon bituminous coal, it is important to develop the capability of evaluating catalysts using a subbituminous coal. Initial efforts towards developing a subbituminous coal test are aimed at comparing the reactivities of the Wyodak subbituminous coal and the Blind Canyon bituminous coal. Therefore, the same factorial experimental design was used with the Wyodak coal as was used previously with the Blind Canyon coal. In addition, PNL`s 6-line ferrihydrite catalyst precursor was used in the development of the Wyodak coal test procedure because this catalyst is the best powder catalyst found to date in Sandia`s tests with Blind Canyon coal. Results show that Blind Canyon coal yields higher DHP amounts in the reaction products and higher tetrahydrofuran conversions at the higher severity conditions. Wyodak coal gives higher heptane conversions and higher gas yields for all conditions tested.

Stohl, F.V.; Diegert, K.V.; Goodnow, D.C.

1996-07-01T23:59:59.000Z

292

Novel Fischer-Tropsch catalysts  

DOE Patents (OSTI)

Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

Vollhardt, Kurt P. C. (Kensington, CA); Perkins, Patrick (Berkeley, CA)

1981-01-01T23:59:59.000Z

293

Novel Fischer-Tropsch catalysts  

DOE Patents (OSTI)

Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

Vollhardt, Kurt P. C. (Kensington, CA); Perkins, Patrick (Berkeley, CA)

1980-01-01T23:59:59.000Z

294

Novel Fischer-Tropsch catalysts  

DOE Patents (OSTI)

Novel polymer-supported metal complexes of the formula PS -R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS -H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS -Br; treating said PS -Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS -Li; substituting said PS - Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

Vollhardt, Kurt P. C. (Kensington, CA); Perkins, Patrick (Berkeley, CA)

1981-01-01T23:59:59.000Z

295

Modified MTS MRB500 CATALYST PERFORMANCE TEST  

DOE Green Energy (OSTI)

An experiment was conducted to determine if the oxygen supply in a CuO catalyst considered for use in the TMIST-2 irradiation test would be sufficient to convert all the hydrogen isotopes coming from the irradiation test to water. A mixture of 2% H2 in Ar was supplied to a modified MRB 500 stack m onitor from Mound Techology Solutions, Miamisburg, OH. It was found that the catalyst could convert 3.75E-03 moles of H2 before losing its effectiveness. Conversion was found to begin at a catalyst temperature of about 220 deg C and to be fully effective at about 300 deg C.

Glen R. Longhurst; Robert J. Pawelko

2008-10-01T23:59:59.000Z

296

The three way catalyst efficiency and the gas temperature difference  

Science Conference Proceedings (OSTI)

This work refers to the examination of the three way catalyst efficiency, testing the exhaust gases temperature difference (?T) at the inlet and outlet of the catalyst, using gasoline - ethanol mixtures for fuel, at a catalyst engine functioning ... Keywords: bioethanol, gas emissions, three way catalyst

Charalampos Arapatsakos; Panagiotis Lefakis

2009-02-01T23:59:59.000Z

297

Reducing fischer-tropsch catalyst attrition losses in high ...  

Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems United States Patent

298

Desulfurization with transition metal catalysts. Quarterly summary  

SciTech Connect

The overall objective of this research is to develop desulfurizing transition metal catalysts, which are active in homogeneous media at moderate temperatures and pressures for the purification of coal-derived fuels and chemicals. To this end, the mechanism of action is being examined whereby newly identified nickel(0) complexes desulfurize organosulfur compounds in solution at 65 to 70/sup 0/C. The sulfur compounds under investigation are typical of those commonly encountered in coal-derived liquids and solids, such as thiophenes, sulfides and mercaptans. The following studies on the homogeneous, stoichiometric desulfurizing agent, bis(1,5-cyclooctadiene) nickel(0) ((COD)/sub 2/Ni), were continued: (a) activation of the agent by means of added mono-, bi-/sup 2/ and tri-dentate amines, either of the tertiary or primary amine type; (b) labeling studies designed to reveal the source of the hydrogen that replaces the sulfur in the desulfurization of dibenzothiophene; (c) comparison of the desulfurizing activity of (COD)/sub 2/Ni, both in the presence and in the absence of lithium aluminum hydride; and (d) testing for the role of any biphenylene intermediate in these desulfurizations. Results are reported.

Eisch, J J

1980-04-10T23:59:59.000Z

299

NETL Research Results in New U.S. Patents  

NLE Websites -- All DOE Office Websites (Extended Search)

14, 2013 14, 2013 NETL Research Results in New U.S. Patents Innovations Make Energy Use Cleaner, More Economical Pittsburgh, Pa. - Researchers at the U.S. Department of Energy's National Energy Technology Laboratory (NETL) received nine patents in 2012 for innovations that address the Nation's energy challenges. The patents include an integrated process for removing pollutants from fossil-fuel combustion systems; a metallurgical melting process to produce defective-free metal ingots; catalysts that make it easier to reform hydrocarbon fuels; stainless steel compositions and heat treatment processes to enhance stainless steel durability; a method to measure the circulation rate of coal solids in gasification reactors; and a process to separate and purify carbon dioxide (CO2). Deployment of these technologies will enhance energy efficiency, improve metallurgical processes, and allow for better emissions monitoring and control.

300

Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis -- 2009 Progress Report  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory (PNNL) has been conducting research for the United States Department of Energy, Energy Efficiency Renewable Energy, Biomass Program to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). This research has involved the screening of potential catalysts, and optimization of the more promising ones, using laboratory scale reactors. During 2009, the main goal of the testing program focused on optimizing selected supported catalysts containing rhodium (Rh) and manganese (Mn). Optimization involved examining different total concentrations and atomic ratios of Rh and Mn as well as that of the more promising promoters (Ir and Li) identified in the earlier screening studies. Evaluation of catalyst performance focused on attaining improvements with respect to the space-time-yield and converted carbon selectivity to C2+ oxygenates, with additional consideration given to the fraction of the oxygenates that were C2+ alcohols.

Gerber, Mark A.; Gray, Michel J.; Stevens, Don J.; White, J. F.; Rummel, Becky L.

2010-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Optimization of Rhodium-Based Catalysts for Mixed Alcohol Synthesis – 2012 Progress Report  

SciTech Connect

Pacific Northwest National Laboratory has been conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). In recent years, this research has primarily involved the further development of catalysts containing rhodium and manganese based on the results of earlier catalyst screening tests. Testing continued in FY 2012 to further improve the Ir-promoted RhMn catalysts on both silica and carbon supports for producing mixed oxygenates from synthesis gas. This testing re-examined selected alternative silica and carbon supports to follow up on some uncertainties in the results with previous test results. Additional tests were conducted to further optimize the total and relative concentrations of Rh, Mn, and Ir, and to examine selected promoters and promoter combinations based on earlier results. To establish optimum operating conditions, the effects of the process pressure and the feed gas composition also were evaluated.

Gerber, Mark A.; Gray, Michel J.; Albrecht, Karl O.; Thompson, Becky L.

2012-11-01T23:59:59.000Z

302

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period April 1, 2002 through June 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the third full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to constructing the pilot unit and conducting laboratory runs to help size catalysts for the pilot unit. This technical progress report provides an update on these two efforts.

Gary M. Blythe

2002-07-17T23:59:59.000Z

303

Protocol for Laboratory Testing of SCR Catalyst: 2nd Edition  

Science Conference Proceedings (OSTI)

With the widespread deployment of selective catalytic NOx reduction (SCR) throughout the U.S. fleet of coal fired utility boilers, there was a need to establish standardized protocols to test catalyst. In 2006, EPRI issued a protocol that provided a uniform basis for testing SCR catalyst. In 2007, a wide range of industry representatives, including members of the Post-Combustion NOx Control Program, catalyst vendors, an independent catalyst testing laboratory, a catalyst reconditioner, and a provider of ...

2007-12-21T23:59:59.000Z

304

Catalyst Reaction (CatReact) Version 1.2  

Science Conference Proceedings (OSTI)

Catalyst Reaction (CatReact) is a spreadsheet-based software tool that helps operators of Selective Catalytic Reduction (SCR) Systems in coal-fired power plants make catalyst management decisions throughout the lifetime of the plant.   The program determines when future catalyst additions or replacements will be necessary and calculates the operations and maintenance costs of the SCR system. Cost elements include 1) catalyst purchases, 2) labor to add or replace catalyst, 3) reagent usage, ...

2012-12-04T23:59:59.000Z

305

Enhanced catalyst for conversion of syngas to liquid motor fuels  

DOE Patents (OSTI)

Synthesis gas comprising carbon monoxide and hydrogen is converted to C[sub 5][sup +] hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising a SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

Coughlin, P.K.; Rabo, J.A.

1985-12-03T23:59:59.000Z

306

Enhanced catalyst for conversion of syngas to liquid motor fuels  

DOE Patents (OSTI)

Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

Coughlin, Peter K. (Yorktown Heights, NY); Rabo, Jule A. (Armonk, NY)

1985-01-01T23:59:59.000Z

307

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

308

Oxford Catalysts Group plc | Open Energy Information  

Open Energy Info (EERE)

Oxford Catalysts Group plc Oxford Catalysts Group plc Jump to: navigation, search Name Oxford Catalysts Group plc Place Oxford, United Kingdom Zip OX2 6UD Sector Hydro, Hydrogen Product Developer of catalysts for room-temperature hydrogen production, hot steam production and Fischer-Tropsch processes. Coordinates 43.781517°, -89.571699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.781517,"lon":-89.571699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Catalysts for Destruction of Air Pollutants  

NLE Websites -- All DOE Office Websites (Extended Search)

Destruction of Air Pollutants Catalysts for Destruction of Air Pollutants U.S. industries and the U.S. Department of Energy must manage a variety of off-gas wastes consisting of...

310

Clean gasoline reforming with superacid catalysts  

DOE Green Energy (OSTI)

The objectives of this project are to: (a) determine if a coal-derived naphtha can be hydrotreated to produce a product with a sufficiently low heteroatom content that can be used for reforming, (b) identify hydrocarbon compounds in the naphtha with concentrations greater than 0.5 wt %, (c) develop a Pt/Al[sub 2]O[sub 3] heavily chlorided catalyst and determine the activity, selectivity and deactivation of this catalyst using model compounds and the hydrotreated naphtha, and (d) develop both a sulfated Pt/ZrO[sub 2] and Fe/Mn/ZrO[sub 2] catalyst formulations and determine the activity, selectivity and deactivation of these catalysts using model compounds and d warranted, the hydrotreated naphtha.

Davis, B.H.

1992-01-01T23:59:59.000Z

311

Moderated ruthenium fischer-tropsch synthesis catalyst  

DOE Patents (OSTI)

The subject Fischer-Tropsch catalyst comprises moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

Abrevaya, Hayim (Wilmette, IL)

1991-01-01T23:59:59.000Z

312

SLAC National Accelerator Laboratory - Designing Chemical Catalysts...  

NLE Websites -- All DOE Office Websites (Extended Search)

Designing Chemical Catalysts: There's an App for That By Mike Ross January 19, 2012 A big reason for publishing scientific results is to inform others who can then use your data...

313

Pf/Zeolite Catalyst for Tritium Stripping  

DOE Green Energy (OSTI)

This report described promising hydrogen (protium and tritium) stripping results obtained with a Pd/zeolite catalyst at ambient temperature. Preliminary results show 90-99+ percent tritium stripping efficiency may be obtained, with even better performance expected as bed configuration and operating conditions are optimized. These results suggest that portable units with single beds of the Pd/zeolite catalyst may be utilized as ''catalytic absorbers'' to clean up both tritium gas and tritiated water. A cart-mounted prototype stripper utilizing this catalyst has been constructed for testing. This portable stripper has potential applications in maintenance-type jobs such as tritium line breaks. This catalyst can also potentially be utilized in an emergency stripper for the Replacement Tritium Facility.

Hsu, R.H.

2001-03-26T23:59:59.000Z

314

Catalyst and method for aqueous phase reactions  

DOE Patents (OSTI)

The present invention is a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

Elliott, Douglas C. (Richland, WA); Hart, Todd R. (Kennewick, WA)

1999-01-01T23:59:59.000Z

315

Selective methane oxidation over promoted oxide catalysts  

DOE Green Energy (OSTI)

Objective was to selectively oxidize methane to C{sub 2} hydrocarbons and to oxygenates, in particular formaldehyde and methanol, in high space time yields under relatively mild reaction conditions. Results in this document are reported under the headings: methane oxidation over silica, methane oxidation over Sr/La{sub 2}O{sub 3} catalysts, and oxidative coupling of methane over sulfate-doped Sr/La{sub 2}O{sub 3} catalysts. 24 refs, 10 figs, 4 tabs.

Klier, K.; Herman, R.G.

1993-12-31T23:59:59.000Z

316

Removable feedwater sparger assembly  

DOE Patents (OSTI)

A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith. 8 figs.

Challberg, R.C.

1994-10-04T23:59:59.000Z

317

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

318

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

319

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

320

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

322

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

323

Nanoscale Chemical Imaging of a Working Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Chemical Imaging of a Working Catalyst Print Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction conditions is such a tall order that in some cases even the catalytically active chemical species is not known. A Dutch team working at the ALS has combined scanning transmission x-ray microscopy with a reaction chamber adapted from electron microscopy to identify the chemical species present for an iron-based Fischer-Tropsch synthesis catalyst and to image their distribution on the nanoscale. When developed further, this new tool may give chemists the ability to design and tailor catalysts for maximum selectivity and efficiency in a wide range of chemical processes.

324

Low temperature catalysts for methanol production  

DOE Patents (OSTI)

A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

Sapienza, Richard S. (1 Miller Ave., Shoreham, NY 11786); Slegeir, William A. (7 Florence Rd., Hampton Bays, NY 11946); O' Hare, Thomas E. (11 Geiger Pl., Huntington Station, NY 11746); Mahajan, Devinder (14 Locust Ct., Selden, NY 11784)

1986-01-01T23:59:59.000Z

325

Low temperature catalysts for methanol production  

DOE Patents (OSTI)

A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

Sapienza, R.S.; Slegeir, W.A.; O' Hare, T.E.; Mahajan, D.

1985-03-12T23:59:59.000Z

326

Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air: Update Number 1 to June, 1995  

DOE Green Energy (OSTI)

This report is an update of a bibliography, published in May, 1994, of research performed on the photocatalytic oxidation of organic or inorganic compounds in air or water and on the photocatalytic reduction of metal-containing ions in water. The general focus of the research is on removing hazardous contaminants from air water to meet environmental or health regulations. The processes covered are based on the application of heterogeneous photocatalysts. The current state-of-the-art in catalysts are forms of titanium dioxide or modifications of titanium dioxide, but work on other heterogeneous catalysts is also included in this compilation. This update contains 574 references, most published between January, 1993 and June, 1995, but some references are from earlier work that were not included in the previous report. A new section has been added which gives information about companies that are active in providing products based on photocatalytic processes or that can provide pilot, demonstration, or commercial-scale water- or air-treatment systems. Key words, assigned by the author of this report, have been included with the citations in the listing of the bibliography.

Blake, D.M.

1995-11-01T23:59:59.000Z

327

Intermittency on catalysts: symmetric exclusion  

E-Print Network (OSTI)

We continue our study of intermittency for the parabolic Anderson equation $\\partial u/\\partial t = \\kappa\\Delta u + \\xi u$, where $u\\colon \\Z^d\\times [0,\\infty)\\to\\R$, $\\kappa$ is the diffusion constant, $\\Delta$ is the discrete Laplacian, and $\\xi\\colon \\Z^d\\times [0,\\infty)\\to\\R$ is a space-time random medium. The solution of the equation describes the evolution of a ``reactant'' $u$ under the influence of a ``catalyst'' $\\xi$. In this paper we focus on the case where $\\xi$ is exclusion with a symmetric random walk transition kernel, starting from equilibrium with density $\\rho\\in (0,1)$. We consider the annealed Lyapunov exponents, i.e., the exponential growth rates of the successive moments of $u$. We show that these exponents are trivial when the random walk is recurrent, but display an interesting dependence on the diffusion constant $\\kappa$ when the random walk is transient, with qualitatively different behavior in different dimensions. Special attention is given to the asymptotics of the exponents for $\\kappa\\to\\infty$, which is controlled by moderate deviations of $\\xi$ requiring a delicate expansion argument. In G\\"artner and den Hollander \\cite{garhol04} the case where $\\xi$ is a Poisson field of independent (simple) random walks was studied. The two cases show interesting differences and similarities. Throughout the paper, a comparison of the two cases plays a crucial role.

J. Gaertner; F. den Hollander; G. Maillard

2006-05-24T23:59:59.000Z

328

Monte carlo simulations of segregation in Pt-Re catalyst nanoparticles  

E-Print Network (OSTI)

and design of Pt-Re catalyst nanoparticles. ACKNOWLEDGMENTSJ.H. Sinfelt, Bimetallic Catalysts: Discoveries, concepts,of segregation in Pt-Re catalyst nanoparticles Guofeng Wang

Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.

2004-01-01T23:59:59.000Z

329

Effects of Membrane- and Catalyst-layer-thickness Nonuniformities in Polymer-electrolyte Fuel Cells  

E-Print Network (OSTI)

thicknesses for the membrane and catalyst layer. Figure 2.of dry membrane (a) and catalyst-layer (b) thickness (andhollow symbols) and catalyst-layer (filled symbols)

Weber, Adam Z.; Newman, John

2006-01-01T23:59:59.000Z

330

One-Pot Formation of Functionalized Indole and Benzofuran Derivatives Using a Single Bifunctional Ruthenium Catalyst  

E-Print Network (OSTI)

Bifunctional Ruthenium Catalyst Reji N. Nair • Paul J. Lee •bifunctional ruthenium catalyst for cyclization of terminalof transi- tion metal based catalysts have been reported to

Nair, Reji N.; Lee, Paul J.; Grotjahn, Douglas B.

2010-01-01T23:59:59.000Z

331

A Well-Defined, Silica-Supported Tungsten Imido Alkylidene Olefin Metathesis Catalyst  

E-Print Network (OSTI)

olefin metathesis catalyst. Bouchra Rhers, a Alain Salameh,active propene metathesis catalyst, which can achieve 16000W-based olefin metathesis catalyst through the reaction of [

2006-01-01T23:59:59.000Z

332

Extended Two Dimensional Nanotube and Nanowire Surfaces as Fuel Cell Catalysts  

E-Print Network (OSTI)

for a thinner electrode catalyst layer, thereby improvingmass transport and catalyst utilization. ReferencesSurfaces as Fuel Cell Catalysts A Dissertation submitted in

Alia, Shaun Michael

2011-01-01T23:59:59.000Z

333

Nanolithographic Fabrication and Heterogeneous Reaction Studies of Two-Dimensional Platinum Model Catalyst Systems  

E-Print Network (OSTI)

and truly tune the catalyst to the reaction. References 1.Gavriilidis, A. Varma, Catalyst Design, Cambridge UniversityStructure of Metallic Catalysts, Academic Press, London,

Contreras, A.M.

2006-01-01T23:59:59.000Z

334

Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays  

E-Print Network (OSTI)

Structure of Metallic Catalysts. Academic Press, London,R. Structure of Metallic Catalysts. Academic Press, London,Ethylene on Metallic Catalysts, National Standard Reference

Grunes, Jeffrey Benjamin

2004-01-01T23:59:59.000Z

335

Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts  

E-Print Network (OSTI)

as Efficient Oxygen- Evolving Catalysts Feng Jiao and Heinzof efficient and robust catalysts for the chemicaltransformations. Catalysts need to exhibit turnover

Jiao, Feng

2010-01-01T23:59:59.000Z

336

Bifunctional Solid Catalysts for the Selective Conversion of Fructose to 5-Hydroxymethylfurfural  

E-Print Network (OSTI)

Bifunctional Solid Catalysts for the Selective Conversion ofat Springerlink.com Abstract Solid catalysts based on SBA-15methylfurfural (HMF). The catalysts incorporate thioether

Crisci, Anthony J.; Tucker, Mark H.; Dumesic, James A.; Scott, Susannah L.

2010-01-01T23:59:59.000Z

337

Surface Structures of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Monte Carlo Simulations  

E-Print Network (OSTI)

of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Montefuel cells, new electrode catalysts that have less preciousto designing Pt bimetallic catalysts is knowledge of the

Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.

2005-01-01T23:59:59.000Z

338

Cyclohexene Photo-oxidation over Vanadia Catalyst Analyzed by Time Resolved ATR-FT-IR Spectroscopy  

E-Print Network (OSTI)

oxidation over Vanadia Catalyst Analyzed by Time Resolvedperformance of vanadia catalysts [5] even though hydrationabsorption spectrum of these catalysts into the visible [

Mul, Guido

2008-01-01T23:59:59.000Z

339

THE MECHANISM AND KINETICS OF FISCHER-TROPSCH SYNTHESIS OVER SUPPORTED RUTHENIUM CATALYSTS  

E-Print Network (OSTI)

Structure of Metallic Catalysts", Academic Press Inc. , Newselectivity of these catalysts. Several appendices dealingOver Supported Ruthenium Catalysts ABSTRACT The effects of

Kellner, Carl Stephen

2013-01-01T23:59:59.000Z

340

Process for removing NO sub x emissions from combustion effluents  

SciTech Connect

This patent describes a method of removing NO from a stream of combustion products injecting an alkyl amine into the stream to effect reduction of NO to N{sub 2}, wherein the alkyl amine comprises methyl amine, and the process is conducted at a temperature within the range of 350{degrees} C at a molar ratio to amine within the range of about 0.2 to 2.0 without a NO reduction catalyst, the method being capable of at least about a 50% conversion of NO in the combustion products to N{sub 2}.

Ham, D.O.; Moniz, G.A.; Gouveia, M.J.

1992-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Development of a catalyst for conversion of syngas-derived materials to isobutylene. Technical progress report No. 5, March 31, 1992--June 30, 1992  

DOE Green Energy (OSTI)

The main goal of this contract is to develop a catalyst and technology that will produce iC4{sub 4}{sup =} directly from coal-derived syngas and that is capable of using a lower H{sub 2}/CO ratio (0.5 to 1.0). The research will identify and optimize the key catalyst and process characteristics that give improved performance for CO conversion by a non-Fischer-Tropsch process. This report, which is Quarterly Report No. 5 for contract DE-AC22-91PC90042, covers the testing of various zirconia (ZrO{sub 2}) and bismuth oxide (Bi{sub 2}O{sub 3}) based catalyst systems designed to examine the effects of catalyst preparation and process variables, especially the H{sub 2}/Co ratio. Testing of sol-gel ZrO{sub 2} catalysts with lanthanum (La) or yttrium (Y) addition indicates a decrease in isobutene yield. An attempt to increase catalyst surface area by impregnating Zr on a sol-gel SiO{sub 2} catalyst was unsuccessful. A Bi{sub 2}O{sub 3} catalyst was very low in activity as a result of complete reduction to Bi metal. Increasing the H{sub 2}/CO ratio to 2:1 slightly increased the isobutene yield and improved catalyst stability.

Gajda, G.J.

1993-09-10T23:59:59.000Z

342

New Catalyst Might Expand Bio-Ethanol's Possible uses: fuel additives, rubber and solvents  

E-Print Network (OSTI)

of Science and of Energy Effi- ciency and Renewable Energy. The team used resources at DOE's EMSL, En at the Pacific Northwest National Laboratory and Washington State Uni- versity have developed a new catalyst it first, potentially keeping costs lower and production times faster. Reported by researchers

343

Development of a catalyst for conversion of syngas-derived materials to isobutylene. Quarterly technical report No. 13, April 1, 1994--June 30, 1994  

DOE Green Energy (OSTI)

The goals of this project are to develop a catalyst and process for the conversion of syngas to isobutanol. The research will identify and optimize key catalyst and process characteristics. In addition, the commercial potential of the new process will be evaluated by an economic analysis. This report describes the preparation and testing of a variety of potential higher alcohols synthesis catalysts based on a bifunctional formulation consisting of a noble metal dehydrogenation function on a basic mixed metal oxide support. A pilot plant catalyst screening test using a 10/1 methanol/ethanol feed blend has been used to identify a new class of catalysts that afford higher selectivities and productivities. of the desired isobutanol and other C{sub 4+}, products than the Cu/Zn/Al oxide methanol synthesis catalyst that is being used as a baseline for this work. 2% Pd or Pt on a Zn/Mn/Zr oxide support and 2% Pd on a Zn/Mn/Cr support have given the best performances to date. In addition to isobutanol, these catalysts afford significant quantities of isobutyraldehyde and methyl isobutyrate. In order to elucidate the reaction pathway occurring with this class of catalyst, the 2%Pd on Zn/Mn/Zr oxide catalyst has been evaluated over a range of space velocities. It has been found that isobutanol and higher oxygenates yields increase with decreasing space velocity at ethanol conversions greater than 90%. This suggests that this catalyst is capable of converting methanol alone to higher alcohols. This is different from the result obtained with the Cu/Zn/Al oxide baseline catalyst, which showed no change in product yields at high ethanol conversions. Therefore, further effort will be focussed on the development of these noble metal/basic metal oxide catalysts for this application.

Barger, P.T.

1994-12-31T23:59:59.000Z

344

Catalysts for Lean Engine Emission Control - Emissions & Emission Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysts for Lean Engine Emission Control Catalysts for Lean Engine Emission Control Catalysts for controlling NOx from lean engines are studied in great detail at FEERC. Lean NOx Traps (LNTs) and Selective Catalytic Reduction (SCR) are two catalyst technologies of interest. Catalysts are studied from the nanoscale to full scale. On the nanoscale, catalyst powders are analyzed with chemisorptions techniques to determine the active metal surface area where catalysis occurs. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy is used to observe the chemical reactions occurring on the catalyst surface during catalyst operation. Both powder and coated catalyst samples are analyzed on bench flow reactors in controlled simulated exhaust environments to better characterize the chemical

345

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

2010-12-31T23:59:59.000Z

346

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

2010-12-31T23:59:59.000Z

347

Research Training 22  

E-Print Network (OSTI)

.Fuel and Automotive Catalyst 12.Recycling 13.Car Production System Lecturers Nagoya University / Toyota / Denso / Nissan / Mitsubishi Motors / Mitsubishi Electronics / Toyota Central Research Lab. Group project (Fuel cell Lab., Crash Dummy Lab.) 2.Toyota Motors Co. (Car Production Line, Exhibition Hall ) 3

Takahashi, Ryo

348

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

349

Removal of H{sub2}S from geothermal steam by catalytic oxidation process: bench scale testing results. Interim report  

SciTech Connect

A process was investigated to remove hydrogen sulfide (H{sub2}S) from geothermal steam. This process is an upstream steam treatment process which utilizes a catalytic oxidation reaction to convert H{sub2}S in geothermal steam to water vapor and sulfur. The process consists of passing geothermal steam, containing H{sub2}S and other noncondensible gases, through fixed beds of activated carbon catalyst. Oxygen is provided by injection of air or oxygen upstream of the catalyst beds. The treated steam, with H{sub2}S being almost completely removed, passes to steam turbines for power generation. The elemental sulfur produced deposits on the catalyst surface and is retained. The catalyst activity decreases gradually with sulfur accumulation. Sulfur removal, and catalyst regeneration, is accomplished by solvent extraction. Sulfur is recovered from solvent by evaporation/crystallization. Bench scale experimental work on this process was performed to determine its performance and limits of applicability to power generation systems employing geothermal steam. The bench scale system employed a one-inch diameter reactor, a steam supply with controlled temperature and pressure, an injection system for adding {Hsub2}S and other gases at controlled rates, and instrumentation for control and measurement of temperatures, pressures, flow rates and presssure drop. H{sub2}S and other analyses were performed by wet chemistry techniques.

Li, C.T.; Brouns, R.A.

1978-11-01T23:59:59.000Z

350

Method of depositing a catalyst on a fuel cell electrode  

DOE Patents (OSTI)

Fuel cell electrodes comprising a minimal load of catalyst having maximum catalytic activity and a method of forming such fuel cell electrodes. The method comprises vaporizing a catalyst, preferably platinum, in a vacuum to form a catalyst vapor. A catalytically effective amount of the catalyst vapor is deposited onto a carbon catalyst support on the fuel cell electrode. The electrode preferably is carbon cloth. The method reduces the amount of catalyst needed for a high performance fuel cell electrode to about 0.3 mg/cm.sup.2 or less.

Dearnaley, Geoffrey (San Antonio, TX); Arps, James H. (San Antonio, TX)

2000-01-01T23:59:59.000Z

351

Stepwise method determines source of FCC catalyst losses  

Science Conference Proceedings (OSTI)

A set of guidelines for fluid catalytic cracking unit (FCCU) monitoring and a logical, stepwise approach to troubleshooting FCC catalyst losses is discussed. This will help process or operations engineers find the causes of such losses. A thorough understanding of the entire catalyst stem during normal operations establishes the base line data necessary for troubleshooting. A comprehensive, ongoing analysis of catalyst losses include: catalyst balance, fresh catalyst physical properties, equilibrium catalyst properties, fine particle size distribution, pressure surveys, and line and restriction orifice records. The paper goes on to identify each step in monitoring these operations and properties.

Fletcher, R. [Akzo-Nobel Chemicals Inc., Houston, TX (United States)

1995-08-28T23:59:59.000Z

352

DOE Removes Brookhaven Contractor  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Removes DOE Removes Brookhaven Contractor Peña sends a message to DOE facilities nationwide INSIDE 2 Accelerator Rx 4 FermiKids 6 Spring at Fermilab Photos courtesy of Brookhaven National Laboratory by Judy Jackson, Office of Public Affairs Secretary of Energy Federico Peña announced on Thursday, May 1, that the Department of Energy would immediately terminate the current management contract with Associated Universities, Inc. at Brookhaven National Laboratory in Upton, New York. Peña said that he made the decision after receiving the results of a laboratory safety management review conducted by the independent oversight arm of DOE's Office of Environment, Safety and Health. In addition, the Secretary said he found unacceptable "the continued on page 8 Volume 20 Friday, May 16, 1997

353

Pneumatic soil removal tool  

DOE Patents (OSTI)

A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

Neuhaus, John E. (Newport News, VA)

1992-01-01T23:59:59.000Z

354

Pneumatic soil removal tool  

Science Conference Proceedings (OSTI)

A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

Neuhaus, J.E.

1992-10-13T23:59:59.000Z

355

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the available data from laboratory, pilot and full-scale SCR units was reviewed, leading to hypotheses about the mechanism for mercury oxidation by SCR catalysts.

Constance Senior

2004-04-30T23:59:59.000Z

356

Regeneration of Sulfur Deactivated Ni-based Biomass Syngas Cleaning Catalysts  

DOE Green Energy (OSTI)

Nickel-based catalysts have been widely tested in decomposing tar and methane in hot biomass syngas cleanup researches. However these catalysts can be easily deactivated by the sulfur compounds in syngas due to the strong sulfur adsorption effect on the Ni surface. Here we report on a new regeneration process, which can effectively and efficiently regenerate the sulfur-poisoned Ni reforming catalysts. This process consists of four sequential treatments: 1) controlled oxidation at 750oC in 1% O2, 2) decomposition at 900oC in Ar, 3) reduction at 900oC in 2% H2, and 4) reaction at 900oC under reforming condition. The duration of this 4-step regeneration process is only about 8 hours, which is shorter than that of the conventional steaming regeneration treatment.

Li, Liyu; Howard, Christopher J.; King, David L.; Gerber, Mark A.; Dagle, Robert A.; Stevens, Don J.

2010-09-14T23:59:59.000Z

357

Evaluation of Catalysts from Different Origin for Vapor Phase Upgrading in Biomass Pyrolysis  

SciTech Connect

Liquid fuels and chemicals from biomass resources arouse much interests in research and development. Fast pyrolysis of biomass has the potential to effectively change solid biomass materials into liquid products. However, bio-oil from traditional pyrolysis processes is difficult to apply in industry, because of its complicated composition, high oxygen content, low stability, etc. Upgrading or refining of the bio-oil should be performed for industrial application of biomass pyrolysis. Often, the process would be done in a separate reactor downstream of the pyrolysis process. In this paper, a laboratory scale micro test facility was constructed, wherein the pyrolysis of pine and catalytic upgrading of the resulting vapors were closely coupled in one reactor. The composition of vapor effluent was monitored with a molecular beam mass spectrometer (MBMS) for the online evaluation of the catalyst performance. Catalysts from different origin were tested and compared for the effectiveness of pyrolysis vapor upgrading, namely commercial zeolites, Ni based steam reforming catalyst, CaO, MgO, and several laboratory-made catalysts. The reaction temperature for catalytic upgrading varied between 400 and 600 centigrade, and the gaseous residence time ranged from 0.1 second to above 2 second, to simulate the conditions in industrial application. It is revealed that some catalysts are active in transform most of primary biomass pyrolysis vapors into hydrocarbons, resulting in nonoxygenated products, which is beneficial for downstream utilization. Others are not as effective, results in minor improvement compared with blank test results.

Zhang, X.; Mukarakate, C.; Zheng, Z.; Nimlos, M.

2012-01-01T23:59:59.000Z

358

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURING LOW RANK FUELS  

SciTech Connect

This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a review of the available data on mercury oxidation across SCR catalysts from small, laboratory-scale experiments, pilot-scale slipstream reactors and full-scale power plants was carried out. Data from small-scale reactors obtained with both simulated flue gas and actual coal combustion flue gas demonstrated the importance of temperature, ammonia, space velocity and chlorine on mercury oxidation across SCR catalyst. SCR catalysts are, under certain circumstances, capable of driving mercury speciation toward the gas-phase equilibrium values at SCR temperatures. Evidence suggests that mercury does not always reach equilibrium at the outlet. There may be other factors that become apparent as more data become available.

Constance Senior

2004-07-30T23:59:59.000Z

359

Alternative catalyst and exhaust gas sensor work at Argonne National Laboratory  

DOE Green Energy (OSTI)

Research programs at Argonne National Laboratory in the areas of automobile emissions monitoring and control are described. The mandate to improve automobile efficiency while reducing Pollution requires the development of new catalysts for exhaust emissions control that are capable of functioning efficiently under lean-burn engine operating conditions. It is also desirable that the use of expensive noble metal catalysts be avoided. NO{sub x} emissions will not be efficiently controlled by the current three-way, supported noble metal catalysts under lean-burn conditions. New catalysts are being sought that could effect the selective catalytic reduction (SCR) of NO{sub x} by exhaust hydrocarbons in the presence of oxygen. Molecular sieve zeolites of the ZSM-5 and ferrierite types, ion-exchanged with copper ions, are the best of the catalysts known to effect this chemistry, but the mechanism of the SCR is still not understood. In this project the authors will first undertake the investigation of the SCR of NO using model reactions to test postulated mechanistic pathways. Initial experiments have been devised to investigate the possible participation of metal alkyl complexes, metal oxime complexes, N-alkyl-N-nitroso-alkylaminato-metal complexes, and metal nitrile complexes in the zeolites. ANL will also develop microsensors, based on surface acoustic wave (SAW) chemical sensing techniques, and a micro mass-spectrometer (MS) for tailpipe or engine-out emission monitoring. The sensor configurations and sensing techniques of the proposed SAW and micro-MS are described.

Iton, L.E.; Maroni, V.A.; Dieckman, S.L.; Sheen, S.H.; Raptis, A.C.

1994-12-31T23:59:59.000Z

360

NETL: Gasification Systems - Warm Gas Multi-Contaminant Removal System  

NLE Websites -- All DOE Office Websites (Extended Search)

Warm Gas Multi-Contaminant Removal System Warm Gas Multi-Contaminant Removal System Project Number: DE-SC00008243 TDA Research, Inc. is developing a high-capacity, low-cost sorbent that removes anhydrous ammonia (NH3), mercury (Hg), and trace contaminants from coal- and coal/biomass-derived syngas. The clean-up system will be used after the bulk warm gas sulfur removal step, and remove NH3 and Hg in a regenerable manner while irreversibly capturing all other trace metals (e.g., Arsenic, Selenium) reducing their concentrations to sub parts per million (ppm) levels. Current project plans include identifying optimum chemical composition and structure that provide the best sorbent performance for removing trace contaminants, determining the effect of operating parameters, conducting multiple-cycle experiments to test the life of the sorbent for NH3 and Hg removal, and conducting a preliminary design of the sorbent reactor.

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Process and catalyst for carbonylating olefins  

DOE Patents (OSTI)

Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

Zoeller, Joseph Robert (Kingsport, TN)

1998-06-02T23:59:59.000Z

362

Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Technical progress report, October--December 1991  

DOE Green Energy (OSTI)

The general objectives of this research are (1) to investigate the use of highly dispersed catalysts for the pretreatment of coal by mild hydrogenation, (2) to identify the active forms of the catalysts under reaction conditions and (3) to clarify the mechanisms of catalysis. The ultimate objective is to ascertain if mild catalytic hydrogenation resulting in very limited or no coal solubilization is an advantageous pretreatment for the transformation of coal into transportable fuels. The experimental program will focus upon the development of effective methods of impregnating coal with catalysts, evaluating the conditions under which the catalysts are most active and establishing the relative impact of improved impregnation on conversion and product distributions obtained from coal hydrogenation.

Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

1992-02-01T23:59:59.000Z

363

Investigation of syngas interaction in alcohol synthesis catalysts. Quarterly technical progress report, February 1, 1994--April 30, 1994  

DOE Green Energy (OSTI)

This work presents the progress of the work done during the second quarter on {open_quotes}Investigation of syngas interaction in Alcohol Synthesis Catalysts.{close_quotes} The essential results have been presented at the second annual Historically Black Colleges and Universities/Private Sector/Energy Research and Development Technology Transfer Symposium. The primary objective of this project is to examine the relations between the catalytic and magnetic properties of the copper-cobalt higher alcohol synthesis catalysts. Since extensive catalytic results are available from the studies of the IFP group, the authors have undertaken to investigate the magnetic character by studying the Zero Field Nuclear Magnetic Resonance (ZFNMR) of cobalt and hysterisis character of the Cu/Co catalysts. The authors have examined three different aspects of these catalysts. (a) effect of metal ratio, (b) effect of method of preparation, and (c) effect of selectivity.

Not Available

1994-09-01T23:59:59.000Z

364

Method for dispersing catalyst onto particulate material  

DOE Patents (OSTI)

A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

365

Homogeneous catalyst formulations for methanol production  

DOE Patents (OSTI)

There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O' Hare, Thomas E. (Huntington Station, NY)

1991-02-12T23:59:59.000Z

366

Homogeneous catalyst formulations for methanol production  

DOE Patents (OSTI)

There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O' Hare, Thomas E. (Huntington Station, NY)

1990-01-01T23:59:59.000Z

367

Computational Design of Lignin Depolymerization Catalysts  

Science Conference Proceedings (OSTI)

Lignin is a major component of plant cell walls that is typically underutilized in selective conversion strategies for renewable fuels and chemicals. The mechanisms by which thermal and catalytic treatments deconstruct lignin remain elusive, for which quantum mechanical calculations can offer fundamental insights. In this work, a computational approach has been used to elucidate the reductive deconstruction pathway of a ruthenium-catalyzed system. Transition states have been computed to determine the rate-limiting steps for a catalyst that cleaves arylether linkages. Our calculations are supported by experimental synthesis and kinetic and thermodynamic measurements of the deconstruction of model lignin dimers by a ruthenium catalyst with the ultimate objective of designing new catalysts to eventually utilize lignin in biorefineries.

Kim, S.; Chmely, S. C.; Sturgeon, M.; Katahira, R.; Paton, R. S.; Beckham, G. T.

2012-01-01T23:59:59.000Z

368

Preparation of a novel structured catalyst based on aligned carbon nanotube arrays for a microchannel Fischer-Tropsch synthesis reactor  

SciTech Connect

A novel catalyst microstructure based on aligned multiwall carbon nanotube arrays was synthesized. Its advanced heat and mass transport characteristics coupled with high surface area led to superior performances for Fischer-Tropsch synthesis in a microchannel chemical reactor. The fabrication of such a novel catalyst structure first involved metalorganic chemical vapor deposition (MOCVD) growth of a dense Al2O3 thin film over FeCrAlY foam substrate to enhance adhesion between catalyst layer and metal substrate. Aligned arrays of multiwall carbon nanotubes were grown over the substrate by catalytic decomposition of ethylene. These nanotube bundles were directly attached to the FeCrAlY substrate through a thin layer of oxide thin film. When the outer surfaces of nanobundles were coated with a catalyst layer, a unique hierarchical catalyst structure with nanoporous interstitials between the bundles was created. Thus, engineered catalysts based on such a novel hierarchical structure minimizes mass transfer encountered in the gas-liquid-solid three phase reactions. In addition, high thermal conductivity of carbon nanotube and the direct attachment of these nanobundles to the metal foam allow efficient heat removal from catalytic sites. The advanced heat and mass transfer on this novel structured catalyst was demonstrated in Fischer-Tropsch synthesis in a microchannel fixed bed reactor. The presence of carbon nanotube arrays improved dispersion of active metals and reduced mass transfer limitation, leading to a factor of four enhancement of Fischer-Tropsch synthesis activity. The improved temperature control with the carbon nanotube arrays also allows the Fischer-Tropsch synthesis being operated at temperatures as high as 265 C without reaction runaway favoring methane formation.

Chin, Ya-Huei; Hu, Jianli; Cao, Chunshe; Gao, Yufei; Wang, Yong

2005-12-15T23:59:59.000Z

369

Catalyst dispersion and activity under conditions of temperature- staged liquefaction. [Catalyst precursors for molybdenum-based catalyst and iron-based catalyst  

DOE Green Energy (OSTI)

Two coals, a Texas subbituminous C and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling and catalyst impregnation on liquefaction conversion behavior in temperature staged reactions for 30 minutes each at 275{degree} and 425{degree}C in H{sub 2} and 95:5 H{sub 2}:H{sub 2}S atmospheres. Methanol, pyridine, tetrahydrofuran, and tetrabutylammonium hydroxide were used as swelling agents. Molybdenum-based catalyst precursors were ammonium tetrathiomolybdate, molybdenum trisulfide, molybdenum hexacarbonyl, and bis(tricarbonylcyclopentadienyl-molybdenum). Ferrous sulfate and bis(dicarbonylcyclo-pentadienyliron) served as iron-based catalyst precursors. In addition, ion exchange was used for loading iron onto the subbituminous coal. For most experiments, liquefaction in H{sub 2}:H{sub 2}S was superior to that in H{sub 2}, regardless of the catalyst precursor. The benefit of the H{sub 2}S was greater for the subbituminous, presumably because of its higher iron content relative to the hvab coal. Tetrabutylammonium hydroxide was the only swelling agent to enhance conversion of the hvab coal significantly; it also caused a remarkable increase in conversion of the subbituminous coal. The combined application of solvent swelling and catalyst impregnation also improves liquefaction, mainly through increased oil yields from the hvab coal and increased asphaltenes from the subbituminous. A remarkable effect from use of ammonium tetrathiomolybdate as a catalyst precursor is substantial increase in pristane and phytane yields. Our findings suggest that these compounds are, at least in part, bound to the coal matrix.

Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

1992-07-01T23:59:59.000Z

370

Enhancement of alkylation catalysts for improved supercritical fluid regeneration  

DOE Patents (OSTI)

A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

Ginosar, Daniel M. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID)

2010-12-28T23:59:59.000Z

371

Method of performing sugar dehydration and catalyst treatment  

Science Conference Proceedings (OSTI)

The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

2010-06-01T23:59:59.000Z

372

Enhancement of alkylation catalysts for improved supercritical fluid regeneration  

DOE Patents (OSTI)

A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

Ginosar, Daniel M. (Idaho Falls, ID); Petkovic, Lucia (Idaho Falls, ID)

2009-09-22T23:59:59.000Z

373

Los Alamos catalyst could jumpstart e-cars, green energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalyst could jumpstart e-cars, green energy Los Alamos catalyst could jumpstart e-cars, green energy The new material has the highest oxygen reduction reaction (ORR) activity in...

374

Water Uptake of Fuel-Cell Catalyst Layers  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Uptake of Fuel-Cell Catalyst Layers Title Water Uptake of Fuel-Cell Catalyst Layers Publication Type Journal Article Year of Publication 2012 Authors Kusoglu, Ahmet, Anthony...

375

BSA 02-27: Catalysts for Hydrogenation and Hydrosilylation of ...  

... (30 mM) at 23 °C and 4 atm H 2 in CD 2 Cl 2. Homogeneous catalysts are usually more selective than heterogeneous catalysts, but they are often difficult to recycle.

376

Materials Design of Advanced Performance Metal Catalysts  

SciTech Connect

The contribution of materials design to the fabrication of advanced metal catalysts is highlighted, with particular emphasis on the construction of relatively complex contact structures surrounding metal nanoparticles. Novel advanced metal catalysts can be synthesized via encapsulation of metal nanoparticles into oxide shells, immobilization of metal oxide core-shell structures on solid supports, post-modification of supported metal nanoparticles by surface coating, and premodification of supports before loading metal nanoparticles. Examples on how these materials structures lead to enhanced catalytic performance are illustrated, and a few future prospects are presented.

Ma, Zhen [ORNL; Dai, Sheng [ORNL

2008-01-01T23:59:59.000Z

377

Catalysts for lean burn engine exhaust abatement  

DOE Patents (OSTI)

The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

Ott, Kevin C. (Los Alamos, NM); Clark, Noline C. (Jemez Springs, NM); Paffett, Mark T. (Los Alamos, NM)

2003-01-01T23:59:59.000Z

378

Catalysts For Lean Burn Engine Exhaust Abatement  

DOE Patents (OSTI)

The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

Ott, Kevin C. (Los Alamos, NM); Clark, Noline C. (Jemez Springs, NM); Paffett, Mark T. (Los Alamos, NM)

2004-04-06T23:59:59.000Z

379

Method for producing iron-based catalysts  

DOE Patents (OSTI)

A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.

Farcasiu, Malvina (Pittsburgh, PA); Kaufman, Phillip B. (Library, PA); Diehl, J. Rodney (Pittsburgh, PA); Kathrein, Hendrik (McMurray, PA)

1999-01-01T23:59:59.000Z

380

Research in Ghanaian public universities : perceptions and experiences of academic staff at the University of Ghana.  

E-Print Network (OSTI)

??With the advent of the knowledge economies, research is recognised as a catalyst for accelerated national growth. Many countries are therefore investing hugely in university… (more)

Gyan, George

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Substituted pyridine ligands and related water-soluble catalysts  

SciTech Connect

Versatile Group VIII metathesis catalysts, as can be used in a range of polymerization reactions and other chemical methodologies.

Emrick, Todd S. (Deerfield, MA)

2011-06-14T23:59:59.000Z

382

Numerical study of reaction in porous catalysts under composition modulation  

E-Print Network (OSTI)

in monolithic NOx storage and reduction catalyst." Topics in2007). "Model for NOx storage/reduction in the presence of

Hsiao, Hsu-Wen

2010-01-01T23:59:59.000Z

383

Catalyst structure and method of fischer-tropsch synthesis  

Science Conference Proceedings (OSTI)

The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

Wang, Yong [Richland, WA; Vanderwiel, David P [Richland, WA; Tonkovich, Anna Lee Y [Pasco, WA; Gao, Yufei [Kennewick, WA; Baker, Eddie G [Pasco, WA

2002-12-10T23:59:59.000Z

384

Catalyst for converting synthesis gas to liquid motor fuels  

DOE Patents (OSTI)

The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

Coughlin, Peter K. (Yorktown Heights, NY)

1986-01-01T23:59:59.000Z

385

Supercritical/Solid Catalyst (SSC) - Energy Innovation Portal  

Idaho National Laboratory. Contact INL About This Technology Technology Marketing Summary Supercritical/Solid Catalyst (SSC) is a tested ...

386

Nano Catalysts for Diesel Engine Emission Remediation  

DOE Green Energy (OSTI)

The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

2012-06-01T23:59:59.000Z

387

Recycling and Disposal of Spent Selective Catalytic Reduction Catalyst  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) technology has become widespread within the utility industry as a means of controlling emissions of nitrogen oxides (NOx). The technology uses a solid catalyst that deactivates over time; and thus significant volumes of catalyst will need regeneration, recycle, or disposal. This study examined issues related to spent catalyst recycle and disposal.

2003-11-12T23:59:59.000Z

388

Cobalt Fischer-Tropsch catalysts having improved selectivity  

DOE Patents (OSTI)

The promoter(s) Mn oxide or Mn oxide and Zr oxide are added to a cobalt Fischer-Tropsch catalyst combined with the molecular sieve TC-103 or TC-123 such that the resultant catalyst demonstrates improved product selectivity, stability and catalyst life. The improved selectivity is evidenced by lower methane production, higher C5+ yield and increased olefin production.

Miller, James G. (Pearl River, NY); Rabo, Jule A. (Armonk, NY)

1989-01-01T23:59:59.000Z

389

Support Defined Novel Catalyst for Enhanced Fischer-Tropsch Activity.  

E-Print Network (OSTI)

??Four distinct Fisher-Tropsch catalysts were prepared through the incipient wetness technique. These catalysts were Fe-Zn-Ru/alumina, Fe-Zn-Ru/K/alumina, Fe-Zn-Ru/silica, and Fe-Zn-Ru/K/silica. The physical characterization of the catalysts… (more)

Lievers, Ashley Ann

2009-01-01T23:59:59.000Z

390

Separation of catalyst from Fischer-Tropsch slurry  

DOE Patents (OSTI)

This paper describes a process for the separation of catalysts used in Fischer-Tropsch synthesis. The separation is accomplished by extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic. The purified catalyst can be upgraded by various methods.

White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.

1998-04-01T23:59:59.000Z

391

The Effect of Time dealumination and Solvent Concentration in Synthesis of Zeolite Catalyst and Catalytic Test for DiEthyl Ether Production Process  

Science Conference Proceedings (OSTI)

Ethanol is an alternative energy, but its has three distinct disadvantages as a transportation fuel. Its availability is currently limited, and it has a lower volumetric heating value and a lower Reid vapour pressure (RVP) than gasoline. This paper focuses for this disadvantages and to solve this problem can do with converts ethanol to DiEthyl Ether product. This research produced DiEthyl Ether by ethanol dehydration process with zeolite as catalyst. The catalyst synthesis from natural material from District Gunung Kidul, Indonesia. The catalyst produced with dealumination, neutralization, drying and calcination processes. The zeolite catalyst was analysed of Si/Al, X-ray Diffraction and specific surface area. The catalyst product then used for ethanol dehydration to produce DiEthyl Ether. The results shown the biggest surface area is 184,52 m{sup 2}/gram at catalyst production at 10 hours for time dealumination. The crystallite of catalyst product is similar like shown at diffractogram of XRD analysis. The ratio Si/Al biggest is 313.7 that obtaining at catalyst production with 7 hours for time dealumination. The catalytic test use fixed bed reactor with 1 inci diameter and ethanol fermentation both as feed. The operation condition is 150 deg. C at temperature and atmosphere pressure. The compounds product in liquid phase are diethyl ether, methanol and water.

Widayat [Department of Chemical Engineering, Faculty of Engineering Diponegoro University, Department of Chemical Engineering, Faculty of Industry Technology Institute of Technology Sepuluh Nopember Surabaya Indonesia, Kampus Sukolilo Surabaya Indonesia (Indonesia); Roesyadi, A.; Rachimoellah, M. [Department of Chemical Engineering, Faculty of Industry Technology Institute of Technology Sepuluh Nopember Surabaya Indonesia, Kampus Sukolilo Surabaya Indonesia (Indonesia)

2009-09-14T23:59:59.000Z

392

Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass  

Science Conference Proceedings (OSTI)

Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

Elliott, Douglas C; Oyler, James

2013-12-17T23:59:59.000Z

393

Selective methane oxidation over promoted oxide catalysts. Quarterly report, March--May 1995  

DOE Green Energy (OSTI)

The objective of this research is the selective oxidative coupling of methane to C{sub 2}H{sub 4} hydrocarbons and oxygenates, in particular formaldehyde and methanol. Air, oxygen or carbon dioxide, rather than nitrous oxide will be utilized as the oxidizing gas at high gas hourly space velocity, but mild reaction conditions (500-700 {degrees}C, 1 atm total pressure). All the investigated processes are catalytic, aiming at minimizing gas phase reactions that are difficult to control. The research is divided into the following three tasks: (1) maximizing selective methane oxidation to C{sub 2}H{sub 4} products over promoted Sr/La{sub 2}O{sub 3}; (2) selective methane oxidation to oxygenates; and (3) catalyst characterization and optimization. Task 1 dealt with the preparation, testing, and optimization of acidic promoted lanthana-based catalysts for the synthesis of C{sub 2}H{sub 4} hydrocarbons and is essentially completed. Task 2 aims at the formation and optimization of promoted catalysts for the synthesis of oxygenates, in particular formaldehyde and methanol. Task 3 involves characterization of the most promising catalysts so that optimization can be achieved under Task 2. Accomplishments for this period are presented.

Klier, K.; Herman, R.G.; Wang, Chaun-Bao; Shi, Chunlei; Sun, Qun

1995-08-01T23:59:59.000Z

394

Water Uptake in PEMFC Catalyst Layers  

SciTech Connect

Water uptake profiles of proton-exchange-membrane fuel-cell catalyst layers are characterized in the form of capillary-pressure saturation (Pc-S) curves. The curves indicate that the catalyst layers tested are highly hydrophilic and require capillary pressures as low as -80 kPa to eject imbibed water. Comparison of materials made with and without Pt indicates a difference in water ejection and uptake phenomena due to the presence of Pt. The addition of Pt increases the tendency of the catalyst layer to retain water. Dynamic vapor sorption (DVS) is used to characterize the water-vapor sorption onto Nafion, Pt/C, and C surfaces. The DVS results align with the trends found from the Pc-S curves and show an increased propensity for water uptake in the presence of Pt. The effect of the ion in Nafion, sodium or protonated form, is also compared and demonstrates that although the protonation of the Nafion in the catalyst layer also increases hydrophilicity, the effect is not as great as that caused by Pt.

Gunterman, Haluna P.; Kwong, Anthony H.; Gostick, Jeffrey T.; Kusoglu, Ahmet; Weber, Adam Z.

2011-07-01T23:59:59.000Z

395

Nitrated metalloporphyrins as catalysts for alkane oxidation  

DOE Patents (OSTI)

Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

Ellis, P.E. Jr.; Lyons, J.E.

1994-01-18T23:59:59.000Z

396

Nitrated metalloporphyrins as catalysts for alkane oxidation  

DOE Patents (OSTI)

Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

1992-01-01T23:59:59.000Z

397

Nitrated metalloporphyrins as catalysts for alkane oxidation  

DOE Patents (OSTI)

Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

Ellis, Jr., Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA)

1994-01-01T23:59:59.000Z

398

Prealloyed catalyst for growing silicon carbide whiskers  

DOE Patents (OSTI)

A prealloyed metal catalyst is used to grow silicon carbide whiskers, especially in the .beta. form. Pretreating the metal particles to increase the weight percentages of carbon or silicon or both carbon and silicon allows whisker growth to begin immediately upon reaching growth temperature.

Shalek, Peter D. (Los Alamos, NM); Katz, Joel D. (Niagara Falls, NY); Hurley, George F. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

399

Selective methane oxidation over promoted oxide catalysts. Quarterly report, September--November, 1994  

DOE Green Energy (OSTI)

Experimental research in the direct conversion of methane to methanol using a double bed reactor and with gaseous steam as cofeed with the CH{sub 4}/air reactant mixture continued during this quarter in order to improve the methanol space time yield. Work was carried out along several pathways that included a stability test of the second bed catalyst 1%V{sub 2}O{sub 5}/SiO{sub 2} that yielded up to 100 g methanol/kg cat/hr and investigation of the effect of pressure on methanol yields. Redox dopants were put onto several metal oxide supports in an attempt to find better second bed catalysts. A catalyst that was reasonably selective towards oxygenates was obtained when SiO{sub 2} was used as the support and low quantities of Fe or Cu were utilized. Attempts were also made to incorporate alkali ions into the catalysts to improve the surface hydrolyzability. Experiments were carried out to examine the effect of pressure and temperature on the oxygenate productivity over a double-layered catalyst bed of 0.1 g 1 wt% SO{sub 4}{sup 2{minus}}/Sr/La{sub 2}O{sub 3} as the first bed and 0.1 g 1 wt% V{sub 2}O{sub 5}/SiO{sub 2} as the second bed without H{sub 2}O cofeed in a glass-lined tubular down-flow reactor at pressures of 0.1--3.2 MPa (14.7--460 psig), temperatures of 450--500 C, and with a reactant flow rate having a ratio of CH{sub 4}/air = 150/50 ml/min. Reaction products observed were methanol, formaldehyde, carbon dioxide, acetylene, ethylene, and ethane. The overall activity of the catalyst increased at low pressures and high temperature. However, testing at low temperature and high pressure was found to favor methanol production.

Klier, K.; Herman, R.G.; Shi, C.; Wang, C.B.; Sun, Q.

1994-12-01T23:59:59.000Z

400

Nitrogen removal from natural gas  

SciTech Connect

According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Process of activation of a palladium catalyst system  

Science Conference Proceedings (OSTI)

Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

Sobolevskiy, Anatoly (Orlando, FL); Rossin, Joseph A. (Columbus, OH); Knapke, Michael J. (Columbus, OH)

2011-08-02T23:59:59.000Z

402

Catalysts for conversion of syngas to liquid motor fuels  

DOE Patents (OSTI)

Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

Rabo, Jule A. (Armonk, NY); Coughlin, Peter K. (Yorktown Heights, NY)

1987-01-01T23:59:59.000Z

403

Chemistry Dept. Research Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Department Overview: Chemistry Department Overview: While the subjects of chemical research in the Chemistry Department are diverse, several predominant themes span traditional research fields and research groups. These themes include: artificial photosynthesis, charge transfer for energy conversion, chemistry with ionizing radiation, catalysis and surface science, nanoscience, combustion, and nuclear chemistry. Artificial Photosynthesis This program addresses major issues hindering progress in photoinduced catalytic reduction of carbon dioxide, water splitting, and small molecule activation using an integrated experimental and theoretical approach that offers fundamental insights into the underlying photochemical processes. One thrust investigates factors controlling reductive half-reactions. Among these are: (1) searching for visible-light absorbers to couple with electron transfer and/or catalytic processes; (2) avoiding high-energy intermediates through multi-electron, multi-proton processes; (3) using earth-abundant metals, or metal complexes that have bio-inspired or non-innocent ligands to achieve low-energy pathways via second-coordination sphere interactions or redox leveling; (4) adopting water as the target solvent and the source of protons and electrons; and (5) immobilizing catalysts on electrode or semiconductor surfaces for better turnover rates and frequencies. Another thrust investigates water oxidation, focusing on photoelectrolysis processes occurring in band-gap-narrowed semiconductor and catalyst components by: (i) tuning semiconductors to control their light-harvesting and charge-separation abilities; (ii) developing viable catalysts for the four-electron water oxidation process; (iii) immobilizing the homogenous catalysts and metal oxide catalysts on electrodes and/or metal-oxide nanoparticles; and (iv) exploring the interfacial water-decomposition reactions using carriers generated by visible-light irradiation with the goal of understanding semiconductorccatalystcwater charge transport.

404

Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994  

DOE Green Energy (OSTI)

Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed before isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.

Anthony, R.G.; Akgerman, A.

1994-05-06T23:59:59.000Z

405

Pneumatic soil removal tool  

Science Conference Proceedings (OSTI)

A soil tool is provided for removing radioactive soil, rock and debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator value mounted on the handle, to provide movement of the movable jaw.

Neuhaus, J.F.

1991-01-23T23:59:59.000Z

406

Appliances Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Appliances Research Emerging Technologies » Appliances Research Appliances Research The Emerging Technology team conducts research into residential and commercial appliances. By partnering with industry, researchers, and other stakeholders, the Department of Energy acts as a catalyst in driving research in energy efficient technologies, with the goal of realizing 20% energy savings relative to a 2010 baseline. Appliance research focuses on refrigerators, washers, and dryers. Refrigerators Photo of a stainless steel refrigerator. Refrigerators have become substantially more energy efficient over the years, using less energy while also providing more space. While appliance standards for refrigerators have helped, continued research into new ways of improving refrigerators in the

407

Hydrocarbon reforming catalyst material and configuration of the same  

DOE Patents (OSTI)

A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.

Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.

1996-06-18T23:59:59.000Z

408

Hydrocarbon reforming catalyst material and configuration of the same  

DOE Patents (OSTI)

A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall.

Singh, Prabhakar (Export, PA); Shockling, Larry A. (Plum Borough, PA); George, Raymond A. (Pittsburgh, PA); Basel, Richard A. (Plub Borough, PA)

1996-01-01T23:59:59.000Z

409

DOE Hydrogen Analysis Repository: Novel Non-Precious Metal Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Non-Precious Metal Catalysts Novel Non-Precious Metal Catalysts Project Summary Full Title: Novel Non-Precious Metal Catalysts for PEMFC: Catalyst Selection through Molecular Modeling and Durability Studies Project ID: 147 Principal Investigator: Branko Popov Brief Description: The University of South Carolina is synthesizing novel non-precious metal electrocatalysts with similar activity and stability as Pt for oxygen reduction reaction (ORR). Keywords: Catalyst; oxygen reduction; non precious metals; molecular modeling; durability Purpose Develop highly active and stable carbon-based metal-free catalysts and carbon composite catalysts with strong Lewis basicity to facilitate the ORR. Performer Principal Investigator: Branko Popov Organization: University of South Carolina Address: 2C19 Swearingen, Chemical Engineering, 301 Main Street

410

Near Critical Catalyst Reactant Branching Processes with Controlled Immigration  

E-Print Network (OSTI)

Near critical catalyst-reactant branching processes with controlled immigration are studied. The reactant population evolves according to a branching process whose branching rate is proportional to the total mass of the catalyst. The bulk catalyst evolution is that of a classical continuous time branching process; in addition there is a specific form of immigration. Immigration takes place exactly when the catalyst population falls below a certain threshold, in which case the population is instantaneously replenished to the threshold. Such models are motivated by problems in chemical kinetics where one wants to keep the level of a catalyst above a certain threshold in order to maintain a desired level of reaction activity. A diffusion limit theorem for the scaled processes is presented, in which the catalyst limit is described through a reflected diffusion, while the reactant limit is a diffusion with coefficients that are functions of both the reactant and the catalyst. Stochastic averaging principles under ...

Budhiraja, Amarjit

2012-01-01T23:59:59.000Z

411

Refiner details ``best practices`` approach to catalyst selection  

Science Conference Proceedings (OSTI)

Catalysts are critical to hydrocarbon processing in refineries. Refiners spend millions of dollars per year on catalysts. This cost, however, pales in comparison to the impact that catalysts can have. The lost opportunity from not using the right catalyst, or an unscheduled shutdown caused by a catalyst-related problem, can be an order of magnitude higher than the cost of the catalyst itself. Chevron Products Co. has adopted a best practices approach to addressing technical and operational issues in refining. A subset of the best-practices program includes the testing, selection, and monitoring of catalysts for Chevron`s fluid catalytic cracking (FCC), catalytic reforming, and hydroprocessing units. The paper discusses these practices.

Krishna, A.S. [Chevron Products Co., El Segundo, CA (United States); Arndt, J.H. [Chevron Products Co., Richmond, CA (United States); Kuehler, C.W.; Kramer, D.C. [Chevron Research and Technology Co., Richmond, CA (United States)

1996-10-14T23:59:59.000Z

412

Novel Attrition-Resistant Fischer Tropsch Catalyst  

DOE Green Energy (OSTI)

There is a strong national interest in the Fischer-Tropsch synthesis process because it offers the possibility of making liquid hydrocarbon fuels from reformed natural gas or coal and biomass gasification products. This project explored a new approach that had been developed to produce active, attrition-resistant Fischer-Tropsch catalysts that are based on glass-ceramic materials and technology. This novel approach represented a promising solution to the problem of reducing or eliminating catalyst attrition and maximizing catalytic activity, thus reducing costs. The technical objective of the Phase I work was to demonstrate that glass-ceramic based catalytic materials for Fischer-Tropsch synthesis have resistance to catalytic deactivation and reduction of particle size superior to traditional supported Fischer-Tropsch catalyst materials. Additionally, these novel glass-ceramic-based materials were expected to exhibit catalytic activity similar to the traditional materials. If successfully developed, the attrition-resistant Fischer-Tropsch catalyst materials would be expected to result in significant technical, economic, and social benefits for both producers and public consumers of Fischer-Tropsch products such as liquid fuels from coal or biomass gasification. This program demonstrated the anticipated high attrition resistance of the glass-ceramic materials. However, the observed catalytic activity of the materials was not sufficient to justify further development at this time. Additional testing documented that a lack of pore volume in the glass-ceramic materials limited the amount of surface area available for catalysis and consequently limited catalytic activity. However, previous work on glass-ceramic catalysts to promote other reactions demonstrated that commercial levels of activity can be achieved, at least for those reactions. Therefore, we recommend that glass-ceramic materials be considered again as potential Fischer-Tropsch catalysts if it can be demonstrated that materials with adequate pore volume can be produced. During the attrition resistance tests, it was learned that the glass-ceramic materials are very abrasive. Attention should be paid in any further developmental efforts to the potential for these hard, abrasive materials to damage reactors.

Weast, Logan, E.; Staats, William, R.

2009-05-01T23:59:59.000Z

413

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Bench-scale carbon-catalyst tests were conducted in the first quarter of 2004, to obtain kinetic rates of mercury oxidation and sorption for different forms of carbon. The current quarterly report provides a more extensive quantitative analysis of the data obtained from the CRTF experiments on different carbon types and carbocalcium mixtures than was presented in the last quarterly report. The procedure and basis for normalizing mercury removals, so that they could be compared on an equal residence time basis, is described. The chemisorption rate of mercury on carbon was found to be first order in mercury concentration and half order in HCl concentration, for the facility configuration investigated. The applicable temperature range of the kinetic rates obtained is from 300 F to 700 F, and the applicable chlorine concentration range is from 2 ppmv HCl to 250 ppmv HCl. The gas-sorbent contact time of 0.12 seconds used in this work was shown to be representative of gas-dust cake contact times in full-scale baghouses. All carbon types investigated behaved similarly with respect to Hg sorption, including the effect of temperature and chlorine concentration. Activated carbon was more effective at sorbing mercury than carbon black and unburned carbon (UBC), because the internal surface area of activated carbon is greater. The synergistic relationship between Ca and C is also discussed in the report.

Thomas K. Gale

2004-09-30T23:59:59.000Z

414

Removal to Maximum Extent Practical  

Energy.gov (U.S. Department of Energy (DOE))

Summary Notes from 1 November 2007 Generic Technical Issue Discussion on Removal of Highly Radioactive Radionuclides/Key Radionuclides to the Maximum Extent Practical

415

Technology development for cobalt F-T catalysts. Final quarterly technical progress report No. 11, April 1, 1995--June 30, 1995  

DOE Green Energy (OSTI)

Preliminary results on the effect of reaction temperature on the performance of Co catalysts during F-T synthesis obtained during the last quarter confirmed that Co catalysts were very sensitive to temperature and deactivated significantly at temperatures above 240{degree}C both in the fixed bed and the slurry bubble column reactors. Following this preliminary investigation, a series of tests were carried out during this period in order to elucidate the nature of this deactivation process as well as determine possible means of preventing it. In order to elucidate the nature of this deactivation process, the catalysts which had undergone significant deactivation after high temperature (280{degree}C) reaction in either the fixed bed reactor or the slurry bubble column reactor were regenerated and retested in the fixed bed reactor. In both cases the catalysts recovered completely their initial activity. In addition, reactions at very high H{sub 2}CO ratios and high temperatures showed very little deactivation, suggesting that the deactivation of the Co catalysts during F-T synthesis at high temperatures was mainly due carbon formation via the Boudouard reaction. Due to the unreactive nature of this carbon, it could only be removed by calcination. A second series of experiments was carried out to investigate the effect of certain promoters (Zr, La, Cr, and Re) as well as the effect of another support such as silica on the deactivation characteristics of Co catalysts during F-T synthesis at high temperature. The results suggest that the deactivation process and rate for most of these catalysts are similar to those of the alumina-supported catalysts tested previously (Co.005 and Co-053), and that none of the promoters helps to slow down the rate of carbon formation at high temperatures above 240{degree}C.

Singleton, A.H.

1995-10-25T23:59:59.000Z

416

Catalyst vendors take aim at emissions  

Science Conference Proceedings (OSTI)

Standards for emissions of air pollutants from stationary sources are expected to become more stringent under the 1990 U.S. Clean Air Act (CAA). For years, scrubbing, incineration and other end-of-pipe methods have been used to reduce nitrogen oxides (NO{sub x}) and volatile organic compounds (VOCs) from chemical and hydrocarbon processes. This paper reports that operating companies are now looking to catalyst manufacturers for technologies to meet higher standards. For the most part, development efforts have been centered on reducing emissions of carbon monoxide (CO) and VOCs for attainment of national ambient air quality standards for ozone under CAA's Title I. Now though, catalyst manufacturers are setting their sights on NO{sub x}.

Matthey, J.

1992-03-01T23:59:59.000Z

417

Development of a catalyst for conversion of syngas-derived materials to isobutylene. Quarterly report No. 14, July 1, 1994--September 30, 1994  

DOE Green Energy (OSTI)

The goals of this project are to develop a catalyst and process for the conversion of syngas to isobutanol. The research will identify and optimize key catalyst and process characteristics. In addition, the commercial potential of the new process will be evaluated by an economic analysis. Previous work had identified Pt and Pd on Zn/Mn/Zr oxide and Pd on Zn/Mn/Cr oxide as promising catalysts for the conversion of a 10/1 methanol/ethanol blend to higher oxygenates. The reproducibility of these catalyst preparations has been found to be generally good, although some variations in performance have been observed between the Pd containing samples. Further characterization of the catalysts showing performance differences is in progress to determine whether compositional variations can account for the discrepancies. Several new 2% Pt on metal oxide catalysts have been prepared and tested. None of these materials performed better than the original 2% Pt on Zn/Mn/Zr (34/34/32 molar) oxide catalyst. However, a lower Zr content support (45/45/10 Zn/Mn/Zr oxide) gave similar results. Evaluation of the 2% Pd on Zn/Mn/Cr oxide at high space velocities has indicated that this material may be substantially less active for the C{sub 1}{minus}C{sub 1}, condensation step necessary for methanol only conversion to higher alcohols. In view of this finding, subsequent research will focus on the development of the Zn/Mn/Zr oxide support. A variety of alternative catalyst formulations have also been prepared and tested, but have failed to match the performance of noble metal on mixed metal oxide catalysts. These materials have include Cu and Mo on TiO{sub 2}, Mg/Al MOSS and polyvinylpyridine and commercial and laboratory prepared Mn oxide samples.

Barger, P.T.; Kurek, P.R.

1994-12-31T23:59:59.000Z

418

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period January 1, 2002 through March 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE) and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the second full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to pilot unit design and conducting laboratory runs to help select candidate catalysts. This technical progress report provides an update on these two efforts. A Test Plan for the upcoming pilot-scale evaluations was also prepared and submitted to NETL for review and comment. Since this document was already submitted under separate cover, this information is not repeated here.

Gary M. Blythe

2002-04-26T23:59:59.000Z

419

Intermediate Ethanol Blends Catalyst Durability Program  

Science Conference Proceedings (OSTI)

In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

2012-02-01T23:59:59.000Z

420

STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION  

SciTech Connect

Major objectives of the present project are to develop a better understanding of the roles of the catalyst and the liquefaction solvent in the coal liquefaction process. An open question concerning the role of the catalyst is whether intimate contact between the catalyst and the coal particles is important or required. To answer this question, it had been planned to coat an active catalyst with a porous silica coating which was found to retain catalyst activity while preventing actual contact between catalyst and coal. Consultation with people in DuPont who coat catalysts for increasing abrasion resistance have indicated that only portions of the catalyst are coated by their process (spray drying) and that sections of uncoated catalyst remain. For that reason, it was decided to suspend the catalyst in a basket separated from the coal in the reactor. The basket walls were to be permeable to the liquefaction solvent but not to the coal particles. Several such baskets were constructed of stainless steel with holes which would not permit passage of coal particles larger than 30 mesh. Liquefactions run with the coal of greater than 30 mesh size gave normal conversion of coal to liquid in the absence of catalyst in the basket, but substantially increased conversion when Ni/Mo on alumina catalyst was in the basket. While this result is interesting and suggestive of some kind of mass transfer of soluble material occurring between the catalyst and the coal, it does not eliminate the possibility of breakdown of the coal particle into particle sizes permeable to the basket. Indeed, a small amount of fine coal has been found inside the basket. To determine whether fine coal from breakdown of the coal particles is responsible for the conversion, a new basket is being prepared with 0.5{micro}m pore size.

Michael T. Klein

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "removal catalyst research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cationic Ruthenium Catalysts for Olefin Hydrovinylation  

E-Print Network (OSTI)

Stereoselective carbon?carbon bond formation is one of the most important types of bond construction in organic chemistry. A mild and acid free catalyst system for the hydrovinylation reaction utilizing a cationic, ruthenium center is described. A catalytic amount of RuHCl(CO)(PCy3)2 (2) activated with AgOTF or AgSbF6 at room temperature was found to be an effective catalyst system for the hydrovinylation of vinylarenes and the intramolecular hydrovinylation (IHV) of 1,6-dienes. Vinylarenes with both electron-donating and electron-withdrawing substituents reacted with ethylene at room temperature to provide the desired 3-arylbutenes in moderate to excellent yield (60-99%) under mild reaction conditions, while the IHV reaction of 1, 6 dienes provided greater than 90% of product conversion. We also developed the first hydrovinylation catalyst containing a chelating, bidentate phosphine ligand that provides the desired product. Our ruthenium-based catalytic system has also proven to give an appealing reactivity profile in favor of the desired arylbutenes without promoting undesirable oligomerization and isomerization.

Sanchez, Richard P., Jr

2009-08-01T23:59:59.000Z

422

Highly Dispersed Alloy Catalyst for Durability  

DOE Green Energy (OSTI)

Achieving DOE�¢����s stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

Vivek S. Murthi (Primary Contact), Elise Izzo, Wu Bi, Sandra Guerrero and Lesia Protsailo

2013-01-08T23:59:59.000Z

423

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the first full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to project initiation and planning. There is no significant technical progress to report for the current period.

Gary M. Blythe

2002-02-22T23:59:59.000Z

424

Mi-Young Kim - Research Staff - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Mi-Young Kim Mi-Young Kim Post Doctoral Research Associate (F) 865-946-1354 kimm@ornl.gov Professional Highlights Education Ph.D., Applied Chemical Engineering, Chonnam National University, 2008 Miyoung joined the Oak Ridge National Laboratory (ORNL) as a post-doctoral researcher in 2010. She has worked at the Center for Development of Fine Chemicals and the Research Institute for Catalysis in Chonnam National University prior to joining the ORNL. Her research background is in heterogeneous catalysis and highly dispersed noble metal catalysts. She has extensive experience in characterizing catalysts using EXAFS, XPS, XRD, solid NMR and ESR. She is currently involved in automotive catalysis research with an emphasis on monolithic catalysts & materials relevant to lean NOx and cold start emissions controls

425

Lloyd Crossing Sustainable Urban Design Plan and Catalyst Project - Portland, Oregon [2005 EDRA/Places Award -- Planning  

E-Print Network (OSTI)

Urban Design Plan and Catalyst Project—Portland, Oregonsensitivity. The associated Catalyst Project attempts toUrban Design Plan and Catalyst Project—Jury Comments Brager:

Hayter, Jason Alexander

2005-01-01T23:59:59.000Z

426

Rhodium Catalysts in the Oxidation of CO by O2 and NO: Shape, Composition, and Hot Electron Generation  

E-Print Network (OSTI)

ACTIVITY OF PLATINUM CATALYSTS. Journal of Catalysis 1966,SUPPORTED BIMETALLIC-CLUSTER CATALYSTS. Journal of Catalysisnanoparticle heterogeneous catalyst. Chem. Commun. 1999, (

Renzas, James Russell

2010-01-01T23:59:59.000Z

427

REDUCTION OF NITRIC OXIDE BY CARBON MONOXIDE OVER A SILICA SUPPORTED PLATINUM CATALYST: INFRARED AND KINETIC STUDIES  

E-Print Network (OSTI)

System. • B. Procedures. Catalyst Preparation Infrared DiskPreparation. Catalyst Characterization. PreliminaryReduction by CO Over a Pt Catalyst," M.S. thesis, Department

Lorimer, D.H.

2011-01-01T23:59:59.000Z

428

Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol  

E-Print Network (OSTI)

a cyanobacterium as the catalyst for the photosynthetica cyanobacterium as the catalyst for the photosyntheticcan be engineered as a catalyst for the photosynthetic

Li, Han; Liao, James C

2013-01-01T23:59:59.000Z

429

Active Hydrogenation Catalyst with a Structured, Peptide-Based Outer-Coordination Sphere  

Science Conference Proceedings (OSTI)

The synthesis, catalytic activity, and structural features of a rhodium-based hydrogenation catalyst containing a phosphine ligand coupled to a 14-residue peptide are reported. Both CD and NMR spectroscopy show that the peptide adopts a helical structure in 1:1:1 TFE/MeCN/H2O that is maintained when the peptide is attached to the ligand and when the ligand is attached to the metal complex. The metal complex hydrogenates aqueous solutions of 3-butenol to 1-butanol at 360 ± 50 turnovers/Rh/h at 294 K. This peptide- based catalyst represents a starting point for developing and characterizing a peptide-based outer-coordination sphere that can be used to introduce enzyme-like features into molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AJ, JCL and WJS), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (GWB, MLR and WJS). Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biolog-ical and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.

Jain, Avijita; Buchko, Garry W.; Reback, Matthew L.; O'Hagan, Molly J.; Ginovska-Pangovska, Bojana; Linehan, John C.; Shaw, Wendy J.

2012-10-05T23:59:59.000Z