Powered by Deep Web Technologies
Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-1793: Replacement Capability for Disposal of Remote-handled Low-level  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

793: Replacement Capability for Disposal of Remote-handled 793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site Summary This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Public Comment Opportunities Submit Comments to: Mr. Chuck Ljungberg 1955 Fremont Avenue, Mailstop 1216 Idaho Falls, ID 83415 Electronic mail: rhllwea@id.doe.gov Documents Available for Download December 21, 2011 EA-1793: Finding of No Significant Impact Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive

2

Remote-Handled Low Level Waste Disposal Project Alternatives Analysis  

Science Conference Proceedings (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-10-01T23:59:59.000Z

3

Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

Timothy Solack; Carol Mason

2012-03-01T23:59:59.000Z

4

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-10-01T23:59:59.000Z

5

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-05-01T23:59:59.000Z

6

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-02-01T23:59:59.000Z

7

Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2011-03-01T23:59:59.000Z

8

Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

David Duncan

2011-05-01T23:59:59.000Z

9

Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2010-10-01T23:59:59.000Z

10

Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect

The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

Lisa Harvego

2009-06-01T23:59:59.000Z

11

Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record  

Science Conference Proceedings (OSTI)

The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2010-10-01T23:59:59.000Z

12

Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

2012-05-01T23:59:59.000Z

13

Remote-Handled Low-Level Waste Disposal Project Code of Record  

Science Conference Proceedings (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2011-04-01T23:59:59.000Z

14

Remote-Handled Low-Level Waste Disposal Project Code of Record  

Science Conference Proceedings (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-06-01T23:59:59.000Z

15

Remote-Handled Low-Level Waste Disposal Project Code of Record  

Science Conference Proceedings (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2011-01-01T23:59:59.000Z

16

Remote-Handled Low-Level Waste Disposal Project Code of Record  

Science Conference Proceedings (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-04-01T23:59:59.000Z

17

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2009-10-01T23:59:59.000Z

18

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2011-03-01T23:59:59.000Z

19

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2011-04-01T23:59:59.000Z

20

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

Boyd D. Christensen

2010-05-01T23:59:59.000Z

22

Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

Boyd D. Christensen

2010-02-01T23:59:59.000Z

23

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site August 2011 DOE/EA-1793 Draft Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site August 2011 v EXECUTIVE SUMMARY The U.S. Department of Energy (DOE) proposes to provide replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Historically, INL has disposed of this LLW onsite. However, the existing disposal area located within the INL Radioactive Waste Management Complex will undergo

24

Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

Boyd D. Christensen

2012-05-01T23:59:59.000Z

25

Siting Study for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

2010-10-01T23:59:59.000Z

26

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT FOR THE ENVIRONMENTAL ASSESSMENT FOR THE REPLACEMENT CAPABILITY FOR THE DISOPOSAL OF REMOTE-HANDLED LOW-LEVEL RADIOACTIVE WASTE GENERATED AT THE DEPARTMENT OF ENERGY'S IDAHO SITE Agency: U. S. Department of Energy (DOE) Action: Finding ofNo Significant Impact (FONSI) Summary: Operations conducted in support ofIdaho National Laboratory (INL) and Naval Reactors Facility (NRF) missions on the Idaho site generate low-level radioactive waste (LL W). DOE classifies some of the LL W generated at the INL as remote-handled LL W because its potential radiation dose is high enough to require additional protection of workers using distance and shielding. Remote-handled wastes are those with radiation levels exceeding 200 millirem

27

Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

David Duncan

2011-05-01T23:59:59.000Z

28

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site  

NLE Websites -- All DOE Office Websites (Extended Search)

93 93 Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site Final December 2011 Department of Energy Idaho Operations Office 1955 Fremont Avenue Idaho Falls, ID 83415 December 21, 2011 Dear Citizen: The U.S. Department of Energy (DOE) has completed the Final Environmental Assessment (EA) for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site and determined that a Finding of No Significant Impact (FONSI) is appropriate. The draft EA was made available for an 81-day public review and comment period on September 1,2011. DOE considered all comments made

29

National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

Peggy Hinman

2010-10-01T23:59:59.000Z

30

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-08-01T23:59:59.000Z

31

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-04-01T23:59:59.000Z

32

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2010-10-01T23:59:59.000Z

33

Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.

D. Craig Cooper

2011-11-01T23:59:59.000Z

34

Acquisition Strategy for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposition Project  

Science Conference Proceedings (OSTI)

This document describes the design-build acquisition strategy that will be applied to the Remote Handled LLW Disposal Project. The design-build delivery method will be tailored, as appropriate, to integrate the requirements of Department of Energy (DOE) Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets,' with the DOE budget formulation process and the safety requirements of DOE-STD-1189, 'Integration of Safety into the Design Process.'

David Duncan

2011-05-01T23:59:59.000Z

35

Assessment of Potential Flood Events and Impacts at INL's Proposed Remote-Handled Low-Level Waste Disposal Facility Sites  

Science Conference Proceedings (OSTI)

Rates, depths, erosion potential, increased subsurface transport rates, and annual exceedance probability for potential flooding scenarios have been evaluated for the on-site alternatives of Idaho National Laboratory’s proposed remote handled low-level waste disposal facility. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of flood impacts are required to meet the Department of Energy’s Low-Level Waste requirements (DOE-O 435.1), its natural phenomena hazards assessment criteria (DOE-STD-1023-95), and the Radioactive Waste Management Manual (DOE M 435.1-1) guidance in addition to being required by the National Environmental Policy Act (NEPA) environmental assessment (EA). Potential sources of water evaluated include those arising from (1) local precipitation events, (2) precipitation events occurring off of the INL (off-site precipitation), and (3) increased flows in the Big Lost River in the event of a Mackay Dam failure. On-site precipitation events include potential snow-melt and rainfall. Extreme rainfall events were evaluated for the potential to create local erosion, particularly of the barrier placed over the disposal facility. Off-site precipitation carried onto the INL by the Big Lost River channel was evaluated for overland migration of water away from the river channel. Off-site precipitation sources evaluated were those occurring in the drainage basin above Mackay Reservoir. In the worst-case scenarios, precipitation occurring above Mackay Dam could exceed the dam’s capacity, leading to overtopping, and eventually complete dam failure. Mackay Dam could also fail during a seismic event or as a result of mechanical piping. Some of the water released during dam failure, and contributing precipitation, has the potential of being carried onto the INL in the Big Lost River channel. Resulting overland flows from these flood sources were evaluated for their erosion potential, ability to overflow the proposed disposal facility, and for their ability to increase migration of contaminants from the facility. The assessment of available literature suggests that the likelihood of detrimental flood water impacting the proposed RH-LLW facility is extremely low. The annual exceedance probability associated with uncontrolled flows in the Big Lost River impacting either of the proposed sites is 1x10-5, with return interval (RI) of 10,000yrs. The most probable dam failure scenario has an annual exceedance probability of 6.3x10-6 (1.6x105 yr RI). In any of the scenarios generating possible on-site water, the duration is expected to be quite short, water depths are not expected to exceed 0.5 m, and the erosion potential can easily be mitigated by emplacement of a berm (operational period), and an engineered cover (post closure period). Subsurface mobilization of radionuclides was evaluated for a very conservative flooding scenario resulting in 50 cm deep, 30.5 day on-site water. The annual exceedance probability for which is much smaller than 3.6x10-7 (2.8x106 yr RI). For the purposes of illustration, the facility was assumed to flood every 500 years. The periodically recurring flood waters were predicted to marginally increase peak radionuclide fluxes into the aquifer by at most by a factor of three for non-sorbing radionuclides, and to have limited impact on peak radionuclide fluxes into the aquifer for contaminants that do sorb.

A. Jeff Sondrup; Annette L. Schafter

2010-09-01T23:59:59.000Z

36

Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis  

SciTech Connect

An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energy’s Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources are then addressed. Differences in required analyses and data are captured as outstanding data needs.

A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

2010-09-01T23:59:59.000Z

37

Seismic Characterization of Basalt Topography at Two Candidate Sites for the INL Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define the topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.

Jeff Sondrup; Gail Heath; Trent Armstrong; Annette Shafer; Jesse Bennett; Clark Scott

2011-04-01T23:59:59.000Z

38

Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect

Groundwater impacts have been analyzed for the proposed remote-handled low-level waste disposal facility. The analysis was prepared to support the National Environmental Policy Act environmental assessment for the top two ranked sites for the proposed disposal facility. A four-phase screening and analysis approach was documented and applied. Phase I screening was site independent and applied a radionuclide half-life cut-off of 1 year. Phase II screening applied the National Council on Radiation Protection analysis approach and was site independent. Phase III screening used a simplified transport model and site-specific geologic and hydrologic parameters. Phase III neglected the infiltration-reducing engineered cover, the sorption influence of the vault system, dispersion in the vadose zone, vertical dispersion in the aquifer, and the release of radionuclides from specific waste forms. These conservatisms were relaxed in the Phase IV analysis which used a different model with more realistic parameters and assumptions. Phase I screening eliminated 143 of the 246 radionuclides in the inventory from further consideration because each had a half-life less than 1 year. An additional 13 were removed because there was no ingestion dose coefficient available. Of the 90 radionuclides carried forward from Phase I, 57 radionuclides had simulated Phase II screening doses exceeding 0.4 mrem/year. Phase III and IV screening compared the maximum predicted radionuclide concentration in the aquifer to maximum contaminant levels. Of the 57 radionuclides carried forward from Phase II, six radionuclides were identified in Phase III as having simulated future aquifer concentrations exceeding maximum contaminant limits. An additional seven radionuclides had simulated Phase III groundwater concentrations exceeding 1/100th of their respective maximum contaminant levels and were also retained for Phase IV analysis. The Phase IV analysis predicted that none of the thirteen remaining radionuclides would exceed the maximum contaminant levels for either site location. The predicted cumulative effective dose equivalent from all 13 radionuclides also was less than the dose criteria set forth in Department of Energy Order 435.1 for each site location. An evaluation of composite impacts showed one site is preferable over the other based on the potential for commingling of groundwater contamination with other facilities.

Annette Schafer, Arthur S. Rood, A. Jeffrey Sondrup

2011-12-23T23:59:59.000Z

39

Southeast Interstate Low-Level Radioactive Waste Management Compact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state) Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state) Eligibility...

40

Northwest Interstate Compact on Low-Level Radioactive Waste Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States)...

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Atlantic Interstate Low-Level Radioactive Waste Management Compact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Eligibility...

42

Vacuum Vessel Remote Handling  

E-Print Network (OSTI)

FIRE Vacuum Vessel and Remote Handling Overview B. Nelson, T. Burgess, T. Brown, H-M Fan, G. Jones #12;13 July 2002 Snowmass Review: FIRE Vacuum Vessel and Remote Handling 2 Presentation Outline · Remote Handling - Maintenance Approach & Component Classification - In-Vessel Transporter - Component

43

Low-Level Radioactive Waste Disposal Act (Pennsylvania) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info State Pennsylvania Program Type Environmental Regulations Provider Pennsylvania Department of Environmental Protection This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and storage of low-level radioactive waste. Commercial incineration of radioactive wastes is prohibited. Licenses are required for low-level radioactive waste disposal facilities not licensed to accept low-level radioactive waste. Disposal at

44

BLENDING OF LOW-LEVEL RADIOACTIVE WASTE  

E-Print Network (OSTI)

To provide the Commission with the results of the staff’s analysis of issues associated with the blending of low-level radioactive waste (LLRW), as directed in Chairman Jaczko’s October 8, 2009, memorandum to the staff. The closure of the Barnwell waste disposal facility to most U.S. generators of Class B and C LLRW has caused industry to examine methods for reducing the amount of these wastes, including the blending of some types of Class B and C waste with similar Class A wastes to produce a Class A mixture that can be disposed of at a currently licensed facility. This paper identifies policy, safety, and regulatory issues associated with LLRW blending, provides options for a U. S. Nuclear Regulatory Commission (NRC) blending position, and makes a recommendation for a future blending policy. This paper does not address any new commitments. SUMMARY: In this paper, the staff examines the blending or mixing of LLRW with higher concentrations of radionuclides with LLRW with lower concentrations of radionuclides to form a final homogeneous mixture. While recognizing that some mixing of waste is unavoidable, and may even be necessary and appropriate for efficiency or dose reduction purposes, NRC has historically discouraged mixing LLRW to lower the classification of waste in other circumstances.

R. W. Borchardt; Contacts James; E. Kennedy

2010-01-01T23:59:59.000Z

45

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwestern Low-Level Radioactive Waste Disposal Compact (South Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider Southwestern Low-Level Radioactive Waste Commission This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste. The Compact is administered by a commission, which can regulate and impose fees on in-state radioactive waste generators. The states of Arizona, California,

46

Issue briefs on low-level radioactive wastes  

Science Conference Proceedings (OSTI)

This report contains 4 Issue Briefs on low-level radioactive wastes. They are entitled: Handling, Packaging, and Transportation, Economics of LLW Management, Public Participation and Siting, and Low Level Waste Management.

Not Available

1981-01-01T23:59:59.000Z

47

Low Level Radioactive Waste Authority (Michigan) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Level Radioactive Waste Authority (Michigan) Low Level Radioactive Waste Authority (Michigan) Low Level Radioactive Waste Authority (Michigan) < Back Eligibility Utility Fed. Government Investor-Owned Utility Municipal/Public Utility Program Info State Michigan Program Type Safety and Operational Guidelines Provider Department of Environmental Quality Federal laws passed in 1980 and 1985 made each state responsible for the low-level radioactive waste produced within its borders. Act 204 of 1987 created the Low-Level Radioactive Waste Authority (LLRWA) to fulfill state responsibilities under federal law for managing and assuring disposal capacity for the low-level radioactive waste produced in Michigan. The LLRWA began a facility siting process in 1989 under the statutory limits of Act 204. The LLRWA eventually determined that it was impossible to find a

48

Proceedings: Radioactive Low Level Waste Management Workshop  

Science Conference Proceedings (OSTI)

This report presents the proceedings of an EPRI workshop on low level waste management. The workshop was the fifth in a series to aid utility personnel in assessing technologies for decommissioning nuclear power plants. This workshop focused on specific aspects of low level waste management as they relate to nuclear plant decommissioning. Workshop information will help utilities assess benefits of waste management, select technologies for their individual projects, and reduce decommissioning costs.

2000-05-25T23:59:59.000Z

49

Appalachian States Low-Level Radioactive Waste Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes Maryland's entrance into the Appalachian States Low-Level Radioactive Waste Compact, which seeks to promote interstate cooperation for the proper management and disposal...

50

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlantic Interstate Low-Level Radioactive Waste Management Compact Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Program Info Start Date 1986 State South Carolina Program Type Environmental Regulations Siting and Permitting Provider Atlantic Compact Commission The Atlantic (Northeast) Interstate Low-Level Radioactive Waste Management Compact is a cooperative effort to plan, regulate, and administer the disposal of low-level radioactive waste in the region. The states of Connecticut, New Jersey, and South Carolina are party to this compact

51

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

52

Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal  

SciTech Connect

This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

Not Available

1990-10-01T23:59:59.000Z

53

Northwest Interstate Compact on Low-Level Radioactive Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Interstate Compact on Low-Level Radioactive Waste Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Nonprofit Program Info Start Date 1981 State Alaska Program Type Siting and Permitting Provider Northwest Interstate Compact The Northwest Interstate Compact on Low-Level Radioactive Waste Management, enacted in 1981, was ratified by Congress in 1985. The Compact is a cooperative effort of the party states to protect their citizens, and maintain and enhance economic viability, while sharing the responsibilities

54

Low-level radioactive waste regulation: Science, politics and fear  

SciTech Connect

An inevitable consequence of the use of radioactive materials is the generation of radioactive wastes and the public policy debate over how they will be managed. In 1980, Congress shifted responsibility for the disposal of low-level radioactive wastes from the federal government to the states. This act represented a sharp departure from more than 30 years of virtually absolute federal control over radioactive materials. Though this plan had the enthusiastic support of the states in 1980, it now appears to have been at best a chimera. Radioactive waste management has become an increasingly complicated and controversial issue for society in recent years. This book discusses only low-level wastes, however, because Congress decided for political reasons to treat them differently than high-level wastes. The book is based in part on three symposia sponsored by the division of Chemistry and the Law of the American Chemical Society. Each chapter is derived in full or in part from presentations made at these meetings, and includes: (1) Low-level radioactive wastes in the nuclear power industry; (2) Low-level radiation cancer risk assessment and government regulation to protect public health; and (3) Low-level radioactive waste: can new disposal sites be found.

Burns, M.E. (ed.)

1988-01-01T23:59:59.000Z

55

Low-level radioactive waste disposal facility closure  

Science Conference Proceedings (OSTI)

Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-11-01T23:59:59.000Z

56

ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS  

Science Conference Proceedings (OSTI)

This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

R.H. Little, P.R. Maul, J.S.S. Penfoldag

2003-02-27T23:59:59.000Z

57

Low-level radioactive waste technology: a selected, annotated bibliography  

SciTech Connect

This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

1980-10-01T23:59:59.000Z

58

Argonne Chemical Sciences & Engineering - Facilities - Remote Handling  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities * Actinide * Analytical Chemistry * Premium Coal Samples * Electrochemical Analysis * Glovebox * Glassblowing Fundamental Interactions Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for Electrical Energy Storage: Tailored Interfaces Contact Us CSE Intranet Remote Handling Mockup Facility Remote Handling Mockup Facility Radiochemist Art Guelis observes technician Kevin Quigley preparing to cut open a surrogate uranium target. Argonne designed and built a Remote Handling Mockup Facility to let engineers simulate the handling of radioactive materials in a non-radioactive environment. The ability to carry out the details of an

59

Disposal of low-level and mixed low-level radioactive waste during 1990  

Science Conference Proceedings (OSTI)

Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data.

Not Available

1993-08-01T23:59:59.000Z

60

Managing low-level radioactive wastes: a proposed approach  

SciTech Connect

In 1978, President Carter established the Interagency Review Group on Nuclear Waste Management (IRG) to review the nation's plans and progress in managing radioactive wastes. In its final report, issued in March 1979, the group recommended that the Department of Energy (DOE) assume responsibility for developing a national plan for the management of low-level wastes. Toward this end, DOE directed that a strategy be developed to guide federal and state officials in resolving issues critical to the safe management of low-level wastes. EG and G Idaho, Inc. was selected as the lead contractor for the Low-Level Waste Management Program and was given responsibility for developing the strategy. A 25 member task force was formed which included individuals from federal agencies, states, industry, universities, and public interest groups. The task force identified nineteen broad issues covering the generation, treatment, packaging, transportation, and disposal of low-level wastes. Alternatives for the resolution of each issue were proposed and recommendations were made which, taken together, form the draft strategy. These recommendations are summarized in this document.

Peel, J.W.; Levin, G.B.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

System for chemically digesting low level radioactive, solid waste material  

DOE Patents (OSTI)

An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

1982-01-01T23:59:59.000Z

62

Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state)  

Energy.gov (U.S. Department of Energy (DOE))

The Southeast Interstate Low-Level Radioactive Waste Management Compact is administered by the Compact Commission. The Compact provides for rotating responsibility for the region's low-level...

63

Management of low-level radioactive wastes around the world  

SciTech Connect

This paper reviews the status of various practices used throughout the world for managing low-level radioactive wastes. Most of the information in this review was obtained through the DOE-sponsored International Program Support Office (IPSO) activities at Pacific Northwest Laboratory (PNL) at Richland, Washington. The objective of IPSO is to collect, evaluate, and disseminate information on international waste management and nuclear fuel cycle activities. The center's sources of information vary widely and include the proceedings of international symposia, papers presented at technical society meetings, published topical reports, foreign trip reports, and the news media. Periodically, the information is published in topical reports. Much of the information contained in this report was presented at the Fifth Annual Participants' Information Meeting sponsored by DOE's Low-Level Waste Management Program Office at Denver, Colorado, in September of 1983. Subsequent to that presentation, the information has been updated, particularly with information provided by Dr. P. Colombo of Brookhaven National Laboratory who corresponded with low-level waste management specialists in many countries. The practices reviewed in this paper generally represent actual operations. However, major R and D activities, along with future plans, are also discussed. 98 refs., 6 tabls.

Lakey, L.T.; Harmon, K.M.; Colombo, P.

1985-04-01T23:59:59.000Z

64

History of remote handling at LAMPF  

SciTech Connect

A portable remote-handling system (Monitor) has been developed for performing remote maintenance on radioactive experimental facilities at the Clinton P. Anderson Meson Physics Facility (LAMPF). This system has been continually improved since its implementation in 1976. The present system has performed highly sophisticated tasks in improving and maintaining the LAMPF experimental facility. Unlike conventional hot-cell remote-handling technology, the Monitor system is portable and highly flexible, thereby allowing quick response to unforeseen tasks with minimal planning and/or special tooling. In addition to performing routine maintenance and repairs, the Monitor system is capable of performing major revisions and improvements to current facilities, keeping pace with new experimental requirements.

Grisham, D.L.; Lambert, J.E.

1982-01-01T23:59:59.000Z

65

Commercial low-level radioactive waste transportation liability and radiological risk  

SciTech Connect

This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

1992-08-01T23:59:59.000Z

66

Evaluation of a Mobile Hot Cell Technology for Processing Idaho National Laboratory Remote-Handled Wastes  

SciTech Connect

The Idaho National Laboratory (INL) currently does not have the necessary capabilities to process all remote-handled wastes resulting from the Laboratory’s nuclear-related missions. Over the years, various U.S. Department of Energy (DOE)-sponsored programs undertaken at the INL have produced radioactive wastes and other materials that are categorized as remote-handled (contact radiological dose rate > 200 mR/hr). These materials include Spent Nuclear Fuel (SNF), transuranic (TRU) waste, waste requiring geological disposal, low-level waste (LLW), mixed waste (both radioactive and hazardous per the Resource Conservation and Recovery Act [RCRA]), and activated and/or radioactively-contaminated reactor components. The waste consists primarily of uranium, plutonium, other TRU isotopes, and shorter-lived isotopes such as cesium and cobalt with radiological dose rates up to 20,000 R/hr. The hazardous constituents in the waste consist primarily of reactive metals (i.e., sodium and sodium-potassium alloy [NaK]), which are reactive and ignitable per RCRA, making the waste difficult to handle and treat. A smaller portion of the waste is contaminated with other hazardous components (i.e., RCRA toxicity characteristic metals). Several analyses of alternatives to provide the required remote-handling and treatment capability to manage INL’s remote-handled waste have been conducted over the years and have included various options ranging from modification of existing hot cells to construction of new hot cells. Previous analyses have identified a mobile processing unit as an alternative for providing the required remote-handled waste processing capability; however, it was summarily dismissed as being a potentially viable alternative based on limitations of a specific design considered. In 2008 INL solicited expressions of interest from Vendors who could provide existing, demonstrated technology that could be applied to the retrieval, sorting, treatment (as required), and repackaging of INL remote-handled wastes. Based on review of the responses and the potential viability of a mobile hot cell technology, INL subsequently conducted a technology evaluation, including proof-of-process validation, to assess the feasibility of utilizing such a technology for processing INL’s remote-handled wastes to meet established regulatory milestones. The technology evaluation focused on specific application of a mobile hot cell technology to the conditions to be encountered at the INL and addressed details of previous technology deployment, required modifications to accommodate INL’s remote-handled waste, ability to meet DOE safety requirements, requirements for fabrication/construction/decontamination and dismantling, and risks and uncertainties associated with application of the technology to INL’s remote-handled waste. The large capital costs associated with establishing a fixed asset to process INL’s remote-handled waste, the relatively small total volume of waste to be processed when compared to other waste streams through the complex, and competing mission-related needs has made it extremely difficult to secure the necessary support to advance the project. Because of this constraint, alternative contract structures were also explored as part of the technology evaluation wherein the impact of a large capital investment could be lessened.

B.J. Orchard; L.A. Harvego; R.P. Miklos; F. Yapuncich; L. Care

2009-03-01T23:59:59.000Z

67

Low-level radioactive waste transportation safety history  

SciTech Connect

The Radioactive Materials Incident Report (RMIR) database was developed fin 1981 at the Transportation Technology Center of Sandia National Laboratories to support its research and development activities for the US department of Energy (DOE). This database contains information about radioactive material (RAM) transportation incidents that have occurred in the US since 1971. These data were drawn from the US Department of Transportation`s (DOT) Hazardous Materials Incident Report system, from Nuclear Regulatory Commission (NRC) files, and from various agencies including state radiological control offices. Support for the RMIR data base is funded by the US DOE National Transportation Program (NTP). Transportation events in RMIR are classified in one of the following ways: as a transportation accident, as a handling accident, or as a reported incident. This presentation will provide definitions for these classifications and give examples of each. The primary objective of this presentation is to provide information on nuclear materials transportation accident/incident events involving low-level waste (LLW) that have occurred in the US for the period 1971 through 1996. Among the areas to be examined are: transportation accidents by mode, package response during accidents, and an examination of accidents where release of contents has occurred. Where information is available, accident and incident history and package response for LLW packages in transportation accidents will be described.

McClure, J.D. [Sandia National Labs., Albuquerque, NM (United States). Transportation Systems Analysis Dept.

1997-08-01T23:59:59.000Z

68

Selected radionuclides important to low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

NONE

1996-11-01T23:59:59.000Z

69

Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas  

SciTech Connect

This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

1999-08-01T23:59:59.000Z

70

1989 Annual report on low-level radioactive waste management progress  

SciTech Connect

This report summarizes the progress during 1989 of states and compacts in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level waste received for disposal in 1989 by commercially operated low-level waste disposal facilities. This report is in response to Section 7(b) of Title I of Public Law 99--240, the Low-Level Radioactive Waste Policy Amendments Act of 1985. 2 figs., 5 tabs.

Not Available

1990-10-01T23:59:59.000Z

71

EA-1061: The Off-site Volume Reduction of Low-level Radioactive Waste From  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: The Off-site Volume Reduction of Low-level Radioactive 1: The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site, Aiken, South Carolina EA-1061: The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site, Aiken, South Carolina SUMMARY This EA evaluates the environmental impacts of the proposal for off-site volume reduction of low-level radioactive wastes generated at the U.S. Department of Energy's Savannah River Site located near Aiken, South Carolina. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 28, 1995 EA-1061: Finding of No Significant Impact The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site July 28, 1995 EA-1061: Final Environmental Assessment The Off-site Volume Reduction of Low-level Radioactive Waste From the

72

Mixed Low-Level Radioactive Waste (MLLW) Primer  

SciTech Connect

This document presents a general overview of mixed low-level waste, including the regulatory definitions and drivers, the manner in which the various kinds of mixed waste are regulated, and a discussion of the waste treatment options.

W. E. Schwinkendorf

1999-04-01T23:59:59.000Z

73

Rules and Regulations for the Disposal of Low-Level Radioactive Waste (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to the disposal of low-level radioactive waste, disposal facilities, and applicable fees.

74

18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program  

SciTech Connect

This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

1997-05-20T23:59:59.000Z

75

18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program  

SciTech Connect

This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

None

1997-05-20T23:59:59.000Z

76

EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Disposal of Greater-than-Class-C Low-Level Radioactive 5: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste Summary This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS. The EIS evaluates potential impacts from the construction and operation of

77

Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1  

SciTech Connect

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

1991-07-01T23:59:59.000Z

78

Disposal of Greater-than-Class C Low-Level Radioactive Waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal of Low-Level Radioactive Waste Disposal of Low-Level Radioactive Waste EVS prepared a draft environmental impact statement (EIS) for disposal of greater-than-Class C low-level radioactive waste (GTCC LLRW). The EVS Division prepared a draft environmental impact statement (EIS) for disposal of greater-than-Class C low-level radioactive waste (GTCC LLRW) for the DOE Office of Environmental Management. DOE is now finalizing this EIS and is including a preferred alternative. DOE intends that the final EIS will provide information to support the selection of disposal method(s) and site(s) for GTCC LLRW and GTCC-like waste. In general, GTCC LLRW is not acceptable for near-surface disposal. Typically, the waste form and disposal methods must be different from and more stringent than those specified for Class C LLRW. For GTCC LLRW, the

79

Massachusetts State Briefing Book for low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.

Not Available

1981-03-12T23:59:59.000Z

80

Vermont State Briefing Book on low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.

Not Available

1981-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DATA FOR WELLS AT THE LOW-LEVEL RADIOACTIVE-WASTE BURIAL SITE...  

NLE Websites -- All DOE Office Websites (Extended Search)

rberr (Q-hert- DATA FOR WELLS AT THE LOW-LEVEL RADIOACTIVE-WASTE BURIAL SITE IN THE PALOS FOREST PRESERVE, ILLINOIS By Julio C. Olimpio U.S. GEOLOGICAL SURVEY Open-File Report...

82

South Carolina State Briefing Book for low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina.

Not Available

1981-08-01T23:59:59.000Z

83

1994 annual report on low-level radioactive waste management progress  

Science Conference Proceedings (OSTI)

This report for calendar year 1994 summarizes the progress that states and compact regions made during the year in establishing new low-level radioactive waste disposal facilities. Although events that have occurred in 1995 greatly alter the perspective in terms of storage versus disposal, the purpose of this report is to convey the concerns as evidenced during calendar year 1994. Significant developments occurring in 1995 are briefly outlined in the transmittal letter and will be detailed in the report for calendar year 1995. The report also provides summary information on the volume of low-level radioactive waste received for disposal in 1994 by commercially operated low-level radioactive waste disposal facilities, and is prepared is in response to Section 7(b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985.

NONE

1995-04-01T23:59:59.000Z

84

Midwest Interstate Compact on Low-Level Radioactive Waste (Multiple States)  

Energy.gov (U.S. Department of Energy (DOE))

The Midwest Interstate Low-Level Radioactive Waste Compact is an agreement between the states of Indiana, Iowa, Minnesota, Missouri, Ohio, and Wisconsin that provides for the cooperative and safe...

85

Puerto Rico State Briefing Book for low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.

Not Available

1981-10-01T23:59:59.000Z

86

South Dakota State Briefing Book for low-level radioactive waste management  

SciTech Connect

The South Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Dakota. The profile is the result of a survey of NRC licensees in South Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Dakota.

1981-10-01T23:59:59.000Z

87

Texas State Briefing Book for low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.

Not Available

1981-08-01T23:59:59.000Z

88

Nondestructive Evaluation of Low-Level Radioactive Waste Canisters for Free-Water Content  

Science Conference Proceedings (OSTI)

Federal regulations set limits on free-standing liquid in radioactive waste containers. This report identifies four nondestructive evaluation methods that may provide nuclear power plant operators with reliable and accurate determinations of the existence and amount of free-standing liquids in low-level radioactive waste (LLW) containers.

1991-06-17T23:59:59.000Z

89

Identification of low-level point radioactive sources using a sensor network  

Science Conference Proceedings (OSTI)

Identification of a low-level point radioactive source amidst background radiation is achieved by a network of radiation sensors using a two-step approach. Based on measurements from three or more sensors, a geometric difference triangulation method ... Keywords: Point radioactive source, detection and localization, sequential probability ratio test

Jren-Chit Chin; Nageswara S. V. Rao; David K. Y. Yau; Mallikarjun Shankar; Yong Yang; Jennifer C. Hou; Srinivasagopalan Srivathsan; Sitharama Iyengar

2010-09-01T23:59:59.000Z

90

1991 annual report on low-level radioactive waste management progress  

Science Conference Proceedings (OSTI)

This report summarizes the progress during 1991 of States and compact regions in establishing new low-level radioactive waste disposal capacity. It has been prepared in response to requirements in Section 7 (b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act). By the end of 1991, 9 compact regions (totaling 42 States) were functioning with plans to establish low-level radioactive waste disposal facilities: Appalachian, Central, Central Midwest, Midwest, Northeast, Northwest, Rocky Mountain, Southeast, and Southwestern. Also planning to construct disposal facilities, but unaffiliated with a compact region, are Maine, Massachusetts, New York, Texas, and Vermont. The District of Columbia, New Hampshire, Puerto Rico, Rhode Island and Michigan are unaffiliated with a compact region and do not plan to construct a disposal facility. Michigan was the host State for the Midwest compact region until July 1991 when the Midwest Interstate Compact Commission revoked Michigan's membership. Only the Central, Central Midwest, and Southwestern compact regions met the January 1, 1992, milestone in the Act to submit a complete disposal license application. None of the States or compact regions project meeting the January 1, 1993, milestone to have an operational low-level radioactive waste disposal facility. Also summarized are significant events that occurred in low-level radioactive waste management in 1991 and early 1992, including the 1992 United States Supreme Court decision in New York v. United States in which New York challenged the constitutionality of the Act, particularly the take-title'' provision. Summary information is also provided on the volume of low-level radioactive waste received for disposal in 1991 by commercially operated low-level radioactive waste disposal facilities.

Not Available

1992-11-01T23:59:59.000Z

91

Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) A transuranic (TRU) waste shipment makes its way to the Waste Isolation Pilot Plant in Carlsbad, N.M. A transuranic (TRU) waste shipment makes its way to the Waste Isolation Pilot Plant in Carlsbad, N.M. On February 17, 2011, DOE issued the Draft Environmental Impact Statement (EIS) for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste (LLRW) and GTCC-Like Waste (Draft EIS, DOE/EIS-0375D) for public review and comment. DOE is inviting public comments on this Draft EIS during a 120-day public comment period, from the date of publication of the EIS's Notice of Availability in the Federal Register. During the comment

92

Some aspects of low-level radioactive-waste disposal in the US  

Science Conference Proceedings (OSTI)

This report summarizes the NRC supported Shallow Land Burial research program at Brookhaven National Laboraotry and its relationship to the proposed revised ruling on disposal of low level radioactive waste, 10 CFR Part 61. Section of the proposed regulation, which establish the new low level waste classification system and the performance objective placed on waste form, are described briefly. The report also summarizes the preliminary results obtained from the EPA program in which low level waste drums were retrieved from the Atlantic and Pacific Oceans.

Schweitzer, D.G.; Davis, R.E.

1982-01-01T23:59:59.000Z

93

State of New Mexico Issues Permit For Remote-Handled Waste at WIPP |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of New Mexico Issues Permit For Remote-Handled Waste at WIPP of New Mexico Issues Permit For Remote-Handled Waste at WIPP State of New Mexico Issues Permit For Remote-Handled Waste at WIPP October 16, 2006 - 1:35pm Addthis Enables DOE to Permanently Move Waste to the WIPP Repository for Safe Disposal CARLSBAD, NM - U.S. Department of Energy (DOE) today announced that the New Mexico Environment Department (NMED) issued a revised hazardous waste facility permit for DOE's Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The revised permit enables WIPP to receive and dispose of remote-handled (RH) transuranic (TRU) radioactive waste currently stored at DOE clean-up sites across the country. WIPP expects to receive its first RH-TRU waste shipment in the coming months, as soon as the regulatory approvals are obtained.

94

Letter report: Minor component study for low-level radioactive waste glasses  

SciTech Connect

During the waste vitrification process, troublesome minor components in low-level radioactive waste streams could adversely affect either waste vitrification rate or melter life-time. Knowing the solubility limits for these minor components is important to determine pretreatment options for waste streams and glass formulation to prevent or to minimize these problems during the waste vitrification. A joint study between Pacific Northwest Laboratory and Rensselaer Polytechnic Institute has been conducted to determine minor component impacts in low-level nuclear waste glass.

Li, H.

1996-03-01T23:59:59.000Z

95

Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility  

Science Conference Proceedings (OSTI)

This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement.

Quinn, G.J. [Wastren, Inc. (United States)

1992-01-01T23:59:59.000Z

96

Guidance document for prepermit bioassay testing of low-level radioactive waste  

Science Conference Proceedings (OSTI)

In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report.

Anderson, S.L.; Harrison, F.L.

1990-11-01T23:59:59.000Z

97

Summary report. Low-level radioactive waste management activities in the states and compacts. Volume 4, No. 2  

Science Conference Proceedings (OSTI)

`Low-Level Radioactive Waste Management Activities in the States and Compacts` is a supplement to `LLW Notes` and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

NONE

1996-08-01T23:59:59.000Z

98

Summary report, low-level radioactive waste management activities in the states and compacts. Vol. 4. No. 1  

Science Conference Proceedings (OSTI)

`Low-Level Radioactive Waste Management Activities in the States and Compacts` is a supplement to `LLW Notes` and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

NONE

1996-01-01T23:59:59.000Z

99

Potential for Subsidence at the Low-Level Radioactive Waste Disposal Area  

Science Conference Proceedings (OSTI)

U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

Keck, K.A.; Seitz, R.R.

2002-09-26T23:59:59.000Z

100

Survey of agents and techniques applicable to the solidification of low-level radioactive wastes  

Science Conference Proceedings (OSTI)

A review of the various solidification agents and techniques that are currently available or potentially applicable for the solidification of low-level radioactive wastes is presented. An overview of the types and quantities of low-level wastes produced is presented. Descriptions of waste form matrix materials, the wastes types for which they have been or may be applied and available information concerning relevant waste form properties and characteristics follow. Also included are descriptions of the processing techniques themselves with an emphasis on those operating parameters which impact upon waste form properties. The solidification agents considered in this survey include: hydraulic cements, thermoplastic materials, thermosetting polymers, glasses, synthetic minerals and composite materials. This survey is part of a program supported by the United States Department of Energy's Low-Level Waste Management Program (LLWMP). This work provides input into LLWMP efforts to develop and compile information relevant to the treatment and processing of low-level wastes and their disposal by shallow land burial.

Fuhrmann, M.; Neilson, R.M. Jr.; Colombo, P.

1981-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

New York State Low-Level Radioactive Waste Status Report for 1992  

Science Conference Proceedings (OSTI)

This report summarizes data on low-level radioactive waste (LLRW) generation in New York State for calendar year 1992. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (Energy Authority) and on data from the US Department of Energy. The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the seventh year generators have been required to submit reports on their waste to the Energy Authority. The data are summarized in a series of tables and figures. There are three sections in the report. Section 1 covers volume, radioactivity and other characteristics of waste generated in 1992. Section 2 shows historical LLRW generation over the years and includes generators` projections for the next five years. Section 3 provides a list of all facilities for which 1992 LLRW reports were received.

Attridge, T.; Rapaport, S.; Yang, Qian

1993-06-01T23:59:59.000Z

102

New York State low-level radioactive waste status report for 1998  

SciTech Connect

This report summarizes data on low-level radioactive waste (LLRW) generated in New York State: it is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the 13th year generators have been required to submit these reports to NYSERDA. The data are summarized in a series of tables and figures. There are four sections in the report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1998. Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second. Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1998. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1998 LLRW reports were received. 2 figs., 23 tabs.

Voelk, H.

1999-06-01T23:59:59.000Z

103

Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses  

SciTech Connect

This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

1994-08-01T23:59:59.000Z

104

Models for estimation of service life of concrete barriers in low-level radioactive waste disposal  

SciTech Connect

Concrete barriers will be used as intimate parts of systems for isolation of low level radioactive wastes subsequent to disposal. This work reviews mathematical models for estimating the degradation rate of concrete in typical service environments. The models considered cover sulfate attack, reinforcement corrosion, calcium hydroxide leaching, carbonation, freeze/thaw, and cracking. Additionally, fluid flow, mass transport, and geochemical properties of concrete are briefly reviewed. Example calculations included illustrate the types of predictions expected of the models. 79 refs., 24 figs., 6 tabs.

Walton, J.C.; Plansky, L.E.; Smith, R.W. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-09-01T23:59:59.000Z

105

Radioactive Waste Management Complex low-level waste radiological performance assessment  

Science Conference Proceedings (OSTI)

This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

1994-04-01T23:59:59.000Z

106

New York State low-level radioactive waste status report for 1997  

Science Conference Proceedings (OSTI)

This report summarizes data on low-level radioactive waste (LLRW) generated in New York State. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The data are summarized in a series of tables and figures. There are four sections in this report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1997. (Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second.) Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1997. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1997 LLRW reports were received.

NONE

1998-06-01T23:59:59.000Z

107

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

108

Greater-Than-Class C Low-Level Radioactive Waste Transportation Strategy report and institutional plan  

SciTech Connect

This document contains two parts. Part I, Greater-Than-Class-C Low-Level Radioactive Waste Transportation Strategy, addresses the requirements, responsibilities, and strategy to transport and receive these wastes. The strategy covers (a) transportation packaging, which includes shipping casks and waste containers; (b) transportation operations relating to the five facilities involved in transportation, i.e., waste originator, interim storage, dedicated storage, treatment, and disposal; (c) system safety and risk analysis; (d) routes; (e) emergency preparedness and response; and (o safeguards and security. A summary of strategic actions is provided at the conclusion of Part 1. Part II, Institutional Plan for Greater-Than-Class C Low-Level Radioactive Waste Packaging and Transportation, addresses the assumptions, requirements, and institutional plan elements and actions. As documented in the Strategy and Institutional Plan, the most challenging issues facing the GTCC LLW Program shipping campaign are institutional issues closely related to the strategy. How the Program addresses those issues and demonstrates to the states, local governments, and private citizens that the shipments can and will be made safely will strongly affect the success or failure of the campaign.

Schmitt, R.C.; Tyacke, M.J.

1995-01-01T23:59:59.000Z

109

Impact of technology applications to the management of low-level radioactive wastes  

Science Conference Proceedings (OSTI)

Low-level radioactive wastes are generated from reactor sources (nuclear power reactors) as well as from nonreactor sources (academic, medical, governmental, and industrial). In recent years, about 50,000 m{sup 3} per year of such wastes have been generated in the United States and about 10,000 m{sup 3} per year in Canada. Direct disposal of these wastes in shallow ground has been a favored method in both countries in the past. In the United States, three operating commercial sites at Barnwell, South Carolina; Beatty, Nevada; and Richland, Washington, receive most of the commercial low-level waste generated. However, with recent advances in waste management, technologies are being applied to achieve optimum goals in terms of protection of human health and safety and the environment, as well as cost-effectiveness. These technologies must be applied from the generation sources through waste minimization and optimum segregation -- followed by waste processing, conditioning, storage, and disposal. A number of technologies that are available and can be applied as appropriate -- given the physical, chemical, and radiological characteristics of the waste -- include shredding, baling, compaction, supercompaction, decontamination, incineration, chemical treatment/conditioning, immobilization, and packaging. Interim and retrievable storage can be accomplished in a wide variety of storage structures, and several types of engineered disposal facility designs are now available. By applying an integrated approach to radioactive waste management, potential adverse impacts on human health and safety and the environment can be minimized. 15 refs., 1 fig., 1 tab.

Devgun, J.S. (Argonne National Lab., IL (USA))

1989-01-01T23:59:59.000Z

110

Low-level radioactive waste disposal in the United States: An overview of current commercial regulations and concepts  

SciTech Connect

Commercial low-level radioactive waste disposal in the United States is regulated by the US Nuclear Regulatory Commission (NRC) under 10 CFR 61 (1991). This regulation was issued in 1981 after a lengthy and thorough development process that considered the radionuclide concentrations and characteristics associated with commercial low-level radioactive waste streams; alternatives for waste classification; alternative technologies for low-level radioactive waste disposal; and data, modeling, and scenario analyses. The development process also included the publication of both draft and final environmental impact statements. The final regulation describes the general provisions; licenses; performance objectives; technical requirements for land disposal; financial assurances; participation by state governments and Indian tribes; and records, reports, tests, and inspections. This paper provides an overview of, and tutorial on, current commercial low-level radioactive waste disposal regulations in the United States.

Kennedy, W.E. Jr.

1993-08-01T23:59:59.000Z

111

West Valley low-level radioactive waste site revisited: Microbiological analysis of leachates  

DOE Green Energy (OSTI)

The abundance and types of microorganisms in leachate samples from the West Valley low-level radioactive waste disposal site were enumerated. This study was undertaken in support of the study conducted by Ecology and Environment, Inc., to assess the extent of radioactive gas emissions from the site. Total aerobic and anaerobic bacteria were enumerated as colony forming units (CFU) by dilution agar plate technique, and denitrifiers, sulfate-reducers and methanogens by the most probable number technique (MPN). Of the three trenches 3, 9, and 11 sampled, trench 11 contained the most number of organisms in the leachate. Concentrations of carbon-14 and tritium were highest in trench 11 leachate. Populations of aerobes and anaerobes in trench 9 leachate were one order of magnitude less than in trench 11 leachate while the methanogens were three orders of magnitude greater than in trench 11 leachate. The methane content from trench 9 was high due to the presence of a large number of methanogens; the gas in this trench also contained the most radioactivity. Trench 3 leachate contained the least number of microorganisms. Comparison of microbial populations in leachates sampled from trenches 3 and 9 during October 1978 and 1989 showed differences in the total number of microbial types. Variations in populations of the different types of organisms in the leachate reflect the changing nutrient conditions in the trenches. 14 refs., 3 figs., 4 tabs.

Gillow, J.B.; Francis, A.J.

1990-10-01T23:59:59.000Z

112

Radioactive waste management complex low-level waste radiological composite analysis  

Science Conference Proceedings (OSTI)

The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.

McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

1998-05-01T23:59:59.000Z

113

Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations  

Science Conference Proceedings (OSTI)

This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs.

Tyner, C.J.; Birk, S.M.

1995-09-01T23:59:59.000Z

114

Shallow land burial of low-level radioactive wastes. A selected, annotated bibliography  

SciTech Connect

The data file was built to provide information support to DOE researchers in the field of low-level radioactive waste disposal and management. The scope of the data base emphasizes studies which deal with the ''old'' Manhattan sites, commercial disposal sites, and the specific parameters which affect the soil and geologic migration of radionuclides. Specialized data fields have been incorporated into the data base to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the ''Measured Radionuclides'' field, and specific parameters which affect the migration of these radionuclides are presented in the ''Measured Parameters'' field. The 504 references are rated indicating applicability to shallow land burial technology and whether interpretation is required. Indexes are provided for author, geographic location, title, measured parameters, measured radionuclides, keywords, subject categories, and publication description. (DLC)

Fore, C.S.; Vaughan, N.D.; Tappen, J. (comps.)

1978-06-01T23:59:59.000Z

115

Low-level radioactive waste technology: a selected, annotated bibliography. [416 references  

Science Conference Proceedings (OSTI)

This annotated bibliography of 416 references represents the third in a series to be published by the Hazardous Materials Information Center containing scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on disposal site, environmental transport, and waste treatment studies as well as general reviews on the subject. The publication covers both domestic and foreign literature for the period 1951 to 1981. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology, and Site Resources; Regulatory and Economic Aspects; Social Aspects; Transportation Technology; Waste Production; and Waste Treatment. Entries in each of the chapters are further classified as a field study, laboratory study, theoretical study, or general overview involving one or more of these research areas.

Fore, C.S.; Carrier, R.F.; Brewster, R.H.; Hyder, L.K.; Barnes, K.A.

1981-10-01T23:59:59.000Z

116

An experimental survey of the factors that affect leaching from low-level radioactive waste forms  

SciTech Connect

This report represents the results of an experimental survey of the factors that affect leaching from several types of solidified low-level radioactive waste forms. The goal of these investigations was to determine those factors that accelerate leaching without changing its mechanism(s). Typically, although not in every case,the accelerating factors include: increased temperature, increased waste loading (i.e., increased waste to binder ratio), and decreased size (i.e., decreased waste form volume to surface area ratio). Additional factors that were studied were: increased leachant volume to waste form surface area ratio, pH, leachant composition (groundwaters, natural and synthetic chelating agents), leachant flow rate or replacement frequency and waste form porosity and surface condition. Other potential factors, including the radiation environment and pressure, were omitted based on a survey of the literature. 82 refs., 236 figs., 13 tabs.

Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.

1988-09-01T23:59:59.000Z

117

A data base for low-level radioactive waste disposal sites  

SciTech Connect

A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

Daum, M.L.; Moskowitz, P.D.

1989-07-01T23:59:59.000Z

118

Evaluation of ultrafiltration membranes for treating low-level radioactive contaminated liquid waste  

SciTech Connect

A series of experiments were performed on Waste Disposal Facility (WD) influent using Romicon hollow fiber ultrafiltration modules with molecular weight cutoffs ranging from 2000 to 80,000. The rejection of conductivity was low in most cases. The rejection of radioactivity ranged from 90 to 98%, depending on the membrane type and on the feed concentration. Typical product activity ranged from 7 to 100 dis/min/ml of alpha radiation. Experiments were also performed on alpha-contaminated laundry wastewater. Results ranged from 98 to >99.8%, depending on the membrane type. This yielded a product concentration of less than 0.1 dis/min/ml of alpha radiation. Tests on PP-Building decontamination water yielded rejections of 85 to 88% alpha radiation depending on the membrane type. These experiments show that the ability to remove radioactivity by membrane is a function of the contents of the waste stream because the radioactivity in the wastewater is in various forms: ionic, polymeric, colloidal, and absorbed onto suspended solids. Although removal of suspended or colloidal material is very high, removal of ionic material is not as effective. Alpha-contaminated laundry wastewater proved to be the easiest to decontaminate, whereas the low-level PP-Building decontamination water proved to be the most difficult to decontaminate. Decontamination of the WD influent, a combined waste stream, varied considerably from day to day because of its constantly changing makeup. The WD influent was also treated with various substances, such as polyelectrolytes, complexing agents, and coagulants, to determine if these additives would aid in the removal of radioactive material from the various wastewaters by complexing the ionic species. At the present time, none of the additives evaluated has had much effect; but experiments are continuing.

Koenst, J.W.; Roberts, R.C.

1978-03-31T23:59:59.000Z

119

1992 annual report on low-level radioactive waste management progress; Report to Congress in response to Public Law 99-240  

Science Conference Proceedings (OSTI)

This report summarizes the progress States and compact regions made during 1992 in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1992 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act.

NONE

1993-11-01T23:59:59.000Z

120

Vitrification of low-level radioactive waste in a slagging combustor  

Science Conference Proceedings (OSTI)

The suitability of a Babcock & Wilcox cyclone furnace to vitrify a low-level radioactive liquid waste was evaluated. The feed stream contained a mixture of simulated radioactive liquid waste and glass formers. The U.S. Department of Energy is testing technologies to vitrify over 60,000,000 gallons of this waste at the Hanford site. The tests reported here demonstrated the technical feasibility of Babcock & Wilcox`s cyclone vitrification technology to produce a glass for near surface disposal. Glass was produced over a period of 24-hours at a rate of 100 to 150 lb/hr. Based on glass analyses performed by an independent laboratory, all of the glass samples had leachabilities at least as low as those of the laboratory glass that the recipe was based upon. This paper presents the results of this demonstration, and includes descriptions of feed preparation, glass properties, system operation, and flue gas composition. The paper also provides discussions on key technical issues required to match cyclone furnace vitrification technology to this U.S. Department of Energy Hanford site application.

Holmes, M.J.; Downs, W.; Higley, B.A. [and others

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Remote Handling Devices for Disposition of Enriched Uranium Reactor Fuel Using Melt-Dilute Process  

SciTech Connect

Remote handling equipment is required to achieve the processing of highly radioactive, post reactor, fuel for the melt-dilute process, which will convert high enrichment uranium fuel elements into lower enrichment forms for subsequent disposal. The melt-dilute process combines highly radioactive enriched uranium fuel elements with deleted uranium and aluminum for inductive melting and inductive stirring steps that produce a stable aluminum/uranium ingot of low enrichment.

Heckendorn, F.M.

2001-01-03T23:59:59.000Z

122

Explanation of Significant Differences Between Models used to Assess Groundwater Impacts for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and Greater-Than-Class C-Like Waste Environmental Impact Statement (DOE/EIS-0375-D) and the  

SciTech Connect

Models have been used to assess the groundwater impacts to support the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE-EIS 2011) for a facility sited at the Idaho National Laboratory and the Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project (INL 2011). Groundwater impacts are primarily a function of (1) location determining the geologic and hydrologic setting, (2) disposal facility configuration, and (3) radionuclide source, including waste form and release from the waste form. In reviewing the assumptions made between the model parameters for the two different groundwater impacts assessments, significant differences were identified. This report presents the two sets of model assumptions and discusses their origins and implications for resulting dose predictions. Given more similar model parameters, predicted doses would be commensurate.

Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

2011-08-01T23:59:59.000Z

123

Extended storage of low-level radioactive waste: potential problem areas  

DOE Green Energy (OSTI)

If a state or state compact does not have adequate disposal capacity for low-level radioactive waste (LLRW) by 1986 as required by the Low-Level Waste Policy Act, then extended storage of certain LLRW may be necessary. The issue of extended storage of LLRW is addressed in order to determine for the Nuclear Regulatory Commission the areas of concern and the actions recommended to resolve these concerns. The focus is on the properties and behavior of the waste form and waste container. Storage alternatives are considered in order to characterize the likely storage environments for these wastes. The areas of concern about extended storage of LLRW are grouped into two categories: 1. Behavior of the waste form and/or container during storage, e.g., radiolytic gas generation, radiation-enhanced degradation of polymeric materials, and corrosion. 2. Effects of extended storage on the properties of the waste form and/or container that are important after storage (e.g., radiation-induced oxidative embrittlement of high-density polyethylene and the weakening of steel containers resulting from corrosion by the waste). The additional information and actions required to address these concerns are discussed and, in particular, it is concluded that further information is needed on the rates of corrosion of container material by Class A wastes and on the apparent dose-rate dependence of radiolytic processes in Class B and C waste packages. Modifications to the guidance for solidified wastes and high-integrity containers in NRC's Technical Position on Waste Form are recommended. 27 references.

Siskind, B.; Dougherty, D.R.; MacKenzie, D.R.

1985-01-01T23:59:59.000Z

124

Comparison of selected DOE and non-DOE requirements, standards, and practices for Low-Level Radioactive Waste Disposal  

SciTech Connect

This document results from the Secretary of Energy`s response to Defense Nuclear Facilities Safety Board Recommendation 94--2. The Secretary stated that the US Department of Energy (DOE) would ``address such issues as...the need for additional requirements, standards, and guidance on low-level radioactive waste management. `` The authors gathered information and compared DOE requirements and standards for the safety aspects Of low-level disposal with similar requirements and standards of non-DOE entities.

Cole, L. [Cole and Associates (United States); Kudera, D.; Newberry, W. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-12-01T23:59:59.000Z

125

Chris Densham T2K Target Remote Handling  

E-Print Network (OSTI)

Chris Densham T2K Target Remote Handling CJ Densham, MD Fitton, M Baldwin, M Woodward Rutherford are handled by remote controlled crane. Concrete shield Horns are shielded by iron and concrete shields A numerical controlled crane is used in the TS. A remote handling machine is attached to this crane. Crane

McDonald, Kirk

126

Microbial degradation of low-level radioactive waste. Volume 1, Annual report for FY 1993  

SciTech Connect

The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews laboratory efforts that are being developed to address the effects of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are being employed that are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this report. Sufficient data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW has been developed during the course of this study. These data support the continued development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbially induced degradation that could impact the stability of the waste form. They also justify the continued effort of enumeration of the conditions necessary to support the microbiological growth and population expansion.

Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

1994-04-01T23:59:59.000Z

127

Methods for verifying compliance with low-level radioactive waste acceptance criteria  

Science Conference Proceedings (OSTI)

This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility`s WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator`s waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits.

NONE

1993-09-01T23:59:59.000Z

128

Concentrating solar collector system for the evaporation of low-level radioactive waste water  

DOE Green Energy (OSTI)

The Los Alamos National Laboratory has recently been awarded a grant under the Solar Federal Buildings Program to design, construct, and operate a high-temperature solar energy system for the processing of low-level radioactive waste water. Conceptual design studies have been completed, and detailed design work is under way for a solar system to produce process heat to evaporate 38,000 gal (143,830 L) of waste water per month. The system will use approximately 11,000 ft/sup 2/ (1022 m/sup 2/) of concentrating parabolic trough collectors operating at about 500/sup 0/F (262/sup 0/C). Construction of the system is anticipated to begin in 1981. Performance optimization of collector array size and configuration, storage medium and capacity, system operation, and control schemes are done using the active solar system simulator in the DOE-2 building energy analysis computer program. Results of this optimization are reported. This project represents a unique application of solar energy to an increasingly significant problem area in the energy field.

Diamond, S.C.; Cappiello, C.C.

1981-01-01T23:59:59.000Z

129

Gas generation from low-level radioactive waste: Concerns for disposal  

DOE Green Energy (OSTI)

The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

Siskind, B.

1992-01-01T23:59:59.000Z

130

Gas generation from low-level radioactive waste: Concerns for disposal  

DOE Green Energy (OSTI)

The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

Siskind, B.

1992-04-01T23:59:59.000Z

131

Equity of commercial low-level radioactive waste disposal fees. Report to Congress  

SciTech Connect

In the Report accompanying the Fiscal Year 1997 Senate Energy and Water Development Appropriations Bill, the Senate Appropriations Committee directed the Department of Energy (DOE) to prepare a study of the costs of operating a low-level radioactive waste (LLW) disposal facility such as the one at Barnwell, South Carolina, and to determine whether LLW generators are paying equitable disposal fees. The disposal costs of four facilities are reviewed in this report, two operating facilities and two planned facilities. The operating facilities are located at Barnwell, South Carolina, and Richland, Washington. They are operated by Chem-Nuclear, LLC, (Chem-Nuclear), and US Ecology, Inc., (US Ecology), respectively. The planned facilities are expected to be built at Ward Valley, California, and Sierra Blanca, Texas. They will be operated by US Ecology and the State of Texas, respectively. This report found that disposal fees vary significantly among facilities for a variety of reasons. However, the information suggests that at each disposal facility, LLW generators pay equitable disposal fees.

1998-02-01T23:59:59.000Z

132

Environmental assessment for Sandia National Laboratories/New Mexico offsite transportation of low-level radioactive waste  

Science Conference Proceedings (OSTI)

Sandia National Laboratories, New Mexico (SNL/NM) is managed and operated by Sandia Corporation, a Lockheed Martin Company. SNL/NM is located on land owned by the U.S. Department of Energy (DOE) within the boundaries of the Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. Low-level radioactive waste (LLW) is generated by some of the activities performed at SNL/NM in support of the DOE. This report describes potential environmental effects of the shipments of low-level radioactive wastes to other sites.

NONE

1996-09-01T23:59:59.000Z

133

Fifteenth annual U.S. Department of Energy low-level radioactive waste management conference: Agenda and abstracts  

SciTech Connect

The goal of the conference was to give the opportunity to identify and discuss low-level radioactive waste management issues, share lessons learned, and hear about some of the latest advances in technology. Abstracts of the presentations are arranged into the following topical sections: (1) Performance Management Track: Performance assessment perspectives; Site characterization; Modeling and performance assessment; and Remediation; (2) Technical Track: Strategic planning; Tools and options; Characterization and validation; Treatment updates; Technology development; and Storage; (3) Institutional Track: Orders and regulatory issues; Waste management options; Legal, economic, and social issues; Public involvement; Siting process; and Low-level radioactive waste policy amendment acts.

NONE

1993-12-31T23:59:59.000Z

134

Remote-Handled Transuranic Content Codes  

SciTech Connect

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code.

Washington TRU Solutions

2006-12-01T23:59:59.000Z

135

Intruder scenarios for site-specific low-level radioactive waste classification  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has revised its low-level radioactive waste (LLW) management requirements and guidelines for waste generated at its facilities supporting defense missions. Specifically, draft DOE Order 5820.2A, Chapter 3 describes the purpose, policy, and requirements necessary for the management of defense LLW. The draft DOE policy calls for LLW operations to be managed to protect the health and safety of the public, preserve the environment, and ensure that no remedial action will be necessary after termination of operations. The basic approach used by DOE is to establish overall performance objectives, in terms of groundwater protection and public radiation dose limits, and to require site-specific performance assessments to determine compliance. As a result of these performance assessments, each site will develop waste acceptance criteria that define the allowable quantities and concentrations of specific radioisotopes. Additional limitations on waste disposal design, waste form, and waste treatment will also be developed on a site-specific basis. As a key step in the site-specific performance assessments, an evaluation must be conducted of potential radiation doses to intruders who may inadvertently move onto a closed DOE LLW disposal site after loss of institutional controls. This report (1) describes the types of intruder scenarios that should be considered when performing this step of the site-specific performance assessment, (2) provides the results of generic calculations performed using unit concentrations of various radionuclides as a comparison of the magnitude of importance of the various intruder scenarios, and (3) shows the relationship between the generic doses and waste classification limits for defense wastes.

Kennedy, W.E. Jr.; Peloquin, R.A.

1988-09-01T23:59:59.000Z

136

Use of engineered soils and other site modifications for low-level radioactive waste disposal  

SciTech Connect

The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover.

Not Available

1994-08-01T23:59:59.000Z

137

An apparatus for remotely handling components  

DOE Patents (OSTI)

The inventive apparatus for remotely handling barlike components which define a longitudinal direction includes a gripper mechanism for gripping the component including first and second gripper members longitudinally fixedly spaced from each other and oriented parallel to each other in planes transverse to the longitudinal direction. Each gripper member includes a jaw having at least one V-groove with opposing surfaces intersecting at a base and extending radially relative to the longitudinal direction for receiving the component in an open end between the opposing surfaces. The V-grooves on the jaw plate of t he first and second gripper members are aligned in the longitudinal direction to support the component in the first and second gripper members. A jaw is rotatably mounted on and a part of each of the first and second gripper members for selectively assuming a retracted mode in which the open end of the V-groove is unobstructed and active mode in which the jaw spans the open end of the V-groove in the first and second gripper members. The jaw has a locking surface for contacting the component in the active mode to secure the component between the locking surface of the jaw and the opposing surfaces of the V-groove. The locking surface has a plurality of stepped portions, each defining a progressively decreasing radial distance between the base of the V-groove and the stepped portion opposing the base to accommodate varying sizes of components. In a preferred embodiment, the apparatus also includes a control mechanism for remotely controlling movement of the jaw in the locking mode to assume one of a plurality of locking positions corresponding to positioning one of the stepped portions opposite the base.

Szkrybalo, G.A.; Griffin, D.L.

1992-12-31T23:59:59.000Z

138

Greater-than-Class C low-level radioactive waste transportation regulations and requirements study. National Low-Level Waste Management Program  

SciTech Connect

The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively.

Tyacke, M.; Schmitt, R.

1993-07-01T23:59:59.000Z

139

Recommended Changes to Guidelines for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility - For NRC Review  

Science Conference Proceedings (OSTI)

The majority of commercial U.S. nuclear stations have constructed on-site low-level waste (LLW) storage facilities, and most of these same utilities are experiencing or have experienced at least one period of interim on-site storage. EPRI has issued two revisions of Guidelines for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility. Revision 1 of these Guidelines focused on operational considerations and incorporated many of the lessons learned while operating various types of LLW s...

2011-12-19T23:59:59.000Z

140

Disposal of low-level radioactive biomedical wastes: a problem in regulation, not science  

SciTech Connect

The author discusses the public fear of radiation at any level, and shows how small the radioactivity from radioactive medical waste is compared to natural radioactivity. In view of this the author argues for a change in the Nuclear Regulatory Commission rules.

Yalow, R.S.

1981-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Remote-Handled Transuranic Content Codes  

SciTech Connect

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document representsthe development of a uniform content code system for RH-TRU waste to be transported in the 72-Bcask. It will be used to convert existing waste form numbers, content codes, and site-specificidentification codes into a system that is uniform across the U.S. Department of Energy (DOE) sites.The existing waste codes at the sites can be grouped under uniform content codes without any lossof waste characterization information. The RH-TRUCON document provides an all-encompassing|description for each content code and compiles this information for all DOE sites. Compliance withwaste generation, processing, and certification procedures at the sites (outlined in this document foreach content code) ensures that prohibited waste forms are not present in the waste. The contentcode gives an overall description of the RH-TRU waste material in terms of processes and|packaging, as well as the generation location. This helps to provide cradle-to-grave traceability ofthe waste material so that the various actions required to assess its qualification as payload for the72-B cask can be performed. The content codes also impose restrictions and requirements on themanner in which a payload can be assembled.The RH-TRU Waste Authorized Methods for Payload Control (RH-TRAMPAC), Appendix 1.3.7of the 72-B Cask Safety Analysis Report (SAR), describes the current governing procedures|applicable for the qualification of waste as payload for the 72-B cask. The logic for this|classification is presented in the 72-B Cask SAR. Together, these documents (RH-TRUCON,|RH-TRAMPAC, and relevant sections of the 72-B Cask SAR) present the foundation and|justification for classifying RH-TRU waste into content codes. Only content codes described in thisdocument can be considered for transport in the 72-B cask. Revisions to this document will be madeas additional waste qualifies for transport. |Each content code uniquely identifies the generated waste and provides a system for tracking theprocess and packaging history. Each content code begins with a two-letter site abbreviation thatindicates the shipper of the RH-TRU waste. The site-specific letter designations for each of the|DOE sites are provided in Table 1. Not all of the sites listed in Table 1 have generated/stored RH-|TRU waste.

Washington TRU Solutions

2001-08-01T23:59:59.000Z

142

Process development for remote-handled mixed-waste treatment  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) is developing a treatment process for remote-handled (RH) liquid transuranic mixed waste governed by the concept of minimizing the volume of waste requiring disposal. This task is to be accomplished by decontaminating the bulk components so the process effluent can be disposed with less risk and expense. Practical processes have been demonstrated on the laboratory scale for removing cesium 137 and strontium 90 isotopes from the waste, generating a concentrated waste volume, and rendering the bulk of the waste nearly radiation free for downstream processing. The process is projected to give decontamination factors of 10{sup 4} for cesium and 10{sup 3} for strontium. Because of the extent of decontamination, downstream processing will be contact handled. The transuranic, radioactive fraction of the mixed waste stream will be solidified using a thin-film evaporator and/or microwave solidification system. Resultant solidified waste will be disposed at the Waste Isolation Pilot Plant (WIPP). 8 refs., 2 figs., 3 tabs.

Berry, J.B.; Campbell, D.O.; Lee, D.D.; White, T.L.

1990-01-01T23:59:59.000Z

143

Discovery of underground argon with low level of radioactive 39Ar and possible applications to WIMP dark matter detectors  

E-Print Network (OSTI)

We report on the first measurement of 39Ar in argon from underground natural gas reservoirs. The gas stored in the US National Helium Reserve was found to contain a low level of 39Ar. The ratio of 39Ar to stable argon was found to be important backgrounds in argon detectors for WIMP dark matter searches. The findings reported demonstrate the possibility of constructing large multi-ton argon detectors with low radioactivity suitable for WIMP dark matter searches.

Galbiati, C

2007-01-01T23:59:59.000Z

144

Discovery of underground argon with low level of radioactive 39Ar and possible applications to WIMP dark matter detectors  

E-Print Network (OSTI)

We report on the first measurement of 39Ar in argon from underground natural gas reservoirs. The gas stored in the US National Helium Reserve was found to contain a low level of 39Ar. The ratio of 39Ar to stable argon was found to be important backgrounds in argon detectors for WIMP dark matter searches. The findings reported demonstrate the possibility of constructing large multi-ton argon detectors with low radioactivity suitable for WIMP dark matter searches.

C. Galbiati; R. Purtschert

2007-12-03T23:59:59.000Z

145

Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities  

Science Conference Proceedings (OSTI)

In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country`s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today`s standards. This report summarizes each site`s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US.

Birk, S.M.

1997-10-01T23:59:59.000Z

146

ITER Engineering Design Activities -R & DITER-In-Vessel Remote Handling  

E-Print Network (OSTI)

ITER Engineering Design Activities - R & DITER- In-Vessel Remote Handling Blanket Module Remote Handling Project (L-6) Divertor Remote Handling Project (L-7) Objective To develop and demonstrate handling equipment, port handling equipment, auxiliary remote handling tools and a blanket mockup structure

147

Department of Energy treatment capabilities for greater-than-Class C low-level radioactive waste  

SciTech Connect

This report provides brief profiles for 26 low-level and high-level waste treatment capabilities available at the Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest Laboratory (PNL), Rocky Flats Plant (RFP), Savannah River Site (SRS), and West Valley Demonstration Plant (WVDP). Six of the treatments have potential use for greater-than-Class C low-level waste (GTCC LLW). They include: (a) the glass ceramic process and (b) the Waste Experimental Reduction Facility incinerator at INEL; (c) the Super Compaction and Repackaging Facility and (d) microwave melting solidification at RFP; (e) the vitrification plant at SRS; and (f) the vitrification plant at WVDP. No individual treatment has the capability to treat all GTCC LLW streams. It is recommended that complete physical and chemical characterizations be performed for each GTCC waste stream, to permit using multiple treatments for GTCC LLW.

Morrell, D.K.; Fischer, D.K.

1995-01-01T23:59:59.000Z

148

Guide for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility  

Science Conference Proceedings (OSTI)

As a result of increasing low-level waste (LLW) disposal site uncertainty, the industry expects that utilities will have to rely on their own on-site storage LLW storage programs in the near future. This report captures essential information related to the operation of an on-site LLW storage program. The report is a comprehensive reference to which utilities can routinely refer throughout the development and implementation of the storage program and operation of the storage facility.

2004-11-16T23:59:59.000Z

149

High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant  

SciTech Connect

Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)

Bardal, M.A. [PaR Systems, Inc., Shoreview, MN (United States); Darwen, N.J. [Bechtel National, Inc., Richland, WA (United States)

2008-07-01T23:59:59.000Z

150

Status of ITER neutral beam cell remote handling system  

E-Print Network (OSTI)

The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

Sykes, N; Choi, C-H; Crofts, O; Crowe, R; Damiani, C; Delavalle, S; Meredith, L; Mindham, T; Raimbach, J; Tesini, A; Van Uffelen, M

2013-01-01T23:59:59.000Z

151

CEMENTITIOUS BARRIERS MODELING FOR PERFORMANCE ASSESSMENTS OF SHALLOW LAND BURIAL OF LOW LEVEL RADIOACTIVE WASTE - 9243  

SciTech Connect

The Cementitious Barriers Partnership (CBP) was created to develop predictive capabilities for the aging of cementitious barriers over long timeframes. The CBP is a multi-agency, multi-national consortium working under a U.S. Department of Energy (DOE) Environmental Management (EM-21) funded Cooperative Research and Development Agreement (CRADA) with the Savannah River National Laboratory (SRNL) as the lead laboratory. Members of the CBP are SRNL, Vanderbilt University, the U.S. Nuclear Regulatory Commission (USNRC), National Institute of Standards and Technology (NIST), SIMCO Technologies, Inc. (Canada), and the Energy Research Centre of the Netherlands (ECN). A first step in developing advanced tools is to determine the current state-of-the-art. A review has been undertaken to assess the treatment of cementitious barriers in Performance Assessments (PA). Representatives of US DOE sites which have PAs for their low level waste disposal facilities were contacted. These sites are the Idaho National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, Nevada Test Site, and Hanford. Several of the more arid sites did not employ cementitious barriers. Of those sites which do employ cementitious barriers, a wide range of treatment of the barriers in a PA was present. Some sites used conservative, simplistic models that even though conservative still showed compliance with disposal limits. Other sites used much more detailed models to demonstrate compliance. These more detailed models tend to be correlation-based rather than mechanistically-based. With the US DOE's Low Level Waste Disposal Federal Review Group (LFRG) moving towards embracing a risk-based, best estimate with an uncertainties type of analysis, the conservative treatment of the cementitious barriers seems to be obviated. The CBP is creating a tool that adheres to the LFRG chairman's paradigm of continuous improvement.

Taylor, G

2009-01-09T23:59:59.000Z

152

The determination of technetium-99 in low-level radioactive waste  

SciTech Connect

A method has been developed for the separation and purification of {sup 99}Tc in nuclear power plant radioactive waste samples. The classical iron hydroxide and carbonate precipitations are followed by solid phase extraction. The pure {sup 99}Tc is quantified using liquid scintillation spectrometry. Technetium-99m is used as an internal radiotracer to determine the radiochemical recovery for the process. The quality of analytical results obtained was within the 15% precision and accuracy criteria established for this technique at the Yankee Atomic Environmental Laboratory (YAEL).

Banavali, A.D.; Raimondi, J.M.; Moreno, E.M.; McCurdy, D.E. [Yankee Automic Electric Company, Bolton, MA (United States)

1995-12-31T23:59:59.000Z

153

Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes  

DOE Green Energy (OSTI)

Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages.

Dole, L.R.; Friedman, H.A.

1986-01-01T23:59:59.000Z

154

Melting of low-level radioactive non-ferrous metal for release  

SciTech Connect

Siempelkamp Nukleartechnik GmbH has gained lots of experience from melting ferrous metals for recycling in the nuclear cycle as well as for release to general reuse. Due to the fact that the world market prices for non-ferrous metals like copper, aluminium or lead raised up in the past and will remain on a high level, recycling of low-level contaminated or activated metallic residues from nuclear decommissioning becomes more important. Based on the established technology for melting of ferrous metals in a medium frequency induction furnace, different melt treatment procedures for each kind of non-ferrous metals were developed and successfully commercially converted. Beside different procedures also different melting techniques such as crucibles, gas burners, ladles etc. are used. Approximately 340 Mg of aluminium, a large part of it with a uranium contamination, have been molten successfully and have met the release criteria of the German Radiation Protection Ordinance. The experience in copper and brass melting is based on a total mass of 200 Mg. Lead melting in a special ladle by using a gas heater results in a total of 420 Mg which could be released. The main goal of melting of non-ferrous metals is release for industrial reuse after treatment. Especially for lead, a cooperation with a German lead manufacturer also for recycling of non releasable lead is being planned. (authors)

Quade, Ulrich; Kluth, Thomas; Kreh, Rainer [Siempelkamp Nukleartechnik GmbH (Germany)

2007-07-01T23:59:59.000Z

155

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1988  

SciTech Connect

This is the third report submitted to Congress under Public Law 99-240, The Low-Level Radioactive Waste Policy Amendments Act of 1985'' (the Act). This section of the Act requires the Department of Energy to summarize the annual expenditures made by states and compacts of funds disbursed from the Department's Surcharge Escrow Account, and to assess the compliance of these expenditures with the specified limitations. This report covers expenditures made during calendar year 1988 from funds disbursed to states and compacts following the July 1, 1986, and January 1, 1988, milestones. The next milestone in the Act is January 1, 1990, following which the accumulated surcharge deposits in the Department's Surcharge Escrow Account will again be disbursed. The Act authorizes states with operating low-level radioactive waste disposal sites (sited states) to collect surcharges on disposal of waste from generators located in compact regions currently without disposal sites (non-sited compacts) and in states that do not have sites and that are not members of compacts (nonmember states). The Act requires the sited states to make a monthly deposit to the Department of Energy's Surcharge Escrow Account of 25 percent of the surcharges they collect. Following each milestone date, the Department is required to disburse these funds, with accrued interest, back to those non-sited compacts and nonmember states found in compliance with the milestone requirements for new disposal site development. 4 tabs.

Not Available

1989-06-01T23:59:59.000Z

156

EVMS Self-Surveillance of Remote Handled Low Level Waste (RHLLW) Project  

Science Conference Proceedings (OSTI)

DOE G 413.3-10A, Section 3.a states: “The Contractor has primary responsibility for implementing and maintaining a surveillance program to ensure continued compliance of the system with ANSI/EIA-748B. DOE O 413.3B requires the FPD to ensure the contractor conducts a Self-Surveillance annually. This annual Self-Surveillance,…should cover all 32 guidelines of the ANSI/EIA748B. Documentation of the Self-Surveillance is sent to the CO and the PMSO (copy to OECM) confirming the continued compliance of their EVMS ANSI/EIA748B...” This review, and the associated report, is deemed to satisfy this requirement.

Michael L. Nelson; Kimberly Case; Linda Hergesheimer; Maxine Johnson; Doug Parker; Rick Staten; Scott taylor

2013-07-01T23:59:59.000Z

157

The Remote-Handled TRU Waste Program  

SciTech Connect

RH TRU Waste is radioactive waste that requires shielding in addition to that provided by the container to protect people nearby from radiation exposure. By definition, the radiation dose rate at the outer surface of the container is greater than 200 millirem per hour and less than 1,000 rem per hour. The DOE is proposing a process for the characterization of RH TRU waste planned for disposal in the WIPP. This characterization process represents a performance-driven approach that satisfies the requirements of the New Mexico Hazardous Waste Act, the Environmental Protection Agency (EPA) regulations for WIPP long-term performance, the transportation requirements of the Nuclear Regulatory Commission (NRC) and the Department of Transportation, as well as the technical safety requirements of RH TRU waste handling. The transportation, management and disposal of RH TRU waste is regulated by external government agencies as well as by the DOE itself. Externally, the characterization of RH-TRU waste for disposal at the WIPP is regulated by 20.4.1.500 New Mexico Administrative Code (incorporating 40 CFR 261.13) for the hazardous constituents and 40 CFR 194.24 for the radioactive constituents. The Nuclear Regulatory Commission certifies the shipping casks and the transportation system must meet DOT regulations. Internally, the DOE evaluates the environmental impacts of RH TRU waste transportation, handling and disposal through its National Environmental Policy Act program. The operational safety is assessed in the RH TRU Waste Safety Analysis Report, to be approved by the DOE. The WIPP has prepared a modification request to the Hazardous Waste Facility Permit that includes modifications to the WIPP facility for the safe receipt and handling of RH TRU waste and the addition of an RH TRU waste analysis plan. Modifications to the facility include systems and equipment for safe handling of RHTRU containers. Two shipping casks are to be used to optimize RH TRU was te throughput: the RH-72B and the CNS 10-160B transportation casks. Additionally, a draft Notification of Proposed Change to the EPA 40 CFR 194 Certification of the WIPP has been prepared, which contains a proposal for the RH TRU characterization program for compliance with the EPA requirements.

Gist, C. S.; Plum, H. L.; Wu, C. F.; Most, W. A.; Burrington, T. P.; Spangler, L. R.

2002-02-26T23:59:59.000Z

158

Evaluation of Department of Energy-Held Potential Greater-Than-Class C Low-Level Radioactive Waste. Revision 1  

Science Conference Proceedings (OSTI)

A number of commercial facilities have generated potential greater-than-Class C low-level radioactive waste (GTCC LLW), and, through contractual arrangements with the US Department of Energy (DOE) or for health and safety reasons, DOE is storing the waste. This report presents the results of an assessment conducted by the GTCC LLW Management Program to consider specific circumstances under which DOE accepted the waste, and to determine whether disposal in a facility licensed by the US Nuclear Regulatory Commission, or by DOE in a nonlicensed facility, is appropriate. Input from EG&G Idaho, Inc., and DOE Idaho Operations Office legal departments concerning the disposal requirements of this waste were the basis for the decision process used in this report.

NONE

1994-09-01T23:59:59.000Z

159

Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory  

SciTech Connect

INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program.

Shaw, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Anderson, B. [General Atomics, San Diego, CA (United States). NRT Div.; Davis, D. [Envitco Inc., Toledo, OH (United States)

1993-07-01T23:59:59.000Z

160

Characterization of Class A low-level radioactive waste 1986--1990. Volume 2: Main report -- Part A  

SciTech Connect

Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the, waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Characterization of Class A low-level radioactive waste 1986--1990. Volume 6: Appendices G--J  

SciTech Connect

Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

1994-01-01T23:59:59.000Z

162

Characterization of Class A low-level radioactive waste 1986--1990. Volume 7: Appendices K--P  

SciTech Connect

Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

1994-01-01T23:59:59.000Z

163

DOE Seeks Independent Evaluation of Remote-Handled Waste Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Seeks Independent Evaluation Seeks Independent Evaluation Of Remote-Handled Waste Program CARLSBAD, N.M., July 24, 2001 - An independent panel of scientific and engineering experts will convene July 30 in Carlsbad to evaluate U.S. Department of Energy (DOE) plans for managing remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP). DOE's Carlsbad Field Office has asked the American Society of Mechanical Engineers and the Institute for Regulatory Science to review its proposed RH-TRU waste program. The program must be approved by the New Mexico Environment Department and the U.S. Environmental Protection Agency before DOE will be permitted to accept and dispose of RH-TRU waste at WIPP. "Safety and compliance are our primary considerations in developing the plans for

164

EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled...

165

EURISOL-DS Multi-Megawatt Target: Remote Handling Equipment  

E-Print Network (OSTI)

The design proposed within Task #2 of the EURISOL Design Study for the remote handling of the mercury converter target and its associated loop is presented with particular emphasis on achieving rapid turn-around during routine maintenance.The converter target needs to be completely exchanged every four months due to the high irradiation damage sustained. Other components are less susceptible to damage but may need periodic maintenance; in particular the on-line isotopic separation unit in the mercury loop.

Cyril Kharoua, Olivier Choisnet, Yacine Kadi, Karel Samec (CERN)

166

Octant 1 boom extension The JET remote handling system has been used  

E-Print Network (OSTI)

Octant 1 boom extension Background The JET remote handling system has been used since 1998 to maintain and modify components inside the torus. The efficiency of in-vessel remote handling activities study Remote handling Top: The Octant 1 boom prior to being extended Bottom: The fully assembled

167

Draft Environmental Assessment on the Remote-handled Waste Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment The U.S. Department of Energy invites the public to review and comment on a draft environmental assessment that the Department issued today, for a proposal to process approximately 327 cubic meters of remote-handled waste currently stored at the Idaho National Laboratory. An additional five cubic meters of waste stored at the Hanford Site near Richland, Washington is also evaluated since it is reasonably foreseeable that a decision may be made in the future to send that waste to Idaho for treatment. The project is necessary to prepare the waste for legally-required disposal. Under the Department�s preferred alternative, workers would use sealed rooms called hot cells at the Idaho Nuclear Technology and Engineering Center (INTEC) to process the waste, treat it as necessary and repackage it so that it is ready for disposal. The document describes the modifications necessary to hot cells to perform the work.

168

1991 annual report on low-level radioactive waste management progress. Report to Congress in response to Public Law 99-240  

Science Conference Proceedings (OSTI)

This report summarizes the progress during 1991 of States and compact regions in establishing new low-level radioactive waste disposal capacity. It has been prepared in response to requirements in Section 7 (b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act). By the end of 1991, 9 compact regions (totaling 42 States) were functioning with plans to establish low-level radioactive waste disposal facilities: Appalachian, Central, Central Midwest, Midwest, Northeast, Northwest, Rocky Mountain, Southeast, and Southwestern. Also planning to construct disposal facilities, but unaffiliated with a compact region, are Maine, Massachusetts, New York, Texas, and Vermont. The District of Columbia, New Hampshire, Puerto Rico, Rhode Island and Michigan are unaffiliated with a compact region and do not plan to construct a disposal facility. Michigan was the host State for the Midwest compact region until July 1991 when the Midwest Interstate Compact Commission revoked Michigan`s membership. Only the Central, Central Midwest, and Southwestern compact regions met the January 1, 1992, milestone in the Act to submit a complete disposal license application. None of the States or compact regions project meeting the January 1, 1993, milestone to have an operational low-level radioactive waste disposal facility. Also summarized are significant events that occurred in low-level radioactive waste management in 1991 and early 1992, including the 1992 United States Supreme Court decision in New York v. United States in which New York challenged the constitutionality of the Act, particularly the ``take-title`` provision. Summary information is also provided on the volume of low-level radioactive waste received for disposal in 1991 by commercially operated low-level radioactive waste disposal facilities.

Not Available

1992-11-01T23:59:59.000Z

169

Record of Decision on Treating Transuranic (TRU)/Alpha Low-Level Waste at the Oak Ridge National Laboratory (DOE/EIS-0305) (8/9/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83 83 Federal Register / Vol. 65, No. 154 / Wednesday, August 9, 2000 / Notices 1 TRU waste is waste containing alpha-emitting radionuclides with an atomic number greater than 92 and half-lives greater than 20 years, at concentrations greater than 100 nanocuries per gram of waste. 2 Alpha low-level waste is low-level waste that contains alpha-emitting isotopes. 3 Mixed waste contains radioactive waste regulated under the Atomic Energy Act of 1954, as amended, and a hazardous component subject to RCRA regulation. 4 Low-level waste is any radioactive waste that is not classified as high-level waste, spent nuclear fuel, TRU waste, byproduct material, or mixed waste. 5 Remote-handled TRU/alpha low-level waste contains alpha-, beta-, and gamma-emitting isotopes with a surface dose rate greater than 200 millirem

170

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1993: Report to Congress  

SciTech Connect

This is the eighth report submitted to Congress in accordance with section 5(d)(2)(E)(ii)(II) of the Low-Level Radioactive Waste Policy Act (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the following limitations specified in the Act: establish low-level radioactive waste disposal facilities; mitigate the impact of low-level radioactive waste disposal facilities on the host State; regulate low-level radioactive waste disposal facilities; or ensure the decommissioning, closure, and care during the period of institutional control of low-level radioactive waste disposal facilities. In addition to placing these limitations on the use of these funds, the Act also requires all nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within six months after receiving the individual reports, the Act requires the Secretary of Energy to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement.

Not Available

1994-06-01T23:59:59.000Z

171

Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project  

Science Conference Proceedings (OSTI)

ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

O. P. Mendiratta; D. K. Ploetz

2000-02-29T23:59:59.000Z

172

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1991  

SciTech Connect

This is the sixth report submitted to Congress under section 5(d)(2)(E)(ii)(II) of the Low-Level Radioactive Waste Policy Act of 1985 (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the limitations specified in the Act. In addition to placing limitations on the use of these funds, the Act also requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, the Act requires the Secretary to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement. DOE disbursed funds totaling $15,037,778.91 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones specified in the Act. Of this amount, $3,517,020.56 was expended during calendar year 1991 and $6,602,546.24 was expended during the prior 5 years. At the end of December 1991, $4,918,212.11 was unexpended. DOE has reviewed each of the reported expenditures and concluded that all reported expenditures comply with the spending limitations stated in section 5(d)(2)(E)(i) of the Act.

Not Available

1992-06-01T23:59:59.000Z

173

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1990  

SciTech Connect

This is the fifth report submitted to Congress under Title 1, section 5(d)(2)(E) of Public Law 99--240, The Low-Level Radioactive Waste Policy Amendments Act of 1985'' (the Act). This section of the Act requests the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the specified limitations. The Act places limitations on the use of these funds and requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, DOE is to furnish Congress a summary of the reported expenditures and an assessment of compliance with the limitations on the use of these funds specified in the Act. This report fulfills that requirements. DOE disbursed funds totaling $15,006,587.76 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones. Of this amount, $4,328,340.44 was expended during calendar year 1990 and $2,239,205.80 was expended during the prior 4 years. At the end of December 1990, $8,439,041.52 was unexpended. 5 tabs.

Not Available

1991-06-01T23:59:59.000Z

174

Characterization of radionuclide-chelating agent complexes found in low-level radioactive decontamination waste. Literature review  

SciTech Connect

The US Nuclear Regulatory Commission is responsible for regulating the safe land disposal of low-level radioactive wastes that may contain organic chelating agents. Such agents include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), picolinic acid, oxalic acid, and citric acid, and can form radionuclide-chelate complexes that may enhance the migration of radionuclides from disposal sites. Data from the available literature indicate that chelates can leach from solidified decontamination wastes in moderate concentration (1--100 ppm) and can potentially complex certain radionuclides in the leachates. In general it appears that both EDTA and DTPA have the potential to mobilize radionuclides from waste disposal sites because such chelates can leach in moderate concentration, form strong radionuclide-chelate complexes, and can be recalcitrant to biodegradation. It also appears that oxalic acid and citric acid will not greatly enhance the mobility of radionuclides from waste disposal sites because these chelates do not appear to leach in high concentration, tend to form relatively weak radionuclide-chelate complexes, and can be readily biodegraded. In the case of picolinic acid, insufficient data are available on adsorption, complexation of key radionuclides (such as the actinides), and biodegradation to make definitive predictions, although the available data indicate that picolinic acid can chelate certain radionuclides in the leachates.

Serne, R.J.; Felmy, A.R.; Cantrell, K.J.; Krupka, K.M.; Campbell, J.A.; Bolton, H. Jr.; Fredrickson, J.K. [Pacific Northwest National Lab., Richland, WA (United States)

1996-03-01T23:59:59.000Z

175

Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste  

SciTech Connect

This report evaluates the capabilities of the United States Department of Energy`s (DOE`s) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act.

1996-02-01T23:59:59.000Z

176

Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory  

SciTech Connect

Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

Dorries, Alison M [Los Alamos National Laboratory

2010-11-09T23:59:59.000Z

177

Improvements in Container Management of Transuranic and Low-Level Radioactive Waste Stored at the Central Waste Complex at Hanford  

Science Conference Proceedings (OSTI)

The Central Waste Complex (CWC) is the interim storage facility for Resource Conservation and Recovery Act (RCRA) mixed waste, transuranic waste, transuranic mixed waste, low-level and low-level mixed radioactive waste at the Department of Energy's (DOE's) Hanford Site. The majority of the waste stored at the facility is retrieved from the low-level burial grounds in the 200 West Area at the Site, with minor quantities of newly generated waste from on-site and offsite waste generators. The CWC comprises 18 storage buildings that house 13,000 containers. Each waste container within the facility is scanned into its location by building, module, tier and position and the information is stored in a site-wide database. As waste is retrieved from the burial grounds, a preliminary non-destructive assay is performed to determine if the waste is transuranic (TRU) or low-level waste (LLW) and subsequently shipped to the CWC. In general, the TRU and LLW waste containers are stored in separate locations within the CWC, but the final disposition of each waste container is not known upon receipt. The final disposition of each waste container is determined by the appropriate program as process knowledge is applied and characterization data becomes available. Waste containers are stored within the CWC based on their physical chemical and radiological hazards. Further segregation within each building is done by container size (55-gallon, 85-gallon, Standard Waste Box) and waste stream. Due to this waste storage scheme, assembling waste containers for shipment out of the CWC has been time consuming and labor intensive. Qualitatively, the ratio of containers moved to containers in the outgoing shipment has been excessively high, which correlates to additional worker exposure, shipment delays, and operational inefficiencies. These inefficiencies impacted the LLW Program's ability to meet commitments established by the Tri-Party Agreement, an agreement between the State of Washington, the Department of Energy, and the Environmental Protection Agency. These commitments require waste containers to be shipped off site for disposal and/or treatment within a certain time frame. Because the program was struggling to meet production demands, the Production and Planning group was tasked with developing a method to assist the LLW Program in fulfilling its requirements. Using existing databases for container management, a single electronic spreadsheet was created to visually map every waste container within the CWC. The file displays the exact location (e.g., building, module, tier, position) of each container in a format that replicates the actual layout in the facility. In addition, each container was placed into a queue defined by the LLW and TRU waste management programs. The queues were developed based on characterization requirements, treatment type and location, and potential final disposition. This visual aid allows the user to select containers from similar queues and view their location within the facility. The user selects containers in a centralized location, rather than random locations, to expedite shipments out of the facility. This increases efficiency for generating the shipments, as well as decreasing worker exposure and container handling time when gathering containers for shipment by reducing movements of waste containers. As the containers are collected for shipment, the remaining containers are segregated by queue, which further reduces future container movements. (authors)

Uytioco, E. [Fluor Government Group, Richland, WA (United States); Baynes, P.A.; Bailey, K.B.; McKenney, D.E. [Fluor Hanford, Inc., Richland WA (United States)

2008-07-01T23:59:59.000Z

178

Remote Handling Concepts for the Long Baseline Neutrino Experiment  

SciTech Connect

The Long Baseline Neutrino Experiment (LBNE) is a DOE funded experiment aimed at furthering the understanding of neutrino physics. The high intensity neutrino beam for LBNE will be produced at Fermi National Accelerator Laboratory (FNAL) by delivering a high power, 120 GeV proton beam to an underground target facility. The design proton beam power on target is 700 kW with an expected future upgrade to 2.3 MW. Both these beam powers will be sufficient to activate critical equipment necessary for producing neutrinos; thus, the activated equipment must be maintained using remote handling tools and operations. Oak Ridge National Laboratory (ORNL) was tasked to develop concepts for the remote maintenance of the LBNE target equipment as well as provide recommendations for facility layouts. A discussion of the proposed LBNE Target Hall layout is presented along with concepts for the facility's remote handling systems and major remote operations. Concepts for replacement and maintenance of beam line components are also discussed.

Graves, Van B [ORNL; Carroll, Adam J [ORNL; Hurh, Patrick G. [FNAL

2011-01-01T23:59:59.000Z

179

A Generic Technical Basis for Implementing a Very Low Level Waste Category for Disposal of Low Activity Radioactive Wastes  

Science Conference Proceedings (OSTI)

The International Atomic Energy Agency (IAEA) has recognized Very Low Level Waste (VLLW) as a category that provides both practical and economic benefits. Implementation of VLLW in the international community has been successfully demonstrated in France and Spain, as described in EPRI report 1024844, Basis for National and International Low Activity and Very Low Level Waste (VLLW) Disposal Classifications. This report presents the technical basis for a waste category of Very Low Level ...

2013-12-23T23:59:59.000Z

180

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1992  

SciTech Connect

This is the seventh report submitted to Congress in accordance with section 5(d)(2)(E)(ii)(II) of Title I--Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the limitations specified in the Act. In addition to placing limitations on the use of these funds, the Act also requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, the Act requires the Secretary to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement. DOE disbursed funds totaling $15,037,778.91 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones specified in the Act. Of this amount, $1,445,701.61 was expended during calendar year 1992 and $10,026,763.87 was expended during the prior 6 years. At the end of December 1992, $3,565,313.43 was unexpended. DOE has reviewed each of the reported expenditures and concluded that all reported expenditures comply with the spending limitations stated in section 5(d)(2)(E)(i) of the Act.

Not Available

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors  

Science Conference Proceedings (OSTI)

Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a “cold” environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a “hot” or radioactive environment was reported earlier. This report includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment for remote applications in the nuclear industry. Minor modifications and suggestions for improved manual remote servicing by the remote handling specialists were provided but successful removal and replacement was demonstrated in the first prototype.

David H. Meikrantz; Troy G. Garn; Jack D. Law; Lawrence L. Macaluso

2009-09-01T23:59:59.000Z

182

EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS.

183

DOE N 435.1, Contact-Handled and Remote-Handled Transuranic Waste Packaging  

Directives, Delegations, and Requirements

Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner ...

2011-08-15T23:59:59.000Z

184

Potential co-disposal of greater-than-class C low-level radioactive waste with Department of Energy special case waste - greater-than-class C low-level waste management program  

Science Conference Proceedings (OSTI)

This document evaluates the feasibility of co-disposing of greater-than-Class C low-level radioactive waste (GTCC LLW) with U.S. Department of Energy (DOE) special case waste (SCW). This document: (1) Discusses and evaluates key issues concerning co-disposal of GTCC LLW with SCW. This includes examining these issues in terms of regulatory concerns, technical feasibility, and economics; (2) Examines advantages and disadvantages of such co-disposal; and (3) Makes recommendations. Research and analysis of the issues presented in this report indicate that it would be technically and economically feasible to co-dispose of GTCC LLW with DOE SCW. However, a dilemma will likely arise in the current division of regulatory responsibilities between the U.S. Nuclear Regulatory Commission and DOE (i.e., current requirement for disposal of GTCC LLW in a facility licensed by the Nuclear Regulatory Commission). DOE SCW is currently not subject to this licensing requirement.

Allred, W.E.

1994-09-01T23:59:59.000Z

185

Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site  

Science Conference Proceedings (OSTI)

Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour (R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

J. Miller; D. Shafer; K. Gray; B. Church; S. Campbell; B. Holz

2005-08-01T23:59:59.000Z

186

Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site  

Science Conference Proceedings (OSTI)

Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour ({micro}R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

Miller, J; Shafer, D; Gray, K; Church, B; Campbell, S; Holtz, B.

2005-08-15T23:59:59.000Z

187

Optimization of Trajectories for the Cask and Plug Remote Handling System in Tokamak  

E-Print Network (OSTI)

May 2011 Optimization of Trajectories for the Cask and Plug Remote Handling System in Tokamak Building and Hot Cell Fusion for Energy Grant: F4E-GRT-276-01 (MS-RH) | April.2011-Oct.2011 o Partners| Project IST (F4E ­ ITER) #12;May 2011 Optimization of Trajectories for the Cask and Plug Remote Handling

Ribeiro,Isabel

188

Conceptual study on Flexible Guidance and Docking system for ITER Remote Handling  

E-Print Network (OSTI)

1 Conceptual study on Flexible Guidance and Docking system for ITER Remote Handling Transport Cask divertors and blanket modules from the Tokamak Building to the Hot Cell Building o Addressed topics for ITER Remote Handling Transport Cask o Publications from IST team: · Isabel Ribeiro, Pedro Lima, Pedro

Ribeiro,Isabel

189

WIPP Remote Handled Waste Facility: Performance Dry Run Operations  

SciTech Connect

The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

2003-02-24T23:59:59.000Z

190

Remote handling equipment at the hanford waste treatment plant  

Science Conference Proceedings (OSTI)

Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's Hanford Waste Treatment Plant. The storage tanks could potentially leak into the ground water and into the Columbia River. The solution for this risk of the leaking waste is vitrification. Vitrification is a process of mixing molten glass with radioactive waste to form a stable condition for storage. The Department of Energy has contracted Bechtel National, Inc. to build facilities at the Hanford site to process the waste. The waste will be separated into high and low level waste. Four major systems will process the waste, two pretreatment and two high level. Due to the high radiation levels, high integrity custom cranes have been designed to remotely maintain the hot cells. Several critical design parameters were implemented into the remote machinery design, including radiation limitations, remote operations, Important to Safety features, overall equipment effectiveness, minimum wall approaches, seismic constraints, and recovery requirements. Several key pieces of equipment were designed to meet these design requirements - high integrity crane bridges, trolleys, main hoists, mast hoists, slewing hoists, a monorail hoist, and telescoping mast deployed tele-robotic manipulator arms. There were unique and challenging design features and equipment needed to provide the remotely operated high integrity crane/manipulator systems for the Hanford Waste Treatment Plant. The cranes consist of a double girder bridge with various main hoist capacities ranging from one to thirty ton and are used for performing routine maintenance. A telescoping mast mounted tele-robotic manipulator arm with a one-ton hook is deployed from the trolley to perform miscellaneous operations in-cell. A dual two-ton slewing jib hoist is mounted to the bottom of the trolley and rotates 360 degrees around the mast allowing the closest hook wall approaches. Each of the two hoists on this slewer is mounted 180 degrees opposite each other. Another system utilizes a single one-ton slewing jib hoist that can extend and retract as well as rotate 270 degrees around the mast. Yet, another system utilizes an under-hung monorail trolley with one-ton hoist capacity mounted to the bottom of the bridge girder. The main, slewer and monorail hoists each have power-rotating hooks for installing and removing equipment in the hot cell. (authors)

Bardal, M.A. [PaR Systems, Inc., Shoreview, MN, (United States); Roach, J.D. [Bechtel National, Inc., Richland, WA (United States)

2007-07-01T23:59:59.000Z

191

The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility  

SciTech Connect

The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme.

Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

2002-02-26T23:59:59.000Z

192

Environmental restoration and management of low-level radioactive and mixed waste at Oak Ridge National Laboratory  

SciTech Connect

Management of radioactive waste at Oak Ridge National Laboratory (ORNL) must address several major challenges. First, contaminants from some disposed wastes are leaching into the groundwater and these disposal sites must be remediated. Second, some of these ``legacy`` wastes, as well as currently generated radioactive wastes, are also contaminated with chemicals, including polychlorinated biphenyls (PCBs), solvents, and metals (i.e., mixed waste). Third, wastes containing long-lived radionuclides in concentrations above established limits have been determined unsuited for disposal on the Oak Ridge Reservation. Reflecting these challenges, ORNL`s strategy for managing its radioactive wastes continues to evolve with the development of improved technologies and site-specific adaptation of some standard technologies.

Kendrick, C.M.

1994-03-01T23:59:59.000Z

193

Extensive remote handling and conservative plasma conditions to enable fusion nuclear science R&D using a component testing facility  

E-Print Network (OSTI)

FT/P3-14 Page 1 Extensive remote handling and conservative plasma conditions to enable fusion modularization and remote handling, and allow conservative plasma assumptions including an extended divertor component modularization and capability for remote handling, and estimate the replacement times of various

Princeton Plasma Physics Laboratory

194

Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Two-phase flow and contaminant transport in unsaturated soils with application to low-level radioactive waste disposal. Volume 2  

SciTech Connect

A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry`s Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model.

Binning, P. [Newcastle Univ., NSW (Australia); Celia, M.A.; Johnson, J.C. [Princeton Univ., NJ (United States). Dept. of Civil Engineering and Operations Research

1995-05-01T23:59:59.000Z

195

Evaluation of a performance assessment methodology for low-level radioactive waste disposal facilities: Validation needs. Volume 2  

SciTech Connect

In this report, concepts on how validation fits into the scheme of developing confidence in performance assessments are introduced. A general framework for validation and confidence building in regulatory decision making is provided. It is found that traditional validation studies have a very limited role in developing site-specific confidence in performance assessments. Indeed, validation studies are shown to have a role only in the context that their results can narrow the scope of initial investigations that should be considered in a performance assessment. In addition, validation needs for performance assessment of low-level waste disposal facilities are discussed, and potential approaches to address those needs are suggested. These areas of topical research are ranked in order of importance based on relevance to a performance assessment and likelihood of success.

Kozak, M.W.; Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

1995-02-01T23:59:59.000Z

196

Method for making a low density polyethylene waste form for safe disposal of low level radioactive material  

DOE Patents (OSTI)

In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

Colombo, P.; Kalb, P.D.

1984-06-05T23:59:59.000Z

197

WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Remote-Handled Waste Shipment From Sandia Labs First Remote-Handled Waste Shipment From Sandia Labs WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs December 21, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) has received the first of eight planned defense-related remote-handled transuranic (RH-TRU) waste shipments from Sandia National Laboratories (SNL) in Albuquerque. The shipment arrived December 16 for permanent disposal in WIPP's underground repository. DOE National TRU Program Director J.R. Stroble said the shipment is significant to WIPP. "Our goal is to reduce the nation's nuclear waste footprint and we routinely receive shipments from around the country,"

198

Implementation Plan for Liquid Low-Level Radioactive Waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). These commitments were initially submitted in ES/ER-17&Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were submitted in ES/ER-17&Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in this document. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5.

Not Available

1994-09-01T23:59:59.000Z

199

EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

05: Treating Transuranic (TRU)/Alpha Low-Level at the Oak 05: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee SUMMARY This EIS evaluates DOE's proposal to construct, operate, and decontaminate/decommission a Transuranic (TRU) Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be

200

Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site  

SciTech Connect

The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal where needed) to transport LLW from generator sites to NTS.

PM Daling; SB Ross; BM Biwer

1999-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Microsoft Word - Los Alamos National Laboratory ships remote-handled transuranic waste to WIPP  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos National Laboratory Ships Remote-Handled Los Alamos National Laboratory Ships Remote-Handled Transuranic Waste to WIPP CARLSBAD, N.M., June 3, 2009 - Cleanup of the nation's defense-related transuranic (TRU) waste has reached an important milestone. Today, the first shipment of remote-handled (RH) TRU waste from Los Alamos National Laboratory (LANL) in New Mexico arrived safely at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) in the southeast corner of the state. "Shipping this waste to WIPP is important for our national cleanup mission, but this event is especially important for New Mexicans," said DOE Carlsbad Field Office Manager Dave Moody. "It's great to see progress being made right here in our own state." WIPP's mission includes the safe disposal of two types of defense-related

202

Final remote-handled waste canister leaves Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Remote-handled waste canister leaves LANL Remote-handled waste canister leaves LANL Final remote-handled waste canister leaves Los Alamos National Laboratory The Laboratory began shipping the canisters exactly one month ago and averaged four shipments per week. July 2, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

203

Finding of No Significant Impact for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from Savannah River Site for Treatment and Disposal at Commercial and Government Facilities, DOE/EA-1308 (02/15/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact for the Offsite Transportation of Certain Low-level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities Agency: U. S. Department of Energy Action: Finding of No Significant Impact Summary: The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1308) to analyze the potential environmental impacts associated with the proposed offsite transportation of certain low-level radioactive waste (LLW) and mixed (i.e., hazardous and radioactive) low-level radioactive waste (MLLW) from the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the action is not a major Federal action significantly affecting

204

Applying Remote Handling Attributes to the ITER Neutral Beam Cell Monorail Crane  

E-Print Network (OSTI)

The maintenance requirements for the equipment in the ITER Neutral Beam Cell requires components to be lifted and transported within the cell by remote means. To meet this requirement, the provision of an overhead crane with remote handling capabilities has been initiated. The layout of the cell has driven the design to consist of a monorail crane that travels on a branched monorail track attached to the cell ceiling. This paper describes the principle design constraints and how the remote handling attributes were applied to the concept design of the monorail crane, concentrating on areas where novel design solutions have been required and on the remote recovery requirements and solutions.

Crofts, O; Raimbach, J; Tesini, A; Choi, C-H; Damiani, C; Van Uffelen, M

2013-01-01T23:59:59.000Z

205

IMPROVEMENTS IN CONTAINER MANAGEMENT OF TRANSURANIC (TRU) AND LOW LEVEL RADIOACTIVE WASTE STORED AT THE CENTRAL WASTE COMPLEX (CWC) AT HANFORD  

Science Conference Proceedings (OSTI)

The Central Waste Complex (CWC) is the interim storage facility for Resource Conservation & Recovery Act (RCRA) mixed waste, transuranic waste, transuranic mixed waste, low-level and low-level mixed radioactive waste at the Department of Energy's (DOE'S) Hanford Site. The majority of the waste stored at the facility is retrieved from the low-level burial grounds in the 200 West Area at the Site, with minor quantities of newly generated waste from on-site and off-site waste generators. The CWC comprises 18 storage buildings that house 13,000 containers. Each waste container within the facility is scanned into its location by building, module, tier and position and the information is stored in a site-wide database. As waste is retrieved from the burial grounds, a preliminary non-destructive assay is performed to determine if the waste is transuranic (TRU) or low-level waste (LLW) and subsequently shipped to the CWC. In general, the TRU and LLW waste containers are stored in separate locations within the CWC, but the final disposition of each waste container is not known upon receipt. The final disposition of each waste container is determined by the appropriate program as process knowledge is applied and characterization data becomes available. Waste containers are stored within the CWC based on their physical chemical and radiological hazards. Further segregation within each building is done by container size (55-gallon, 85-gallon, Standard Waste Box) and waste stream. Due to this waste storage scheme, assembling waste containers for shipment out of the CWC has been time consuming and labor intensive. Qualitatively, the ratio of containers moved to containers in the outgoing shipment has been excessively high, which correlates to additional worker exposure, shipment delays, and operational inefficiencies. These inefficiencies impacted the LLW Program's ability to meet commitments established by the Tri-Party Agreement, an agreement between the State of Washington, the Department of Energy, and the Environmental Protection Agency. These commitments require waste containers to be shipped off site for disposal and/or treatment within a certain time frame. Because the program was struggling to meet production demands, the Production and Planning group was tasked with developing a method to assist the LLW Program in fulfilling its requirements. Using existing databases for container management, a single electronic spreadsheet was created to visually map every waste container within the CWC. The file displays the exact location (e.g., building, module, tier, position) of each container in a format that replicates the actual layout in the facility. In addition, each container was placed into a queue defined by the LLW and TRU waste management programs. The queues were developed based on characterization requirements, treatment type and location, and potential final disposition. This visual aid allows the user to select containers from similar queues and view their location within the facility. The user selects containers in a centralized location, rather than random locations, to expedite shipments out of the facility. This increases efficiency for generating the shipments, as well as decreasing worker exposure and container handling time when gathering containers for shipment by reducing movements of waste container. As the containers are collected for shipment, the remaining containers are segregated by queue, which further reduces future container movements.

UYTIOCO EM

2007-11-14T23:59:59.000Z

206

Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Field Office (DOE-OR), the US Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section 9 and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review or approval. The initial issue of this document in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. The current revision of this document updates the plans, schedules, and strategy for achieving compliance with the FFA, and it summarizes the progress that has been made over the past year. Chapter 1 describes the history and operation of the ORNL LLLW System, the objectives of the FFA, the organization that has been established to bring the system into compliance, and the plans for achieving compliance. Chapters 2 through 7 of this report contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress.

Not Available

1993-06-01T23:59:59.000Z

207

WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

For immediate release WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs CARLSBAD, N.M., December 21, 2011 - The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) has received the first of eight planned defense-related remote- handled transuranic (RH-TRU) waste shipments from Sandia National Laboratories (SNL) in Albuquerque. The shipment arrived December 16 for permanent disposal in WIPP's underground repository. DOE National TRU Program Director J.R. Stroble said the shipment is significant to WIPP. "Our goal is to reduce the nation's nuclear waste footprint and we routinely receive shipments from around the country," said Stroble. "This first shipment of RH-TRU waste from

208

TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN  

SciTech Connect

In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled for deployment in 2012. The prototype facility also was used to develop technology for systems to retrieve remote-handled transuranic sludge smaller than 6350 {mu}m being stored in underwater containers. After retrieving the sludge, the system will be used to load and transport the sludge for interim storage. During 2011, full-scale prototype systems were developed and tested to a Technology Readiness Level 6 as defined by U.S. Department of Energy standards. This system is scheduled for deployment in 2013. Operations also are scheduled for completion in 2014.

RAYMOND RE

2011-12-27T23:59:59.000Z

209

Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford  

SciTech Connect

This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS).

Raymond, Rick E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Frederickson, James R. [AREVA, Avignon (France); Criddle, James [AREVA, Avignon (France); Hamilton, Dennis [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Johnson, Mike W. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

2012-10-18T23:59:59.000Z

210

Hydrogen Gas Generation Model for Fuel Based Remote Handled TRU Waste Stored at INEEL  

DOE Green Energy (OSTI)

The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

Soli T. Khericha; Rajiv N. Bhatt; Kevin Liekhus

2003-02-01T23:59:59.000Z

211

SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W. Burgess, J. B. Chesser, V. B. Graves, and S.L. Schrock  

E-Print Network (OSTI)

SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W remote handling techniques and tools for replacing target system components. During the past year seal configuration to assess leak tightness and remote handling features. In addition, testing

McDonald, Kirk

212

WM2008 Conference, February 24-28, 2008, Phoenix, AZ Shielded Payload Containers Will Enhance the Safety and Efficiency of the DOE's Remote Handled  

E-Print Network (OSTI)

the Safety and Efficiency of the DOE's Remote Handled Transuranic Waste Disposal Operations - 8199 R. A for Remote Handled (RH) waste. CH waste is emplaced in a variety of payload container configurations. This robust configuration provides an overpack for waste that otherwise would be remotely handled. Up to a 3

213

Parametric study of radionuclide characterization -- Low-level waste. Draft  

Science Conference Proceedings (OSTI)

The criteria and guidance given in this addendum specifically address the classification of low-level waste at the Hanford Reservation into Category 1, Category 3, and Greater Than Category 3 (GTC3). These categories are developed based on the performance assessment (PA) being conducted for the Hanford Site. The radionuclides and their concentration for each category are listed in the revised Table 1-1 (Attachment 1). The information to classify the waste for US Department of Transportation (DOT) and to classify Transuranic (TRU)/ Non-TRU, Contact Handled (CH)/Remote Handled (RH) waste is given in WHC-EP-0063-3 (WHC 1991).

Amir, S.J.

1993-04-01T23:59:59.000Z

214

Welding Robot and Remote Handling System for the Yucca Mountain Waste Package Closure System  

SciTech Connect

In preparation for the license application and construction of a repository for housing the nation's spent nuclear fuel and high-level waste in Yucca Mountain, the Idaho National Laboratory (INL) has been charged with preparing a mock-up of a full-scale prototype system for sealing the waste packages (WP). Three critical pieces of the closure room include two PaR Systems TR4350 Telerobotic Manipulators and a PaR Systems XR100 Remote Handling System (RHS). The TR4350 Manipulators are 6-axis programmable robots that will be used to weld the WP lids and purge port cap as well as conduct nondestructive examinations. The XR100 Remote Handling System is a 4-axis programmable robot that will be used to transport the WP lids and process tools to the WP for operations and remove equipment for maintenance. The welding and RHS robots will be controlled using separate PaR 5/21 CIMROC Controllers capable of complex motion control tasks. A tele-operated PaR 4350 Manipulator will also be provided with the XR100 Remote Handling System. It will be used for maintenance and associated activities within the closure room. (authors)

Barker, M.E.; Holt, T.E.; LaValle, D.R. [PaR Systems, Inc., Shoreview, MN (United States); Pace, D.P.; Croft, K.M.; Shelton-Davis, C.V. [Battelle Energy Alliance, LLC/Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

215

Eleventh annual U.S. DOE low-level radioactive waste management conference: Executive summary, opening plenary, technical session summaries, and attendees  

SciTech Connect

The conference consisted of ten technical sessions, with three sessions running simultaneously each day. Session topics included: regulatory updates; performance assessment;understanding remedial action efforts; low-level waste strategy and planning (Nuclear Energy); low-level waste strategy and planning (Defense); compliance monitoring; decontamination and decommissioning; waste characterization; waste reduction and minimization; and prototype licensing application workshop. Summaries are presented for each of these sessions.

NONE

1990-01-01T23:59:59.000Z

216

Shielded Payload Containers Will Enhance the Safety and Efficiency of the DOE's Remote Handled Transuranic Waste Disposal Operations  

Science Conference Proceedings (OSTI)

The Waste Isolation Pilot Plant (WIPP) disposal operation currently employs two different disposal methods: one for Contact Handled (CH) waste and another for Remote Handled (RH) waste. CH waste is emplaced in a variety of payload container configurations on the floor of each disposal room. In contrast, RH waste is packaged into a single type of canister and emplaced in pre-drilled holes in the walls of disposal rooms. Emplacement of the RH waste in the walls must proceed in advance of CH waste emplacement. This poses a significant logistical constraint on waste handling operations by requiring significant coordination between waste characterization and preparations for shipping among the various generators. To improve operational efficiency, the Department of Energy (DOE) is proposing a new waste emplacement process for certain RH waste streams that can be safely managed in shielded containers. RH waste with relatively low gamma-emitting activity would be packaged in lead-lined containers, shipped to WIPP in existing certified transportation packages for CH waste, and emplaced in WIPP among the stacks of CH waste containers on the floor of a disposal room. RH waste with high gamma-emitting activity would continue to be emplaced in the boreholes along the walls. The new RH container appears essentially the same as a nominal 208-liter drum, but is built with about 2.5 cm of lead, sandwiched between thick steel sheet. The top and bottom are made of very thick plate steel, for strengthening the package to meet transportation requirements, and provide similar gamma attenuation. This robust configuration provides an overpack for waste that otherwise would be remotely handled. Up to a 3:1 reduction in number of shipments is projected if RH waste were transported in the proposed shielded containers. This paper describes the container design and testing, as well as the regulatory approach used to meet the requirements that apply to WIPP and its associated transportation system. This paper describes the RH transuranic waste inventory that may be candidates for packaging and emplacement in shielded containers. DOE does not propose to use shielded containers to increase the amount of RH waste allowed at WIPP. DOE's approach to gain approval for the transportation of shielded containers and to secure regulatory approval for use of shielded containers from WIPP regulators is discussed. Finally, the paper describes how DOE proposes to count the waste packaged into shielded containers against the RH waste inventory and how this will comply with the volume and radioactivity limitations imposed in the many and sometimes overlapping regulations that apply to WIPP. (authors)

Nelson, R.A. [U. S. Department of Energy, Carlsbad, New Mexico (United States); White, D.S. [Washington Group International, Carlsbad, New Mexico (United States)

2008-07-01T23:59:59.000Z

217

DOE/EIS-0375D: Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375D)(February 2011)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Statement for the Volume 1: Chapters 1 through 8 February 2011 Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D) T H E U.S. D E P A R T M E N T O F E N E R G Y ENERGY U.S. DEPARTMENT OF On the cover: The photographs on the front cover are, from left to right: glove boxes contaminated with GTCC Other Waste, abandoned Am-241 and Cs-137 gauges and shipping shields, and disused well logging sources being loaded into a 55-gallon drum. Draft GTCC EIS Cover Sheet COVER SHEET Lead Agency: U.S. Department of Energy (DOE) Cooperating Agency: U.S. Environmental Protection Agency (EPA) Title: Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D)

218

DOE/EIS-0375D: Draft Environmental Impact Statement for the Disposal of Greater-Than-Class (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (February 2011)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D) February 2011 SUMMARY ENERGY U.S. DEPARTMENT OF U.S. D E P A R T M E N T O F E N E R G Y On the cover: The photographs on the front cover are, from left to right: glove boxes contaminated with GTCC Other Waste, abandoned Am-241 and Cs-137 gauges and shipping shields, and disused well logging sources being loaded into a 55-gallon drum. COVER SHEET Lead Agency: U.S. Department of Energy (DOE) Cooperating Agency: U.S. Environmental Protection Agency (EPA) Title: Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D)

219

Joint Working Group-39, Manufacturing Technology Subworking Group-F, remote handling and automation  

Science Conference Proceedings (OSTI)

The terms of reference were reviewed and continue to encompass the scope of activities of the SUBWOG. No revisions to the terms of reference were proposed. The list of site contacts who should receive copies of SUBWOG correspondence and meeting minutes was reviewed and updated. Documents exchanged related to the meeting include: Minutes of the sixth SUBOG 39F meeting; transactions of the fifth topical meeting on robotics and remote handling; data on manipulators was forwarded to LLNL from the robotics group at AEA Harwell; and the specifications of the duct remediation robot from the Rocky Flats Plant.

Merrill, R.D.

1995-02-01T23:59:59.000Z

220

Remote Handling and Maintenance in the Facility for Rare Isotope Beams  

SciTech Connect

Michigan State University (MSU) in East Lansing, MI was selected by the U.S. Department of Energy (DOE) to design and establish a Facility for Rare Isotope Beams (FRIB), a cutting-edge research facility to advance the understanding of rare nuclear isotopes and the evolution of the cosmos. The research conducted at the FRIB will involve experimentation with intense beams of rare isotopes within a well-shielded target cell that will result in activation and contamination of components. The target cell is initially hands-on accessible after shutdown and a brief cool-down period. Personnel are expected to have hands-on access to the tops of shielded component modules with the activated in-beam sections suspended underneath. The modules are carefully designed to include steel shielding for protecting personnel during these hand-on operations. However, as the facility has greater levels of activation and contamination, a bridge mounted servomaniputor may be added to the cell, to perform the disconnecting of services to the component assemblies. Dexterous remote handling and exchange of the modularized activated components is completed at a shielded window workstation with a pair of master-slave manipulators. The primary components requiring exchange or maintenance are the production target, the beam wedge filter, the beam dump, and the beam focusing and bending magnets. This paper provides an overview of the FRIB Target Facility remote handling and maintenance design requirements, concepts, and techniques.

Burgess, Thomas W [ORNL; Aaron, Adam M [ORNL; Carroll, Adam J [ORNL; DeVore, Joe R [ORNL; Giuliano, Dominic R [ORNL; Graves, Van B [ORNL; Bennett, Richard P [Facility for Rare Isotope Beams (FRIB); Bollen, Georg [Facility for Rare Isotope Beams (FRIB); Cole, Daniel F. [Facility for Rare Isotope Beams (FRIB); Ronningen, Reginald M. [Facility for Rare Isotope Beams (FRIB); Schein, Mike E [Facility for Rare Isotope Beams (FRIB); Zeller, Albert F [Facility for Rare Isotope Beams (FRIB)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288  

Science Conference Proceedings (OSTI)

This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

Higley, B.A.

1995-03-15T23:59:59.000Z

222

Conceptual design for remote handling methods using the HIP process in the Calcine Immobilization Program  

SciTech Connect

This report recommends the remote conceptual design philosophy for calcine immobilization using the hot isostatic press (HIP) process. Areas of remote handling operations discussed in this report include: (1) introducing the process can into the front end of the HIP process, (2) filling and compacting the calcine/frit mixture into the process can, (3) evacuating and sealing the process can, (4) non-destructive testing of the seal on the process can, (5) decontamination of the process can, (6) HIP furnace loading and unloading the process can for the HIPing operation, (7) loading an overpack canister with processed HIP cans, (8) sealing the canister, with associated non-destructive examination (NDE) and decontamination, and (9) handling canisters for interim storage at the Idaho Chemical Processing Plant (ICPP) located on the Idaho National Engineering Laboratory (INEL) site.

Berry, S.M.; Cox, C.G.; Hoover, M.A.

1994-03-01T23:59:59.000Z

223

Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes  

SciTech Connect

This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N. [ed.

1994-10-20T23:59:59.000Z

224

Twelfth annual US DOE low-level waste management conference  

Science Conference Proceedings (OSTI)

The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

Not Available

1990-01-01T23:59:59.000Z

225

Release of radionuclides and chelating agents from cement-solidified decontamination low-level radioactive waste collected from the Peach Bottom Atomic Power Station Unit 3  

SciTech Connect

As part of a study being performed for the Nuclear Regulatory Commission (NRC), small-scale waste-form specimens were collected during a low oxidation-state transition-metal ion (LOMI)-nitric permanganate (NP)-LOMI solidification performed in October 1989 at the Peach Bottom Atomic Power Station Unit 3. The purpose of this program was to evaluate the performance of cement-solidified decontamination waste to meet the low-level waste stability requirements defined in the NRC`s ``Technical Position on Waste Form,`` Revision 1. The samples were acquired and tested because little data have been obtained on the physical stability of actual cement-solidified decontamination ion-exchange resin waste forms and on the leachability of radionuclides and chelating agents from those waste forms. The Peach Bottom waste-form specimens were subjected to compressive strength, immersion, and leach testing in accordance with the NRC`s ``Technical Position on Waste Form,`` Revision 1. Results of this study indicate that the specimens withstood the compression tests (>500 psi) before and after immersion testing and leaching, and that the leachability indexes for all radionuclides, including {sup 14}C, {sup 99}{Tc}, and {sup 129}I, are well above the leachability index requirement of 6.0, required by the NRC`s ``Technical Position on Waste Form,`` Revision 1.

Akers, D.W.; Kraft, N.C.; Mandler, J.W. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1994-03-01T23:59:59.000Z

226

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1989: Report to Congress in response to Public Law 99-240  

SciTech Connect

This response is submitted in response to the Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act), Public Law 99-240. The report summarizes expenditures made during the calendar year 1989 of surcharge rebates from the July 1, 1986, milestones. Title I of the Act requires the Department of Energy (DOE) to administer a Surcharge Escrow Account. This account consists of a portion of the surcharge fees paid by generators of low-level radioactive waste in nonsited compacts (regional compacts currently without operating disposal sites) and nonmember States (States without disposal sites that are not members of compacts) to the three States with operating disposal facilities (Nevada, South Carolina, and Washington) (sited States) for using their disposal facilities. In administering the Surcharge Escrow Account, the Act requires DOE to: invest the funds in interest-bearing United States Government securities; determine eligibility of rebates of the funds by evaluating State and compact progress toward developing new disposal sites against milestones set forth in the Act; disburse the collected rebates and interest; assess compliance of rebate expenditures with the limitations prescribed in the Act; and submit a report annually to Congress summarizing rebate expenditures by States and regions. 5 tabs.

Not Available

1990-06-01T23:59:59.000Z

227

Use of Multiple Innovative Technologies for Retrieval and Handling of Low-Level Radioactive Tank Wastes at Oak Ridge National Laboratory  

SciTech Connect

The U.S. Department of Energy (DOE) successfully implemented an integrated tank waste management plan at Oak Ridge National Laboratory (ORNL) (1), which resulted in the cleanup, removal, or stabilization of 37 inactive underground storage tanks (USTs) since 1998, and the reduction of risk to human health and the environment. The integrated plan helped accelerate the development and deployment of innovative technologies for the retrieval of radioactive sludge and liquid waste from inactive USTs. It also accelerated the pretreatment of the retrieved waste and newly generated waste from ORNL research and development activities to provide for volume and contamination reduction of the liquid waste. The integrated plan included: retrieval of radioactive sludge, contaminated material, and other debris from USTs at ORNL using a variety of robotic and remotely operated equipment; waste conditioning and transfer of retrieved waste to pretreatment facilities and interim, double contained storage tanks; the development and deployment of technologies for pretreating newly generated and retrieved waste transferred to interim storage tanks; waste treatment and packaging for final off-site disposal; stabilization of the inactive USTs that did not meet the regulatory requirements of the Federal Facilities Agreement between the DOE, the Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC); and the continued monitoring of the active USTs that remain in long-term service. This paper summarizes the successful waste retrieval and tank stabilization operations conducted during two ORNL tank remediation projects (The Gunite Tanks Remediation Project and the Old Hydrofracture Facility Tanks Remediation Project), the sludge retrieval operations from the active Bethel Valley Evaporator Service Tanks, and pretreatment operations conducted for the tank waste. This paper also provides the status of ongoing activities conducted in preparation of treating the retrieved tank waste for final disposition, and the efforts to improve monitoring capabilities for waste collection and storage tanks that will remain in long-term service at ORNL.

Noble-Dial, J.; Riner, G.; Robinson, S.; Lewis, B.; Bolling, D.; Ganapathi, G.; Harper, M.; Billingsley, K.; Burks, B.

2002-02-26T23:59:59.000Z

228

The U. S. Department of Energy (DOE) has submitted a planned change request to use shielded containers for emplacement of selected remote-handled (RH) transuranic  

E-Print Network (OSTI)

shielded containers for emplacement of selected remote-handled (RH) transuranic (TRU) waste streams, Carlsbad Field Office, Carlsbad, NM. DOE. 2007. First Remote-Handled Transuranic Waste Shipment arrives for transportation and handling and will prevent releases under the most severe accident conditions. The design

229

Low-Level Waste Disposal Alternatives Analysis Report  

SciTech Connect

This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

2006-09-01T23:59:59.000Z

230

Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

2011-12-01T23:59:59.000Z

231

Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

The groundwater impacts have been analyzed for the proposed RH-LLW disposal facility. A four-step analysis approach was documented and applied. This assessment compared the predicted groundwater ingestion dose to the more restrictive of either the 25 mrem/yr all pathway dose performance objective, or the maximum contaminant limit performance objective. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives. The analysis was prepared to support the NEPA-EA for the top two ranking of the proposed RH-LLW sites. As such, site-specific conditions were incorporated for each set of results generated. These site-specific conditions were included to account for the transport of radionuclides through the vadose zone and through the aquifer at each site. Site-specific parameters included the thickness of vadose zone sediments and basalts, moisture characteristics of the sediments, and aquifer velocity. Sorption parameters (Kd) were assumed to be very conservative values used in Track II analysis of CERCLA sites at INL. Infiltration was also conservatively assumed to represent higher rates corresponding to disturbed soil conditions. The results of this analysis indicate that the groundwater impacts for either proposed facility location are expected to be less than the performance objectives.

Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

2011-08-01T23:59:59.000Z

232

Recommended strategy for the disposal of remote-handled transuranic waste  

SciTech Connect

The current baseline plan for RH TRU (remote-handled transuranic) waste disposal is to package the waste in special canisters for emplacement in the walls of the waste disposal rooms at the Waste Isolation Pilot Plant (WIPP). The RH waste must be emplaced before the disposal rooms are filled by contact-handled waste. Issues which must be resolved for this plan to be successful include: (1) construction of RH waste preparation and packaging facilities at large-quantity sites; (2) finding methods to get small-quantity site RH waste packaged and certified for disposal; (3) developing transportation systems and characterization facilities for RH TRU waste; (4) meeting lag storage needs; and (5) gaining public acceptance for the RH TRU waste program. Failure to resolve these issues in time to permit disposal according to the WIPP baseline plan will force either modification to the plan, or disposal or long-term storage of RH TRU waste at non-WIPP sites. The recommended strategy is to recognize, and take the needed actions to resolve, the open issues preventing disposal of RH TRU waste at WIPP on schedule. It is also recommended that the baseline plan be upgraded by adopting enhancements such as revised canister emplacement strategies and a more flexible waste transport system.

Bild, R.W. [Sandia National Lab., Albuquerque, NM (United States). Program Integration Dept.

1994-07-01T23:59:59.000Z

233

DOE/EA-1308; Environmental Assessment for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities (February 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 08 ENVIRONMENTAL ASSESSMENT FOR THE OFFSITE TRANSPORTATION OF CERTAIN LOW-LEVEL AND MIXED RADIOACTIVE WASTE FROM THE SAVANNAH RIVER SITE FOR TREATMENT AND DISPOSAL AT COMMERCIAL AND GOVERNMENT FACILITIES FEBRUARY 2001 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE i ii This page is intentionally left blank iii TABLE OF CONTENTS Page 1.0 INTRODUCTION 1 1.1 Background 1 1.2 Purpose and Need for Action 6 2.0 PROPOSED ACTION AND ALTERNATIVES 6 2.1 Proposed Action 6 2.2 Alternatives to the Proposed Action 11 2.2.1 No Action, Continue to Store These Waste Forms at SRS 11 2.2.2 Construct and Operate Onsite Treatment and Disposal Facilities 11 3.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION AND ALTERNATIVES 12 3.1 Onsite Loading Operations 12 3.2 Transportation Impacts

234

Low-level waste forum meeting reports  

SciTech Connect

This paper provides the results of the winter meeting of the Low Level Radioactive Waste Forum. Discussions were held on the following topics: new developments in states and compacts; adjudicatory hearings; information exchange on siting processes, storage surcharge rebates; disposal after 1992; interregional access agreements; and future tracking and management issues.

NONE

1993-12-31T23:59:59.000Z

235

Hydrogen Gas Generation Model for Fuel-Based Remote-Handled Transuranic Waste Stored at the INEEL  

DOE Green Energy (OSTI)

The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

Khericha, S.; Bhatt, R.; Liekhus, K.

2003-01-14T23:59:59.000Z

236

Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee  

SciTech Connect

The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

N /A

2000-06-30T23:59:59.000Z

237

Project Plan 7930 Cell G PaR Remote Handling System Replacement  

Science Conference Proceedings (OSTI)

For over 40 years the US Department of Energy (DOE) and its predecessors have made Californium-252 ({sup 252}Cf) available for a wide range of industries including medical, nuclear fuels, mining, military and national security. The Radiochemical Engineering Development Center (REDC) located within the Oak Ridge National Laboratory (ORNL) processes irradiated production targets from the High Flux Isotope Reactor (HFIR). Operations in Building 7930, Cell G provide over 70% of the world's demand for {sup 252}Cf. Building 7930 was constructed and equipped in the mid-1960s. Current operations for {sup 252}Cf processing in Building 7930, Cell G require use of through-the-wall manipulators and the PaR Remote Handling System. Maintenance and repairs for the manipulators is readily accomplished by removal of the manipulator and relocation to a repair shop where hands-on work can be performed in glove boxes. Contamination inside cell G does not currently allow manned entry and no provisions were created for a maintenance area inside the cell. There has been no maintenance of the PaR system or upgrades, leaving operations vulnerable should the system have a catastrophic failure. The Cell G PaR system is currently being operated in a run to failure mode. As the manipulator is now 40+ years old there is significant risk in this method of operation. In 2006 an assessment was completed that resulted in recommendations for replacing the manipulator operator control and power centers which are used to control and power the PaR manipulator in Cell G. In mid-2008 the chain for the bridge drive failed and subsequent examinations indicated several damaged links (see Figure 1). To continue operations the PaR manipulator arm is being used to push and pull the bridge as a workaround. A retrieval tool was fabricated, tested and staged inside Cell G that will allow positioning of the bridge and manipulator arm for removal from the cell should the PaR system completely fail. A fully functioning and reliable Par manipulator arm is necessary for uninterrupted {sup 252}Cf operations; a fully-functioning bridge is needed for the system to function as intended.

Kinney, Kathryn A [ORNL

2009-10-01T23:59:59.000Z

238

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1991. Report to Congress in response to Public Law 99-240  

SciTech Connect

This is the sixth report submitted to Congress under section 5(d)(2)(E)(ii)(II) of the Low-Level Radioactive Waste Policy Act of 1985 (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the limitations specified in the Act. In addition to placing limitations on the use of these funds, the Act also requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, the Act requires the Secretary to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement. DOE disbursed funds totaling $15,037,778.91 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones specified in the Act. Of this amount, $3,517,020.56 was expended during calendar year 1991 and $6,602,546.24 was expended during the prior 5 years. At the end of December 1991, $4,918,212.11 was unexpended. DOE has reviewed each of the reported expenditures and concluded that all reported expenditures comply with the spending limitations stated in section 5(d)(2)(E)(i) of the Act.

Not Available

1992-06-01T23:59:59.000Z

239

Shipping Remote Handled Transuranic Waste to the Waste Isolation Pilot Plant - An Operational Experience  

Science Conference Proceedings (OSTI)

On January 18, 2007, the first ever shipment of Remote Handled Transuranic (RH TRU) waste left the gate at the Idaho National Laboratory (INL), headed toward the Waste Isolation Pilot Plant (WIPP) for disposal, thus concluding one of the most stressful, yet rewarding, periods the authors have ever experienced. The race began in earnest on October 16, 2006, with signature of the New Mexico Environment Department Secretary's Final Order, ruling that the '..draft permit as changed is hereby approved in its entirety.' This established the effective date of the approved permit as November 16, 2006. The permit modification was a consolidation of several Class 3 modification requests, one of which included incorporation of RH TRU requirements and another of which incorporated the requirements of Section 311 of Public Law 108-137. The obvious goal was to complete the first shipment by November 17. While many had anticipated its approval, the time had finally come to actually implement, and time seemed to be the main item lacking. At that point, even the most aggressive schedule that could be seriously documented showed a first ship date in March 2007. Even though planning for this eventuality had started in May 2005 with the arrival of the current Idaho Cleanup Project (ICP) contractor (and even before that), there were many facility and system modifications to complete, startup authorizations to fulfill, and many regulatory audits and approvals to obtain before the first drum could be loaded. Through the dedicated efforts of the ICP workers, the partnership with Department of Energy (DOE) - Idaho, the coordinated integration with the Central Characterization Project (CCP), the flexibility and understanding of the regulatory community, and the added encouragement of DOE - Carlsbad Field Office and at Headquarters, the first RH TRU canister was loaded on December 22, 2006. Following final regulatory approval on January 17, 2007, the historic event finally occurred the following day. While some of the success of this endeavor can be attributed to the sheer will and determination of the individuals involved, the fact that it was established and managed as a separate sub-project under the ICP, accounts for a majority of the success. Utilizing a structured project management approach, including development of, and management to, a performance baseline, allowed for timely decision making and the flexibility to adapt to changing conditions as the various aspects of the project matured. This paper provides some insight into how this was achieved, in a relatively short time, and provides an overview of the experience of start-up of a new retrieval, characterization, loading, and transportation operation in the midst of an aggressive cleanup project. Additionally, as one might expect, everything within the project did not go as planned, which provides a great opportunity to discuss some lessons learned. Finally, the first shipment was just the beginning. There are 224 additional shipments scheduled. In keeping with the theme of WM 2008, Phoenix Rising: Moving Forward in Waste Management, this paper will address the future opportunities and challenges of RH TRU waste management at the INL. (authors)

Anderson, S.; Bradford, J.; Clements, T.; Crisp, D.; Sherick, M. [CH2M-WG Idaho, Idaho Falls, ID (United States); D'Amico, E. [Washington TRU Solutions, Denver, CO (United States); Lattin, W. [United States Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States); Watson, K. [United States Department of Energy, Carlsbad Field Office, Carlsbad, NM (United States)

2008-07-01T23:59:59.000Z

240

DOE/WIPP-02-3214 REMOTE-HANDLED TRU WASTE  

E-Print Network (OSTI)

.................................................... 59 4.2.5 Waste Generated by Atomic Energy Defense Activities.......................................59: To determine whether waste was generated by atomic energy defense activities (Regulatory basis: LWA). Type) record that the waste was generated by atomic energy defense activities. 2.2.2 DQOs for Radioactive

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Low Level Heat Recovery Technology  

E-Print Network (OSTI)

With today's high fuel prices, energy conservation projects to utilize low level waste heat have become more attractive. Exxon Chemical Company Central Engineering has been developing guidelines and assessing the potential for application of low level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various possibilities and some guidelines on when they should be considered will be presented.

O'Brien, W. J.

1982-01-01T23:59:59.000Z

242

Liquid low level waste management expert system  

SciTech Connect

An expert system has been developed as part of a new initiative for the Oak Ridge National Laboratory (ORNL) systems analysis program. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem, as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. 4 refs., 9 figs.

Ferrada, J.J.; Abraham, T.J. (Oak Ridge National Lab., TN (United States)); Jackson, J.R. (Southwest Baptist Univ., Bolivar, MO (USA))

1991-01-01T23:59:59.000Z

243

Low level waste shipment accident lessons learned  

SciTech Connect

On October 1, 1994 a shipment of low-level waste from the Fernald Environmental Management Project, Fernald, Ohio, was involved in an accident near Rolla, Missouri. The accident did not result in the release of any radioactive material. The accident did generate important lessons learned primarily in the areas of driver and emergency response communications. The shipment was comprised of an International Standards Organization (ISO) container on a standard flatbed trailer. The accident caused the low-level waste package to separate from the trailer and come to rest on its top in the median. The impact of the container with the pavement and median inflicted relatively minor damage to the container. The damage was not substantial enough to cause failure of container integrity. The success of the package is attributable to the container design and the packaging procedures used at the Fernald Environmental Management Project for low-level waste shipments. Although the container survived the initial wreck, is was nearly breached when the first responders attempted to open the ISO container. Even though the container was clearly marked and the shipment documentation was technically correct, this information did not identify that the ISO container was the primary containment for the waste. The lessons learned from this accident have DOE complex wide applicability. This paper is intended to describe the accident, subsequent emergency response operations, and the lessons learned from this incident.

Rast, D.M.; Rowe, J.G.; Reichel, C.W.

1995-02-01T23:59:59.000Z

244

Mixed and Low-Level Treatment Facility Project  

SciTech Connect

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

1992-04-01T23:59:59.000Z

245

EA-1793: Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE))

Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy’s Idaho Site

246

Concentration of remote-handled, transuranic, sodium nitrate-based sludge using agitated thin-film evaporators  

SciTech Connect

The Waste Handling and Packaging Plant (WHPP) is being designed at Oak Ridge National Laboratory (ORNL) to prepared transuranic waste for final disposal. Once operational, this facility will process, package, and certify remote-handled transuranic waste for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. One of the wastes that will be handled at WHIPP is the transuranic sludge currently stored at ORNL in eight 50,000-gal underground tanks. The use of an Agitated Thin-Film Evaporator (ATFE) for concentration of this waste is being investigated. Tests have shown that the ATFE can be used to produce a thick slurry, a powder, or a fused salt. A computer model developed at the Savannah River Plant (SRP) to simulate the operation of ATFE's on their waste is being modified for use on the ORNL transuranic sludge. This paper summarizes the results of the test with the ATFEs to date, discusses the changes in the SRP model necessary to use this model with the ORNL waste, and compares the results of the model with the actual data taken from the operation of ATFEs at vendors' test facilities. 8 refs., 1 fig., 3 tabs.

Walker, J.F. Jr.; Youngblood, E.L.; Berry, J.B. (Oak Ridge National Lab., TN (USA)); Pen, Ben-Li (Institute of Nuclear Energy Research, Lung-Tan (Taiwan))

1991-01-01T23:59:59.000Z

247

Test plan for headspace gas sampling of remote-handled transuranic waste containers at Los Alamos National Laboratory  

DOE Green Energy (OSTI)

Seventeen remote-handled (RH) transuranic (TRU) waste canisters currently are stored in vertical, underground shafts at Technical Area (TA)-54, Area G, at Los Alamos National Laboratory (LANL). These 17 RH TRU waste canisters are destined to be shipped to the Waste Isolation Pilot Plant (WIPP) for permanent disposal in the geologic repository. As the RH TRU canister is likely to be the final payload container prior to placement into the 72-B cask and shipment to the WIPP, these waste canisters provide a unique opportunity to ascertain representative flammable gas concentrations in packaged RH-TRU waste. Hydrogen, which is produced by the radiolytic decomposition of hydrogenous constituents in the waste matrix, is the primary flammable gas of concern with RH TRU waste. The primary objectives of the experiment that is described by this test plan are to sample and analyze the waste canister headspace gases to determine the concentration of hydrogen in the headspace gas and to calculate the hydrogen gas generation rate for comparison to the applicable maximum allowable hydrogen generation rate (mole/sec) limits. It is a goal of this experiment to determine the headspace gas concentrations of other gases (e.g., oxygen, nitrogen, carbon dioxide, carbon monoxide, and volatile organic compounds (VOCs) with molecular weights less than 60 g/mole) that are produced by radiolysis or present when the waste was packaged. Additionally, the temperature, pressure, and flow rate of the headspace gas will be measured.

Field, L.R.; Villarreal, R. [Los Alamos National Lab., NM (United States)

1998-02-24T23:59:59.000Z

248

Remote Handling and Plasma Conditions to Enable Fusion Nuclear Science R&D Using a US Component Testing Facility  

Science Conference Proceedings (OSTI)

The use of a fusion component testing facility to study and establish, during the ITER era, the remaining scientific and technical knowledge needed by fusion Demo is considered and described in this paper. This use aims to lest components in an integrated fusion nuclear environment, for the first time, to discover and understand the underpinning physical properties, and to develop improved components for further testing, in a time-efficient manner. It requires a design with extensive modularization and remote handling of activated components, and flexible hot-cell laboratories. It further requires reliable plasma conditions to avoid disruptions and minimize their impact, and designs to reduce the divertor heat flux to the level of ITER design. As the plasma duration is extended through the planned ITER level (similar to 10(3) s) and beyond, physical properties with increasing time constants, progressively for similar to 10(4) s, similar to 10(5) s, and similar to 10(6) s, would become accessible for testing and R&D. The longest time constants of these are likely to be of the order of a week ( 106 S). Progressive stages of research operation are envisioned in deuterium, deuterium-tritium for the ITER duration, and deuterium-tritium with increasingly longer plasma durations. The fusion neutron fluence and operational duty factor anticipated for this "scientific exploration" phase of a component test facility are estimated to be up to 1 MW-yr/m(2) and up to 10%, respectively.

Peng, Yueng Kay Martin [ORNL; Burgess, Thomas W [ORNL; Carroll, Adam J [ORNL; Neumeyer, C. L. [Princeton Plasma Physics Laboratory (PPPL); Canik, John [ORNL; Cole, Michael J [ORNL; Dorland, W. D. [University of Maryland; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Grisham, L. [Princeton Plasma Physics Laboratory (PPPL); Hillis, Donald Lee [ORNL; Katoh, Yutai [ORNL; Korsah, Kofi [ORNL; Kotschenreuther, M. [University of Texas, Austin; LaHaye, R. [General Atomics, San Diego; Mahajan, S. [University of Texas, Austin; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Nelson, Brad E [ORNL; Patton, Bradley D [ORNL; Rasmussen, David A [ORNL; Sabbagh, S. A. [Columbia University; Sontag, Aaron C [ORNL; Stoller, Roger E [ORNL; Tsai, C. C. [Oak Ridge National Laboratory (ORNL); Vanlanju, P. [University of Texas, Austin; Wagner, Jill C [ORNL; Yoder, III, Graydon L [ORNL

2009-08-01T23:59:59.000Z

249

Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant  

SciTech Connect

The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs.

Silva, M.K.; Neill, R.H.

1994-09-01T23:59:59.000Z

250

REMOTE HANDLING ARRANGEMENTS  

DOE Patents (OSTI)

A means for handling remotely a sample pellet to be irradiated in a nuclear reactor is proposed. It is comprised essentially of an inlet tube extending through the outer shield of the reactor and being inclined so that its outer end is at a higher elevation than its inner end, an outlet tube extending through the outer shield being inclined so that its inner end is at a higher elevation than its outer end, the inner ends of these two tubes being interconnected, and a straight tube extending through the outer shield and into the reactor core between the inlet and outlet tubes and passing through the juncture of said inner ends. A rod-like member is rotatably and slidely operated within the central straight tube and has a receptacle on its inner end for receiving a sample pellet from the inlet tube. The rod member is operated to pick up a sample pellet from the inlet tube, carry the sample pellet into the irradiating position within the core, and return to the receiving position where it is rotated to dump the irradiated pellet into the outlet tube by which it is conveyed by gravity to the outside of the reactor. Stop members are provided in the inlet tube, and electrical operating devices are provided to control the sequence of the operation automatically.

Ginns, D.W.

1958-04-01T23:59:59.000Z

251

Summary of expenditures of rebates from the DOE low-level radioactive waste surcharge escrow account for calendar year 1987: Report to Congress in response to Public Law 99-240  

SciTech Connect

This report is submitted to Congress. It summarizes the expenditures made by States and compact regions of funds rebated by DOE from the Surcharge Escrow Account created by the Act, and to assess the compliance of each State and compact region with the limitations on such expenditure. States with operating disposal sites (''sited States'') may collect a surcharge on disposal of low-level (compact regions currently without disposal sites) and nonmember States to transfer on a monthly basis 25 percent of the surcharges collected for deposit into a Surcharge Escrow Account administered by DOE. DOE, in turn, is required to transfer these funds, and interest which has accrued, back to the non-sited compacts and nonmember States which have compiled with milestones set forth in the Act for development of new disposal sites.

Not Available

1988-06-01T23:59:59.000Z

252

DOE G 435.1-1 Chapter 4, Low-Level Waste Requirements  

Directives, Delegations, and Requirements

The guide provides criteria for determining which DOE radioactive wastes are to be managed as low-level waste in accordance with DOE M 435.1-1, Chapter IV.

1999-07-09T23:59:59.000Z

253

Scenarios of the TWRS low-level waste disposal program  

Science Conference Proceedings (OSTI)

As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 Area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pretreating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste.

NONE

1994-10-01T23:59:59.000Z

254

Alternatives to the burial of low-level radioactive waste  

SciTech Connect

Available in abstract form only. Full text of publication follows: The approach for management of LLRW in different countries has evolved differently due to many factors such as culture and public sentiment, systems of government, public policy, and geography. There are also various methods to disposition LLRW including but not limited to: - Long term statutes and unconditional or conditional release of material, - Direct Burial, - Treatment (Processing) {yields} Burial, - Treatment {yields} Unconditional Release, - Recycle for Unconditional Release or Reuse Within Any Industry, - Controlled Recycle within Nuclear Industry. (author)

Price, J. Mark [Southern California Edison (United States)

2007-07-01T23:59:59.000Z

255

Carbon - 14 In Low-Level Waste  

Science Conference Proceedings (OSTI)

This report describes EPRI's collective efforts to understand and model the behavior of long-lived radionuclide Carbon-14 ((14)C) in low-level waste (LLW) disposal facilities.

1999-09-22T23:59:59.000Z

256

Alpha low-level stored waste systems design study  

SciTech Connect

The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.

Feizollahi, F.; Teheranian, B. [Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.; Quapp, W.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-08-01T23:59:59.000Z

257

Alpha low-level stored waste systems design study  

SciTech Connect

The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.

Feizollahi, F.; Teheranian, B. (Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.); Quapp, W.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1992-08-01T23:59:59.000Z

258

Interim Storage of Greater Than Class C Low Level Waste  

Science Conference Proceedings (OSTI)

This report serves as a guideline for the safe, interim, on-site storage of low level radioactive waste (LLW) that exceeds the activity limitations for near-surface disposal set forth in 10 CFR 61.55. This waste, referred to as greater than Class C (GTCC) waste, exceeds the Class C limits in the referenced regulation. At the present time, there is no licensed disposal facility for GTCC waste in the United States. This situation forces commercial nuclear reactors to store it on site until a disposal facil...

2001-11-12T23:59:59.000Z

259

How dangerous is low level radiation?  

Science Conference Proceedings (OSTI)

Problems in the threshold basis for the linear-no threshold theory of radiation carcinogenesis are reviewed, and it is shown that they very strongly suggest that the theory greatly overestimates the risk of low level radiation. A direct test of the theory, based on the radon-lung cancer relationship is described; it strongly reinforces that conclusion. However, it is shown that even if the linear-no threshold theory is valid; the public`s fear of low level radiation, at least in some contexts, is grossly exaggerated. 30 refs., 2 figs., 3 tabs.

Cohen, B.L. [Univ. of Pittsburgh, PA (United States)

1995-12-01T23:59:59.000Z

260

Low Level Waste On Site Storage Operating Guidelines -- Supplemental Information Manual  

Science Conference Proceedings (OSTI)

This Supplemental Information Manual captures essential information related to the implementation of an on-site low level waste (LLW) storage program. It summarizes the guidance and experience provided in the Interim On-Site Storage series of reports and should be used in concert with EPRI report 1018644, "Guidelines for Operating an Interim On Site Low Level Radioactive Waste Storage FacilityRevision 1," 2009.

2009-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Making Use of Low-Level Heat  

E-Print Network (OSTI)

Immense amounts of energy are being thrown away every day in petroleum refineries, chemical plants, and throughout all types of industrial operations. Much of this energy is at temperature levels below 350OF and is typically rejected to the atmosphere through cooling towers and air fin coolers. We will designate this as "low-level heat". Between 20 to 30% of all the energy that enters a plant is lost as low-level heat. In a 100,000 BPD refinery, this is the equivalent of about 2,500 BPD of oil, or 15 billion Btu's per day. If any improvement can be made in the recovery and reuse of this heat, the energy efficiency of our plants would be significantly increased.

Plaster, W. E.

1979-01-01T23:59:59.000Z

262

National low-level waste management program radionuclide report series, Volume 15: Uranium-238  

Science Conference Proceedings (OSTI)

This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

Adams, J.P.

1995-09-01T23:59:59.000Z

263

Low-level liquid waste treatment system start-up  

Science Conference Proceedings (OSTI)

Following removal of Cs-137 by ion exchange in the Supernatant Treatment System immediately upstream, the radioactive liquid waste is volume-reduced by evaporation. Trace amounts of Cs-137 in the resulting distillate are removed by ion exchange, then the distillate is discharged to the existing plant water treatment system. The concentrated product, 37 to 41 percent solids (by weight), is encapsulated in cement, producing a stable low-level waste form. This report provides a summary of work performed to test the Liquid Waste Treatment System following construction turnover and prior to radioactive operation. All mechanical and electrical components, piping, valves, pumps, tanks, controls, and instrumentation required to operate the system were tested; first with water, then with simulated waste. Subsystems (individual tanks, pumps, and control loops) were tested individually, then as a complete system. Finally, the system began a controlled start-up phase, which included the first four months of radioactive operation. Components were tested for operability then for performance data to verify the system`s ability to produce an acceptable waste form at design feed rates.

Baker, M.N.; Gessner, R.F.

1989-07-01T23:59:59.000Z

264

EA-0843: Idaho National Engineering Laboratory Low-Level and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

43: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste...

265

324 Building Compliance Project: Selection and evaluation of alternatives for the removal of solid remote-handled mixed wastes from the 324 Building  

Science Conference Proceedings (OSTI)

Six alternatives for the interim storage of remote-handled mixed wastes from the 324 Building on the Hanford Site have been identified and evaluated. The alternatives focus on the interim storage facility and include use of existing facilities in the 200 Area, the construction of new facilities, and the vitrification of the wastes within the 324 Building to remove the majority of the wastes from under RCRA regulations. The six alternatives are summarized in Table S.1, which identifies the primary facilities to be utilized, the anticipated schedule for removal of the wastes, the costs of the transfer from 324 Building to the interim storage facility (including any capital costs), and an initial risk comparison of the alternatives. A recently negotiated Tri-Party Agreement (TPA) change requires the last of the mixed wastes to be removed by May 1999. The ability to use an existing facility reduces the costs since it eliminates the need for new capital construction. The basic regulatory approvals for the storage of mixed wastes are in place for the PUREX facility, but the Form HI permit will need some minor modifications since the 324 Building wastes have some additional characteristic waste codes and the current permit limits storage of wastes to those from the facility itself. Regulatory reviews have indicated that it will be best to use the tunnels to store the wastes. The PUREX alternatives will only provide storage for about 65% of the wastes. This results from the current schedule of the B-Cell Clean Out Project, which projects that dispersible debris will continue to be collected in small quantities until the year 2000. The remaining fraction of the wastes will then be stored in another facility. Central Waste Complex (CWC) is currently proposed for that residual waste storage; however, other options may also be available.

Ross, W.A.; Bierschbach, M.C.; Dukelow, J.S. Jr. [and others

1995-06-01T23:59:59.000Z

266

Low level tank waste disposal study  

SciTech Connect

Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

Mullally, J.A.

1994-09-29T23:59:59.000Z

267

R&D ERL: Low level RF  

SciTech Connect

A superconducting RF (SRF) Energy Recovery Linac (ERL) is currently under development at the Collider-Accelerator Department (C-AD) at Brookhaven National Laboratory (BNL). The major components from an RF perspective are (a) a 5-cell SRF ERL cavity, (b) an SRF photocathode electron gun, and (c) a drive laser for the photocathode gun. Each of these RF subsystems has its own set of RF performance requirements, as well as common requirements for ensuring correct synchronism between them. A low level RF (LLRF) control system is currently under development, which seeks to leverage both technology and experience gained from the recently commissioned RHIC LLRF system upgrade. This note will review the LLRF system requirements and describe the system to be installed at the ERL.

Smith, K.

2010-01-15T23:59:59.000Z

268

Mixed low-level waste form evaluation  

Science Conference Proceedings (OSTI)

A scoping level evaluation of polyethylene encapsulation and vitreous waste forms for safe storage of mixed low-level waste was performed. Maximum permissible radionuclide concentrations were estimated for 15 indicator radionuclides disposed of at the Hanford and Savannah River sites with respect to protection of the groundwater and inadvertent intruder pathways. Nominal performance improvements of polyethylene and glass waste forms relative to grout are reported. These improvements in maximum permissible radionuclide concentrations depend strongly on the radionuclide of concern and pathway. Recommendations for future research include improving the current understanding of the performance of polymer waste forms, particularly macroencapsulation. To provide context to these estimates, the concentrations of radionuclides in treated DOE waste should be compared with the results of this study to determine required performance.

Pohl, P.I.; Cheng, Wu-Ching; Wheeler, T.; Waters, R.D.

1997-03-01T23:59:59.000Z

269

Long-Term, Low-Level Radwaste Volume-Reduction Strategies, Volumes 1-5  

Science Conference Proceedings (OSTI)

Sharp increases in the cost of low-level radioactive waste disposal make volume reduction an attractive alternative for owners of nuclear power plants. This study evaluated the leading volume-reduction options and developed the powerful VRTECH computer code to assist utilities in making long-range volume-reduction selection decisions.

1984-11-01T23:59:59.000Z

270

NIST Quantifies Low Levels of 'Heart Attack Risk' Protein  

Science Conference Proceedings (OSTI)

NIST Quantifies Low Levels of 'Heart Attack Risk' Protein. For Immediate Release: November 3, 2009. ...

2012-10-02T23:59:59.000Z

271

Low-Level Waste Disposal Facility Federal Review Group (LFRG) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Management » Compliance » Low-Level Waste Program Management » Compliance » Low-Level Waste Disposal Facility Federal Review Group (LFRG) Low-Level Waste Disposal Facility Federal Review Group (LFRG) The Office of Environmental Management (EM) Low-Level Waste Disposal Facility Federal Review Group (LFRG) was established to fulfill the requirements contained in Section I.2.E(1)(a) of the Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and exercised by the senior managers of EM. The LFRG assists EM senior managers in the review of documentation that supports the approval of performance assessments and composite analyses or appropriate Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)documents as described in Section II of the LFRG Charter. Through its efforts, the LFRG supports the issuance

272

DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Weigh Alternatives for Greater Than Class C Low-Level Waste to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal July 20, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will evaluate disposal options for Greater Than Class C (GTCC) low-level radioactive waste (LLW) generated from the decommissioning of nuclear power plants, medical activities and nuclear research. DOE delivered to the Federal Register this week a Notice of Intent (NOI) to prepare an Environmental Impact Statement (EIS), which will evaluate how and where to safely dispose of GTCC LLW that is currently stored at commercial nuclear power plants and other generator sites across the country. The Energy Policy Act of 2005 requires DOE to report to Congress on its evaluation of

273

Disposal of low-level and low-level mixed waste: audit report  

Science Conference Proceedings (OSTI)

The Department of Energy (Department) is faced with the legacy of thousands of contaminated areas and buildings and large volumes of `backlog` waste requiring disposal. Waste management and environmental restoration activities have become central to the Department`s mission. One of the Department`s priorities is to clean up former nuclear weapons sites and find more effective and timely methods for disposing of nuclear waste. This audit focused on determining if the Department was disposing of low-level and low-level mixed waste in the most cost-effective manner.

NONE

1998-09-03T23:59:59.000Z

274

Pennsylvania Source Term Tracking System. National Low-Level Waste Management Program  

SciTech Connect

The Pennsylvania Source Term Tracking System tabulates surveys received from radioactive waste generators in the Commonwealth of radioactive waste is collected each quarter from generators using the Low-Level Radioactive Waste Management Quarterly Report Form (hereafter called the survey) and then entered into the tracking system data base. This personal computer-based tracking system can generate 12 types of tracking reports. The first four sections of this reference manual supply complete instructions for installing and setting up the tracking system on a PC. Section 5 presents instructions for entering quarterly survey data, and Section 6 discusses generating reports. The appendix includes samples of each report.

1992-08-01T23:59:59.000Z

275

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE))

Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal  Facility Performance Assessments and Composite Analyses

276

Concerns with low-level ionizing radiation  

SciTech Connect

Populations have been studied in geographic areas of increased natural radiation, in radiation-exposed workers, in patients medically exposed, and in accidental exposures. No reproducible evidence exists of harmful effects from increases in background radiation three to ten times the usual levels. There is no increase in leukemia or other cancers among American military participants in nuclear testing, no increase in leukemia or thyroid cancer among medical patients receiving {sup 131}I for diagnosis or treatment of hypothyroidism, and no increase in lung cancer among nonsmokers exposed to increased radon in the home. The association of radiation with the atomic bomb and with excessive regulatory and health physics as-low-as-reasonably-achievable (ALARA) radiation levels practices has created a climate of fear about the dangers of radiation at any level. However, there is no evidence that radiation exposures at the levels equivalent to medical usage are harmful. The unjustified excessive concern with radiation at any level, however, precludes beneficial uses of radiation and radioactivity in medicine, science, and industry.

Yalow, R.S.

1994-12-31T23:59:59.000Z

277

Soil characterization methods for unsaturated low-level waste sites  

SciTech Connect

To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies.

Wierenga, P.J.; Young, M.H. (Arizona Univ., Tucson, AZ (United States). Dept. of Soil and Water Science); Gee, G.W.; Kincaid, C.T. (Pacific Northwest Lab., Richland, WA (United States)); Hills, R.G. (New Mexico State Univ., Las Cruces, NM (United States). Dept. of Mechanical Engineering); Nicholson, T.J.; Cady, R.E. (Nuclear Regulatory Commission, Washington, DC (United States))

1993-01-01T23:59:59.000Z

278

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

279

National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1997  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985 to assist states and compacts in their siting and licensing efforts for low-level radioactive waste disposal facilities. The National Low-Level Waste Management Program (NLLWMP) is the element of the DOE that performs the key support activities under the Act. The NLLWMP`s activities are driven by the needs of the states and compacts as they prepare to manage their low-level waste under the Act. Other work is added during the fiscal year as necessary to accommodate new requests brought on by status changes in states` and compacts` siting and licensing efforts. This report summarizes the activities and accomplishments of the NLLWMP during FY 1997.

Rittenberg, R.B.

1998-03-01T23:59:59.000Z

280

The performance assessment process for DOE low-level waste disposal facilities  

Science Conference Proceedings (OSTI)

Safety of the low-level waste disposal facilities, as well as al US DOE facilities, is a primary criterion in their design and operation. Safety of low-level waste disposal facilities is evaluated from two perspectives. Operational safety is evaluated based on the perceived level of hazard of the operation. The safety evaluations vary from simple safety assessments to very complex safety analysis reports, depending on the degree of hazard associated with the facility operation. Operational requirements for the Department's low-level waste disposal facilities, including long-term safety are contained in DOE Order 5820.2A, Radioactive Waste Management (1). This paper will focus on the process of conducting long-term performance analyses rather than on operational safety analysis.

Wilhite, E.L.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The performance assessment process for DOE low-level waste disposal facilities  

Science Conference Proceedings (OSTI)

Safety of the low-level waste disposal facilities, as well as al US DOE facilities, is a primary criterion in their design and operation. Safety of low-level waste disposal facilities is evaluated from two perspectives. Operational safety is evaluated based on the perceived level of hazard of the operation. The safety evaluations vary from simple safety assessments to very complex safety analysis reports, depending on the degree of hazard associated with the facility operation. Operational requirements for the Department`s low-level waste disposal facilities, including long-term safety are contained in DOE Order 5820.2A, Radioactive Waste Management (1). This paper will focus on the process of conducting long-term performance analyses rather than on operational safety analysis.

Wilhite, E.L.

1992-11-01T23:59:59.000Z

282

Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 3, May-June 1994  

SciTech Connect

This issue includes the following articles: Vermont ratifies Texas compact; Pennsylvania study on rates of decay for classes of low-level radioactive waste; South Carolina legislature adjourns without extending access to Barnwell for out-of-region generators; Southeast Compact Commission authorizes payments for facility development, also votes on petitions, access contracts; storage of low-level radioactive waste at Rancho Seco removed from consideration; plutonium estimates for Ward Valley, California; judgment issued in Ward Valley lawsuits; Central Midwest Commission questions court`s jurisdiction over surcharge rebates litigation; Supreme Court decides commerce clause case involving solid waste; parties voluntarily dismiss Envirocare case; appellate court affirms dismissal of suit against Central Commission; LLW Forum mixed waste working group meets; US EPA Office of Radiation and Indoor Air rulemakings; EPA issues draft radiation site cleanup regulation; EPA extends mixed waste enforcement moratorium; and NRC denies petition to amend low-level radioactive waste classification regulations.

NONE

1994-06-01T23:59:59.000Z

283

Interim report: Waste management facilities cost information for mixed low-level waste  

SciTech Connect

This report contains preconceptual designs and planning level life-cycle cost estimates for treating alpha and nonalpha mixed low-level radioactive waste. This report contains information on twenty-seven treatment, storage, and disposal modules that can be integrated to develop total life cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of estimating data is also summarized in this report.

Feizollahi, F.; Shropshire, D.

1994-03-01T23:59:59.000Z

284

Advanced Volume Reduction and Waste Segregation Strategies for Low-Level Waste Disposal  

Science Conference Proceedings (OSTI)

EPRI has initiated a series of studies to mitigate the impact of limited disposal site access on continued operations. This report investigates two Class BC low level radioactive waste minimization techniques. The first is an advanced volume reduction (VR) technique for non-metal filter waste, while the second is a compilation of advanced waste segregation strategies aimed at minimizing the generation of BC wastes.

2003-11-07T23:59:59.000Z

285

Review and Demonstration of Korea Hydro & Nuclear Power (KHNP) Vitrification Technology for Low Level Waste Treatment  

Science Conference Proceedings (OSTI)

Vitrification is the process of stabilizing nuclides in a glass matrix in order to enhance disposal options. A mature technology, vitrification has been applied to high level radioactive waste (HLW) for more than 40 years. As disposal costs and public concern for the environment increase, vitrification is considered to be a promising technology for low level waste (LLW) stabilization. This report covers the characteristics of LLW generated from nuclear power plants, current melter technologies ...

2013-08-14T23:59:59.000Z

286

Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams  

SciTech Connect

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

1992-04-01T23:59:59.000Z

287

SIGWX Charts - Low Level Significant Weather | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Research Safety States Supply Chain SIGWX Charts - Low Level Significant Weather Safety DataTools Apps Challenges Resources Blogs Let's Talk Safety You are here...

288

Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms.  

SciTech Connect

The technology of room-temperature-setting phosphate ceramics or Ceramicrete{trademark} technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicrete{trademark} technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR {number_sign} AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactions between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicrete{trademark} process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicrete{trademark} technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility.

Barber, D. B.; Singh, D.; Strain, R. V.; Tlustochowicz, M.; Wagh, A. S.

1998-02-17T23:59:59.000Z

289

Proceedings: 1994 EPRI International Low Level Waste Conference  

Science Conference Proceedings (OSTI)

EPRI's third annual International Low Level Waste Conference focused on key economic, regulatory, and technical interests associated with low level waste. Topics discussed included advanced wet waste processing and technology, radwaste cost reduction, storage and disposal issues, mixed waste, advanced ion-exchange technology, decontamination, and source term reduction.

1995-06-14T23:59:59.000Z

290

Importance of Low-Level Jets to Climate: A Review  

Science Conference Proceedings (OSTI)

Low-level jets (LLJs) occur frequently in many parts of the world. These low-level wind speed maxima are important for both the horizontal and vertical fluxes of temperature and moisture and have been found to be associated with the development ...

David J. Stensrud

1996-08-01T23:59:59.000Z

291

Low Level Waste Disposition - Quantity and Inventory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. This study provides an estimate of Class A/B/C low level waste (LLW), greater than Class C (GTCC) waste, mixed LLW and mixed GTCC waste generated from the following initial set of fuel cycles and recycling processes: 1. Operations at a geologic repository based upon a once through light

292

Low Level Waste Disposition - Quantity and Inventory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. This study provides an estimate of Class A/B/C low level waste (LLW), greater than Class C (GTCC) waste, mixed LLW and mixed GTCC waste generated from the following initial set of fuel cycles and recycling processes: 1. Operations at a geologic repository based upon a once through light

293

Potential for Subsidence at the Low-level Waste Disposal Area  

Science Conference Proceedings (OSTI)

U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

Keck, Karen Nina; Seitz, Roger Ray

2002-09-01T23:59:59.000Z

294

Scenarios of the TWRS low-level waste disposal program. Revision 1  

Science Conference Proceedings (OSTI)

As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pre-treating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste.

NONE

1995-01-01T23:59:59.000Z

295

Reversal of fortune for industry in DOE low-level waste decision  

SciTech Connect

Thanks to the Energy Department, states have triumphed over industry groups in a battle over the disposition of surcharge money collected for low-level radioactive waste disposal. In a March 31 announcement, the Energy Department ruled against industry groups seeking to prevent certain states from receiving partial rebates of surcharge money collected by DOE from generators of low-level radioactive waste. The rebated money would have gone back to generators had DOE sided with the industry groups, which included the Edison Electric Institute. The surcharge issue became controversial when some states decided to sign 18-month contracts with South Carolina to continue sending waste shipments to an existing disposal site at Barnwell, SC. South Carolina was the only one of three states with an existing low-level disposal site to keep it open to outside shipments; Nevada and Washington closed their disposal sites in June 1992 to all states outside their regional compacts. Industry groups charged that the 18-month contracts for disposal at Barnwell did not meet the statutory requirements for states to receive the surcharge rebates. They maintained the law effectively required states to develop new disposal capacity, rather than continuing to rely on Barnwell or the other two existing sites under a limited duration contract. DOE rejected that reasoning, saying that while the law was designed to encourage new capacity, it did not require it for compliance with the January 1993 milestone.

Lobsenz, G.

1994-04-06T23:59:59.000Z

296

Proceedings of the tenth annual DOE low-level waste management conference: Session 1: Institutional and regulatory issues  

Science Conference Proceedings (OSTI)

This document contains eleven papers on various aspects of low-level radioactive waste regulation. Topics include: EPA environmental standards; international exemption principles; the concept of below regulatory concern; envirocare activities in Utah; mixed waste; FUSRAP and the Superfund; and a review of various incentive programs. Individual papers are processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

297

Proceedings of the tenth annual DOE low-level waste management conference: Session 2: Site performance assessment  

Science Conference Proceedings (OSTI)

This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database. (TEM)

Not Available

1988-12-01T23:59:59.000Z

298

Proceedings of the tenth annual DOE low-level waste management conference: Session 4: Waste treatment minimization  

SciTech Connect

This document contains eleven papers on various aspects of low-level radioactive waste management. Topics in this volume include: volume reduction plans; incentitives; and cost proposals; acid detoxification and reclamation; decontamination of lead; leach tests; West Valley demonstration project status report; and DOE's regional management strategies. Individual papers were processed separately for the data base. (TEM)

1988-12-01T23:59:59.000Z

299

Proceedings of the tenth annual DOE low-level waste management conference: Session 4: Waste treatment minimization  

SciTech Connect

This document contains eleven papers on various aspects of low-level radioactive waste management. Topics in this volume include: volume reduction plans; incentitives; and cost proposals; acid detoxification and reclamation; decontamination of lead; leach tests; West Valley demonstration project status report; and DOE's regional management strategies. Individual papers were processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

300

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcili~l' Federal Review Group il1allUlli Revision 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group Manual, Revision 3, is approved for use as of the most recent date below. Date Chair, Low-Level Waste Disposal Federal Review Group Andrew WalJo, 1II Deputy Director, Otlice of Nuclear Safety, Quality Assurance, and Environment Department of Energy OHlce of Health, Safety, and Security e C. WilJiams Associate Administrator for Infrastructure and Environment National Nuclear Security Administration Low-Level 'Vaste Disposal Facility Federal Review Group J1aJll/ai

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Low-Level Airflow in Southern Wyoming during Wintertime  

Science Conference Proceedings (OSTI)

A number of low-level flights were conducted with an instrumented aircraft to investigate wind characteristics in the planetary boundary layer over the low regions of the continental divide in southern Wyoming. The airflow upwind of the ...

John D. Marwitz; Paul J. Dawson

1984-06-01T23:59:59.000Z

302

Observations of Low-Level Baroclinity Generated by Anvil Shadows  

Science Conference Proceedings (OSTI)

Low-level cooling beneath the cirrus anvil canopies of supercell thunderstorms is documented in two Verification of the Origins of Rotation in Tornadoes Experiment cases and in the 17 May 1981 Arcadia, Oklahoma, supercell. Surface temperature ...

Paul M. Markowski; Erik N. Rasmussen; Jerry M. Straka; David C. Dowell

1998-11-01T23:59:59.000Z

303

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE))

This Revision 3 of the Low-Level Waste Disposal  Facility Federal Review Group (LFRG) Manual was prepared primarily to include review criteria for the review of transuranic (TRU) waste disposal...

304

Bounding Values for Low-Level-Waste Transport Exemptions and Disposal  

Science Conference Proceedings (OSTI)

Characterizations and bounding computational results determined by the Oak Ridge National Laboratory have been offered to the U.S. Nuclear Regulatory Commission as supporting technical bases for regulatory considerations in the packaging, transport, retrievable emplacement and disposal of radioactive low-level waste contaminated with fissile materials. The fissile materials included 100 wt % U, 10 wt % U in uranium, 100 wt % U, 100 wt % Pu, or plutonium as less than 235 235 233 239 76 wt % Pu, more than 12 wt % Pu, and less than 12 wt % Pu. The considered waste matrixes 239 240 241 included silicon dioxide, carbon, light water and polyethylene, heavy water, or beryllium with summary examinations of other potential matrixes. The limiting concentrations and geometries for these bounding conjectured low-level-waste matrixes are presented in this paper.

Elam, K.R.; Hopper, C.M.; Lichtenwalter, J.J.; Parks, C.V.

1999-09-20T23:59:59.000Z

305

Decommissioning Low Level Waste Management and Reduction Guide  

Science Conference Proceedings (OSTI)

Nuclear plants undertaking decommissioning projects find that costs of low-level waste (LLW) management are a substantial portion of the total cost. To assist the industry in planning and optimizing their decommissioning radwaste management practices, EPRI developed a guide with more than 75 areas of guidance and an extensive lessons learned section. Using this report will aid utilities in successfully planning, executing, and disposing of low-level wastes during a decommissioning project.

1999-09-17T23:59:59.000Z

306

Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices  

SciTech Connect

Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

None

1980-06-01T23:59:59.000Z

307

Project report for the commercial disposal of mixed low-level waste debris  

SciTech Connect

This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

1994-05-01T23:59:59.000Z

308

Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 2, Appendixes  

SciTech Connect

This report presents information derived form the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. Volume 1 contains the main text. This Volume contains the appendixes, including data and supporting information that verify content and results found in the main text.

Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

1989-01-01T23:59:59.000Z

309

Melter system technology testing for Hanford Site low-level tankwaste vitrification  

Science Conference Proceedings (OSTI)

Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for Complete melter feasibility and system operability immobilization of the low-level waste (LLW) tests, select reference melter(s), and establish reference derived from retrieval and pretreatment of the radioactive LLW glass formulation that meets complete systems defense wastes stored in 177 underground tanks, commercial requirements (June 1996). Available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference Submit conceptual design and initiate definitive design technologies for the new LLW vitrification mission.

Wilson, C.N.

1996-05-03T23:59:59.000Z

310

Interim Storage of Greater than Class C Low Level Waste, Rev. 1  

Science Conference Proceedings (OSTI)

This report serves as a guideline for the safe, interim on-site storage of low-level radioactive waste (LLW) that exceeds the activity limitations for near-surface disposal set forth in 10 CFR 61.55. The nuclear industry refers to this waste as "greater than Class C (GTTC) waste" as it exceeds the Class C limits in the referenced regulation. At the present time, there is no licensed disposal facility for GTCC waste in the United States . This situation forces commercial nuclear reactors to store it on si...

2003-07-23T23:59:59.000Z

311

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses U.S. DEPARTMENT OF ENERGY DOE G 435.1-4 i (and ii) DRAFT XX-XX-XX LLW Maintenance Guide Revision 0, XX-XX-XX Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses CONTENTS 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . .

312

Vitrification of low-level and mixed wastes  

SciTech Connect

The US Department of Energy (DOE) and nuclear utilities have large quantities of low-level and mixed wastes that must be treated to meet repository performance requirements, which are likely to become even more stringent. The DOE is developing cost-effective vitrification methods for producing durable waste forms. However, vitrification processes for high-level wastes are not applicable to commercial low-level wastes containing large quantities of metals and small amounts of fluxes. New vitrified waste formulations are needed that are durable when buried in surface repositories.

Johnson, T.R.; Bates, J.K.; Feng, Xiangdong

1994-12-31T23:59:59.000Z

313

GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra  

Science Conference Proceedings (OSTI)

The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

Winn, W.G.

1999-07-28T23:59:59.000Z

314

Immobilized low-level waste disposal options configuration study  

Science Conference Proceedings (OSTI)

This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

Mitchell, D.E.

1995-02-01T23:59:59.000Z

315

Application of spectral summing to indeterminate suspect low-level drums at Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

An analytical technique developed by Pajarito Scientific Corporation (PSC), utilizing spectral summing of spectra from groups of drums of similar waste type, is being employed by the Waste Disposition Project - Low Level Waste Disposal (WDP-LLWD) Group at Los Alamos National Laboratory (LANL). This technique has been used to disposition low-level radioactive waste that has dropped out of the transuranic (TRU) category and has no place to go unless it can be proven to be LLW and not TRU. The TRU program at LANL run by Mobile Characterization Services (MCS) employs two High Efficiency Neutron Counters (HENC) with built-in gamma assay systems to assay radioactive waste for shipment and disposal as TRU waste at the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico. As well as being certified for WIPP assays, the HENC systems can also be used for low-level waste assays for disposal at LANL or off-site disposal facilities, such as the Nevada Test Site (NTS). Some of the waste processed through the HENC systems cannot be confinned TRU due to the absence of detected TRU alpha emitters above the TRU cutoff of 100 nCi/g. This waste becomes suspect low-level waste (SLLW). In many cases, the waste also can't be classified as LLW because the minimum detectable activity (MDA) of TRU radio nuclides is above the 100 nCi/g level. These wastes that do not have enough detectable TRU activity to be classified as TRU waste and have too high a MDA to be classified as LLW enter a radioactive waste characterization indetenninate status that prevents their dispositioning as either TRU waste or LLW. Spectral summing allows an experienced ganuna spectroscopy analyst to add the HENC gamma spectra of a number of similar waste items together to form a consolidated (summed) spectrum. This summed spectrum contains the assay results of the group of items rather than the individual item, and gamma peaks that were not discernable in the individual spectra can become quantifiable in the summed spectrum and the MDA for group sum is reduced. The group of waste items can then be properly classified as LLW based on the summed spectrum and valid assay values can be assigned for disposal. This technique has been successfully applied to a set of 52 debris drums - with individual MDA > 100 nCi/g - with a resulting group total TRU alpha activity concentration below 40nCi/g. Further application of the technique at LANL to other waste drums that are measured on a WIPP certified HENC system is planned and good candidate drum sets are being evaluated as indeterminate situations develop.

Gruetzmacher, Kathleen M [Los Alamos National Laboratory; Veilleux, John M [Los Alamos National Laboratory; Lucero, Randy P [PAJARITO SCIENTIFIC CORAPTION; Seamans, Jr., James V [PAJARITO SCIENTIFIC CORPORATION; Clapham, Martin J [PAJARITO SCIENTIFIC CORPORATION

2010-11-09T23:59:59.000Z

316

Application of spectral summing to indeterminate suspect low-level drums at Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

The spectral summing technique developed by Pajarito Scientific Corporation (PSC) is a unique modeling technique that is being employed by the Waste Disposition Project - Low Level Waste Disposition (WDP-LLWD) Group at Los Alamos National Laboratory (LANL). This technique has been used to disposition low-level radioactive waste that has dropped out of the transuranic (TRU) category and has no disposal path unless it can be proven to be LLW and not TRU. The TRU program at LANL run by Mobile Characterization Services (MCS) employs High Efficiency Neutron Counters (HENC) with built-in gamma assay systems to assay radioactive waste for shipment and disposal as TRU waste at the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico. As well as being certified for WIPP assays, the HENC systems can also be used for low-level waste assays for disposal at LANL or off-site disposal facilities, such as the Nevada Test Site (NTS). Some of the waste processed through the HENC systems cannot be confirmed TRU due to the absence of detected TRU alpha emitters above the TRU cutoff of 100 nCi/g. This waste becomes suspect low-level waste (SLLW). In many cases, the waste also can't be classified as LLW because the minimum detectable activity (MDA) of TRU radionuclides is above the 100 nCi/g level. These wastes that do not have enough detectable TRU activity to be classified as TRU waste and have TRU MDAs > 100nCi/g enter a radioactive waste characterization indeterminate state that prevents their dispositioning as either TRU waste or LLW. Spectral summing allows an experienced gamma spectroscopy analyst to add the HENC gamma spectra of a number of similar waste items together to form a consolidated (summed) spectrum. This summed spectrum contains the assay results of the group of items rather than the individual item, and gamma peaks that were not discemable in the individual spectra become quantifiable in the summed spectrum and the MDA for the group sum is reduced. The group of waste items can then be properly classified as LLW waste on the summed spectrum and valid assay values can be assigned for disposal. This technique has been successfully applied to a set of 52 debris drums - with individual MDA > 100nCi/g - with a resulting group total TRU alpha activity concentration below 40nCi/g. Further application of the technique at LANL to other debris drums and sludge drums that were measured on a WIPP certified HENe is planned and good candidate drum sets are being evaluated.

Gruetzmacher, Kathleen M [Los Alamos National Laboratory; Veilleux, John M [Los Alamos National Laboratory; Lucero, Randy P [PAJARITO SCIENTIFIC CORPORATION; Seamans, Jr, J. V. [PAJARITO SCIENTIFIC CORPATION; Clapham, M. J. [PAJARITO SCIENTIFIC CORPORATION

2011-01-27T23:59:59.000Z

317

Marine plankton as an indicator of low-level radionuclide contamination in the Southern Ocean  

SciTech Connect

We have initiated an investigation of the utility of marine plankton as bioconcentrating samplers of low-level marine radioactivity in the southern hemisphere. A literature review shows that both freshwater and marine plankton have trace element and radionuclide concentration factors (relative to water) of up to 10/sup 4/. In the years 1956-1958, considerable work was done on the accumulation and distribution of a variety of fission and activation products produced by the nuclear tests in the Marshall Islands. Since then, studies have largely been confined to a few selected radionuclides, and by far most of this work has been done in the northern hemisphere. We participated in Operation Deepfreeze 1981, collecting 32 plankton samples from the U.S. Coast Guard Cutter Glacier on its Antarctic cruise, while Battelle Pacific Northwest Laboratories concurrently sampled air, water, rain and fallout. We were able to measure concentrations of the naturally occurring radionuclides /sup 7/Be, /sup 40/K and the U and th series, and we believe that we have detected low levels of /sup 144/Ce and /sup 95/Nb in seven samples ranging as far south as 68/sup 0/. There is a definite association between the radionuclide content of plankton and air filters, suggesting that aerosol resuspension of marine radioactivity may be occurring. Biological identification of the plankton suggests a possible correlation between radionuclide concentration and foraminifera content of the samples. 38 references, 7 figures, 3 tables.

Marsh, K.V.; Buddemeier, R.W.

1984-07-01T23:59:59.000Z

318

Proceedings: 1997 EPRI International Low-Level Waste Conference  

Science Conference Proceedings (OSTI)

Due to the changing business environment, U.S. utilities are evaluating methods to improve operations while minimizing costs. EPRI's sixth annual International Low-Level Waste (LLW) Conference featured 55 papers on a variety of topics. The majority of papers presented new or optimized technology and plant enhancements to reduce cost and improve LLW management.

1999-05-27T23:59:59.000Z

319

Preventing Biogas Generation in Low Level Waste: Interim Report  

Science Conference Proceedings (OSTI)

This interim report describes actions that can be taken to control and prevent biogas generation in waste containers and plant systems. In addition, it describes additional work in progress that will form the basis for the final report. This research was undertaken in response to nuclear power stations experiencing biogas generation from plant systems and low level waste containers.

1997-11-11T23:59:59.000Z

320

Proceedings: 1995 EPRI International Low-Level Waste Conference  

Science Conference Proceedings (OSTI)

EPRI's fourth annual International Low-Level Waste (LLW) Conference featured 72 papers on a variety of topics. Some of the subjects included were interim storage experiences; liquid, wet, and DAW improved processing and technology; mixed waste; decontamination; and building public trust. In addition, a nuclear industry and EPRI LLW projects update was presented.

1995-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Low-Level Cloudiness in the Appalachian Region  

Science Conference Proceedings (OSTI)

Low-level (<2 km) cloud frequencies have been derived for the Appalachian Mountain region for the period 1985–88 based on in situ measurements by optical cloud and relative humidity sensors, and regional analyses incorporating the U.S. Air Force ...

Michael J. Markus; Bruce H. Bailey; Ronald Stewart; Perry J. Samson

1991-08-01T23:59:59.000Z

322

Potential Vorticity of Monsoonal Low-Level Flows  

Science Conference Proceedings (OSTI)

A study of the potential vorticity budget for the low-level flows over the Arabian Sea and Indian Ocean is presented here. This study covers a 17-day period between 11 and 27 June 1979 during the GARP Monsoon Experiment (MONEX). Data sets for ...

Da-Sheng Yang; T. N. Krishnamurti

1981-12-01T23:59:59.000Z

323

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies.

1992-04-01T23:59:59.000Z

324

Low-level waste vitrification contact maintenance viability study  

SciTech Connect

This study investigates the economic viability of contact maintenance in the Low-Level Waste Vitrification Facility, which is part of the Hanford Site Tank Waste Remediation System. This document was prepared by Flour Daniel, Inc., and transmitted to Westinghouse Hanford Company in September 1995.

Leach, C.E., Westinghouse Hanford

1996-07-12T23:59:59.000Z

325

A Climatology of Nocturnal Low-Level Jets at Cabauw  

Science Conference Proceedings (OSTI)

A climatology of nocturnal low-level jets (LLJs) is presented for the topographically flat measurement site at Cabauw, the Netherlands. LLJ characteristics are derived from a 7-yr half-hourly database of wind speed profiles, obtained from the 200-...

P. Baas; F. C. Bosveld; H. Klein Baltink; A. A. M. Holtslag

2009-08-01T23:59:59.000Z

326

Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste  

SciTech Connect

A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

1997-05-01T23:59:59.000Z

327

Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory  

SciTech Connect

This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

1994-03-01T23:59:59.000Z

328

A model for a national low level waste program  

SciTech Connect

A national program for the management of low level waste is essential to the success of environmental clean-up, decontamination and decommissioning, current operations and future missions. The value of a national program is recognized through procedural consistency and a shared set of resources. A national program requires a clear waste definition and an understanding of waste characteristics matched against available and proposed disposal options. A national program requires the development and implementation of standards and procedures for implementing the waste hierarchy, with a specitic emphasis on waste avoidance, minimization and recycling. It requires a common set of objectives for waste characterization based on the disposal facility's waste acceptance criteria, regulatory and license requirements and performance assessments. Finally, a national waste certification program is required to ensure compliance. To facilitate and enhance the national program, a centralized generator services organization, tasked with providing technical services to the generators on behalf of the national program, is necessary. These subject matter experts are the interface between the generating sites and the disposal facility(s). They provide an invaluable service to the generating organizations through their involvement in waste planning prior to waste generation and through championing implementation of the waste hierarchy. Through their interface, national treatment and transportation services are optimized and new business opportunities are identified. This national model is based on extensive experience in the development and on-going management of a national transuranic waste program and management of the national repository, the Waste Isolation Pilot Plant. The Low Level Program at the Savannah River Site also successfully developed and implemented the waste hierarchy, waste certification and waste generator services concepts presented below. The Savannah River Site services over forty generators and has historically managed over 12,000 cubic meters of low level waste annually. The results of the waste minimization program at the site resulted in over 900 initiatives, avoiding over 220,000 cubic meters of waste for a life cycle cost savings of $275 million. At the Los Alamos National Laboratory, the low level waste program services over 20 major generators and several hundred smaller generators that produce over 4,000 cubic meters of low level waste annually. The Los Alamos National Laboratory low level waste program utilizes both on-site and off-site disposal capabilities. Off-site disposal requires the implementation of certification requirements to utilize both federal and commercial options. The Waste Isolation Pilot Plant is the US Department of Energy's first deep geological repository for the permanent disposal of Transuanic waste. Transuranic waste was generated and retrievably stored at 39 sites across the US. Transuranic waste is defined as waste with a radionuclide concentration equal to or greater than 100 nCi/g consisting of radionuclides with half-lives greater than 20 years and with an atomic mass greater than uranium. Combining the lessons learned from the national transuranic waste program, the successful low level waste program at Savannah River Site and the experience of off-site disposal options at Los Alamos National Laboratory provides the framework and basis for developing a viable national strategy for managing low level waste.

Blankenhorn, James A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

329

Criticality safety considerations for low-level-waste facilities  

SciTech Connect

The nuclear criticality safety for handling and burial of certain special nuclear materials (SNM) at low-level-waste (LLW) facilities is licensed by the US Nuclear Regulatory Commission (NRC). Recently, Oak Ridge National Laboratory (ORNL) staff assisted the NRC Office of Nuclear Material Safety and Safeguards, Low-Level-Waste and Decommissioning Projects Branch, in developing technical specifications for the nuclear criticality safety of {sup 235}U and {sup 235}Pu in LLW facilities. This assistance resulted in a set of nuclear criticality safety criteria that can be uniformly applied to the review of LLW package burial facility license applications. These criteria were developed through the coupling of the historic surface-density criterion with current computational technique to establish safety criteria considering SNM material form and reflector influences. This paper presents a summary of the approach used to establish and to apply the criteria to the licensing review process.

Hopper, C.M.

1995-04-01T23:59:59.000Z

330

Mixed and low-level waste treatment facility project  

SciTech Connect

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

Not Available

1992-04-01T23:59:59.000Z

331

Proceedings: 2010 EPRI International Low Level Waste Conference  

Science Conference Proceedings (OSTI)

Nuclear utilities are continually evaluating methods to improve operations, minimize costs, and find alternatives for disposal of Nuclear Regulatory Commission (NRC) Class A, B, and C waste. The Electric Power Research Institutes (EPRIs) 19th annual International Low Level Waste (LLW) Conferencecoupled with the 33rd annual American Society of Mechanical Engineers (ASME)/EPRI Radwaste Workshopoffered valuable insights into this effort by presenting papers covering new or improved technology developed worl...

2011-06-07T23:59:59.000Z

332

Proceedings: 1996 EPRI International Low Level Waste Conference  

Science Conference Proceedings (OSTI)

Due to the changing business environment, U.S. utilities are evaluating methods to improve operations while minimizing costs. EPRI's fifth annual International Low Level Waste (LLW) Conference featured 65 papers on a variety of topics. More than a third of the papers emphasized liquid-wet waste processing enhancements, new or improved technologies, and LLW program cost reduction. Other subjects included dry active waste processing cost reduction, the new DOT/NRC transport regulations, mixed waste, vitrif...

1996-12-06T23:59:59.000Z

333

Chemical digestion of low level nuclear solid waste material  

DOE Patents (OSTI)

A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

Cooley, Carl R. (Richland, WA); Lerch, Ronald E. (Richland, WA)

1976-01-01T23:59:59.000Z

334

Mixed and Low-Level Waste Treatment Facility Project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

1992-04-01T23:59:59.000Z

335

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

1992-04-01T23:59:59.000Z

336

Remote-Handled Transuranic Content Codes  

SciTech Connect

Each content code uniquely identifies the generated waste and provides a system for tracking theprocess and packaging history. Each content code begins with a two-letter site abbreviation thatdesignates the physical location of the RH-TRU waste. The site-specific letter designations for eachof the DOE sites are provided in Table 2. All TRU waste generating/storage sites are included inTable 2 for completeness. Not all of the sites listed in Table 2 have generated/stored RH-TRU waste.

Washington TRU Solutions

2000-11-01T23:59:59.000Z

337

A preliminary evaluation of alternatives for treatment of INEL Low-Level Waste and low-level mixed waste  

SciTech Connect

The Mixed and Low-Level Waste Treatment Facility (MLLWTF) project was established in 1991 by the US Department of Energy Idaho Field Office to provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies and evaluates the alternatives for treating that waste. Twelve treatment alternatives, ranging from ``no-action`` to constructing and operating the MLLWTF, are identified and evaluated. Evaluations include facility performance, environmental, safety, institutional, schedule, and rough order-of-magnitude cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decision making. Analysis of results indicated further study is necessary to obtain the best estimate of future waste volumes and characteristics from the expanded INEL Decontamination and Decommissioning Program. It is also recommended that conceptual design begin as scheduled on the MLLWTF, maximum treatment alternative while re-evaluating the waste volume projections.

Smith, T.H.; Roesener, W.S.; Jorgensen-Waters, M.J.; Edinborough, C.R.

1992-06-01T23:59:59.000Z

338

Michael Burns: Low-Level Radioactive Waste Regulation: Science, Politics and Fear  

E-Print Network (OSTI)

based categories for mixed waste and waste below regulatorysite a disposal facility. Mixed wastes controlled by the EPAguidelines for siting LLRW mixed waste facilities. However,

Waendelin, Anna W.

1988-01-01T23:59:59.000Z

339

Management Strategies for Treatment and Disposal of Utility-Generated Low-Level Radioactive Waste  

Science Conference Proceedings (OSTI)

Some states or regional compacts may be unable to establish LLRW disposal facilities by the January 1, 1993, deadline. The possible strategies described in this report should help nuclear utilities prepare for this possibility by identifying safe and cost-effective waste disposal options.

1989-04-11T23:59:59.000Z

340

LOW-LEVEL RADIOACTIVE WASTE BURIAL AT THE PALOS FOREST PRESERVE...  

NLE Websites -- All DOE Office Websites (Extended Search)

of numerical simulation of ground-water flow 19 11. Relative sensitivity of the hydraulic conductivity of the glacial drift (Ktill); resistance to vertical flow in the...

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Norb.ert-- GO14),ert LOW-LEVEL RADIOACTIVE-WASTE BURIAL AT THE...  

NLE Websites -- All DOE Office Websites (Extended Search)

41 trenches were constructed and each was numbered and marked with a steel post and a brass tag. Spacing between the trenches ranged from 1 to 3 meters. In 1956, a protective...

342

CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY  

SciTech Connect

As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

Jordan, J.; Flach, G.

2012-03-29T23:59:59.000Z

343

Guidelines for Operating an Interim On Site Low Level Radioactive Waste Storage Facility - Revision 1  

Science Conference Proceedings (OSTI)

The majority of commercial USA nuclear stations have constructed on-site LLW storage facilities, and most of these same utilities are experiencing or have experienced at least one period of interim on-site storage. These Guidelines focus on operational considerations and incorporate many of the lessons learned while operating various types of LLW storage facilities. This document was reviewed by the USNRC. Subsequently, the USNRC issued RIS 2008-32, Interim LLRW Storage at NPPs, which recognizes the meth...

2009-02-23T23:59:59.000Z

344

Nuclear reactor with low-level core coolant intake  

DOE Patents (OSTI)

A natural-circulation boiling-water reactor has skirts extending downward from control rod guide tubes to about 10 centimeters from the reactor vessel bottom. The skirts define annular channels about control rod drive housings that extend through the reactor vessel bottom. Recirculating water is forced in through the low-level entrances to these channels, sweeping bottom water into the channels in the process. The sweeping action prevents cooler water from accumulating at the bottom. This in turn minimizes thermal shock to bottom-dwelling components as would occur when accumulated cool water is swept away and suddenly replaced by warmer water.

Challberg, Roy C. (Livermore, CA); Townsend, Harold E. (Campbell, CA)

1993-01-01T23:59:59.000Z

345

Proceedings: 2003 EPRI International Low Level Waste Conference  

SciTech Connect

Nuclear utilities are continually evaluating methods to improve operations and minimize cost. EPRI's Twelfth Annual International Low Level Waste (LLW) Conference--coupled with the 24th Annual ASME/EPRI Radwaste Workshop--offered valuable insights into this effort by presenting papers covering new or improved technology developed worldwide for LLW management, processing, shipment, disposal, and regulation. EPRI accomplished the conference planning in collaboration with the International Atomic Energy Agency (IAEA). In addition to the United States, international representatives from the IAEA, Korea, Hungary, Canada, the United Kingdom, Japan, and Germany presented papers.

None

2004-04-01T23:59:59.000Z

346

Potential GTCC LLW sealed radiation source recycle initiatives. National Low-Level Waste Management Program  

SciTech Connect

This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities.

Fischer, D.

1992-04-01T23:59:59.000Z

347

The impact of NRC guidance on concentration averaging on low level waste sealed source disposal - 11424  

SciTech Connect

As part of its ongoing efforts to revise the Nuclear Regulatory Commission's (NRC) current position on blending to be risk-informed and performance based and its current review of the low-level waste classification codified in 10 CFR 61.55, the Nuclear Regulatory Commission (NRC) has stated that it may review the 1995 'Branch Technical Position on Concentration Averaging and Encapsulation' (BTP), which is still commonly used today. Such a review will have timely advantages, given the lack of commercial disposal availability within the United States for radioactive sealed sources that are in wide beneficial use across the country. The current application of the BTP guidance has resulted in an effective cap on commercial disposal for sources larger than 1.1 TBq (30 Ci). This paper will analyze how the BTP has been implemented with respect to sealed sources, what the implications have been for commercial disposal availability, and whether alternative packaging configurations could be considered for disposal.

Whitworth, Julia [Los Alamos National Laboratory; Stewart, Bill [Los Alamos National Laboratory; Cuthbertson, Abigail [DOE

2011-01-20T23:59:59.000Z

348

Evaluating off-site disposal of low-level waste at LANL-9498  

SciTech Connect

Los Alamos National Laboratory generates a wide range of waste types, including solid low-level radioactive waste (LL W), in conducting its national security mission and other science and technology activities. Although most ofLANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D&D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LL W generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or the available commercial LL W disposal site. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal.

Hargis, Kenneth M [Los Alamos National Laboratory; French, Sean B [Los Alamos National Laboratory; Boyance, Julien A [NORTH WIND, INC.

2009-01-01T23:59:59.000Z

349

Steam Reforming of Low-Level Mixed Waste  

Science Conference Proceedings (OSTI)

Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

None

1998-01-01T23:59:59.000Z

350

Treatment options for low-level radiologically contaminated ORNL filtercake  

Science Conference Proceedings (OSTI)

Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithic waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.

Lee, Hom-Ti [Oak Ridge Associated Universities, Inc., TN (United States); Bostick, W.D. [Oak Ridge K-25 Site, TN (United States)

1996-04-01T23:59:59.000Z

351

National Low-Level Waste Management Program Radionuclide Report Series: Volume 12, Cobalt-60  

SciTech Connect

This report outlines the basic radiological and chemical characteristics of cobalt-60 ({sup 60}Co) and examines how these characteristics affect the behavior of {sup 60}Co in various environmental media, such as soils, groundwater, plants, animals, the atmosphere, and the human body. Discussions also include methods of {sup 60}Co production, waste types, and waste forms that contain {sup 60}Co. All cobalt atoms contain 27 protons (Z = 27) and various numbers of neutrons (typically N = 27 to 37 neutrons) within the atom`s nucleus. There is only one stable isotope of cobalt, namely {sup 59}Co. All other cobalt isotopes, including {sup 60}Co, are radioactive. The radioactive isotopes of cobalt have half-lives ranging from less than a second ({sup 54}Co-0.19 s) to 5.2 years ({sup 60}Co). The radioactive isotopes of cobalt are not a normal constituent of the natural environment and are generated as a result of human activities. The primary source of {sup 60}Co in the environment has been low-level radioactive waste material generated as a result of neutron activation of stable {sup 59}Co that is present in the structural components of nuclear reactor vessels. This isotope is also intentionally produced, usually in reactors but also to some degree in accelerators for industrial and medical uses, such as for radiation sources for cancer treatment and nondestructive testing of metals and welds. {sup 60}Co may enter the environment as a result of the activities associated with nuclear reactor operations and decommissioning and when industrial and medical sources are being used, manufactured, or disposed.

Adams, J.P.

1995-06-01T23:59:59.000Z

352

Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste  

SciTech Connect

Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

1996-03-01T23:59:59.000Z

353

Public Invited to Comment on Draft Environmental Assessment for Replacement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Invited to Comment on Draft Environmental Assessment for Public Invited to Comment on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at the U.S. Department of Energy's Idaho Site Public Invited to Comment on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at the U.S. Department of Energy's Idaho Site September 1, 2011 - 12:00pm Addthis Media Contact Tim Jackson 208-526-8484 The U.S. Department of Energy invites the public to read and comment on a draft environmental assessment it has prepared, for a proposal to provide a replacement capability for continued disposal of remote-handled low-level radioactive waste that is generated at the Idaho National Laboratory site.

354

DOE issues Finding of No Significant Impact on Environmental Assessment for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

issues Finding of No Significant Impact on Environmental issues Finding of No Significant Impact on Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at Idaho Site DOE issues Finding of No Significant Impact on Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at Idaho Site December 21, 2011 - 12:00pm Addthis Media Contact Tim Jackson 208-526-8484 Idaho Falls, ID - After completing a careful assessment, the U.S. Department of Energy has determined that building a new facility at its Idaho National Laboratory site for continued disposal of remote-handled low level radioactive waste generated by operations at the site will not have a significant impact on the environment. "A new disposal facility at INL for this type of waste will be built in a

355

International low level waste disposal practices and facilities  

SciTech Connect

The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of options for the management of radioactive waste. There is a variety of alternatives for processing waste and for short term or long term storage prior to disposal. Likewise, there are various alternatives currently in use across the globe for the safe disposal of waste, ranging from near surface to geological disposal, depending on the specific classification of the waste. At present, there appears to be a clear and unequivocal understanding that each country is ethically and legally responsible for its own wastes, in accordance with the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Therefore the default position is that all nuclear wastes will be disposed of in each of the 40 or so countries concerned with nuclear power generation or part of the fuel cycle. To illustrate the global distribution of radioactive waste now and in the near future, Table 1 provides the regional breakdown, based on the UN classification of the world in regions illustrated in Figure 1, of nuclear power reactors in operation and under construction worldwide. In summary, 31 countries operate 433 plants, with a total capacity of more than 365 gigawatts of electrical energy (GW[e]). A further 65 units, totaling nearly 63 GW(e), are under construction across 15 of these nations. In addition, 65 countries are expressing new interest in, considering, or actively planning for nuclear power to help address growing energy demands to fuel economic growth and development, climate change concerns, and volatile fossil fuel prices. Of these 65 new countries, 21 are in Asia and the Pacific region, 21 are from the Africa region, 12 are in Europe (mostly Eastern Europe), and 11 in Central and South America. However, 31 of these 65 are not currently planning to build reactors, and 17 of those 31 have grids of less than 5 GW, which is said to be too small to accommodate most of the reactor designs available. For the remaining 34 countries actively planning reactors, as of September 2010: 14 indicate a strong intention to precede w

Nutt, W.M. (Nuclear Engineering Division)

2011-12-19T23:59:59.000Z

356

Technical assessment of processes to enable recycling of low-level contaminated metal waste  

Science Conference Proceedings (OSTI)

Accumulations of metal waste exhibiting low levels of radioactivity (LLCMW) have become a national burden, both financially and environmentally. Much of this metal could be considered as a resource. The Department of Energy was assigned the task of inventorying and classifying LLCMW, identifying potential applications, and applying and/or developing the technology necessary to enable recycling. One application for recycled LLCMW is high-quality canisters for permanent repository storage of high-level waste (HLW). As many as 80,000 canisters will be needed by 2035. Much of the technology needed to decontaminate LLCMW has already been developed, but no integrated process has been described, even on a pilot scale, for recycling LLCMW into HLW canisters. This report reviews practices for removal of radionuclides and for producing low carbon stainless steel. Contaminants that readily form oxides may be reduced to below de minimis levels and combined with a slag. Most of the radioactivity remaining in the ingot is concentrated in the inclusions. Radionuclides that chemically resemble the elements that comprise stainless steel can not be removed effectively. Slag compositions, current melting practices, and canister fabrication techniques were reviewed.

Reimann, G.A.

1991-10-01T23:59:59.000Z

357

Siting process for disposal site of low level radiactive waste in Thailand  

SciTech Connect

The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The site selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand.

Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.; Sriyotha, K. (Atomic Energy for Peace, Bangkok (Thailand))

1992-01-01T23:59:59.000Z

358

Session 35 - Panel: Remaining US Disposition Issues for Orphan or Small Volume Low Level and Low Level Mixed Waste Streams  

Science Conference Proceedings (OSTI)

Faced with closure schedules as a driving force, significant progress has been made during the last 2 years on the disposition of DOE mixed waste streams thought previously to be problematic. Generators, the Department of Energy and commercial vendors have combined to develop unique disposition paths for former orphan streams. Recent successes and remaining issues will be discussed. The session will also provide an opportunity for Federal agencies to share lessons learned on low- level and mixed low-level waste challenges and identify opportunities for future collaboration. This panel discussion was organized by PAC member Dick Blauvelt, Navarro Research and Engineering Inc who served as co-chair along with Dave Eaton from INL. In addition, George Antonucci, Duratek Barnwell and Rich Conley, AFSC were invited members of the audience, prepared to contribute the Barnwell and DOD perspective to the issues as needed. Mr. Small provide information regarding the five year 20K M3 window of opportunity at the Nevada Test Site for DOE contractors to dispose of mixed waste that cannot be received at the Energy Solutions (Envirocare) site in Utah because of activity levels. He provided a summary of the waste acceptance criteria and the process sites must follow to be certified to ship. When the volume limit or time limit is met, the site will undergo a RCRA closure. Ms. Gelles summarized the status of the orphan issues, commercial options and the impact of the EM reorganization on her program. She also announced that there would be a follow-on meeting in 2006 to the very successful St. Louis meeting of last year. It will probably take place in Chicago in July. Details to be announced. Mr. McKenney discussed progress made at the Hanford Reservation regarding disposal of their mixed waste inventory. The news is good for the Hanford site but not good for the rest of the DOE complex since shipment for out of state of both low level and low level mixed waste will continue to be prohibited until the completion of a new NEPA study. This is anticipated to take several years. Bill Franz from Portsmouth and Dave Eaton representing the INL provided the audience with information regarding some of the problematic mixed waste streams at their respective sites. Portsmouth has some unique radiological issues with isotopes such as Tc-99 while the INL is trying to deal with mixed waste in the 10-100 nCi/g range. Kaylin Loveland spoke of the new,Energy Solutions organization and provided information on mixed waste treatment capabilities at the Clive site. Mike Lauer described the licensing activities at the WCS site in Texas where they are trying to eventually have disposal capabilities for Class A, B and C mixed waste from both DOE and the commercial sector. The audience included about 75 WM'06 attendees who asked some excellent questions and provided an active and informative exchange of information on the topic. (authors)

Blauvelt, Richard [Navarro Engineering Research Inc. (United States); Small, Ken [Doe Nevada (United States); Gelles, Christine [DOE EM HQ (United States); McKenney, Dale [Fluor Hanford (United States); Franz, Bill [LATA Portsmouth (United States); Loveland, Kaylin [Energy Solutions Inc. (United States); Lauer, Mike [Waste Control Specialists (United States)

2006-07-01T23:59:59.000Z

359

MEASUREMENTS TAKEN IN SUPPORT OF QUALIFICATION OF PROCESSING SAVANNAH RIVER SITE LOW-LEVEL LIQUID WASTE INTO SALTSTONE  

Science Conference Proceedings (OSTI)

The Saltstone Facility at the Savannah River Site (SRS) immobilizes low-level liquid waste into Saltstone to be disposed of in the Z-Area Saltstone Disposal Facility, Class Three Landfill. In order to meet the permit conditions and regulatory limits set by the South Carolina Department of Health and Environmental Control (SCDHEC), the Resource Conservation and Recovery Act (RCRA) and the Environmental Protection Agency (EPA), both the low-level salt solution and Saltstone samples are analyzed quarterly. Waste acceptance criteria (WAC) are designed to confirm the salt solution sample from the Tank Farm meets specific radioactive and chemical limits. The toxic characteristic leaching procedure (TCLP) is used to confirm that the treatment has immobilized the hazardous constituents of the salt solution. This paper discusses the methods used to characterize the salt solution and final Saltstone samples from 2007-2009.

Reigel, M.; Bibler, N.; Diprete, C.; Cozzi, A.; Staub, A.; Ray, J.

2010-01-27T23:59:59.000Z

360

Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site  

SciTech Connect

A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

2004-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Low-Level Nuclear Activity in Nearby Spiral Galaxies  

E-Print Network (OSTI)

We are conducting a search for supermassive black holes (SMBHs) with masses below 10^7 M_sun by looking for signs of extremely low-level nuclear activity in nearby galaxies that are not known to be AGNs. Our survey has the following characteristics: (a) X-ray selection using the Chandra X-ray Observatory, since x-rays are a ubiquitous feature of AGNs; (b) Emphasis on late-type spiral and dwarf galaxies, as the galaxies most likely to have low-mass SMBHs; (c) Use of multiwavelength data to verify the source is an AGN; and (d) Use of the highest angular resolution available for observations in x-rays and other bands, to separate nuclear from off-nuclear sources and to minimize contamination by host galaxy light. Here we show the feasibility of this technique to find AGNs by applying it to six nearby, face-on spiral galaxies (NGC 3169, NGC 3184, NGC 4102, NGC 4647, NGC 4713, NGC 5457) for which data already exist in the Chandra archive. All six show nuclear x-ray sources. The data as they exist at present are ambiguous regarding the nature of the nuclear x-ray sources in NGC 4713 and NGC 4647. We conclude, in accord with previous studies, that NGC 3169 and NGC 4102 are almost certainly AGNs. Most interestingly, a strong argument can be made that NGC 3184 and NGC 5457, both of type Scd, host AGNs.

Himel Ghosh; Smita Mathur; Fabrizio Fiore; Laura Ferrarese

2008-01-28T23:59:59.000Z

362

Steam reforming of low-level mixed waste. Final report  

Science Conference Proceedings (OSTI)

ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

NONE

1998-06-01T23:59:59.000Z

363

New study sees greater low-level radiation threat  

SciTech Connect

A new analysis of Energy Department medical records has found higher than expected cancer rates among workers at DOE's Hanford nuclear weapons plant, suggesting occupational exposure to low-level radiation may be more dangerous than previously thought. The study, released Tuesday by the Philadelphia-based Three Mile Island Public Health Fund, is important not only because of its controversial conclusions, but also because it represents the first independent review of DOE's long-secret worker medical records. The new study done by Stewart and Kneale looked at Hanford worker health records dating up to 1986 - part of a huge trove of data withheld by DOE from independent researchers until two years ago. In their re-analysis of the Hanford worker records, Stewart and Kneale found increased cancer rates among older workers who were over 40 years of age when exposed. And they said that increased susceptibility of older people to radiation-induced cancer was not reflected in the highly influential Japanese atomic bomb studies because people over 50 years of age were [open quotes]grossly under-represented[close quotes] in the A-bomb analyses, possibly because many bomb victims suffered early deaths from high doses.

Lobsenz, G.

1992-12-09T23:59:59.000Z

364

Mind-sets, low-level exposures, and research  

Science Conference Proceedings (OSTI)

Much of our environmental policy is based on the notion that carcinogenic agents are harmful at even minuscule doses. From where does this thinking come What is the scientific evidence that supports such policy Moreover, why is the public willing to buy into this Or is it the other way around: Has the scientific community bought into a paradigm that has its origins in public imagery Or, most likely, are there interactions between the two It is essential that we find out whether or not there are risks associated with low-level exposures to radiation. The author can see three obvious areas where the future depends on better information: The increasing radiation exposures resulting from the use of medical diagnostic and therapeutic practices need to be properly evaluated for safety; Environmental policies, which direct enormous resources to the reduction of small radiation exposures, needs to be put on a firmer scientific basis; The future of nuclear energy, dependent as it is on public acceptance, may well rely upon a better understanding of low-dose effects. Nuclear energy could provide an important solution of global warming and other possible environmental hazards, but will probably not be implemented as long as fear of low-dose radiation persists. Although an established paradigm has great resilience, it cannot resist the onslaught of inconsistent scientific observations or of the social value system that supports it. Only new research will enable us to determine if a paradigm shift is in order here.

Sagan, L.A. (Electric Power Research Inst., Palo Alto, CA (United States). Environment Division)

1993-03-01T23:59:59.000Z

365

Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

1995-01-10T23:59:59.000Z

366

Comparison of costs for alternative mixed low-level waste treatment systems  

SciTech Connect

Total life cycle costs (TLCCs), including disposal costs, of thermal, nonthermal and enhanced nonthermal systems were evaluated to guide future research and development programs for the treatment of mixed low-level waste (MLLW) consisting of RCRA hazardous and low-level radioactive wastes. In these studies, nonthermal systems are defined as those systems that process waste at temperatures less than 350 C. Preconceptual designs and costs were developed for thirty systems with a capacity (2,927 lbs/hr) to treat the DOE MLLW stored inventor y(approximately 236 million pounds) in 20 years in a single, centralized facility. A limited comparison of the studies` results is presented in this paper. Sensitivity of treatment costs with respect to treatment capacity, number of treatment facilities, and system availability were also determined. The major cost element is operations and maintenance (O and M), which is 50 to 60% of the TLCC for both thermal and nonthermal systems. Energy costs constitute a small fraction (< 1%) of the TLCCs. Equipment cost is only 3 to 5% of the treatment cost. Evaluation of subsystem costs demonstrate that receiving and preparation is the highest cost subsystem at about 25 to 30% of the TLCC for both thermal and nonthermal systems. These studies found no cost incentives to use nonthermal or hybrid (combined nonthermal treatment with stabilization by vitrification) systems in place of thermal systems. However, there may be other incentives including fewer air emissions and less local objection to a treatment facility. Building multiple treatment facilities to treat the same total mass of waste as a single facility would increase the total treatment cost significantly, and improved system availability decreases unit treatment costs by 17% to 30%.

Schwinkendorf, W.E.; Harvego, L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cooley, C.R. [Dept. of Energy (United States); Biagi, C. [Morrison Knudsen (United States)

1996-12-31T23:59:59.000Z

367

Surveillance and maintenance plan for the inactive liquid low-level waste tanks at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

ORNL has a total of 54 inactive liquid low-level waste (ILLLW) tanks. In the past, these tanks were used to contain radioactive liquid wastes from various research programs, decontamination operations, and reactor operations. The tanks have since been removed from service for various reasons; the majority were retired because of their age, some due to integrity compromises, and others because they did not meet the current standards set by the Federal Facilities Agreement (FFA). Many of the tanks contain residual radioactive liquids and/or sludges. Plans are to remediate all tanks; however, until remediation of each tank, this Surveillance and Maintenance (S&M) Plan will be used to monitor the safety and inventory containment of these tanks.

Not Available

1994-11-01T23:59:59.000Z

368

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations  

Science Conference Proceedings (OSTI)

A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

Waters, R.D.; Gruebel, M.M. [eds.] [eds.

1996-03-01T23:59:59.000Z

369

EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland,...

370

EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington...

371

EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

74: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico EA-0874: Low-level Waste Drum...

372

Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans  

Energy.gov (U.S. Department of Energy (DOE))

Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans

373

Low-Level Plutonium Sample Involved in NIST-Boulder Lab ...  

Science Conference Proceedings (OSTI)

Low-Level Plutonium Sample Involved in NIST-Boulder Lab Incident. For Immediate Release: June 10, 2008. ...

2010-10-05T23:59:59.000Z

374

Understanding radioactive waste  

SciTech Connect

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01T23:59:59.000Z

375

Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository  

SciTech Connect

The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE`s investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4).

Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

1994-11-01T23:59:59.000Z

376

Facility accident analysis for low-level waste management alternatives in the US Department of Energy Waste Management Program  

Science Conference Proceedings (OSTI)

The risk to human health of potential radiological releases resulting from facility accidents constitutes an important consideration in the US Department of Energy (DOE) waste management program. The DOE Office of Environmental Management (EM) is currently preparing a Programmatic Environmental Impact Statement (PEIS) that evaluates the risks associated with managing five types of radiological and chemical wastes in the DOE complex. Several alternatives for managing each of the five waste types are defined and compared in the EM PEIS. The alternatives cover a variety of options for storing, treating, and disposing of the wastes. Several treatment methods and operation locations are evaluated as part of the alternatives. The risk induced by potential facility accidents is evaluated for storage operations (current and projected waste storage and post-treatment storage) and for waste treatment facilities. For some of the five waste types considered, facility accidents cover both radiological and chemical releases. This paper summarizes the facility accident analysis that was performed for low-level (radioactive) waste (LLW). As defined in the EM PEIS, LLW includes all radioactive waste not classified as high-level, transuranic, or spent nuclear fuel. LLW that is also contaminated with chemically hazardous components is treated separately as low-level mixed waste (LLMW).

Roglans-Ribas, J.; Mueller, C.; Nabelssi, B.; Folga, S.; Tompkins, M.

1995-06-01T23:59:59.000Z

377

Update of the management strategy for Oak Ridge National Laboratory Liquid Low-Level Waste  

Science Conference Proceedings (OSTI)

The strategy for management of the Oak Ridge National Laboratory`s (ORNL) radioactively contaminated liquid waste was reviewed in 1991. The latest information available through the end of 1990 on waste characterization, regulations, US Department of Energy (DOE) budget guidance, and research and development programs was evaluated to determine how the strategy should be revised. Few changes are needed to update the strategy to reflect new waste characterization, research, and regulatory information. However, recent budget guidance from DOE indicates that minimum funding will not be sufficient to accomplish original objectives to upgrade the liquid low-level waste (LLLW) system to comply with the Federal Facilities Agreement, provide long-term LLLW treatment capability, and minimize environmental, safety, and health risks. Options are presented that might allow the ORNL LLLW system to continue operations temporarily, but they would significantly reduce its capabilities to handle emergency situations, provide treatment for new waste streams, and accommodate waste from the Environmental Restoration Program and from decontamination and decommissioning of surplus facilities. These options are also likely to increase worker radiation exposure, risk of environmental insult, and generation of solid waste for on-site and off-site disposal/storage beyond existing facility capacities. The strategy will be fully developed after receipt of additional guidance. The proposed budget limitations are too severe to allow ORNL to meet regulatory requirements or continue operations long term.

Robinson, S.M.; Abraham, T.J.; DePaoli, S.M.; Walker, A.B.

1995-04-01T23:59:59.000Z

378

Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program  

SciTech Connect

In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

1995-05-01T23:59:59.000Z

379

National Low-Level Waste Management Program Radionuclide Report Series. Volume 10, Nickel-63  

Science Conference Proceedings (OSTI)

This report outlines the basic radiological, chemical, and physical characteristics of nickel-63 ({sup 63}Ni) and examines how these characteristics affect the behavior of {sup 63}Ni in various environmental media, such as soils, groundwater, plants, animals, the atmosphere, and the human body. Discussions also include methods of {sup 63}Ni production, waste types, and waste forms that contain {sup 63}Ni. The primary source of {sup 63}Ni in the environment has been low-level radioactive waste material generated as a result of neutron activation of stable {sup 62}Ni that is present in the structural components of nuclear reactor vessels. {sup 63}Ni enters the environment from the dismantling activities associated with nuclear reactor decommissioning. However, small amounts of {sup 63}Ni have been detected in the environment following the testing of thermonuclear weapons in the South Pacific. Concentrations as high as 2.7 Bq{sup a} per gram of sample (or equivalently 0.0022 parts per billion) were observed on Bikini Atoll (May 1954). {sup 63}Ni was not created as a fission product species (e.g., from {sup 235}U or {sup 239}Pu fissions), but instead was produced as a result of neutron capture in {sup 63}Ni, a common nickel isotope present in the stainless steel components of nuclear weapons (e.g., stainless-304 contains {approximately}9% total Ni or {approximately}0.3% {sup 63}Ni).

Carboneau, M.L.; Adams, J.P.

1995-02-01T23:59:59.000Z

380

Comparison of low-level waste disposal programs of DOE and selected international countries  

SciTech Connect

The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada`s first demonstration LLW disposal facility.

Meagher, B.G. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cole, L.T. [Cole and Associates (United States)

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EA-1276: Widening Trench 36 of the 218-E-12B Low-level Burial Ground,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

76: Widening Trench 36 of the 218-E-12B Low-level Burial 76: Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington EA-1276: Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to widen and operate unused Trench 36 in the 218-E-12B Low-Level Burial Ground for disposal of low-level waste at the U.S. Department of Energy Hanford Site. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 11, 1999 EA-1276: Finding of No Significant Impact Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington February 11, 1999 EA-1276: Final Environmental Assessment Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site,

382

EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Trench 33 Widening in 218-W-5 Low-level Burial Ground, 3: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to widen and operate the unused Trench 33 in the 218-W-5 Low-Level Burial Ground at the U.S. Department of Energy's Richland Operations Office. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 28, 1997 EA-1203: Finding of No Significant Impact Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington July 28, 1997 EA-1203: Final Environmental Assessment Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington

383

EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Non-thermal Treatment of Hanford Site Low-level Mixed 9: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to demonstrate the feasibility of commercial treatment of contact-handled low-level mixed waste to meet existing Federal and State regulatory standards for eventual land disposal at the U.S. Department of Energy Richland Operations Office. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 29, 1998 EA-1189: Finding of No Significant Impact Non-thermal Treatment of Hanford Site Low-level Mixed Waste September 29, 1998 EA-1189: Final Environmental Assessment Non-thermal Treatment of Hanford Site Low-level Mixed Waste

384

Low-Level Plutonium Bioassay Measurements at the Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

Plutonium-239 ({sup 239}Pu) and plutonium-240 ({sup 240}Pu) are important alpha emitting radionuclides contained in radioactive debris from nuclear weapons testing. {sup 239}Pu and {sup 240}Pu are long-lived radionuclides with half-lives of 24,400 years and 6580 years, respectively. Concerns over human exposure to plutonium stem from knowledge about the persistence of plutonium isotopes in the environment and the high relative effectiveness of alpha-radiation to cause potential harm to cells once incorporated into the human body. In vitro bioassay tests have been developed to assess uptakes of plutonium based on measured urinary excretion patterns and modeled metabolic behaviors of the absorbed radionuclides. Systemic plutonium absorbed by the deep lung or from the gastrointestinal tract after ingestion is either excreted or distributed to other organs, primarily to the liver and skeleton, where it is retained for biological half-times of around 20 and 50 years, respectively. Dose assessment and atoll rehabilitation programs in the Marshall Islands have historically given special consideration to residual concentrations of plutonium in the environment even though the predicted dose from inhalation and/or ingestion of plutonium accounts for less than 5% of the annual effective dose from exposure to fallout contamination. Scientists from the Lawrence Livermore National Laboratory (LLNL) have developed a state-of-the-art bioassay test to assess urinary excretion rates of plutonium from Marshallese populations. This new heavy-isotope measurement system is based on Accelerator Mass Spectrometry (AMS). The AMS system at LLNL far exceeds the standard measurement requirements established under the latest United States Department of Energy (DOE) regulation, 10CFR 835, for occupational monitoring of plutonium, and offers several advantages over classical as well as competing new technologies for low-level detection and measurement of plutonium isotopes. The United States National Institute of Standards and Technology (NIST) has independently verified the accuracy and precision of the AMS detection system for low-level bioassay measurements of plutonium isotopes through participation in an intercomparison exercise whereby performance evaluation samples were prepared in a synthetic urine matrix and submitted to participating laboratories for blind analysis. The results of the analyses were then sent to the NIST to independently evaluate the performance of laboratory participants. At LLNL, the AMS measurements of {sup 239}Pu and {sup 240}Pu met ANSI 13.30 criteria for both precision and accuracy at all sample test levels. Livermore scientists continue to test the performance of the Marshall Islands Plutonium Urinalysis Program by routine blind analysis of externally prepared quality control test samples, and through the rigorous implementation of standardized methods and procedures. Although not addressed directly in the report, AMS measurements show that the urinary excretion of plutonium by selected Marshallese populations fall into a low and reproducible range. Moreover, there appears to be no evidence of small incremental intakes of plutonium associated with resettlement activities - past or present. The improved quality, reliability and detection sensitivity of AMS for low-level plutonium isotope measurements will enable DOE to develop high-quality, baseline urinary excretion data for Marshallese populations, and accurately assess and track potential uptakes of plutonium. associated with resettlement activities and/or from long-term changes in plutonium exposure conditions in the Marshall Islands.

Hamilton, T; Brown, T; Hickman, D; Marchetti, A; Williams, R; Kehl, S

2007-06-18T23:59:59.000Z

385

Format and Content Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE))

Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses

386

The Use of Collective Dose for Optimization of a Low-Level Waste Site Closure Cover  

Science Conference Proceedings (OSTI)

Low-level radioactive waste management regulations require that releases to the environment be as low as reasonably achievable. Collective dose’s use in quantitative cost benefit analysis is well accepted for optimization of operational radiation safety, but seldom applied to routine environmental releases. One concern is that collective dose for large areas and long time periods may obscure the spatial and temporal distribution of risk and the magnitude of individual doses. Use of collective dose for optimization also requires that the decision maker justify subjective inputs including truncation limits for the summation of collective dose in space and time, a monetary value for collective dose, and a discount rate for future health detriment. In this study, a probabilistic collective dose model is developed and used to optimize the closure of the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site. Collective dose’s shortcomings are addressed by preparing a dose matrix that disaggregates the collective dose in space and time and by reporting individual doses for exposed subgroups. Important subjective inputs are assigned discrete values reflecting differing opinions, and the consequence of the differences on the final decision is described. The resulting optimization process remains subjective, but clearly identifies subjective inputs, the values selected, and their impact on the decision. For the Area 5 RWMS, the value of the collective dose is small compared to closure cover cost options over a broad range of subjective values for the spatial and temporal limits for truncation of collective dose, monetary value of collective dose, and discount rates for future dose. The collective dose matrix and individual doses indicate that the societal and individual risks are greatest for future residents within the disposal site boundary, suggesting that options deterring intrusion have the greatest potential for cost-effectiveness. The cost of various closure options far exceeds the value of the collective dose averted, indicating that there are few opportunities for cost-effective improvements when closures meet the low dose constraints in waste management regulations.

Greg Shott, Vefa Yucel

2010-03-07T23:59:59.000Z

387

Annual and Nonseasonal Variability of Monthly Low-Level Wind Fields over the Southeastern Tropical Pacific  

Science Conference Proceedings (OSTI)

The time and space variability of low-level winds over the Southeast Tropical Pacific (SETP) region is described for the 6-year period 1974–80. The data set consists of monthly averaged low-level cloud-motion vector winds supplemented by coastal ...

David B. Enfield

1981-10-01T23:59:59.000Z

388

Low-Level Mesocyclonic Concentration by Nonaxisymmetric Transport. Part I: Supercell and Mesocyclone Evolution  

Science Conference Proceedings (OSTI)

An idealized simulation of a supercell using the Regional Atmospheric Modeling System (RAMS) was able to produce a low-level mesocyclone near the intersection of the forward- and rear-flank downdrafts. The creation of the low-level mesocyclone is ...

Brian J. Gaudet; William R. Cotton

2006-04-01T23:59:59.000Z

389

12/2000 Low-Level Waste Disposal Capacity Report Version 2 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Waste Disposition » 12/2000 Services » Waste Management » Waste Disposition » 12/2000 Low-Level Waste Disposal Capacity Report Version 2 12/2000 Low-Level Waste Disposal Capacity Report Version 2 The purpose of this Report is to assess whether U.S. Department of Energy (DOE or the Department) disposal facilities have sufficient volumetric and radiological capacity to accommodate the low-level waste (LLW) and mixed low-level waste (MLLW) that the Department expects to dispose at these facilities. 12/2000 Low-Level Waste Disposal Capacity Report Version 2 More Documents & Publications EIS-0243: Record of Decision EIS-0200: Record of Decision EIS-0286: Record of Decision Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation

390

EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

43: Idaho National Engineering Laboratory Low-Level and Mixed 43: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho SUMMARY This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW) through sizing, compaction, and stabilization at Waste Experimental Reduction Facility (WERF); and (2) use commercial offsite facilities for supplemental LLW volume reduction (incineration). PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD June 3, 1994 EA-0843: Finding of No Significant Impact Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing

391

CHROMOSOMAL ABERRATIONS IN A NATURAL POPULATION OF CHIRONOMUS TENTANS EXPOSED TO CHRONIC LOW-LEVEL ENVIRONMENTAL RADIATION  

SciTech Connect

The salivary gland chromosomes of Chironomus tentans larvae collected from White Oak Creek, an area contaminated by radioactive waste from the Oak Ridge National Laboratory, and from six uncontaminated areas were examined for chromosomal aberrations. White Oak Creek populations were exposed to absorbed doses as high as 230 rads per year or about 1000 times background. Chromosomal maps were constructed to make a general comparison of the banding pattern of the salivary chromosomes of the C. tentans in the East Tennessee area with those of Canada and Europe. These maps were used as a reference in scoring aberrations. Fifteen different chromosomal aberrations were found in 365 larvae taken from the irradiated population as compared with five different aberrations observed in 356 larvae from six control populations, but the mean number of aberrations per larva did not differ in any of the populations. The quantitative amount of heterozygosity was essentially the same in the irradiated and the control population, but there were three times the variety of chromosomal aberrations found in the irradiated area. From this evidence it was concluded that chronic low-level irradiation from radioactive waste was increasing the variability of chromosomal aberrations without significantly increasing the frequency. It was also concluded that chromosomal polymorphism can be maintained in a natural population without superiority of the heterozygous individuals. (C.H.)

Blaylock, B G; Auerbach, S I; Nelson, D J

1964-01-29T23:59:59.000Z

392

Perspectives of Decision-Making and Estimation of Risk in Populations Exposed to Low Levels of Ionizing Radiations  

E-Print Network (OSTI)

exposure to radioactive fallout in radiation-associatedheight of the radioactive fallout deliberations in the early

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

393

Precision Dual-Aquifer Dewatering at a Low Level Radiological Cleanup in New Jersey  

SciTech Connect

Cleanup of low-level radioactive wastes at the Wayne Interim Storage Site (WISS), Wayne, New Jersey during the period October, 2000 through November, 2001 required the design, installation and operation of a dual-aquifer dewatering system to support excavation of contaminated soils. Waste disposal pits from a former rare-earth processing facility at the WISS had been in contact with the water table aquifer, resulting in moderate levels of radionuclides being present in the upper aquifer groundwater. An uncontaminated artesian aquifer underlies the water table aquifer, and is a localized drinking water supply source. The lower aquifer, confined by a silty clay unit, is flowing artesian and exhibits potentiometric heads of up to 4.5 meters above grade. This high potentiometric head presented a strong possibility that unloading due to excavation would result in a ''blowout'', particularly in areas where the confining unit was < 1 meter thick. Excavation of contaminated materials w as required down to the surface of the confining unit, potentially resulting in an artesian aquifer head of greater than 8 meters above the excavation surface. Consequently, it was determined that a dual-aquifer dewatering system would be required to permit excavation of contaminated material, with the water table aquifer dewatered to facilitate excavation, and the deep aquifer depressurized to prevent a ''blowout''. An additional concern was the potential for vertical migration of contamination present in the water table aquifer that could result from a vertical gradient reversal caused by excessive pumping in the confined system. With these considerations in mind, a conceptual dewatering plan was developed with three major goals: (1) dewater the water table aquifer to control radionuclide migration and allow excavation to proceed; (2) depressurize the lower, artesian aquifer to reduce the potential for a ''blowout''; and (3) develop a precise dewatering level control mechanism to insure a vertical gradient reversal did not result in cross-contamination. The plan was executed through a hydrogeologic investigation culminating with the design and implementation of a complex, multi-phased dual-aquifer dewatering system equipped with a state of the art monitoring network.

Gosnell, A. S.; Langman, J. W. Jr.; Zahl, H. A.; Miller, D. M.

2002-02-27T23:59:59.000Z

394

EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

74: Low-level Waste Drum Staging Building at Weapons 74: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to place a 3 meter (m) by 4.5 m prefabricated storage building (transportainer) adjacent to the existing Weapons Engineering Tritium Facility at Technical Area 16, U.S. Department of Energy's Los Alamos National Laboratory in Los Alamos, New Mexico, and to use the building as a staging site for sealed 55-gallon drums of noncompactible waste contaminated with low levels of tritium. PUBLIC COMMENT OPPORTUNITIES

395

12/2000 Low-Level Waste Disposal Capacity Report Version 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Current and Planned Current and Planned Low-Level Waste Disposal Capacity Report Revision 2 December 2000 U.S. Department of Energy Office of Environmental Management i TABLE OF CONTENTS EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ES-1 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1 Summary of Report Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.2 History of Past DOE Low-Level Waste Disposal Operations . . . . . . . . . . . . . . . . . . . . . . 1-2 1.3 Current Status of the Low-Level and Mixed Low-Level Waste Disposal Configuration . . 1-3 1.4 Methodology for Base Case and Alternative Scenarios Analyses . . . . . . . . . . . . . . . . . . . 1-5 1.5 Radiological Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 1.6 Data Sources for Waste Disposal Volumes, Waste Radiological Profiles, and Disposal

396

Summertime Low-Level Jets over the High-Latitude Arctic Ocean  

Science Conference Proceedings (OSTI)

The application of a simple analytic boundary layer model developed by Thorpe and Guymer did not produce good agreement with observational data for oceanic low-level jet observations even though this model has worked well for the predictions of ...

Douglas O. ReVelle; E. Douglas Nilsson

2008-06-01T23:59:59.000Z

397

EA-1292: On-site Treatment of Low Level Mixed Waste, Golden, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal to evaluate the proposed treatment of low level mixed waste at the U.S. Department of Energy's Rocky Flats Environmental Technology Site.

398

Climatic Role of North American Low-Level Jets on U.S. Regional Tornado Activity  

Science Conference Proceedings (OSTI)

Variability of springtime tornadic activity over the United States is assessed through the connectivity of preferred modes of North American low-level jet (NALLJ) variability to the local thermodynamic environment and remote SST variations. The ...

Scott J. Weaver; Stephen Baxter; Arun Kumar

2012-10-01T23:59:59.000Z

399

EA-1135: Offsite Thermal Treatment of Low-level Mixed Waste, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to treat contact-handled low-level mixed waste, containing polychlorinated biphenyls and other organics, to meet existing regulatory...

400

Global Precipitation Extremes Associated with Diurnally Varying Low-Level Jets  

Science Conference Proceedings (OSTI)

Extreme rainfall events have important societal impacts: for example, by causing flooding, replenishing reservoirs, and affecting agricultural yields. Previous literature has documented linkages between rainfall extremes and nocturnal low-level ...

Andrew J. Monaghan; Daran L. Rife; James O. Pinto; Christopher A. Davis; John R. Hannan

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote-handled low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A generalized binding framework for the Low Level Reader Protocol (LLRP)  

E-Print Network (OSTI)

This Master of Engineering Thesis describes the design, implementation and testing of an XML binding framework for the RFID Low Level Reader Protocol (LLRP). LLRP is a recently released protocol which standardizes the ...

Poulopoulos, Dimitrios

2008-01-01T23:59:59.000Z

402

Low-Level Potential Vorticity and Cyclogenesis to the Lee of the Alps  

Science Conference Proceedings (OSTI)

High-resolution numerical model simulations over the Alpine region are presented that reveal the presence of low-level elongated bands of potential vorticity (PV) downstream of high topography. These PV streamers (or PV banners) occur when the ...

Urs Aebischer; Christoph Schär

1998-01-01T23:59:59.000Z

403

Basis for National and International Low Activity and Very Low Level Waste Disposal Classifications  

Science Conference Proceedings (OSTI)

In order to determine whether the Very Low Level Waste (VLLW) category would be a viable option in the United States, European and U.S. experiences were reviewed in detail.

2012-03-30T23:59:59.000Z

404

Propagation of Low-Level Circulation Features in the Vicinity of Mountain Ranges  

Science Conference Proceedings (OSTI)

The local influence of mountains upon large- and synoptic-scale low-level atmospheric circulations is investigated in this study. The sea-level pressure associated with low-frequency fluctuations exhibit phase propagation of monopolar structures ...

Huang-Hsiung Hsu

1987-09-01T23:59:59.000Z

405

On the Movement and Low-Level Structure of Cold Fronts  

Science Conference Proceedings (OSTI)

This paper presents a review of theoretical and observational studies relating to the low-level structure of cold fronts and explores the factors that are pertinent to frontal motion.

Roger K. Smith; Michael J. Reeder

1988-10-01T23:59:59.000Z

406

The Dependence of the Low-Level Equatorial Easterly Jet on Hadley and Walker Circulations  

Science Conference Proceedings (OSTI)

How the time-mean Hadley and Walker circulations affect the formation of a low-level equatorial easterly jet is investigated. Experiments are conducted for equinoctial conditions using a general circulation model, the Community Climate Model (...

David S. Battisti; David D. Ovens

1995-11-01T23:59:59.000Z

407

The Summertime Low-Level Jet over the Gulf of California  

Science Conference Proceedings (OSTI)

Special pilot balloon and aircraft observations made during the 1990 Southwest Area Monsoon Project (SWAMP-90) are used to describe the structure of a low-level jet (LLJ) observed in the southerly flow over the Gulf of California and ...

Michael W. Douglas

1995-08-01T23:59:59.000Z

408

The Shipboard Use of a Low-Level Atmospheric Thermograph in Fog and Stratus Investigations  

Science Conference Proceedings (OSTI)

A Low-Level Atmospheric Thermograph (LLAT) to obtain fine-scaled and detailed vertical temperature profiles to an altitude of 1000 m has been developed through a simple modification of the Sippican Expendable Bathythermograph (XBT) system. Only ...

J. G. Norton; G. E. Schacher

1980-02-01T23:59:59.000Z

409

Development of a Nationwide, Low-Level Wind Shear Mosaic in France  

Science Conference Proceedings (OSTI)

An algorithm for the detection of horizontal wind shear at low levels was developed. The algorithm makes use of data collected by all radars from the Application Radar à la Météorologie Infra-Synoptique (ARAMIS) operational network, in order to ...

Clotilde Augros; Pierre Tabary; Adrien Anquez; Jean-Marc Moisselin; Pascal Brovelli; Olivier Bousquet

2013-10-01T23:59:59.000Z

410

Midsummer Gap Winds and Low-Level Circulation over the Eastern Tropical Pacific  

Science Conference Proceedings (OSTI)

The low-level seasonal and intraseasonal wind variability over the northeastern tropical Pacific (NETP), its relationship with other variables, and the connection with large- and middle-scale atmospheric patterns are analyzed using a suite of ...

Rosario Romero-Centeno; Jorge Zavala-Hidalgo; G. B. Raga

2007-08-01T23:59:59.000Z

411

Low-Level Mesocyclonic Concentration by Nonaxisymmetric Transport. Part II: Vorticity Dynamics  

Science Conference Proceedings (OSTI)

An idealized supercell simulation using the Regional Atmospheric Modeling System (RAMS) produced an elongated low-level mesocyclone that subsequently collapsed into a concentrated vortex. Though vorticity continually increased in the mesocyclone ...

Brian J. Gaudet; William R. Cotton; Michael T. Montgomery

2006-04-01T23:59:59.000Z

412

Comparing Aerosol and Low-Level Moisture Influences on Supercell Tornadogenesis: Three-Dimensional Idealized Simulations  

Science Conference Proceedings (OSTI)

Four three-dimensional, nested-grid numerical simulations were performed using the Regional Atmospheric Modeling System (RAMS) to compare the effects of aerosols acting as cloud condensation nuclei (CCN) to those of low-level moisture [and thus ...

David G. Lerach; William R. Cotton

2012-03-01T23:59:59.000Z

413

A Carolina Coastal Low-Level Jet during GALE IOP 2  

Science Conference Proceedings (OSTI)

During the Intensive Observation Period 2 of the Genesis of Atlantic Lows Experiment a persistent, diurnally varying, northeasterly low-level jet (LLJ) was observed along the Carolina coastal plain. Nocturnal maxima of over 20 m s?1 were observed ...

James D. Doyle; Thomas T. Warner

1991-10-01T23:59:59.000Z

414

Diffusion from Low-Level Urban Sources: Reexamination Using Recently Available Experimental Data  

Science Conference Proceedings (OSTI)

Experimental meteorological tracer data recently collected or declassified concerning dispersion from low-level sources in urban areas are examined in terms of the findings of the St. Louis Dispersion Study. The latter still provides a standard ...

James L. McElroy

1997-08-01T23:59:59.000Z

415

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 1: Executive summary  

SciTech Connect

A team of analysts designed and conducted a performance evaluation (PE) to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 1 is an executive summary both of the PE methodology and of the results obtained from the PEs. While this volume briefly reviews the scope and method of analyses, its main objective is to emphasize the important insights and conclusions derived from the conduct of the PEs. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

NONE

1996-03-01T23:59:59.000Z

416

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 2: Technical basis and discussion of results  

Science Conference Proceedings (OSTI)

A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 first describes the screening process used to determine the sites to be considered in the PEs. This volume then provides the technical details of the methodology for conducting the performance evaluations. It also provides a comparison and analysis of the overall results for all sites that were evaluated. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

Waters, R.D.; Gruebel, M.M.; Hospelhorn, M.B. [and others

1996-03-01T23:59:59.000Z