National Library of Energy BETA

Sample records for remote surplus facilities

  1. Hanford surplus facilities programs facilities listings and descriptions. Revision 1

    SciTech Connect (OSTI)

    Kiser, S.K.; Witt, T.L.

    1994-01-01

    On the Hanford Site, many surplus facilities exist (including buildings, stacks, tanks, cribs, burial grounds, and septic systems) that are scheduled to be decommissioned. Many of these facilities contain large inventories of radionuclides, which present potential radiological hazards on and off the Hanford Site. Some structures with limited structural deterioration present potential radiological and industrial safety hazards to personnel. Because of the condition of these facilities, a systematic surveillance and maintenance program is performed to identify and correct potential hazards to personnel and the environment until eventual decommissioning operations are completed.

  2. The ORNL Surplus Facilities Management Program Long Range Plan

    SciTech Connect (OSTI)

    Myrick, T.E.

    1984-09-01

    The Surplus Facilities Management Program (SFMP) at Oak Ridge National Laboratory (ORNL) is part of the Department of Energy`s (DOE) National SFMP, administered by the Richland Operations Office. This program was established to provide for the management of DOE surplus radioactively contaminated facilities from the end of their operating life until final facility disposition is completed. As part of this program, the ORNL SFMP oversees some 76 individual surplus facilities, ranging in complexity from abandoned waste storage tanks to large experimental reactors. The ORNL SFMP has prepared this Long Range Plan to outline the long-term management strategy for those facilities included in the program. The primary objective of this plan are to: (1) develop a base of information for each ORNL SFMP facility, (2) conduct preliminary decommissioning analyses to identify feasible alternatives, (3) assess the current and future risk of each facility, (4) establish a priority list for the decommissioning projects, and (5) integrate the individual project costs and schedules into an overall program schedule and cost estimate for the ORNL site. The Long Range Plan also provides an overview of the ORNL SFMP management structure, specifies the decommissioning criteria to be employed, and identifies special technical problems, research and development needs, and special facilities and equipment that may be required for decommissioning operations.

  3. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Wike, L.D.

    2000-12-13

    The purpose of this study is to identify, assess, and rank potential sites for the proposed Surplus Plutonium Disposition Facilities complex at the Savannah River Site.

  4. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Wike, L.D.

    2000-08-17

    A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site.

  5. Niagara Falls Storage Site, Annual site environmental report, Lewiston, New York, Calendar year 1986: Surplus Facilities Management Program (SFMP)

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    During 1986, the environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a US Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. The monitoring program at the NFSS measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, this individual would receive an annual external exposure approximately equivalent to 6% of the DOE radiation protection standard of 100 mrem/yr. By comparison, the incremental dose received from living in a brick house versus a wooden house is 10 mrem/yr above background. The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the NFSS is in compliance with the DOE radiation protection standard. 14 refs., 11 figs., 14 tabs.

  6. Remote handling facility and equipment used for space truss assembly

    SciTech Connect (OSTI)

    Burgess, T.W.

    1987-01-01

    The ACCESS truss remote handling experiments were performed at Oak Ridge National Laboratory's (ORNL's) Remote Operation and Maintenance Demonstration (ROMD) facility. The ROMD facility has been developed by the US Department of Energy's (DOE's) Consolidated Fuel Reprocessing Program to develop and demonstrate remote maintenance techniques for advanced nuclear fuel reprocessing equipment and other programs of national interest. The facility is a large-volume, high-bay area that encloses a complete, technologically advanced remote maintenance system that first began operation in FY 1982. The maintenance system consists of a full complement of teleoperated manipulators, manipulator transport systems, and overhead hoists that provide the capability of performing a large variety of remote handling tasks. This system has been used to demonstrate remote manipulation techniques for the DOE, the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan, and the US Navy in addition to the National Aeronautics and Space Administration. ACCESS truss remote assembly was performed in the ROMD facility using the Central Research Laboratory's (CRL) model M-2 servomanipulator. The model M-2 is a dual-arm, bilateral force-reflecting, master/slave servomanipulator which was jointly developed by CRL and ORNL and represents the state of the art in teleoperated manipulators commercially available in the United States today. The model M-2 servomanipulator incorporates a distributed, microprocessor-based digital control system and was the first successful implementation of an entirely digitally controlled servomanipulator. The system has been in operation since FY 1983. 3 refs., 2 figs.

  7. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    SciTech Connect (OSTI)

    Mertz, G.

    1999-12-16

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements.

  8. Draft principles, policy, and acceptance criteria for decommissioning of U.S. Department of Energy contaminated surplus facilities and summary of international decommissioning programs

    SciTech Connect (OSTI)

    Singh, B.K.; Gillette, J.; Jackson, J.

    1994-12-01

    Decommissioning activities enable the DOE to reuse all or part of a facility for future activities and reduce hazards to the general public and any future work force. The DOE Office of Environment, Health and Safety has prepared this document, which consists of decommissioning principles and acceptance criteria, in an attempt to establish a policy that is in agreement with the NRC policy. The purpose of this document is to assist individuals involved with decommissioning activities in determining their specific responsibilities as identified in Draft DOE Order 5820.DDD, ``Decommissioning of US Department of Energy Contaminated Surplus Facilities`` (Appendix A). This document is not intended to provide specific decommissioning methodology. The policies and principles of several international decommissioning programs are also summarized. These programs are from the IAEA, the NRC, and several foreign countries expecting to decommission nuclear facilities. They are included here to demonstrate the different policies that are to be followed throughout the world and to allow the reader to become familiar with the state of the art for environment, safety, and health (ES and H) aspects of nuclear decommissioning.

  9. Post remedial action survey report for Building 003, Santa Susana Field Laboratories, Rockwell International, Ventura County, California, October 1981; April 1982. Surplus Facilities Management Program

    SciTech Connect (OSTI)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1983-10-01

    Rockwell International's Santa Susana Laboratories in Ventura County, California, have been the site of numerous Federally-funded projects involving the use of radioactive materials. One such project was the System for Nuclear Auxiliary Power (SNAP) Program. Building 003 on the Santa Susana site was used in conjunction with the SNAP Program and contained a highly shielded area designed for remote manipulation of radioactive materials. Such facilities are commonly referred to as hot caves. During the SNAP Program, fuel burnup samples were analyzed and irradiation experiments were evaluated in the Building 003 hot cave. Use of the hot cave facility ended when the SNAP Program was terminated in 1973. Subsequently, the Building 003 facilities were declared excess and were decontaminaed and decommissioned during the first half of calendar year 1975. At that time, the building was given a preliminary release. In 1981, a post-remedial-action (certification) survey of Building 003 was conducted at the request of the Department of Energy. Significant levels of residual contamination were found in various parts of the building. Consequently, additional decontamination was conducted by Rockwell International. A final post-remedial-action survey was conducted during April 1982, and those areas in Building 003 that had been found contaminated in 1981 were now found to be free of detectable radioactive contamination. Sludge samples taken from the sewer sump showed elevated levels of enriched uranium contaminant. Hence, all sewer lines within Building 003 were removed. This permitted unconditional release of the building for unrestricted use. However, the sewer lines exterior to the building, which remain in place, must be considered potentially contaminated and, therefore, subject to restricted use.

  10. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  11. Surplus Facilities Management Program. Post-remedial-action survey report for SNAP-8 Experimental Reactor Facility, Building 010 site, Santa Susana Field Laboratories, Rockwell International, Ventura County, California

    SciTech Connect (OSTI)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Mayes, C.B.; Justus, A.L.; Flynn, K.F.

    1984-04-01

    Based on the results of the radiological assessment, the Argonne National Laboratory Radiological Survey Group arrived at the following conclusions: (1) soil contaminated with the radionuclides /sup 60/Co and /sup 152/Eu of undetermined origin was detected in the southwest quadrant of the Building 010 site. /sup 60/Co was also detected in one environmental sample taken from an area northwest of the site and in a borehole sample taken from the area that previously held the radioactive gas hold-up tanks. Uranium was detected in soil from a hole in the center of the building site and in a second hole southwest of the building site. In all cases, the radionuclide levels encountered in the soil were well below the criteria set by DOE for this site; and (2) the direct instrument readings at the surface of the site were probably the result of natural radiation (terrestrial and celestial), as well as shine from the material being stored at the nearby RMDF facility. There was no evidence that the contaminated soil under the asphalt pad contributed detectable levels to the total background readings.

  12. Surplus Plutonium Disposition (SPD) Environmental Data Summary

    SciTech Connect (OSTI)

    Fledderman, P.D.

    2000-08-24

    This document provides an overview of existing environmental and ecological information at areas identified as potential locations of the Savannah River Site's (SRS) Surplus Plutonium Disposition (SPD) facilities. This information is required to document existing environmental and baseline conditions from which SPD construction and operation impacts can be defined. It will be used in developing the required preoperational monitoring plan to be used at specific SPD facilities construction sites.

  13. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  14. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-05-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  15. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  16. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  17. CHARACTERIZATION OF SURPLUS PLUTONIUM FOR DISPOSITION OPTIONS

    SciTech Connect (OSTI)

    Allender, J; Edwin Moore, E; Scott Davies, S

    2008-07-15

    The United States (U.S.) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Except for materials that remain in use for programs outside of national defense, including programs for nuclear-energy development, the surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. Some items will be disposed as transuranic waste, low-level waste, or spent fuel. The remaining surplus plutonium will be managed through: (1) the Mixed Oxide (MOX) Fuel Fabrication Facility (FFF), to be constructed at the Savannah River Site (SRS), where the plutonium will be converted to fuel that will be irradiated in civilian power reactors and later disposed to a high-level waste (HLW) repository as spent fuel; (2) the SRS H-Area facilities, by dissolving and transfer to HLW systems, also for disposal to the repository; or (3) alternative immobilization techniques that would provide durable and secure disposal. From the beginning of the U.S. program for surplus plutonium disposition, DOE has sponsored research to characterize the surplus materials and to judge their suitability for planned disposition options. Because many of the items are stored without extensive analyses of their current chemical content, the characterization involves three interacting components: laboratory sample analysis, if available; non-destructive assay data; and rigorous evaluation of records for the processing history for items and inventory groups. This information is collected from subject-matter experts at inventory sites and from materials stabilization and surveillance programs, in cooperation with the design agencies for the disposition facilities. This report describes the operation and status of the characterization program.

  18. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  19. Remote Technology for Facility Deactivation and Decommissioning at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Shoffner, P.A.; Lagos, L.E.; Varona, J. [Applied Research Center, Florida International University, Miami, FL (United States); Faldowski, J.A.; Vesco, D. [NuVision Engineering, Inc., Road, Mooresville, NC (United States)

    2008-07-01

    The facilities at the Oak Ridge National Laboratory (ORNL) that will undergo deactivation and decommissioning (D and D) over the next several years include highly contaminated hot cell facilities, reactor facilities, process facilities, and a variety of other buildings. The D and D effort will require physical, chemical, and radiological characterization as well as decontamination, material sorting, size reduction, dismantlement, and waste removal and packaging. D and D planning for ORNL facilities includes recognizing that a significant number of the facilities contain hazards that prevent the use of safe manual D and D techniques. These hazards include seriously deteriorated structural integrity as well as very high dose rates (some in the hundreds of R/hr). The hazards also include high levels of fixed and removable radioactive contamination on facility surfaces and in equipment as well as chemically hazardous materials. Thus, manned entry may be highly restricted. In these situations, remotely operated technologies will be required to complete the necessary D and D activities, minimize dose and protect workers. To prepare to use remote technologies, it is first necessary to understand the tasks typically required to complete D and D of these facilities as well as the availability, applicability, and sustainability of previously deployed remote technologies. Technologies of specific interest included remote inspection, characterization, decontamination, and dismantlement. The Applied Research Center (ARC) at Florida International University (FIU), in partnership with NuVision Engineering (NVE, formerly AEA Technology), assessed the requirements for remotely operated technologies to support D and D at ORNL. FIU-ARC and NVE then identified existing technologies that can meet the expected requirements and performed a gap analysis between the D and D needs and currently available technologies. (authors)

  20. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  1. Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2012-05-01

    The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

  2. Remote Handling and Maintenance in the Facility for Rare Isotope Beams

    SciTech Connect (OSTI)

    Burgess, Thomas W; Aaron, Adam M; Carroll, Adam J; DeVore, Joe R; Giuliano, Dominic R; Graves, Van B; Bennett, Richard P; Bollen, Georg; Cole, Daniel F.; Ronningen, Reginald M.; Schein, Mike E; Zeller, Albert F

    2011-01-01

    Michigan State University (MSU) in East Lansing, MI was selected by the U.S. Department of Energy (DOE) to design and establish a Facility for Rare Isotope Beams (FRIB), a cutting-edge research facility to advance the understanding of rare nuclear isotopes and the evolution of the cosmos. The research conducted at the FRIB will involve experimentation with intense beams of rare isotopes within a well-shielded target cell that will result in activation and contamination of components. The target cell is initially hands-on accessible after shutdown and a brief cool-down period. Personnel are expected to have hands-on access to the tops of shielded component modules with the activated in-beam sections suspended underneath. The modules are carefully designed to include steel shielding for protecting personnel during these hand-on operations. However, as the facility has greater levels of activation and contamination, a bridge mounted servomaniputor may be added to the cell, to perform the disconnecting of services to the component assemblies. Dexterous remote handling and exchange of the modularized activated components is completed at a shielded window workstation with a pair of master-slave manipulators. The primary components requiring exchange or maintenance are the production target, the beam wedge filter, the beam dump, and the beam focusing and bending magnets. This paper provides an overview of the FRIB Target Facility remote handling and maintenance design requirements, concepts, and techniques.

  3. A historical perspective of remote operations and robotics in nuclear facilities. Robotics and Intelligent Systems Program

    SciTech Connect (OSTI)

    Herndon, J.N.

    1992-12-31

    The field of remote technology is continuing to evolve to support man`s efforts to perform tasks in hostile environments. The technology which we recognize today as remote technology has evolved over the last 45 years to support human operations in hostile environments such as nuclear fission and fusion, space, underwater, hazardous chemical, and hazardous manufacturing. The four major categories of approach to remote technology have been (1) protective clothing and equipment for direct human entry, (2) extended reach tools using distance for safety, (3) telemanipulators with barriers for safety, and (4) teleoperators incorporating mobility with distance and/or barriers for safety. The government and commercial nuclear industry has driven the development of the majority of the actual teleoperator hardware available today. This hardware has been developed largely due to the unsatisfactory performance of the protective-clothing approach in many hostile applications. Manipulation systems which have been developed include crane/impact wrench systems, unilateral power manipulators, mechanical master/slaves, and servomanipulators. Viewing systems have included periscopes, shield windows, and television systems. Experience over the past 45 years indicates that maintenance system flexibility is essential to typical repair tasks because they are usually not repetitive, structured, or planned. Fully remote design (manipulation, task provisions, remote tooling, and facility synergy) is essential to work task efficiency. Work for space applications has been primarily research oriented with relatively few successful space applications, although the shuttle`s remote manipulator system has been quite successful. In the last decade, underwater applications have moved forward significantly, with the offshore oil industry and military applications providing the primary impetus.

  4. ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Moore, E.

    2013-07-17

    The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

  5. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  6. National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility

    SciTech Connect (OSTI)

    Peggy Hinman

    2010-10-01

    The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

  7. Characterizing surplus US plutonium for disposition

    SciTech Connect (OSTI)

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-02-26

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

  8. Characterizing Surplus US Plutonium for Disposition - 13199

    SciTech Connect (OSTI)

    Allender, Jeffrey S. [Savannah River National Laboratory, Aiken SC 29808 (United States)] [Savannah River National Laboratory, Aiken SC 29808 (United States); Moore, Edwin N. [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)] [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)

    2013-07-01

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

  9. EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium.

  10. Remote-controlled NDA (nondestructive assay) systems for feed and product storage at an automated MOX (mixed oxide) facility

    SciTech Connect (OSTI)

    Menlove, H.O.; Augustson, R.H.; Ohtani, T.; Seya, M.; Takahashi, S.; Abedin-Zadeh, R.; Hassan, B.; Napoli, S.

    1989-01-01

    Nondestructive assay (NDA) systems have been developed for use in an automated mixed oxide (MOX) fabrication facility. Unique features have been developed for the NDA systems to accommodate robotic sample handling and remote operation. In addition, the systems have been designed to obtain International Atomic Energy Agency inspection data without the need for an inspector at the facility at the time of the measurements. The equipment is being designed to operate continuously in an unattended mode with data storage for periods of up to one month. The two systems described in this paper include a canister counter for the assay of MOX powder at the input to the facility and a capsule counter for the assay of complete liquid-metal fast breeder reactor fuel assemblies at the output of the plant. The design, performance characteristics, and authentication of the two systems will be described. The data related to reliability, precision, and stability will be presented. 5 refs., 10 figs., 4 tabs.

  11. SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W. Burgess, J. B. Chesser, V. B. Graves, and S.L. Schrock

    E-Print Network [OSTI]

    McDonald, Kirk

    SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W Neutron Source, Target Test Facility is a full-scale replica of the mercury-target flow loop prototypic target, and numerous pressure sensors. Outside of the loop enclosure, tests were done on a new

  12. Surplus Plutonium Disposition Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    1999-11-19

    In December 1996, the U.S. Department of Energy (DOE) published the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic Environmental Impact Statement (Storage and Disposition PEIS)'' (DOE 1996a). That PEIS analyzes the potential environmental consequences of alternative strategies for the long-term storage of weapons-usable plutonium and highly enriched uranium (HEU) and the disposition of weapons-usable plutonium that has been or may be declared surplus to national security needs. The Record of Decision (ROD) for the ''Storage and Disposition PEIS'', issued on January 14, 1997 (DOE 1997a), outlines DOE's decision to pursue an approach to plutonium disposition that would make surplus weapons-usable plutonium inaccessible and unattractive for weapons use. DOE's disposition strategy, consistent with the Preferred Alternative analyzed in the ''Storage and Disposition PEIS'', allows for both the immobilization of some (and potentially all) of the surplus plutonium and use of some of the surplus plutonium as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of both the immobilized plutonium and the MOX fuel (as spent nuclear fuel) in a potential geologic repository.

  13. SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP

    SciTech Connect (OSTI)

    Allender, J.; Mcclard, J.; Christopher, J.

    2012-06-08

    The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

  14. Study 59 - Fed 70WY Surplus Deficit.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1049 -305 -225 322 1995 Federal SurplusDeficit 260 -205 -53 142 1931 3119 1491 3318 3012 2668 519 347 1375 1996 Federal SurplusDeficit 1081 2864 3933 4477 3832 4732 4138 5391...

  15. Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    D. Craig Cooper

    2011-11-01

    Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.

  16. Alternative fuels: Feasibility of expanding the fuel ethanol industry using surplus grain

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This report examines two financing concepts in using surplus federally owned grain to further the development of the ethanol industry. They are (1) producers/developers would use surplus grain as collateral to obtain financing from lending institutions to construct new ethanol plants or expanding existing facilities and (2) producers/developers would use surplus grain as a free feedstock to produce ethanol, which could induce lending institutions to finance the construction or expansion of ethanol plants or facilities. Surplus grain inventories are large enough to support these concepts. However, producers/developers and lenders are skeptical about the concepts' usefulness for expanding the industry, given the current slump in the ethanol market. Most of producers/developers said the concepts were feasible; most lenders had little interest in the grain-as-collateral concept but were more interested in the feedstock-as-inducement concept. Department of Agriculture officials said that it is unlikely they would initiate the financing concepts unless directed by the Congress.

  17. DOE Policy on Decommissioning DOE Facilities Under CERCLA

    Broader source: Energy.gov [DOE]

    In May 1995, the Department of Energy (DOE) issued a policy in collaboration with the Environmental Protection Agency (EPA) for decommissioning surplus DOE facilities consistent with the...

  18. Standard guide for mechanical drive systems for remote operation in hot cell facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Intent: 1.1.1 The intent of this standard is to provide general guidelines for the design, selection, quality assurance, installation, operation, and maintenance of mechanical drive systems used in remote hot cell environments. The term mechanical drive systems used herein, encompasses all individual components used for imparting motion to equipment systems, subsystems, assemblies, and other components. It also includes complete positioning systems and individual units that provide motive power and any position indicators necessary to monitor the motion. 1.2 Applicability: 1.2.1 This standard is intended to be applicable to equipment used under one or more of the following conditions: 1.2.1.1 The materials handled or processed constitute a significant radiation hazard to man or to the environment. 1.2.1.2 The equipment will generally be used over a long-term life cycle (for example, in excess of two years), but equipment intended for use over a shorter life cycle is not excluded. 1.2.1.3 The ...

  19. Assessment of Potential Flood Events and Impacts at INL's Proposed Remote-Handled Low-Level Waste Disposal Facility Sites

    SciTech Connect (OSTI)

    A. Jeff Sondrup; Annette L. Schafter

    2010-09-01

    Rates, depths, erosion potential, increased subsurface transport rates, and annual exceedance probability for potential flooding scenarios have been evaluated for the on-site alternatives of Idaho National Laboratory’s proposed remote handled low-level waste disposal facility. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of flood impacts are required to meet the Department of Energy’s Low-Level Waste requirements (DOE-O 435.1), its natural phenomena hazards assessment criteria (DOE-STD-1023-95), and the Radioactive Waste Management Manual (DOE M 435.1-1) guidance in addition to being required by the National Environmental Policy Act (NEPA) environmental assessment (EA). Potential sources of water evaluated include those arising from (1) local precipitation events, (2) precipitation events occurring off of the INL (off-site precipitation), and (3) increased flows in the Big Lost River in the event of a Mackay Dam failure. On-site precipitation events include potential snow-melt and rainfall. Extreme rainfall events were evaluated for the potential to create local erosion, particularly of the barrier placed over the disposal facility. Off-site precipitation carried onto the INL by the Big Lost River channel was evaluated for overland migration of water away from the river channel. Off-site precipitation sources evaluated were those occurring in the drainage basin above Mackay Reservoir. In the worst-case scenarios, precipitation occurring above Mackay Dam could exceed the dam’s capacity, leading to overtopping, and eventually complete dam failure. Mackay Dam could also fail during a seismic event or as a result of mechanical piping. Some of the water released during dam failure, and contributing precipitation, has the potential of being carried onto the INL in the Big Lost River channel. Resulting overland flows from these flood sources were evaluated for their erosion potential, ability to overflow the proposed disposal facility, and for their ability to increase migration of contaminants from the facility. The assessment of available literature suggests that the likelihood of detrimental flood water impacting the proposed RH-LLW facility is extremely low. The annual exceedance probability associated with uncontrolled flows in the Big Lost River impacting either of the proposed sites is 1x10-5, with return interval (RI) of 10,000yrs. The most probable dam failure scenario has an annual exceedance probability of 6.3x10-6 (1.6x105 yr RI). In any of the scenarios generating possible on-site water, the duration is expected to be quite short, water depths are not expected to exceed 0.5 m, and the erosion potential can easily be mitigated by emplacement of a berm (operational period), and an engineered cover (post closure period). Subsurface mobilization of radionuclides was evaluated for a very conservative flooding scenario resulting in 50 cm deep, 30.5 day on-site water. The annual exceedance probability for which is much smaller than 3.6x10-7 (2.8x106 yr RI). For the purposes of illustration, the facility was assumed to flood every 500 years. The periodically recurring flood waters were predicted to marginally increase peak radionuclide fluxes into the aquifer by at most by a factor of three for non-sorbing radionuclides, and to have limited impact on peak radionuclide fluxes into the aquifer for contaminants that do sorb.

  20. EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental...

    Energy Savers [EERE]

    program, including changes to the inventory of surplus plutonium and proposed new alternatives. The Final SEIS does not identify a preferred alternative. Once a preferred...

  1. Disposition of surplus fissile materials via immobilization

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T.; Sutcliffe, W.G. [Lawrence Livermore National Lab., CA (United States); McKibben, J.M. [Westinghouse Savannah River Co., Aiken, SC (United States); Danker, W. [USDOE, Washington, DC (United States)

    1995-07-23

    In the Cold War aftermath, the US and Russia have agreed to large reductions in nuclear weapons. To aid in the selection of long-term management options, the USDOE has undertaken a multifaceted study to select options for storage and disposition of surplus plutonium (Pu). One disposition alternative being considered is immobilization. Immobilization is a process in which surplus Pu would be embedded in a suitable material to produce an appropriate form for ultimate disposal. To arrive at an appropriate form, we first reviewed published information on HLW immobilization technologies to identify forms to be prescreened. Surviving forms were screened using multi-attribute utility analysis to determine promising technologies for Pu immobilization. We further evaluated the most promising immobilization families to identify and seek solutions for chemical, chemical engineering, environmental, safety, and health problems; these problems remain to be solved before we can make technical decisions about the viability of using the forms for long-term disposition of Pu. All data, analyses, and reports are being provided to the DOE Office of Fissile Materials Disposition to support the Record of Decision that is anticipated in Summer of 1996.

  2. Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    1999-05-14

    On May 22, 1997, DOE published a Notice of Intent in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS)''. ''The Surplus Plutonium Disposition Draft Environmental Impact Statement'' (SPD Draft EIS) (DOWEIS-0283-D) was prepared in accordance with NEPA and issued in July 1998. It identified the potential environmental impacts of reasonable alternatives for the proposed siting, construction, and operation of three facilities for plutonium disposition. These three facilities would accomplish pit disassembly and conversion, immobilization, and MOX fuel fabrication. For the alternatives that included MOX fuel fabrication, the draft also described the potential environmental impacts of using from three to eight commercial nuclear reactors to irradiate MOX fuel. The potential impacts were based on a generic reactor analysis that used actual reactor data and a range of potential site conditions. In May 1998, DCE initiated a procurement process to obtain MOX fuel fabrication and reactor irradiation services. The request for proposals defined limited activities that may be performed prior to issuance of the SPD EIS Record of Decision (ROD) including non-site-specific work associated with the development of the initial design for the MOX fuel fabrication facility, and plans (paper studies) for outreach, long lead-time procurements, regulatory management, facility quality assurance, safeguards, security, fuel qualification, and deactivation. No construction on the proposed MOX facility would begin before an SPD EIS ROD is issued. In March 1999, DOE awarded a contract to Duke Engineering & Services; COGEMA, Inc.; and Stone & Webster (known as DCS) to provide the requested services. The procurement process included the environmental review specified in DOE's NEPA regulations in 10 CFR 1021.216. The six reactors selected are Catawba Nuclear Station Units 1 and 2 in South Carolina McGuire Nuclear Station Units 1 and 2 in North Carolina, and North Anna Power Station Units 1 and 2 in Virginia. The Supplement describes the potential environmental impacts of using MOX fuel in these six specific reactors named in the DCS proposal as well as other program changes made since the SPD Draft EIS was published.

  3. TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Beams, J.; Sanders, K.; Myers, L.

    2013-07-16

    Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

  4. Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis

    SciTech Connect (OSTI)

    A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

    2010-09-01

    An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energy’s Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources are then addressed. Differences in required analyses and data are captured as outstanding data needs.

  5. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

  6. EIS-0240: Disposition of Surplus Highly Enriched Uranium

    Broader source: Energy.gov [DOE]

    The Department proposes to eliminate the proliferation threat of surplus highly enriched uranium (HEU) by blending it down to low enriched uranium (LEU), which is not weapons-usable. The EIS assesses the disposition of a nominal 200 metric tons of surplus HEU. The Preferred Alternative is, where practical, to blend the material for use as LEU and use overtime, in commercial nuclear reactor field to recover its economic value. Material that cannot be economically recovered would be blended to LEU for disposal as low-level radioactive waste.

  7. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  8. Electro-Mechanical Manipulator for Use in the Remote Equipment Decontamination Cell at the Defense Waste Processing Facility, Savannah River Site - 12454

    SciTech Connect (OSTI)

    Lambrecht, Bill; Dixon, Joe [Par Systems, Shoreview, Minnesota, 55126 (United States); Neuville, John R. [Savannah River Remediation, Savannah River Site, Aiken, South Carolina, 29808 (United States)

    2012-07-01

    One of the legacies of the cold war is millions of liters of radioactive waste. One of the locations where this waste is stored is at the Savannah River Site (SRS) in South Carolina. A major effort to clean up this waste is on-going at the defense waste processing facility (DWPF) at SRS. A piece of this effort is decontamination of the equipment used in the DWPF to process the waste. The remote equipment decontamination cell (REDC) in the DWPF uses electro-mechanical manipulators (EMM) arms manufactured and supplied by PaR Systems to decontaminate DWPF process equipment. The decontamination fluid creates a highly corrosive environment. After 25 years of operational use the original EMM arms are aging and need replacement. To support continued operation of the DWPF, two direct replacement EMM arms were delivered to the REDC in the summer of 2011. (authors)

  9. NNSA B-Roll: MOX Facility

    ScienceCinema (OSTI)

    None

    2010-09-01

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  10. NNSA B-Roll: MOX Facility

    SciTech Connect (OSTI)

    2010-05-21

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  11. EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

  12. EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Harford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

  13. Department of Energy Announces Decision to Consolidate Surplus...

    Energy Savers [EERE]

    (MOX) Fuel Fabrication Facility (currently under construction); the existing H-Canyon facility; and the proposed new, small-scale plutonium vitrification capability. DOE will...

  14. ISAB 2001-3 Hatchery Surplus Letter -Page 1 Independent Scientific Advisory Board

    E-Print Network [OSTI]

    ISAB 2001-3 Hatchery Surplus Letter - Page 1 Independent Scientific Advisory Board Portland, Oregon 97204 ISAB@nwppc.org April 16, 2001 Dr. Usha Varanasi Science Director Northwest Fisheries Surplus Review Dear Dr. Varanasi: This letter is the ISAB's response to your January 29, 2001 request

  15. JMU SURPLUS BICYCLE PROGRAM WEB SITE JMU offers University departments and individual employees ("Customer") the

    E-Print Network [OSTI]

    Arnold, Elizabeth A.

    JMU SURPLUS BICYCLE PROGRAM WEB SITE JMU offers University departments and individual employees ("Customer") the opportunity to select and borrow a Surplus Property bicycle for up to one year the bicycle to others. The following procedures must be followed to qualify for this program. Since the costs

  16. The producer surplus associated with gasoline fuel use in the United States1

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    : Q41, Q43 Keywords: oil, marginal costs, producer surplus, gasoline, wealth transfer, drilling costs the average long-run cost ­ is an important part of social cost-benefit analyses of changes in petroleum use, and then applies the estimates of producer surplus to two kinds of social cost-benefit analyses related

  17. Radio frequency security system, method for a building facility or the like, and apparatus and methods for remotely monitoring the status of fire extinguishers

    DOE Patents [OSTI]

    Runyon, Larry (Richland, WA); Gunter, Wayne M. (Richland, WA); Gilbert, Ronald W. (Gilroy, CA)

    2006-07-25

    A system for remotely monitoring the status of one or more fire extinguishers includes means for sensing at least one parameter of each of the fire extinguishers; means for selectively transmitting the sensed parameters along with information identifying the fire extinguishers from which the parameters were sensed; and means for receiving the sensed parameters and identifying information for the fire extinguisher or extinguishers at a common location. Other systems and methods for remotely monitoring the status of multiple fire extinguishers are also provided.

  18. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

  19. LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    Fisher, S.E.; Holdaway, R.; Ludwig, S.B. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

  20. Report on Development of Concepts for the Advanced Casting System in Support of the Deployment of a Remotely Operable Research Scale Fuel Fabrication Facility for Metal Fuel

    SciTech Connect (OSTI)

    Ken Marsden

    2007-03-01

    Demonstration of recycle processes with low transuranic losses is key to the successful implementation of the Global Nuclear Energy Partnership strategy to manage spent fuel. It is probable that these recycle processes will include remote fuel fabrication. This report outlines the strategy to develop and implement a remote metal fuel casting process with minimal transuranic losses. The approach includes a bench-scale casting system to develop materials, methods, and perform tests with transuranics, and an engineering-scale casting system to demonstrate scalability and remote operability. These systems will be built as flexible test beds allowing exploration of multiple fuel casting approaches. The final component of the remote fuel fabrication demonstration culminates in the installation of an advanced casting system in a hot cell to provide integrated remote operation experience with low transuranic loss. Design efforts and technology planning have begun for the bench-scale casting system, and this will become operational in fiscal year 2008, assuming appropriate funding. Installation of the engineering-scale system will follow in late fiscal year 2008, and utilize materials and process knowledge gained in the bench-scale system. Assuming appropriate funding, the advanced casting system will be installed in a remote hot cell at the end of fiscal year 2009.

  1. Immobilization as a route to surplus fissile materials disposition. Revision 1

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T. [Lawrence Livermore National Lab., CA (United States); McKibben, J.M. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1996-03-15

    The safe management of surplus weapons plutonium is a very important and urgent task with profound environmental, national and international security implications. In the aftermath of the Cold War, Presidential Police Directive 13 and various analysis by renown scientific, technical and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths forward for the long term disposition of surplus weapons usable plutonium. The central, overarching goal is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons, as the much larger and growing stock of plutonium contained in civilian spent reactor fuel. One disposition alternative considered for surplus Pu is immobilization, in which plutonium would be emplaced in glass, ceramic or glass-bonded zeolite. This option, along with some of the progress over the last year is discussed.

  2. Union Station, Tacoma, Washington : a design study for a surplus rail site

    E-Print Network [OSTI]

    Rhoads, Jeffrey David

    1982-01-01

    Recent technological changes in railroads, mergers, major shifts in urban land use patterns, and declining rail passenger travel has resulted in a surplus of urban rail lands. These lands represent a significant resource ...

  3. SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO{sub 2} and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program equipment in the Savannah River Technology Center would need to be removed to accommodate pellet fabrication. This work would also be in a contaminated area.

  4. Graduate Certificate in Remote Sensing Texas A&M University

    E-Print Network [OSTI]

    are applied to wide-ranging fields such as environmental/resource management, marketing, facility management of Ecosystem Science and Management and Geography 651 ­ Remote Sensing for Geographical Analysis · ESSM 655 ­ Remote Sensing for Natural Resources

  5. Surplus Facilities Management Program (SFMP) Contract No. DE-AC05-810R20722

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1 theGroundwater2-341-FOS03Sr:s

  6. Robotics and remote systems applications

    SciTech Connect (OSTI)

    Rabold, D.E.

    1996-05-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling.

  7. Commercial nuclear fuel from U.S. and Russian surplus defense inventories: Materials, policies, and market effects

    SciTech Connect (OSTI)

    NONE

    1998-05-01

    Nuclear materials declared by the US and Russian governments as surplus to defense programs are being converted into fuel for commercial nuclear reactors. This report presents the results of an analysis estimating the market effects that would likely result from current plans to commercialize surplus defense inventories. The analysis focuses on two key issues: (1) the extent by which traditional sources of supply, such as production from uranium mines and enrichment plants, would be displaced by the commercialization of surplus defense inventories or, conversely, would be required in the event of disruptions to planned commercialization, and (2) the future price of uranium considering the potential availability of surplus defense inventories. Finally, the report provides an estimate of the savings in uranium procurement costs that could be realized by US nuclear power generating companies with access to competitively priced uranium supplied from surplus defense inventories.

  8. Remote Access

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout UsRegionalScientific andRemote Access Remote

  9. Remote Connections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout UsRegionalScientific andRemote AccessRemote

  10. Characterization of Representative Materials in Support of Safe, Long Term Storage of Surplus Plutonium in DOE-STD-3013 Containers

    SciTech Connect (OSTI)

    Narlesky, Joshua E.; Stroud, Mary Ann; Smith, Paul Herrick; Wayne, David M.; Mason, Richard E.; Worl, Laura A.

    2013-02-15

    The Surveillance and Monitoring Program is a joint Los Alamos National Laboratory/Savannah River Site effort funded by the Department of Energy-Environmental Management to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5,000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metal and oxide to very impure oxide. The performance of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on 54 samples of plutonium, with 53 chosen to represent the broader population of materials in storage. This paper summarizes the characterization data, moisture analysis, particle size, surface area, density, wattage, actinide composition, trace element impurity analysis, and shelf life surveillance data and includes origin and process history information. Limited characterization data on fourteen nonrepresentative samples is also presented.

  11. Special Section Guest Editorial: High-Performance Computing in Applied Remote Sensing

    E-Print Network [OSTI]

    Plaza, Antonio J.

    Special Section Guest Editorial: High-Performance Computing in Applied Remote Sensing Bormin Huanga-performance computing in applied remote sensing presents the state-of-the-art research in incorporating high-performance computing (HPC) facilities and algorithms for effective and efficient remote sensing applications

  12. Niagara falls storage site: Annual site environmental report, Lewiston, New York, Calendar Year 1988: Surplus Facilities Management Program (SFMP)

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    The monitoring program at the Niagara Falls Storage Site (NFSS) measures radon concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the conservative scenario described in this report, this hypothetical individual receives an annual external exposure approximately equivalent to 6 percent of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than a person receives during two round-trip flights from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. Results of the 1988 monitoring show that the NFSS is in compliance with applicable DOE radiation protection standards. 17 refs., 31 figs., 20 tabs.

  13. Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2010-10-01

    The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

  14. Remote reset circuit

    DOE Patents [OSTI]

    Gritzo, Russell E. (West Melbourne, FL)

    1987-01-01

    A remote reset circuit acts as a stand-alone monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients.

  15. Remote reset circuit

    DOE Patents [OSTI]

    Gritzo, R.E.

    1985-09-12

    A remote reset circuit acts as a stand-along monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients. 4 figs.

  16. Remote Monitoring Transparency Program

    SciTech Connect (OSTI)

    Sukhoruchkin, V.K.; Shmelev, V.M.; Roumiantsev, A.N.; Croessmann, C.D.; Horton, R.D.; Matter, J.C.; Czajkowski, A.F.; Sheely, K.B.; Bieniawski, A.J.

    1996-12-31

    The objective of the Remote Monitoring Transparency Program is to evaluate and demonstrate the use of remote monitoring technologies to advance nonproliferation and transparency efforts that are currently being developed by Russia and the US without compromising the national security of the participating parties. Under a lab-to-lab transparency contract between Sandia National Laboratories (SNL) and the Kurchatov Institute (KI RRC), the Kurchatov Institute will analyze technical and procedural aspects of the application of remote monitoring as a transparency measure to monitor inventories of direct-use HEU and plutonium (e.g., material recovered from dismantled nuclear weapons). A goal of this program is to assist a broad range of political and technical experts in learning more about remote monitoring technologies that could be used to implement nonproliferation, arms control, and other security and confidence building measures. Specifically, this program will: (1) begin integrating Russian technologies into remote monitoring systems; (2) develop remote monitoring procedures that will assist in the application of remote monitoring techniques to monitor inventories of HEU and Pu from dismantled nuclear weapons; and (3) conduct a workshop to review remote monitoring fundamentals, demonstrate an integrated US/Russian remote monitoring will have on the national security of participating countries.

  17. Remote Systems Design & Deployment

    SciTech Connect (OSTI)

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  18. Evaluation of alternatives for the disposition of surplus weapons-usable plutonium

    SciTech Connect (OSTI)

    Dyer, J.S.; Butler, J.C. [Univ. of Texas, Austin, TX (United States); Edmunds, T. [Lawrence Livermore National Lab., CA (United States)] [and others

    1997-04-04

    The Department of Energy Record of Decision (ROD) selected alternatives for disposition of surplus, weapons grade plutonium. A major objective of this decision was to prevent the proliferation of nuclear weapons. Other concerns addressed included economic, technical, institutional, schedule, environmental, and health and safety issues. The analysis reported here was conducted in parallel with technical, environmental, and nonproliferation analyses; it uses multiattribute utility theory to combine these considerations in order to facilitate an integrated evaluation of alternatives. This analysis is intended to provide additional insight regarding alternative evaluation and to assist in understanding the rationale for the choice of alternatives recommended in the ROD. Value functions were developed for objectives of disposition, and used to rank alternatives. Sensitivity analyses indicated that the ranking of alternatives for the base case was relatively insensitive to changes in assumptions over reasonable ranges. The analyses support the recommendation of the ROD to pursue parallel development of the vitrification immobilization alternative and the use of existing light water reactors alternative. 27 refs., 109 figs., 20 tabs.

  19. ISIS Facility: Facility Design Challenges

    E-Print Network [OSTI]

    McDonald, Kirk

    ISIS Facility: Facility Design Challenges Matt Fletcher Head, Design Division ISIS Department, FNAL #12;ISIS -- neutrons Diamond -- X-rays #12;#12;· Lifetime · Reliable Operation · Flexibility

  20. Remote actuated valve implant

    DOE Patents [OSTI]

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  1. Vacuum Vessel Remote Handling

    E-Print Network [OSTI]

    FIRE Vacuum Vessel and Remote Handling Overview B. Nelson, T. Burgess, T. Brown, H-M Fan, G. Jones #12;13 July 2002 Snowmass Review: FIRE Vacuum Vessel and Remote Handling 2 Presentation Outline · Vacuum Vessel - Design requirements - Design concept and features - Analysis to date - Status and summary

  2. A Methodology for the Analysis and Selection of Alternative for the Disposition of Surplus Plutonium

    SciTech Connect (OSTI)

    NONE

    1999-08-31

    The Department of Energy (DOE) - Office of Fissile Materials Disposition (OFMD) has announced a Record of Decision (ROD) selecting alternatives for disposition of surplus plutonium. A major objective of this decision was to further U.S. efforts to prevent the proliferation of nuclear weapons. Other concerns that were addressed include economic, technical, institutional, schedule, environmental, and health and safety issues. The technical, environmental, and nonproliferation analyses supporting the ROD are documented in three DOE reports [DOE-TSR 96, DOE-PEIS 96, and DOE-NN 97, respectively]. At the request of OFMD, a team of analysts from the Amarillo National Resource Center for Plutonium (ANRCP) provided an independent evaluation of the alternatives for plutonium that were considered during the evaluation effort. This report outlines the methodology used by the ANRCP team. This methodology, referred to as multiattribute utility theory (MAU), provides a structure for assembling results of detailed technical, economic, schedule, environment, and nonproliferation analyses for OFMD, DOE policy makers, other stakeholders, and the general public in a systematic way. The MAU methodology has been supported for use in similar situations by the National Research Council, an agency of the National Academy of Sciences.1 It is important to emphasize that the MAU process does not lead to a computerized model that actually determines the decision for a complex problem. MAU is a management tool that is one component, albeit a key component, of a decision process. We subscribe to the philosophy that the result of using models should be insights, not numbers. The MAU approach consists of four steps: (1) identification of alternatives, objectives, and performance measures, (2) estimation of the performance of the alternatives with respect to the objectives, (3) development of value functions and weights for the objectives, and (4) evaluation of the alternatives and sensitivity analysis. These steps are described below.

  3. LLNL Site plan for a MOX fuel lead assembly mission in support of surplus plutonium disposition

    SciTech Connect (OSTI)

    Bronson, M.C.

    1997-10-01

    The principal facilities that LLNL would use to support a MOX Fuel Lead Assembly Mission are Building 332 and Building 334. Both of these buildings are within the security boundary known as the LLNL Superblock. Building 332 is the LLNL Plutonium Facility. As an operational plutonium facility, it has all the infrastructure and support services required for plutonium operations. The LLNL Plutonium Facility routinely handles kilogram quantities of plutonium and uranium. Currently, the building is limited to a plutonium inventory of 700 kilograms and a uranium inventory of 300 kilograms. Process rooms (excluding the vaults) are limited to an inventory of 20 kilograms per room. Ongoing operations include: receiving SSTS, material receipt, storage, metal machining and casting, welding, metal-to-oxide conversion, purification, molten salt operations, chlorination, oxide calcination, cold pressing and sintering, vitrification, encapsulation, chemical analysis, metallography and microprobe analysis, waste material processing, material accountability measurements, packaging, and material shipping. Building 334 is the Hardened Engineering Test Building. This building supports environmental and radiation measurements on encapsulated plutonium and uranium components. Other existing facilities that would be used to support a MOX Fuel Lead Assembly Mission include Building 335 for hardware receiving and storage and TRU and LLW waste storage and shipping facilities, and Building 331 or Building 241 for storage of depleted uranium.

  4. Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

    2012-09-10

    Measurements of several radionuclides within environmental samples taken from the Fukushima Daiichi nuclear facility and reported on the Tokyo Electric Power Company website following the recent tsunami-initiated catastrophe were evaluated for the purpose of identifying the source term, reconstructing the release mechanisms, and estimating the extent of the release. 136Cs/137Cs and 134Cs/137Cs ratios identified Units 1-3 as the major source of radioactive contamination to the surface soil close to the facility. A trend was observed between the fraction of the total core inventory released for a number of fission product isotopes and their corresponding Gibbs Free Energy of formation for the primary oxide form of the isotope, suggesting that release was dictated primarily by chemical volatility driven by temperature and reduction potential within the primary containment vessels of the vented reactors. The absence of any major fractionation beyond volatilization suggested all coolant had evaporated by the time of venting. High estimates for the fraction of the total inventory released of more volatile species (Te, Cs, I) indicated the damage to fuel bundles was likely extensive, minimizing any potential containment due to physical migration of these species through the fuel matrix and across the cladding wall. 238Pu/239,240Pu ratios close-in and at 30 km from the facility indicated that the damaged reactors were the major contributor of Pu to surface soil at the source but that this contribution likely decreased rapidly with distance from the facility. The fraction of the total Pu inventory released to the environment from venting units 1 and 3 was estimated to be ~0.003% based upon Pu/Cs isotope ratios relative to the within-reactor modeled inventory prior to venting and was consistent with an independent model evaluation that considered chemical volatility based upon measured fission product release trends. Significant volatile radionuclides within the spent fuel at the time of venting but not as yet observed and reported within environmental samples are suggested as potential analytes of concern for future environmental surveys around the site.

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  7. REMOTE SENSING OF THE ENVIRONMENT

    E-Print Network [OSTI]

    Gilbes, Fernando

    1 CHAPTER 1: REMOTE SENSING OF THE ENVIRONMENT REFERENCE: Remote Sensing of the Environment John R. Jensen (2007) Second Edition Pearson Prentice Hall What is Remote Sensing? #12;2 Photogrammetry ­ the art of identifying objects and judging their significance (Colwell, 1966). Remote Sensing ­ the measurement

  8. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  9. Remote electrochemical sensor

    DOE Patents [OSTI]

    Wang, Joseph (Las Cruces, NM); Olsen, Khris (Richland, WA); Larson, David (Las Cruces, NM)

    1997-01-01

    An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

  10. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  11. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  12. Portsmouth X300 remote assay monitor system

    SciTech Connect (OSTI)

    Smith, D.E.

    1996-07-01

    Personnel in the Instrumentation and Controls Division at Oak Ridge National Laboratory (ORNL) in association with the United States Enrichment Corporation (USEC) have recently developed a system for monitoring and tracking the assay of enriched uranium from the production facilities at the Portsmouth Gaseous Diffusion Plant (PORTS). This work was sponsored by the USEC and has involved the expansion and improvement of an existing system that was developed by ORNL. The system provides control room operators with real-time information on the withdrawal operations of uranium hexafluoride at the withdrawal stations at PORTS. An additional system was developed to display the real-time information from each of the three withdrawal stations at a remotely located building. This report describes the remote assay monitor and display system that has been developed and installed at PORTS Building X300.

  13. Implementation of remove monitoring in facilities under safeguards with unattended systems

    SciTech Connect (OSTI)

    Beddingfield, David H [Los Alamos National Laboratory; Nordquist, Heather A [Los Alamos National Laboratory; Umebayaashi, Eiji [JAEA

    2009-01-01

    Remote monitoring is being applied by the International Atomic Energy Agency (IAEA) at nuclear facilities around the world. At the Monju Reactor in Japan we have designed, developed and implemented a remote monitoring approach that can serve as a model for applying remote monitoring to facilities that are already under full-scope safeguards using unattended instrumentation. Remote monitoring implementations have historically relied upon the use of specialized data collection hardware and system design features that integrate remote monitoring into the safeguards data collection system. The integration of remote monitoring and unattended data collection increases the complexity of safeguards data collection systems. This increase in complexity necessarily produces a corresponding reduction of system reliability compared to less-complex unattended monitoring systems. At the Monju facility we have implemented a remote monitoring system that is decoupled from the activity of safeguards data collection. In the completed system the function of remote data transfer is separated from the function of safeguards data collection. As such, a failure of the remote monitoring function cannot produce an associated loss of safeguards data, as is possible with integrated remote-monitoring implementations. Currently, all safeguards data from this facility is available to the IAEA on a 24/7 basis. This facility employs five radiation-based unattended systems, video surveillance and numerous optical seal systems. The implementation of remote monitoring at this facility, while increasing the complexity of the safeguards system, is designed to avoid any corresponding reduction in reliability of the safeguards data collection systems by having decoupled these functions. This design and implementation can serve as a model for implementation of remote monitoring at nuclear facilities that currently employ unattended safeguards systems.

  14. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA); Hegland, Joel E. (Pullman, WA); Jones, Scott C. (Pullman, WA)

    1991-01-01

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission.

  15. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  16. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  17. Remote System Technologies for Deactivating Hanford Hot Cells

    SciTech Connect (OSTI)

    Berlin, G.; Walton, T.

    2003-02-25

    Remote system technologies are being deployed by Fluor Hanford to help accelerate the deactivation of highly-radioactive hot cell facilities. These technologies offer improved methods for accessing difficult-to-reach spaces and performing tasks such as visual inspection, radiological characterization, decontamination, waste handling, and size reduction. This paper is focused on the application of remote systems in support of deactivation work being performed in several legacy facilities at Hanford (i.e., the 324 and 327 Buildings). These facilities were previously used for fuel fabrication, materials examination, and the development of waste treatment processes. The technologies described in this paper represent significant improvements to Hanford's baseline methods, and may offer benefits to other U.S. Department of Energy (DOE) sites and commercial operations.

  18. Remote electrochemical sensor

    DOE Patents [OSTI]

    Wang, J.; Olsen, K.; Larson, D.

    1997-10-14

    An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

  19. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  20. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-01-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  1. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    Austad, S. L.; Guillen, L. E.; McKnight, C. W.; Ferguson, D. S.

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  2. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  3. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  4. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  5. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  7. Status of the Pit Disassembly and Conversion Facility

    SciTech Connect (OSTI)

    Zygmunt, S. [Los Alamos National Lab., NM (United States); Peko, D. [Dept. of Energy, Washington, DC (United States). Office of Fissile Materials Disposition

    1998-12-31

    A planned new facility, the Pit Disassembly and Conversion Facility (PDCF) will be used to disassemble the nation`s inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. Sized to handle 35 metric tons of plutonium from pits and other sources over its 10-year operating life, the PDCF will apply the Advanced Recovery and Integrated Extraction System (ARIES) technology. ARIES process technology has been developed at Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL) and an integrated system is being demonstrated LANL. Four sites were considered for locating the PDCF: Pantex Plant, Savannah River Site (SRS), Idaho National Engineering and Environmental Laboratory (INEEL), and Hanford Site. Each site offers a different opportunity for constructing the PDCF, ranging from a new building at Pantex Plant to using an existing building at Hanford Site or INEEL. The Surplus Plutonium Disposition Environmental Impact Statement was prepared by the Department of Energy (DOE) Office of Fissile Materials Disposition (OFMD) to aid in site selection. This paper describes the initial scoping activities, preconceptual and conceptual design work, and the status of the PDCF.

  8. Interpreting Remote Sensing NOx Measurements

    E-Print Network [OSTI]

    Denver, University of

    Interpreting Remote Sensing NOx Measurements Robert Slott, Consultant, Donald Stedman and Saj tailpipe emissions (HC, CO, NOx) are changing with time hUse remote sensing hMeasurements in at least 4 of the year at each location hUniform QC/QA and data reporting Paper # 2001-01-3640 #12;Remote Sensing

  9. Decommissioning of eight surplus production reactors at the Hanford Site, Richland, Washington. Addendum (Final Environmental Impact Statement)

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The first section of this volume summarizes the content of the draft environmental impact statement (DEIS) and this Addendum, which together constitute the final environmental impact statement (FEIS) prepared on the decommissioning of eight surplus plutonium production reactors at Hanford. The FEIS consists of two volumes. The first volume is the DEIS as written. The second volume (this Addendum) consists of a summary; Chapter 9, which contains comments on the DEIS and provides DOE`s responses to the comments; Appendix F, which provides additional health effects information; Appendix K, which contains costs of decommissioning in 1990 dollars; Appendix L, which contains additional graphite leaching data; Appendix M, which contains a discussion of accident scenarios; Appendix N, which contains errata; and Appendix 0, which contains reproductions of the letters, transcripts, and exhibits that constitute the record for the public comment period.

  10. Development and Verification for the Control Method Using Surplus Pressure of Primary Pumps in Chiller Plant Systems for Air Conditioning which Adopts Primary/Secondary Piping Systems PPT 

    E-Print Network [OSTI]

    Matsushita, N.; Fujimura, M.; Sumiyoshi, D.; Akashi, Y.

    2012-01-01

    (chiller side) and secondary flow loop (load side). It is a huge energy loss, because the primary pumps use their head to lead much flow to the decoupler. Therefore, we have developed new control method using surplus pressure of the primary pump to reduce...

  11. Facility Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese Academy of Sciences, Hefei, Anhui, P.R. China The Engineering Design of ARC: A Compact, High Field, Fusion Nuclear Science Facility and Demonstration Power Plant B. N....

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  13. Facility Name Facility Name Facility FacilityType Owner Developer...

    Open Energy Info (EERE)

    FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi...

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  15. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  17. Remote Sensing Laboratory - RSL

    SciTech Connect (OSTI)

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  18. Remote Sensing Laboratory - RSL

    ScienceCinema (OSTI)

    None

    2015-01-09

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  19. Remote switch actuator

    DOE Patents [OSTI]

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  20. Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities. Volume 3

    SciTech Connect (OSTI)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-09-01

    This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km{sup 2} (570-mi{sup 2}) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation.

  1. Remote repair appliance

    DOE Patents [OSTI]

    Heumann, Frederick K. (Ballston Spa, NY); Wilkinson, Jay C. (Ballston Spa, NY); Wooding, David R. (Saratoga Springs, NY)

    1997-01-01

    A remote appliance for supporting a tool for performing work at a worksite on a substantially circular bore of a workpiece and for providing video signals of the worksite to a remote monitor comprising: a baseplate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the baseplate and positioned to roll against the bore of the workpiece when the baseplate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the baseplate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the baseplate such that the working end of the tool is positioned on the inner face side of the baseplate; a camera for providing video signals of the worksite to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the baseplate, the camera holding means being adjustably attached to the outer face of the baseplate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris.

  2. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  3. Remote Operation of the Fermilab/NICADD Photoinjector

    SciTech Connect (OSTI)

    Nikolai Barov et al.

    2002-03-21

    The recognition that a new major HEP facility must receive international support and that its execution would benefit from worldwide interaction from design through operation has given rise to the term Global Accelerator Network (GAN). A welcome consequence has been a more permissive attitude toward remote operation of existing facilities.For roughly thirty years, the computer has been the principal operator interface to the beam,and, through the development of the Internet, the operator can be literally anywhere. In this note, the authors describe their approach to enabling a sufficient degree of operation of the photoinjector from afar in order to carry out investigations in beam physics. The goal was to do so on a time scale of a few months and at minimal cost. At this writing, remote shifts are routinely scheduled involving DESY and LBL, limited in frequency only by the requests of the collaborators and by the need for time to interpret the data.

  4. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

  5. Experimental Underground facility to evaluate remote sensing instruments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    is quite easy to obtain, in the case of conventional techniques, but the problems remain with optical, hydrocarbons, and specific pollutants such äs NH3, naphtalene,... Before putting such an instrument Absorption Spectroscopy (DOAS) devices. The procedure is based on that used for conventional point monitors

  6. Working with SRNL - Our Facilities - Remote Systems Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in1: ModelGloveboxMetal

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  9. Environmental surveillance for EG&G Idaho Waste Management facilities at the Idaho National Engineering Laboratory. 1993 annual report

    SciTech Connect (OSTI)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.; Borsella, B.W.

    1994-08-01

    This report describes calendar year 1993 environmental surveillance activities of Environmental Monitoring of EG&G Idaho, Inc., performed at EG&G Idaho operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1993 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years.

  10. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  11. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  12. Defense waste processing facility radioactive operations. Part 1 - operating experience

    SciTech Connect (OSTI)

    Little, D.B.; Gee, J.T.; Barnes, W.M.

    1997-12-31

    The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first and the world`s largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge{trademark} level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs.

  13. Remote Sensor Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners *ReindustrializationEnergy Remote AlaskanJ.E.M.

  14. Facility Operations and Maintenance Facilities Management

    E-Print Network [OSTI]

    Capogna, Luca

    Facility Operations and Maintenance Facilities Management D101 Facilities Management R -575/affirmative action institution. 354 3 373 4 373A,B,C,D 4 Alm8/31/12 #12;Facility Operations and Maintenance, B 5 1409 5 1403 5 1403 A, B 4 1408 3 1408 A,B,C 3 1610 3 #12;Facility Operations and Maintenance

  15. Remotely operated pipe connector

    DOE Patents [OSTI]

    Josefiak, Leonard J. (Scotia, NY); Cramer, Charles E. (Guilderford, NY)

    1988-01-01

    An apparatus for remotely assembling and disassembling a Graylock type coctor between a pipe and a closure for the pipe includes a base and a receptacle on the base for the closure. The pipe is moved into position vertically above the closure by a suitable positioning device such that the flange on the pipe is immediately adjacent and concentric with the flange on the closure. A moving device then moves two semicircular collars from a position free of the closure to a position such that the interior cam groove of each collar contacts the two flanges. Finally, a tensioning device automatically allows remote tightening and loosening of a nut and bolt assembly on each side of the collar to cause a seal ring located between the flanges to be compressed and to seal the closure. Release of the pipe and the connector is accomplished in the reverse order. Preferably, the nut and bolt assembly includes an elongate shaft portion on which a removable sleeve is located.

  16. Space and Remote Sensing (ISR-2)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Space and Remote Sensing Developing and applying remote sensing capabilities to problems of global security and related sciences Contacts Group Leader Robert Shirey Email Deputy...

  17. Beneficial Re-use of Decommissioned Former Nuclear Facilities

    SciTech Connect (OSTI)

    Boing, L.E.

    1997-06-01

    With the decision to decommission a nuclear facility, it is necessary to evaluate whether to fully demolish a facility or to re-use the facility in some capacity. This evaluation is often primarily driven by both the past mission of the site and the facility and the site's perceived future mission. In the case where the facility to be decommissioned is located within a large research or industrial complex and represents a significant resource to the site's future mission, it may be a perfect candidate to be re-used in some fashion. However, if the site is a rather remote older facility with little chance of being modified to today's standards for its re-use, the chances for its re-use will be substantially reduced. In this presentation, some specific cases of former nuclear facilities being decommissioned and re-used will be reviewed and some factors required to be considered in making this decision will be reviewed.

  18. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Science &Technology Facilities Council Science and Technology Facilities Council Annual Report and Accounts 2011-2012 Science and Technology Facilities Council Laboratory, Cheshire; UK Astronomy Technology Centre, Edinburgh; Chilbolton Observatory, Hampshire; Isaac

  19. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  20. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversitySchedules PrintNIF About BlogFacilities

  1. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture |GE PutsgovSitesMobile Facility AMF

  2. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    SciTech Connect (OSTI)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  3. Chit-based Remote Storage

    E-Print Network [OSTI]

    Paluska, Justin Mazzola

    We propose a model for reliable remote storage founded on contract law. Consumers submit their bits to storage providers in exchange for a chit. A chit is a cryptographically secure, verifiable contract between a consumer ...

  4. CHAPTER 12:CHAPTER 12: Remote Sensing ofRemote Sensing of

    E-Print Network [OSTI]

    Gilbes, Fernando

    1 CHAPTER 12:CHAPTER 12: Remote Sensing ofRemote Sensing of WaterWaterWaterWater REFERENCE: Remote SensingREFERENCE: Remote Sensing of the Environmentof the Environment John R. Jensen (2007)John R. Jensen yy y the waterthe water with remotewith remote sensing?sensing? #12;2 THE BLUE PLANETTHE BLUE PLANET

  5. CHAPTERCHAPTER 1313CHAPTERCHAPTER 13:13: Remote Sensing ofRemote Sensing of

    E-Print Network [OSTI]

    Gilbes, Fernando

    11 CHAPTERCHAPTER 1313CHAPTERCHAPTER 13:13: Remote Sensing ofRemote Sensing of Urban LandscapeUrban Landscape REFERENCE: Remote SensingREFERENCE: Remote Sensing of the Environmentof the Environment John R Hall pp Urban Remote Sensing Users · Zoning regulation · Commerce and economic development · Tax

  6. Assessment of the facilities on Jackass Flats and other Nevada test site facilities for the new nuclear rocket program

    SciTech Connect (OSTI)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D. (Field Test Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1993-01-15

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. In particular we have assumed that the program goal will be to certify a full engine system design as flight test ready. All nuclear and non-nuclear components will be individually certified as ready for such a test at sites remote from the NRDA facilities, the components transported to NRDA, and the engine assembled. We also assume that engines of 25,000--100,000 lb thrust levels will be tested with burn times of 1 hour or longer. After a test, the engine will be disassembled, time critical inspections will be executed, and a selection of components will be transported to remote inspection sites. The majority of the components will be stored for future inspection at Jackass Flats. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad.

  7. Remote hybrid power systems

    SciTech Connect (OSTI)

    Barley, C.D.; Winn, C.B. [Colorado State Univ., Fort Collins, CO (United States)

    1997-12-31

    This paper provides an overview of the emerging technology of remote, stand-alone electrical power systems featuring a renewable source (wind or photovoltaics [PV]) as well as a diesel generator, with or without an energy storage device. Other stand-alone power systems are discussed briefly, mainly to emphasize the domain of hybrid systems. The history of hybrid systems is reviewed, beginning with the first wind/diesel system in the late 1970s. Other topics include issues arising from the characteristics of diesel engine/generator sets; simple vs. complex systems; the various energy storage technologies that have been used or proposed; control strategies; modeling; optimization; and some {open_quotes}nuts & bolts{close_quotes} details. The bibliography includes over 130 references which are cited throughout the topical discussions. It is concluded that the technical feasibility of hybrid systems has been demonstrated through many prototype installations, and that areas for further improvements include higher reliability and more economical energy storage devices. 139 refs., 7 figs., 1 tab.

  8. Remote direct memory access

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  9. Sensing remote nuclear spins

    E-Print Network [OSTI]

    Nan Zhao; Jan Honert; Berhard Schmid; Junichi Isoya; Mathew Markham; Daniel Twitchen; Fedor Jelezko; Ren-Bao Liu; Helmut Fedder; Jörg Wrachtrup

    2012-04-29

    Sensing single nuclear spins is a central challenge in magnetic resonance based imaging techniques. Although different methods and especially diamond defect based sensing and imaging techniques in principle have shown sufficient sensitivity, signals from single nuclear spins are usually too weak to be distinguished from background noise. Here, we present the detection and identification of remote single C-13 nuclear spins embedded in nuclear spin baths surrounding a single electron spins of a nitrogen-vacancy centre in diamond. With dynamical decoupling control of the centre electron spin, the weak magnetic field ~10 nT from a single nuclear spin located ~3 nm from the centre with hyperfine coupling as weak as ~500 Hz is amplified and detected. The quantum nature of the coupling is confirmed and precise position and the vector components of the nuclear field are determined. Given the distance over which nuclear magnetic fields can be detected the technique marks a firm step towards imaging, detecting and controlling nuclear spin species external to the diamond sensor.

  10. Overview of Idaho National Laboratory's Hot Fuels Examination Facility

    SciTech Connect (OSTI)

    Adam B. Robinson; R. Paul Lind; Daniel M. Wachs

    2007-09-01

    The Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) of the Idaho National Laboratory was constructed in the 1960’s and opened for operation in the 1975 in support of the liquid metal fast breeder reactor research. Specifically the facility was designed to handle spent fuel and irradiated experiments from the Experimental Breeder Reactor EBRII, the Fast Flux Test Facility (FFTF), and the Transient Reactor Test Facility (TREAT). HFEF is a large alpha-gamma facility designed to remotely characterize highly radioactive materials. In the late 1980’s the facility also began support of the US DOE waste characterization including characterizing contact-handled transuranic (CH-TRU) waste. A description of the hot cell as well as some of its primary capabilities are discussed herein.

  11. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  12. The Fermilab CMTF cryogenic distribution remote control system

    SciTech Connect (OSTI)

    Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R.

    2014-01-29

    The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

  13. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  14. T-573: Windows Remote Desktop Client DLL Loading Error Lets Remote Users Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    A vulnerability was reported in Windows Remote Desktop Client. A remote user can cause arbitrary code to be executed on the target user's system.

  15. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  16. The Wildlife Society (TWS) GIS Annual Remote Sensing Meeting

    E-Print Network [OSTI]

    Dwyer, Chris

    1996-01-01

    Secretary/Treasurer, TWS GIS & Remote Sensing Working Group.The Wildlife Society (TWS) GIS Annual Remote Sensing Meetinghosted a special meeting of GIS and remote sensing interests

  17. Continuous remote unattended monitoring for safeguards data collection systems

    SciTech Connect (OSTI)

    Klosterbuer, S.F.; Halbig, J.K.; Harker, W.C.; Menlove, H.O.; Painter, J.A.; Stewart, J.E.

    1994-02-01

    To meet increased inspection requirements, unattended and remote monitoring systems have been developed and installed in several large facilities to perform safeguards functions. These unattended monitoring systems are based on instruments originally developed for traditional safeguards and the domestic nuclear industry to nondestructively assay nuclear materials. Through specialized measurement procedures, these instruments have been adapted to be unattended monitors. This paper defines the parts of these unattended monitoring systems, describes the systems that have been installed in the field and their status, and discusses future trends for unattended systems.

  18. Design considerations, tooling, and equipment for remote in-service inspection of radioactive piping and pressure-vessel systems

    SciTech Connect (OSTI)

    Swannack, D.L.; Schmoker, D.S.

    1983-01-01

    This paper summarizes results obtained in use of remotely-operated nondestructive testing (NDT) equipment for inspection of reactor-system components. Experience obtained in operating the Fast Flux Test Facility (FFTF) has provided a basis for field verification of remote NDT equipment designs and has suggested development improvements. Remote Viewing and data gathering systems used include periscopes, borescopes, fiberscopes, hybrid borescopes/fiberscopes, and closed circuit television. A summary of design consideration for inspection equipment and power plant design is presented to achieve improved equipment operation and reduction of plant maintenance downtime.

  19. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  20. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    SciTech Connect (OSTI)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  1. Integration of Facility Modeling Capabilities for Nuclear Nonproliferation Analysis

    SciTech Connect (OSTI)

    Humberto E. Garcia

    2012-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  2. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  3. Position Announcement Postdoctoral Research Associate Lidar Remote Sensing

    E-Print Network [OSTI]

    Salvaggio, Carl

    Position Announcement Postdoctoral Research Associate ­ Lidar Remote Sensing Department Summary: The employee will provide remote sensing expertise and conduct research in lidar remote sensing from advanced terrestrial, airborne, and satellite remote sensing platforms, including UASs (Unmanned

  4. 10 January 2009 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING High Performance Computing in Remote Sensing

    E-Print Network [OSTI]

    Plaza, Antonio J.

    10 January 2009 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING High Performance Computing in Remote Book ReviewBook Review High Performance Computing in Remote Sensing introduces the most recent advances in the incorporation of the high-performance computing (HPC) paradigm in remote sensing missions. Eighteen well

  5. Remote Sens. 2013, 5, 5173-5192; doi:10.3390/rs5105173 Remote Sensing

    E-Print Network [OSTI]

    California at Berkeley, University of

    Remote Sens. 2013, 5, 5173-5192; doi:10.3390/rs5105173 Remote Sensing ISSN 2072-4292 www: fire detection; geosynchronous; remote sensing; infrared; FUEGO 1. Introduction 1.1. Overview Fire for a geosynchronous OPEN ACCESS #12;Remote Sens. 2013, 5 5174 satellite with modern imaging detectors, software

  6. Remote Sens. 2009, 1, 519-533; doi:10.3390/rs1030519 Remote Sensing

    E-Print Network [OSTI]

    Anderson, Charles W.

    Remote Sens. 2009, 1, 519-533; doi:10.3390/rs1030519 Remote Sensing ISSN 2072-4292 www of Remotely Sensed Data Paul H. Evangelista 1, *, Thomas J. Stohlgren 2 , Jeffrey T. Morisette 2 and Sunil model (Maxent) for its application and performance in remotely sensing invasive Tamarix sp. Six Landsat

  7. INTERVAL METHODS IN REMOTE SENSING

    E-Print Network [OSTI]

    Ward, Karen

    INTERVAL METHODS IN REMOTE SENSING: RELIABLE SUB­DIVISION OF GEOLOGICAL AREAS David D. Coblentz, G of the locations which weren't that thoroughly analyzed. 1 #12; 2 The subdivision of a geological zone TOPOGRAPHIC INFORMATION One reason for subjectivity of the geological subdivision is the fact

  8. Geography 477 Introduction to Remote Sensing

    E-Print Network [OSTI]

    Frank, Thomas D.

    Geography 477 Introduction to Remote Sensing www.sdal.uiuc.edu Dr. Tom Frank 321 Davenport Hall tdfrank@uiuc.edu 333-7248 #12;Remotely-sensed images of light reflected or emitted from the earth of the earth's environments #12;Remote sensing is the science or art of deriving information about an object

  9. Challenges and Opportunities of Remote Sensing in

    E-Print Network [OSTI]

    Gilbes, Fernando

    Challenges and Opportunities of Remote Sensing in Caribbean Coastal Waters Fernando Gilbes-Santaella, Ph.D. Associate Professor Geological and Environmental Remote Sensing Laboratory Department of this presentation Discuss the potential and limitations for remote sensing of ocean color and coral reefs monitoring

  10. 11 Remote Sensing of Submerged Aquatic

    E-Print Network [OSTI]

    Purkis, Sam

    223 11 Remote Sensing of Submerged Aquatic Vegetation and Coral Reefs Sam Purkis and Chris, the remote sensing of SAV, as well as coral reefs, is considerably more challenging than for terrestrial differentia- tion of SAV and coral habitats using optical remote sensing demands specialized strategies, even

  11. Interactive Visualization of Remote Sensing Data

    E-Print Network [OSTI]

    Blanz, Volker

    Interactive Visualization of Remote Sensing Data Interaktive Visualisierung von Fernerkundungsdaten alterungsbeständigem holz- und säurefreiem Papier. #12;Abstract Remote Sensing is an important tool for the analysis and spaceborne Remote Sensing systems produce a rapidly growing number of data sets, and improvements in sensor

  12. Friday, March 17, 2006 LUNAR REMOTE SENSING

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Friday, March 17, 2006 LUNAR REMOTE SENSING 1:30 p.m. Crystal Ballroom B Chairs: M. S. Robinson D variations due to photometry can mimic those attributed to composition in remote sensing data of planetary D. B. Remote Sensing and Geologic Studies of the Southeastern Quadrant of the Moon [#1815] We report

  13. Bylaws of the Center for Remote Sensing

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    DRAFT Bylaws of the Center for Remote Sensing Agricultural and Biological Engineering University for the conduct and operation of the Center for Remote Sensing (CRS) at the University of Florida (UF). The CRS and international recognition in research, teaching, and outreach for cutting-edge technologies in remote sensing

  14. Remote Sensing of the Rob Holman1

    E-Print Network [OSTI]

    Haller, Merrick

    Remote Sensing of the Nearshore Rob Holman1 and Merrick C. Haller2 1 College of Earth, Ocean- ate temporal or spatial density or at reasonable logistical or financial costs. Remote sensing algo- rithms by which the most important geophysical variables can be estimated from remote sensing

  15. T-606: Sun Java System Access Manager Lets Remote Users Partially Modify Data and Remote Authenticated Users Partially Access Data

    Broader source: Energy.gov [DOE]

    Sun Java System Access Manager Lets Remote Users Partially Modify Data and Remote Authenticated Users Partially Access Data.

  16. Further Development at JET of Remote Digital Photogrammetry Techniques and Remote Welding Under Conditions of Restricted Access

    E-Print Network [OSTI]

    Further Development at JET of Remote Digital Photogrammetry Techniques and Remote Welding Under Conditions of Restricted Access

  17. The Remote Photogrammetric Survey and Engineering Analysis of the Divertor Structure during JET’s Remote Tile Exchange

    E-Print Network [OSTI]

    The Remote Photogrammetric Survey and Engineering Analysis of the Divertor Structure during JET’s Remote Tile Exchange

  18. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego

    2009-06-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  19. Wind Scanner: A full-scale Laser Facility for Wind and Turbulence Measurements around large Wind Turbines

    E-Print Network [OSTI]

    Wind Scanner: A full-scale Laser Facility for Wind and Turbulence Measurements around large Wind Turbines Torben Mikkelsen, Jakob Mann and Michael Courtney Wind Energy Department, Risø National Laboratory:Torben.Mikkelsen@Risoe.dk Summary RISØ DTU has started to build a newly designed laser-based lidar scanning facility for remote wind

  20. CRAD, Facility Safety- Nuclear Facility Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Design.

  1. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  2. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    SciTech Connect (OSTI)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-12-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation.

  3. DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR DWPF

    SciTech Connect (OSTI)

    Krementz, D.; Coughlin, Jeffrey

    2009-05-05

    The Defense Waste Processing Facility (DWPF) requested the Savannah River National Laboratory (SRNL) to develop tooling and equipment to remotely replace gaskets in mechanical Hanford connectors to reduce personnel radiation exposure as compared to the current hands-on method. It is also expected that radiation levels will continually increase with future waste streams. The equipment is operated in the Remote Equipment Decontamination Cell (REDC), which is equipped with compressed air, two master-slave manipulators (MSM's) and an electro-mechanical manipulator (EMM) arm for operation of the remote tools. The REDC does not provide access to electrical power, so the equipment must be manually or pneumatically operated. The MSM's have a load limit at full extension of ten pounds, which limited the weight of the installation tool. In order to remotely replace Hanford connector gaskets several operations must be performed remotely, these include: removal of the spent gasket and retaining ring (retaining ring is also called snap ring), loading the new snap ring and gasket into the installation tool and installation of the new gasket into the Hanford connector. SRNL developed and tested tools that successfully perform all of the necessary tasks. Removal of snap rings from horizontal and vertical connectors is performed by separate air actuated retaining ring removal tools and is manipulated in the cell by the MSM. In order install a new gasket, the snap ring loader is used to load a new snap ring into a groove in the gasket installation tool. A new gasket is placed on the installation tool and retained by custom springs. An MSM lifts the installation tool and presses the mounted gasket against the connector block. Once the installation tool is in position, the gasket and snap ring are installed onto the connector by pneumatic actuation. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and vents the tools as needed. Extensive testing of tooling operation was performed in the DWPF manipulator repair shop. This testing allowed the operators to gain confidence before the equipment was exposed to radioactive contamination. The testing also led to multiple design improvements. On July 17 and 29, 2008 the Remote Gasket Replacement Tooling was successfully demonstrated in the REDC at the DWPF of The Savannah River Site.

  4. Disposable remote zero headspace extractor

    DOE Patents [OSTI]

    Hand, Julie J. (Idaho Falls, ID); Roberts, Mark P. (Arco, ID)

    2006-03-21

    The remote zero headspace extractor uses a sampling container inside a stainless steel vessel to perform toxicity characteristics leaching procedure to analyze volatile organic compounds. The system uses an in line filter for ease of replacement. This eliminates cleaning and disassembly of the extractor. All connections are made with quick connect fittings which can be easily replaced. After use, the bag can be removed and disposed of, and a new sampling container is inserted for the next extraction.

  5. Facilities | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Buildings Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance. A D D I T I O N A L L I N K S:...

  6. Project Plan Remote Target Fabrication Refurbishment Project

    SciTech Connect (OSTI)

    Bell, Gary L; Taylor, Robin D

    2009-08-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of {sup 252}Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The {sup 252}Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of {sup 252}Cf; the average irradiation period is {approx}10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of {sup 252}Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work was received in July 2009 under the Remote Target Fabrication Refurbishment Task of the Enhanced Utilization of Isotope Facilities project (Project Identification Code 2005230) funded by the American Recovery and Reinvestment Act of 2009. The goal of this project is to recover the capability to produce 4-5 curium targets for the irradiation period starting with HFIR cycle 427, currently scheduled to begin 2/17/10. Assuming success, the equipment would then be used to fabricate 6-7 additional targets to hold for the next irradiation campaign specified by the program. Specific objectives are the return to functionality of the Cubicle 3 Pellet Fabrication Line; Cubicle 2 Target Assembly equipment; and Cubicle 1 Target Inspection and Final Assembly system.

  7. Better building: LEEDing new facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better building: LEEDing new facilities Better building: LEEDing new facilities We're taking big steps on-site to create energy efficient facilities and improve infrastructure....

  8. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2010-06-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  9. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2011-04-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  10. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2011-03-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  11. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2009-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  12. Computing Facilities Orientation

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Computing Facilities Orientation September, 2014 #12;Introductions Jason Simpson ­ Manager Computing Facilities Use Policy The Computing facilities are a shared resource for all Bren MESM students Respect the work environment of other students Protect the computer equipment and resources provided You

  13. Support Facility for a Mercury Target Neutrino Factory

    SciTech Connect (OSTI)

    Spampinato, P.T.

    2001-12-06

    A conceptual design for a neutrino-producing facility is presented, including the mercury-jet target system, beam absorber, and facility for the target/capture region. The mercury system is a closed loop that includes a containment structure in the high-magnetic field region, a mercury pool beam absorber, conventional equipment such as magnetic-coupled pumps, valves, a heat exchanger, and a special nozzle insert. The superconducting solenoids in the target region are protected from nuclear heating and radiation damage with water-cooled tungsten-carbide shielding; the decay channel solenoids are protected with water-cooled steel shielding. The target region and decay channel have high-neutron fluxes resulting in components that are highly activated. Therefore, the facility configuration is based on remotely maintaining the target system and the magnets, as well as providing sufficient shielding for personnel. Summaries of cost estimates for the target system, magnet shielding, maintenance equipment, and the facility are also presented.

  14. Remote Chemical Sensing Using Quantum Cascade Lasers

    SciTech Connect (OSTI)

    Harper, Warren W.; Strasburg, Jana D.; Aker, Pam M.; Schultz, John F.

    2004-01-20

    Research done by the IR sensors team at PNNL is focused on developing advanced spectroscopic methods for detecting signatures of nuclear, chemical, biological and explosives weapons or weapons production. The sensors we develop fall into two categories: remote sensors that can be operated at distances ranging from 150 m to 10 km, and point sensors that are used for in-situ inspection and detection. FY03 has seen an explosion in FM DIAL progress with the net result being solid confirmation that FM DIAL is a technique capable of remote chemical monitoring in a wide variety of venues. For example, FM DIAL was used to detect a small plume of hydrogen sulfide, a candidate CW agent, released in the desert environment of the Hanford 200 Area site. These experiments were conducted over a range of physical conditions including outside temperatures ranging from 70 F to 105 F and turbulence conditions ranging from quiescent to chaotic. We are now rapidly developing the information needed to design prototype FM DIAL systems that are optimized for specific applications that include scenarios such as fixed position stand-off detection and mobile UAV mounted remote monitoring. Just as an example, in FY04 we will use FM DIAL to detect both in-facility and outdoor release of enriched UF6. The rapid progress in FM DIAL research made in FY03 is attributed to several advances. First, final construction of a custom-designed trailer allowed the instrument to be housed in a mobile temperature-controlled environment. This allowed the experiment to be transported to several locations so that data could be collected under a range of physical conditions. This has led to a better understanding of a variety of experimental noise sources. With this knowledge, we have been able to implement several changes in the way the FM DIAL data is collected and processed, with the net result being a drastic improvement in our confidence of analyte concentration measurement and an improvement i n the instrument detection limit. The range of chemicals detectable by FM DIAL has also been extended. Prior to FY03 only water and nitrous oxide (N2O) had been seen. Experiments on extending the tuning range of the quantum cascade laser (QCL) currently used in the experiments demonstrate that many more species are now accessible including H2S, C2F4H2, and CH4. We additionally demonstrated that FM DIAL measurements can be made using short wave infrared (SWIR) telecommunications lasers. While measurements made using these components are noisier because turbulence and particulate matter cause more interference in this spectral region, monitoring in this region enables larger species to be detected simply because these lasers have a greater tuning range. In addition, SWIR monitoring also allows for the detection of second-row hydride species such as HF and HCl, which are important nuclear and CWA proliferation signatures.

  15. DOE Facility Management Contracts Facility Owner Contractor

    Broader source: Energy.gov (indexed) [DOE]

    periods 122015 Facility Mgmt 2009 http:www.hanford.govpage.cfmDOEORPContracts Marc McCusker 509-376-2760 Susan E. Bechtol 509-376-3388 Strategic Petroleum Reserve FE Dyn...

  16. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    SciTech Connect (OSTI)

    Pierce, G.D. . Joint Integration Office); Beaulieu, D.H. ); Wolaver, R.W.; Carson, P.H. Corp., Boulder, CO )

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part of this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.

  17. Remote, synchronous, hands-on ultrasound education

    E-Print Network [OSTI]

    2015-01-01

    Variability in ultrasound education among emergency medicineHands-On Ultrasound Education Stephen Winn, PhD, 1 PeterAugust 25, 16. Remote Medical Education Conference, Sydney,

  18. Request for Information -- Remote Alaskan Communities Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Communities Energy Efficiency Competition As part of President Obama's commitment to fight climate change and assist remote Alaskan Communities, the Energy Department (DOE) is...

  19. UNIVERSITY OF WASHINGTON FINANCE & FACILITIES

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office TITLE UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital, 2013 #12;UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office TITLE · 3.15-mile

  20. A remote image analysis terminal 

    E-Print Network [OSTI]

    Daigle, Lucien Don

    1976-01-01

    A APPENDIX B APPENDIX C APPENDIX D VITA 140 142 157 157 162 163 164 170 179 190 234 Vrzt I, I S'I' III' I: I OIIRI:. 8 The Remote Image Analysis Terminal System Block Diagram The Digital Interface The Analog Interface Digitizer...- flow Chart Loading and Transmission of Position Coordinates Page 59 61 63 65 66 II-22 II-23 Keyboard Block Diagram Generation and Transmission cE a Hex Digit 69 70 II- 24 I I-25 Opcode Table 73 Partial Block Diagram...

  1. Remote Access | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners *Reindustrialization ReindustrializationEnergy2015Remote

  2. Remote Desktop | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners *ReindustrializationEnergy Remote Alaskan

  3. Remote Sensing R. E. Mcintosh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners *ReindustrializationEnergy Remote AlaskanJ.E.M. Goldsmith,R. E.

  4. Advanced Materials Facilities & Capabilites | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Building Battery Processing Facility Battery and Capacitor Test Facility Nuclear Analytical Chemistry and Isotopics Laboratories Manufacturing Manufacturing Demonstration...

  5. Remote Sens. 2011, 3, 1427-1446; doi:10.3390/rs3071427 Remote Sensing

    E-Print Network [OSTI]

    Keeton, William S.

    carbon dioxide and potentially complex interactions with other anthropogenic stressors [4,5] requireRemote Sens. 2011, 3, 1427-1446; doi:10.3390/rs3071427 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Evaluating the Remote Sensing and Inventory-Based Estimation of Biomass in the Western Carpathians

  6. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    SciTech Connect (OSTI)

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

  7. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  8. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  9. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  10. Remotely readable fiber optic compass

    DOE Patents [OSTI]

    Migliori, A.; Swift, G.W.; Garrett, S.L.

    1985-04-30

    A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

  11. Hyperspectral Remote Sensing of Tropical Grass Quality and Quantity

    E-Print Network [OSTI]

    Hyperspectral Remote Sensing of Tropical Grass Quality and Quantity Onisimo Mutanga 7 April 2004, The Netherlands Prof. W. J. Bond University of Cape Town, South Africa #12;Hyperspectral Remote Sensing 1.2 Hyperspectral remote sensing

  12. Snowpack spatial variability: towards understanding its effect on remote sensing

    E-Print Network [OSTI]

    Marshall, Hans-Peter

    Snowpack spatial variability: towards understanding its effect on remote sensing measurements spatial variability: towards understanding its effect on remote sensing mea- surements and snow slope large errors in these basin estimates. Remote sensing measurements offer a promising alternative, due

  13. Multiple Instrument Distributed Aperture Sensor (MIDAS) For Planetary Remote Sensing

    E-Print Network [OSTI]

    Marcus, Philip S.

    Multiple Instrument Distributed Aperture Sensor (MIDAS) For Planetary Remote Sensing Joe Pitman An innovative approach that enables greatly increased return from planetary science remote sensing missions as the primary remote sensing science payload, thereby reducing the cost, resources, complexity, integration

  14. Electromagnetic Radiation REFERENCE: Remote Sensing of

    E-Print Network [OSTI]

    Gilbes, Fernando

    ;2 Electromagnetic Energy Interactions Energy recorded by remote sensing systems undergoes fundamental interactions that should be understood to properly interpret the remotely sensed data. For example, if the energy being nanosecond (10-9 s). The electromagnetic wave consists of two fluctuating fields--one electric and the other

  15. Poultry Facility Biosecurity 

    E-Print Network [OSTI]

    Carey, John B.; Prochaska, J. Fred; Jeffrey, Joan S.

    2005-12-21

    . When teamed with disinfection and sanitation pro - cedures, biosecurity practices can eradicate or reduce pathogens to noninfectious levels. Such preventive measures as vaccination and sero- logic monitoring also help ensure good f_lock health... economically, reducing production over the life of the facility without overt signs of disease. Once contaminated with pathogens, poultry facilities are extremely diff_icult and expensive to clean, sanitize and disinfect. Facility location and design...

  16. ARM Mobile Facilities

    SciTech Connect (OSTI)

    Orr, Brad; Coulter, Rich

    2010-12-13

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  17. ARM Mobile Facilities

    ScienceCinema (OSTI)

    Orr, Brad; Coulter, Rich

    2014-09-15

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  18. Presented by FACILITIES MANAGEMENT

    E-Print Network [OSTI]

    Meyers, Steven D.

    Presented by FACILITIES MANAGEMENT TRANSFORMING USF'S TAMPA CAMPUS SUMMER 2011 #12; WELCOME Facili:es Management #12; Facili:es Management #12; NEW CONSTRUCTION Facili

  19. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  20. Plutonium destruction in a non-fertile, ZrO{sub 2}-based fuel: A reactor option for disposition of surplus plutonium

    SciTech Connect (OSTI)

    Oversby, V.M. [Lawrence Livermore National Lab., CA (United States); McPheeters, C.C. [Argonne National Lab., IL (United States)

    1996-02-01

    The United States and Russia are assessing options for disposition of surplus weapon-grade plutonium. This paper reviews the options under consideration by the US Department of Energy and suggests an additional option that fits within the framework of the environmental analysis provided in the draft PEIS (Programmatic Environmental Impact Statement). In addition to the burning of Pu in mixed U-Pu oxide fuel, we recommend consideration of a non-fertile fuel based on zirconia with inclusion of rare earth elements for phase stabilization and control of reactivity. The zirconia based fuel could also be used to burn plutonium generated in commercial reactor fuels, which represent a larger inventory of plutonium than the weapon-grade material. The increasing inventories of civilian plutonium potentially represent a larger threat with respect to diversion weapons usable material than the stocks of weapon-grade material considered for disposition by the US and Russia. We discuss the use of zirconia-based fuel and pyrochemical processing of spent commercial reactor fuels as a means of decreasing world-wide plutonium inventories. The experience gained in burning weapon-grade plutonium in the new non-fertile fuel would shorten the time required to gain acceptance of the fuel for commercial reactor use.

  1. Overview of Remote Handling Equipment Used for the NPP A1 Decommissioning - 12141

    SciTech Connect (OSTI)

    Kravarik, K.; Medved, J.; Pekar, A.; Stubna, M.; Michal, V.; Vargovcik, L.

    2012-07-01

    The first Czechoslovak NPP A1 was in operation from 1972 to 1977 and it was finally shutdown due to an accident (level 4 according to the INES). The presence of radioactive, toxic or hazardous materials limits personnel access to facilities and therefore it is necessary to use remote handling technologies for some most difficult characterization, retrieval, decontamination and dismantling tasks. The history of remote handling technologies utilization started in nineties when the spent nuclear fuel, including those fuel assemblies damaged during the accident, was prepared for the transport to Russia. Subsequent significant development of remote handling equipment continued during implementation of the NPP A1 decommissioning project - Stage I and ongoing Stage II. Company VUJE, Inc. is the general contractor for both mentioned stages of the decommissioning project. Various remote handling manipulators and robotics arms were developed and used. It includes remotely controlled vehicle manipulator MT-15 used for characterisation tasks in hostile and radioactive environment, special robust manipulator DENAR-41 used for the decontamination of underground storage tanks and multi-purposes robotics arms MT-80 and MT-80A developed for variety of decontamination and dismantling tasks. The heavy water evaporator facility dismantling is the current task performed remotely by robotics arm MT-80. The heavy water evaporator is located inside the main production building in the room No. 220 where loose surface contamination varies from 10 Bq/cm{sup 2} to 1x10{sup 3} Bq/cm{sup 2}, dose rate is up to 1.5 mGy/h and the feeding pipeline contained liquid RAW with high tritium content. Presented manipulators have been designed for broad range of decommissioning tasks. They are used for recognition, sampling, waste retrieval from large underground tanks, decontamination and dismantling of technological equipments. Each of the mentioned fields claims specific requirements on design of manipulator, their operation and control systems as well as tools of manipulators. Precise planning of decontamination and dismantling tasks is necessary for its successful performance by remotely controlled manipulator. The example of the heavy water evaporator demonstrates typical procedure for decommissioning of contaminated technological equipment by remotely controlled manipulators - planning of decommissioning tasks, preparatory tasks, modification of applied tools and design of specific supporting constructions for manipulator and finally decontamination and dismantling themselves. Due to the particularly demanding conditions in highly contaminated A1 NPP, a team of experts with special know-how in the field of decommissioning has grown up, and unique technological equipment enabling effective and safe work in environment with a high radiation level has been developed. (authors)

  2. REMOTE DATA ACQUISITION USING LABVIEW A Design Project Report

    E-Print Network [OSTI]

    Ruina, Andy L.

    REMOTE DATA ACQUISITION USING LABVIEW A Design Project Report Presented to the Engineering Division Master of Electrical Engineering Program Cornell University Design Project Report Project Title: Remote

  3. U-010:HP Onboard Administrator Unspecified Flaw Lets Remote Users...

    Broader source: Energy.gov (indexed) [DOE]

    Manager Unspecified Flaw Lets Remote Users Gain Unauthorized Access V-120: EMC Smarts Network Configuration Manager Java RMI Access Control Flaw Lets Remote Users Gain Full Control...

  4. Advanced polychromator systems for remote chemical sensing (LDRD...

    Office of Scientific and Technical Information (OSTI)

    polychromator systems for remote chemical sensing (LDRD project 52575). Citation Details In-Document Search Title: Advanced polychromator systems for remote chemical sensing (LDRD...

  5. Texas Facilities Commission's Facility Management Strategic Plan 

    E-Print Network [OSTI]

    Ramirez, J. A.

    2009-01-01

    stream_source_info ESL-IC-09-11-12.pdf.txt stream_content_type text/plain stream_size 4735 Content-Encoding ISO-8859-1 stream_name ESL-IC-09-11-12.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Texas Facilities... Commission?s Facility Management Strategic Plan Jorge A. Ramirez Deputy Executive Director Building Operations & Plant Management ESL-IC-09-11-12 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17...

  6. Improving Healthcare for Populations: Building Smart and Integrated Remote Health Monitoring Systems

    E-Print Network [OSTI]

    Alshurafa, Nabil

    2015-01-01

    for Populations: Building Smart and Integrated Remote Healthfor Populations: Building Smart and Integrated Remote Health

  7. MINERAL FACILITIES MAPPING PROJECT

    E-Print Network [OSTI]

    Gilbes, Fernando

    Questionnaires. Update the data that pertaining to MIT's contacts worldwide. #12;BOJNOURD CEMENT PLANT Location a database using the Structural Table of Mineral Industry, which includes the location of main mineral The mineral facilities database included: Type of facility: Mine (open pit, underground) Plant ( refineries

  8. Geophysical InversionFacility

    E-Print Network [OSTI]

    Oldenburg, Douglas W.

    UBC Geophysical InversionFacility Modelling and Inversion of EMI data collected over magnetic soils of EMI data acquired at sites with magnetic soils · Geophysical Proveouts · Geonics EM63 Data · First model parameters: · Location · Orientation · Polarizabilities 4 #12;UBC Geophysical Inversion Facility

  9. Nanotechnology User Facility for

    E-Print Network [OSTI]

    A National Nanotechnology User Facility for Industry Academia Government #12;In the NanoFab, you measurement and fabrication methods in response to national nanotechnology needs. www.nist.gov/cnst Robert) is the Department of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access

  10. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  11. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Accelerator Science and Technology Centre Daresbury Science)1235 445808 www.stfc.ac.uk/astec Head office, Science and Technology Facilities Council, Polaris House, North Newton Group, La Palma: Joint Astronomy Centre, Hawaii. ASTeC Science Highlights 2009 - 2010 Science

  12. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  13. Facility deactivation and demolition

    SciTech Connect (OSTI)

    Cormier, S.L.; Adamowski, S.J.

    1994-12-31

    Today an improperly closed facility can be a liability to its owner, both financially and environmentally. A facility deactivation program must be planned and implemented to decrease liabilities, minimize operating costs, seek to reuse or sell processes or equipment, and ultimately aid in the sale and/or reuse of the facility and property whether or not the building(s) are demolished. These programs should be characterized within the deactivation plan incorporating the following major categories: Utility Usage; Environmental Decontamination; Ongoing Facility Management; Property Management/Real Estate Issues. This paper will outline the many facets of the facility deactivation and demolition programs implemented across the country for clients in the chemical, automotive, transportation, electronic, pharmaceutical, power, natural gas and petroleum industries. Specific emphasis will be placed on sampling and analysis plans, specification preparation, equipment and technologies utilized, ``how clean is clean`` discussions and regulatory guidelines applicable to these issues.

  14. Remotely operated submersible underwater suction apparatus

    DOE Patents [OSTI]

    Kristan, Louis L. (2111 Brentwood Dr., Idaho Falls, ID 83402)

    1990-01-01

    A completely submersible, remotely operated underwater suction device for collection of irradiated materials in a nuclear pool is disclosed. The device includes a pump means for pumping water through the device, a filter means for capturing irradiated debris, remotely operated releasable connector means, a collection means and a means for remotely maneuvering the collection means. The components of the suction device may be changed and replaced underwater to take advantage of the excellent radiation shielding ability of water to thereby minimize exposure of personnel to radiation.

  15. Heating remote rooms in passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Remote rooms can be effectively heated by convection through a connecting doorway. A simple steady-state equation is developed for design purposes. Validation of a dynamic model is achieved using data obtained over a 13-day period. Dynamic effects are investigated using a simulation analysis for three different cases of driving temperature; the effect is to reduce the temperature difference between the driving room and the remote room compared to the steady-state model. For large temperature swings in the driving room a strategy which uses the intervening door in a diode mode is effective. The importance of heat-storing mass in the remote room is investigated.

  16. Remote/New sites: Many Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners *ReindustrializationEnergy Remote AlaskanJ.E.M.RemoteRemote/New

  17. THERMAL ANALYSIS OF A 9975 PACKAGE IN A FACILITY FIRE ACCIDENT

    SciTech Connect (OSTI)

    Gupta, N.

    2011-02-14

    Surplus plutonium bearing materials in the U.S. Department of Energy (DOE) complex are stored in the 3013 containers that are designed to meet the requirements of the DOE standard DOE-STD-3013. The 3013 containers are in turn packaged inside 9975 packages that are designed to meet the NRC 10 CFR Part 71 regulatory requirements for transporting the Type B fissile materials across the DOE complex. The design requirements for the hypothetical accident conditions (HAC) involving a fire are given in 10 CFR 71.73. The 9975 packages are stored at the DOE Savannah River Site in the K-Area Material Storage (KAMS) facility for long term of up to 50 years. The design requirements for safe storage in KAMS facility containing multiple sources of combustible materials are far more challenging than the HAC requirements in 10 CFR 71.73. While the 10 CFR 71.73 postulates an HAC fire of 1475 F and 30 minutes duration, the facility fire calls for a fire of 1500 F and 86 duration. This paper describes a methodology and the analysis results that meet the design limits of the 9975 component and demonstrate the robustness of the 9975 package.

  18. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  19. Site characterization report for the Old Hydrofracture Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1995-01-01

    Several Old Hydrofracture Facility (OHF) structures (i.e., Building 7852, the bulk storage bins, the pump house, water tank T-5, and pump P-3) are surplus facilities at Oak Ridge National Laboratory (ORNL) slated for decontamination and decommissioning (D and D). OHF was constructed in 1963 to allow experimentation and operations with an integrated solids storage, handling, mixing, and grout injection facility. It was shut down in 1980 and transferred to ORNL`s Surveillance and Maintenance Program. The hydrofracture process was a unique disposal method that involved injecting waste materials mixed with grout and additives under pumping pressures of 2,000 psi or greater into a deep, low-permeability shale formation. The injected slurry spread along fractures and bedding planes for hundreds of feet from the injection points, forming thin grout sheets (often less than 1/8 in. thick). The grout ostensibly immobilized and solidified the liquid wastes. Site characterization activities were conducted in the winter and spring of 1994 to collect information necessary to plan the D and D of OHF structures. This site characterization report documents the results of the investigation of OHF D and D structures, presenting data from the field investigation and laboratory analyses in the form of a site description, as-built drawings, summary tables of radiological and chemical contaminant concentrations, and a waste volume estimate. 25 refs., 54 figs., 17 tabs.

  20. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  1. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-07-15

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  2. Superior Energy Performance Industrial Facility Best Practice...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Facility Best Practice Scorecard Superior Energy Performance Industrial Facility Best Practice Scorecard Superior Energy Performance logo Industrial facilities seeking...

  3. Honda: North American Manufacturing Facilities | Department of...

    Office of Environmental Management (EM)

    Honda: North American Manufacturing Facilities Honda: North American Manufacturing Facilities From October, 2008 Honda: North American Manufacturing Facilities More Documents &...

  4. Sandia Energy - About the Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility About the FacilityTara Camacho-Lopez2015-05-11T19:38:37+00:00 Test-Bed Wind Turbines Allow Facility Flexibility While Providing Reliable Data in Many Regimes SWiFT will...

  5. Authors Queries Journal: International Journal of Remote Sensing

    E-Print Network [OSTI]

    Texas at San Antonio, University of

    and Environmental Science, New Mexico Tech, Socorro, NM 87801, USA §Laboratory for Remote Sensing and Geoinformatics

  6. On-road remote sensing of vehicle emissions in

    E-Print Network [OSTI]

    Denver, University of

    On-road remote sensing of vehicle emissions in the Auckland Region August 2003 Technical 1877353000 www.arc.govt.nz #12;TP 198 On-Road Remote Sensing of Vehicle Emissions in the Auckland Region #12;Page i TP 198 On-Road Remote Sensing of Vehicle Emissions in the Auckland Region On-road remote sensing

  7. U-176: Wireshark Multiple Bugs Let Remote Users Deny Service

    Broader source: Energy.gov [DOE]

    Several vulnerabilities were reported in Wireshark. A remote user can cause denial of service conditions.

  8. OVERVIEW OF REMOTE SENSING (David Sandwell, Copyright, 2007)

    E-Print Network [OSTI]

    Sandwell, David T.

    1 OVERVIEW OF REMOTE SENSING (David Sandwell, Copyright, 2007) Definition Remote sensing: · satellite (or aircraft) remote sensing of the Earth (mostly); · information carried by electromagnetic waves detailed discussion of applications of remote sensing. Instead the focus is on the physical principles

  9. TRITIUM EXTRACTION FACILITY ALARA

    SciTech Connect (OSTI)

    Joye, BROTHERTON

    2005-04-19

    The primary mission of the Tritium Extraction Facility (TEF) is to extract tritium from tritium producing burnable absorber rods (TPBARs) that have been irradiated in a commercial light water reactor and to deliver tritium-containing gas to the Savannah River Site Facility 233-H. The tritium extraction segment provides the capability to deliver three (3) kilograms per year to the nation's nuclear weapons stockpile. The TEF includes processes, equipment and facilities capable of production-scale extraction of tritium while minimizing personnel radiation exposure, environmental releases, and waste generation.

  10. REMOTE INTERVENTION TOWER ELIMINATION SYSTEM

    SciTech Connect (OSTI)

    Dave Murnane; Renauld Washington

    2002-02-15

    This Topical Report is presented to satisfy reporting requirements in the Statement of work section J.5 page 120 per Department of Energy contract DE-AC26-01NT41093. The project does not contain any imperial research data. This report describes the assembly of Commercial off the shelf (COTS) items configured in a unique manner to represent new and innovative technology in the service of size reduction and material handling at DOE sites, to assist in the D&D effort currently underway at the designated DOE Facilities.

  11. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  12. Facility effluent monitoring plan determinations for the 300 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01

    Facility Effluent Monitoring Plan determinations were conducted for the Westinghouse Hanford Company 300 Area facilities on the Hanford Site. These determinations have been prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans. Sixteen Westinghouse Hanford Company facilities in the 300 Area were evaluated: 303 (A, B, C, E, F, G, J and K), 303 M, 306 E, 308, 309, 313, 333, 334 A, and the 340 Waste Handling Facility. The 303, 306, 313, 333, and 334 facilities Facility Effluent Monitoring Plan determinations were prepared by Columbia Energy and Environmental Services of Richland, Washington. The 340 Central Waste Complex determination was prepared by Bovay Northwest, Incorporated. The 308 and 309 facility determinations were prepared by Westinghouse Handford Company. Of the 16 facilities evaluated, 3 will require preparation of a Facility effluent Monitoring Plan: the 313 N Fuels Fabrication Support Building, 333 N Fuels fabrication Building, and the 340 Waste Handling Facility. 26 refs., 5 figs., 10 tabs.

  13. Remote sensing, imaging, and signal engineering

    SciTech Connect (OSTI)

    Brase, J.M.

    1993-03-01

    This report discusses the Remote Sensing, Imaging, and Signal Engineering (RISE) trust area which has been very active in working to define new directions. Signal and image processing have always been important support for existing programs at Lawrence Livermore National Laboratory (LLNL), but now these technologies are becoming central to the formation of new programs. Exciting new applications such as high-resolution telescopes, radar remote sensing, and advanced medical imaging are allowing us to participate in the development of new programs.

  14. Pollution Control Facilities (South Carolina)

    Broader source: Energy.gov [DOE]

    For the purpose of this legislation, pollution control facilities are defined as any facilities designed for the elimination, mitigation or prevention of air or water pollution, including all...

  15. Listing of Defense Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Mound Facility Fernald Environmental Management Project Site Pantex Plant Rocky Flats Environmental Technology Site, including the Oxnard Facility Savannah River Site Los...

  16. int. j. remote sensing, 2000, vol. 21, no. 18, 35333538 Close-range remote sensing of aquatic macrophyte vegetation cover

    E-Print Network [OSTI]

    Debinski, Diane M.

    int. j. remote sensing, 2000, vol. 21, no. 18, 3533­3538 Close-range remote sensing of aquatic Applied Remote Sensing (KARS) Program, 2291 Irving Hill Road, University of Kansas, Lawrence, Kansas 66045 location of sampling plots. While aerial photography and satellite remotely sensed imagery have been used

  17. Facility Modernization Report

    SciTech Connect (OSTI)

    Robinson, D; Ackley, R

    2007-05-10

    Modern and technologically up-to-date facilities and systems infrastructure are necessary to accommodate today's research environment. In response, Lawrence Livermore National Laboratory (LLNL) has a continuing commitment to develop and apply effective management models and processes to maintain, modernize, and upgrade its facilities to meet the science and technology mission. The Facility Modernization Pilot Study identifies major subsystems of facilities that are either technically or functionally obsolete, lack adequate capacity and/or capability, or need to be modernized or upgraded to sustain current operations and program mission. This study highlights areas that need improvement, system interdependencies, and how these systems/subsystems operate and function as a total productive unit. Although buildings are 'grandfathered' in and are not required to meet current codes unless there are major upgrades, this study also evaluates compliance with 'current' building, electrical, and other codes. This study also provides an evaluation of the condition and overall general appearance of the structure.

  18. Liquidity facilities and signaling

    E-Print Network [OSTI]

    Arregui, Nicolás

    2010-01-01

    This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

  19. User Facilities | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prior to granting access to a user facility. User Office User Program Manager Laura Morris Edwards 865.574.2966 Email User Office User Office User Program Manager Laura Morris...

  20. Photovoltaic Research Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  1. Facilities Management Mike Johnson

    E-Print Network [OSTI]

    Capogna, Luca

    , Design & Construction Services Bob Beeler Director, Facility Operations & Maintenance / Environmental Health & Safety Ron Edwards Director, Utility Operations & Maintenance Scott Turley Director, Business & Distribution Utility Plant Operations Water Treatment Zone C Utility Maintenance (HEAT) Power Distribution

  2. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  3. Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering

    E-Print Network [OSTI]

    Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell for the Painter Greenhouses must be generated through Shane Merrell. Keep doors locked at all times. Repairs

  4. Fiber optically isolated and remotely stabilized data transmission system

    DOE Patents [OSTI]

    Nelson, Melvin A. (Santa Barbara, CA)

    1992-01-01

    A fiber optically isolated and remotely stabilized data transmission system s described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber.

  5. Fiber optically isolated and remotely stabilized data transmission system

    DOE Patents [OSTI]

    Nelson, M.A.

    1992-11-10

    A fiber optically isolated and remotely stabilized data transmission systems described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber. 3 figs.

  6. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 71 The Radiological Research Accelerator Facility the irradiated cells. Both the microbeam and the track segment facilities continue to be utilized in various investigations of this phenomenon. The single- particle microbeam facility provides precise control of the number

  7. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 1 The Radiological Research Accelerator Facility for Radiological Research (CRR). Using the mi- crobeam facility, 10% of the cells were irradiated through particle beam as well as the first fo- cused microbeam in the new microbeam facility. · Another significant

  8. Facility Location with Hierarchical Facility Costs Zoya Svitkina #

    E-Print Network [OSTI]

    Tardos, Ã?va

    Facility Location with Hierarchical Facility Costs Zoya Svitkina # â?? Eva Tardos + Abstract We consider the facility location problem with hierarchi­ cal facility costs, and give a (4 installation costs. Shmoys, Swamy and Levi [13] gave an approxi­ mation algorithm for a two­level version

  9. DOE issues Finding of No Significant Impact on Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at Idaho Site

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – After completing a careful assessment, the U.S. Department of Energy has determined that building a new facility at its Idaho National Laboratory site for continued disposal of remote-handled low level radioactive waste generated by operations at the site will not have a significant impact on the environment.

  10. Working with SRNL - Our Facilities - Glovebox Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in1: ModelGlovebox Facilities

  11. REMOTE LABORATORIES IN AUTOMATION: AIP-PRIMECA RAO ARI PLATFORM Remote Laboratories in Automation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for thorough trainings in industrial We thank our sponsors : Schneider Electric which provided the automationREMOTE LABORATORIES IN AUTOMATION: AIP-PRIMECA RAO ARI PLATFORM Remote Laboratories in Automation of resources and competencies about industrial topics for many universities in Rhône-Alpes french Region. Due

  12. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Remote Sensing of Weather Hazards Using

    E-Print Network [OSTI]

    Cruz-Pol, Sandra L.

    -Cost and Minimal Infrastructure Off-the-Grid Weather Radar Network Jorge M. Trabal, Student Member, IEEE, José GIEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Remote Sensing of Weather Hazards Using a Low, IEEE, and David J. McLaughlin, Senior Member, IEEE Abstract--Operational weather radars in the U

  13. Remote Food Shopping Robot System in a Supermarket Realization of the shopping task from remote places

    E-Print Network [OSTI]

    Ohya, Akihisa

    Remote Food Shopping Robot System in a Supermarket ­Realization of the shopping task from remote and usage in human daily life. The specific task we set up in this research is to help people buy fresh food range finder, and the communication interface. With this system, the selection of the food item

  14. RemoteEyes: A Remote Low-Cost Position Sensing Infrastructure for Ubiquitous Computing

    E-Print Network [OSTI]

    British Columbia, University of

    RemoteEyes: A Remote Low-Cost Position Sensing Infrastructure for Ubiquitous Computing Changsong infrastructure for ubiquitous computing. To reduce the cost, each tracked object carries an inexpensive active, sensing, network, FPGA, ubiquitous computing INTRODUCTION Context information is required by many

  15. Facility Environmental Vulnerability Assessment

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2001-07-09

    From mid-April through the end of June 2001, a Facility Environmental Vulnerability Assessment (FEVA) was performed at Oak Ridge National Laboratory (ORNL). The primary goal of this FEVA was to establish an environmental vulnerability baseline at ORNL that could be used to support the Laboratory planning process and place environmental vulnerabilities in perspective. The information developed during the FEVA was intended to provide the basis for management to initiate immediate, near-term, and long-term actions to respond to the identified vulnerabilities. It was expected that further evaluation of the vulnerabilities identified during the FEVA could be carried out to support a more quantitative characterization of the sources, evaluation of contaminant pathways, and definition of risks. The FEVA was modeled after the Battelle-supported response to the problems identified at the High Flux Beam Reactor at Brookhaven National Laboratory. This FEVA report satisfies Corrective Action 3A1 contained in the Corrective Action Plan in Response to Independent Review of the High Flux Isotope Reactor Tritium Leak at the Oak Ridge National Laboratory, submitted to the Department of Energy (DOE) ORNL Site Office Manager on April 16, 2001. This assessment successfully achieved its primary goal as defined by Laboratory management. The assessment team was able to develop information about sources and pathway analyses although the following factors impacted the team's ability to provide additional quantitative information: the complexity and scope of the facilities, infrastructure, and programs; the significantly degraded physical condition of the facilities and infrastructure; the large number of known environmental vulnerabilities; the scope of legacy contamination issues [not currently addressed in the Environmental Management (EM) Program]; the lack of facility process and environmental pathway analysis performed by the accountable line management or facility owner; and poor facility and infrastructure drawings. The assessment team believes that the information, experience, and insight gained through FEVA will help in the planning and prioritization of ongoing efforts to resolve environmental vulnerabilities at UT-Battelle--managed ORNL facilities.

  16. Comprehensive facilities plan

    SciTech Connect (OSTI)

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  17. STEM crisis or STEM surplus?

    E-Print Network [OSTI]

    Xue, Yi, S.M. Massachusetts Institute of Technology

    2014-01-01

    The science, technology, engineering, and mathematics (STEM) workforce is a crucial driver of the U.S. economy. Over the last decade, there has been significant concern regarding the adequacy of the supply of STEM workers ...

  18. Integration of facility modeling capabilities for nuclear nonproliferation analysis

    SciTech Connect (OSTI)

    Burr, Tom [Los Alamos National Laboratory (LANL); Gorensek, M. B. [Savannah River National Laboratory (SRNL); Krebs, John [Argonne National Laboratory (ANL); Kress, Reid L [ORNL; Lamberti, Vincent [Y-12 National Security Complex; Schoenwald, David [ORNL; Ward, Richard C [ORNL

    2012-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclearnonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facilitymodeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facilitymodeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facilitymodelingcapabilities and illustrates how they could be integrated and utilized for nonproliferationanalysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facilitymodeling tools. After considering a representative sampling of key facilitymodelingcapabilities, the proposed integration framework is illustrated with several examples.

  19. SU-E-T-509: Validation of the Use of OSLD for Carbon Beam Remote Dosimetry

    SciTech Connect (OSTI)

    Summers, P; Lowenstein, J; Alvarez, P; Followill, D; Jakel, O; Prokesch, H

    2014-06-01

    Purpose: To describe the commissioning of Aluminum Oxide Optically Stimulated Luminescent Dosimeters (OSLD) for the use in Carbon beam remote dosimetry for centers participating in NCI-funded cooperative group clinical trials. Methods: As Carbon therapy centers express interest in participating in cooperative group clinical trials, the Imaging and Radiation Oncology Core Group (IROC) Houston QA Center (formerly RPC) is developing a way to remotely monitor the machine output of these Carbon facilities. OSLD have been commissioned for photon, electron and proton dosimetry, so an experiment was designed to commission the same dosimeters for Carbon. OSLD were irradiated in a Carbon therapy beam produced by the Siemens synchrotron at the Heidelberg Ion Therapy facility in Heidelberg, Germany. The OSLD were placed in acrylic phantoms, imaged with a CT scanner, and plans were developed using the Siemens treatment planning system. The OSLD were irradiated in uniform fields with maximum energies of 216, 301, and 402 MeV and at dose levels of 50, 100, 200 and 300 cGy. Results: The response of the OSLD in the Carbon beam, as compared to the Cobalt-60 reference condition, required an energy correction of 1.85 to account for the particle correction. OSLD dose calculations typically have a linearity correction to account for the change in response relative to the change in dose delivered. However, the response of the OSLD in the Carbon beam was found to be independent of the dose level; thus the linearity correction is 1.00. Conclusion: IROC Houston has commissioned OSLD for the use of remote output checks for Carbon therapy facilities to help ensure consistency across clinical trial participants. Work supported by grant CA10953 (NCI, DHHS)

  20. RCRA facility stabilization initiative

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program`s management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies.

  1. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL ELECTRICRashiFacilitiesFacilities

  2. Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program ManagementAct4 DOE/CF-0074Facilities Facilities

  3. Remote Operations for LHC and CMS

    SciTech Connect (OSTI)

    Gottschalk, E.E.; /Fermilab

    2007-04-01

    Commissioning the Large Hadron Collider (LHC) and its experiments will be a vital part of the worldwide high energy physics program beginning in 2007. A remote operations center has been built at Fermilab to contribute to commissioning and operations of the LHC and the Compact Muon Solenoid (CMS) experiment, and to develop new capabilities for real-time data analysis and monitoring for LHC, CMS, and grid computing. Remote operations will also be essential to a future International Linear Collider with its multiple, internationally distributed control rooms. In this paper we present an overview of Fermilab's LHC@FNAL remote operations center for LHC and CMS, describe what led up to the development of the center, and describe noteworthy features of the center.

  4. DOE Robotic and Remote Systems Assistance to the Government of Japan

    SciTech Connect (OSTI)

    Derek Wadsworth; Victor Walker

    2013-02-01

    At the request of the Government of Japan, DOE did a complex wide survey of available remotely operated and robotic systems to assist in the initial assessment of the damage to the Fukushima Daiichi reactors following an earthquake and subsequent tsunami. As a result several radiation hardened cameras and a Talon robot were identified as systems that could immediately assist in the effort and were subsequently sent to Japan. These systems were transferred to the Government of Japan and used to map radiation levels surrounding the damaged facilities. This report describes the equipment, its use, data collected, and lessons learned from the experience.

  5. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    David Duncan

    2011-05-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  6. Environmental monitoring plan for the Niagara Falls Storage Site and the Interim Waste Containment Facility

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    As part of the US Department of Energy's (DOE) Surplus Facility Management Program (SFMP), the Niagara Falls Storage Site (NFSS) is undergoing remedial action. Vicinity properties adjacent to and near the site are being cleaned up as part of DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP). These programs are a DOE effort to clean up low-level radioactive waste resulting from the early days of the nation's atomic energy program. Radioactively contaminated waste from these remedial action activities are being stored at the NFSS in an interim waste containment facility (IWCF). When the remedial actions and IWCF are completed in 1986, activities at the site will be limited to waste management. The monitoring program was prepared in accordance with DOE Order 5484.1 and is designed to determine the contribution of radioactivity from the site to the environs and to demonstrate compliance with applicable criteria. Major elements of this program will also supplement other monitoring requirements including the performance monitoring system for the IWCF and the closure/post-closure plan. Emphasis will be directed toward the sampling and analysis of groundwater, surface water, air and sediment for parameters which are known to be present in the material stored at the site. The monitoring program will employ a phased approach whereby the first 5 years of data will be evaluated, and the program will be reviewed and modified as necessary. 17 refs., 10 figs., 3 tabs.

  7. Manufacturing Demonstration Facility

    E-Print Network [OSTI]

    life-cycle energy and greenhouse gas emissions, lower production cost, and create new products Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing

  8. NISCO Cogeneration Facility 

    E-Print Network [OSTI]

    Zierold, D. M.

    1994-01-01

    The NISCO Cogeneration facility utilizes two fluidized bed boilers to generate 200 MW of electricity and up to 80,000 LBS/HR of steam for process use. The partnership, of three industrial electricity users, Citgo, Conoco, and Vista Chemical...

  9. Ris-R-1336(EN) Fundamentals for Remote Structural

    E-Print Network [OSTI]

    Risø-R-1336(EN) Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades) Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades - a Preproject Bent F. Sørensen

  10. V-103: RSA Authentication Agent Lets Remote Users Bypass Authenticatio...

    Broader source: Energy.gov (indexed) [DOE]

    Authentication Agent 7.1 for Microsoft Windows and RSA Authentication Client 3.5 Access Control Vulnerability T-704: RSA enVision Lets Remote Users View Files and Remote...

  11. T-574: Google Chrome Multiple Flaws Let Remote Users Execute...

    Broader source: Energy.gov (indexed) [DOE]

    A remote user can bypass the pop-up blocker. A remote user can create specially crafted HTML that, when loaded by the target user, will execute arbitrary code on the target system....

  12. On-Road Emissions in Asia Measured by Remote Sensing.

    E-Print Network [OSTI]

    Denver, University of

    On-Road Emissions in Asia Measured by Remote Sensing. · Donald H. Stedman, Gary A. Bishop on-road advantage · Large on-road emissions cause poor air quality. · Remote sensing measures on

  13. User authentication and remote execution across administrative domains

    E-Print Network [OSTI]

    Kaminsky, Michael, 1976-

    2004-01-01

    (cont.) selectively delegates authority to processes running on remote machines that need to access other resources. The delegation mechanism lets users incrementally construct trust policies for remote machines. Measurements ...

  14. Nano Research Facility Lab Safety Manual Nano Research Facility

    E-Print Network [OSTI]

    Subramanian, Venkat

    1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer---chemical, biological, or radiological. Notify the lab manager, Dr. Yujie Xiong at 5-4530. Eye Contact: Promptly flush

  15. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  16. USING A CONTAINMENT VESSEL LIFTING APPARATUS FOR REMOTE OPERATIONS OF SHIPPING PACKAGES

    SciTech Connect (OSTI)

    Loftin, Bradley; Koenig, Richard

    2013-08-08

    The 9977 and the 9975 shipping packages are used in various nuclear facilities within the Department of Energy. These shipping packages are often loaded in designated areas with designs using overhead cranes or A-frames with lifting winches. However, there are cases where loading operations must be performed in remote locations where these facility infrastructures do not exist. For these locations, a lifting apparatus has been designed to lift the containment vessels partially out of the package for unloading operations to take place. Additionally, the apparatus allows for loading and closure of the containment vessel and subsequent pre-shipment testing. This paper will address the design of the apparatus and the challenges associated with the design, and it will describe the use of the apparatus.

  17. U-231: Cisco ASA SIP and WebVPN Bugs Let Remote Users Deny Service

    Broader source: Energy.gov [DOE]

    Two vulnerabilities were reported in Cisco ASA. A remote or remote authenticated user can cause denial of service conditions.

  18. Geography 115B Remote Sensing Winter 2014

    E-Print Network [OSTI]

    Bookhagen, Bodo

    5 (W) Image classification + Accuracy assessments Required Reading: Introductory Digital Image assessment 9. Feb 10 (M) Classification II/Change Detection Required Reading: Introductory Digital Image the lecture and labs: Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd Edition by J

  19. Dyke quality assessment by remote sensing

    E-Print Network [OSTI]

    Hack, Robert

    Control 2015 (FC2015 ) Dutch Governmental research andDutch Governmental research and development program Solutions for smart flood control 15 Oct 2009 2Reeuwijk - Hack #12;2 RSDYKRSDYK Quality assessment of dykes1 RSDYK Dyke quality assessment by remote sensing and geological information Robert Hack Flood

  20. Remote optical turbulence sensing: present Andrei Tokovinin

    E-Print Network [OSTI]

    Tokovinin, Andrei A.

    . model Detector Data products Rytov approx. Biases Amplitude U(x,y, ,t) Figure 1: Remote optical the turbulent volume. Bright stars (one, two, or several) are most convenient ROTS sources available at no cost of these solar-system bodies pre-selects the light path (a ROTS can only work when the source is visible

  1. Advanced signal processing in geophysical remote sensing

    SciTech Connect (OSTI)

    Witten, A.J.; King, W.C.

    1993-06-01

    This paper describes advanced signal processing methods which have improved the capabilities to detect and image the subsurface environment with geophysical remote sensing techniques. Field results are presented showing target detection, subsurface characterizations, and imaging of insitu waste treatment processes, all previously unachievable with such tools as ground penetrating radar, magnetometry and seismic.

  2. Advanced signal processing in geophysical remote sensing

    SciTech Connect (OSTI)

    Witten, A.J. ); King, W.C. . Dept. of Geography and Environmental Engineering)

    1993-01-01

    This paper describes advanced signal processing methods which have improved the capabilities to detect and image the subsurface environment with geophysical remote sensing techniques. Field results are presented showing target detection, subsurface characterizations, and imaging of insitu waste treatment processes, all previously unachievable with such tools as ground penetrating radar, magnetometry and seismic.

  3. T-704: RSA enVision Lets Remote Users View Files and Remote Authentica...

    Broader source: Energy.gov (indexed) [DOE]

    Allows remote attackers to obtain sensitive information by sniffing the network or leveraging access to a recipient mailbox. PLATFORM: RSA enVision Version(s): 3.x, 4.x ABSTRACT:...

  4. Aalborg Universitet Remote and Centralized Monitoring of PV Power Plants

    E-Print Network [OSTI]

    Sera, Dezso

    Aalborg Universitet Remote and Centralized Monitoring of PV Power Plants Kopacz, Csaba; Spataru., & Kerekes, T. (2014). Remote and Centralized Monitoring of PV Power Plants. In Proceedings of the 14th from vbn.aau.dk on: juli 04, 2015 #12;Remote and Centralized Monitoring of PV Power Plants Csaba Kopacz

  5. Effects of Reduced Connectivity in Rural and Remote Communities

    E-Print Network [OSTI]

    Effects of Reduced Connectivity in Rural and Remote Communities Abstract In this paper we describe ignored yet important user population. Keywords Remote and rural communities, connectivity, qualitative understand user needs in rural and remote communities and what impact lack of connectivity has on users

  6. Wireless Tomography, Part I: A Novel Approach to Remote Sensing

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    Wireless Tomography, Part I: A Novel Approach to Remote Sensing R. C. Qiu, M. C. Wicks, L. Li, Z. Browning.12@us.af.mil Abstract--Wireless tomography, a novel approach to remote sensing, is proposed--radio frequency tomography, remote sensing, cognitive radar, cognitive radio. I. INTRODUCTION The ever increasing

  7. GG671b Remote Sensing Planets Gillis-Davis

    E-Print Network [OSTI]

    GG671b Remote Sensing ­ Planets Gillis-Davis Wednesday 1:30-4:20 POST 544 Description: This course will teach end-to-end principles of remote sensing across electromagnetic spectrum with application state-of-the art remote sensing methods and basic concepts of how to use such data to derive information

  8. Using Remote Sensing for Natural Disaster Management Tara Srihari

    E-Print Network [OSTI]

    Using Remote Sensing for Natural Disaster Management Tara Srihari Department of Computing Sciences these losses. Remote sensing images can be used to provide information about the landscape and environment is focused on developing an infrastructure to make the data collected with remote sensing more widely

  9. COMPLEX WAVELET REGULARIZATION FOR SOLVING INVERSE PROBLEMS IN REMOTE SENSING

    E-Print Network [OSTI]

    Weiss, Pierre

    COMPLEX WAVELET REGULARIZATION FOR SOLVING INVERSE PROBLEMS IN REMOTE SENSING Mika¨el Carlavan Sophia-Antipolis - France ABSTRACT Many problems in remote sensing can be modeled as the min- imization processing: sparsity and regular- ity priors. 1. INTRODUCTION Some problems in remote sensing consist

  10. Remote Sensing in Support of Multilateral Environmental Agreements

    E-Print Network [OSTI]

    Columbia University

    Remote Sensing in Support of Multilateral Environmental Agreements Alex de Sherbinin CIESIN, from 172 in 1970 to more than 475 today · the sophistication of remote sensing and geospatial sets · the number of global and regional initiatives attempting to apply remote sensing (RS

  11. Remote Sensing Messungen zur on-road Bestimmung der

    E-Print Network [OSTI]

    Denver, University of

    LUBETRAX Remote Sensing Messungen zur on-road Bestimmung der Abgase von schweren Motorfahrzeugen, Chur, Zürich, Brugg Dr. Peter Maly (Projektleitung) Dr. Stefan Scherer Dr. G.A. Bishop (Remote Sensing;Inhaltsverzeichnis Zusammenfassung 1 1. Einleitung und Zielsetzung 3 1.1 Remote Sensing Messungen (FEAT) 4 1

  12. Multivariate and Supervised Approaches for Mathematical Morphology in Remote Sensing

    E-Print Network [OSTI]

    Lefèvre, Sébastien

    Multivariate and Supervised Approaches for Mathematical Morphology in Remote Sensing S´ebastien Lef`evre Image Sciences, Computer Sciences and Remote Sensing Laboratory (LSIIT) Models, Image and Vision Team MM Supervised MM Applications in Remote Sensing Conclusion Mathematical Morphology is a powerful

  13. Interactive Multiscale Classification of High-Resolution Remote Sensing Images

    E-Print Network [OSTI]

    Gosselin, Philippe-Henri

    1 Interactive Multiscale Classification of High-Resolution Remote Sensing Images Jefersson Alex dos~ao Abstract The use of remote sensing images (RSIs) as a source of information in agribusiness applications in space occupation. However, the identification and recognition of crop regions in remote sensing images

  14. Thursday, March 15, 2007 POSTER SESSION II: LUNAR REMOTE SENSING

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Thursday, March 15, 2007 POSTER SESSION II: LUNAR REMOTE SENSING 6:30 p.m. Fitness Center Mc-Cittert) Planetary Remote Sensing Neutron Count Rate Maps [#2408] This paper evaluates Jansson Van-Cittert's (JVC) image restoration transform for possible application to neutron maps for planetary remote sensing

  15. VISUAL ASSISTANCE TOOLS FOR INTERACTIVE VISUALIZATION OF REMOTE SENSING DATA

    E-Print Network [OSTI]

    Blanz, Volker

    VISUAL ASSISTANCE TOOLS FOR INTERACTIVE VISUALIZATION OF REMOTE SENSING DATA Martin Lambers to interactive visualization of remote sensing data. Index Terms-- Visualization 1. INTRODUCTION Interactive visualization of remote sensing data gives the user much control over the visualization result. In the ideal

  16. Multiple Instrument Distributed Aperture Sensor (MIDAS) For Remote Sensing

    E-Print Network [OSTI]

    Fienup, James R.

    Multiple Instrument Distributed Aperture Sensor (MIDAS) For Remote Sensing Joe Pitman,a , Alan that enables greatly increased return from earth and planetary science remote sensing missions is described are integrated into MIDAS as the primary remote sensing science payload, thereby reducing the cost, resources

  17. A Modular Control System for Remote Subsea Eric Stephen Smith

    E-Print Network [OSTI]

    Wood, Stephen L.

    A Modular Control System for Remote Subsea Equipment by Eric Stephen Smith Bachelor of Science the undersigned committee hereby approve the attached thesis A Modular Control System for Remote Subsea Equipment and Environmental Systems #12;iv Abstract Title: A Modular Control System for Remote Subsea Equipment Author: Eric

  18. ADVANCED CONCEPTS ON REMOTE SENSING OF PRECIPITATION AT

    E-Print Network [OSTI]

    Foufoula-Georgiou, Efi

    ADVANCED CONCEPTS ON REMOTE SENSING OF PRECIPITATION AT MULTIPLE SCALES by SorooSh SorooShian, amirTs Workshop on remoTe sensing of precipiTATion AT mulTiple scAles what: 50 participants from precipitation of remote sensing of precipitation whEn: 15­17 March 2010 whErE: University of California, Irvine Overview

  19. Virginia Commonwealth University Facilities Management

    E-Print Network [OSTI]

    Hammack, Richard

    .3 Solid Waste Management 14 018.4 Pest Management Plan 14 Facilities Management Construction & Design Virginia Commonwealth University Facilities Management Construction & Design Construction Management (804) 6285199 VCU Construction & Inspection Management jghosh

  20. Biomass Feedstock National User Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

  1. National Ignition Facility & Photon Science What

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility & Photon Science What is NiF? the national ignition Facility: bringing star Power to earth The National Ignition Facility (NIF) is the world's largest and...

  2. CFTF | Carbon Fiber Technology Facility | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BTRIC CNMS CSMB CFTF Working with CFTF HFIR MDF NTRC OLCF SNS Carbon Fiber Technology Facility Home | User Facilities | CFTF CFTF | Carbon Fiber Technology Facility SHARE Oak...

  3. Proton beam therapy facility

    SciTech Connect (OSTI)

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  4. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;115 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY An NIH-Supported Resource Center WWW.RARAF.ORG Director: David J. Brenner, Ph.D., D.Sc. Manager delighted that NIH funding for continued development of our single-particle microbeam facility was renewed

  5. Alpha Gamma Hot Cell Facility

    E-Print Network [OSTI]

    Kemner, Ken

    . These operations can result in elevated radiological risks to the facility and workers. ARG-US -- meaning and should be developed for and deployed in nuclear and radiological facilities to aid operation and reduceAlpha Gamma Hot Cell Facility Argonne National Laboratory is a U.S. Department of Energy laboratory

  6. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    175 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;176 #12;177 THE RADIOLOGICAL RESEARCH the microbeam and the track-segment facilities have been utilized in various investigations. Table 1 lists-segment facility. Samples are treated with graded doses of radical scavengers to observe changes in the cluster

  7. Facilities Design and Construction Services

    E-Print Network [OSTI]

    Frantz, Kyle J.

    for custodial materials as well as maintenance equipment. (The Facilities Maintenance and Operations Department be in written request to University's Facilities Maintenance and Operations Department and the Communication, corridors and facilities shall provide maximum flexibility and access for routine maintenance. (Reference

  8. New Remote Method for Estimation of Contamination Levels of Reactor Equipment - 13175

    SciTech Connect (OSTI)

    Danilovich, Alexey; Ivanov, Oleg; Potapov, Victor; Semenov, Sergey; Semin, Ilya; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2013-07-01

    Projects for decommissioning of shutdown reactors and reactor facilities carried out in several countries, including Russia. In the National Research Centre 'Kurchatov Institute' decontamination and decommissioning of the research reactor MR (Material Testing Reactor) has been initiated. The research reactor MR has a long history and consists of nine loop facilities for experiments with different kinds of fuel. During the operation of main and auxiliary equipment of reactors it was subjected to strong radioactive contamination. The character of this contamination requires individual strategies for the decontamination work. This requires information about the character of the distribution of radioactive contamination of equipment in the premises. A detailed radiation survey of these premises using standard dosimetric equipment is almost impossible because of high levels of radiation and high-density of the equipment that does not allow identifying the most active fragments using standard tools of measurement. The problem can be solved using the method of remote measurements of distribution of radioactivity with help of the collimated gamma-ray detectors. For radiation surveys of the premises of loop installations remotely operated spectrometric collimated system was used [1, 2, 3]. As a result of the work, maps of the distribution of activity and dose rate for surveyed premises were plotted and superimposed on its photo. The new results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. (authors)

  9. Remote Sensing and Visualization Laboratory Geoscience 204 -Facility Map (Page 1 of 2)

    E-Print Network [OSTI]

    Small, Christopher

    @ Sun 18 GB Ultra/Wide SCSI-3 data disk INFRASTRUCTURE 1 @ Exide Prestige 6 kVA uninterruptible power Creator 3D Series 3 graphics card (16 MB, stereo capable) 20x CD-ROM, floppy 4 @ Apple Power Macintosh G3/300 1 300 MHz PowerPC 750 processor with 1 MB L2 cache 512 MB RAM 4 GB Ultra/Wide SCSI-3 system disk 20

  10. Remote facility sharing with ATM networks [PC based ATM Link Delay Simulator (LDS)]. Final report

    SciTech Connect (OSTI)

    Kung, H. T.

    2001-06-01

    The ATM Link Delay Simulator (LDS) adds propagation delay to the ATM link on which it is installed, to allow control of link propagation delay in network protocol experiments simulating an adjustable piece of optical fiber. Our LDS simulates a delay of between 1.5 and 500 milliseconds and is built with commodity PC hardware, only the ATM network interface card is not generally available. Our implementation is special in that it preserves the exact spacing of ATM data cells a feature that requires sustained high performance. Our implementation shows that applications demanding sustained high performance are possible on commodity PC hardware. This illustrates the promise that PC hardware has for adaptability to demanding specialized testing of high speed network.

  11. UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Faculty Council on University Facilities and Services Presentation October 30, 2014

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Faculty Council on University Facilities and Services Presentation October 30, 2014 Capital Projects Office TITLE #12;UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Office TITLE #12;UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Faculty Council on University Facilities

  12. Self-referencing remote optical probe

    DOE Patents [OSTI]

    O'Rourke, P.E.; Prather, W.S.; Livingston, R.R.

    1991-08-13

    A probe is described for remote spectrometric measurements of fluid samples having a hollow probe body with a sliding reflective plug therein and a lens at one end, ports for admitting and expelling the fluid sample and a means for moving the reflector so that reference measurement can be made with the reflector in a first position near the lens and a sample measurement can be made with the reflector away from the lens and the fluid sample between the reflector and the lens. Comparison of the two measurements will yield the composition of the fluid sample. The probe is preferably used for remote measurements and light is carried to and from the probe via fiber optic cables. 3 figures.

  13. Small geothermal electric systems for remote powering

    SciTech Connect (OSTI)

    Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

    1994-08-08

    This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

  14. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM Assists1

  15. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM Assists11

  16. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM Assists113

  17. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM

  18. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM

  19. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM6 ARM

  20. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM6 ARM2

  1. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM6

  2. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM60 ARM

  3. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM60

  4. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM602

  5. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM6029

  6. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM60290

  7. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8 ARM602907

  8. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3 ARM8

  9. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP3

  10. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP38 ARM Climate

  11. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP38 ARM

  12. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP38 ARM6 ARM

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecember 4, 2010 [Facility News]

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecember 4, 2010 [Facility News]New

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecember 4, 2010 [Facility

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecember 4, 2010 [FacilityIntensive

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See EnergyCurrentOctoberDecemberDisasterMay30, 2004 [Facility

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News] Help Us Help

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News] Help Us

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News] Help Us27,

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News] Help

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]Upgrade to

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]Upgrade

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]UpgradeMay 15,

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility News]UpgradeMay

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, Facility

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal Year 2012

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal Year

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal YearThe Tale

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal YearThe

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscal

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscalEddy

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements, FacilityFiscalEddyRecord

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements,November 14, 2007 [Facility

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [Data Announcements,November 14, 2007 [Facility5,

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] Jim Mather

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] Jim

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] JimJune 28,

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] JimJune 28,May

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] JimJune

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News] JimJuneAugust

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]August 19, 2013

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]August 19,

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]August 19,15,

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]August

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]AugustApril 30,

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]AugustApril

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility News]AugustAprilARM

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [Facility

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecember 31, 2013

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecember 31,

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecember 31,February

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecember

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecemberFebruary 28,

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecemberFebruary

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007 [FacilityDecemberFebruaryApril

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility News]

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility25, 2015

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility25,

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 2015 [Facility25,March

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 20159, 2008 [Facility

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10, 2007June28, 20159, 2008 [Facility6,

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News] Merger of

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News] Merger

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News] MergerNew

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]May 22, 2008

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]May 22,

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]May

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]MayMay 8,

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]MayMay

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility News]MayMayApril

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [Facility

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [FacilitySeptember 30, 2009

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [FacilitySeptember 30,

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [FacilitySeptember

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009 [FacilitySeptemberARM

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24, 2009January 21, 2008 [Facility

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24,Best Wishes2, 2006 [Facility

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24,Best Wishes2,5, 2009 [Facility

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24,Best Wishes2,5, 2009 [Facility7,

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJuly 10,24,Best Wishes2,5,15, 2006 [Facility

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News] DOE Seeks

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News] DOE

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News] DOEMarch

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News]

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility News]Increased

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30, 2010

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30, 201026, 2010

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30, 201026,

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30, 201026,April

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30,

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30,ARM Exhibit

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30,ARM

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 2010 [Facility30,ARMSPARTICUS

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [Facility News]

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [Facility

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [FacilityMay 31,

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [FacilityMay

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [FacilityMay8,

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012 [DataJulyMarch 27, 201031, 2010 [FacilityMay8,10,

  6. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendarPressExtended Facility SGP Related Links Virtual Tour

  7. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendarPressExtended Facility SGP Related Links

  8. Research Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashome /AreasResearch Facilities

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA ContactsProductsSACR2 pre-CGAJanuary 3, 2011 [Facility News]

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA ContactsProductsSACR2 pre-CGAJanuary 3, 2011 [Facility

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA ContactsProductsSACR2 pre-CGAJanuary 3, 2011 [FacilityOctober

  12. Facility Data Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL| NationalFacilities

  13. Facility Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoal Jump to: navigation,FREDName Facility

  14. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CSNationalNational User Facilities Our

  15. ORPS Facility Registration Form

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t787ORDER NO. 3357:ORMATORPS FACILITY

  16. HIG - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSCGrid-based29 1.921HEP User Facilities6-000

  17. NREL: Photovoltaics Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working withPhoto of1855 m,Daniel J.Facilities

  18. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologiesSilver ToyotaFacilities

  19. Sandia Energy - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjectsCyberNotLEDPhaseFacilities Home Analysis An

  20. Rate allocation in a remote control structure 

    E-Print Network [OSTI]

    Meadow, Charles Joe

    1984-01-01

    are linearly dependent upon the measurement estimates. Therefore, they can be considered as stationary and gaussian. To optimally encode a signal an arbitrary time delay is required which will produce a non-causal control solution. This is a non.... Jones (Head of Department) May 1984 ABSTRACT Rate Allocation in a Remote Control Structure (May 1984) Charles Joe Meadow, Jr. , B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Thomas R. Fischer A Linear-Quadratic-Gaussian (LQG...

  1. Remote controlled vacuum joint closure mechanism

    DOE Patents [OSTI]

    Doll, David W. (San Diego, CA); Hager, E. Randolph (La Jolla, CA)

    1986-01-01

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange.

  2. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  3. PUREX facility hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-23

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  4. Facility effluent monitoring plan for the 327 Facility

    SciTech Connect (OSTI)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  5. US nuclear warhead facility profiles

    SciTech Connect (OSTI)

    Cochran, T.B.; Arkin, W.A.; Norris, R.S.; Hoenig, M.M.

    1987-01-01

    US Nuclear Warhead Facility Profiles is the third volume of the Nuclear Weapons Databook, a series published by the Natural Resources Defense Council. This volume reviews the different facilities in the US nuclear warhead complex. Because of the linkage between nuclear energy and nuclear weapons, the authors cover not only those facilities associated mainly with nuclear power research, but also those well known for weapons development. They are: the Argonne National Laboratory; the Hanford Reservation; the Oak Ridge National Laboratory; the Pantex plant; the Los Alamos Test Site; the Rocky Flats plant; the Sandia National Laboratories; and a host of others. Information on each facility is organized into a standard format that makes the book easy to use. The reader will find precise information ranging from a facility's address to its mission, management, establishment, budget, and staff. An additional, more in-depth presentation covers the activities and technical process of each facility. Maps, pictures, and figures complement the text.

  6. National Ignition Facility & Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security maintaining the nuclear weapons stockpile As the largest, highest-energy laser ever built, the National Ignition Facility (NIF) can create conditions in the...

  7. Facility Safety | Department of Energy

    Office of Environmental Management (EM)

    improved DOE program and field implementation of nuclear safety management programs and fire protection and natural phenomena hazard control requirements. Nuclear facility program...

  8. Manufacturing Demonstration Facility Technology Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration Facility (MDF) to assess applicability and of new energy efficient manufacturing technologies. This opportunity will provide selected participants access to ORNL's...

  9. Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national stockpile stewardship agenda. Of...

  10. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  11. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  12. Office of Science User Facilities

    Broader source: Energy.gov [DOE]

    This presentation summarizes the information on the Office of Science User Facilities, which was given during the webinar on the DOE BRIDGE funding opportunity.

  13. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  14. Equitable Access: Remote and Rural Communities 'Transport Needs...

    Open Energy Info (EERE)

    Link: www.internationaltransportforum.orgjtrcDiscussionPapersDP201119.pdf Transport Toolkit Region(s): Europe Transport in rural and remote regions receives...

  15. Geothermal Exploration Using Aviris Remote Sensing Data Over...

    Open Energy Info (EERE)

    Geothermal Exploration Using Aviris Remote Sensing Data Over Fish Lake Valley, Nv Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal...

  16. Method of determining forest production from remotely sensed forest parameters

    DOE Patents [OSTI]

    Corey, J.C.; Mackey, H.E. Jr.

    1987-08-31

    A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.

  17. Geobotanical Remote Sensing Applied To Targeting New Geothermal...

    Open Energy Info (EERE)

    "http:en.openei.orgwindex.php?titleGeobotanicalRemoteSensingAppliedToTargetingNewGeothermalResourceLocationsInTheUsBasinAndRangeWithAFocusOnDixieMeadows,...

  18. Remote Detection of Quaternary Borate Deposits with ASTER Satellite...

    Open Energy Info (EERE)

    Exploration Tool Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Remote Detection of Quaternary Borate Deposits with ASTER Satellite Imagery...

  19. Community Energy Planning A Resource Guide for Remote Communities...

    Open Energy Info (EERE)

    Communities in Canada Jump to: navigation, search Name Community Energy Planning A Resource Guide for Remote Communities in Canada AgencyCompany Organization Natural Resources...

  20. U-254: Webmin Flaws Let Remote Authenticated Users Execute Arbitrary...

    Broader source: Energy.gov (indexed) [DOE]

    Cisco Connected Grid Network Management System Multiple Vulnerabilities V-104: Oracle Java Flaw Lets Remote Users Execute Arbitrary Code U-255: Apache Wicket Input Validation...

  1. V-149: Microsoft Internet Explorer Object Access Bug Lets Remote...

    Broader source: Energy.gov (indexed) [DOE]

    Microsoft Internet Explorer Object Access Bug Lets Remote Users Execute Arbitrary Code PLATFORM: Internet Explorer 8 ABSTRACT: A vulnerability was reported in Microsoft Internet...

  2. U-262: Microsoft Internet Explorer Flaw Lets Remote Users Execute...

    Broader source: Energy.gov (indexed) [DOE]

    Microsoft Internet Explorer Flaw Lets Remote Users Execute Arbitrary Code PLATFORM: Internet Explorer 6, 7, 8, 9 ABSTRACT: A vulnerability was reported in Microsoft Internet...

  3. GIS and remote sensing team recognized by industry leaders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission-GIS-and-Remote-Sensing-Team-recognized-by-industry-leaders-at-Esri-Conference Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News...

  4. Structural investigations at the Coso geothermal area using remote...

    Open Energy Info (EERE)

    investigations at the Coso geothermal area using remote sensing information, Inyo County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  5. Alternative Carriers For Remote Renewable Energy Sources Using...

    Open Energy Info (EERE)

    Alternative Carriers For Remote Renewable Energy Sources Using Existing Cng Infrastructure Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  6. JLab Guest Lecturer Discusses Hurricane Hunting - By Remote Control...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guest Lecturer Discusses Hurricane Hunting - By Remote Control On April 14 NEWPORT NEWS, Va., March 2, 2009 - Learn how the National Oceanic and Atmospheric Administration and...

  7. An advanced unmanned vehicle for remote applications

    SciTech Connect (OSTI)

    Pletta, J.B.; Sackos, J.

    1998-03-01

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot`s current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia`s Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board.

  8. Remote controlled vacuum joint closure mechanism

    DOE Patents [OSTI]

    Doll, D.W.; Hager, E.R.

    1984-02-22

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange and maintain the high vacuum seal established by the displacement of the flange assembly and extension of the bellows without displacing the entire duct.

  9. Near-surface remote sensing of canopy architecture and land-atmosphere interactions in an oak savanna ecosystem

    E-Print Network [OSTI]

    Ryu, Youngryel

    2010-01-01

    MODIS satellite data. Remote Sensing of Environment, 106,a joint flux tower, remote sensing and modelling analysis.of the algorithm. Remote Sensing of Environment, 110,

  10. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  11. High aspect ratio, remote controlled pumping assembly

    DOE Patents [OSTI]

    Brown, S.B.; Milanovich, F.P.

    1995-11-14

    A miniature dual syringe-type pump assembly is described which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor. 4 figs.

  12. High aspect ratio, remote controlled pumping assembly

    DOE Patents [OSTI]

    Brown, Steve B. (Livermore, CA); Milanovich, Fred P. (Lafayette, CA)

    1995-01-01

    A miniature dual syringe-type pump assembly which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor.

  13. PV Charging System for Remote Area Operations

    SciTech Connect (OSTI)

    Ilsemann, Frederick; Thompson, Roger

    2008-07-31

    The objective of this project is to provide the public with a study of new as well existing technology to recharge batteries used in the field. A new product(s) will also be built based upon the information ascertained. American Electric Vehicles, Inc. (AEV) developed systems and methods suitable for charging state-of-the-art lithium-ion batteries in remote locations under both ideal and cloudy weather conditions. Conceptual designs are described for existing and next generation technology, particularly as regards solar cells, peak power trackers and batteries. Prototype system tests are reported.

  14. Implantable, remotely-programmable insulin infusion system

    SciTech Connect (OSTI)

    Carlson, G.A.; Bair, R.E.; Gaona, J.I. Jr.; Love, J.T.; Urenda, R.S.

    1981-10-01

    An implantable, remotely-programmable insulin infusion system is described which has a mass of 280 grams and an implanted lifetime exceeding two years. The system uses a rotary solenoid-driven peristaltic pump controlled by low power CMOS timing circuitry which provides bimodal insulin delivery. Fifteen low rates from 0.39 to 5.9 units/hour and 15 high doses from 0.84 to 12.5 units are available using U100 insulin. The system has been tested in the laboratory, evaluated in diabetic dogs, and implanted in one diabetic human.

  15. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  16. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    SciTech Connect (OSTI)

    NELSON RL

    2008-07-18

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel.

  17. Aerosol Remote Sealing System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E R N A NA LY S IDOEAerosol Remote

  18. REMOTE ACCESS SERVICES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvesting inServices »AboutEnergyPublicREMOTE ACCESS

  19. Remote Sens. 2011, 3, 343-361; doi:10.3390/rs3020343 Remote Sensing

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .mdpi.com/journal/remotesensing Article The HelioClim Project: Surface Solar Irradiance Data for Climate Applications Philippe Blanc; solar irradiance; solar exposure; climate; Africa; Europe; Atlantic Ocean; remote sensing; long Abstract: Meteosat satellite images are processed to yield values of the incoming surface solar irradiance

  20. Remote Sensing 2010, 2, 1797-1825; doi:10.3390/rs2071797 Remote Sensing

    E-Print Network [OSTI]

    Singer, Michael

    / Published: 19 July 2010 Abstract: Hydraulic gold mining in the Sierra Nevada, California (1853 below dams where floods can remobilize them. This study uses topographic and planimetric data from; hydraulic mining sediment; floodplain morphology OPEN ACCESS #12;Remote Sensing 2010, 2 1798 1. Introduction