Powered by Deep Web Technologies
Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Remote electrochemical sensor  

DOE Patents [OSTI]

An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

Wang, Joseph (Las Cruces, NM); Olsen, Khris (Richland, WA); Larson, David (Las Cruces, NM)

1997-01-01T23:59:59.000Z

2

Remote electrochemical sensor  

DOE Patents [OSTI]

An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

Wang, J.; Olsen, K.; Larson, D.

1997-10-14T23:59:59.000Z

3

Remotely Deployed Virtual Sensors  

E-Print Network [OSTI]

Remotely Deployed Virtual Sensors TR-UTEDGE-2007-010 Sanem Kabadayi Christine Julien © Copyright 2007 The University of Texas at Austin #12;Remotely Deployed Virtual Sensors Sanem Kabadayi that run on mobile client devices connect to the sensors of a multihop sensor network. For emerging

Julien, Christine

4

Application and state of development for remote chemical sensors in environmental monitoring: A literature review  

SciTech Connect (OSTI)

A study was performed on chemical sensor technology currently available and under development. The information was compiled into a format wherein information on the sensors is listed in a comparable manner. An introductory section is provided to illustrate the regulatory environment in which such sensor technology will be used. This information should allow corporations or federal agencies ready access to useful information for the potential licensing of sensor technology for commercial development or specific environmental monitoring operations. Although every attempt was made to identify as many chemical sensors as possible, we recognize that some may be missed inadvertently. The accuracy of the information provided by the various sources regarding the state of development for the various sensors was not verified. Judgments or opinions regarding the actual state of development or utility of these devices are not included in this report. However, we feel that this report accurately reflects the state of the art at the present time.

Schabron, J.F.; Niss, N.D.; Hart, B.K.

1991-09-01T23:59:59.000Z

5

Application and state of development for remote chemical sensors in environmental monitoring: A literature review  

SciTech Connect (OSTI)

A study was performed on chemical sensor technology currently available and under development. The information was compiled into a format wherein information on the sensors is listed in a comparable manner. As introductory section is provided to illustrate the regulatory environment in which such sensor technology will be used. This information should allow corporations or federal agencies ready access to useful information for the potential licensing of sensor technology for commercial development or specific environmental monitoring operations. Although every attempt was made to identify as many chemical sensors as possible, we recognize that some may be missed inadvertently. The accuracy of the information provided by the various sources regarding the state of development for the various sensors was not verified. Judgments or opinions regarding the actual state of development or utility of these devices are not included in this report. However, we feel that this report accurately reflects the state of the art at the present time.

Schabron, J.F.; Niss, N.D.; Hart, B.K.

1991-09-01T23:59:59.000Z

6

Remotely deployable aerial inspection using tactile sensors  

SciTech Connect (OSTI)

For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

MacLeod, C. N.; Cao, J.; Pierce, S. G.; Dobie, G.; Summan, R. [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Sullivan, J. C.; Pipe, A. G. [Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY (United Kingdom)

2014-02-18T23:59:59.000Z

7

Remote Sensor Placement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORV 15051 ModificationRemoteSpectrum andRemote

8

Remote Sensor Placement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

developed to place the sensor nodes in the field. Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

9

Remote Sensing Data and Information for Hydrological Monitoring and Modeling  

E-Print Network [OSTI]

of solar radiation and can be used during both night-time and day-time hours; high frequency microwaves, that varies based on sensors and type of orbit. The parameters such as precipitation, is being monitored remote sensing sensors are carried out using visible (VIS), infrared (IR) and microwave (MW) wavelengths

Krakauer, Nir Y.

10

Wireless sensor networks and environmental monitoring applications  

E-Print Network [OSTI]

by the Human Resources and Mobility program of the European community (MEST-CT-2004-505079) #12;ULB Machine Radio: 4kbps, 180m Sensors: Light and accelerometer Energy: Solar powered Golem and deputy dust 16mm3 ­ Remote or non invasive monitoring ·... #12;Solbosch greenhouses ·Greenhouses used by different research

Le Borgne, Yann-Aël

11

"Whiskbrooms" and"Pushbrooms" Remote Sensing Platforms and Sensors  

E-Print Network [OSTI]

"Whiskbrooms" and"Pushbrooms" Remote Sensing Platforms and Sensors Remote sensing requires that a sensor be constructed and then attached to a platform that provides an aerial view of the landscape. "Whiskbrooms" and"Pushbrooms" Remote Sensing Platforms and Sensors Remote sensing requires that a sensor

Frank, Thomas D.

12

Use of sensors in monitoring civil structures  

E-Print Network [OSTI]

This thesis surveys the use of sensors and sensor networks in monitoring civil structures, with particular emphasis on the monitoring of bridges and highways using fiber optic sensors. Following a brief review of the most ...

Daher, Bassam William, 1979-

2004-01-01T23:59:59.000Z

13

Sensors and Actuators B 102 (2004) 2734 A miniaturized low-power wireless remote environmental  

E-Print Network [OSTI]

-site monitoring of water pollution by heavy-metal ions. The system is composed of three parts: an electrochemical wireless remote environmental monitoring sys- tem. This system monitors water pollution of heavy-metal ions sensor module using microfabricated electrodes for detecting heavy-metal contamination in sample water

Kwak, Juhyoun

14

Development of software architecture for environmental monitoring using wireless sensor networks  

E-Print Network [OSTI]

In this thesis, I describe the development of the software architecture for temperature monitoring using Wireless Sensor Networks (WSN). The goal of the software is to provide a means to remotely monitor and analyze ...

Hari, Piyush

2006-01-01T23:59:59.000Z

15

a Wireless Sensor Network for Environmental Monitoring  

E-Print Network [OSTI]

transmitters #12;Sample sensors: #12;Sample sensors: PAR: Photosynthetically Active (solar) Radiation sensora Wireless Sensor Network for Environmental Monitoring a Wireless Sensor Network for Environmental technology: a truly self configurable, low-cost, maintenance-free, ad-hoc sensor network (not based on Zig

Gburzynski, Pawel

16

Radionuclide Sensors for Water Monitoring  

SciTech Connect (OSTI)

Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particles in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements.

Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

2003-06-01T23:59:59.000Z

17

Radionuclide Sensors for Water Monitoring  

SciTech Connect (OSTI)

Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particle s in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements.

Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

2004-06-29T23:59:59.000Z

18

REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS  

SciTech Connect (OSTI)

The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel.

NELSON RL

2008-07-18T23:59:59.000Z

19

Radionuclide Sensors for Environmental Monitoring: From Flow...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Equilibration-Based Radionuclide Sensors for Environmental Monitoring: From Flow Injection Solid-Phase Absorptiometry to Equilibration-Based Abstract: The development...

20

Electrochemical NOx Sensors for Monitoring Diesel Emissions  

Broader source: Energy.gov (indexed) [DOE]

x Sensors for Monitoring Diesel Emissions This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract...

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Characterization monitoring & sensor technology crosscutting program  

SciTech Connect (OSTI)

The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

NONE

1996-08-01T23:59:59.000Z

22

Monitoring Energy Consumption In Wireless Sensor Networks  

E-Print Network [OSTI]

Monitoring Energy Consumption In Wireless Sensor Networks Matthias Witt, Christoph Weyer, it may impair the ability of the sensor network to function. Therefore, minimizing energy consumption energy consumption in both standby and active modes is the basis of wireless networks. Energy preserving

Turau, Volker

23

Remote Automatic Material On-Line Sensor  

SciTech Connect (OSTI)

Low cost NMR sensor for measuring moisture content of forest products. The Department of Energy (DOE) Industries of the Future (IOF) program seeks development and implementation of technologies that make industry more efficient--in particular, more energy-efficient. Quantum Magnetics, Inc. (QM), a wholly-owned subsidiary of GE Security, received an award under the program to investigate roles for low-cost Nuclear Magnetic Resonance (NMR) technology in furtherance of these goals. Most NMR systems are designed for high-resolution spectroscopy applications. These systems use intense magnetic fields produced by superconducting magnets that drive price and operating cost to levels beyond industry tolerance. At low magnetic fields, achievable at low cost, one loses the ability to obtain spectroscopic information. However, measuring the time constants associated with the NMR signal, called NMR relaxometry, gives indications of chemical and physical states of interest to process control and optimization. It was the purpose of this effort to investigate the technical and economic feasibility of using such low-field, low-cost NMR to monitor parameters enabling greater process efficiencies. The primary target industry identified in the Cooperative Development Agreement was the wood industry, where the moisture content of wood is a key process parameter from the time the cut tree enters a mill until the time it is delivered as pieces of lumber. Extracting the moisture is energy consuming, and improvements in drying efficiency stand to reduce costs and emissions substantially. QM designed and developed a new, low-cost NMR instrument suitable for inspecting lumber up to 3 inches by 12 inches in cross section, and other materials of similar size. Low cost is achieved via an inexpensive, permanent magnet and low-cost NMR spectrometer electronics. Laboratory testing demonstrated that the NMR system is capable of accurate ({+-} 0.5%) measurements of the moisture content of wood for moisture ranging from 2% to over 140% (referenced to the wood's dry weight). Accuracy exceeded that offered by existing instrumentation when the moisture content was in excess of the fiber saturation point ({approx}20%). Accuracy was independent of the wood form: solid wood, wood chips or sawdust. The prototype NMR system was designed and built for incorporation and use in a beta test site. Beta testing is under way at the pilot plant operated by the Pulp and Paper Research Institute of Canada (PAPRICAN) in Vancouver, B.C. Other industries were also investigated. For example, laboratory testing demonstrated that low-field NMR is capable of measuring the hydrogen content of calcium oxide (quicklime). Hydrogen content measurement can be done both rapidly (on the order of 1 second) and nondestructively. Measurement of moisture in quicklime affects energy consumption in the steel industry. Further advances in system electronics, ongoing under DOD support, will enable yet more substantial system cost reductions over the prototype system, opening up a wider range of utility.

Magnuson, Erik

2005-12-20T23:59:59.000Z

24

Integration of wireless sensor networks in environmental monitoring cyber infrastructure  

E-Print Network [OSTI]

Integration of wireless sensor networks in environmental monitoring cyber infrastructure Jue Yang ? to revolutionize many science and engineering domains. We present a novel environmental monitoring system collection, management, visualization, dissemination, and exchange, conforming to the new Sensor Web

Huang, Yan

25

Problem Description:Problem Description: How can Researchers Monitor Ecosystems via Embedded Sensors?How can Researchers Monitor Ecosystems via Embedded Sensors? Proposed Solution:Proposed Solution: Wireless Sensors to Monitor and Record Biodiversity and  

E-Print Network [OSTI]

Sensors?How can Researchers Monitor Ecosystems via Embedded Sensors? Proposed Solution:Proposed Solution: Wireless Sensors to Monitor and Record Biodiversity and Ecological ChangesWireless Sensors to Monitor.jamesreserve.edu Introduction:Introduction: Embedded Sensors, a Model for Monitoring Wildlife in Their Habitat.Embedded Sensors

Hamilton, Michael P.

26

DEVELOPMENT OF A SENSOR NETWORK TEST BED FOR ISD MATERIALS AND STRUCUTRAL CONDITION MONITORING  

SciTech Connect (OSTI)

The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

2011-07-06T23:59:59.000Z

27

A Remote Controlled Vehicle with Omnidirectional Sensors Simon Lok, Shree K. Nayar  

E-Print Network [OSTI]

PARAROVER A Remote Controlled Vehicle with Omnidirectional Sensors Simon Lok, Shree K. Nayar.8 DC Power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Electrical

28

Radionuclide Sensors for Subsurface Water Monitoring  

SciTech Connect (OSTI)

Contamination of the subsurface by radionuclides is a persistent and vexing problem for the Department of Energy. These radionuclides must be measured in field studies and monitoed in the long term when they cannot be removed. However, no radionuclide sensors existed for groundwater monitoring prior to this team's research under the EMSP program Detection of a and b decays from radionuclides in water is difficult due to their short ranges in condensed media.

Timothy DeVol

2006-06-30T23:59:59.000Z

29

IEEE SENSORS JOURNAL, VOL. 4, NO. 4, AUGUST 2004 395 Sensor Technologies for Monitoring Metabolic  

E-Print Network [OSTI]

IEEE SENSORS JOURNAL, VOL. 4, NO. 4, AUGUST 2004 395 Sensor Technologies for Monitoring Metabolic Michelle Wilson, Member, IEEE Abstract--A review of optical, chemical, and biological sensors to detect-on-a-chip research instrumentation. The sensors reviewed include optical sensors, at both research and commercial

Wilson, Denise

30

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

SciTech Connect (OSTI)

Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies (< 1 Hz) as the sensing signal and attribute the measured response to interfacial phenomena. Work by our group has also investigated using phase angle as the sensing signal at somewhat higher frequencies (10 Hz). The higher frequency measurements would potentially allow for reduced sampling times during sensor operation. Another potential advantage of impedance-metric NO{sub x} sensing is the similarity in response to NO and NO{sub 2} (i.e., total-NO{sub x} sensing). Potentiometric NO{sub x} sensors typically show higher sensitivity to NO2 than NO, and responses that are opposite in sign. However, NO is more stable than NO{sub 2} at temperatures > 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

Woo, L Y; Glass, R S

2008-11-14T23:59:59.000Z

31

Use of passive microwave remote sensing to monitor soil moisture  

E-Print Network [OSTI]

January 1998) Abstract - Surface soil moisture is a key variable to describe the water and energy soil layer) is a key variable in the water and energy exchanges at the land surfaceReview Use of passive microwave remote sensing to monitor soil moisture Jean-Pierre Wignerona

Paris-Sud XI, Université de

32

REMOTE DETECTION OF INTERNAL PIPELINE CORROSION USING FLUIDIZED SENSORS  

SciTech Connect (OSTI)

Pipelines present a unique challenge to monitoring because of the great geographical distances they cover, their burial depth, their age, and the need to keep the product flowing without much interruption. Most other engineering structures that require monitoring do not pose such combined challenges. In this regard, a pipeline system can be considered analogous to the blood vessels in the human body. The human body has an extensive ''pipeline'' through which blood and other fluids are transported. The brain can generally sense damage to the system at any location and alert the body to provide temporary repair, unless the damage is severe. This is accomplished through a vast network of fixed and floating sensors combined with a vast and extremely complex communication/decision making system. The project described in this report mimics the distributed sensor system of our body, albeit in a much more rudimentary fashion. Internal corrosion is an important factor in pipeline integrity management. At present, the methods to assess internal corrosion in pipelines all have certain limitations. In-line inspection tools are costly and cannot be used in all pipelines. Because there is a significant time interval between inspections, any impact due to upsets in pipeline operations can be missed. Internal Corrosion Direct Assessment (ICDA) is a procedure that can be used to identify locations of possible internal corrosion. However, the uncertainties in the procedure require excavation and location of damage using more detailed inspection tools. Non-intrusive monitoring techniques can be used to monitor internal corrosion, but these tools also require pipeline excavation and are limited in the spatial extent of corrosion they can examine. Therefore, a floating sensor system that can deposit at locations of water accumulation and communicate the corrosion information to an external location is needed. To accomplish this, the project is divided into four main tasks related to wireless data transmission, corrosion sensor development, sensor system motion and delivery, and consideration of other pipeline operations issues. In the first year of the program, focus was on sensor development and wireless data transmission. The second year of the program, which was discontinued due to funding shortfall, would have focused on further wireless transmission development, packaging of sensor on wireless, and other operational issues. Because, the second year funding has been discontinued, recommendations are made for future studies.

Narasi Sridhar; Garth Tormoen; Ashok Sabata

2005-10-31T23:59:59.000Z

33

Mobile sensor network to monitor wastewater collection pipelines  

E-Print Network [OSTI]

17 Mobile robot localization in23 WCS monitoring using mobile floatingDesign of mobile pipeline floating sensor SewerSnort

Lim, Jungsoo

2012-01-01T23:59:59.000Z

34

activity monitoring sensor: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

processing. Individual sensors monitor specific physiological signals (such as EEG, ECG, GSR, etc.) and communicate with each other and the personal server. Personal server...

35

Contour maps: Monitoring and diagnosis in sensor networks  

E-Print Network [OSTI]

Contour Maps: Monitoring and Diagnosis in Sensor Networksof data contour maps, which trade off accuracy with thealgorithms to build contour maps: distributed spatial and

Meng, Xiaoqiao Q; Nandagopal, T; Li, L; Lu, S W

2006-01-01T23:59:59.000Z

36

Aquatic Debris Monitoring Using Smartphone-Based Robotic Sensors  

E-Print Network [OSTI]

to capture debris arrivals with reduced energy consumption. Keywords--Robotic sensor; aquatic debris of monitoring resolution. Re- cently, autonomous underwater vehicles (AUVs) [14] [31] have been used

37

Environmental monitoring: civilian applications of remote sensing  

SciTech Connect (OSTI)

This report documents the results of a Laboratory Directed Research and Development (LDRD) program to explore how best to utilize Sandia`s defense-related sensing expertise to meet the Department of Energy`s (DOE) ever-growing needs for environmental monitoring. In particular, we focused on two pressing DOE environmental needs: (1) reducing the uncertainties in global warming predictions, and (2) characterizing atmospheric effluents from a variety of sources. During the course of the study we formulated a concept for using unmanned aerospace vehicles (UAVs) for making key 0798 climate measurements; designed a highly accurate, compact, cloud radiometer to be flown on those UAVs; and established the feasibility of differential absorption Lidar (DIAL) to measure atmospheric effluents from waste sites, manufacturing processes, and potential treaty violations. These concepts have had major impact since first being formulated in this ,study. The DOE has adopted, and DoD`s Strategic Environmental Research Program has funded, much of the UAV work. And the ultraviolet DIAL techniques have already fed into a major DOE non- proliferation program.

Bolton, W.; Lapp, M.; Vitko, J. Jr. [Sandia National Labs., Livermore, CA (United States); Phipps, G. [Sandia National Labs., Albuquerque, NM (United States)

1996-11-01T23:59:59.000Z

38

Optimal Location of a Mobile Sensor Continuum for Environmental Monitoring  

E-Print Network [OSTI]

air pollution monitoring, seismic monitoring, or monitoring of large infrastructures in civil is proposed for the goal of optimal location of a mobile sensor continuum. The monitoring of pollution on a 2D or track distributed environmental phenomena (weather, seismic events, wildfires, air, soil or river

Boyer, Edmond

39

Invited Paper: Wireless Sensor Networks for Ecosystem Monitoring & Port Surveillance  

E-Print Network [OSTI]

Invited Paper: Wireless Sensor Networks for Ecosystem Monitoring & Port Surveillance A. Mansour*1 of the most up-to-date innovations in sensor technology and sensor networks, our current project should as well as the second phase of the project which consists in analyzing living underwater micro

Paris-Sud XI, Université de

40

Characterization, monitoring, and sensor technology catalogue  

SciTech Connect (OSTI)

This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community. Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.

Matalucci, R.V. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Esparza-Baca, C.; Jimenez, R.D. [Applied Sciences Laboratory, Inc., Albuquerque, NM (United States)

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Monitoring system including an electronic sensor platform and an interrogation transceiver  

DOE Patents [OSTI]

A wireless monitoring system suitable for a wide range of remote data collection applications. The system includes at least one Electronic Sensor Platform (ESP), an Interrogator Transceiver (IT) and a general purpose host computer. The ESP functions as a remote data collector from a number of digital and analog sensors located therein. The host computer provides for data logging, testing, demonstration, installation checkout, and troubleshooting of the system. The IT transmits signals from one or more ESP's to the host computer to the ESP's. The IT host computer may be powered by a common power supply, and each ESP is individually powered by a battery. This monitoring system has an extremely low power consumption which allows remote operation of the ESP for long periods; provides authenticated message traffic over a wireless network; utilizes state-of-health and tamper sensors to ensure that the ESP is secure and undamaged; has robust housing of the ESP suitable for use in radiation environments; and is low in cost. With one base station (host computer and interrogator transceiver), multiple ESP's may be controlled at a single monitoring site.

Kinzel, Robert L.; Sheets, Larry R.

2003-09-23T23:59:59.000Z

42

INT. J. REMOTE SENSING, 2003, VOL. 24, NO. 8, 17091721 A system for monitoring NO  

E-Print Network [OSTI]

INT. J. REMOTE SENSING, 2003, VOL. 24, NO. 8, 1709­1721 A system for monitoring NO 2 emissions from. In this paper we propose a system for monitoring abnormal NO 2 emissions in the troposphere by using remote tool for operational applications. 1. Introduction The European Remote Sensing Satellite (ERS

Bruzzone, Lorenzo

43

Equipment for Anti- Electricity Stealing with Remote Monitoring  

E-Print Network [OSTI]

AbstractThe power theft monitoring is an important research in electric power system, and electricity-stealing prevention became a big problem to the electricity board. based on the kind of electricity-stealing and actual demand of prevention of stealing electricity, the equipment of electricity-stealing with remote monitoring is designed, with PIC microcontroller as the control core. In this the standard energy meter and user energy meter are used to calculate and judge whether electricity-stealing happen or not. Results of the user application show that the system not only realizes monitoring the behavior of electricity stealing, accurately recording the time of electricity-stealing occur and finish, the quantity of electricity-stealing and sends the information to the area field man through SMS to detect the electricity-stealer, but also realizes the behavior of electricity-stealing with remote monitoring, which is convenient for centralized management.In addition, the system offers a solving method to the data of meter reading.

Mr. Sudheer K. Reddy; Mr. Musthafa. P; Mr. K. Sakthidhasan

44

Real-time processing of remote sensor data as applied to Arctic ice classification  

E-Print Network [OSTI]

REAL-TIME PROCESSING OF REMOTE SENSOR DATA AS APPLIED TO ARCTIC ICE CLASSIFICATION A Thesis by JAMES AUSTIN PERMENTER partial ! Submitted to the Graduate College of Texas A)M University in fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1973 Major Subject: Electrical Engineering REAL-TIME PROCESSING OF REMOTE SENSOR DATA AS APPLIED TO ARCTIC ICE CLASSIFICATION A Thesis by James Austin Permenter Approved as to style and content by: ] ( rman of Commi...

Permenter, James Austin

1973-01-01T23:59:59.000Z

45

A Self-Calibrating Remote Control Chemical Monitoring System  

SciTech Connect (OSTI)

The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TAs system was operational, the data collected after MSE-TAs system was shut down and suggested improvements to the existing system.

Jessica Croft

2007-06-01T23:59:59.000Z

46

Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies  

E-Print Network [OSTI]

Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies and feedback of land surface and atmospheric processes over large space and time scales. Remote sensing-based variables including soil moisture (from AMSR-E), surface heat fluxes (from MODIS) and precipitation rates

Pan, Ming

47

An Environmental Monitoring System with Integrated Wired and Wireless Sensors  

E-Print Network [OSTI]

environmental monitoring cyber infrastruc- ture that features (1) soil moisture monitoring with flexible spatial Environmental Observatory (TEO) infrastructure [9] for long-term operation. The new WSN-based soil moistureAn Environmental Monitoring System with Integrated Wired and Wireless Sensors Jue Yang, Chengyang

Huang, Yan

48

Oxygen sensor for monitoring gas mixtures containing hydrocarbons  

DOE Patents [OSTI]

A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.

Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA)

1996-01-01T23:59:59.000Z

49

Oxygen sensor for monitoring gas mixtures containing hydrocarbons  

DOE Patents [OSTI]

A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.

Ruka, R.J.; Basel, R.A.

1996-03-12T23:59:59.000Z

50

Wireless sensor systems and methods, and methods of monitoring structures  

DOE Patents [OSTI]

A wireless sensor system includes a passive sensor apparatus configured to be embedded within a concrete structure to monitor infiltration of contaminants into the structure. The sensor apparatus includes charging circuitry and a plurality of sensors respectively configured to measure environmental parameters of the structure which include information related to the infiltration of contaminants into the structure. A reader apparatus is communicatively coupled to the sensor apparatus, the reader apparatus being configured to provide power to the charging circuitry during measurements of the environmental parameters by the sensors. The reader apparatus is configured to independently interrogate individual ones of the sensors to obtain information measured by the individual sensors. The reader apparatus is configured to generate an induction field to energize the sensor apparatus. Information measured by the sensor apparatus is transmitted to the reader apparatus via a response signal that is superimposed on a return induction field generated by the sensor apparatus. Methods of monitoring structural integrity of the structure are also provided.

Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.; Harding, L. Dean; Klingler, Kerry M.

2007-02-20T23:59:59.000Z

51

Wireless Sensor Network for Monitoring of Historic Structures under Rehabilitation  

E-Print Network [OSTI]

The use of a wireless sensor network (WSN) to monitor an historic structure under rehabilitation is the focus of this research. To thoroughly investigate the issue, two main objectives are addressed: the development of a reliable WSN tailored...

Samuels, Julie Marie

2012-02-14T23:59:59.000Z

52

Embedded Sensor Array Development for Composite Structure Integrity Monitoring  

SciTech Connect (OSTI)

The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Accellent Technologies, Inc. (the "Participant") was for the development of an embedded ultrasonic sensor system for composite structure integrity monitoring.

Kumar, A.; Bryan, W. L.; Clonts, L. G.; Franks, S.

2007-06-26T23:59:59.000Z

53

Inventing a Novel Sensor for Online Motor Monitoring | GE Global...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inventing a Novel Sensor for Online Motor Monitoring Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

54

Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades  

SciTech Connect (OSTI)

A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.

J.L. Rovey

2012-09-21T23:59:59.000Z

55

A real-time heart rate analysis for a remote millimeter wave I-Q sensor.  

SciTech Connect (OSTI)

This paper analyzes heart rate (HR) information from physiological tracings collected with a remote millimeter wave (mmW) I-Q sensor for biometric monitoring applications. A parameter optimization method based on the nonlinear Levenberg-Marquardt algorithm is used. The mmW sensor works at 94 GHz and can detect the vital signs of a human subject from a few to tens of meters away. The reflected mmW signal is typically affected by respiration, body movement, background noise, and electronic system noise. Processing of the mmW radar signal is, thus, necessary to obtain the true HR. The down-converted received signal in this case consists of both the real part (I-branch) and the imaginary part (Q-branch), which can be considered as the cosine and sine of the received phase of the HR signal. Instead of fitting the converted phase angle signal, the method directly fits the real and imaginary parts of the HR signal, which circumvents the need for phase unwrapping. This is particularly useful when the SNR is low. Also, the method identifies both beat-to-beat HR and individual heartbeat magnitude, which is valuable for some medical diagnosis applications. The mean HR here is compared to that obtained using the discrete Fourier transform.

Bakhtiari, S.; Liao, S.; Elmer, T.; Gopalsami, N.; Raptis, A. C. (Nuclear Engineering Division)

2011-06-01T23:59:59.000Z

56

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

Broader source: Energy.gov (indexed) [DOE]

advanced prototype built on an alumina substrate, provided by Ford, with an integrated heating element * Substrate packaged by U.S. automotive supplier into a commercial sensor...

57

Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts  

SciTech Connect (OSTI)

A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses on developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-?-Al2O3 samples. Microfocus X-ray Diffraction (-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ?-Al2O3 phase after annealing was verified by -XRD. Preliminary sensor tests with different assembly designs will also be presented.

Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson

2012-07-01T23:59:59.000Z

58

A Wireless Sensor Network Air Pollution Monitoring System  

E-Print Network [OSTI]

Sensor networks are currently an active research area mainly due to the potential of their applications. In this paper we investigate the use of Wireless Sensor Networks (WSN) for air pollution monitoring in Mauritius. With the fast growing industrial activities on the island, the problem of air pollution is becoming a major concern for the health of the population. We proposed an innovative system named Wireless Sensor Network Air Pollution Monitoring System (WAPMS) to monitor air pollution in Mauritius through the use of wireless sensors deployed in huge numbers around the island. The proposed system makes use of an Air Quality Index (AQI) which is presently not available in Mauritius. In order to improve the efficiency of WAPMS, we have designed and implemented a new data aggregation algorithm named Recursive Converging Quartiles (RCQ). The algorithm is used to merge data to eliminate duplicates, filter out invalid readings and summarise them into a simpler form which significantly reduce the amount of dat...

Khedo, Kavi K; Mungur, Avinash; Mauritius, University of; Mauritius,; 10.5121/ijwmn.2010.2203

2010-01-01T23:59:59.000Z

59

Towards a smart sensor interface for wearable cough monitoring  

E-Print Network [OSTI]

Towards a smart sensor interface for wearable cough monitoring Kofi Odame and Dingkun Du Thayer in a wearable cough monitoring device. In particular, the paper considers the issues of privacy, power is validated with simulation and measurement results. I. INTRODUCTION A cough is the most common condition

Odam, Kofi

60

Underground Coal Mine Monitoring with Wireless Sensor Networks  

E-Print Network [OSTI]

10 Underground Coal Mine Monitoring with Wireless Sensor Networks MO LI and YUNHAO LIU Hong Kong University of Science and Technology Environment monitoring in coal mines is an important application queries under instable circumstances. A prototype is deployed with 27 mica2 motes in a real coal mine. We

Liu, Yunhao

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Irrigation Monitoring with Soil Water Sensors  

E-Print Network [OSTI]

Monitoring soil water content is essential if growers want to optimize production, conserve water, reduce environmental impacts and save money. This publication illustrates how soil moisture monitoring can improve irrigation decisions and how...

Enciso, Juan; Porter, Dana; Peries, Xavier

2007-01-19T23:59:59.000Z

62

Remotely controlled sensor apparatus for use in dig-face characterization system  

DOE Patents [OSTI]

A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency. 13 figs.

Josten, N.E.; Svoboda, J.M.

1999-05-25T23:59:59.000Z

63

Remotely controlled sensor apparatus for use in dig-face characterization system  

DOE Patents [OSTI]

A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency.

Josten, Nicholas E. (Idaho Falls, ID); Svoboda, John M. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

64

Electrochemical sensor for monitoring electrochemical potentials of fuel cell components  

DOE Patents [OSTI]

An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

Kunz, Harold R. (Vernon, CT); Breault, Richard D. (Coventry, CT)

1993-01-01T23:59:59.000Z

65

Development of a special nuclear materials monitoring sensor pack for Project Straight-Line  

SciTech Connect (OSTI)

With the end of the Cold War and the accelerated dismantlement of nuclear weapons, the nuclear material inventory of the United States is growing. In addition, the United States has offered these excess weapons-grade nuclear material assets for international inspections with the intent of encouraging reciprocal action by other nations. In support of this policy, Sandia National Laboratories has initiated a pilot effort (Project Straight-Line) to develop a flexible, site-independent system to continuously and remotely monitor stored nuclear material and integrate the collection, processing, and dissemination of information regarding this material to ensure that declared nuclear materials placed in storage remain in place, unaltered, and stable. As part of this effort, a +3.6V battery powered, modular sensor pack has been developed to monitor total radiation dose, radiation dose rate, and the temperature of each nuclear material container and to provide this information using a standardized sensor interface. This paper will discuss the development of the sensors, the engineering and production of the sensor pack units, and their installation and operation at sites in New Mexico, California, and the Pantex plant in Amarillo.

Daily, M.R.; Moreno, D.J.; Tolk, K.M.; Wilcoxen, J.L. [Sandia National Labs., Albuquerque, NM (United States); Oetken, R.E.; Collins, J.E.; Miller, R.; Olsen, R.W. [Sandia National Labs., Livermore, CA (United States); Sheets, L. [Allied-Signal, Kansas City, MO (United States). Kansas City Division

1995-12-31T23:59:59.000Z

66

Prediction Aggregation of Remote Traffic Microwave Sensors Speed and Volume Data  

E-Print Network [OSTI]

Prediction Aggregation of Remote Traffic Microwave Sensors Speed and Volume Data John R. Junger prediction is an important component of well developed Intelligent Trans- portation Systems and Advanced significant challenges to integrating polled data into such a predictive system. To overcome these, we present

Havlicek, Joebob

67

TileCal Remote Monitoring Station at the University of Chicago (draft v0.1)  

E-Print Network [OSTI]

. The load imposed on the TileCal ACR machine by the remote moni- toring station must be small and should;3 IMPLEMENTATION 3 3 Implementation 1. The remote monitoring station at Chicago will consist of the following · Location near UC Prototype Tier2 cluster 2. The computer will consist of the following: · Hardware: ­ Linux

68

Remote and Centralized Monitoring of PV Power Csaba Kopacz, Sergiu Spataru, Dezso Sera, and Tamas Kerekes  

E-Print Network [OSTI]

capable of measuring a wide range of system operation parameters. New generation string invertersRemote and Centralized Monitoring of PV Power Plants Csaba Kopacz, Sergiu Spataru, Dezso Sera monitoring capabilities of the inverters and their internet connectivity. The backbone of the system

Sera, Dezso

69

Characterization, monitoring, and sensor technology crosscutting program: Technology summary  

SciTech Connect (OSTI)

The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

NONE

1995-06-01T23:59:59.000Z

70

Wireless Sensor Network for Electric Transmission Line Monitoring  

SciTech Connect (OSTI)

Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform, it has been demonstrated in this project that wireless monitoring units can effectively deliver real-time transmission line power flow information for less than $500 per monitor. The data delivered by such a monitor has during the course of the project been integrated with a national grid situational awareness visualization platform developed by Oak Ridge National Laboratory. Novel vibration energy scavenging methods based on piezoelectric cantilevers were also developed as a proposed method to power such monitors, with a goal of further cost reduction and large-scale deployment. Scavenging methods developed during the project resulted in 50% greater power output than conventional cantilever-based vibrational energy scavenging devices typically used to power smart sensor nodes. Lastly, enhanced and new methods for electromagnetic field sensing using multi-axis magnetometers and infrared reflectometry were investigated for potential monitoring applications in situations with a high density of power lines or high levels of background 60 Hz noise in order to isolate power lines of interest from other power lines in close proximity. The goal of this project was to investigate and demonstrate the feasibility of using small form factor, highly optimized, low cost, low power, non-contact, wireless electric transmission line monitors for delivery of real-time, independent power line monitoring for the US power grid. The project was divided into three main types of activity as follows; (1) Research into expanding the range of applications for non-contact power line monitoring to enable large scale low cost sensor network deployments (Tasks 1, 2); (2) Optimization of individual sensor hardware components to reduce size, cost and power consumption and testing in a pilot field study (Tasks 3,5); and (3) Demonstration of the feasibility of using the data from the network of power line monitors via a range of custom developed alerting and data visualization applications to deliver real-time information to federal agencies and others tasked with grid reliability (Tasks 6,8)

Alphenaar, Bruce

2009-06-30T23:59:59.000Z

71

Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand for deployment of autonomous  

E-Print Network [OSTI]

Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand wind energy harvesting is presented, with a focus on an anemometer-based solution. By utilizing for localized, independent energy harvesting capabilities for each node. In this paper, a method of remote area

72

Wireless, automated monitoring for potential landslide hazards  

E-Print Network [OSTI]

This thesis describes research efforts toward the development of a wireless sensor node, which can be employed in durable and expandable wireless sensor networks for remote monitoring of soil conditions in areas conducive to slope stability failures...

Garich, Evan Andrew

2007-09-17T23:59:59.000Z

73

BANip: enabling remote healthcare monitoring with Body Area Networks1  

E-Print Network [OSTI]

for patients that aggregates healthcare services from collaborative care centers. Our service platform Area Network (BAN) to remote healthcare center. Introduction Information and Communication Technology of 2.5/3G wireless technology even takes healthcare further to mobile healthcare (m-health) which

Widya, Ing

74

Towards a Tailored Sensor Network for Fire Emergency Monitoring in Large buildings  

E-Print Network [OSTI]

In this presentation, we describe some of the ongoing efforts in developing a wireless sensor network tailored specifically for fire emergency monitoring. Network simulations of a dense sensor network with a flat architecture ...

Upadhyay, Rochan

2007-10-02T23:59:59.000Z

75

Monitoring Urban Brownfields using Remote Sensing and GISMonitoring Urban Brownfields using Remote Sensing and GIS Ellen BanzhafEllen Banzhaf 1 21 2  

E-Print Network [OSTI]

Monitoring Urban Brownfields using Remote Sensing and GISMonitoring Urban Brownfields using Remote Leipzig,04318 Leipzig, elba@alok.ufz.deelba@alok.ufz.de What are Brownfields ? EPA defines Brownfields is complicated by real or perceived environmental contamination" (http://www.epa.gov/epahome/hi-brownfields

Hall, Sharon J.

76

Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring  

SciTech Connect (OSTI)

A fiber sensor array for sub-surface CO{sub 2} concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 􀁐m. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO{sub 2} to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from the DFB laser interacts with the CO{sub 2} before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO{sub 2} absorption features where a transmission measurement is made allowing the CO{sub 2} concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO{sub 2} concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO{sub 2} concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO{sub 2}/day began on July 10, 2012. The elevated subsurface CO{sub 2} concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program

Repasky, Kevin

2013-09-30T23:59:59.000Z

77

Monitoring Forest Carbon Sequestration with Remote Sensing and Carbon Cycle Modeling  

E-Print Network [OSTI]

America, forest carbon sinks are be- lieved to offset a significant proportion of carbon emis- sionsMonitoring Forest Carbon Sequestration with Remote Sensing and Carbon Cycle Modeling DAVID P University Corvallis, Oregon 97331-5752, USA ABSTRACT / Sources and sinks of carbon associated with forests

Lefsky, Michael

78

AT&T Remote Patient Monitoring Solutions Software as a Service (RPMSaaS) helps  

E-Print Network [OSTI]

way to provide outpatient care. Fortunately, healthcare reform and the Affordable Care Act allow new-time remote patient monitoring software. RPM­SaaS automates post-discharge care through interactive mobile patient access, clinical caregivers may intervene to avoid acute health problems, as well as provide

Fisher, Kathleen

79

Autonomous Remote Crack Displacement Monitoring of a Residence Near a Limestone  

E-Print Network [OSTI]

Autonomous Remote Crack Displacement Monitoring of a Residence Near a Limestone Quarry, Naples a limestone quarry. The object is to quantitatively compare crack re- sponse to blast-induced ground motion for construction and raw materials. For instance, neighbors of road aggregate quarries often perceive

80

In situ Monitoring of Cyanobacterial HABs in Western Lake Erie using Buoy-mounted Sensors  

E-Print Network [OSTI]

In situ Monitoring of Cyanobacterial HABs in Western Lake Erie using Buoy-mounted Sensors Primary for the rest of the western basin of Lake Erie. We propose to deploy environmental sensors at these sites. The first sensor is a fluorescence-based detector of phycocyanin, a pigment found predominantly

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A framework for use of wireless sensor networks in forest fire detection and monitoring  

E-Print Network [OSTI]

consuming energy efficiently. ? 2012 Elsevier Ltd. All rights reserved. 1. Introduction Forest firesA framework for use of wireless sensor networks in forest fire detection and monitoring Yunus Emre sensor networks Forest fire detection Environmental monitoring a b s t r a c t Forest fires are one

Ulusoy, ?zgür

82

An Energy-Harvesting Sensor Architecture and Toolkit for Building Monitoring and Event Detection  

E-Print Network [OSTI]

An Energy-Harvesting Sensor Architecture and Toolkit for Building Monitoring and Event Detection of Michigan Ann Arbor, MI 48109 {bradjc,prabal}@umich.edu Abstract Understanding building usage patterns a new architecture for design- ing building-monitoring focused energy-harvesting sensors. The key

Dutta, Prabal

83

GeM-REM: Generative Model-driven Resource efficient ECG Monitoring in Body Sensor Networks  

E-Print Network [OSTI]

GeM-REM: Generative Model-driven Resource efficient ECG Monitoring in Body Sensor Networks Sidharth electrocardiogram (ECG) monitoring. In such systems, sampling the ECG at clinically recommended rates (250 Hz, there is a need for reducing the energy consumption and data size at the sensor, while maintaining the ECG quality

Poovendran, Radha

84

System for monitoring an industrial process and determining sensor status  

DOE Patents [OSTI]

A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

Gross, Kenneth C. (Bolingbrook, IL); Hoyer, Kristin K. (Chicago, IL); Humenik, Keith E. (Columbia, MD)

1997-01-01T23:59:59.000Z

85

System for monitoring an industrial process and determining sensor status  

DOE Patents [OSTI]

A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

Gross, Kenneth C. (Bolingbrook, IL); Hoyer, Kristin K. (Chicago, IL); Humenik, Keith E. (Columbia, MD)

1995-01-01T23:59:59.000Z

86

Monitor and control of cockroach locomotion with piezoelectric sensors  

E-Print Network [OSTI]

sensors; laboratory in vitro testing of sensors and cockroaches; and methodology to control them. This research successfully built an experimental foundation for sensor and roach testing and developed a methodology for roach locomotion control...

Cooper, Rodrigo Alejandro

2009-05-15T23:59:59.000Z

87

Thermoelectric powered wireless sensors for spent fuel monitoring  

SciTech Connect (OSTI)

This paper describes using thermoelectric generators to power wireless sensors to monitor spent nuclear fuel during dry-cask storage. OrigenArp was used to determine the decay heat of the spent fuel at different times during the service life of the dry-cask. The Engineering Equation Solver computer program modeled the temperatures inside the spent fuel storage facility during its service life. The temperature distribution in a thermoelectric generator and heat sink was calculated using the computer program Finite Element Heat Transfer. From these temperature distributions the power produced by the thermoelectric generator was determined as a function of the service life of the dry-cask. In addition, an estimation of the path loss experienced by the wireless signal can be made based on materials and thickness of the structure. Once the path loss is known, the transmission power and thermoelectric generator power requirements can be determined. This analysis estimates that a thermoelectric generator can produce enough power for a sensor to function and transmit data from inside the dry-cask throughout its service life. (authors)

Carstens, T.; Corradini, M.; Blanchard, J. [Dept. of Engineering Physics, Univ. of Wisconsin-Madison, Madison, WI 53706 (United States); Ma, Z. [Dept. of Electrical and Computer Engineering, Univ. of Wisconsin-Madison, Madison, WI 53706 (United States)

2011-07-01T23:59:59.000Z

88

Ris-R-1336(EN) Fundamentals for Remote Structural  

E-Print Network [OSTI]

Ris-R-1336(EN) Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades) Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades - a Preproject Bent F. Srensen for the sensors capability to detect the most important damage types in wind turbine blades. Three different

89

Ris-R-1340(EN) Fundamentals for Remote Structural  

E-Print Network [OSTI]

Ris-R-1340(EN) Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades a Preproject Annex A Cost-Benefit for Embedded Sensors in Large Wind Turbine Blades Lars Gottlieb Hansen for Remote Structural Health Monitoring of Wind Turbine Blades - a Preproject Annex A - Cost

90

A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants  

SciTech Connect (OSTI)

Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. Online monitoring can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. International application of calibration monitoring, such as at the Sizewell B plant in United Kingdom, has shown that sensors may operate for eight years, or longer, within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This report presents a state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and online monitoring algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several needs are identified, including the quantification of uncertainty in online calibration assessment; accurate determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity. Understanding the degradation of sensors and the impact of this degradation on signals is key to developing technical basis to support acceptance criteria and set point decisions, particularly for advanced sensors which do not yet have a cumulative history of operating performance.

Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

2012-08-31T23:59:59.000Z

91

Wireless Sensor Networks for Structural Health Monitoring by Sukun Kim  

E-Print Network [OSTI]

Wireless Sensor Networks (WSN). The project is targeting a deployment on the Golden Gate Bridge. Ambient

California at Berkeley, University of

92

Comparison of POLDER Cloud Phase Retrievals to Active Remote Sensors Measurements at the ARM SGP Site  

SciTech Connect (OSTI)

In our present study, cloud boundaries derived from a combination of active remote sensors at the ARM SGP site are compared to POLDER cloud top phase index which is derived from polarimetric measurements using an innovative method. This approach shows the viability of the POLDER phase retrieval algorithm, and also leads to interesting results. In particular, the analysis demonstrates the sensitivity of polarization measurements to ice crystal shape and indicates that occurrence of polycrystalline ice clouds has to be taken into account in order to improve the POLDER phase retrieval algorithm accuracy. Secondly, the results show that a temperature threshold of 240 K could serve for cloud top particle phase classification. Considering the limitations of the analysis, the temperature threshold could be biased high, but not by more than about 5 degrees.

Riedi, J.; Goloub, P.; Marchand, Roger T.

2001-06-01T23:59:59.000Z

93

Ris-R-1341(EN) Fundamentals for Remote Structural  

E-Print Network [OSTI]

Ris-R-1341(EN) Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades a Preproject Annex B Sensors and Non-Destructive Testing Methods for Damage Detection in Wind Turbine Blades Monitoring of Wind Turbine Blades - a Preproject Annex B - Sensors and Non-Destructive Testing Methods

94

Review of remote-sensor potential for wind-energy studies  

SciTech Connect (OSTI)

This report evaluates a number of remote-sensing systems such as radars, lidars, and acoustic echo sounders which are potential alternatives to the cup- and propeller anemometers routinely used in wind energy siting. The high costs and demanding operational requirements of these sensors currently preclude their use in the early stages of a multi-phase wind energy siting strategy such as that recently articulated by Hiester and Pennell (1981). Instead, these systems can be used most effectively in the lattermost stages of the siting process - what Hiester and Pennell (1981) refer to as the site development phase, necessary only for the siting of large wind-energy conversion systems (WECS) or WECS clusters. Even for this particular application only four techniques appear to be operational now; that is, if used properly, these techniques should provide the data sets currently considered adequate for wind-energy siting purposes. They are, in rough order of increasing expense and operating demands: optical transverse wind sensors; acoustic Doppler sounders; time-of-flight and continuous wave (CW) Doppler lidar; and frequency-modulated, continuous wave (FM-CW) Doppler radar.

Hooke, W.H.

1981-03-01T23:59:59.000Z

95

Calibration Monitoring for Sensor Calibration Interval Extension: Gaps in the Current Science Base  

SciTech Connect (OSTI)

Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. International application of calibration monitoring has shown that sensors may operate for longer periods within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. Online monitoring (OLM) can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of OLM for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This paper summarizes a recent state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and OLM algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several technical needs were identified, including an understanding of the impacts of sensor degradation on measurements for both conventional and emerging sensors; the quantification of uncertainty in online calibration assessment; determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity.

Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

2012-10-09T23:59:59.000Z

96

Energy Harvesting for Structural Health Monitoring Sensor Networks  

SciTech Connect (OSTI)

This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portion of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.

G. Park, C. R. Farrar, M. D. Todd, W. Hodgkiss, T. Rosing

2007-02-26T23:59:59.000Z

97

The development and application of the Remotely Monitored Sealing Array (RMSA).  

SciTech Connect (OSTI)

Advanced sealing technologies are often an integral part of a containment surveillance (CS) approach to detect undeclared diversion of nuclear materials. As adversarial capabilities continue to advance, the sophistication of the seal design must advance as well. The intelligent integration of security concepts into a physical technology used to seal monitored items is a fundamental requirement for secure containment. Seals have a broad range of capabilities. These capabilities must be matched appropriately to the application to establish the greatest effectiveness from the seal. However, many current seal designs and their application fail to provide the high confidence of detection and timely notification that can be appreciated with new technology. Additionally, as monitoring needs rapidly expand, out-pacing budgets, remote monitoring of low-cost autonomous sealing technologies becomes increasingly appealing. The Remotely Monitored Sealing Array (RMSA) utilizes this technology and has implemented cost effective security concepts establishing the high confidence that is expected of active sealing technology today. RMSA is a system of relatively low-cost but secure active loop seals for the monitoring of nuclear material containers. The sealing mechanism is a fiber optic loop that is pulsed using a low-power LED circuit with a coded signal to verify integrity. Battery life is conserved by the use of sophisticated power management techniques, permitting many years of reliable operation without battery replacement or other maintenance. Individual seals communicate by radio using a secure transmission protocol using either of two specially designated communication frequency bands. Signals are encrypted and authenticated by private key, established during the installation procedure, and the seal bodies feature both active and passive tamper indication. Seals broadcast to a central 'translator' from which information is both stored locally and/or transmitted remotely for review. The system is especially appropriate for nuclear material storage facilities, indoor or outdoor, enabling remote inspection of status rather than tedious individual seal verification, and without the need for interconnected cabling. A handheld seal verifier is also available for an inspector to verify any particular individual seal in close proximity. This paper will discuss the development of the RMSA sealing system, its capabilities, its application philosophy, and projected future trends.

Schoeneman, Barry Dale; Stein, Marius (Canberra, USA); Wishard, B. (International Atomic Energy Agency, Austria)

2010-09-01T23:59:59.000Z

98

Liquid Resin Infusion process monitoring with superimposed Fibre Bragg Grating sensor  

E-Print Network [OSTI]

1 Liquid Resin Infusion process monitoring with superimposed Fibre Bragg Grating sensor Emmanuel Resin Infusion (LRI) , with the FBG/LPG sensor embedded in a composite part. Dielectric analysis the material and the structure. Among the various composite manufacturing processes, Liquid Resin Infusion (LRI

Paris-Sud XI, Université de

99

Active Sensor Wave Propagation Health Monitoring of Beam and Plate Structures  

E-Print Network [OSTI]

1 Active Sensor Wave Propagation Health Monitoring of Beam and Plate Structures Victor Giurgiutiu, Jingjing Bao, Wei Zhao University of South Carolina ABSTRACT Active sensor wave propagation technique is a relatively new method for in-situ nondestructive evaluation (NDE). Elastic waves propagating in material

Giurgiutiu, Victor

100

Soft Sensors for Process Monitoring of Complex Processes  

E-Print Network [OSTI]

modeling and those based on first principles based modeling (Lin et al. , 2005). There is a very large collection of literature involving the design and application of the former, including current textbooks and state of the art survey papers (Fortuna et... to Fortuna (Fortuna et al. , 2007), the main application of soft sensors for fault detection is still to compare the soft sensor prediction with an actual measurement and not perform fault detection on the soft sensor predictions themselves. A large...

Serpas, Mitchell Roy

2012-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Low-Cost Wireless Sensors for Building Monitoring Applications...  

Broader source: Energy.gov (indexed) [DOE]

the cost of sensors by improving the technology-specifically, through the use of advanced manufacturing techniques, including printable electronics and additive roll-to-roll...

102

Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).  

SciTech Connect (OSTI)

The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

Kim, Jung-Taek (Korea Atomic Energy Research Institute, Daejon, Korea); Luk, Vincent K.

2005-05-01T23:59:59.000Z

103

Structural and environmental monitoring of tracker and vertex systems using Fiber Optic Sensors  

E-Print Network [OSTI]

Fibre optic sensors (FOS) are an established technique for environmental and deformation monitoring in several areas like civil engineering, aerospace, and energy. Their immunity to electromagnetic and magnetic fields and nuclear environments, its small size, multiplexing capability and the possibility to be embedded make them an attractive technology for the structural and environmental monitoring of collider particle physics experiments. Between all the possible Fibre Optic sensors FBGs (Fiber Bragg Grating) seems to be the best solution for HEP applications. The first step was to characterize FBG sensors for it use in High Energy Physics environment. During last two years we have checked the resistance of the Fibre Bragg Grating sensors to radiation. Two irradiation campaigns with protons have been done at CNA (Centro Nacional de Aceleradores). In the near future these sensors are being planned to be used in detectors (the closest one Belle II.). Several work on integration issues in Belle II PXD-SVD, and ...

Moya, David

2012-01-01T23:59:59.000Z

104

Distributed fiber optic intrusion sensor system for monitoring long perimeters  

E-Print Network [OSTI]

A distributed sensor using an optical fiber for detecting and locating intruders over long perimeters (>10 km) is described. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from...

Juarez, Juan C.

2009-06-02T23:59:59.000Z

105

A sensor management architecture concept for monitoring emissions from open-air demil operations.  

SciTech Connect (OSTI)

Sandia National Laboratories, CA proposed a sensor concept to detect emissions from open-burning/open-detonation (OB/OD) events. The system would serve two purposes: (1) Provide data to demilitarization operations about process efficiency, allowing process optimization for cleaner emissions and higher efficiency. (2) Provide data to regulators and neighboring communities about materials dispersing into the environment by OB/OD operations. The proposed sensor system uses instrument control hardware and data visualization software developed at Sandia National Laboratories to link together an array of sensors to monitor emissions from OB/OD events. The suite of sensors would consist of various physical and chemical detectors mounted on stationary or mobile platforms. The individual sensors would be wirelessly linked to one another and controlled through a central command center. Real-time data collection from the sensors, combined with integrated visualization of the data at the command center, would allow for feedback to the sensors to alter operational conditions to adjust for changing needs (i.e., moving plume position, increased spatial resolution, increased sensitivity). This report presents a systems study of the problem of implementing a sensor system for monitoring OB/OD emissions. The goal of this study was to gain a fuller understanding of the political, economic, and technical issues for developing and fielding this technology.

Johnson, Michael M.; Robinson, Jerry D.; Stoddard, Mary Clare; Horn, Brent A.; Lipkin, Joel; Foltz, Greg W.

2005-09-01T23:59:59.000Z

106

Sensor Networks for Monitoring and Control of Water Distribution Systems  

E-Print Network [OSTI]

Water distribution systems present a significant challenge for structural monitoring. They comprise a complex network of pipelines buried underground that are relatively inaccessible. Maintaining the integrity of these ...

Whittle, Andrew

107

Self-testing security sensor for monitoring closure of vault doors and the like  

DOE Patents [OSTI]

A self-testing device is provided for a monitoring system for monitoring whether a closure member such as a door or window is closed. The monitoring system includes a switch unit mounted on the frame of the closure member being monitored and including magnetically biased switches connected in one or more electrical monitoring circuits, and a door magnet unit mounted on the closure member being monitored. The door magnet includes one or more permanent magnets that produce a magnetic field which, when the closure member is closed, cause said switches to assume a first state. When the closure member is opened, the switches switch to a second, alarm state. The self-testing device is electrically controllable from a remote location and produces a canceling or diverting magnetic field which simulates the effect of movement of the closure member from the closed position thereof without any actual movement of the member. 5 figs.

Cawthorne, D.C.

1997-05-27T23:59:59.000Z

108

Online, In-Situ Monitoring Combustion Turbines Using Wireless Passive Ceramic Sensors  

SciTech Connect (OSTI)

The overall objective of this project is to develop high-temperature wireless passive ceramic sensors for online, real-time monitoring combustion turbines. During this project period, we have successfully demonstrated temperature sensors up to 1300{degrees}C and pressure sensors up to 800oC. The temperature sensor is based on a high-Q-factor dielectric resonator and the pressure sensor utilizes the evanescent-mode cavity to realize a pressure-sensitive high-Q-factor resonator. Both sensors are efficiently integrated with a compact antenna. These sensors are wirelessly interrogated. The resonant frequency change corresponding to either temperature or pressure can be identified using a time-domain gating technique. The sensors realized in this project can survive harsh environments characterized by high temperatures (>1000{degrees}C) and corrosive gases, owing to the excellent material properties of polymer-derived ceramics (PDCs) developed at University of Central Florida. It is anticipated that this work will significantly advance the capability of high-temperature sensor technologies and be of a great benefit to turbine industry and their customers.

Gong, Xun; An, Linan; Xu, Chengying

2013-06-30T23:59:59.000Z

109

Method and device for remotely monitoring an area using a low peak power optical pump  

DOE Patents [OSTI]

A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.

Woodruff, Steven D.; Mcintyre, Dustin L.; Jain, Jinesh C.

2014-07-22T23:59:59.000Z

110

Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site  

SciTech Connect (OSTI)

This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

Murphy, E.M.; Hostetler, D.D.

1989-03-01T23:59:59.000Z

111

Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant  

SciTech Connect (OSTI)

This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developed will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve these two formulations were developed and validated. For a given OSP problem the computation efficiency largely depends on the size of the problem. Initially a simplified 1-D gasifier model assuming axial and azimuthal symmetry was used to test out various OSP algorithms. Finally these algorithms were used to design the optimal sensor network for condition monitoring of IGCC gasifier refractory wear and RSC fouling. The sensors type and locations obtained as solution to the OSP problem were validated using model based sensing approach. The OSP algorithm has been developed in a modular form and has been packaged as a software tool for OSP design where a designer can explore various OSP design algorithm is a user friendly way. The OSP software tool is implemented in Matlab/Simulink in-house. The tool also uses few optimization routines that are freely available on World Wide Web. In addition a modular Extended Kalman Filter (EKF) block has also been developed in Matlab/Simulink which can be utilized for model based sensing of important process variables that are not directly measured through combining the online sensors with model based estimation once the hardware sensor and their locations has been finalized. The OSP algorithm details and the results of applying these algorithms to obtain optimal sensor location for condition monitoring of gasifier refractory wear and RSC fouling profile are summarized in this final report.

Kumar, Rajeeva; Kumar, Aditya; Dai, Dan; Seenumani, Gayathri; Down, John; Lopez, Rodrigo

2012-12-31T23:59:59.000Z

112

Structural Monitoring of Wind Turbines using Wireless Sensor Networks  

E-Print Network [OSTI]

on traditional fossil fuel technologies. Conditional monitoring of wind turbines can help to avert unplanned). Technological improvements (e.g. larger, more powerful generation turbines) and federal tax subsidies have

Sweetman, Bert

113

Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants  

SciTech Connect (OSTI)

This report describes research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

2014-04-30T23:59:59.000Z

114

Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants  

SciTech Connect (OSTI)

This report describes the status of ongoing research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lin, Guang [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Crawford, Susan L. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Konomi, Bledar A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Braatz, Brett G. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Coble, Jamie B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Shumaker, Brent [Analysis and Measurement Services Corp., Knoxville, TN (United States); Hashemian, Hash [Analysis and Measurement Services Corp., Knoxville, TN (United States)

2013-09-01T23:59:59.000Z

115

Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP). Technology summary  

SciTech Connect (OSTI)

The Characterization, Monitoring, and Sensor Technology Integrated Program seeks to deliver needed technologies, timely and cost-effectively, to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The scope of characterizations monitoring, and sensor technology needs that are required by those organizations encompass: (1) initial location and characterization of wastes and waste environments - prior to treatment; (2) monitoring of waste retrieval, remediation and treatment processes; (3) characterization of the co-position of final waste treatment forms to evaluate the performance of waste treatments processes; and (4) site closure and compliance monitoring. Wherever possible, the CMST-IP fosters technology transfer and commercialization of technologies that it sponsors.

Not Available

1994-04-01T23:59:59.000Z

116

Ris-R-1333(EN) Fundamentals for Remote Structural  

E-Print Network [OSTI]

Ris-R-1333(EN) Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades a Preproject Annex E Full-Scale Test of Wind Turbine Blade, Using Sensors and NDT Ole J.D. Kristensen of different types of sensors to detect damage in wind turbine blades. Prior to each of the static test

117

440 IEEE SENSORS JOURNAL, VOL. 7, NO. 3, MARCH 2007 On-Chip Capacitance Sensing for Cell Monitoring  

E-Print Network [OSTI]

440 IEEE SENSORS JOURNAL, VOL. 7, NO. 3, MARCH 2007 On-Chip Capacitance Sensing for Cell Monitoring is an indication of both the interaction between cells and substrate and cell health. The capacitance sensor uses the principle of charge sharing and translates sensed capacitance values to output voltages. The sensor chip has

Maryland at College Park, University of

118

Privacy Sensitive Monitoring With a Mix of IR Sensors and Cameras Abhishek Rajgarhia, Fred Stann, {rajgarhi, fstann@usc.edu},  

E-Print Network [OSTI]

· reliable image transfer over low-speed sensor network in a security/monitoring application for a building are equipped with cameras and PIR sensors. For privacy reasons, cameras are not deployed in private areas, however, they are considered acceptable for the entrance. Private areas have only PIR sensors, able

Heidemann, John

119

Structural and environmental monitoring of tracker and vertex systems using Fiber Optic Sensors  

E-Print Network [OSTI]

Fibre optic sensors (FOS) are an established technique for environmental and deformation monitoring in several areas like civil engineering, aerospace, and energy. Their immunity to electromagnetic and magnetic fields and nuclear environments, its small size, multiplexing capability and the possibility to be embedded make them an attractive technology for the structural and environmental monitoring of collider particle physics experiments. Between all the possible Fibre Optic sensors FBGs (Fiber Bragg Grating) seems to be the best solution for HEP applications. The first step was to characterize FBG sensors for it use in High Energy Physics environment. During last two years we have checked the resistance of the Fibre Bragg Grating sensors to radiation. Two irradiation campaigns with protons have been done at CNA (Centro Nacional de Aceleradores). In the near future these sensors are being planned to be used in detectors (the closest one Belle II.). Several work on integration issues in Belle II PXD-SVD, and checking for environmental and deformation monitoring in the detectors inner part has been done.

David Moya; Ivn Vila

2012-03-01T23:59:59.000Z

120

Ultra-wideband radar sensors and networks  

DOE Patents [OSTI]

Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

2013-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Anomaly detection in monitoring sensor data for preventive maintenance Julien Rabatel a,b,  

E-Print Network [OSTI]

Anomaly detection in monitoring sensor data for preventive maintenance Julien Rabatel a,b, , Sandra Preventive maintenance a b s t r a c t Today, many industrial companies must face problems raised to make predictive maintenance to prevent a serious breakdown. In addition, the corrective maintenance

Paris-Sud XI, Université de

122

CHIPLESS PASSIVE SENSOR FOR WIRELESS MONITORING OF HIGH RADIATION DOSES IN NUCLEAR INFRASTRUCTURES  

E-Print Network [OSTI]

CHIPLESS PASSIVE SENSOR FOR WIRELESS MONITORING OF HIGH RADIATION DOSES IN NUCLEAR INFRASTRUCTURES for Nuclear Research, Otwock, Poland 4 Wroclaw University of Technology, Wroclaw, Poland 5 TRAD, BP 47471, Labège, France ppons@laas.fr ABSTRACT The dosimetry is one of the crucial techniques that are needed

Paris-Sud XI, Université de

123

336 Florida Entomologist 84(3) September 2001 AN OPTOELECTRONIC SENSOR FOR MONITORING  

E-Print Network [OSTI]

336 Florida Entomologist 84(3) September 2001 AN OPTOELECTRONIC SENSOR FOR MONITORING SMALL optoelectronic system for measuring rapid movements in one dimension, such as the protraction of an insect leg, optoelectronic photodetector, cricket acoustic startle response RESUMEN Detectores ópticos de movimiento han sido

Hoy, Ronald R.

124

DEAMON: Energy-efficient sensor monitoring Minho Shin, Patrick Tsang, David Kotz, Cory Cornelius  

E-Print Network [OSTI]

DEAMON: Energy-efficient sensor monitoring Minho Shin, Patrick Tsang, David Kotz, Cory Cornelius a node's battery. We propose DEAMON (Distributed Energy-Aware MONi- toring), an energy-efficient. We propose DEAMON (Distributed Energy-Aware MONi- toring), an energy-efficient distributed algorithm

Kotz, David

125

The development of a robust, autonomous sensor network platform for environmental monitoring.  

E-Print Network [OSTI]

The development of a robust, autonomous sensor network platform for environmental monitoring. L of environmental impact on a coastal sea bed of a wind farm. Wind farms are seen as a key feature negative, environmental impacts. The complex interplay between the: oceans currents; wind; coast line

Marshall, Ian W.

126

LAMB-WAVE EMBEDDED NDE WITH PIEZOELECTRIC WAFER ACTIVE SENSORS FOR STRUCTURAL HEALTH MONITORING OF  

E-Print Network [OSTI]

LAMB-WAVE EMBEDDED NDE WITH PIEZOELECTRIC WAFER ACTIVE SENSORS FOR STRUCTURAL HEALTH MONITORING waves and enable the development of embedded NDE concepts. This paper will present two embedded NDE Embedded nondestructive evaluation (E-NDE) is an emerging technology that aims at performing NDE testing

Giurgiutiu, Victor

127

Dissolved oxygen and pH monitoring within cell culture media using a hydrogel microarray sensor  

E-Print Network [OSTI]

and control of cell culture processes is required. To do this measurement, multiple sensors must be implemented to monitor various parameters of the cell culture medium. The model analytes used in this study were pH and dissolved oxygen which have...

Lee, Seung Joon

2009-05-15T23:59:59.000Z

128

Grid Monitoring: Bounds on Performances of Sensor Placement Algorithms Muhammad Uddin  

E-Print Network [OSTI]

Grid Monitoring: Bounds on Performances of Sensor Placement Algorithms Muhammad Uddin Anthony Kuh measurement units (PMUs) in the power grid. Given noisy measurements and knowledge of the state correlation to capture the dynamics of the power grid [1]. With the advent of phasor technology, time synchronized

Kavcic, Aleksandar

129

192 IEEE SENSORS JOURNAL, VOL. 7, NO. 2, FEBRUARY 2007 Hydrocarbon and Fluorocarbon Monitoring by MIS  

E-Print Network [OSTI]

192 IEEE SENSORS JOURNAL, VOL. 7, NO. 2, FEBRUARY 2007 Hydrocarbon and Fluorocarbon Monitoring of hydrocarbon and fluorocarbon molecules on a Ni coil (CE), the products detectable by metal­ insulator Terms--Fluorocarbons, hydrocarbons, metal­ insulator­semiconductor (MIS) and metal

Moritz, Werner

130

A Low Complexity High Capacity ECG Signal Watermark for Wearable Sensor-net Health Monitoring System  

E-Print Network [OSTI]

A Low Complexity High Capacity ECG Signal Watermark for Wearable Sensor-net Health Monitoring, RMIT University, Melbourne, Australia Abstract In Wireless telecardiology applications, an ECG signal signal collision attacks). ECG data transmission can be more robustly tied to either patient identity

van Schyndel, Ron

131

Particle Sensor for Diesel Combustion Monitoring | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652 Srivastava,Pacific1ofDepartmentb.Sensor for Diesel

132

Electrochemical NOxSensor for Monitoring Diesel Emissions | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM SummaryandandElectrosynthesisDOEEnergy NOxSensor

133

Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks  

E-Print Network [OSTI]

to the staff and management of Golden Gate Bridge District, in particular Dennis Mulligan and Jerry Kao Health Monitoring (SHM) is designed, implemented, deployed and tested on the Golden Gate Bridge (GGB with the operation of the bridge. Requirements that SHM imposes on WSN are identified and new solutions to meet

Glaser, Steven D.

134

T-725: Cisco Unified Service Monitor and Cisco Unified Operations Manager Remote Code Execution Vulnerabilitiry Code  

Broader source: Energy.gov [DOE]

Successful exploitation of these vulnerabilities could allow an unauthenticated, remote attacker to execute arbitrary code on affected servers.

135

Dual sensitivity mode system for monitoring processes and sensors  

DOE Patents [OSTI]

A method and system for analyzing a source of data. The system and method involves initially training a system using a selected data signal, calculating at least two levels of sensitivity using a pattern recognition methodology, activating a first mode of alarm sensitivity to monitor the data source, activating a second mode of alarm sensitivity to monitor the data source and generating a first alarm signal upon the first mode of sensitivity detecting an alarm condition and a second alarm signal upon the second mode of sensitivity detecting an associated alarm condition. The first alarm condition and second alarm condition can be acted upon by an operator and/or analyzed by a specialist or computer program.

Wilks, Alan D. (Mount Prospect, IL); Wegerich, Stephan W. (Glendale Heights, IL); Gross, Kenneth C. (Bolingbrook, IL)

2000-01-01T23:59:59.000Z

136

A Novel, Low-Cost, Reduced-Sensor Approach for Providing Smart Renote Monitoring and Diagnostics for Packaged Air Conditioners and Heat Pumps  

SciTech Connect (OSTI)

This report describes conceptually an approach to providing automated remote performance and conditioning monitoring and fault detection for air conditioners and heat pumps that shows great promise to reduce the capital and installation costs of such systems from over $1000 per unit to $200 to $400 per unit. The approach relies on non-intrusive electric load monitoring (NIELM) to enable separation of the power use signals of compressors and fans in the air conditioner or heat pump. Then combining information on the power uses and one or two air temperature measurements, changes in energy efficiency and occurrence of major faults would be detected. By decreasing the number of sensors used from between ten and twenty in current diagnostic monitoring systems to three for the envisaged system, the capital cost of the monitoring system hardware and the cost of labor for installation would be decreased significantly. After describing the problem being addressed and the concept for performance monitoring and fault detection in more detail, the report identifies specific conditions and faults that the proposed method would detect, discusses specific needs for successful use of the NIELM approach, and identifies the major elements in the path from concept to a commercialized monitoring and diagnostic system.

Brambley, Michael R.

2009-09-01T23:59:59.000Z

137

Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems  

SciTech Connect (OSTI)

Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be feasible and can collect imagery for very large areas in a short period of time. It was accurate for bare ground and grasses. Both UAV systems have limitations, but these will be reduced as the technology advances. In both cases, the UAV systems collected data at a much faster rate than possible on the ground. The study concluded that improvements in automating the image processing efforts would greatly improve use of the technology. In the near future, UAV technology may revolutionize rangeland monitoring in the same way Global Positioning Systems have affected navigation while conducting field activities.

Robert Paul Breckenridge

2007-05-01T23:59:59.000Z

138

Tunable Diode Laser Sensor for Monitoring and Control of Harsh Combustion Environments  

SciTech Connect (OSTI)

This work represents the collaborative effort between American Air Liquide and Physical Sciences, Inc. for developing a sensor based on near-IR tunable diode lasers (TDL). The multi-species capability of the sensor for simultaneous monitoring of CO, O2, and H2O concentration as well as gas temperature is ideal for in-situ monitoring on industrial furnaces. The chemical species targeted are fundamental for controlling the combustion space for improved energy efficiency, reduced pollutants, and improved product quality, when coupling the measurement to a combustion control system. Several add-on modules developed provide flexibility in the system configuration for handling different process monitoring applications. For example, the on-Demand Power Control system for the 1.5 ?m laser is used for high particle density exhaust streams where laser transmission is problematic. For long-distance signal collection a fiber optic communication system is used to reduce noise pick-up. Finally, hardened modules to withstand high ambient temperatures, immune to EMF interference, protection from flying debris, and interfaced with pathlength control laser beam shielding probes were developed specifically for EAF process monitoring. Demonstration of these different system configurations was conducted on Charter Steel's reheat furnace, Imco Recycling, Inc. (now Aleris International, Inc.) aluminum reverberatory furnace, and Gerdau Ameristeel's EAF. Measurements on the reheat furnace demonstrated zone monitoring with the measurement performed close to the steel billet. Results from the aluminum furnace showed the benefit of measuring in-situ near the bath. In this case, low-level furnace optimization was performed and demonstrated 5% fuel savings. Monitoring tests on the EAF off-gas demonstrated the level of industrialization of the sensor to survive the harsh EAF environment. Long-term testing on the EAF has been on-going for over 6 months with essentially zero maintenance. Validation of the TDL measurement on the EAF was confirmed by comparison with extractive sampling CO measurements.

VonDrasek, William; Melsio-Pubill, Anna

2006-05-30T23:59:59.000Z

139

Development of laboratory and process sensors to monitor particle size distribution of industrial slurries  

SciTech Connect (OSTI)

In this paper we present a novel measurement technique for monitoring particle size distributions of industrial colloidal slurries based on ultrasonic spectroscopy and mathematical deconvolution. An on-line sensor prototype has been developed and tested extensively in laboratory and production settings using mineral pigment slurries. Evaluation to date shows that the sensor is capable of providing particle size distributions, without any assumptions regarding their functional form, over diameters ranging from 0.1 to 100 micrometers in slurries with particle concentrations of 10 to 50 volume percents. The newly developed on-line sensor allows one to obtain particle size distributions of commonly encountered inorganic pigment slurries under industrial processing conditions without dilution.

Pendse, H.P.

1992-10-01T23:59:59.000Z

140

Non-conventional passive sensors for monitoring tritium on surfaces  

SciTech Connect (OSTI)

The authors describe development of small passive, solid-state detectors for in-situ measurements of tritium, or other weak beta-emitting radionuclides, on surfaces. One form of detector operates on the principle of thermally stimulated exoelectron emission (TSEE), the other by discharge of an electret ion chamber (EIC). There are currently two specific types of commercially available detector systems that lend themselves to making surface measurements. One is the thin-film BeO on a graphite disc, and the other is the Teflon EIC. Two other types of TSEE dosimeters (ceramic BeO and carbon doped alumina) are described but lack either a suitable commercially available reader or standardized methods of fabrication. The small size of these detectors allows deployment in locations difficult to access with conventional windowless gas-flow proportional counters. Preliminary testing shows that quantitative measurements are realized with exposure times of 1--10 hours for the TSEE dosimeters (at the DOE release guideline of 5,000 dpm/100 cm{sup 2} for fixed beta contamination). The EIC detectors exhibit an MDA of 26,000 dpm/100 cm{sup 2} for a 24 hour exposure. Both types of integrating device are inexpensive and reusable. Measurements can, therefore, be made that are faster, cheaper, safer, and better than those possible with baseline monitoring technology.

Gammage, R.B.; Brock, J.L.; Meyer, K.E. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Radio frequency security system, method for a building facility or the like, and apparatus and methods for remotely monitoring the status of fire extinguishers  

DOE Patents [OSTI]

A system for remotely monitoring the status of one or more fire extinguishers includes means for sensing at least one parameter of each of the fire extinguishers; means for selectively transmitting the sensed parameters along with information identifying the fire extinguishers from which the parameters were sensed; and means for receiving the sensed parameters and identifying information for the fire extinguisher or extinguishers at a common location. Other systems and methods for remotely monitoring the status of multiple fire extinguishers are also provided.

Runyon, Larry (Richland, WA); Gunter, Wayne M. (Richland, WA); Gilbert, Ronald W. (Gilroy, CA)

2006-07-25T23:59:59.000Z

142

SMART OCEANS BC Media Backgrounder From sensors to decisions when seconds count  

E-Print Network [OSTI]

SMART OCEANS BC ­ Media Backgrounder From sensors to decisions ­ when seconds count Introduction Oceans 2.0 and high speed, real-time analytics to monitor the #12;hundreds of sensors. Funding for Smart to develop fast event detection and enable a mobile Oceans 2.0 for use in geographically remote sensor

Pedersen, Tom

143

Dynamic Rotor Deformation and Vibration Monitoring Using a Non-Incremental Laser Doppler Distance Sensor  

SciTech Connect (OSTI)

Monitoring rotor deformations and vibrations dynamically is an important task for improving the safety and the lifetime as well as the energy efficiency of motors and turbo machines. However, due to the high rotor speed encountered in particular at turbo machines, this requires concurrently a high measurement rate and high accuracy, which can not be fulfilled by most commercially available sensors. To solve this problem, we developed a non-incremental laser Doppler distance sensor (LDDS), which is able to measure simultaneously the in-plane velocity and the out-of-plane position of moving rough solid objects with micrometer precision. In addition, this sensor concurrently offers a high temporal resolution in the microsecond range, because its position uncertainty is in principle independent of the object velocity in contrast to conventional distance sensors, which is a unique feature of the LDDS. Consequently, this novel sensor enables precise and dynamic in-process deformation and vibration measurements on rotating objects, such as turbo machine rotors, even at very high speed. In order to evidence the capability of the LDDS, measurements of rotor deformations (radial expansion), vibrations and wobbling motions are presented at up to 50,000 rpm rotor speed.

Pfister, Thorsten; Guenther, Philipp; Dreier, Florian; Czarske, Juergen [Technische Universitaet Dresden, Faculty of Electrical Engineering and Information Technology, Laboratory for Measurement and Testing Techniques, Helmholtzstrasse 18, D-01062 Dresden (Germany)

2010-05-28T23:59:59.000Z

144

ELEVATED TEMPERATURE SENSORS FOR ON-LINE CRITICAL EQUIPMENT HEALTH MONITORING  

SciTech Connect (OSTI)

The objective of this research program is to improve high temperature piezoelectric aluminum nitride (AlN) sensor technology to make it useful for instrumentation and health monitoring of current and future electrical power generation equipment. The program will extend the temperature range of the sensor from approximately 700 C to above 1000 C, and ultrasonic coupling to objects at these temperatures will be investigated and tailored for use with the sensor. The chemical vapor deposition (CVD) AlN deposition process was successfully transferred from film production on tungsten carbide substrates to titanium alloy and silicon carbide (SiC) substrates in the first year of the program, and additional substrates were evaluated. In the second year of the program, additional substrate research was performed with the goal of improving the performance of using SiC substrates. While greatly improved bandwidth was achieved, sensor survival at elevated temperature remains problematic. The elevated temperature coupling work continued with significant experimentation. Molten glasses were found to work within a limited temperature range, but metal foils applied with heat and pressure were found to have superior performance overall. The final year of the program will be dedicated to making further advances in AlN/ substrate behavior, and the design and implementation of a sensor demonstration experiment at very high temperature in a simulated industrial application.

James Sebastian

2005-03-01T23:59:59.000Z

145

Elevated Temperature Sensors for On-Line Critical Equipment Health Monitoring  

SciTech Connect (OSTI)

The objective of the program was to improve high temperature piezoelectric aluminum nitride (AlN) sensor technology to make it useful for instrumentation and health monitoring of current and future electrical power generation equipment. Improvements were aimed primarily at extending the useful temperature range of the sensor from approximately 700 C to above 1000 C, and investigating ultrasonic coupling to objects at these temperatures and tailoring high temperature coupling for use with the sensor. During the project, the chemical vapor deposition (CVD) AlN deposition process was successfully transferred from film production on tungsten carbide substrates to titanium alloy and silicon carbide (SiC) substrates. Film adhesion under thermal cycling was found to be poor, and additional substrate materials and surface preparations were evaluated. A new, porous SiC substrate improved the performance but not to the point of making the films useful for sensors. Near the end of the program, a new family of high temperature piezoelectric materials came to the attention of the program. Samples of langasite, the most promising member of this family, were obtained and experimental data showed promise for use up to the 1000 C target temperature. In parallel, research successfully determined that metal foil under moderate pressure provided a practical method of coupling ultrasound at high temperature. A conceptual sensor was designed based upon these methods and was tested in the laboratory.

James Sebastian

2006-03-31T23:59:59.000Z

146

Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt  

SciTech Connect (OSTI)

Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium chloride (GdCl3) in LiCl-KCl eutectic molten salts through measurement of the potential difference between a reference and working electrode.

Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

2010-07-01T23:59:59.000Z

147

GTRI Remote Monitoring System: Training and Operational Needs Assessment Analysis Report  

SciTech Connect (OSTI)

The mission of the United States Department of Energy (DOE) National Nuclear Security Administrations (NNSA's) Global Threat Reduction Initiative (GTRI) is to identify, secure, recover and facilitate the disposition of vulnerable nuclear and high-risk radioactive materials around the world that pose a threat to the United States and the international community. The GTRI's unique mission to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide directly addresses recommendations of the 9/11 Commission1, and is a vital part of the President's National Security Strategy and the Global Initiative. The GTRI Remote Monitoring System (RMS) is a standalone security system that includes radiation and tamper alarms, and CCTV; which can be transmitted securely over the Internet to multiple on-site and off-site locations. Through our experiences during installation of the system at 162 sites, plus feedback received from Alarm Response Training course participants, site input to project teams and analysis of trouble calls; indications were that current system training was lacking and inconsistent. A survey was undertaken to gather information from RMS users across the nation, to evaluate the current level of training and determine what if any improvements needed to be made. Additional questions were focused on the operation of the RMS software. The training survey was initially sent electronically to 245 users at the RMS sites and achieved a 37.6% return rate. Analysis of the resulting data revealed that 34.6% of the respondents had not received training or were unsure if they had, despite the fact that vendor engineers provide training at installation of the system. Any training received was referred to as minimal, and brief, not documented, and nothing in writing. 63.7% of respondents said they were either not at all prepared or only somewhat prepared to use the RMS software required to effectively operate the system. As a result of this analysis, a formal training curriculum will be designed and implemented to include several blended learning delivery options. This training will be piloted at RMS sites; initial training will become a required element of RMS installation and refresher training will be considered for sustainability of operations.

Day, Debra E.; Fox, Sorcha

2012-04-20T23:59:59.000Z

148

PASSIVE WIRELESS SURFACE ACOUSTIC WAVE SENSORS FOR MONITORING SEQUESTRATION SITES CO2 EMISSION  

SciTech Connect (OSTI)

University of Pittsburghs Transducer lab has teamed with the U.S. Department of Energys National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/?. The overall effect of temperature on nanocomposite resistance was -1000ppm/?. The gas response of the nanocomposite was about 10% resistance increase under pure CO2. The sensor frequency change was around 300ppm for pure CO2. With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

2012-11-30T23:59:59.000Z

149

Design and implementation of PAVEMON: a GIS web-based pavement monitoring system based on large amounts of heterogeneous sensors data.  

E-Print Network [OSTI]

??A web-based PAVEment MONitoring system, PAVEMON, is a GIS oriented platform for accommodating, representing, and leveraging data from a multi-modal mobile sensor system. Stated sensor (more)

Shahini Shamsabadi, Salar

2015-01-01T23:59:59.000Z

150

Elevated Temperature Sensors for On-Line Critical Equipment Health Monitoring  

SciTech Connect (OSTI)

The objective of this research program is to improve high temperature piezoelectric aluminum nitride (AlN) sensor technology to make it useful for instrumentation and health monitoring of current and future electrical power generation equipment. The program will extend the temperature range of the sensor from approximately 700 C to above 1000 C, and ultrasonic coupling to objects at these temperatures will be investigated and tailored for use with the sensor. The chemical vapor deposition (CVD) AlN deposition process was successfully transferred from film production on tungsten carbide substrates to titanium alloy and silicon carbide (SiC) substrates. Further evaluation of the piezoelectric films on titanium caused it to be discarded as a candidate material due to an excessive thermal expansion coefficient mismatch, causing film failure upon reheating from room temperature. Deposition on SiC is proceeding well, with a highly conductive grade of silicon carbide required for practical use. Additional substrate materials, including refractory metals and conductive ceramics, have been considered but are generally not promising in light of the experience with titanium. Pulsed laser deposition (PLD) was investigated as an alternate means of creating the films as an alternative to CVD. A concurrent effort has focused on investigation of means of coupling ultrasound from the sensor into the test object at high temperature. A literature search combined with preliminary experimentation has resulted in the selection of two methods for coupling: low melting point glasses and metal foil- pressure couplant. The work in the next two years of the program will include continued improvement of the CVD deposition process, experimental testing of films and coupling at high temperatures, and a laboratory demonstration of the sensor in a simulated industrial application

James Sebastian

2003-09-29T23:59:59.000Z

151

Micro- and Mini-nitrate Sensors for Monitoring of Soils, Groundwater and Aquatic Systems  

E-Print Network [OSTI]

Nitrate Mini-Sensor with PVC membrane containing liquidmin) Mini-sensors with PVC maintain their sensitivity duringfabricated mini- sensors with PVC membranes showed better

2009-01-01T23:59:59.000Z

152

Accepted Manuscript Remote Monitoring Cost Minimization for An Unreliable Sensor Network with  

E-Print Network [OSTI]

are geographically located in other states such as Queens- land, Tasmania, and Western Australia. The sensing data, The Australian National University, Canberra, ACT 2601, Australia Abstract In this paper we consider a link of the heuristic include identifying gateways and finding an energy-efficient forest of routing trees rooted

Liang, Weifa

153

Power Saving of Real Time Embedded Sensor for Medical Remote Monitoring Frederic Fauberteau, Serge Midonnet,  

E-Print Network [OSTI]

{fauberte, midonnet}@univ-paris-est.fr Dan Istrate ESIGETEL - LRIT 1, Rue du Port de Valvins, Avon, France systems. To reduce the consumption of the mi- croprocessor of such a system, a way is to power down a pure gain of energy. But practically, we must consider that this time comprises a slot of time during

Paris-Sud XI, Université de

154

Development of a Remote Monitoring Sensor Network for In-Situ Decommissioned Structures  

Broader source: Energy.gov [DOE]

On October 19-22, 2010, an independent expert panel of scientists and engineers met to assist the Department of Energy (DOE) and the Savannah River National Laboratory in developing a technical...

155

Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent  

DOE Patents [OSTI]

The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

Pfeifer, Kent B. (Los Lunas, NM); Hoyt, Andrea E. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM)

1998-01-01T23:59:59.000Z

156

Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent  

DOE Patents [OSTI]

The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

1998-08-18T23:59:59.000Z

157

EXTENDED PERFORMANCE HANDHELD AND MOBILE SENSORS FOR REMOTE DETECTION OF NATURAL GAS LEAKS  

SciTech Connect (OSTI)

This report summarizes work performed by Physical Sciences Inc. (PSI) to advance the state-of-the-art of surveying for leaks of natural gas from transmission and distribution pipelines. The principal project goal was to develop means of deploying on an automotive platform an improved version of the handheld laser-based standoff natural gas leak detector previously developed by PSI and known as the Remote Methane Leak Detector or RMLD. A laser beam which interrogates the air for methane is projected from a spinning turret mounted upon a van. As the van travels forward, the laser beam scans an arc to the front and sides of the van so as to survey across streets and to building walls from a moving vehicle. When excess methane is detected within the arc, an alarm is activated. In this project, we built and tested a prototype Mobile RMLD (MRMLD) intended to provide lateral coverage of 10 m and one lateral scan for every meter of forward motion at forward speeds up to 10 m/s. Using advanced detection algorithms developed as part of this project, the early prototype MRMLD, installed on the back of a truck, readily detected simulated gas leaks of 50 liters per hour. As a supplement to the originally planned project, PSI also participated in a DoE demonstration of several gas leak detection systems at the Rocky Mountain Oilfield Testing Center (RMOTC) during September 2004. Using a handheld RMLD upgraded with the advanced detection algorithms developed in this project, from within a moving vehicle we readily detected leaks created along the 7.4 mile route of a virtual gas transmission pipeline.

Michael B. Frish; B. David Green; Richard T. Wainner; Francesca Scire-Scappuzzo; Paul Cataldi; Matthew C. Laderer

2005-05-01T23:59:59.000Z

158

Pipeline Structural Health Monitoring Using Macro-fiber Composite Active Sensors  

SciTech Connect (OSTI)

The United States economy is heavily dependent upon a vast network of pipeline systems to transport and distribute the nation's energy resources. As this network of pipelines continues to age, monitoring and maintaining its structural integrity remains essential to the nation's energy interests. Numerous pipeline accidents over the past several years have resulted in hundreds of fatalities and billions of dollars in property damages. These accidents show that the current monitoring methods are not sufficient and leave a considerable margin for improvement. To avoid such catastrophes, more thorough methods are needed. As a solution, the research of this thesis proposes a structural health monitoring (SHM) system for pipeline networks. By implementing a SHM system with pipelines, their structural integrity can be continuously monitored, reducing the overall risks and costs associated with current methods. The proposed SHM system relies upon the deployment of macro-fiber composite (MFC) patches for the sensor array. Because MFC patches are flexible and resilient, they can be permanently mounted to the curved surface of a pipeline's main body. From this location, the MFC patches are used to monitor the structural integrity of the entire pipeline. Two damage detection techniques, guided wave and impedance methods, were implemented as part of the proposed SHM system. However, both techniques utilize the same MFC patches. This dual use of the MFC patches enables the proposed SHM system to require only a single sensor array. The presented Lamb wave methods demonstrated the ability to correctly identify and locate the presence of damage in the main body of the pipeline system, including simulated cracks and actual corrosion damage. The presented impedance methods demonstrated the ability to correctly identify and locate the presence of damage in the flanged joints of the pipeline system, including the loosening of bolts on the flanges. In addition to damage to the actual pipeline itself, the proposed methods were used to demonstrate the capability of detecting deposits inside of pipelines. Monitoring these deposits can prevent clogging and other hazardous situations. Finally, suggestions are made regarding future research issues which are needed to advance this research. Because the research of this thesis has only demonstrated the feasibility of the techniques for such a SHM system, these issues require attention before any commercial applications can be realized.

A.B. Thien

2006-03-01T23:59:59.000Z

159

New Electronic Sensors Stick to Your Skin -Heart Rate Monitors -Popular Mechanics http://www.popularmechanics.com/science/health/breakthroughs/new-electronic-sensors-stick-to-your-skin?click=pm_latest[8/14/2011 5:59:45 AM  

E-Print Network [OSTI]

New Electronic Sensors Stick to Your Skin - Heart Rate Monitors - Popular Mechanics http://www Electronic Sensors That Stick to Your Skin Like Temporary Tattoos Nice tattoo. Or is it a heart-rate monitor to measure the electrical activity of the heart, muscles and brain. And using the same principles behind

Rogers, John A.

160

Integrated Process Monitoring based on Systems of Sensors for Enhanced Nuclear Safeguards Sensitivity and Robustness  

SciTech Connect (OSTI)

This paper illustrates safeguards benefits that process monitoring (PM) can have as a diversion deterrent and as a complementary safeguards measure to nuclear material accountancy (NMA). In order to infer the possible existence of proliferation-driven activities, the objective of NMA-based methods is often to statistically evaluate materials unaccounted for (MUF) computed by solving a given mass balance equation related to a material balance area (MBA) at every material balance period (MBP), a particular objective for a PM-based approach may be to statistically infer and evaluate anomalies unaccounted for (AUF) that may have occurred within a MBP. Although possibly being indicative of proliferation-driven activities, the detection and tracking of anomaly patterns is not trivial because some executed events may be unobservable or unreliably observed as others. The proposed similarity between NMA- and PM-based approaches is important as performance metrics utilized for evaluating NMA-based methods, such as detection probability (DP) and false alarm probability (FAP), can also be applied for assessing PM-based safeguards solutions. To this end, AUF count estimates can be translated into significant quantity (SQ) equivalents that may have been diverted within a given MBP. A diversion alarm is reported if this mass estimate is greater than or equal to the selected value for alarm level (AL), appropriately chosen to optimize DP and FAP based on the particular characteristics of the monitored MBA, the sensors utilized, and the data processing method employed for integrating and analyzing collected measurements. To illustrate the application of the proposed PM approach, a protracted diversion of Pu in a waste stream was selected based on incomplete fuel dissolution in a dissolver unit operation, as this diversion scenario is considered to be problematic for detection using NMA-based methods alone. Results demonstrate benefits of conducting PM under a system-centric strategy that utilizes data collected from a system of sensors and that effectively exploits known characterizations of sensors and facility operations in order to significantly improve anomaly detection, reduce false alarm, and enhance assessment robustness under unreliable partial sensor information.

Humberto E. Garcia

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Tracking Dynamic Boundary Fronts using Range Sensors  

E-Print Network [OSTI]

are being deployed for real-time monitoring applica- tions, such as detecting leakage of hazardous material location whereas in the latter approach a sensor finds approximate distance to a remote location where degrees and gather reflec- tivity and wind velocity information. Lidars (LIght Detection and Ranging

Ramamritham, Krithi

162

System for remote multichannel real-time monitoring of mouse ECG via the Internet  

E-Print Network [OSTI]

A hardware/software system was developed to allow real-time monitoring of multiple physiological signals simultaneously via the Internet. The hardware is specifically designed for measuring ECG signals from mice, while the ...

Oefinger, Matthew Blake, 1976-

2003-01-01T23:59:59.000Z

163

The design and enhancement of a testbed for the remote system monitoring interface device technology  

E-Print Network [OSTI]

Texas A&M University is developing an information technology-based system that is able to continuously monitor and diagnose faults of electrical motors, based solely on electrical signals available at the motor terminals, such as current and voltage...

Turner, Regan Christopher

2013-02-22T23:59:59.000Z

164

The development of a remote monitoring system for the Nuclear Science Center reactor  

E-Print Network [OSTI]

With funding provided by Nuclear Energy Research Initiative (NERI), design of Secure, Transportable, Autonomous Reactors (STAR) to aid countries with insufficient energy supplies is underway. The development of a new monitoring system that allows...

Jiltchenkov, Dmitri Victorovich

2002-01-01T23:59:59.000Z

165

Sensor networks represent new paradigm for reliable environment monitoring and infor-mation collection. They hold the promise of revolutionizing sensing in a wide range of  

E-Print Network [OSTI]

computing power, scarce memory and limited battery power. For wireless micro-sensor networks, physical of wireless micro-sensor networks communication models. 2. Development of a frame-work to evaluate protocolsAbstract Sensor networks represent new paradigm for reliable environment monitoring and infor

Heinzelman, Wendi

166

Health Monitoring of Drive Connected Three-Phase Induction Motors ----- From Wired Towards Wireless Sensor Networks  

E-Print Network [OSTI]

5.7: Wireless sensor installation photo (a) accelerometer (5.7 Wireless sensor installation photo (a) accelerometer (b)set up (a) Photo (b) Diagram (b) Sensor: Three vibration

Xue, Xin

2009-01-01T23:59:59.000Z

167

Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation  

SciTech Connect (OSTI)

This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

Yi Jia

2011-02-28T23:59:59.000Z

168

Large scale nuclear sensor monitoring and diagnostics by means of an ensemble of regression models based on Evolving Clustering Methods  

E-Print Network [OSTI]

Large scale nuclear sensor monitoring and diagnostics by means of an ensemble of regression models , Enrico Ziob a Institute for Energy Technology, Halden, Norway b Polytechnic of Milan, Milan, Italy actions for safely steering critical situations and preventing accidents. To avoid misleading information

Boyer, Edmond

169

UNMANNED AERIAL VEHICLE (UAV) HYPERSPECTRAL REMOTE SENSING FOR DRYLAND VEGETATION MONITORING  

SciTech Connect (OSTI)

UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus) and cheatgrass (Bromus tectorum).

Nancy F. Glenn; Jessica J. Mitchell; Matthew O. Anderson; Ryan C. Hruska

2012-06-01T23:59:59.000Z

170

1999 IEEE international geoscience and remote sensing symposium  

SciTech Connect (OSTI)

The theme of IGARSS'99, ``Remote Sensing of the System Earth--A Challenge for the 21st Century,'' shows how earth observation based on satellite remote sensing can significantly contribute to the future study of the environment and the changes it is undergoing, whether from natural causes or human activities. The wide range of topics offers an interdisciplinary approach and suggests integrated techniques and theory in remote sensing are essential for modeling and understanding the environment. Topics covered include: new instrumentation and future systems; high resolution SAR/InSAR; earth system science educational initiative; data fusion; radar sensing of ice sheets; image processing techniques; clouds and ice particles; internal waves; natural hazards and disaster monitoring; advanced passive and active sensors and sensor calibration; radar assessment of rain, oil spills and natural slicks; data standards and distribution; and vegetation monitoring using BRDF approaches.

NONE

1999-07-01T23:59:59.000Z

171

Development of Hyperspectral remote sensing capability for the early detection and monitoring of Harmful Algal Blooms  

E-Print Network [OSTI]

Blooms (HABs) in the western basin of Lake Erie and Saginaw Bay in Lake Huron. The HABs can be very of Harmful Algal Blooms (HABs) in the Great Lakes John Lekki1 , Robert Anderson2 , Quang-Viet Nguyen3 Lakes is to detect and monitor the development of potentially Harmful Algal Blooms (HABs). Two

172

Monitoring Isostatic Rebound in Antarctica with the Use of Continuous Remote GPS Observations  

E-Print Network [OSTI]

such application is the monitoring of (postgla- cial) isostatic rebound. When large ice caps melt, the lithosphere varies depend- ing on the shape of the ice cap and both the amount and timing of the melting that has on the Lambert Giacier and surrounding piateau. distinguish between different models of ice melting

Tregoning, Paul

173

Fine-Grained Remote Monitoring, Control and Pre-Paid Electrical Service in Rural Microgrids  

E-Print Network [OSTI]

, and improvements to telecommunications and supporting infrastructures, microgrids are becoming an increasingly with a cloud-based monitoring and control service, a local embedded gateway infrastructure and a mesh network of wireless smart meters deployed at 52 buildings. Each smart meter device has an 802.15.4 radio that enables

Goldstein, Seth Copen

174

Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report  

SciTech Connect (OSTI)

A new concept for radiation detection is proposed, allowing a decoupling of the sensing medium and the readout. An electromagnetic material, such as a magnetic ceramic ferrite, is placed near a source to be tracked such as a shipping container. The electromagnetic material changes its properties, in this case its magnetic permeability, as a function of radiation. This change is evident as a change in reflection frequency and magnitude when probed using a microwave/millimeter-wave source. This brief report discusses modeling of radiation interaction of various candidate materials using a radiation detector modeling code Geant4, system design considerations for the remote readout, and some theory of the material interaction physics. The theory of radiation change in doped magnetic insulator ferrites such as yttrium iron garnet (YIG) seems well founded based on literature documentation of the photomagnetic effect. The literature also suggests sensitivity of permittivity to neutrons in some ferroelectrics. Research to date indicates that experimental demonstration of these effects in the context of radiation detection is warranted.

McCloy, John S.; Jordan, David V.; Kelly, James F.; McMakin, Douglas L.; Johnson, Bradley R.; Campbell, Luke W.

2009-09-01T23:59:59.000Z

175

Remote shock sensing and notification system  

DOE Patents [OSTI]

A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

Muralidharan, Govindarajan (Knoxville, TN); Britton, Charles L. (Alcoa, TN); Pearce, James (Lenoir City, TN); Jagadish, Usha (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

2008-11-11T23:59:59.000Z

176

Monitoring Quality Maximization through Fair Rate Allocation in Harvesting Sensor Networks  

E-Print Network [OSTI]

Abstract--In this paper, we consider an energy harvesting sensor network where sensors are powered by reusable energy such as solar energy, wind energy, and so on, from their surroundings. We first formulate to energy budgets of sensors. Unlike the most existing work that formulated the similar problem as a linear

Liang, Weifa

177

Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation  

SciTech Connect (OSTI)

Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Reimold, Benjamin A [Los Alamos National Laboratory; Ward, Steven L [Los Alamos National Laboratory; Howell, John [GLASGOW UNIV.

2010-09-13T23:59:59.000Z

178

availiable remote sensing: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Remote SensingThermal Infrared Remote Sensing Thermal infrared) and thermal infrared energy (3.0 - 14 m). However, thermal infrared sensors allow humans to sense 2 Thermal...

179

Remote noninvasive allograft rejection monitoring for heart transplant recipients: study protocol for the novel evaluation with home electrocardiogram and remote transmission (NEW HEART) study  

E-Print Network [OSTI]

allograft recipients. J Heart Lung Transplant 2005, 24(7Another Little Piece of My Heart Now": Should Endomyocardialrejection monitoring for heart transplant recipients: study

Doering, Lynn V; Hickey, Kathleen; Pickham, David; Chen, Belinda; Drew, Barbara J

2012-01-01T23:59:59.000Z

180

Title: A Different Approach to Sensor Networking for SHM: Remote Powering and Interrogation with Unmanned Aerial Vehicles  

E-Print Network [OSTI]

or substations via hopping protocols. This work will present a hybrid approach to sensor array interrogation, and/or type) that attacks structural health assessments in a systematic way (Figure 1). In the last

Gupta, Rajesh

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Point-to-Point Verification of Monitored Sensors at Reynolds Army Clinic and Hospital Final Report  

E-Print Network [OSTI]

to approximately 1.0 in. H 2 O. Supply fan speeds began decreasing once their static pressure setpoints were satisfied. Two static pressure sensors did not pass verification. ESL recommended that the sensors be cleaned in the same manner as the air flow... which were identified during the verification process be given immediate attention. 1. Replace return air humidity sensors for AHU-155, AHU-245, AHU-345, and AHU-355. 2. Replace supply air humidity sensors for AHU-225 and AHU-226. 3. Clean and...

Martinez, J.; Linenschmidt, S.; Turner, D.

182

The application of formal software engineering methods to the unattended and remote monitoring software suite at Los Alamos National Laboratory  

SciTech Connect (OSTI)

The Unattended and Remote Monitoring (UNARM) system is a collection of specialized hardware and software used by the International Atomic Energy Agency (IAEA) to institute nuclear safeguards at many nuclear facilities around the world. The hardware consists of detectors, instruments, and networked computers for acquiring various forms of data, including but not limited to radiation data, global position coordinates, camera images, isotopic data, and operator declarations. The software provides two primary functions: the secure and reliable collection of this data from the instruments and the ability to perform an integrated review and analysis of the disparate data sources. Several years ago the team responsible for maintaining the software portion of the UNARM system began the process of formalizing its operations. These formal operations include a configuration management system, a change control board, an issue tracking system, and extensive formal testing, for both functionality and reliability. Functionality is tested with formal test cases chosen to fully represent the data types and methods of analysis that will be commonly encountered. Reliability is tested with iterative, concurrent testing where up to five analyses are executed simultaneously for thousands of cycles. Iterative concurrent testing helps ensure that there are no resource conflicts or leaks when multiple system components are in use simultaneously. The goal of this work is to provide a high quality, reliable product, commensurate with the criticality of the application. Testing results will be presented that demonstrate that this goal has been achieved and the impact of the introduction of a formal software engineering framework to the UNARM product will be presented.

Determan, John Clifford [Los Alamos National Laboratory; Longo, Joseph F [Los Alamos National Laboratory; Michel, Kelly D [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

183

Worker-specific exposure monitor and method for surveillance of workers  

DOE Patents [OSTI]

A person-specific monitor that provides sensor information regarding hazards to which the person is exposed and means to geolocate the person at the time of the exposure. The monitor also includes means to communicate with a remote base station. Information from the monitor can be downloaded at the base station for long term storage and analysis. The base station can also include means to recharge the monitor.

Lovejoy, Michael L. (Albuquerque, NM); Peeters, John P. (Bethesda, MD); Johnson, A. Wayne (Albuquerque, NM)

2000-01-01T23:59:59.000Z

184

Mountable eddy current sensor for in-situ remote detection of surface and sub-surface fatigue cracks  

DOE Patents [OSTI]

A wireless, integrated, mountable, portable, battery-operated, non-contact eddy current sensor that provides similar accuracy to 1970's laboratory scale equipment (e.g., a Hewlett-Packard GP4194A Impedance Analyzer) at a fraction of the size and cost.

Yepez, III, Esteban (Albuquerque, NM); Roach, Dennis P. (Albuquerque, NM); Rackow, Kirk A. (Albuquerque, NM); DeLong, Waylon A. (Albuquerque, NM)

2011-09-06T23:59:59.000Z

185

E-Print Network 3.0 - aerial radiation monitoring Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pieces... deployed. 12;Multiple Sensors Looking At Earth 12;REMOTE SENSORS Passive Sensors Aerial Cameras... OF REFLECTED RADIATION The sensor detects solar radiation...

186

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network [OSTI]

Geothermal EnergyThe future of geothermal energy: Impact of enhanceddown-hole monitoring of geothermal energy systems. ASME 2011

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

187

Solid electrolyte based sensor for monitoring the magnesium level during reclamation of aluminum scrap  

SciTech Connect (OSTI)

Aluminum alloy scrap often contains excess magnesium which must be removed during recycling by a process referred to as demagging. The efficiency of this process could be improved with an in-situ magnesium sensor, which could be used to optimize the process parameters to the changing magnesium content. The sensor developed in this work consists of a galvanic cell with a magnesium fluoride (MgF{sub 2}) solid electrolyte and a molten magnesium reference electrode. The voltage output of the sensor changes by about 100 mV for the change in magnesium content which occurs during the demagging process (5 wt% to 0.1 wt%) and is in excellent agreement with thermodynamic measurements using molten chloride electrolytes. This paper focuses on the effect of silicon, which is a common alloying element in aluminum alloys, on the output of an electrochemical magnesium sensor.

Fergus, J.W.; Hui, S. [Auburn Univ., AL (United States). Materials Research and Education Center

1996-10-01T23:59:59.000Z

188

A Retrofit 60 Hz Current Sensor for Power Monitoring at the Circuit Breaker Panel  

E-Print Network [OSTI]

Improved signal conditioning electronics and new experimental results are presented for a sensor that measures current flow in a circuit breaker. A PIC microcontroller optimizes the phase reference for the synchronous ...

Cooley, John J.

189

Enhancement of a fluorescent sensor for monitoring glucose concentration in diabetic patients  

E-Print Network [OSTI]

procedure, but unforeseen complications in lyophilization of the new sensor assay restricted its completion. Due to instability of Con A in solution, it was hypothesized that the immobilization of it onto the surface of an active substrate would increase its...

Ibey, Bennett Luke

2007-04-25T23:59:59.000Z

190

Towards a Tailored Sensor Network for Fire Emergency Monitoring in Large Buildings  

E-Print Network [OSTI]

Modern fire emergency systems are slowly moving from the traditional data-logging systems to a heterogeneous and dense network of wired/wireless sensors that can give a more complete view of the phenomenon. When the density ...

Tsertou, Athanasia; Upadhyay, Rochan; McLaughlin, Stephen; Laurenson, David I

2007-01-01T23:59:59.000Z

191

Remote radiation dosimetry  

DOE Patents [OSTI]

Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

1991-03-12T23:59:59.000Z

192

Monitoring the resin infusion manufacturing process under industrial environment using distributed sensors  

E-Print Network [OSTI]

A novel direct approach to detect the resin flow front during the Liquid Resin Infusion process under industrial environment is proposed. To detect the resin front accurately and verify the results, which are deduced from indirect micro-thermocouples measurements, optical fiber sensors based on Fresnel reflection are utilized. It is expected that the results derived from both techniques will lead to an improvement of our understanding of the resin flow and in particular prove that micro-thermocouples can be used as sensors as routine technique under our experimental conditions. Moreover, comparisons with numerical simulations are carried out and experimental and simulated mold filling times are successfully compared.

Wang, Peng; Drapier, Sylvain; Vautrin, Alain; Minni, Jean-Christophe; 10.1177/0021998311410479

2012-01-01T23:59:59.000Z

193

Application of Diamond and Sapphire Sensors in the Beam Halo Monitor for FLASH  

E-Print Network [OSTI]

, ionization chambers, a beam halo monitor (BHM) and beam position monitors (BPM) has been installed. The BHM, a BHM system and a magnetic BPM (also called "in-air" BPM) [8] operating in conjunction in order not hit the beam pipe downstream from the exit window. The BPM detects the center of gravity of the beam

194

Pictorial Descriptions of Traffic Sensor Deployments in Honolulu RTMS installation to monitor the out-bound  

E-Print Network [OSTI]

truth counts (bottom right). Two batteries in parallel for the RTMS and one for the SAS were housed and Transportation Laboratory. #12;2 ORADS portable laser sensor installed parallel to the travel lanes along out inside the generator housing. Also shown in the picture above are the memory units for the RTMS

Prevedouros, Panos D.

195

RJMCMC POINT PROCESS SAMPLER FOR SINGLE SENSOR SOURCE SEPARATION: AN APPLICATION TO ELECTRIC LOAD MONITORING  

E-Print Network [OSTI]

case of space-heating, which is the most consuming electric end-use in France1 . This is a source of the electric systems will undoubtedly be helpful to meet these challenges. Actually, a good knowledgeRJMCMC POINT PROCESS SAMPLER FOR SINGLE SENSOR SOURCE SEPARATION: AN APPLICATION TO ELECTRIC LOAD

Boyer, Edmond

196

Low Cost Monitoring and Intruders Detection using Wireless Video Sensor Networks  

E-Print Network [OSTI]

a serious challenge to wireless video sensor networks of weak computation and battery power. In this paper the efficiency of our approach through theoretical analysis and demonstrate the benefits of our scheduling of low capacity (resolution, processing, and storage) of a same or similar type can be deployed

Paris-Sud XI, Université de

197

Mid-Infrared Laser based Gas Sensor Technologies for Environmental Monitoring,  

E-Print Network [OSTI]

), thermoelectrically cooled (TEC) and room tem- perature operated quantum cascade lasers (QCLs) for the detection analysis will be reported. These sensors employ a 2f wavelength modulation (WM) technique based on quartz region. Keywords: laser spectroscopy, quartz enhanced photoacoustic spectroscopy, wavelength modulation

198

Abstract --Wearable sensors enable long-term continuous physiological monitoring, which is important for the treatment  

E-Print Network [OSTI]

, telemedicine, mobile health, low-cost health care. I. INTRODUCTION AND MOTIVATION HE definition of health care earthquakes around the world, as well as ongoing wars, demonstrate the existing need for better low-cost that Wearable Sensors: Opportunities and Challenges for Low-Cost Health Care Richard R. Fletcher, Member, IEEE

199

Sensitivity analysis of a directional potential drop sensor for creep monitoring  

E-Print Network [OSTI]

and irreversible thermal effects. The sensitivity of the square-electrode PD sensor to geometrical and material and mechanical stress. The specific form of degradation is material dependent, but in creep- resistant steels of the degradation process, the presence of voids and microcracks becomes more evident. For creep-resistant materials

Nagy, Peter B.

200

Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases  

SciTech Connect (OSTI)

This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project ??DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases.? This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

Hai Xiao; Junhang Dong; Jerry Lin; Van Romero

2011-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Comparison of median frequency between traditional and functional sensor placements during activity monitoring  

E-Print Network [OSTI]

Long-term monitoring is of great clinical relevance. Accelerometers are often used to provide information about activities of daily living. The median frequency (f[subscript m]) of acceleration has recently been suggested ...

Graham, Selina

202

Towards and embeddable structural health monitoring sensor : design and optimization of MEMS piezoelectric vibration energy harvesters  

E-Print Network [OSTI]

Wireless structural health monitoring (SHM) has gained considerable interest as a potential method of reducing aircraft maintenance costs while increasing safety. Distributed power supplies for the sensing nodes are needed ...

Mracek, Anna Marie

2006-01-01T23:59:59.000Z

203

Real time perfusion and oxygenation monitoring in an implantable optical sensor  

E-Print Network [OSTI]

in operating rooms. In the late 1970s Scott Wilbur of the Biox corporation designed an ear sensor that used light emitting diode and solid state photodetectors to develop a clinically accepted pulse oximeter. The fiberoptic cables of previous ear oximeters.... Traditional oximeters use two light emitting diodes that emit light at 660nm (red) and 940nm (infrared) wavelengths. At these wavelengths both oxyhemoglobin and reduced hemoglobin have different absorption spectra (Fig. 1). The ratio of absorbances...

Subramanian, Hariharan

2006-04-12T23:59:59.000Z

204

Eye of the beholder: Inside this experimental camera, a stretchable sensor  

E-Print Network [OSTI]

Siemens Wind Power and the NI Graphical System Design Platform > Click here for more National Instruments--analogous to the curved retina of the eye--has certain advantages over one with a flat sensor. Its field of view is wider Videos Wind Turbine Condition Monitoring Due to environmental conditions, the remote

Rogers, John A.

205

The CitiSense Air Quality Monitoring Mobile Sensor Node Piero Zappi, Elizabeth Bales, Jing Hong Park, William Griswold and Tajana Simuni Rosing  

E-Print Network [OSTI]

conditions than the national ambient air quality standard [1]. Current air pollutant measurement networks. For example, The San Diego Air Pollution Control District (SDAPCD) maintains only five air pollutant samplingThe CitiSense Air Quality Monitoring Mobile Sensor Node Piero Zappi, Elizabeth Bales, Jing Hong

Simunic, Tajana

206

CitySee: Urban CO2 Monitoring with Sensors Xufei Mao, Xin Miao, Yuan He, Tong Zhu, Jiliang Wang, Wei Dong, Xiang-Yang Li, and Yunhao Liu  

E-Print Network [OSTI]

and specialists all over the world. One of the main causes deteriorating global climate is the over- emission restrict) the emission of CO2 in order to slow down the steps of Global Warming. Since arguably more than monitoring, relay nodes placement, wire- less sensor networks. I. INTRODUCTION With the worsening of Global

Liu, Yunhao

207

Redundant Sensor Calibration and Estimation for Monitoring and Control of Nuclear Power Plants Xin Jin, Asok Ray and Robert M. Edwards  

E-Print Network [OSTI]

Redundant Sensor Calibration and Estimation for Monitoring and Control of Nuclear Power Plants Xin@engr.psu.edu INTRODUCTION Performance, reliability and safety of nuclear power plants depend upon validity and accuracy are installed with redundancy in nuclear power plants. Redundancy can be classified into two groups: direct

Ray, Asok

208

Renewable-reagent electrochemical sensor  

DOE Patents [OSTI]

A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery is described. The probe comprises an integrated membrane sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s). 19 figs.

Wang, J.; Olsen, K.B.

1999-08-24T23:59:59.000Z

209

Renewable-reagent electrochemical sensor  

DOE Patents [OSTI]

A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).

Wang, Joseph (Las Cruces, NM); Olsen, Khris B. (Richland, WA)

1999-01-01T23:59:59.000Z

210

Extending the utility of machine based height sensors to spatially monitor cotton growth  

E-Print Network [OSTI]

COTMAN using two sites selected from height data in place of six sites selected per COTMAN recommendations. The HMAP system was extended to monitor rate of growth in real time in addition to plant height by comparing historical plant height data recorded...

Geiger, David William

2004-09-30T23:59:59.000Z

211

Monitoring the resin infusion manufacturing process under industrial environment using distributed sensors  

E-Print Network [OSTI]

1 Monitoring the resin infusion manufacturing process under industrial environment using the Liquid Resin Infusion process under industrial environment is proposed. To detect the resin front; Liquid Resin Infusion. #12;2 1. Introduction Recently, Liquid Composite Molding (LCM) processes have been

Boyer, Edmond

212

Short-range wireless sensor networks for high density seismic monitoring  

E-Print Network [OSTI]

for sub-surface diagnostic (for small earthquake monitoring) and exploration (for new oil and gas large areas to measure backscattered wave fields. A storage/processing unit (sink node) collects. Although a wide number of applications have been proposed for WSN [1], their market penetration and volumes

Spagnolini, Umberto

213

Continuous Plume Monitoring Using Wireless Sensors: Proof of Concept in Intermediate Scale Tank  

E-Print Network [OSTI]

managers and planners. Groundwater monitoring is an important component in the design of strategies is used to build and calibrate groundwater flow and transport models to pre- dict plume behavior resulting from the spatial vari- ability of soil properties cannot be fully characterized using only

Han, Qi "Chee"

214

Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring  

DOE Patents [OSTI]

A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

Zelepouga, Serguei A. (Hoffman Estates, IL); Rue, David M. (Chicago, IL); Saveliev, Alexei V. (Chicago, IL)

2011-03-15T23:59:59.000Z

215

The monitoring and multiplexing of fiber optic sensors using chirped laser sources  

E-Print Network [OSTI]

photodiode through a fiber coupler. An optical isolator is connected in serial with the laser to block the destabilizing optical feedback. The reflected light from the FFPI is converted by another photodiode to an electrical current signal I r... , such that the reflectance is obtained as R FP = CI r /I i , with C a constant and I i the photocurrent measured by the laser power monitoring photodiode. The absolute value of R FP can be obtained through calibration, although it is often not necessary. Fig. 4...

Wan, Xiaoke

2004-09-30T23:59:59.000Z

216

Monitoring the invasion of Phragmites australis in coastal marshes of Louisiana, USA, using multi-source remote sensing data.  

E-Print Network [OSTI]

Monitoring the invasion of Phragmites australis in coastal marshes of Louisiana, USA, using multi University, USA. ABSTRACT Phragmites australis a native marshland species to the North American Atlantic Phragmites australis (common reed) is a native species to North America, it was historically restricted

Cronin, James T.

217

New technologies for item monitoring  

SciTech Connect (OSTI)

This report responds to the Department of Energy`s request that Sandia National Laboratories compare existing technologies against several advanced technologies as they apply to DOE needs to monitor the movement of material, weapons, or personnel for safety and security programs. The authors describe several material control systems, discuss their technologies, suggest possible applications, discuss assets and limitations, and project costs for each system. The following systems are described: WATCH system (Wireless Alarm Transmission of Container Handling); Tag system (an electrostatic proximity sensor); PANTRAK system (Personnel And Material Tracking); VRIS (Vault Remote Inventory System); VSIS (Vault Safety and Inventory System); AIMS (Authenticated Item Monitoring System); EIVS (Experimental Inventory Verification System); Metrox system (canister monitoring system); TCATS (Target Cueing And Tracking System); LGVSS (Light Grid Vault Surveillance System); CSS (Container Safeguards System); SAMMS (Security Alarm and Material Monitoring System); FOIDS (Fiber Optic Intelligence & Detection System); GRADS (Graded Radiation Detection System); and PINPAL (Physical Inventory Pallet).

Abbott, J.A. [EG & G Energy Measurements, Albuquerque, NM (United States); Waddoups, I.G. [Sandia National Labs., Albuquerque, NM (United States)

1993-12-01T23:59:59.000Z

218

Intelligent mobile sensor system for drum inspection and monitoring: Phase 1. Topical report, October 1, 1992--June 8, 1993  

SciTech Connect (OSTI)

The objective of this project was to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort is a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The device is capable of operating in narrow aisles and interpolating the free aisle space between rows of stacked drums. The system has an integrated sensor suite for leak detection, and is interfaced with a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which positions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 90% of all drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort is separated into three phases of which phase one is now complete. The first phase has demonstrated an integrated system for monitoring and inspection activities for waste storage facility operations. This demonstration system was quickly fielded and evaluated by leveraging technologies developed from previous NASA and DARPA contracts and internal research. The second phase will demonstrate a prototype system appropriate for operational use in an actual storage facility. The prototype provides an integrated design that considers operational requirements, hardware costs, maintenance, safety, and robustness. The final phase will demonstrate commercial viability using the prototype vehicle in a pilot waste operations and inspection project.

Not Available

1993-06-01T23:59:59.000Z

219

Sensors for monitoring waste glass quality and method of using the same  

DOE Patents [OSTI]

A set of three electrical probes is described for monitoring alkali and oxygen activity of a glass melt. On-line, real time measurements of the potential difference among the probes when they are placed in electrical contact with the melt yield the activity information and can be used to adjust the composition of the melt in order to produce higher quality glass. The first two probes each has a reference gas and a reference electrolyte and a pair of wires in electrical connection with each other in the reference gas but having one of the wires extending further into the reference electrolyte. The reference gases both include a known concentration of oxygen. The third electrode has a pair of wires extending through an otherwise solid body to join electrically just past the body but having one of the wires extend past this junction. Measuring the potential difference between wires of the first and second probes provides the alkali activity; measurement of the potential difference between wires of the second and third probes provides the oxygen activity of the melt. 1 figure.

Bickford, D.F.

1994-03-15T23:59:59.000Z

220

Real-time combustion control and diagnostics sensor-pressure oscillation monitor  

SciTech Connect (OSTI)

An apparatus and method for monitoring and controlling the combustion process in a combustion system to determine the amplitude and/or frequencies of dynamic pressure oscillations during combustion. An electrode in communication with the combustion system senses hydrocarbon ions and/or electrons produced by the combustion process and calibration apparatus calibrates the relationship between the standard deviation of the current in the electrode and the amplitudes of the dynamic pressure oscillations by applying a substantially constant voltage between the electrode and ground resulting in a current in the electrode and by varying one or more of (1) the flow rate of the fuel, (2) the flow rate of the oxidant, (3) the equivalence ratio, (4) the acoustic tuning of the combustion system, and (5) the fuel distribution in the combustion chamber such that the amplitudes of the dynamic pressure oscillations in the combustion chamber are calculated as a function of the standard deviation of the electrode current. Thereafter, the supply of fuel and/or oxidant is varied to modify the dynamic pressure oscillations.

Chorpening, Benjamin T. (Morgantown, WV); Thornton, Jimmy (Morgantown, WV); Huckaby, E. David (Morgantown, WV); Richards, George A. (Morgantown, WV)

2009-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Application of Tritium Remote Control and Monitoring System (TRECAMS) to TFTR`s tritium inventory management program  

SciTech Connect (OSTI)

TFTR has a stringent program to manage and account for its tritium inventory. In support of this a tritium inventory accounting capability has been implemented on TRECAMS. This was an ideal approach because TRECAMS is a high reliability system that monitors the necessary parameters, i.e., temperatures, pressures, valve positions, etc., to track the movement of tritium. It also has a powerful set of utilities which support such an application. This paper describes the application of TRECAMS to monitor the transfer of tritium between the Uranium Beds (UBEDs), the Tritium Gas Delivery Manifold (TGDM), 14 Tritium Use Point holding volumes, and the TFTR torus. Real time data is presented to the TFTR operators using graphical displays and trends. An event driven program automatically collects the data before and after tritium transfers, calculates differences and sums, tabulates the data and provides printed reports. The reports include summaries of tritium deliveries, bleedback operations, injections, a daily summary of delivery/bleedback activities, and a daily summary of injection activities. All reference data is archived and can be reproduced in a plotted or tabular format. This data can be displayed or printed by the TFTR Shift Supervisor`s VAX workstation or by anyone with an account on the laboratory`s VAX cluster.

Schobert, G.; Bashore, D.; Dong, J.; Diesso, M.; Mika, R. [Princeton Plasma Physics Lab., NJ (United States)

1995-12-31T23:59:59.000Z

222

Multi-Channel Auto-Dilution System for Remote Continuous Monitoring of High Soil-CO2 Fluxes  

SciTech Connect (OSTI)

Geological sequestration has the potential capacity and longevity to significantly decrease the amount of anthropogenic CO2 introduced into the atmosphere by combustion of fossil fuels such as coal. Effective sequestration, however, requires the ability to verify the integrity of the reservoir and ensure that potential leakage rates are kept to a minimum. Moreover, understanding the pathways by which CO2 migrates to the surface is critical to assessing the risks and developing remediation approaches. Field experiments, such as those conducted at the Zero Emissions Research and Technology (ZERT) project test site in Bozeman, Montana, require a flexible CO2 monitoring system that can accurately and continuously measure soil-surface CO2 fluxes for multiple sampling points at concentrations ranging from background levels to several tens of percent. To meet this need, PNNL is developing a multi-port battery-operated system capable of both spatial and temporal monitoring of CO2 at concentrations from ambient to at least 150,000 ppmv. This report describes the system components (sampling chambers, measurement and control system, and power supply) and the results of a field test at the ZERT site during the late summer and fall of 2008. While the system performed well overall during the field test, several improvements to the system are suggested for implementation in FY2009.

Amonette, James E.; Barr, Jonathan L.

2009-04-23T23:59:59.000Z

223

Remote Monitoring and Tracking of UF6 Cylinders Using Long-Range Passive Ultra-wideband (UWB) RFID Tags  

SciTech Connect (OSTI)

An IAEA Technical Meeting on Techniques for IAEA Verification of Enrichment Activities identified 'smart tags' as a technology that should be assessed for tracking and locating UF6 cylinders. Although there is vast commercial industry working on RFID systems, the vulnerabilities of commercial products are only beginning to emerge. Most of the commercially off-the-shelf (COTS) RFID systems operate in very narrow frequency bands, making them vulnerable to detection, jamming and tampering and also presenting difficulties when used around metals (i.e. UF6 cylinders). Commercial passive RFID tags have short range, while active RFID tags that provide long ranges have limited lifetimes. There are also some concerns with the introduction of strong (narrowband) radio frequency signals around radioactive and nuclear materials. Considering the shortcomings of commercial RFID systems, in their current form, they do not offer a promising solution for continuous monitoring and tracking of UF6 cylinders. In this paper, we identify the key challenges faced by commercial RFID systems for monitoring UF6 cylinders, and introduce an ultra-wideband approach for tag/reader communications that addresses most of the identified challenges for IAEA safeguards applications.

Nekoogar, F; Dowla, F

2007-06-06T23:59:59.000Z

224

Implant for in-vivo parameter monitoring, processing and transmitting  

DOE Patents [OSTI]

The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.

Ericson, Milton N. (Knoxville, TN); McKnight, Timothy E. (Greenback, TN); Smith, Stephen F. (London, TN); Hylton, James O. (Clinton, TN)

2009-11-24T23:59:59.000Z

225

Monitoring  

SciTech Connect (OSTI)

The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

2004-11-23T23:59:59.000Z

226

JLab Guest Lecturer Discusses Hurricane Hunting - By Remote Control...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

boundary layer and will provide invaluable ground truth for satellite and aircraft remote sensor measurements. Analyses from these two UAS tropical cyclone missions will be...

227

Transmission Line Security Monitor: Final Report  

SciTech Connect (OSTI)

The Electric Power Transmission Line Security Monitor System Operational Test is a project funded by the Technical Support Working Group (TSWG). TSWG operates under the Combating Terrorism Technical Support Office that functions under the Department of Defense. The Transmission Line Security Monitor System is based on technology developed by Idaho National Laboratory. The technology provides a means for real-time monitoring of physical threats and/or damage to electrical transmission line towers and conductors as well as providing operational parameters to transmission line operators to optimize transmission line operation. The end use is for monitoring long stretches of transmission lines that deliver electrical power from remote generating stations to cities and industry. These transmission lines are generally located in remote transmission line corridors where security infrastructure may not exist. Security and operational sensors in the sensor platform on the conductors take power from the transmission line and relay security and operational information to operations personnel hundreds of miles away without relying on existing infrastructure. Initiated on May 25, 2007, this project resulted in pre-production units tested in realistic operational environments during 2010. A technology licensee, Lindsey Manufacturing of Azusa California, is assisting in design, testing, and ultimately production. The platform was originally designed for a security monitoring mission, but it has been enhanced to include important operational features desired by electrical utilities.

John Svoboda

2011-04-01T23:59:59.000Z

228

Development of Compact Gaseous Sensors with Internal Reference...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Compact Gaseous Sensors with Internal Reference for Monitoring O2 and NOx in Combustion Environments Development of Compact Gaseous Sensors with Internal Reference for Monitoring...

229

Well casing-based geophysical sensor apparatus, system and method  

DOE Patents [OSTI]

A geophysical sensor apparatus, system, and method for use in, for example, oil well operations, and in particular using a network of sensors emplaced along and outside oil well casings to monitor critical parameters in an oil reservoir and provide geophysical data remote from the wells. Centralizers are affixed to the well casings and the sensors are located in the protective spheres afforded by the centralizers to keep from being damaged during casing emplacement. In this manner, geophysical data may be detected of a sub-surface volume, e.g. an oil reservoir, and transmitted for analysis. Preferably, data from multiple sensor types, such as ERT and seismic data are combined to provide real time knowledge of the reservoir and processes such as primary and secondary oil recovery.

Daily, William D. (Livermore, CA)

2010-03-09T23:59:59.000Z

230

Novel biosensors for environmental monitoring of phenolic compounds  

SciTech Connect (OSTI)

This presentation will describe new strategies for amperometric biosensing of phenolic compounds. The class enzyme tyrosinase is employed in connection with these biosensing schemes. The enzyme can tolerate the high temperature of screen-printing/drying processes used for fabricating disposable sensor strips. In addition to single-use electrodes, we will describe the characteristic of a remote enzyme electrode for field monitoring of phenolic compounds. Finally, a novel bioamplification scheme for enhancing the sensitivity of phenol biosensing will be reported.

Chen, O.; Wang, J. [New Mexico State Univ., Las Cruces, NM (United States)

1995-12-01T23:59:59.000Z

231

Development of a Prototype Optical Hydrogen Gas Sensor Using a Getter-Doped Polymer Transducer for Monitoring Cumulative Exposure: Preliminary Results  

SciTech Connect (OSTI)

A novel prototype optical sensor for monitoring cumulative hydrogen gas exposure was fabricated and evaluated. Chemical-to-optical transduction was accomplished by detecting the intensity of 670 nm laser light transmitted through a hydrogen getter-doped polymer film mounted at the end of an optical fiber; the transmittance of the composite film increased with uptake of hydrogen by the embedded getter. The composite film consisted of the hydrogen getter 1,4-bis(phenylethynyl)benzene, also known as DEB, with carbon-supported palladium catalyst embedded in silicone elastomer. Because the change in transmittance was irreversible and occurred continuously as the getter captured hydrogen, the sensor behaved like a dosimeter, providing a unique indication of the cumulative gas exposure.

Small IV, W; Maitland, D J; Wilson, T S; Bearinger, J P; Letts, S A; Trebes, J E

2008-06-05T23:59:59.000Z

232

OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY  

SciTech Connect (OSTI)

Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field test data from virtually anywhere in the world, and development of novel data processing techniques. Comprehensive testing was performed to systematically evaluate the performance of the fiber optic sensor systems in both lab and field environments.

Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

2003-06-01T23:59:59.000Z

233

Design of Wireless Sensor Units with Embedded Statistical Time-Series Damage Detection Algorithms for Structural Health Monitoring  

E-Print Network [OSTI]

A low-cost wireless sensing unit is designed and fabricated for deployment in a structural monitoring progresses towards performance-based design principles, structural monitoring systems can provide extensive

Stanford University

234

SNL/VNIIEF Storage Monitoring Collaboration  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) and the Russian Federal Nuclear Center-All Russian Research Institute for Experimental Physics (VNIIEF)(also know as Arzamas-16) are collaborating on ways to assure the highest standards on safety, security, and international accountability of fissile material. This includes systems used to reduce the need for human access to fissile material, reduce radiation exposure, and provide prompt safety-related information, and provide continuous international accountability information while reducing the need for intrusive, on-site visits. This paper will report on the ongoing SNL/VNIIEF efforts to develop technologies and monitoring systems to meet these goals. Specific topics covered will include: the Smart Bolt tag/seal development, development and testing of electronic sensor platforms (U.S. T-1 ESP and VNIIEF Radio Tag) for monitoring and transportation applications, the ''Magazine-to-Magazine'' remote monitoring system field test, and the ''Facility-to-Facility'' storage monitoring system field trial.

Barkanov, Boris P.; Bartberger, Jack C.; Blagin, Sergei V.; Croessmann, C. Dennis; Gruda, Jeffrey D.; Lupsha, Vitali A.; Moroskin, Dimitri V.; Nilsen, Curt A.

1999-07-12T23:59:59.000Z

235

Open Standards for Sensor Information Processing  

SciTech Connect (OSTI)

This document explores sensor standards, sensor data models, and computer sensor software in order to determine the specifications and data representation best suited for analyzing and monitoring computer system health using embedded sensor data. We review IEEE 1451, OGC Sensor Model Language and Transducer Model Language (TML), lm-sensors and Intelligent Platform Management Inititative (IPMI).

Pouchard, Line Catherine [ORNL; Poole, Stephen W [ORNL; Lothian, Josh [ORNL

2009-07-01T23:59:59.000Z

236

Remote cardiac monitoring using radar  

E-Print Network [OSTI]

Recording a patient's vital signs without physical contact is a challenging research problem with applications in medicine, search and rescue, and security. In order to study this problem, an ultra wide band (UWB) pulse ...

Burnham, Jonathan S

2009-01-01T23:59:59.000Z

237

Optical remote monitoring of CH/sub 4/ gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1. 33-. mu. m region  

SciTech Connect (OSTI)

Purely optical remote monitoring of low-level CH/sub 4/ gas is realized for the first time by the method employing a 2-km long-distance, low-loss silica optical fiber link and a compact absorption cell in conjunction with a high radiant InGaAsP light-emitting diode (LED) at 1.33 ..mu..m. Based on the present experiment, the detection limit of CH/sub 4/ in air was confirmed to be approximately 2000 ppm, i.e., 4% of the lower explosion limit of CH/sub 4/. This result supports the conclusion that the fully optical remote sensing system incorporating ultralow loss optical fiber networks and near infrared LEDs or laser diodes can be extensively used for the detection and surveillance of various inflammable and/or explosive gases in industrial and mining complexes as well as in residential areas.

Chan, K.; Ito, H.; Inaba, H.

1983-10-01T23:59:59.000Z

238

Special Issue "Underwater Sensor Nodes and Underwater Sensor Networks" A special issue of Sensors (ISSN 1424-8220)  

E-Print Network [OSTI]

aquatic environments. Marine surveillance, pollution detection and monitoring, and oceanographic data (salinity, conductivity, turbidity, pH, oxygen, temperature, depth, etc.) - Sediments and pollution sensor nodes - Acoustic sensors - Underwater sensor network architectures - Wired and wireless protocols

Chen, Min

239

Fiber optic geophysical sensors  

DOE Patents [OSTI]

A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

Homuth, Emil F. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

240

Remote Chemical Sensing Using Quantum Cascade Lasers  

SciTech Connect (OSTI)

Research done by the IR sensors team at PNNL is focused on developing advanced spectroscopic methods for detecting signatures of nuclear, chemical, biological and explosives weapons or weapons production. The sensors we develop fall into two categories: remote sensors that can be operated at distances ranging from 150 m to 10 km, and point sensors that are used for in-situ inspection and detection. FY03 has seen an explosion in FM DIAL progress with the net result being solid confirmation that FM DIAL is a technique capable of remote chemical monitoring in a wide variety of venues. For example, FM DIAL was used to detect a small plume of hydrogen sulfide, a candidate CW agent, released in the desert environment of the Hanford 200 Area site. These experiments were conducted over a range of physical conditions including outside temperatures ranging from 70 F to 105 F and turbulence conditions ranging from quiescent to chaotic. We are now rapidly developing the information needed to design prototype FM DIAL systems that are optimized for specific applications that include scenarios such as fixed position stand-off detection and mobile UAV mounted remote monitoring. Just as an example, in FY04 we will use FM DIAL to detect both in-facility and outdoor release of enriched UF6. The rapid progress in FM DIAL research made in FY03 is attributed to several advances. First, final construction of a custom-designed trailer allowed the instrument to be housed in a mobile temperature-controlled environment. This allowed the experiment to be transported to several locations so that data could be collected under a range of physical conditions. This has led to a better understanding of a variety of experimental noise sources. With this knowledge, we have been able to implement several changes in the way the FM DIAL data is collected and processed, with the net result being a drastic improvement in our confidence of analyte concentration measurement and an improvement i n the instrument detection limit. The range of chemicals detectable by FM DIAL has also been extended. Prior to FY03 only water and nitrous oxide (N2O) had been seen. Experiments on extending the tuning range of the quantum cascade laser (QCL) currently used in the experiments demonstrate that many more species are now accessible including H2S, C2F4H2, and CH4. We additionally demonstrated that FM DIAL measurements can be made using short wave infrared (SWIR) telecommunications lasers. While measurements made using these components are noisier because turbulence and particulate matter cause more interference in this spectral region, monitoring in this region enables larger species to be detected simply because these lasers have a greater tuning range. In addition, SWIR monitoring also allows for the detection of second-row hydride species such as HF and HCl, which are important nuclear and CWA proliferation signatures.

Harper, Warren W.; Strasburg, Jana D.; Aker, Pam M.; Schultz, John F.

2004-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Smart Sensor System for Structural Condition Monitoring of Wind Turbines: 30 May 2002--30 April 2006  

SciTech Connect (OSTI)

This report describes the efforts of the University of Cincinnati, North Carolina A&T State University, and NREL to develop a structural neural system for structural health monitoring of wind turbine blades.

Schulz, M. J.; Sundaresan, M. J.

2006-08-01T23:59:59.000Z

242

In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor  

SciTech Connect (OSTI)

This work presents the first demonstration of a MEMS optical sensor for in-situ, real-time monitoring of both mechanical and chemical structure evolutions in a V2O5 lithium-ion battery (LIB) cathode during battery operation. A reflective membrane forms one side of a Fabry-Perot (FP) interferometer, while the other side is coated with V2O5 and exposed to electrolyte in a half-cell LIB. Using one microscope and two laser sources, both the induced membrane deflection and the corresponding Raman intensity changes are observed during lithium cycling. Results are in good agreement with the expected mechanical behavior and disorder change of the V2O5 layers, highlighting the significant potential of MEMS as enabling tools for advanced scientific investigations.

Jung, H. [University of Maryland; Gerasopoulos, K. [University of Maryland; Gnerlich, Markus [University of Maryland; Talin, A. Alec [Sandia National Laboratories; Ghodssi, Reza [University of Maryland

2014-06-01T23:59:59.000Z

243

Capacitive chemical sensor  

DOE Patents [OSTI]

A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

2014-05-27T23:59:59.000Z

244

Vapor spill pipe monitor  

DOE Patents [OSTI]

The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

Bianchini, G.M.; McRae, T.G.

1983-06-23T23:59:59.000Z

245

Preliminary Call for Papers SNA-2011 The Third International Symposium on Sensor Networks and Applications  

E-Print Network [OSTI]

-organization Congestion control and traffic models Mobile sensor and actor networks Underwater/acoustic sensor networks Pollution /air quality monitoring Building automation / visitors' guiding system Plant / farm monitoring

Hu, Fei

246

Corrosion sensor  

DOE Patents [OSTI]

A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

Glass, Robert S. (Livermore, CA); Clarke, Jr., Willis L. (San Ramon, CA); Ciarlo, Dino R. (Livermore, CA)

1994-01-01T23:59:59.000Z

247

Corrosion sensor  

DOE Patents [OSTI]

A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

1994-04-26T23:59:59.000Z

248

Reliable Real-time Clinical Monitoring Using Sensor Network Technology Octav Chipara, Christopher Brooks, Sangeeta Bhattacharya, Chenyang Lu,  

E-Print Network [OSTI]

- tients. We propose a monitoring system with two types of nodes: patient nodes equipped with wireless developed the Dynamic Relay Association Protocol (DRAP), an effective mechanism for discovering the right of stay in hospitals. The prevalence of clinical deterioration resulting in cardiopulmonary or respiratory

Lu, Chenyang

249

Development of laboratory and process sensors to monitor particle size distribution of industrial slurries (including shape characterization). Final technical report  

SciTech Connect (OSTI)

The overall goal of the Particle Size Distribution (PSD) sensor projects was to develop and commercialize a sensor system capable of particle analysis, in terms of size distributions, using concentrated suspensions at high solids concentrations. The early research was focused on application of ultrasonic spectroscopy of inorganic pigment slurries (e.g. titanium dioxide) commonly encountered on paper industry. During the project prototypes were tested in both academic and industrial laboratories. Work also involved successful field tests of the on-line prototype at a pigment manufacturing facility. Pen Kem continued the work at its cost beyond the initial funded period from March `92 to September `94. The first project (DE- FC05-88CE40684), which began in September 1988, culminated in a commercial laboratory instrument, Pen Kem AcoustoPhor {trademark} 8000, put on the market in June 1993. The follow-on project was aimed at investigation of shape and orientation effects on ultrasonic spectroscopy. A new cooperative agreement was awarded in September 1994 (DE-FC05-94CE40005) to develop shape characterization capabilities deemed critical by the clay industry. This follow-on project achieved following successes: A theoretical model was developed to account for the effects of size-dependent aspect ratios of spheroid particles under different orientations on ultrasound attenuation spectra of concentrated slurries. The theoretical model was confirmed by laboratory tests on kaolin slurries. An algorithm was developed to simulate evolution of particle orientation fields in simple squeezing flows.

Pendse, H.P.; Goetz, P.J.; Sharma, A.; Han, W; Bliss, T.C.

1996-10-01T23:59:59.000Z

250

Remote repair appliance  

DOE Patents [OSTI]

A remote appliance for supporting a tool for performing work at a work site on a substantially circular bore of a work piece and for providing video signals of the work site to a remote monitor comprises: a base plate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the base plate and positioned to roll against the bore of the work piece when the base plate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the base plate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the base plate such that the working end of the tool is positioned on the inner face side of the base plate; a camera for providing video signals of the work site to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the base plate, the camera holding means being adjustably attached to the outer face of the base plate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris. 5 figs.

Heumann, F.K.; Wilkinson, J.C.; Wooding, D.R.

1997-12-16T23:59:59.000Z

251

The New York Times headquarters daylighting mockup: Monitored performance of the daylighting control system  

E-Print Network [OSTI]

with LBNL sensors to monitor outdoor solar conditions,RTD temperature sensor (0.39C) shielded from direct solar

Lee, Eleanor S.; Selkowitz, Stephen E.

2006-01-01T23:59:59.000Z

252

E-Print Network 3.0 - acoustic remote sensing Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensor Web for Ocean Observation: System Design, Architecture, and Performance Summary: heat content and dynamics: integral constraints from acoustic remote sensing, ORION RFA...

253

Application of an automated wireless structural monitoring system for long-span suspension bridges  

SciTech Connect (OSTI)

This paper describes an automated wireless structural monitoring system installed at the New Carquinez Bridge (NCB). The designed system utilizes a dense network of wireless sensors installed in the bridge but remotely controlled by a hierarchically designed cyber-environment. The early efforts have included performance verification of a dense network of wireless sensors installed on the bridge and the establishment of a cellular gateway to the system for remote access from the internet. Acceleration of the main bridge span was the primary focus of the initial field deployment of the wireless monitoring system. An additional focus of the study is on ensuring wireless sensors can survive for long periods without human intervention. Toward this end, the life-expectancy of the wireless sensors has been enhanced by embedding efficient power management schemes in the sensors while integrating solar panels for power harvesting. The dynamic characteristics of the NCB under daily traffic and wind loads were extracted from the vibration response of the bridge deck and towers. These results have been compared to a high-fidelity finite element model of the bridge.

Kurata, M.; Lynch, J. P. [Department of Civil and Environ. Eng., University of Michigan, Ann Arbor, MI 48105 (United States); Linden, G. W. van der [SC Solutions, Sunnyvale, CA 94085 (United States); Hipley, P.; Sheng, L.-H. [California Department of Transportation (Caltrans), Sacramento, CA 95816 (United States)

2011-06-23T23:59:59.000Z

254

Microfabricated fuel heating value monitoring device  

DOE Patents [OSTI]

A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM)

2010-05-04T23:59:59.000Z

255

Universal Wireless Event Monitoring System  

E-Print Network [OSTI]

of remote query sensor systems have been investigated and various products have been developed for sensing different applications like water leakage, temperature, pressure, gas, diaper wetting etc [2-7]. The wireless link in these systems which is needed...-9]. One of the means of remote query sensing is the direct measurement of impedance of antenna which is wirelessly connected to the sensor. By measuring the impedance of the antenna using instrument like Impedance analyzer or network analyzer, the exact...

Yambem, Lamyanba

2012-10-19T23:59:59.000Z

256

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

257

2007 Urban Remote Sensing Joint Event Application of satellite Remote Sensing for Urban  

E-Print Network [OSTI]

2007 Urban Remote Sensing Joint Event Application of satellite Remote Sensing for Urban Risk Analysis: a case study of the 2003 extreme heat wave in Paris Bénédicte Dousset Hawaii Institute@ogs.trieste.it Abstract ­ Satellite observations are used to monitor the August 2003 heat wave in Paris

Paris-Sud XI, Université de

258

Fiber optic geophysical sensors  

DOE Patents [OSTI]

A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

Homuth, E.F.

1991-03-19T23:59:59.000Z

259

In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report  

SciTech Connect (OSTI)

The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

Serrato, M. G.

2013-09-27T23:59:59.000Z

260

U-240: Apple Remote Desktop Encryption Failure Lets Remote Users...  

Broader source: Energy.gov (indexed) [DOE]

0: Apple Remote Desktop Encryption Failure Lets Remote Users Obtain Potentially Sensitive Information U-240: Apple Remote Desktop Encryption Failure Lets Remote Users Obtain...

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Adaptive and mobile ground sensor array.  

SciTech Connect (OSTI)

The goal of this LDRD was to demonstrate the use of robotic vehicles for deploying and autonomously reconfiguring seismic and acoustic sensor arrays with high (centimeter) accuracy to obtain enhancement of our capability to locate and characterize remote targets. The capability to accurately place sensors and then retrieve and reconfigure them allows sensors to be placed in phased arrays in an initial monitoring configuration and then to be reconfigured in an array tuned to the specific frequencies and directions of the selected target. This report reviews the findings and accomplishments achieved during this three-year project. This project successfully demonstrated autonomous deployment and retrieval of a payload package with an accuracy of a few centimeters using differential global positioning system (GPS) signals. It developed an autonomous, multisensor, temporally aligned, radio-frequency communication and signal processing capability, and an array optimization algorithm, which was implemented on a digital signal processor (DSP). Additionally, the project converted the existing single-threaded, monolithic robotic vehicle control code into a multi-threaded, modular control architecture that enhances the reuse of control code in future projects.

Holzrichter, Michael Warren; O'Rourke, William T.; Zenner, Jennifer; Maish, Alexander B.

2003-12-01T23:59:59.000Z

262

Sensors for Safety & Performance Stationary Systems  

E-Print Network [OSTI]

for PEM Fuel Cell Vehicles · Interfacial Stability of Thin Film H2 Sensors · Sensors for Automotive Fuel Cell Systems · Micro-Machined Thin Film H2 Gas Sensors · Sensor Development for PEM Fuel Cell Systems for Fuel Cell Monitoring #12;Discussion Points Barriers ·Cost ·Application ·Lifetime ·Flexibility ·Public

263

Sensor Network Demonstration for In Situ Decommissioning - 13332  

SciTech Connect (OSTI)

Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the individual sensors would be immobilized during the grout pouring activities, a set of nine sensor racks were designed. The 270 sensors provided by Idaho National Laboratory (INL), Mississippi State University (MSU), University of Houston (UH), and University of South Carolina (USC) were secured to these racks based on predetermined locations. Once sensor racks were installed inside the test cube, connected and debugged, approximately 32 cubic yards of special grout material was used to entomb the sensors. MSU provided and demonstrated four types of fiber loop ring-down (FLR) sensors for detection of water, temperature, cracks, and movement of fluids. INL provided and demonstrated time differenced 3D electrical resistivity tomography (ERT), advanced tensiometers for moisture content, and thermocouples for temperature measurements. University of Houston provided smart aggregate (SA) sensors, which detect crack severity and water presence. An additional UH sensor system demonstrated was a Fiber Bragg Grating (FBG) fiber optic system measuring strain, presence of water, and temperature. USC provided a system which measured acoustic emissions during cracking, as well as temperature and pH sensors. All systems were connected to a Sensor Remote Access System (SRAS) data networking and collection system designed, developed and provided by FIU. The purpose of SRAS was to collect and allow download of the raw sensor data from all the sensor system, as well as allow upload of the processed data and any analysis reports and graphs. All this information was made available to the research teams via the Deactivation and Decommissioning Knowledge Management and Information Tool (D and D KM-IT). As a current research effort, FIU is performing an energy analysis, and transferring several sensor systems to a Photovoltaic (PV) System to continuously monitor energy consumption parameters and overall power demands. Also, One final component of this research is focusing on developing an integrated data network to capture, log and analyze sensor system data in near real time from a single inte

Lagos, L.; Varona, J.; Awwad, A. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Rivera, J.; McGill, J. [Department of Energy - DOE, Environmental Management Office (United States)] [Department of Energy - DOE, Environmental Management Office (United States)

2013-07-01T23:59:59.000Z

264

Vibration detection in turbomachinery using non-contacting sensors  

E-Print Network [OSTI]

Recent developments have seen the introduction of multiple Eddy Current Sensors (ECS) into turbomachinery. These sensors employ an active magnetic field to monitor each blade as it passes the sensor. They generate an ...

Cohen, Eric D., M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

265

Cost reduction performance enhancements of multiple site cooling water systems, enabled by remote system monitoring/control and multifaceted data management  

SciTech Connect (OSTI)

An outsourced cooling water treatment automated control and data acquisition package, has been designed, installed, and commissioned in over 70 sites in North America and offshore. The standard package consists of a controller, sensors, human-machine interface software, data acquisition and management software, communications, and reporting. Significant challenges to applying this standard package in multiple sites arose from variations in cooling system design and makeup water quality as well as operations, environmental considerations, metrics, and language. A standard approach has met these challenges and overcome effects of downsizing through significant reduction in non-value-added, manual activities. Overall system reliability has been improved by migration to best practice throughout the organizations involved and immediate proactive response to out-of-specification conditions. This paper documents the evolution of a standard cooling water automation and data management package from its inception to current practice.

Cook, B. [BetzDearborn Water Management Group, Horsham, PA (United States); Young, D. [BetzDearborn Water Management Group, Mississauga, Ontario (Canada); Tari, K. [Praxair, Inc., Tonawanda, New York, NY (United States)

1998-12-31T23:59:59.000Z

266

Implementing a wireless base station for a sensor network  

E-Print Network [OSTI]

Using wireless sensor networks for monitoring infrastructure is a new trend in civil engineering. Compared with traditional ways to monitor infrastructure, wireless sensor networks are cheap, safe, and compact. However, ...

Song, Heewon, 1977-

2004-01-01T23:59:59.000Z

267

Remote Access  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising ScienceRecentRegionalReliabilityScientificNationalRemote

268

REFERENCE: Introduction to Remote Sensing. James B.  

E-Print Network [OSTI]

Temperature #12;ACTIVE REMOTE SENSING The sensor illuminates the terrain with its own energy, then records the reflected energy as it has been altered by the earth's surface. #12;SIDE-LOOKING AIRBORNE RADAR SLAR #12 JUAN VENICE #12;EARTH TOPOGRAPHY USING MULTISPECTRAL SCANNERS MT. PINATUBO MT. EVEREST #12;APPLICATIONS

Gilbes, Fernando

269

Hydrocarbon sensors and materials therefor  

DOE Patents [OSTI]

An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

2000-01-01T23:59:59.000Z

270

Advanced 3D Sensing and Visualization System for Unattended Monitoring  

SciTech Connect (OSTI)

The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

Carlson, J.J.; Little, C.Q.; Nelson, C.L.

1999-01-01T23:59:59.000Z

271

APPLICATIONS OF CURRENT TECHNOLOGY FOR CONTINUOUS MONITORING OF SPENT FUEL  

SciTech Connect (OSTI)

Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each specific need. There are products on the market for smart meters, industrial lighting control and home automation that can be applied to the Back End Fuel Cycle. With a little integration and innovation a cost effective solution is achievable.

Drayer, R.

2013-06-09T23:59:59.000Z

272

Using remotely sensed imagery and GIS to monitor and research salmon spawning: A case study of the Hanford Reach fall chinook (Oncorhynchus Tshawytscha)  

SciTech Connect (OSTI)

The alteration of ecological systems has greatly reduced salmon populations in the Pacific Northwest. The Hanford Reach of the Columbia River, for example, is a component of the last ecosystem in eastern Washington State that supports a relatively healthy population of fall chinook salmon ([Oncorhynchus tshawytscha], Huntington et al. 1996). This population of fall chinook may function as a metapopulation for the Mid-Columbia region (ISG 1996). Metapopulations can seed or re-colonize unused habitat through the mechanism of straying (spawning in non-natal areas) and may be critical to the salmon recovery process if lost or degraded habitat is restored (i.e., the Snake, Upper Columbia, and Yakima rivers). For these reasons, the Hanford Reach fall chinook salmon population is extremely important for preservation of the species in the Columbia River Basin. Because this population is important to the region, non-intrusive techniques of analysis are essential for researching and monitoring population trends and spawning activities.

RH Visser

2000-03-16T23:59:59.000Z

273

AUTHENTICATED SENSOR INTERFACE DEVICE FOR JOINT USE SAFEGUARDS APPLICATIONS - CONCEPTS AND CHALLENGES  

SciTech Connect (OSTI)

This paper will discuss the key features of the Authenticated Sensor Interface Device that collectively provide the ability to share data among a number of parties while ensuring the authentication of data and protecting both the operators and the IAEAs interests. The paper will also discuss the development of the prototype, the initial testing with an accountancy scale, and future plans and challenges to implementation into the joint use and remote monitoring applications. As nuclear fuel cycle technology becomes more prevalent throughout the world and the capacity of plants increases, limited resources of the IAEA are being stretched near a breaking point. A strategy is to increase efficiency in safeguards monitoring using joint use equipment that will provide the facility operator process data while also providing the IAEA key safeguards data. The data, however, must be authenticated and validated to ensure the data have not been tampered with. The Authenticated Sensor Interface Device provides the capability to share data and can be a valuable component in the IAEAs ability to collect accountancy data from scales in Uranium conversion and enrichment plants, as well as nuclear fuel fabrication plants. Likewise, the Authenticated Sensor Interface Device can be configured to accept a diverse array of input signals, ranging from analog voltage, to current, to digital interfaces and more. These modular capabilities provide the ability to collect authenticated, joint-use, data streams from various process monitoring sensors.

Poland, R.; Drayer, R.; Wilson, J.

2013-08-12T23:59:59.000Z

274

Intrusion detection sensor testing tools  

SciTech Connect (OSTI)

Intrusion detection sensors must be frequently tested to verify that they are operational, and they must be periodically tested to verify that they are functioning at required performance levels. Concerns involving this testing can include: The significant amount of manpower required, inconsistent results due to variability in methods and personnel, exposure of personnel to hazardous environments, and difficulty in obtaining access to the areas containing some of the intrusion sensors. To address these concerns, the Department of Energy directed Sandia National Labs. to develop intrusion detection sensor testing tools. Over the past two years Sandia has developed several sensor testing tool prototypes. This paper describes the evolution of an exterior intrusion detection sensor tester and automatic data logger, and also describes various interior intrusion detection sensor test fixtures that can be remotely activated to simulate an intruder.

Hayward, D.R.

1994-08-01T23:59:59.000Z

275

A Hybrid Sensor System for Indoor Air Quality Monitoring Yun Xiang, Ricardo Piedrahita, Robert P. Dick, Michael Hannigan, Qin Lv, Li Shang  

E-Print Network [OSTI]

indoor pollutants, such as carbon dioxide (CO2), can have significant impacts on the productivity quality sensor networks [17], [34]. Mobile sensor networks are composed of many low-cost, power- efficient than outdoors. Many indoor pollutants, such as volatile or- ganic compound (VOC), carbon monoxide

Dick, Robert

276

Uncertainty Quantification Techniques for Sensor Calibration...  

Office of Scientific and Technical Information (OSTI)

Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants Re-direct Destination: This report describes research towards the development of...

277

Uncertainty Quantification Techniques for Sensor Calibration...  

Office of Scientific and Technical Information (OSTI)

Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants Re-direct Destination: Temp Data Fields Ramuhalli, Pradeep; Lin, Guang; Crawford,...

278

Sensor test facilities and capabilities at the Nevada Test Site  

SciTech Connect (OSTI)

Sandia National Laboratories has recently developed two major field test capabilities for unattended ground sensor systems at the Department of energy`s Nevada Test Site (NTS). The first capability utilizes the NTS large area, varied terrain, and intrasite communications systems for testing sensors for detecting and tracking vehicular traffic. Sensor and ground truth data can be collected at either of two secure control centers. This system also includes an automated ground truth capability that consists of differential Global Positioning Satellite (GPS) receivers on test vehicles and live TV coverage of critical road sections. Finally there is a high-speed, secure computer network link between the control centers and the Air Force`s Theater Air Command and Control Simulation Facility in Albuquerque NM. The second capability is Bunker 2-300. It is a facility for evaluating advanced sensor systems for monitoring activities in underground cut-and-cover facilities. The main part of the facility consists of an underground bunker with three large rooms for operating various types of equipment. This equipment includes simulated chemical production machinery and controlled seismic and acoustic signal sources. There has been a thorough geologic and electromagnetic characterization of the region around the bunker. Since the facility is in a remote location, it is well-isolated from seismic, acoustic, and electromagnetic interference.

Boyer, W.B.; Burke, L.J.; Gomez, B.J.; Livingston, L.; Nelson, D.S.; Smathers, D.C.

1996-12-31T23:59:59.000Z

279

Journal of Materials Science, 2009. 44(6): p. 1560-1571 Whispering Gallery Mode-Based Micro-Optical Sensors for Structural Health Monitoring  

E-Print Network [OSTI]

experimental results. Keywords: Whispering gallery mode, micro sensors, syntactic foams, smart composites of the glass fibers is replaced by an optical fiber for sensing [9]. These sensing schemes are successful

Gupta, Nikhil

280

Minimally intrusive strategies for fault detection and energy monitoring  

E-Print Network [OSTI]

This thesis addresses the need for automated monitoring systems that rely on minimally intrusive sensor arrays. The monitoring techniques employed in this thesis require fewer sensors because they take a different approach ...

Cox, Robert Williams, 1979-

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nuclear magnetic resonance readable sensors  

E-Print Network [OSTI]

The monitoring of physiological biomarkers is fundamental to the diagnosis and treatment of disease. We describe here the development of molecular sensors which can be read by magnetic resonance (MR) relaxometry. MR is an ...

Ling, Yibo

2010-01-01T23:59:59.000Z

282

CFMRI Physiological Monitoring System Operator's Manual  

E-Print Network [OSTI]

and lead wires (MRI compatible) can cause patient heating or burn if not used properly. To minimize in Figure 1) · Invivo millennia® 3155MVS remote monitor (#9 in Figure 1) · BioPac System - Respiratory Belt) Turn on the Invivo 3155MVS remote monitor located in the control room. · Invivo 3155MVS should

California at San Diego, University of

283

V-011: IBM Tivoli Monitoring Web Server HTTP TRACE/TRACK Support...  

Broader source: Energy.gov (indexed) [DOE]

1: IBM Tivoli Monitoring Web Server HTTP TRACETRACK Support Lets Remote Users Obtain Potentially Sensitive Information V-011: IBM Tivoli Monitoring Web Server HTTP TRACETRACK...

284

Multi-Resolution Storage and Search in Sensor Networks  

E-Print Network [OSTI]

users of a micro-climate monitoring network [Hamilton 2004]Fig. 21. Micro-climate monitoring sensor network deploymentNetworks Table I. Data Requirement Estimates for Scienti?c Applications Application Building Health Monitoring [Kohler] Micro-

Ganesan, Deepak; Greenstein, Ben; Estrin, D; Heidemann, John; Govindan, Ramesh

2007-01-01T23:59:59.000Z

285

Conceptual design analyses for Hanford Site deployable remote spectroscopy systems  

SciTech Connect (OSTI)

This document identifies potential remote, NIR spectroscopic waste surface moisture monitoring system design alternatives to be operated inside one of the Hanford Site, high level, nuclear waste storage tanks. Potential tank waste moisture data impacts from the remote NIR signal transfer through high humidity vapor space is evaluated.

Philipp, B.L.; Reich, F.R.

1994-09-01T23:59:59.000Z

286

Transmission Line Security Monitor  

ScienceCinema (OSTI)

The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

None

2013-05-28T23:59:59.000Z

287

Lean blowoff detection sensor  

SciTech Connect (OSTI)

Apparatus and method for detecting incipient lean blowoff conditions in a lean premixed combustion nozzle of a gas turbine. A sensor near the flame detects the concentration of hydrocarbon ions and/or electrons produced by combustion and the concentration monitored as a function of time are used to indicate incipient lean blowoff conditions.

Thornton, Jimmy (Morgantown, WV); Straub, Douglas L. (Morgantown, WV); Chorpening, Benjamin T. (Morgantown, WV); Huckaby, David (Morgantown, WV)

2007-04-03T23:59:59.000Z

288

High aspect ratio, remote controlled pumping assembly  

DOE Patents [OSTI]

A miniature dual syringe-type pump assembly is described which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor. 4 figs.

Brown, S.B.; Milanovich, F.P.

1995-11-14T23:59:59.000Z

289

Microfabricated BTU monitoring device for system-wide natural gas monitoring.  

SciTech Connect (OSTI)

The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will expedite accurate financial accounting. Industrial endusers will benefit through continuous feedback of physical gas properties to improve combustion efficiency during use. To meet this need, Sandia has developed a natural gas heating value monitoring instrument using existing and modified microfabricated components. The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor provides diagnostics and surety. This combination allows for continuous calorimetric determination with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This system will find application at remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. Microfabrication techniques will allow the analytical components to be manufactured in production quantities at a low per-unit cost.

Einfeld, Wayne; Manginell, Ronald Paul; Robinson, Alex Lockwood; Moorman, Matthew Wallace

2005-11-01T23:59:59.000Z

290

Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement  

SciTech Connect (OSTI)

A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

2013-05-01T23:59:59.000Z

291

Localization with Dive'N'Rise (DNR) Beacons for Underwater Acoustic Sensor Networks  

E-Print Network [OSTI]

Localization with Dive'N'Rise (DNR) Beacons for Underwater Acoustic Sensor Networks Melike Erol-Based Systems]: Underwater acoustic sensor networks - localization General Terms: Performance Keywords: Underwater sensor networks, localization, positioning, mobile beacon 1. INTRODUCTION Pollution monitoring

Zhou, Shengli

292

Spark-plug-mounted fiber optic sensor for measuring in-cylinder pressure in engines  

E-Print Network [OSTI]

-coated fiber sensor is electroplated with copper. Finally, the metal-protected fiber sensor is embedded in a groove cut in the spark plug casing. Spark-plug-embedded FFPI sensors were used to monitor pressure in internal combustion engines...

Bae, Taehan

2001-01-01T23:59:59.000Z

293

BaBar Note 302 Monitoring Requirements of  

E-Print Network [OSTI]

monitoring of background radiation levels for diagnostic and detector-protection purposes, monitoring-dependent Sensors : : : : : : : : : : : : : : : : : 27 5 Humidity Monitoring 27 6 Schedule 28 2 #12;1 General-II interaction region and the SVT. The space available for sensors and readout cables for SVT monitoring

294

Variable Radii Connected Sensor Cover in Sensor ZONGHENG ZHOU, SAMIR R. DAS, HIMANSHU GUPTA  

E-Print Network [OSTI]

is to maintain the fidelity of the gathered data while minimizing energy usage in the network. Energy is spent to be monitored. The set of active sensors should also form a connected communication graph, so that they can of selecting a minimum energy-cost connected sensor cover, when each sensor node can vary its sensing

Gupta, Himanshu

295

On Perimeter Coverage in Wireless Sensor Networks with Minimum Cost  

E-Print Network [OSTI]

, and asset tracking [1], [2]. In monitoring applications, small battery-powered sensor nodes are deployed of the white house so as to ensure its security. Each sensor is associated with a cost. To reduce the total

Tam, Vincent W. L.

296

Harsh Environment Silicon Carbide Sensor Technology for Geothermal Instrumentation  

Broader source: Energy.gov [DOE]

Project objectives: Develop advanced sensor technology for the direct monitoring of geothermal reservoirs. Engineer sensors to survive and operate in H2O pressures up to 220 bar and temperatures as high as 374o C.

297

Smart Device Sensing Architectures and Applications Abstract--This paper illustrates the use of smart device sensors  

E-Print Network [OSTI]

of smart device sensors in various real time applications. Two types of sensor data processing architectures have been discussed. The on-device data processing architecture allows processing of the sensor architecture requires the device to send the sensor data to a remote server for further computation and action

Gesbert, David

298

Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design,Design,  

E-Print Network [OSTI]

Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design of Freiburg #12;OverviewOverview · Sensor networks · mobile sensor · mobile robot · Mote · sensor relocation #12;Sensor networks · A wirless network . · Set of sensors. · Static Mote #12;Mobile sensor networks

Schindelhauer, Christian

299

Ris-R-1342(EN) Fundamentals for Remote Structural  

E-Print Network [OSTI]

Ris-R-1342(EN) Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades a Preproject Annex C Fibre Transducer for Damage Detection in Adhesive Layers of Wind Turbine Blades Peter Structural Health Monitoring of Wind Turbine Blades a Preproject Annex C - Fibre Transducer for Damage

300

Remote Systems Design & Deployment  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNLs experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNLs work experiences, and the work of others in the national laboratory complex.

Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

2009-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration  

SciTech Connect (OSTI)

This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+) simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.

Challener, William

2014-12-31T23:59:59.000Z

302

Sensors 2014, 14, 19609-19621; doi:10.3390/s141019609 ISSN 1424-8220  

E-Print Network [OSTI]

; structural health monitoring 1. Introduction 1.1. Background In recent years, wireless and passive sensorsSensors 2014, 14, 19609-19621; doi:10.3390/s141019609 sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Wireless Measurement of Elastic and Plastic Deformation by a Metamaterial-Based Sensor Burak Ozbey

Demir, Hilmi Volkan

303

Refrigeration monitor and alarm system  

SciTech Connect (OSTI)

A monitor is described for a refrigeration system including a heat reclaiming system coupled therewith, comprising: a sensor positioned to detect the level of liquid state refrigerant in the system and provide an electrical output signal therefrom; a digital display for displaying the refrigerant level; first circuit means coupling the digital display to the sensor for actuating the digital display; and lockout means coupled with the sensor for deactivating the heat reclaiming system when a preselected refrigerant level is reached.

Branz, M.A.; Renaud, P.F.

1986-09-23T23:59:59.000Z

304

Novel monitoring system to diagnose rail track foundation problems  

E-Print Network [OSTI]

A low cost, remote monitoring system has been developed to diagnose rail track subgrade failures. The portable monitoring system consists of five liquid vertical settlement probes, one piezometer, a small data acquisition ...

Aw, Eng Sew, 1978-

2004-01-01T23:59:59.000Z

305

Remotely Interrogated Passive Polarizing Dosimeter (RIPPeD).  

SciTech Connect (OSTI)

Conductive polymers have become an extremely useful class of materials for many optical applications. We have developed an electrochemical growth method for depositing highly conductive ({approx}100 S/cm) polypyrrole. Additionally, we have adapted advanced fabrication methods for use with the polypyrrole resulting in gratings with submicron features. This conductive polymer micro-wire grid provides an optical polarizer with unique properties. When the polymer is exposed to ionizing radiation, its conductivity is affected and the polarization properties of the device, specifically the extinction ratio, change in a corresponding manner. This change in polarization properties can be determined by optically interrogating the device, possibly from a remote location. The result is a passive radiation-sensitive sensor with very low optical visibility. The ability to interrogate the device from a safe standoff distance provides a device useful in potentially dangerous environments. Also, the passive nature of the device make it applicable in applications where external power is not available. We will review the polymer deposition, fabrication methods and device design and modeling. The characterization of the polymer's sensitivity to ionizing radiation and optical testing of infrared polarizers before and after irradiation will also be presented. These experimental results will highlight the usefulness of the conductive infrared polarizer to many security and monitoring applications.

Kemme, Shanalyn A.; Buller, Daniel L.; Dirk, Shawn M.; Boye, Robert R.; Samora, Sally; Washburn, Cody M.; Wheeler, David Roger

2008-09-01T23:59:59.000Z

306

Transportation Security SensorNet: A Service Oriented Architecture  

E-Print Network [OSTI]

Transportation Security SensorNet: A Service Oriented Architecture for Cargo Monitoring Martin..................................................................................................................2 C. Service Oriented Architecture .................................................................4 B. Adobe - Service Oriented Architecture

Kansas, University of

307

Standard hydrogen monitoring system equipment installation instructions  

SciTech Connect (OSTI)

This document provides the technical specifications for the equipment fabrication, installation, and sitework construction for the Standard Hydrogen Monitoring System. The Standard Hydrogen Monitoring System is designed to remove gases from waste tank vapor space and exhaust headers for continual monitoring and remote sample analysis.

Schneider, T.C.

1996-09-27T23:59:59.000Z

308

Applications of Remote Sensing to Study Climate Change  

E-Print Network [OSTI]

to develop image processing techniques that later were used with Landsat data. #12;CIVILIAN SATELLITES 1970's was very much appreciated. #12;THE CUBAN MISSILE CRISIS 1962 · In fall 1962, reports indicated by current remote sensors is the electromagnetic energy emanating from the object of interest

Gilbes, Fernando

309

NOx Sensor Development  

SciTech Connect (OSTI)

The objectives of this report are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) exhaust gas monitoring; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements; (3) Explore designs and manufacturing methods that could be compatible with mass fabrication; and (4) Collaborate with industry in order to (ultimately) transfer the technology to a supplier for commercialization.

Woo, L Y; Glass, R S

2009-10-27T23:59:59.000Z

310

Long-Term, Autonomous Measurement of Atmospheric Carbon Dioxide Using an Ormosil Nanocomposite-Based Optical Sensor  

SciTech Connect (OSTI)

The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected to increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.

Kisholoy Goswami

2005-10-11T23:59:59.000Z

311

Diode laser-based sensor system for long-path absorption measurements of atmospheric concentration and near-IR molecular spectral parameters  

SciTech Connect (OSTI)

Line-locked near-IR diode lasers and a simple retroreflector/telescope system were used for remote sensing of atmospheric constituents over long atmospheric paths. The experimental configuration used in preliminary measurements of atmospheric water vapor and oxygen with AlGaAs diode lasers is presented. A prototype field sensor system currently under development shares the same basic configuration but incorporates interchangeable AlGaAs and InGaAsP diode-laser modules for monitoring a variety of atmospheric gases.

Goldstein, N.; Lee, J.; Adler-Golden, S.M.; Bien, F.

1993-12-31T23:59:59.000Z

312

Remote actuated valve implant  

SciTech Connect (OSTI)

Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

2014-02-25T23:59:59.000Z

313

Challenges for Efficient Communication in Underwater Acoustic Sensor Networks  

E-Print Network [OSTI]

Challenges for Efficient Communication in Underwater Acoustic Sensor Networks Ian F. Akyildiz for oceano- graphic data collection, pollution monitoring, offshore explo- ration and tactical surveillance in collaborative monitoring missions. Underwater acoustic network- ing is the enabling technology

Pompili, Dario

314

Concept of Operations for Nuclear Warhead Embedded Sensors  

SciTech Connect (OSTI)

Embedded arms-control-sensors provide a powerful new paradigm for managing compliance with future nuclear weapons treaties, where deployed warhead numbers will be reduced to 1000 or less. The CONOPS (Concept of Operations) for use with these sensors is a practical tool with which one may help define design parameters, including size, power, resolution, communications, and physical structure. How frequently must data be acquired and must a human be present? Will such data be acquired for only stored weapons or will it be required of deployed weapons as well? Will tactical weapons be subject to such monitoring or will only strategic weapons apply? Which data will be most crucial? Will OSI's be a component of embedded sensor data management or will these sensors stand alone in their data extraction processes? The problem space is massive, but can be constrained by extrapolating to a reasonable future treaty regime and examining the bounded options this scenario poses. Arms control verification sensors, embedded within the warhead case or aeroshell, must provide sufficient but not excessively detailed data, confirming that the item is a nuclear warhead and that it is a particular warhead without revealing sensitive information. Geolocation will be provided by an intermediate transceiver used to acquire the data and to forward the data to a central processing location. Past Chain-of-Custody projects have included such devices and will be primarily responsible for adding such indicators in the future. For the purposes of a treaty regime a TLI will be verified as a nuclear warhead by knowledge of (a) the presence and mass of SNM, (b) the presence of HE, and (c) the reporting of a unique tag ID. All of these parameters can be obtained via neutron correlation measurements, Raman spectroscopy, and fiber optic grating fabrication, respectively. Data from these sensors will be pushed out monthly and acquired nearly daily, providing one of several verification layers in depth, including on-site inspections, NTM, declarations, and semi-annual BCC meetings. Human intervention will not be necessary. The sheer numbers, small size, and wide distribution of warhead TLIs will mandate the added level of remote monitoring that Embedded Sensors can provide. This multilayer protection will limit the need to increase the frequency of OSIs, by adding confidence that declared TLIs remain as declared and that no undeclared items enter the regime without the other States Party's knowledge. Acceptance of Embedded arms control Sensor technologies will require joint development by all State's Parties involved. Principles of operation and robustness of technologies must be individually evaluated to sustain confidence in the strength of this system against attack. Weapons designers must be assured that these sensors will in no way impact weapon performance and operation, will not affect weapons security and safety, and will have a neutral impact upon weapon system surety. Each State's Party will need to conduct an in depth review of their weapons lifecycle to determine where moves may be reduced to minimize vulnerabilities and where random selection may be used to minimize the ability to make undeclared changes. In the end Verification is a political measure, not a technical one. If the potential users can gain sufficient confidence in the application of Embedded arms control Sensors, they could constitute the final layer of glue to hold together the next Nuclear Arms Control agreement.

Rockett, P D; Koncher, T R

2012-05-16T23:59:59.000Z

315

EC MoDeRn Project: In-situ Demonstration of Innovative Monitoring Technologies for Geological Disposal - 12053  

SciTech Connect (OSTI)

Monitoring to provide information on the evolution of geological disposal presents several challenges. The 4-year, euros M 5, EC MoDeRn Project (http://www.modern-fp7.eu/), which commenced in 2009, addresses monitoring processes, state-of-the-art technology and innovative research and development of monitoring techniques. This paper discusses some of the key drivers for the development of innovative monitoring techniques and provides outlines of the demonstration programmes being conducted within MoDeRn. The aim is to develop these innovative monitoring techniques and to demonstrate them under realistic conditions present in underground laboratories. These demonstration projects, applying a range of different monitoring techniques, are being carried out at underground research facilities in different geological environments at HADES URL in Belgium (plastic clay), Bure in France (indurated clay) and at Grimsel Test Site (granite) in Switzerland. These are either built upon existing infrastructure (EC ESDRED Low pH shotcrete and TEM experiments at Grimsel; and PRACLAY experiment and underground galleries in HADES) or will be attached to infrastructure that is being developed and financed by resources outside of this project (mock-up disposal cell in Bure). At Grimsel Test Site, cross-hole and hole-to-tunnel seismic methods are being employed as a means to monitor induced changes in an artificially saturated bentonite wall confined behind a shotcrete plug. Recognising the limitations for travel-time tomography for monitoring a disposal cell, full waveform inversion techniques are being employed to enhance the capacity to monitor remote from the excavation. At the same Grimsel location, an investigation will be conducted of the potential for using a high frequency wireless (HFW) sensor network embedded within the barrier system; this will include the possibility of providing energy remotely to isolated sensors. At the HADES URL, the monitoring programme will utilise the PRACLAY gallery equipped to simulate a disposal gallery for heat-generating high-level waste evaluating fibre-optic based sensing techniques, including distributed sensing for thermal distribution and long-term reliability in harsh conditions. It also includes the potential to improve the treatment of signals from micro-seismic monitoring to enable enhanced understanding of the evolution around the gallery following its excavation due to ventilation, saturation and heating, and to image a water-bearing concretion layer. HADES URL will also be used to test wireless techniques to transmit monitoring data from the underground to the surface. The main focus of this contribution is to evaluate magneto-inductive data transmission; and to optimise energy usage. At the Bure underground facility in France, monitoring systems have been developed and will be embedded into the steel liner for the mock-up high-level waste disposal tunnel. The aim of this programme is to establish the capacity to conduct integrated monitoring activities inside the disposal cell, on the cell liner and in the near-field and to assess the capability of the monitoring to withstand construction and liner emplacement procedures. These projects, which are supported by focused development and testing of the monitoring systems, will allow the testing of both the effectiveness of these techniques applied to disposal situations and to understand the limits of these monitoring technologies. This approach should also enhance the confidence of key stakeholders in the ability to understand/confirm the changes occurring within a disposal cell. In addition, remote or 'non-intrusive' monitoring technologies are evaluated to provide a means of enhancing understanding of what is occurring in an isolated disposal cell. The projects also test solutions for embedded monitoring systems in challenging (risk of damage) situations. The outputs from this work will lead to improved understanding of these state-of-the-art techniques and allow focused development of those techniques beneficial to future monitoring progr

Breen, B.J. [NDA, Herdus House, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3HU (United Kingdom); Garcia-Sineriz, J.L. [AITEMIN, c/Margarita Salas 14-Parque Leganes Tecnologico-Leganes, ES-28918, Madrid (Spain); Maurer, H. [ETH Zurich, ETH Honggerberg, CH-8093, Zurich (Switzerland); Mayer, S. [ANDRA, 1-7 rue Jean-Monnet, F-92298 Chatenay-Malabry cedex (France); Schroeder, T.J. [NRG, P.O. Box 25, NL-1755 ZG Petten (Netherlands); Verstricht, J. [EURIDICE EIG, c/o SCK.CEN, Boeretang 200, BE-2400 Mol (Belgium)

2012-07-01T23:59:59.000Z

316

Rack protection monitor  

DOE Patents [OSTI]

A hardwired, fail-safe rack protection monitor utilizes electromechanical relays to respond to the detection by condition sensors of abnormal or alarm conditions (such as smoke, temperature, wind or water) that might adversely affect or damage equipment being protected. When the monitor is reset, the monitor is in a detection mode with first and second alarm relay coils energized. If one of the condition sensors detects an abnormal condition, the first alarm relay coil will be de-energized, but the second alarm relay coil will remain energized. This results in both a visual and an audible alarm being activated. If a second alarm condition is detected by another one of the condition sensors while the first condition sensor is still detecting the first alarm condition, both the first alarm relay coil and the second alarm relay coil will be de-energized. With both the first and second alarm relay coils de-energized, both a visual and an audible alarm will be activated. In addition, power to the protected equipment will be terminated and an alarm signal will be transmitted to an alarm central control. The monitor can be housed in a separate enclosure so as to provide an interface between a power supply for the protected equipment and the protected equipment.

Orr, Stanley G. (Wheaton, IL)

2000-01-01T23:59:59.000Z

317

Sensor device and methods for using same  

DOE Patents [OSTI]

A sensor device and method of employment is provided. More specifically, a sensor device adapted to detect, identify and/or measure a chemical and/or physical characteristic upon placement of the device into an environment, especially a liquid medium for which monitoring is sought is provided.

Rothgeb, Timothy Michael; Gansle, Kristina Marie; Joyce, Jonathan Livingsto; Jordan, James Madison; Rohwer, Tedd Addison; Lockhart, Randal Ray; Smith, Christopher Lawrence; Trinh, Toan; Cipollone, Mark Gary

2005-10-25T23:59:59.000Z

318

air pollution monitoring: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A Wireless Sensor Network Air Pollution Monitoring System CERN Preprints Summary: Sensor networks are currently an...

319

Remote-Reading Safety and Safeguards Surveillance System for 3013 Containers  

SciTech Connect (OSTI)

At Hanford's Plutonium Finishing Plant (PFP), plutonium oxide is being loaded into stainless steel containers for long-term storage on the Hanford Site. These containers consist of two weld-sealed stainless steel cylinders nested one within the other. A third container holds the plutonium within the inner cylinder. This design meets the U.S. Department of Energy (DOE) storage standard, DOE-STD- 3013-2000, which anticipates a 50-year storage lifetime. The 3013 standard also requires a container surveillance program to continuously monitor pressure and to assure safeguards are adequate. However, the configuration of the container system makes using conventional measurement and monitoring methods difficult. To better meet the 3013 monitoring requirements, a team from Fluor Hanford (who manages the PFP), Pacific Northwest National Laboratory (PNNL), and Vista Engineering Technologies, LLC, developed a safer, cost-efficient, remote PFP 3013 container surveillance system. This new surveillance system is a combination of two successfully deployed technologies: (1) a magnetically coupled pressure gauge developed by Vista Engineering and (2) a radio frequency (RF) tagging device developed by PNNL. This system provides continuous, 100% monitoring of critical parameters with the containers in place, as well as inventory controls. The 3013 container surveillance system consists of three main elements: (1) an internal magnetic pressure sensor package, (2) an instrument pod (external electronics package), and (3) a data acquisition storage and display computer. The surveillance system described in this paper has many benefits for PFP and DOE in terms of cost savings and reduced personnel exposure. In addition, continuous safety monitoring (i.e., internal container pressure and temperature) of every container is responsible nuclear material stewardship and fully meets and exceeds DOE's Integrated Surveillance Program requirements.

Lechelt, W. M.; Skorpik, J. R.; Silvers, K. L.; Szempruch, R. W.; Douglas, D. G.; Fein, K. O.

2002-02-26T23:59:59.000Z

320

Power consumption monitoring using additional monitoring device  

SciTech Connect (OSTI)

Today, emphasis is placed on reducing power consumption. Computers are large consumers; therefore it is important to know the total consumption of computing systems. Since their optimal functioning requires quite strict environmental conditions, without much variation in temperature and humidity, reducing energy consumption cannot be made without monitoring environmental parameters. Thus, the present work uses a multifunctional electric meter UPT 210 for power consumption monitoring. Two applications were developed: software which carries meter readings provided by electronic and programming facilitates remote device and a device for temperature monitoring and control. Following temperature variations that occur both in the cooling system, as well as the ambient, can reduce energy consumption. For this purpose, some air conditioning units or some computers are stopped in different time slots. These intervals were set so that the economy is high, but the work's Datacenter is not disturbed.

Tru?c?, M. R. C., E-mail: radu.trusca@itim-cj.ro; Albert, ?., E-mail: radu.trusca@itim-cj.ro; Tudoran, C., E-mail: radu.trusca@itim-cj.ro; Soran, M. L., E-mail: radu.trusca@itim-cj.ro; F?rca?, F., E-mail: radu.trusca@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Abrudean, M. [Technical University of Cluj-Napoca, Cluj-Napoca (Romania)] [Technical University of Cluj-Napoca, Cluj-Napoca (Romania)

2013-11-13T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Thermal Infrared Remote Sensing  

E-Print Network [OSTI]

Thermal Infrared Remote Sensing Thermal Infrared Remote Sensing #12;0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 and x-ray Ultraviolet Infrared Microwave and radio waves Wavelength in meters (m) Electromagnetic.77 700 red limit 30k0.041 2.48 green500 near-infrared far infrared ultraviolet Thermal Infrare refers

322

Battery system with temperature sensors  

DOE Patents [OSTI]

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

323

Urea biosensor for hemodialysis monitoring  

DOE Patents [OSTI]

This research discloses an electrochemical sensor capable of detecting and quantifying urea in fluids resulting from hemodialysis procedures. The sensor is based upon measurement of the pH change produced in an aqueous environment by the products of the enzyme-catalyzed hydrolysis of urea. The sensor may be fabricated using methods amenable to mass fabrication, resulting in low-cost sensors and thus providing the potential for disposable use. In a typical application, the sensor could be used in treatment centers, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. The sensor can also be utilized to allow at-home testing to determine if dialysis was necessary. Such a home monitor is similar, in principle, to devices used for blood glucose testing by diabetics, and would require a blood droplet sample by using a finger prick. 9 figs.

Glass, R.S.

1999-01-12T23:59:59.000Z

324

Urea biosensor for hemodialysis monitoring  

DOE Patents [OSTI]

An electrochemical sensor capable of detecting and quantifying urea in fluids resulting from hemodialysis procedures. The sensor is based upon measurement of the pH change produced in an aqueous environment by the products of the enzyme-catalyzed hydrolysis of urea. The sensor may be fabricated using methods amenable to mass fabrication, resulting in low-cost sensors and thus providing the potential for disposable use. In a typical application, the sensor could be used in treatment centers, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. The sensor can also be utilized to allow at-home testing to determine if dialysis was necessary. Such a home monitor is similar, in principle, to devices used for blood glucose testing by diabetics, and would require a blood droplet sample by using a finger prick.

Glass, Robert S. (Livermore, CA)

1999-01-01T23:59:59.000Z

325

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Remote Sensing of Weather Hazards Using  

E-Print Network [OSTI]

Central American and Caribbean Games celebrated at Mayaguez, Puerto Rico during the Summer of 2010. Index that are not dependent on existing infrastructure, operat- ing using solar energy and ad-hoc wireless networks, providing Terms--Meteorological radar, rainfall monitoring, sensor networks, solar energy. I. INTRODUCTION

Cruz-Pol, Sandra L.

326

Implementation of remove monitoring in facilities under safeguards with unattended systems  

SciTech Connect (OSTI)

Remote monitoring is being applied by the International Atomic Energy Agency (IAEA) at nuclear facilities around the world. At the Monju Reactor in Japan we have designed, developed and implemented a remote monitoring approach that can serve as a model for applying remote monitoring to facilities that are already under full-scope safeguards using unattended instrumentation. Remote monitoring implementations have historically relied upon the use of specialized data collection hardware and system design features that integrate remote monitoring into the safeguards data collection system. The integration of remote monitoring and unattended data collection increases the complexity of safeguards data collection systems. This increase in complexity necessarily produces a corresponding reduction of system reliability compared to less-complex unattended monitoring systems. At the Monju facility we have implemented a remote monitoring system that is decoupled from the activity of safeguards data collection. In the completed system the function of remote data transfer is separated from the function of safeguards data collection. As such, a failure of the remote monitoring function cannot produce an associated loss of safeguards data, as is possible with integrated remote-monitoring implementations. Currently, all safeguards data from this facility is available to the IAEA on a 24/7 basis. This facility employs five radiation-based unattended systems, video surveillance and numerous optical seal systems. The implementation of remote monitoring at this facility, while increasing the complexity of the safeguards system, is designed to avoid any corresponding reduction in reliability of the safeguards data collection systems by having decoupled these functions. This design and implementation can serve as a model for implementation of remote monitoring at nuclear facilities that currently employ unattended safeguards systems.

Beddingfield, David H [Los Alamos National Laboratory; Nordquist, Heather A [Los Alamos National Laboratory; Umebayaashi, Eiji [JAEA

2009-01-01T23:59:59.000Z

327

Ferroelectric Thin-Film Active Sensors for Structural Health , Victor Giurgiutiu1  

E-Print Network [OSTI]

, Structural health monitoring 1. INTRODUCTION 1.1 Background Piezoelectric wafer active sensors have beenFerroelectric Thin-Film Active Sensors for Structural Health Monitoring Bin Lin1 , Victor laboratory, Penn State University, University Park, PA 16802 ABSTRACT Piezoelectric wafer active sensors

Giurgiutiu, Victor

328

Fiber optic temperature sensor  

SciTech Connect (OSTI)

Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

Rabold, D.

1995-12-01T23:59:59.000Z

329

INSENS sensor system  

SciTech Connect (OSTI)

This paper describes an unattended ground sensor system that has been developed for the immigration and Naturalization Service (INS). The system, known as INSENS, was developed at the Lawrence Livermore National Laboratory for use by the United States Border Patrol. This system assists in the detection of illegal entry of aliens and contraband (illegal drugs, etc.) into the United States along its land borders. Key to the system is its flexible modular design which allows future software and hardware enhancements to the system without altering the fundamental architecture of the system. Elements of the system include a sensor system capable of processing signals from multiple directional probes, a repeater system, and a handheld monitor system. Seismic, passive infrared (PIR), and magnetic probes are currently supported. The design of the INSENS system elements and their performance are described.

Myers, D.W.; Baker, J.; Benzel, D.M.; Fuess, D.A.

1993-09-29T23:59:59.000Z

330

MB3a Infrasound Sensor Evaluation.  

SciTech Connect (OSTI)

Sandia National Laboratories has tested and evaluated a new infrasound sensor, the MB3a, manufactured by Seismo Wave. These infrasound sensors measure pressure output by a methodology developed by researchers at the French Alternative Energies and Atomic Energy Commission (CEA) and the technology was recently licensed to Seismo Wave for production and sales. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, dynamic range, seismic sensitivity, and self- calibration ability. The MB3a infrasound sensors are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).

Merchant, Bion J.; McDowell, Kyle D.

2014-11-01T23:59:59.000Z

331

Extending Sensor Calibration Intervals in Nuclear Power Plants  

SciTech Connect (OSTI)

Currently in the USA, sensor recalibration is required at every refueling outage, and it has emerged as a critical path item for shortening outage duration. International application of calibration monitoring, such as at the Sizewell B plant in UK, has shown that sensors may operate for eight years, or longer, within calibration tolerances. Online monitoring can be employed to identify those sensors which require calibration, allowing for calibration of only those sensors which need it. The US NRC accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no plants have been granted the necessary license amendment to apply it. This project addresses key issues in advanced recalibration methodologies and provides the science base to enable adoption of best practices for applying online monitoring, resulting in a public domain standardized methodology for sensor calibration interval extension. Research to develop this methodology will focus on three key areas: (1) quantification of uncertainty in modeling techniques used for calibration monitoring, with a particular focus on non-redundant sensor models; (2) accurate determination of acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and (3) the use of virtual sensor estimates to replace identified faulty sensors to extend operation to the next convenient maintenance opportunity.

Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Shumaker, Brent; Hashemian, Hash

2012-11-15T23:59:59.000Z

332

An optical water vapor sensor for unmanned aerial vehicles  

SciTech Connect (OSTI)

The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

1998-12-01T23:59:59.000Z

333

ON-ROAD REMOTE SENSING OF VEHICLE EMISSIONS IN MONTERREY, N.L. MEXICO  

E-Print Network [OSTI]

ON-ROAD REMOTE SENSING OF VEHICLE EMISSIONS IN MONTERREY, N.L. MEXICO Final Report Prepared for the University of Denver traveled to Monterrey, N.L. Mexico to monitor remotely the carbon monoxide (CO with other cities that have been sampled in Mexico. The on-road emission averages are similar to the latest

Denver, University of

334

Design, development, and validation of a remotely reconfigurable vehicle telemetry system for consumer and government applications  

E-Print Network [OSTI]

This thesis explores the design and development of a cost-effective, easy-to-use system for remotely monitoring vehicle performance and drivers' habits, with the aim of collecting data for vehicle characterization and ...

Siegel, Joshua Eric

2011-01-01T23:59:59.000Z

335

Sustainable Energy for Development The evolution of technologies provides remote, non-grid  

E-Print Network [OSTI]

Sustainable Energy for Development GOALS: The evolution of technologies provides remote, non, energy storage, light emitting diodes, energy monitoring and management. RESEARCH ISSUES: Investigate the correlation of energy and social well being and associated energy costs. Research current methods

Mottram, Nigel

336

A FRAMEWORK FOR DESIGNING SENSOR-BASED INTERACTIONS TO PROMOTE EXPLORATION AND REFLECTION IN PLAY  

E-Print Network [OSTI]

with a discussion of the core properties of sensor technologies. 1. INTRODUCTION Originally, sensor technology uses of sensors were monitoring activities, such as the thermostat of a central heating system. If the building was too cold the heating was switched on. Nowadays, sensors are being used in a range

337

Remote connector development study  

SciTech Connect (OSTI)

Plutonium-uranium extraction (PUREX) connectors, the most common connectors used at the Hanford site, offer a certain level of flexibility in pipe routing, process system configuration, and remote equipment/instrument replacement. However, these desirable features have inherent shortcomings like leakage, high pressure drop through the right angle bends, and a limited range of available pipe diameters that can be connect by them. Costs for construction, maintenance, and operation of PUREX connectors seem to be very high. The PUREX connector designs include a 90{degree} bend in each connector. This increases the pressure drop and erosion effects. Thus, each jumper requires at least two 90{degree} bends. PUREX connectors have not been practically used beyond 100 (4 in.) inner diameter. This study represents the results of a survey on the use of remote pipe-connection systems in US and foreign plants. This study also describes the interdependence between connectors, remote handling equipment, and the necessary skills of the operators.

Parazin, R.J.

1995-05-01T23:59:59.000Z

338

Health monitoring method for composite materials  

DOE Patents [OSTI]

An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

Watkins, Jr., Kenneth S. (Dahlonega, GA); Morris, Shelby J. (Hampton, VA)

2011-04-12T23:59:59.000Z

339

REMOTE SENSING GEOLOGICAL SURVEY  

E-Print Network [OSTI]

-ASTER that operate in visible, near infrared and short wave infrared wavelengths of electromagnetic spectrum and Reflection Radiometer) Imagery Collection in CPRM Examples of sensors used in the CPRM geologic projects #12

340

Autonomous Robot System for Sensor Characterization  

SciTech Connect (OSTI)

This paper discusses an innovative application of new Markov localization techniques that combat the problem of odometry drift, allowing a novel control architecture developed at the Idaho National Engineering and Environmental Laboratory (INEEL) to be utilized within a sensor characterization facility developed at the Remote Sensing Laboratory (RSL) in Nevada. The new robotic capability provided by the INEEL will allow RSL to test and evaluate a wide variety of sensors including radiation detection systems, machine vision systems, and sensors that can detect and track heat sources (e.g. human bodies, machines, chemical plumes). By accurately moving a target at varying speeds along designated paths, the robotic solution allows the detection abilities of a wide variety of sensors to be recorded and analyzed.

David Bruemmer; Douglas Few; Frank Carney; Miles Walton; Heather Hunting; Ron Lujan

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel cell CO sensor  

DOE Patents [OSTI]

The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

Grot, Stephen Andreas (Rochester, NY); Meltser, Mark Alexander (Pittsford, NY); Gutowski, Stanley (Pittsford, NY); Neutzler, Jay Kevin (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY); Weisbrod, Kirk (Los Alamos, NM)

1999-12-14T23:59:59.000Z

342

Three-dimensional and two-dimensional deployment analysis for underwater acoustic sensor networks q  

E-Print Network [OSTI]

Three-dimensional and two-dimensional deployment analysis for underwater acoustic sensor networks q Accepted 23 July 2008 Available online 7 August 2008 Keywords: Underwater acoustic sensor networks data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation

Pompili, Dario

343

DAMAGE DETECTION METHODS ON WIND TURBINE BLADE TESTING WITH WIRED AND WIRELESS ACCELEROMETER SENSORS  

E-Print Network [OSTI]

DAMAGE DETECTION METHODS ON WIND TURBINE BLADE TESTING WITH WIRED AND WIRELESS ACCELEROMETER turbine blade. We compare the data collected from the wireless sensors against wired sensors for nonstationary blade excitations. KEYWORDS : Structural Health Monitoring, Damage Detection, Wind Turbine

Paris-Sud XI, Université de

344

Low-Cost, Passive UHF RFID Tag Antenna-Based Sensors for Pervasive Sensing Applications  

E-Print Network [OSTI]

In the future, large-scale sensor deployment would enable many areas such as infrastructure condition monitoring and supply chain management. However, many of today's wireless sensor technologies are still too expensive ...

Bhattacharyya, Rahul

2012-01-01T23:59:59.000Z

345

Vacuum Vessel Remote Handling  

E-Print Network [OSTI]

and Remote Handling 4 Vacuum vessel functions · Plasma vacuum environment · Primary tritium confinement, incl ports 65 tonnes - Weight of torus shielding 100 tonnes · Coolant - Normal Operation Water, Handling 12 Vessel octant subassembly fab. (3) · Octant-to-octant splice joint requires double wall weld

346

Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a SNOM fiber tip  

E-Print Network [OSTI]

Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nano-meter scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e. in contact to the nano-structures. In these paper, We demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of 'remote' (non contact) sensing on the nano-meter scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM fiber tip, we introduce an ultra-compact, move-able and background-free optical nano-sensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nano-meter accuracy. This work paves the way towards a new class of nano-po...

Atie, Elie M; Eter, Ali El; Salut, Roland; Nedeljkovic, Dusan; Tannous, Tony; Baida, Fadi I; Grosjean, Thierry

2015-01-01T23:59:59.000Z

347

A Resilient Condition Assessment Monitoring System  

SciTech Connect (OSTI)

An architecture and supporting methods are presented for the implementation of a resilient condition assessment monitoring system that can adaptively accommodate both cyber and physical anomalies to a monitored system under observation. In particular, the architecture includes three layers: information, assessment, and sensor selection. The information layer estimates probability distributions of process variables based on sensor measurements and assessments of the quality of sensor data. Based on these estimates, the assessment layer then employs probabilistic reasoning methods to assess the plant health. The sensor selection layer selects sensors so that assessments of the plant condition can be made within desired time periods. Resilient features of the developed system are then illustrated by simulations of a simplified power plant model, where a large portion of the sensors are under attack.

Humberto Garcia; Wen-Chiao Lin; Semyon M. Meerkov

2012-08-01T23:59:59.000Z

348

Online Sensor Calibration Assessment in Nuclear Power Systems  

SciTech Connect (OSTI)

Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors.

Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

2013-06-01T23:59:59.000Z

349

Packet personal radiation monitor  

DOE Patents [OSTI]

A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiatonevents, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible ''chirp''. The rate of the ''chirps'' is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field. 2 figs.

Phelps, J.E.

1988-03-31T23:59:59.000Z

350

Packet personal radiation monitor  

DOE Patents [OSTI]

A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

Phelps, James E. (Knoxville, TN)

1989-01-01T23:59:59.000Z

351

Biomedical Monitoring of Non-Hospitalized Subjects  

E-Print Network [OSTI]

Biomedical Monitoring of Non-Hospitalized Subjects using Disruption-Tolerant Wireless Sensors for the collection of biomedical data produced by sensors carried by mobile non-hospitalized subjects. In this paper we investigate the possibility of using these many hotspots as gateways for biomedical data

Paris-Sud XI, Université de

352

Sensor apparatus  

DOE Patents [OSTI]

A sensor apparatus and method for detecting an environmental factor is shown that includes an acoustic device that has a characteristic resonant vibrational frequency and mode pattern when exposed to a source of acoustic energy and, futher, when exposed to an environmental factor, produces a different resonant vibrational frequency and/or mode pattern when exposed to the same source of acoustic energy.

Deason, Vance A. (Idaho Falls, ID) [Idaho Falls, ID; Telschow, Kenneth L. (Idaho Falls, ID) [Idaho Falls, ID

2009-12-22T23:59:59.000Z

353

Radionuclide Sensors and Systems for Environmental Monitoring...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and detection units that are fluidically linked. We have demonstrated detection of strontium-90 to levels below drinking water standards by this approach. We are developing...

354

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

Broader source: Energy.gov (indexed) [DOE]

of Work * Barriers * Approach * Performance Measures and Accomplishments * Technology Transfer * Plans for Next Fiscal Year * Summary * PublicationsPatents Electrochemical...

355

Sensor Fusion for Nuclear Proliferation Activity Monitoring  

SciTech Connect (OSTI)

The objective of Phase 1 of this STTR project is to demonstrate a Proof-of-Concept (PoC) of the Geo-Rad system that integrates a location-aware SmartTag (made by ZonTrak) and a radiation detector (developed by LLNL). It also includes the ability to transmit the collected radiation data and location information to the ZonTrak server (ZonService). The collected data is further transmitted to a central server at LLNL (the Fusion Server) to be processed in conjunction with overhead imagery to generate location estimates of nuclear proliferation and radiation sources.

Adel Ghanem, Ph D

2007-03-30T23:59:59.000Z

356

Irrigation Monitoring with Soil Water Sensors (Spanish)  

E-Print Network [OSTI]

Soya 45 50 1.6?4.3 2.0?4.1 Forrajes Alfalfa Bermuda Pasto para pastizales 50?60 55?60 60 3.3?9.9 3.3?4.5 1.6?3.3 C?sped Temporada fr?a Temporada caliente 40 50 1.6?2.2 1.6?2.2 Ca?a de az?car 65 4.0?6.5 ?rboles Duraznos 50 3.3?6.6 C?tricos 70% bajo... de la zona efectiva de la ra?z. Tabla 3. Tensiones de humedad recomendadas para algunos cultivos seleccionados. Cultivo Tensi?n centibars Alfalfa 80?150 Repollo 60?70 Mel?n 35?40 Zanahoria 55?65 Coliflor 60?70 Apio 20?30 C?tricos 50?70 Ma?z (dulce...

Enciso, Juan; Porter, Dana; Peries, Xavier

2007-07-25T23:59:59.000Z

357

Multipurpose Acoustic Sensor for Downhole Fluid Monitoring  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMoving Away fromMultifamilyMultipurpose Acoustic

358

Remote Sensing Laboratory - RSL  

SciTech Connect (OSTI)

One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

None

2014-11-06T23:59:59.000Z

359

Remote Sensing Laboratory - RSL  

ScienceCinema (OSTI)

One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

None

2015-01-09T23:59:59.000Z

360

E-Print Network 3.0 - acoustic sensor development Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12.716123 Summary: of health monitoring technologies have resulted in development of micro-dimensional sensors that can... -reinforced polymers. Notwithstanding the...

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Remote switch actuator  

DOE Patents [OSTI]

The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

2013-01-29T23:59:59.000Z

362

Virtual Sensors: Abstracting Data from Physical Sensors  

E-Print Network [OSTI]

Virtual Sensors: Abstracting Data from Physical Sensors TR-UTEDGE-2006-001 Sanem Kabadayi Adam Pridgen Christine Julien © Copyright 2006 The University of Texas at Austin #12;Virtual Sensors: Abstracting Data from Physical Sensors Sanem Kabadayi, Adam Pridgen, and Christine Julien The Center

Julien, Christine

363

PEM fuel cell monitoring system  

DOE Patents [OSTI]

Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

Meltser, Mark Alexander (Pittsford, NY); Grot, Stephen Andreas (West Henrietta, NY)

1998-01-01T23:59:59.000Z

364

PEM fuel cell monitoring system  

DOE Patents [OSTI]

Method and apparatus are disclosed for monitoring the performance of H{sub 2}--O{sub 2} PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H{sub 2} sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken. 2 figs.

Meltser, M.A.; Grot, S.A.

1998-06-09T23:59:59.000Z

365

Sensors and Automated Analyzers for Radionuclides  

SciTech Connect (OSTI)

The production of nuclear weapons materials has generated large quantities of nuclear waste and significant environmental contamination. We have developed new, rapid, automated methods for determination of radionuclides using sequential injection methodologies to automate extraction chromatographic separations, with on-line flow-through scintillation counting for real time detection. This work has progressed in two main areas: radionuclide sensors for water monitoring and automated radiochemical analyzers for monitoring nuclear waste processing operations. Radionuclide sensors have been developed that collect and concentrate radionuclides in preconcentrating minicolumns with dual functionality: chemical selectivity for radionuclide capture and scintillation for signal output. These sensors can detect pertechnetate to below regulatory levels and have been engineered into a prototype for field testing. A fully automated process monitor has been developed for total technetium in nuclear waste streams. This instrument performs sample acidification, speciation adjustment, separation and detection in fifteen minutes or less.

Grate, Jay W.; Egorov, Oleg B.

2003-03-27T23:59:59.000Z

366

IT infrastructure monitoring and management: Doing more with less  

E-Print Network [OSTI]

IT infrastructure monitoring and management: Doing more with less Highlights Remote managed to IT management ­ remote managed infrastructure services ­ that keeps control in the CIO's hands and frees up energy costs mean that your bills for powering and cooling servers threaten even the most well

367

QUANTIFYING FOREST ABOVEGROUND CARBON POOLS AND FLUXES USING MULTI-TEMPORAL LIDAR A report on field monitoring, remote sensing MMV, GIS integration, and modeling results for forestry field validation test to quantify aboveground tree biomass and carbon  

SciTech Connect (OSTI)

Sound policy recommendations relating to the role of forest management in mitigating atmospheric carbon dioxide (CO{sub 2}) depend upon establishing accurate methodologies for quantifying forest carbon pools for large tracts of land that can be dynamically updated over time. Light Detection and Ranging (LiDAR) remote sensing is a promising technology for achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not much is known about the accuracy of estimating biomass change and carbon flux from repeat LiDAR acquisitions containing different data sampling characteristics. In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across {approx}20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, USA. Forest inventory plots, established via a random stratified sampling design, were established and sampled in 2003 and 2009. The Random Forest machine learning algorithm was used to establish statistical relationships between inventory data and forest structural metrics derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study area based on statistical relationships developed at the plot level. Over this 6-year period, we found that the mean increase in biomass due to forest growth across the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-harvested areas, we found a significant difference in biomass increase among forest successional stages, with a higher biomass increase in mature and old forest compared to stand initiation and young forest. Approximately 20% of the landscape had been disturbed by harvest activities during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During the study period, these harvest activities outweighed growth at the landscape scale, resulting in an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density between the 2003 and 2009 did not affect the biomass estimates. Overall, LiDAR data coupled with field reference data offer a powerful method for calculating pools and changes in aboveground carbon in forested systems. The results of our study suggest that multitemporal LiDAR-based approaches are likely to be useful for high quality estimates of aboveground carbon change in conifer forest systems.

Lee Spangler; Lee A. Vierling; Eva K. Stand; Andrew T. Hudak; Jan U.H. Eitel; Sebastian Martinuzzi

2012-04-01T23:59:59.000Z

368

Tape-cast sensors and method of making  

DOE Patents [OSTI]

A method of making electrochemical sensors in which an electrolyte material is cast into a tape. Prefabricated electrodes are then partially embedded between two wet layers of the electrolyte tape to form a green sensor, and the green sensor is then heated to sinter the electrolyte tape around the electrodes. The resulting sensors can be used in applications such as, but not limited to, combustion control, environmental monitoring, and explosive detection. A electrochemical sensor formed by the tape-casting method is also disclosed.

Mukundan, Rangachary (Santa Fe, NM); Brosha, Eric L. (Los Alamos, NM); Garzon, Fernando H. (Santa Fe, NM)

2009-08-18T23:59:59.000Z

369

Remote sensing for wind power potential: a prospector's handbook  

SciTech Connect (OSTI)

Remote sensing can aid in identifying and locating indicators of wind power potential from the terrestrial, marine, and atmospheric environments (i.e.: wind-deformed trees, white caps, and areas of thermal flux). It is not considered as a tool for determining wind power potential. A wide variety of remotely sensed evidence is described in terms of the scale at which evidence of wind power can be identified, and the appropriate remote sensors for finding such evidence. Remote sensing can be used for regional area prospecting using small-scale imagery. The information from such small-scale imagery is most often qualitative, and if it is transitory, examination of a number of images to verify presistence of the feature may be required. However, this evidence will allow rapid screening of a large area. Medium-scale imagery provides a better picture of the evidence obtained from small-scale imagery. At this level it is best to use existing imagery. Criteria relating to land use, accessibility, and proximity of candidate sites to nearby transmission lines can also be effectively evaluated from medium-scale imagery. Large-scale imagery provides the most quantitative evidence of the strength of wind. Wind-deformed trees can be identified at a large number of sites using only a few hours in locally chartered aircraft. A handheld 35mm camera can adequately document any evidence of wind. Three case studies that employ remote sensing prospecting techniques are described. Based on remotely sensed evidence, the wind power potential in three geographically and climatically diverse areas of the United States is estimated, and the estimates are compared to actual wind data in those regions. In addition, the cost of each survey is discussed. The results indicate that remote sensing for wind power potential is a quick, cost effective, and fairly reliable method for screening large areas for wind power potential.

Wade, J.E.; Maule, P.A.; Bodvarsson, G.; Rosenfeld, C.L.; Woolley, S.G.; McClenahan, M.R.

1983-02-01T23:59:59.000Z

370

Remote USB Ports  

E-Print Network [OSTI]

and actuators need to be installed in fields. A computer system with USB interfaces is required to be present at the location of USB device for its working. In industry, these sensors and actuators are scattered over a large geographical area. The computers...

Roshan, Rakesh

2013-10-01T23:59:59.000Z

371

Structural Monitoring System (SMS) and Visual System (VS)  

Broader source: Energy.gov [DOE]

Axis Communications, Inc. has developed network ready, environmentally tolerant, low-light level camera-visual systems (VS) with built-in pan and tilt mechanisms that permit remote monitoring of...

372

Electrical condition monitoring method for polymers  

DOE Patents [OSTI]

An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

Watkins, Jr. Kenneth S. (Dahlonega, GA); Morris, Shelby J. (Hampton, VA); Masakowski, Daniel D. (Worcester, MA); Wong, Ching Ping (Duluth, GA); Luo, Shijian (Boise, ID)

2010-02-16T23:59:59.000Z

373

Method Of Signal Amplification In Multi-Chromophore Luminescence Sensors  

DOE Patents [OSTI]

A fluorescence-based method for highly sensitive and selective detection of analyte molecules is proposed. The method employs the energy transfer between two or more fluorescent chromophores in a carefully selected polymer matrix. In one preferred embodiment, signal amplification has been achieved in the fluorescent sensing of dimethyl methylphosphonate (DMMP) using two dyes, 3-aminofluoranthene (AM) and Nile Red (NR), in a hydrogen bond acidic polymer matrix. The selected polymer matrix quenches the fluorescence of both dyes and shifts dye emission and absorption spectra relative to more inert matrices. Upon DMMP sorption, the AM fluorescence shifts to the red at the same time the NR absorption shifts to the blue, resulting in better band overlap and increased energy transfer between chromophores. In another preferred embodiment, the sensitive material is incorporated into an optical fiber system enabling efficient excitation of the dye and collecting the fluorescent signal form the sensitive material on the remote end of the system. The proposed method can be applied to multichromophore luminescence sensor systems incorporating N-chromophores leading to N-fold signal amplification and improved selectivity. The method can be used in all applications where highly sensitive detection of basic gases, such as dimethyl methylphosphonate (DMMP), Sarin, Soman and other chemical warfare agents having basic properties, is required, including environmental monitoring, chemical industry and medicine.

Levitsky, Igor A. (Fall River, MA); Krivoshlykov, Sergei G. (Shrewsbury, MA)

2004-02-03T23:59:59.000Z

374

Airborne Infrared Target Tracking with the Nintendo Wii Remote Sensor  

E-Print Network [OSTI]

to target. 3.2 Design Rather than design for a particular distance, the highest-output available infrared source was selected for the beacon: a 500 W quartz tungsten halogen incandescent lamp. Determining the radiant power in the detectable spectrum...://terpconnect.umd.edu/ toh/models/Blackbody.html. [17] Forsythe, W. and Worthing, A., \\The Properties of Tungsten and the Character- istics of Tungsten Lamps," Astrophysics Journal , Vol. 61, April 1925, pp. 146{ 185. 34 ...

Beckett, Andrew 1984-

2012-11-12T23:59:59.000Z

375

Performance Monitoring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimization Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2014-08-25 14:37:27...

376

Monitoring materials  

DOE Patents [OSTI]

The apparatus and method provide techniques for effectively implementing alpha and/or beta and/or gamma monitoring of items or locations as desired. Indirect alpha monitoring by detecting ions generated by alpha emissions, in conjunction with beta and/or gamma monitoring is provided. The invention additionally provides for screening of items prior to alpha monitoring using beta and/or gamma monitoring, so as to ensure that the alpha monitoring apparatus is not contaminated by proceeding direct to alpha monitoring of a heavily contaminated item or location. The invention provides additional versatility in the emission forms which can be monitored, whilst maintaining accuracy and avoiding inadvertent contamination.

Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

2002-01-01T23:59:59.000Z

377

INTERACTING WITH SOCIAL NETWORKS TO IMPROVE HEALTHCARE BODY SENSOR NETWORKS  

E-Print Network [OSTI]

Funding for this project was provided by a grant from the Dean's Senior Research Fund and Stetson.2 Body Sensor Networks..................................................................5 2.2.1 Energy, or BSNs, can remotely collect patient data and upload vital statistics to servers over the Internet

Miles, Will

378

QUALITY-OF-SERVICE SPECIFICINFORMATION RETRIEVAL FOR DENSELYDEPLOYED SENSOR NETWORKS  

E-Print Network [OSTI]

S). It jointly'minimizes system latency (the amount of time spentfor data co(lection)and total energy consumption in part by the Multidisciplinary University Research lniliative (MURI) under the Office of Naval Research in a remote area. Each sensor is pre- programmed to sense the radiation level at specific time instants

Islam, M. Saif

379

REMOTE AND RURAL ENTERPRISE (RARE)  

E-Print Network [OSTI]

in remote central Australia is establishing a commercial aquaponics enterprise, a social entrepreneur, hospitality and horticulture. The current focus is on a commercial aquaponics enterprise and a cultural

Viglas, Anastasios

380

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 3, MAY 1999 1671 Cryosphere Applications of NSCAT Data  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 3, MAY 1999 1671 Cryosphere covering Greenland and Antarctica add to the polar heat sink effect by their additional influence upon. Hence, monitoring of polar ice is of particular interest to the remote sensing and climate change

Long, David G.

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mobile sensor systems for field estimation and "hot spot" identification  

E-Print Network [OSTI]

Robust, low-cost mobile sensing enables effective monitoring and management of urban environment and infrastructure which contributes towards a sustainable future. While mobile sensor systems have attracted significant ...

Kumar, Sumeet, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

382

Collaborative Mobile Charging for Sensor Networks Sheng Zhang  

E-Print Network [OSTI]

sensor networks (WSNs) [1], such as structural health monitoring for the Golden Gate Bridge [2 in the deep ocean, on bridge surfaces, or in containers of hazardous materials. We recently observed two

Wu, Jie

383

Physiological Sensor System for a wireless tactile display  

E-Print Network [OSTI]

This research focuses on the development of a wearable Physiological Sensor System (PSS) that can be used with a wireless tactile control unit to monitor the physiological status of a mobile user. Two physiological variables, ...

Deo, Nikhila

2005-01-01T23:59:59.000Z

384

Corrosion Monitoring System  

SciTech Connect (OSTI)

The Corrosion Monitoring System (CMS) program developed and demonstrated a continuously on-line system that provides real-time corrosion information. The program focused on detecting pitting corrosion in its early stages. A new invention called the Intelligent Ultrasonic Probe (IUP) was patented on the program. The IUP uses ultrasonic guided waves to detect small defects and a Synthetic Aperture Focusing Technique (SAFT) algorithm to provide an image of the pits. Testing of the CMS demonstrated the capability to detect pits with dimensionality in the sub-millimeter range. The CMS was tested in both the laboratory and in a pulp and paper industrial plant. The system is capable of monitoring the plant from a remote location using the internet.

Dr. Russ Braunling

2004-10-31T23:59:59.000Z

385

Estimating biomass on CRP pastureland: A comparison of remote sensing techniques  

E-Print Network [OSTI]

Estimating biomass on CRP pastureland: A comparison of remote sensing techniques Tucker F. Porter Accepted 31 January 2014 Available online 21 February 2014 Keywords: Biomass estimation model NDVI Bandwise regression Crop circle sensor Landsat imagery a b s t r a c t Biomass from land enrolled in the Conservation

Lawrence, Rick L.

386

On-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 6,  

E-Print Network [OSTI]

in combustion. Mass emissions per mass or volume of fuel can also be determined. The system used in this study and 2004. The remote sensor used in this study is capable of measuring the ratios of CO, HC, and NO to CO2 in motor vehicle exhaust. From these ratios, we calculate the percent concentrations of CO, CO2, HC

Denver, University of

387

Software Design 2 (Arduino Nano) BodyBody--RemotesRemotes  

E-Print Network [OSTI]

Software Design 2 (Arduino Nano) BodyBody--RemotesRemotes Gesture Based Appliance Control System the room Large wireless range, e.g. 100 m range with 1mW XBees Safely separate the Arduino from input ways to lower cost further Switch to Arduino Mini Light Develop our own wireless modules Jacob

Spletzer, John R.

388

Universal signal processing method for multimode reflective sensors  

E-Print Network [OSTI]

reference amplitude in the measurements. Generation of transmitted pulse and triggering of the monitoring satnple and hold chips was accomplished using existing PROM technology. Optical signals were received by a 600 MHz unity gain bandwidth receiver.... In the experiment, the effect of losses was introduced in the fiber by the use of bulkhead connections. The reflected pulse amplitudes of the reference and sensor pulses were measured while the sensor mirror distance was varied, and The ratio of sensor...

Larson, Robert Eugene

1988-01-01T23:59:59.000Z

389

New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application  

SciTech Connect (OSTI)

Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

2007-12-31T23:59:59.000Z

390

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

391

Movement behaviour of traditionally managed cattle in the Eastern Province of Zambia: investigations using two-dimensional motion sensors  

E-Print Network [OSTI]

Two-dimensional (2-D) motion sensors are activity motion sensors that use electronic accelerometers to record the lying, standing and walking behaviour of animals. They were used in this study with the aim of monitoring and quantifying the movement...

Lubaba, Caesar Himbayi

2011-06-27T23:59:59.000Z

392

An Energy-efficient Wireless Sensor Network for Precision Agriculture  

E-Print Network [OSTI]

of the application (periodic collection of sensor- data and energy efficiency). Soil monitoring application doesAn Energy-efficient Wireless Sensor Network for Precision Agriculture Herman Sahota Ratnesh Kumar layer is designed to save energy during the wake-up synchronization phase. The network layer is designed

Kumar, Ratnesh

393

Three-Dimensional Routing in Underwater Acoustic Sensor Networks  

E-Print Network [OSTI]

Three-Dimensional Routing in Underwater Acoustic Sensor Networks Dario Pompili and Tommaso Melodia applications in oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention in a 3D underwa- ter acoustic sensor network is investigated at the network layer, by considering

Pompili, Dario

394

Modeling Human Behavior from Simple Sensors in the Home  

E-Print Network [OSTI]

Modeling Human Behavior from Simple Sensors in the Home Ryan Aipperspach, Elliot Cohen, and John {ryanaip, jfc}@cs.berkeley.edu, emcohen3@berkeley.edu Abstract. Pervasive sensors in the home have a variety of applications including energy minimization, activity monitoring for elders, and tutors

Canny, John

395

Fiber Optic Temperature Sensor for PEM Fuel Cells  

E-Print Network [OSTI]

Fiber Optic Temperature Sensor for PEM Fuel Cells S.W. Allison, T.J. McIntyre, L.C. Maxey, M Objectives · Develop a low cost, robust temperature sensor for monitoring fuel cell condition and performance Hydrogren and Fuel Cells Merit Review Meeting May 19-22, 2003, Berkeley, California #12;Program Goals

396

Fundamentals of Remote Sensing Edited and written by Noam Levin  

E-Print Network [OSTI]

Very High Resolution Radiometer 48 #12;3 3.7.1.2 Land Observation Satellites/Sensors 48 3.3.7 Mapping 14 1.3.8 Oceans & Coastal Monitoring 15 2 Electromagnetic radiation 17 2.1 Electromagnetic energy 17 2.2 Interaction mechanisms 17 2.3 Laws regarding the amount of energy radiated from an object 18 2

Levin, David

397

Remotely operated pipe connector  

DOE Patents [OSTI]

An apparatus for remotely assembling and disassembling a Graylock type coctor between a pipe and a closure for the pipe includes a base and a receptacle on the base for the closure. The pipe is moved into position vertically above the closure by a suitable positioning device such that the flange on the pipe is immediately adjacent and concentric with the flange on the closure. A moving device then moves two semicircular collars from a position free of the closure to a position such that the interior cam groove of each collar contacts the two flanges. Finally, a tensioning device automatically allows remote tightening and loosening of a nut and bolt assembly on each side of the collar to cause a seal ring located between the flanges to be compressed and to seal the closure. Release of the pipe and the connector is accomplished in the reverse order. Preferably, the nut and bolt assembly includes an elongate shaft portion on which a removable sleeve is located.

Josefiak, Leonard J. (Scotia, NY); Cramer, Charles E. (Guilderford, NY)

1988-01-01T23:59:59.000Z

398

Passive blast pressure sensor  

DOE Patents [OSTI]

A passive blast pressure sensor for detecting blast overpressures of at least a predetermined minimum threshold pressure. The blast pressure sensor includes a piston-cylinder arrangement with one end of the piston having a detection surface exposed to a blast event monitored medium through one end of the cylinder and the other end of the piston having a striker surface positioned to impact a contact stress sensitive film that is positioned against a strike surface of a rigid body, such as a backing plate. The contact stress sensitive film is of a type which changes color in response to at least a predetermined minimum contact stress which is defined as a product of the predetermined minimum threshold pressure and an amplification factor of the piston. In this manner, a color change in the film arising from impact of the piston accelerated by a blast event provides visual indication that a blast overpressure encountered from the blast event was not less than the predetermined minimum threshold pressure.

King, Michael J.; Sanchez, Roberto J.; Moss, William C.

2013-03-19T23:59:59.000Z

399

Issues in autonomous mobile sensor networks  

E-Print Network [OSTI]

moni- toring, surveillance, search and rescue, and emergency management [9]-[15]. For example, one application for mobile sensor networks is in offshore oil and gas ex- ploration and condition monitoring. It is envisaged that a team of autonomous... another example of a network would be the ?Dominator? UAV network being envisaged by the USAF for surveillance, monitor- ing and engagement of targets on a cluttered battlefield [16]. A human in the loop provides initial directives to a group of agents...

Dharne, Avinash Gopal

2009-05-15T23:59:59.000Z

400

Expert operator preferences in remote manipulator control systems  

SciTech Connect (OSTI)

This report describes a survey of expert remote manipulator operators designed to identify features of control systems related to operator efficiency and comfort. It provides information for designing the control center for the Single-Shell Tank Waste Retrieval Manipulator System (TWRMS) Test Bed, described in a separate report. Research questions concerned preferred modes of control, optimum work sessions, sources of operator fatigue, importance of control system design features, and desired changes in control rooms. Participants comprised four expert remote manipulator operators at Oak Ridge National Laboratory, who individually have from 9 to 20 years of experience using teleoperators. The operators had all used rate and position control, and all preferred bilateral (force-reflecting) position control. They reported spending an average of 2.75 h in control of a teleoperator system during a typical shift. All were accustomed to working in a crew of two and alternating control and support roles in 2-h rotations in an 8-h shift. Operators reported that fatigue in using remote manipulator systems came mainly from watching TV monitors and making repetitive motions. Three of four experienced symptoms, including headaches and sore eyes, wrists, and back. Of 17 features of control rooms rated on importance, highest ratings went to comfort and support provided by the operator chair, location of controls, location of video monitors, video image clarity, types of controls, and control modes. When asked what they wanted to change, operators said work stations designed for comfort; simpler, lighter hand-controls; separate controls for each camera; better placement of remote camera; color monitors; and control room layouts that support crew interaction. Results of this small survey reinforced the importance of ergonomic factors in remote manipulation.

Sundstrom, E. [Human Machine Interfaces, Inc., Knoxville, TN (United States); Draper, J.V. [Oak Ridge National Lab., TN (United States); Fausz, A.; Woods, H. [Univ. of Tennessee, Knoxville, TN (United States)

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Automatic monitoring of vibration welding equipment  

DOE Patents [OSTI]

A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

2014-10-14T23:59:59.000Z

402

GIScience & Remote Sensing, 2012, 49, No. 3, p. 317345. http://dx.doi.org/10.2747/1548-1603.49.3.317 Copyright 2012 by Bellwether Publishing, Ltd. All rights reserved.  

E-Print Network [OSTI]

and can be remotely sensed from satellites (Savage et al., 2010). GHF rep- resents only heat coming from317 GIScience & Remote Sensing, 2012, 49, No. 3, p. 317­345. http://dx.doi.org/10. Remote sensing is a component of the current geothermal monitoring plan. Landsat satellite data have

Lawrence, Rick L.

403

Steam trap monitor  

DOE Patents [OSTI]

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

Ryan, M.J.

1987-05-04T23:59:59.000Z

404

Space and Remote Sensing (ISR-2)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Space and Remote Sensing Developing and applying remote sensing capabilities to problems of global security and related sciences Contacts Group Leader Robert Shirey Email Deputy...

405

Non-Invasive Measurement of Heartbeat with a Hydraulic Bed Sensor  

E-Print Network [OSTI]

Non-Invasive Measurement of Heartbeat with a Hydraulic Bed Sensor Progress, Challenges}@mail.missouri.edu, SkubicM@missouri.edu Abstract--A hydraulic bed sensor has been developed to non and development of the system. Keywords--hydraulic bed sensor; eldercare monitoring; ballistocardiography I

He, Zhihai "Henry"

406

1250 IEEE SENSORS JOURNAL VOL. 6, NO. 5, OCTOBER 2006 Room-Temperature Hydrogen Sensitivity  

E-Print Network [OSTI]

1250 IEEE SENSORS JOURNAL VOL. 6, NO. 5, OCTOBER 2006 Room-Temperature Hydrogen Sensitivity sensors for room-temperature hydrogen monitoring. The Pt/LaF3 interface leads to a Nernst-type response s and was independent of hydrogen concentration. A method for the stabilization of a long-term behavior of the sensor

Moritz, Werner

407

Ivan Stojmenovic! 1! IoT/CPS with sensors and robots  

E-Print Network [OSTI]

! ! Vehicular networks! ! Smart cameras! ! Smart power grids! ! Smart city (bus arrival time, crowd certain action ! ! Single sensor controlled! ! Networked sensor controlled! ! Smart building (temperature? Coordination ? GreenOrbs Tianmu mountains Lin'an City 1000+ sensors in Lin'An and WuXi Collaborative monitoring

Stojmenovic, Ivan

408

An Asynchronous Event-Driven Data Transmitter for Wireless ECG Sensor Nodes  

E-Print Network [OSTI]

An Asynchronous Event-Driven Data Transmitter for Wireless ECG Sensor Nodes Andre L. Mansano for wireless ECG sensors node. Unlike current solutions for ECG monitoring with autonomous wireless sensors, we propose an asynchronous method to transmit data from an ECG front-end, which is designed with a 2-bit

Serdijn, Wouter A.

409

Test results of a ceramic-based carbon monoxide sensor in the automotive exhaust manifold  

SciTech Connect (OSTI)

A prototype CO sensor based on the anatase phase of TiO{sub 2} was fabricated and tested in a Ford V6 engine. Fuel combustion was programmed to be near stoichiometric conditions, and emissions were monitored with an FT-IR analytical instrument. The sensor, positioned near the oxygen sensor in the exhaust manifold, was successfully tested for 50 cycles of revving and idling, and was observed to respond quickly and reproducibly. The sensor response was correlated to the CO concentration at specific engine temperatures and was found to vary systematically with increasing concentrations. The results are promising and the sensor shows potentials to monitor the efficiency of the catalytic converter.

Azad, A.M.; Younkman, L.B.; Akbar, S.A. [Ohio State Univ., Columbus, OH (United States)

1996-12-31T23:59:59.000Z

410

Sensors 2009, 9, 2647-2660; doi:10.3390/s90402647 ISSN 1424-8220  

E-Print Network [OSTI]

some green roof systems being monitored, describe the sensor selection employed to study energy balance for meteorological stations. Keywords: Urban heat island, green roofs, combined sewer overflows, energy balance.mdpi.com/journal/sensors Communication Development of a Green Roof Environmental Monitoring and Meteorological Network in New York City

411

Reducing Uncertainty in Wireless Sensor Networks  

E-Print Network [OSTI]

network. OSDI '06. [4] O.V. K. Langendoen et. al. Murphy loves potatoes: Experiences from a pilot sensor Island [1] Redwood Tree (Wikipedia) Redwoods [2] Agriculture [4] Potato Field (Kevin Temple) Volcano, Memento2 ­ "Heisenbugs" ­ Waste of resources ­ Monitoring suffers from network problems, too. [1] N

412

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

Buchanan, Bruce R. (1985 Willis, Batesburg, SC 29006); Prather, William S. (2419 Dickey Rd., Augusta, GA 30906)

1992-01-01T23:59:59.000Z

413

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

Buchanan, B.R.; Prather, W.S.

1991-01-01T23:59:59.000Z

414

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

Buchanan, B.R.; Prather, W.S.

1992-10-06T23:59:59.000Z

415

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect (OSTI)

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has already succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. As funding for this project, scheduled to commence December 1, 2002, had only been in place for less than half of the reporting period, project progress has been less than for other reporting periods. Nevertheless, significant progress has been made and several cruises are planned for the summer/fall of 2003 to test equipment, techniques and compatibility of systems. En route to reaching the primary goal of the Consortium, the establishment of a monitoring station on the sea floor, the following achievements have been made: (1) Progress on the vertical line array (VLA) of sensors: Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, Cabling upgrade to allow installation of positioning sensors, Incorporation of capability to map the bottom location of the VLA, Improvements in timing issues for data recording. (2) Sea Floor Probe: The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed; The probe has been modified to penetrate the <1m blanket of hemipelagic ooze at the water/sea floor interface to provide the necessary coupling of the accelerometer with the denser underlying sediments. (3) Electromagnetic bubble detector and counter: Initial tests performed with standard conductivity sensors detected nonconductive objects as small as .6mm, a very encouraging result, Components for the prototype are being assembled, including a dedicated microcomputer to control power, readout and logging of the data, all at an acceptable speed. (4) Acoustic Systems for Monitoring Gas Hydrates: Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate; these measurements will be used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station; A scattering system and bubble-producing device, being assembled at USM, will be tested in the next two months, and the results compared to a physical scattering model. (5) Mid-Infrared Sensor for Continuous Methane Monitoring: Progress has been made toward minimizing system maintenance through increased capacity and operational longevity, Miniaturization of many components of the sensor systems has been completed, A software package has been designed especially for the MIR sensor data evaluation, Custom electronics have been developed that reduce power consumption and, therefore, increase the length of time the system can remain operational. (6) Seismo-acoustic characterization of sea floor properties and processes at the hydrate monitoring station. (7) Adaptation of the acoustic-logging device, developed as part of the European Union-funded research project, Sub-Gate, for monitoring temporal variations in seabe

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2004-03-01T23:59:59.000Z

416

IEEE SENSORS JOURNAL, VOL. 11, NO. 1, JANUARY 2011 45 A Robust, Adaptive, Solar-Powered WSN Framework  

E-Print Network [OSTI]

IEEE SENSORS JOURNAL, VOL. 11, NO. 1, JANUARY 2011 45 A Robust, Adaptive, Solar-Powered WSN-step local transmission from sensor nodes to the gateway, a remote data transmission from the gateway carefully selected or de- signed to guarantee a high quality of service, optimal solar energy harvesting

Alippi, Cesare

417

Sensor response rate accelerator  

DOE Patents [OSTI]

An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

Vogt, Michael C. (Westmont, IL)

2002-01-01T23:59:59.000Z

418

A liposome-based ion release impedance sensor for biological detection  

E-Print Network [OSTI]

accessibility to diagnostics in remote and resource-limited areas. While many approaches to biosensing are still permeabilized for ion release upon heating, making them ideal reporters for electrical biosensing of surface by enabling earlier diagnosis and personalized monitoring. In particular, populations residing in remote

Bashir, Rashid

419

RADIATION MONITORING  

E-Print Network [OSTI]

of Monitoring for Radiation Protection of Workers" in ICRPNo. 9, in "Advances in Radiation Protection and Dosimetry inDosimetry f o r Stray Radiation Monitoring on the CERN S i t

Thomas, R.H.

2010-01-01T23:59:59.000Z

420

Suncatcher Monitoring Project. Quarterly technical report 1, October-December 1977  

SciTech Connect (OSTI)

Progress in monitoring the Suncatcher solar home is reviewed. The following are included: equipment purchase and preparations, sensor installation, house comfort monitoring, experiments, and natrual gas and electric use. Some data are given. (MHR)

Maeda, B T

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Introduction to smart materials and their applications to structural health monitoring and control  

E-Print Network [OSTI]

Page 1 Introduction to smart materials and their applications to structural health monitoring sensors Smart materials and sensing technologies Muscles: structural control, semi-active and active Monitoring and Control TechnologiesTechnologiesTechnologiesTechnologies 3Smart Materials Definition

422

Transportation Security SensorNet: a service-oriented  

E-Print Network [OSTI]

Transportation Security SensorNet: a service-oriented architecture for cargo monitoring Martin solution of developing a service-oriented architecture (SOA) for cargo monitoring and its individual and handovers. Tracking trade is difficult to manage in different formats and legacy applications Web services

Kansas, University of

423

Remote direct memory access  

DOE Patents [OSTI]

Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

Archer, Charles J.; Blocksome, Michael A.

2012-12-11T23:59:59.000Z

424

Volatile organic compound sensor system  

DOE Patents [OSTI]

Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY); Bomstad, Theresa M. (Waxahachie, TX); Sorini-Wong, Susan S. (Laramie, WY); Wong, Gregory K. (Laramie, WY)

2011-03-01T23:59:59.000Z

425

Sensitive Change Detection for Remote Monitoring of Nuclear Treaties  

E-Print Network [OSTI]

is examined in case studies involving underground nuclear testing and location of clandestine uranium mining studies involving the location of underground nuclear explosions and detection of uranium mining sites

426

New Approaches to Forest Monitoring using Remote Sensing  

E-Print Network [OSTI]

K. Steininger, · Mark Carroll, · Charlene DiMiceli PNAS 2008 #12;#12;Tropical deforestation rates (2000Tropical deforestation rates (2000--2005)2005) Brazil and Indonesia confirmed as having theBrazil and Indonesia confirmed as having the highest rates of tropical deforestation.highest rates of tropical

427

Remote monitoring of soil moisture using airborne microwave radiometers  

E-Print Network [OSTI]

) site G (b) site H I V-6 i IV- 7 'IV- 8 iV- I iV- 2 ! iV-3 Chickasha test site I V-4 Ground cover for Chickasha sites: site A (b) site B 62 63 64 67 68 69 71 X1 I I' I giirc I';i g| c Ground cover I or Chickashn sites: (n) site C (b...O bd rn 4I cb ccb U 0 0 U cd C4 Cd 0 44 E cd Itt g bb 0 cd cd E cjoy Gl U W t:t cd U cd 4 0 cb ?0 I M cct U Q rt M with the internal calibration which gives the slope or difference in temperature scale, the absolute reading...

Kroll, Charles Lindsey

2012-06-07T23:59:59.000Z

428

The Use of Remote Cameras to Monitor Traffic Activity  

E-Print Network [OSTI]

infrared-triggered cameras in a field study at Camp Bullis, San Antonio on three different road types (Paved, gravel, and trail). Eighteen cameras collected a total of 58,658 vehicle observations over the course of 12 months. I determined that vehicle...

Padilla Paniagua, Manuel Antonio

2013-12-09T23:59:59.000Z

429

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIIIDrive Ltd Jump to: navigation,Energy

430

Reliability estimates for selected sensors in fusion applications  

SciTech Connect (OSTI)

This report presents the results of a study to define several types of sensors in use, the qualitative reliability (failure modes) and quantitative reliability (average failure rates) for these types of process sensors. Temperature, pressure, flow, and level sensors are discussed for water coolant and for cryogenic coolants. The failure rates that have been found are useful for risk assessment and safety analysis. Repair times and calibration intervals are also given when found in the literature. All of these values can also be useful to plant operators and maintenance personnel. Designers may be able to make use of these data when planning systems. The final chapter in this report discusses failure rates for several types of personnel safety sensors, including ionizing radiation monitors, toxic and combustible gas detectors, humidity sensors, and magnetic field sensors. These data could be useful to industrial hygienists and other safety professionals when designing or auditing for personnel safety.

Cadwallader, L.C.

1996-09-01T23:59:59.000Z

431

Remote down-hole well telemetry  

DOE Patents [OSTI]

The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)

2004-07-20T23:59:59.000Z

432

Remote drill bit loader  

SciTech Connect (OSTI)

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.

Dokos, J.A.

1996-12-31T23:59:59.000Z

433

Extracting clinically-actionable information from wearable physiological monitors  

E-Print Network [OSTI]

In this thesis I examine several ways of extracting information from wearable monitors so as to help make clinical decisions. Wearable physiological sensors are developing rapidly, and pose a possible part of the solution ...

Haslam, Bryan (Bryan Todd)

2011-01-01T23:59:59.000Z

434

Health Monitoring and Continuous Commissioning of Centrifugal Chiller Systems  

E-Print Network [OSTI]

This paper presents strategies for detecting and diagnosing the chiller component faults and the sensor faults involved in chiller conditioning monitoring and control. The two strategies are used in series. One strategy diagnoses and validates...

Cui, J.; Wang, S.

2004-01-01T23:59:59.000Z

435

DEVELOPMENT OFA WIRELESS ACTIVE SYSTEM FOR TPS STRUCTURAL HEALTH MONITORING  

E-Print Network [OSTI]

TPS damage. Several essential aspects are being studied: (a) development of high temperature aspects are being studied: (a) development of high temperature piezoelectric wafer active sensor (HTDEVELOPMENT OFA WIRELESS ACTIVE SYSTEM FOR TPS STRUCTURAL HEALTH MONITORING Victor Giurgiutiu1

Giurgiutiu, Victor

436

Guidelines for Retrofit Performance Monitoring  

E-Print Network [OSTI]

equipment capable of monitoring 12 or more channels and utilizing a variety of different sensors is often required and typically used. Two such data loggers have been used successfully at the Oak Ridge National Laboratory (ORNL) in field monitoring... of this equipment can still be significant, however, ranging from $500 to $1 800. Equipment of this type has not been used by ORNL in field tests. A partial listing of data loggers in this price range can be obtained from the author. TEMPERATURE RECORDING...

Ternes, M. P.

1987-01-01T23:59:59.000Z

437

Methods, apparatus, and systems for monitoring transmission systems  

DOE Patents [OSTI]

A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.

Polk, Robert E. (Idaho Falls, ID) [Idaho Falls, ID; Svoboda, John M. (Idaho Falls, ID) [Idaho Falls, ID; West, Phillip B. (Idaho Falls, ID) [Idaho Falls, ID; Heath, Gail L. (Iona, ID) [Iona, ID; Scott, Clark L. (Idaho Falls, ID) [Idaho Falls, ID

2010-08-31T23:59:59.000Z

438

Sensor Based on Extending the Concept of Fidelity to Classical Waves  

E-Print Network [OSTI]

We propose and demonstrate a remote sensor scheme by applying the quantum mechanical concept of fidelity loss to classical waves. The sensor makes explicit use of time-reversal invariance and spatial reciprocity in a wave chaotic system to sensitively and remotely measure the presence of small perturbations. The loss of fidelity is measured through a classical wave-analog of the Loschmidt echo by employing a single-channel time-reversal mirror to rebroadcast a probe signal into the perturbed system. We also introduce the use of exponential amplification of the probe signal to partially overcome the effects of propagation losses and to vary the sensitivity.

Biniyam Tesfaye Taddese; James Hart; Thomas M. Antonsen; Edward Ott; Steven M. Anlage

2009-09-28T23:59:59.000Z

439

T-573: Windows Remote Desktop Client DLL Loading Error Lets Remote Users Execute Arbitrary Code  

Broader source: Energy.gov [DOE]

A vulnerability was reported in Windows Remote Desktop Client. A remote user can cause arbitrary code to be executed on the target user's system.

440

Converging Redundant Sensor Network Information for Improved Building Control  

SciTech Connect (OSTI)

This project is investigating the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point would improve system performance. Phase I of the project focused on instrumentation and data collection. In Phase I, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-plan office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. In phase II of the project, described in this report, we demonstrate that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. We also establish that analysis algorithms can be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications, and show that it may be possible to use sensor network pulse rate to distinguish the number of occupants in a space. Finally, in this phase of the project we also developed a prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy. This basic capability will be extended in the future by applying an algorithm-based inference to the sensor network data stream, so that the web page displays the likelihood that each monitored office or area is occupied, as a supplement to the actual status of each sensor.

Dale K. Tiller; Gregor P. Henze

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Remote Sensing for Hazard Mitigation and Resource Protection in Pacific Latin America Gregg Bluth (PI); John Gierke, Bill Rose, Essa Gross (Co-PI's)  

E-Print Network [OSTI]

, monitoring, and exploring large regions in a cost-effective manner, it has not met with much acceptance in furthering remote sensing capabilities for natural hazard mitigation and resource development (Guatemala, El Salvador, Nicaragua and Ecuador), focusing on the collaborative development of remote sensing

442

GIScience & Remote Sensing, 2010, 47, No. 4, p. 460479. DOI: 10.2747/1548-1603.47.4.460 Copyright 2010 by Bellwether Publishing, Ltd. All rights reserved.  

E-Print Network [OSTI]

460 GIScience & Remote Sensing, 2010, 47, No. 4, p. 460­479. DOI: 10 for Estimating Terrestrial Emittance and Geothermal Heat Flux for Yellowstone National Park Using Landsat Imagery (YNP) is legally mandated to monitor geo- thermal features for their future preservation, and remote

Lawrence, Rick L.

443

Microcantilever Sensors for In-Situ Subsurface Characterization  

SciTech Connect (OSTI)

Real-time, in-situ analysis is critical for decision makers in environmental monitoring, but current techniques for monitoring and characterizing radionuclides rely primarily on liquid scintillation counting, ICP-MS, and spectrofluorimetry, which require sample handling and labor intensive lengthy analytical procedures. Other problems that accompany direct sampling include adherence to strict holding times and record maintenance for QA/QC procedures. Remote, automated sensing with direct connection to automated data management is preferred.

Thundat, Thomas G.; Zhiyu Hu; Brown, Gilbert M.; Baohua Gu

2006-06-01T23:59:59.000Z

444

MEMS `SMART DUST MOTES' FOR DESIGNING, MONITORING AND ENABLING EFFICIENT LIGHTING  

E-Print Network [OSTI]

-based lighting system has the potential to achieve many environmental benefits in comparison to existing sensorMEMS `SMART DUST MOTES' FOR DESIGNING, MONITORING AND ENABLING EFFICIENT LIGHTING Alice M. Agogino focused on office lighting monitoring and control based on the new MEMS `smart dust mote' sensor

Agogino, Alice M.

445

Building Adaptable Sensor Networks with Sensor Cubes  

E-Print Network [OSTI]

of layers allows easy experiments, upgrades and extensions Small-scale sensor network Example sensor module- world network algorithm and power management behavior · Results from small scale tests can be compared (short packets and high bit rate reduce collision probability); Transmitter's MAC table logic: Small

Roussos, George

446

Digital Sensor Technology  

SciTech Connect (OSTI)

The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

2013-07-01T23:59:59.000Z

447

Giant magnetoresistive sensor  

DOE Patents [OSTI]

A magnetoresistive sensor element with a three-dimensional micro-architecture is capable of significantly improved sensitivity and highly localized measurement of magnetic fields. The sensor is formed of a multilayer film of alternately magnetic and nonmagnetic materials. The sensor is optimally operated in a current perpendicular to plane mode. The sensor is useful in magnetic read/write heads, for high density magnetic information storage and retrieval.

Stearns, Daniel G. (Los Altos, CA); Vernon, Stephen P. (Pleasanton, CA); Ceglio, Natale M. (Livermore, CA); Hawryluk, Andrew M. (Modesto, CA)

1999-01-01T23:59:59.000Z

448

The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A WAter CHerenkov Monitor for ANtineutrinos  

E-Print Network [OSTI]

This article describes the physics and nonproliferation goals of WATCHMAN, the WAter Cherenkov Monitor for ANtineutrinos. The baseline WATCHMAN design is a kiloton scale gadolinium-doped (Gd) light water Cherenkov detector, placed 13 kilometers from a civil nuclear reactor in the United States. In its first deployment phase, WATCHMAN will be used to remotely detect a change in the operational status of the reactor, providing a first- ever demonstration of the potential of large Gd-doped water detectors for remote reactor monitoring for future international nuclear nonproliferation applications. During its first phase, the detector will provide a critical large-scale test of the ability to tag neutrons and thus distinguish low energy electron neutrinos and antineutrinos. This would make WATCHMAN the only detector capable of providing both direction and flavor identification of supernova neutrinos. It would also be the third largest supernova detector, and the largest underground in the western hemisphere. In a follow-on phase incorporating the IsoDAR neutrino beam, the detector would have world-class sensitivity to sterile neutrino signatures and to non-standard electroweak interactions (NSI). WATCHMAN will also be a major, U.S. based integration platform for a host of technologies relevant for the Long-Baseline Neutrino Facility (LBNF) and other future large detectors. This white paper describes the WATCHMAN conceptual design,and presents the results of detailed simulations of sensitivity for the project's nonproliferation and physics goals. It also describes the advanced technologies to be used in WATCHMAN, including high quantum efficiency photomultipliers, Water-Based Liquid Scintillator (WbLS), picosecond light sensors such as the Large Area Picosecond Photo Detector (LAPPD), and advanced pattern recognition and particle identification methods.

M. Askins; M. Bergevin; A. Bernstein; S. Dazeley; S. T. Dye; T. Handler; A. Hatzikoutelis; D. Hellfeld; P. Jaffke; Y. Kamyshkov; B. J. Land; J. G. Learned; P. Marleau; C. Mauger; G. D. Orebi Gann; C. Roecker; S. D. Rountree; T. M. Shokair; M. B. Smy; R. Svoboda; M. Sweany; M. R. Vagins; K. A. van Bibber; R. B. Vogelaar; M. J. Wetstein; M. Yeh

2015-02-04T23:59:59.000Z

449

Micromechanical potentiometric sensors  

DOE Patents [OSTI]

A microcantilever potentiometric sensor utilized for detecting and measuring physical and chemical parameters in a sample of media is described. The microcantilevered spring element includes at least one chemical coating on a coated region, that accumulates a surface charge in response to hydrogen ions, redox potential, or ion concentrations in a sample of the media being monitored. The accumulation of surface charge on one surface of the microcantilever, with a differing surface charge on an opposing surface, creates a mechanical stress and a deflection of the spring element. One of a multitude of deflection detection methods may include the use of a laser light source focused on the microcantilever, with a photo-sensitive detector receiving reflected laser impulses. The microcantilevered spring element is approximately 1 to 100 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. An accuracy of detection of deflections of the cantilever is provided in the range of 0.01 nanometers of deflection. The microcantilever apparatus and a method of detection of parameters require only microliters of a sample to be placed on, or near the spring element surface. The method is extremely sensitive to the detection of the parameters to be measured.

Thundat, Thomas G. (Knoxville, TN)

2000-01-01T23:59:59.000Z

450

978-1-4244-1694-3/08/$25.00 2008 IEEE Programming Support for Sensor-based Scientific Applications  

E-Print Network [OSTI]

- tural monitoring [12], habitat and environmental mon- itoring [17], and end-to-end soil monitoring [23 and manage this un- certainty, and (3) the need to assimilate and transport required data (often from remote for monitoring, under- standing, and managing natural and engineered systems ­ one that is information

Parashar, Manish

451

Using Sensor Technology to Augment Traditional Healthcare Marilyn J. Rantz, Marjorie Skubic, Member, IEEE and Steven J. Miller  

E-Print Network [OSTI]

motion, door sensors and load cells on the bed [4]. A monitoring system of 8 passive motion sensors mixture model analysis [5]. Another pilot study used motion and door sensors to extract a 24 hour activity profile; an alert could be generated if newly logged data deviated from the stored profile [6]. Heart

He, Zhihai "Henry"

452

Sensor readout detector circuit  

DOE Patents [OSTI]

A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

Chu, D.D.; Thelen, D.C. Jr.

1998-08-11T23:59:59.000Z

453

Sensor readout detector circuit  

DOE Patents [OSTI]

A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

Chu, Dahlon D. (Albuquerque, NM); Thelen, Jr., Donald C. (Bozeman, MT)

1998-01-01T23:59:59.000Z

454

Sensor system scaling issues  

SciTech Connect (OSTI)

A model for IR sensor performance is used to compare estimates of sensor cost effectiveness. Although data from aircraft sensors indicate a weaker scaling, their agreement is adequate to support the assessment of the benefits of operating up to the maximum altitude of most current UAVs.

Canavan, G.H.

1996-07-01T23:59:59.000Z

455

Sensors for Environmental Observatories  

E-Print Network [OSTI]

Sensors for Environmental Observatories Report of the NSF-Sponsored Workshop December 2004 #12 States of America. 2005. #12;Sensors for Environmental Observatories Report of the NSF Sponsored Workshop sensor technology and the networks that collect data from them. Present work clearly demonstrates

Hamilton, Michael P.

456

Automotive vehicle sensors  

SciTech Connect (OSTI)

This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

1995-09-01T23:59:59.000Z

457

Ion Monitoring  

DOE Patents [OSTI]

The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

2003-11-18T23:59:59.000Z

458

Remote sensing for the geobotanical and biogeochemical assessment of environmental contamination  

SciTech Connect (OSTI)

Under Contract Number DE-AC08-90NV10845, the DOE has funded the Desert Research Institute (DRI) to examine several aspects of remote sensing, specifically with respect to how its use might help support Environmental Restoration and Waste Management (ERWM) activities at DOE sites located throughout the country. This report represents partial fulfillment of DRI`s obligations under that contract and includes a review of relevant literature associated with remote sensing studies and our evaluation and recommendation as to the applicability of various remote sensing techniques for DOE needs. With respect to DOE ERWM activities, remote sensing may be broadly defined as collecting information about a target without actually being in physical contact with the object. As the common platforms for remote sensing observations are aircraft and satellites, there exists the possibility to rapidly and efficiently collect information over DOE sites that would allow for the identification and monitoring of contamination related to present and past activities. As DOE sites cover areas ranging from tens to hundreds of square miles, remote sensing may provide an effective, efficient, and economical method in support of ERWM activities. For this review, remote sensing has been limited to methods that employ electromagnetic (EM) energy as the means of detecting and measuring target characteristics.

Wickham, J.; Chesley, M.; Lancaster, J.; Mouat, D.

1993-01-01T23:59:59.000Z

459

AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION  

SciTech Connect (OSTI)

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

Jerry Myers

2005-04-15T23:59:59.000Z

460

Wetland monitoring using classification trees and SPOT-5 seasonal time series. Aurlie Davranche1  

E-Print Network [OSTI]

to estimate the area of4 marshes covered with common reeds (Phragmites australis) and submerged macrophytes5 Phragmites australis, remote sensing, SPOT-5, submerged macrophytes, wetland monitoring.29 30 1. Introduction

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Elastomer degradation sensor using a piezoelectric material  

DOE Patents [OSTI]

A method and apparatus for monitoring the degradation of elastomeric materials is provided. Piezoelectric oscillators are placed in contact with the elastomeric material so that a forced harmonic oscillator with damping is formed. The piezoelectric material is connected to an oscillator circuit,. A parameter such as the resonant frequency, amplitude or Q value of the oscillating system is related to the elasticity of the elastomeric material. Degradation of the elastomeric material causes changes in its elasticity which, in turn, causes the resonant frequency, amplitude or Q of the oscillator to change. These changes are monitored with a peak height monitor, frequency counter, Q-meter, spectrum analyzer, or other measurement circuit. Elasticity of elastomers can be monitored in situ, using miniaturized sensors.

Olness, Dolores U. (Livermore, CA); Hirschfeld, deceased, Tomas B. (late of Livermore, CA)

1990-01-01T23:59:59.000Z

462

Electromagnetic Radiation REFERENCE: Remote Sensing of  

E-Print Network [OSTI]

1 CHAPTER 2: Electromagnetic Radiation Principles REFERENCE: Remote Sensing of the Environment John;2 Electromagnetic Energy Interactions Energy recorded by remote sensing systems undergoes fundamental interactions, creating convectional currents in the atmosphere. c) Electromagnetic energy in the form of electromagnetic

Gilbes, Fernando

463

Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India)  

E-Print Network [OSTI]

Inc. All rights reserved. Keywords: Glacier mass balance; Climate change; Sea level rise; DEM; SPOT5 Chevallier e a EOS/UBC, 6339 Stores Road, Vancouver, B.C. Canada V6T 1Z4 b GREAT ICE (IRD-LGGE) 54 Rue use remote sensing data to monitor glacier elevation changes and mass balances in the Spiti

Berthier, Etienne

464

Remote sensing of Greenland ice sheet using multispectral near-infrared and visible radiances  

E-Print Network [OSTI]

Remote sensing of Greenland ice sheet using multispectral near-infrared and visible radiances Petr microwave methods. The method should be useful for long-term monitoring of the melt area of the Greenland of MODIS retrievals of the western portion of the Greenland ice sheet over the period 2000 to 2006

Dozier, Jeff

465

10 January 2009 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING High Performance Computing in Remote Sensing  

E-Print Network [OSTI]

10 January 2009 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING High Performance Computing in Remote Book ReviewBook Review High Performance Computing in Remote Sensing introduces the most recent advances in the incorporation of the high-performance computing (HPC) paradigm in remote sensing missions. Eighteen well

Plaza, Antonio J.

466

Electrostatic monitoring  

DOE Patents [OSTI]

The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

Orr, Christopher Henry (Cumbria, GB); Luff, Craig Janson (Cumbria, GB); Dockray, Thomas (Cumbria, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

2001-01-01T23:59:59.000Z

467

Connecting Remote Clusters with ATM  

SciTech Connect (OSTI)

Sandia's entry into utilizing clusters of networked workstations is called Computational Plant or CPlant for short. The design of CPlant uses Ethernet to boot the individual nodes, Myrinet to communicate within a node cluster, and ATM to connect between remote clusters. This SAND document covers the work done to enable the use of ATM on the CPlant nodes in the Fall of 1997.

Hu, T.C.; Wyckoff, P.S.

1998-10-01T23:59:59.000Z

468

The Remote Media Immersion (RMI)  

E-Print Network [OSTI]

the ultimate digital media delivery platform. Its streaming media server delivers multiple high- bandwidth aspects). The hope is that our advances in digital media delivery will enable new applicationsThe Remote Media Immersion (RMI) system blends multiple cutting- edge media technologies to create

Shahabi, Cyrus

469

Converging Redundant Sensor Network Information for Improved Building Control  

SciTech Connect (OSTI)

This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-plan office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.

Dale Tiller; D. Phil; Gregor Henze; Xin Guo

2007-09-30T23:59:59.000Z

470

Satellite Remote Sensing of Air Pollution in Mega CitiesSatellite Remote Sensing of Air Pollution in Mega Cities Sundar A. Christopher 1; J.Wang1; P. Gupta 1; M.A. Box2; and G.P. Box2  

E-Print Network [OSTI]

Satellite Remote Sensing of Air Pollution in Mega CitiesSatellite Remote Sensing of Air Pollution, consistent, and cost-effective way for monitoring air pollution. Using Terra/Aqua data, we demonstrate matter, or aerosols, reduce visibility, affect human health, and also cause several ecological effects

Wang, Jun

471

Algorithms for optimizing Placement of Stationary Monitors  

E-Print Network [OSTI]

(The terms monitors and sensors can be used interchangeably, although we .... An adversary can enter the area at any node (1,j) in the first column. ...... objective function is not ascending in our search direction at a stepsize of , and is...

2012-10-24T23:59:59.000Z

472

T-606: Sun Java System Access Manager Lets Remote Users Partially Modify Data and Remote Authenticated Users Partially Access Data  

Broader source: Energy.gov [DOE]

Sun Java System Access Manager Lets Remote Users Partially Modify Data and Remote Authenticated Users Partially Access Data.

473

Proposal for Fermilab remote access via ISDN (Ver. 1.0)  

SciTech Connect (OSTI)

Currently, most users at remote sites connect to the Fermilab network via dial-up over analog modems using a dumb terminal or a personal computer emulating a dumb terminal. This level of connectivity is suitable for accessing a single, character-based application. The power of personal computers that are becoming ubiquitous is under-utilized. National HEPnet Management (NHM) has been monitoring and experimenting with remote access via the integrated services digital network (ISDN) for over two years. Members of NHM felt that basic rate ISDN had the potential for providing excellent remote access capability. Initially ISDN was not able to achieve this, but recently the situation has improved. The authors feel that ISDN can now provide, at a remote site such as a user`s home, a computing environment very similar to that which is available at Fermilab. Such an environment can include direct LAN access, windowing systems, graphics, networked file systems, and demanding software applications. This paper proposes using ethernet bridging over ISDN for remote connectivity. With ISDN remote bridging, a remote Macintosh, PC, X-terminal, workstation, or other computer will be transparently connected to the Fermilab LAN. Except for a slight speed difference, the remote machine should function just as if it were on the LAN at Fermilab, with all network services-file sharing, printer sharing, X-windows, etc. - fully available. There are two additional reasons for exploring technologies such as ISDN. First, by mid-decade environmental legislation such as the Federal Clean Air Act of 1990 and Illinois Senate Bill 2177 will likely force increased remote-worker arrangements. Second, recent pilot programs and studies have shown that for many types of work there may be a substantial cost benefits to supporting work away from the site.

Lidinsky, W.P.; Martin, D.E.

1993-07-02T23:59:59.000Z

474

Sensor network based vehicle classification and license plate identification system  

SciTech Connect (OSTI)

Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

Frigo, Janette Rose [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Kulathumani, Vinod K [WEST VIRGINIA UNIV.

2009-01-01T23:59:59.000Z

475

Comprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems  

E-Print Network [OSTI]

, carbon sequestration, ecosystem, multi-tier, multi-modal, multi-scale, self organized, sensor array to comprehensively monitor ecosystem carbon sequestration. The network consists of CO2, Weather (pressureComprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems and Its Relation

Han, Richard Y.

476

Structural Health Monitoring of Smart Composite Material by Acoustic Emission  

E-Print Network [OSTI]

Structural Health Monitoring of Smart Composite Material by Acoustic Emission S. Masmoudia , A. El composite structures gives the opportunity to develop smart materials for health monitoring systems and to follow the evolution of these various mechanisms for both types of materials (with and without sensors

Paris-Sud XI, Université de

477

Steam trap monitor  

DOE Patents [OSTI]

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

Ryan, Michael J. (Plainfield, IL)

1988-01-01T23:59:59.000Z

478

Extrinsic fiber optic displacement sensors and displacement sensing systems  

DOE Patents [OSTI]

An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.

Murphy, Kent A. (Roanoke, VA); Gunther, Michael F. (Blacksburg, VA); Vengsarkar, Ashish M. (Scotch Plains, NJ); Claus, Richard O. (Christiansburg, VA)

1994-01-01T23:59:59.000Z

479

Steam distribution and energy delivery optimization using wireless sensors  

SciTech Connect (OSTI)

The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Sukumar, Sreenivas R [ORNL; Djouadi, Seddik M [ORNL; Lake, Joe E [ORNL

2011-01-01T23:59:59.000Z

480

Field scale evaluation of the In Situ Permeable Flow Sensor and assessment of river-aquifer interaction at the Brazos River Hydrologic Field Site / by Andrew Scott Alden  

E-Print Network [OSTI]

perturbation technique to quantify the magnitude and direction of ground water flow in three dimensions. In the first phase of testing, Flow Sensor results and piezometric data from monitoring wells at the site were used to monitor interactions between...

Alden, Andrew Scott

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "remote monitoring sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

IntroductionIntroduction Mercury: Monitoring Patients with ParkinsonMercury: Monitoring Patients with Parkinson''s Diseases Disease  

E-Print Network [OSTI]

IntroductionIntroduction Mercury: Monitoring Patients with ParkinsonMercury: Monitoring Patients's Disease EvaluationEvaluation Mercury ArchitectureMercury Architecture Mercury is a wireless sensor network and disconnections Node Behavior Hardware PlatformHardware Platform Usage Scenario InternetInternet http://fiji.eecs.harvard.edu/Mercury

Chen, Yiling

482

Wireless Sensor Networks for Debris Flow Observation , P.H. Chou1*  

E-Print Network [OSTI]

, it is now becoming possible to construct and deploy brand new types of mobile sensor nodes that move, researchers can derive the direction and magnitude of the flow in brand new ways. I. INTRODUCTION In the past geophones, image recognition, etc. to observe debris flow remotely. They are more likely to survive

Shinozuka, Masanobu

483

Working Group Report: Sensors  

SciTech Connect (OSTI)

Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

Artuso, M.; et al.,

2013-10-18T23:59:59.000Z

484

Monitoring Infrastructure Capacity Monitoring Infrastructure Capacity  

E-Print Network [OSTI]

Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban) task. Monitoring infrastructure capacity is at least as complex as monitoring urban land markets Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban

Levinson, David M.

485

WIPP Transparency Project - container tracking and monitoring demonstration using the Authenticated Tracking and Monitoring System (ATMS)  

SciTech Connect (OSTI)

The Authenticated Tracking and Monitoring System (ATMS) is designed to answer the need for global monitoring of the status and location of proliferation-sensitive items on a worldwide basis, 24 hours a day. ATMS uses wireless sensor packs to monitor the status of the items within the shipment and surrounding environmental conditions. Receiver and processing units collect a variety of sensor event data that is integrated with GPS tracking data. The collected data are transmitted to the International Maritime Satellite (INMARSAT) communication system, which then sends the data to mobile ground stations. Authentication and encryption algorithms secure the data during communication activities. A typical ATMS application would be to track and monitor the stiety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements.

SCHOENEMAN, J. LEE; SMARTT, HEIDI ANNE; HOFER, DENNIS

2000-01-27T23:59:59.000Z