National Library of Energy BETA

Sample records for remote cloud sensing

  1. Testing a Cloud Condensation Nuclei Remote Sensing Method

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Cloud Condensation Nuclei Remote Sensing Method S. J. Ghan Climate Physics Pacific Northwest National Laboratory Richland, Washington D. R. Collin Department of Atmospheric...

  2. ARM - Field Campaign - Remote Cloud Sensing (RCS) Field Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsRemote Cloud Sensing (RCS) Field Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  3. Surface based remote sensing of aerosol-cloud interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface based remote sensing of aerosol-cloud interactions Feingold, Graham NOAA/Environmental Technology Laboratory Frisch, Shelby NOAA/Environmental Technology Laboratory Min, Qilong State University of New York at Albany Category: Cloud Properties We will present an analysis of the effect of aerosol on clouds at the Southern Great Plains ARM site. New methods for retrieving cloud droplet effective radius with radar (MMCR), multifilter rotating shadowband radiometer (MFRSR), and microwave

  4. Cloud Remote Sensing with Sideways-Looks : Theory and First Results Using Multispectral Thermal Imager Data

    SciTech Connect (OSTI)

    Davis, A. B.

    2002-01-01

    In operational remote sensing, the implicit model for cloud geometry is a homogeneous plane-parallel slab of infinite horizontal extent. Each pixel is indeed processed as if it exchanged no radiant energy whatsoever with its neighbors. The shortcomings of this conceptual model have been well documented in the specialized literature but rarely mitigated. The worst-case scenario is probably high-resolution imagery where dense isolated clouds are visible, often both bright (reflective) and dark (transmissive) sides being apparent from the same satellite viewing angle: the low transmitted radiance could conceivably be interpreted in plane-parallel theory as no cloud at all. An alternative to the plane-parallel cloud model is introduced here that has the same appeal of being analytically tractable, at least in the diffusion limit: the spherical cloud. This new geometrical paradigm is applied to radiances from cumulus clouds captured by DOE's Multispectral Thermal Imager (MTI). Estimates of isolated cloud opacities are a necessary first step in correcting radiances from surface targets that are visible in the midst of a broken-cloud field. This type of advanced atmospheric correction is badly needed in remote sensing applications such as nonproliferation detection were waiting for a cloud-free look in the indefinite future is not a viable option.

  5. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sarna, Karolina; Russchenberg, Herman W. J.

    2016-03-14

    A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution measurements from a lidar, a radar and a radiometer, which allow us to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example case studies were chosen from the Atmospheric Radiation Measurementmore » (ARM) Program deployment on Graciosa Island, Azores, Portugal, in 2009 to present the method. We use the cloud droplet effective radius (re) to represent cloud microphysical properties and an integrated value of the attenuated backscatter coefficient (ATB) below the cloud to represent the aerosol concentration. All data from each case study are divided into bins of the liquid water path (LWP), each 10 g m–2 wide. For every LWP bin we present the correlation coefficient between ln re and ln ATB, as well as ACIr (defined as ACIr = –d ln re/d ln ATB, change in cloud droplet effective radius with aerosol concentration). Obtained values of ACIr are in the range 0.01–0.1. Lastly, we show that ground-based remote sensing instruments used in synergy can efficiently and continuously monitor aerosol–cloud interactions.« less

  6. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    SciTech Connect (OSTI)

    Kollias, P.; Luke, E.; Rmillard, J.; Szyrmer, W.

    2011-07-02

    Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud-scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter-wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud-only, cloud mixed with drizzle, and drizzle-only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal-to-noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed.

  7. GREEN FUNCTIONS FOR MULTIPLE SCATTERING AS MATHEMATICAL TOOLS FOR DENSE CLOUD REMOTE SENSING: THEORY, WITH PASSIVE AND ACTIVE APPLICATIONS.

    SciTech Connect (OSTI)

    Davis, A. B.; Marshak, A.; Cahalan, R. F.

    2001-01-01

    We survey radiative Green function theory (1) in linear transport theory where numerical procedures are required to obtain specific results and (2) in the photon diffusion limit (large optical depths) where it is analytically tractable, at least for homogeneous plane-parallel media. We then describe two recent applications of Green function theory to passive cloud remote sensing in the presence of strong three-dimensional transport effects. Finally, we describe recent instrumental breakthroughs in 'off-beam' cloud lidar which is based on direct measurements of radiative Green functions with special attention to the data collected during the Shuttle-based Lidar In-space Technology Experiment (LITE) mission.

  8. Raman lidar measurements of water vapor and aerosols during the atmospheric radiation measurement (ARM) remote clouds sensing (RCS) intensive observation period (IOP)

    SciTech Connect (OSTI)

    Melfi, S.H.; Starr, D.O`C.; Whiteman, D.

    1996-04-01

    The first Atmospheric Radiation Measurement (ARM) remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) site. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program.

  9. Remote Cloud Sensing Intensive Observation Period (RCS-IOP) millimeter-wave radar calibration and data intercomparison

    SciTech Connect (OSTI)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E.

    1996-04-01

    During April 1994, the University of Massachusetts (UMass) and the Pennsylvania State University (Penn State) fielded two millimeter-wave atmospheric radars in the Atmospheric Radiation Measurement Remote Cloud Sensing Intensive Operation Period (RCS-IOP) experiment. The UMass Cloud Profiling Radar System (CPRS) operates simultaneously at 33.12 GHz and 94.92 GHz through a single antenna. The Penn State radar operates at 93.95 GHz and has separate transmitting and receiving antennas. The two systems were separated by approximately 75 meters and simultaneously observed a variety of cloud types at verticle incidence over the course of the experiment. This abstract presents some initial results from our calibration efforts. An absolute calibration of the UMass radar was made from radar measurements of a trihedral corner reflector, which has a known radar cross-section. A relative calibration of between the Penn State and UMass radars is made from the statistical comparison of zenith pointing measurements of low altitude liquid clouds. Attenuation is removed with the aid of radiosonde data, and the difference in the calibration between the UMass and Penn State radars is determined by comparing the ratio of 94-GHz and 95-GHz reflectivity values to a model that accounts for parallax effects of the two antennas used in the Penn State system.

  10. Remote Sensing R. E. Mcintosh

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. E. Mcintosh University of Massachusetts Amherst, MA 01003 Introd uction complete and ready to participate in an intensive operation period (lOP) planned for June 1993. The Microwave Remote Sensing Laboratory (MIRSL) is developing a mobile, scanning millimeter-wave radar for the Atmospheric Radiation Measurement (ARM) Program. This project is intended to fill the void for instrumentation that can remotely measure the physical boundaries and phase of cloud particles in three dimensions. ~t

  11. Final Report - Satellite Calibration and Verification of Remotely Sensed Cloud and Radiation Properties Using ARM UAV Data (February 28, 1995 - February 28, 1998)

    SciTech Connect (OSTI)

    Minnis, Patrick

    1998-02-28

    The work proposed under this agreement was designed to validate and improve remote sensing of cloud and radiation properties in the atmosphere for climate studies with special emphasis on the use of satellites for monitoring these parameters to further the goals of the Atmospheric Radiation Measurement (ARM) Program.

  12. Multi Spectral Pushbroom Imaging Radiometer (MPIR) for remote sensing cloud studies

    SciTech Connect (OSTI)

    Phipps, G.S.; Grotbeck, C.L.

    1995-10-01

    A Multi Spectral Pushbroom Imaging Radiometer (MPIR) has been developed as are relatively inexpensive ({approximately}$IM/copy), well-calibrated,imaging radiometer for aircraft studies of cloud properties. The instrument is designed to fly on an Unmanned Aerospace Vehicle (UAV) platform at altitudes from the surface up to 20 km. MPIR is being developed to support the Unmanned Aerospace Vehicle portion of the Department of Energy`s Atmospheric Radiation Measurements program (ARM/UAV). Radiation-cloud interactions are the dominant uncertainty in the current General Circulation Models used for atmospheric climate studies. Reduction of this uncertainty is a top scientific priority of the US Global Change Research Program and the ARM program. While the DOE`s ARM program measures a num-ber of parameters from the ground-based Clouds and Radiation Testbed sites, it was recognized from the outset that other key parameters are best measured by sustained airborne data taking. These measurements are critical in our understanding of global change issues as well as for improved atmospheric and near space weather forecasting applications.

  13. Additional development of remote sensing techniques for observing morphology, microphysics, and radiative properties of clouds and tests using a new, robust CO{sub 2} lidar. Annual progress report, August 15, 1994--August 30, 1995

    SciTech Connect (OSTI)

    Eberhard, W.L.; Intrieri, J.M.; Brewer, W.A.

    1996-04-01

    The bulk morphology and microphysical characteristics of a cloud are both important in determining the cloud`s effect on radiative transfer. A better understanding of all these properties, and the links among them, are needed for developing adequate parameterizations of these components in climate models. The objective of this project is to develop remote sensing techniques for observing key cloud properties, including the linkages. The research has technique development and instrument development prongs.

  14. Remote Sensing Laboratory - RSL

    SciTech Connect (OSTI)

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  15. Remote Sensing Laboratory - RSL

    ScienceCinema (OSTI)

    None

    2015-01-09

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  16. Advanced laser remote sensing

    SciTech Connect (OSTI)

    Schultz, J.; Czuchlewski, S.; Karl, R.

    1996-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Remote measurement of wind velocities is critical to a wide variety of applications such as environmental studies, weather prediction, aircraft safety, the accuracy of projectiles, bombs, parachute drops, prediction of the dispersal of chemical and biological warfare agents, and the debris from nuclear explosions. Major programs to develop remote sensors for these applications currently exist in the DoD and NASA. At present, however, there are no real-time, three-dimensional wind measurement techniques that are practical for many of these applications and we report on two new promising techniques. The first new technique uses an elastic backscatter lidar to track aerosol patterns in the atmosphere and to calculate three dimensional wind velocities from changes in the positions of the aerosol patterns. This was first done by Professor Ed Eloranta of the University of Wisconsin using post processing techniques and we are adapting Professor Eloranta`s algorithms to a real-time data processor and installing it in an existing elastic backscatter lidar system at Los Alamos (the XM94 helicopter lidar), which has a compatible data processing and control system. The second novel wind sensing technique is based on radio-frequency (RF) modulation and spatial filtering of elastic backscatter lidars. Because of their compactness and reliability, solid state lasers are the lasers of choice for many remote sensing applications, including wind sensing.

  17. Hyperspectral Remote Sensing Techniques For Locating Geothermal...

    Open Energy Info (EERE)

    Remote Sensing Techniques For Locating Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Poster: Hyperspectral Remote Sensing Techniques For...

  18. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT

    SciTech Connect (OSTI)

    Minnis, Patrick

    2013-06-28

    During the period, March 1997 – February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

  19. Use of ARM/NSA Data to Validate and Improve the Remote Sensing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARMNSA Data to Validate and Improve the Remote Sensing Retrieval of Cloud and Surface ... North Slope of Alaska (NSA) through the Atmospheric Radiation Measurement (ARM) Program. ...

  20. Geobotanical Remote Sensing For Geothermal Exploration | Open...

    Open Energy Info (EERE)

    Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Geobotanical Remote Sensing For Geothermal Exploration Abstract This paper presents a...

  1. Category:Remote Sensing Techniques | Open Energy Information

    Open Energy Info (EERE)

    Remote Sensing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Remote Sensing Techniques page? For detailed information...

  2. Geobotanical Remote Sensing for Geothermal Exploration

    SciTech Connect (OSTI)

    Pickles, W L; Kasameyer, P W; Martini, B A; Potts, D C; Silver, E A

    2001-05-22

    This paper presents a plan for increasing the mapped resource base for geothermal exploration in the Western US. We plan to image large areas in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults, surface effluents, historical signatures, and discover subtle hidden faults and hidden thermal systems. Large regions can be imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping faults and effluents the Long Valley Caldera and Mammoth Mountain in California.

  3. Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring...

    Open Energy Info (EERE)

    Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Hyperspectral Geobotanical Remote...

  4. Remote Sensing Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Remote Sensing Laboratory Department of Energy's chief risk officer visits Nevada National Security Site Earlier this month, Associate Deputy Secretary John MacWilliams visited the Nevada National Security Site (NNSS) in his role as Chief Risk Officer for the Department of Energy. He reviewed the various ways the NNSS contributes to the department's and NNSA's missions, including radiological

  5. Advanced signal processing in geophysical remote sensing

    SciTech Connect (OSTI)

    Witten, A.J.; King, W.C.

    1993-06-01

    This paper describes advanced signal processing methods which have improved the capabilities to detect and image the subsurface environment with geophysical remote sensing techniques. Field results are presented showing target detection, subsurface characterizations, and imaging of insitu waste treatment processes, all previously unachievable with such tools as ground penetrating radar, magnetometry and seismic.

  6. Advanced signal processing in geophysical remote sensing

    SciTech Connect (OSTI)

    Witten, A.J. ); King, W.C. . Dept. of Geography and Environmental Engineering)

    1993-01-01

    This paper describes advanced signal processing methods which have improved the capabilities to detect and image the subsurface environment with geophysical remote sensing techniques. Field results are presented showing target detection, subsurface characterizations, and imaging of insitu waste treatment processes, all previously unachievable with such tools as ground penetrating radar, magnetometry and seismic.

  7. Special Section Guest Editorial. Advances in Remote Sensing for...

    Office of Scientific and Technical Information (OSTI)

    Sensing for Monitoring Global Environmental Changes Citation Details In-Document Search Title: Special Section Guest Editorial. Advances in Remote Sensing for Monitoring Global ...

  8. Remote sensing using MIMO systems

    SciTech Connect (OSTI)

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  9. Additional development of remote sensing techniques for observing morphology, microphysics, and radiative properties of clouds and tests using a new, robust CO{sub 2} lidar. Final report

    SciTech Connect (OSTI)

    Eberhard, W.L.; Brewer, W.A.; Intrieri, J.M.

    1998-09-28

    A three-year project with a goal of advancing CO{sub 2} lidar technology and measurement techniques for cloud studies was successfully completed. An eyesafe, infrared lidar with good sensitivity and improved Doppler accuracy was designed, constructed, and demonstrated. Dual-wavelength operation was achieved. A major leap forward in robustness was demonstrated. CO{sub 2} lidars were operated as part of two Intensive Operations Periods at the Southern Great Plains CART site. The first used an older lidar and was intended primarily for measurement technique development. The second used the new lidar and was primarily a demonstration and evaluation of its performance. Progress was demonstrated in the development, evaluation, and application of measurement techniques using CO{sub 2} lidar.

  10. Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation

    SciTech Connect (OSTI)

    McFarquhar, G.M.; Freer, M.; Um, J.; McCoy, R.; Bolton, W.

    2005-03-18

    The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring.

  11. Remote shock sensing and notification system

    DOE Patents [OSTI]

    Muralidharan, Govindarajan [Knoxville, TN; Britton, Charles L [Alcoa, TN; Pearce, James [Lenoir City, TN; Jagadish, Usha [Knoxville, TN; Sikka, Vinod K [Oak Ridge, TN

    2010-11-02

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interface circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitter with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  12. Remote shock sensing and notification system

    DOE Patents [OSTI]

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  13. Geothermal Exploration Using Aviris Remote Sensing Data Over...

    Open Energy Info (EERE)

    Aviris Remote Sensing Data Over Fish Lake Valley, Nv Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Exploration Using Aviris Remote...

  14. Active and Passive Remote Sensing Diagram | Open Energy Information

    Open Energy Info (EERE)

    Active and Passive Remote Sensing Diagram Author National Aeronautics and Space Administration Published Nasa.gov, 2013 DOI Not Provided Check for DOI availability: http:...

  15. An Integrated Mapping And Remote Sensing Investigation Of The...

    Open Energy Info (EERE)

    Mapping And Remote Sensing Investigation Of The Structural Control For Fumarole Location In The Eburru Volcanic Complex, Kenya Rift Jump to: navigation, search OpenEI Reference...

  16. Posters Toward an Operational Water Vapor Remote Sensing System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Posters Toward an Operational Water Vapor Remote Sensing System Using the Global ... T. Van Hove and C. Rocken University Navstar Consortium Boulder, Colorado Background Water ...

  17. Method of determining forest production from remotely sensed forest parameters

    DOE Patents [OSTI]

    Corey, J.C.; Mackey, H.E. Jr.

    1987-08-31

    A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.

  18. Estimation of the relationship between remotely sensed anthropogenic...

    Office of Scientific and Technical Information (OSTI)

    of Indianapolis, Indiana, USA. Anthropogenic heat discharge was estimated based on a remote sensing-based surface energy balance model, which was parameterized using land ...

  19. Method to analyze remotely sensed spectral data

    DOE Patents [OSTI]

    Stork, Christopher L.; Van Benthem, Mark H.

    2009-02-17

    A fast and rigorous multivariate curve resolution (MCR) algorithm is applied to remotely sensed spectral data. The algorithm is applicable in the solar-reflective spectral region, comprising the visible to the shortwave infrared (ranging from approximately 0.4 to 2.5 .mu.m), midwave infrared, and thermal emission spectral region, comprising the thermal infrared (ranging from approximately 8 to 15 .mu.m). For example, employing minimal a priori knowledge, notably non-negativity constraints on the extracted endmember profiles and a constant abundance constraint for the atmospheric upwelling component, MCR can be used to successfully compensate thermal infrared hyperspectral images for atmospheric upwelling and, thereby, transmittance effects. Further, MCR can accurately estimate the relative spectral absorption coefficients and thermal contrast distribution of a gas plume component near the minimum detectable quantity.

  20. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development

    SciTech Connect (OSTI)

    Sassen, K.

    1992-04-30

    This research project designed to investigate how atmospheric remote sensing technology can best be applied to the characterization of the cloudy atmosphere. Our research program addresses basic atmospheric remote sensing questions, but at the same time is clearly directed toward providing information crucial to the ARM (Atmospheric Remote Sensing) program and for application to the Clouds and Radiation Testbed (CART). The instrumentation that is being brought into play includes a variety of art-of-the-art sensors. Available at NOAA WPL are polarization Doppler K{sub a}-band (0.86 mm) and X-band (3.2 cm) radars, a C0{sub 2}(10.6 {mu}m) Doppler lidar with sequential ' polarization measurement capabilities, a three-channel (20.6, 31.65 and 90 GHz) microwave radiometer, and variety of visible and infrared radiometers. Instrumentation at the University of Utah Facility for Atmospheric Remote Sensing (FARS) includes a polarization ruby (0.643 {mu}m) lidar, a narrow-beam (0.14{degree}) mid-infrared (9.5--11.5 {mu}m) radiometer coaligned with the lidar, several other radiometers in the visible and infrared spectral regions, and an advanced two-color (1.06 and 0.532 {mu}m), four-channel Polarization Diversity Lidar (PDL) and all-sky video imaging system that have only recently been developed under the ARM IDP.

  1. Environmental monitoring: civilian applications of remote sensing

    SciTech Connect (OSTI)

    Bolton, W.; Lapp, M.; Vitko, J. Jr.; Phipps, G.

    1996-11-01

    This report documents the results of a Laboratory Directed Research and Development (LDRD) program to explore how best to utilize Sandia`s defense-related sensing expertise to meet the Department of Energy`s (DOE) ever-growing needs for environmental monitoring. In particular, we focused on two pressing DOE environmental needs: (1) reducing the uncertainties in global warming predictions, and (2) characterizing atmospheric effluents from a variety of sources. During the course of the study we formulated a concept for using unmanned aerospace vehicles (UAVs) for making key 0798 climate measurements; designed a highly accurate, compact, cloud radiometer to be flown on those UAVs; and established the feasibility of differential absorption Lidar (DIAL) to measure atmospheric effluents from waste sites, manufacturing processes, and potential treaty violations. These concepts have had major impact since first being formulated in this ,study. The DOE has adopted, and DoD`s Strategic Environmental Research Program has funded, much of the UAV work. And the ultraviolet DIAL techniques have already fed into a major DOE non- proliferation program.

  2. The Fundamental Limitation of Atmospheric Remote Sensing by Dissection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Sensing by Dissection of Single-Photon State Space, and the Paradigms that Lie Beyond Illustrated with WAIL, O2 A-BandLine Spectroscopy, Etc. Davis, Anthony Los Alamos...

  3. Geographical Applications of Remote Sensing (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Geographical Applications of Remote ... DOE Contract Number: AC05-76RL01830 Resource Type: Journal Article Resource Relation: ...

  4. Geological remote sensing for hydrocarbon exploration in Papua New Guinea

    SciTech Connect (OSTI)

    Valenti, G.L.; Phelps, J.C.; Eisenberg, L.L.

    1996-07-01

    One of the most active hydrocarbon exploration provinces of the last decade has been the fold and thrust belt of Papua New Guinea. Geologic remote sensing is an indispensable part of the exploration process in that remote and rugged area where usable seismic data are obtainable only locally, if at all. Photointerpretation of stereo synthetic aperture radar imagery has been especially useful in conventional lithostratigraphic mapping, both local and regional. Results of remote sensing imagery interpretation, integrated with surface geologic data, limited seismic, and balanced structural cross sections, facilitated the documentation of structural styles and provided the basis for a new, regional structural model. The role of remote sensing during various stages of the exploration process is summarized; imagery and map examples are presented.

  5. Remote sensing for wind power potential: a prospector's handbook

    SciTech Connect (OSTI)

    Wade, J.E.; Maule, P.A.; Bodvarsson, G.; Rosenfeld, C.L.; Woolley, S.G.; McClenahan, M.R.

    1983-02-01

    Remote sensing can aid in identifying and locating indicators of wind power potential from the terrestrial, marine, and atmospheric environments (i.e.: wind-deformed trees, white caps, and areas of thermal flux). It is not considered as a tool for determining wind power potential. A wide variety of remotely sensed evidence is described in terms of the scale at which evidence of wind power can be identified, and the appropriate remote sensors for finding such evidence. Remote sensing can be used for regional area prospecting using small-scale imagery. The information from such small-scale imagery is most often qualitative, and if it is transitory, examination of a number of images to verify presistence of the feature may be required. However, this evidence will allow rapid screening of a large area. Medium-scale imagery provides a better picture of the evidence obtained from small-scale imagery. At this level it is best to use existing imagery. Criteria relating to land use, accessibility, and proximity of candidate sites to nearby transmission lines can also be effectively evaluated from medium-scale imagery. Large-scale imagery provides the most quantitative evidence of the strength of wind. Wind-deformed trees can be identified at a large number of sites using only a few hours in locally chartered aircraft. A handheld 35mm camera can adequately document any evidence of wind. Three case studies that employ remote sensing prospecting techniques are described. Based on remotely sensed evidence, the wind power potential in three geographically and climatically diverse areas of the United States is estimated, and the estimates are compared to actual wind data in those regions. In addition, the cost of each survey is discussed. The results indicate that remote sensing for wind power potential is a quick, cost effective, and fairly reliable method for screening large areas for wind power potential.

  6. Exploring Papua New Guinea with remote sensing, fieldwork

    SciTech Connect (OSTI)

    Dekker, F.; Balkwill, H.; Slater, A. ); Herner, R. ); Kampschuur, W. )

    1991-03-01

    This paper reports on several types of remote sensing surveys that have been acquired of the Eastern Papuan Fold Belt, in the Gulf Province of Papua New Guinea. These include aerial photographs, Landsat Multispectral Scanner (MSS) and Synthetic Aperture Radar (SAR). Each has been used by Petro-Canada Inc. for interpreting the geologic structure and stratigraphy of onshore hydrocarbon prospects. Analysis of available remotely sensed imagery reveals greater structural complexity than shown on published geologic maps. Foremost among the images is SAR because of its low, artificial sun angle.

  7. Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource

    Office of Scientific and Technical Information (OSTI)

    Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV (Journal Article) | SciTech Connect Journal Article: Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV Citation Details In-Document Search Title: Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV This paper presents an overview of the

  8. Factors affecting the remotely sensed response of coniferous forest plantations

    SciTech Connect (OSTI)

    Danson, F.M. ); Curran, P.J. )

    1993-01-01

    Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response of a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation.

  9. Remote Sensing of Cirrus Particle Size Vertical Profile Using 1.38 μm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrum and MODIS/ARM Data Remote Sensing of Cirrus Particle Size Vertical Profile Using 1.38 μm Spectrum and MODIS/ARM Data Wang, Xingjuan UCLA Department of Atmospheric & Oceanic Sciences Liou, Kuo-Nan UCLA Ou, Szu-cheng University of California, Los Angeles Takano, Yoshihede UCLA Department of Atmospheric & Oceanic Sciences Chen, Yong UCLA Category: Cloud Properties The time series of backscattering coefficients derived from lidar and Doppler millimeter-wave radar returns, as

  10. V-071: Cisco ASA 1000V Cloud Firewall H.323 Inspection Bug Lets Remote

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Users Deny Service | Department of Energy 1: Cisco ASA 1000V Cloud Firewall H.323 Inspection Bug Lets Remote Users Deny Service V-071: Cisco ASA 1000V Cloud Firewall H.323 Inspection Bug Lets Remote Users Deny Service January 17, 2013 - 12:00am Addthis PROBLEM: Cisco ASA 1000V Cloud Firewall H.323 Inspection Bug Lets Remote Users Deny Service PLATFORM: The vulnerability is reported in versions 8.7.1 and 8.7.1.1. ABSTRACT: A vulnerability has been reported in Cisco ASA 1000V Cloud Firewall

  11. Remote Chemical Sensing Using Quantum Cascade Lasers

    SciTech Connect (OSTI)

    Harper, Warren W.; Strasburg, Jana D.; Aker, Pam M.; Schultz, John F.

    2004-01-20

    Research done by the IR sensors team at PNNL is focused on developing advanced spectroscopic methods for detecting signatures of nuclear, chemical, biological and explosives weapons or weapons production. The sensors we develop fall into two categories: remote sensors that can be operated at distances ranging from 150 m to 10 km, and point sensors that are used for in-situ inspection and detection. FY03 has seen an explosion in FM DIAL progress with the net result being solid confirmation that FM DIAL is a technique capable of remote chemical monitoring in a wide variety of venues. For example, FM DIAL was used to detect a small plume of hydrogen sulfide, a candidate CW agent, released in the desert environment of the Hanford 200 Area site. These experiments were conducted over a range of physical conditions including outside temperatures ranging from 70 F to 105 F and turbulence conditions ranging from quiescent to chaotic. We are now rapidly developing the information needed to design prototype FM DIAL systems that are optimized for specific applications that include scenarios such as fixed position stand-off detection and mobile UAV mounted remote monitoring. Just as an example, in FY04 we will use FM DIAL to detect both in-facility and outdoor release of enriched UF6. The rapid progress in FM DIAL research made in FY03 is attributed to several advances. First, final construction of a custom-designed trailer allowed the instrument to be housed in a mobile temperature-controlled environment. This allowed the experiment to be transported to several locations so that data could be collected under a range of physical conditions. This has led to a better understanding of a variety of experimental noise sources. With this knowledge, we have been able to implement several changes in the way the FM DIAL data is collected and processed, with the net result being a drastic improvement in our confidence of analyte concentration measurement and an improvement i n the

  12. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development. Technical progress report

    SciTech Connect (OSTI)

    Sassen, K.

    1992-04-30

    This research project designed to investigate how atmospheric remote sensing technology can best be applied to the characterization of the cloudy atmosphere. Our research program addresses basic atmospheric remote sensing questions, but at the same time is clearly directed toward providing information crucial to the ARM (Atmospheric Remote Sensing) program and for application to the Clouds and Radiation Testbed (CART). The instrumentation that is being brought into play includes a variety of art-of-the-art sensors. Available at NOAA WPL are polarization Doppler K{sub a}-band (0.86 mm) and X-band (3.2 cm) radars, a C0{sub 2}(10.6 {mu}m) Doppler lidar with sequential ` polarization measurement capabilities, a three-channel (20.6, 31.65 and 90 GHz) microwave radiometer, and variety of visible and infrared radiometers. Instrumentation at the University of Utah Facility for Atmospheric Remote Sensing (FARS) includes a polarization ruby (0.643 {mu}m) lidar, a narrow-beam (0.14{degree}) mid-infrared (9.5--11.5 {mu}m) radiometer coaligned with the lidar, several other radiometers in the visible and infrared spectral regions, and an advanced two-color (1.06 and 0.532 {mu}m), four-channel Polarization Diversity Lidar (PDL) and all-sky video imaging system that have only recently been developed under the ARM IDP.

  13. Researcher, Los Alamos National Laboratory - Space and Remote Sensing Group

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration | (NNSA) Los Alamos National Laboratory - Space and Remote Sensing Group Patrick Colestock Patrick Colestock November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow is bestowed on only about 2 percent of the

  14. Geological and environmental remote sensing for international petroleum operations

    SciTech Connect (OSTI)

    Ellis, J.M.

    1995-11-01

    Remote sensing allows the petroleum industry to make better and quicker interpretations of geological and environmental conditions in areas of present and future operations. Often remote sensing (including aerial photographs) is required because existing maps are out-of-date, too small of scale, or provide only limited information. Implementing remote sensing can lead to lower project costs and reduced risk. The same satellite and airborne data can be used effectively for both geological and environmental applications. For example, earth scientists can interpret new lithologic, structural, and geomorphic information from near-infrared and radar imagery in terrains as diverse as barren desert and tropical jungle. Environmental applications with these and other imagery include establishing baselines, assessing impact by documenting changes through time, and mapping land-use, habitat, and vegetation. Higher resolution sensors provide an up-to-date overview of onshore and offshore petroleum facilities, whereas sensors capable of oblique viewing can be used to generate topographic maps. Geological application in Yemen involved merging Landsat TM and SPOT imagery to obtain exceptional lithologic discrimination. In the Congo, a topographic map to plan field operations was interpreted from the overlapping radar strips. Landsat MSS and TM, SPOT, and Russian satellite images with new aerial photographs are being used in the Tengiz supergiant oil field of Kazakhstan to help establish an environmental baseline, generate a base map, locate wells, plan facilities, and support a geographical information system (GIS). In the Niger delta, Landsat TM and SPOT are being used to plan pipeline routes and seismic lines, and to monitor rapid shoreline changes and population growth. Accurate coastlines, facility locations, and shoreline types are being extracted from satellite images for use in oil spill models.

  15. Remote Spectroscopic Sounding of Liquid Water Path in Thick Clouds in Winter Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Spectroscopic Sounding of Liquid Water Path in Thick Clouds in Winter Conditions S. V. Dvoryashin and G. S. Golitsyn A. M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia The liquid water path (LWP) in mixed clouds is restored based on remote measurements of spectral brightness of a cloudy layer in the spectral range 2.15-2.35µm. The results of spectroscopic sounding of dense clouds sounding are presented. Introduction Since the 1980s, in A. M. Obukhov

  16. Using remote sensing to quantify albedo of roofs in seven California...

    Office of Scientific and Technical Information (OSTI)

    2: Results and application to climate modeling Citation Details In-Document Search This content will become publicly available on February 23, 2017 Title: Using remote sensing to ...

  17. Laser remote sensing of backscattered light from a target sample

    DOE Patents [OSTI]

    Sweatt, William C.; Williams, John D.

    2008-02-26

    A laser remote sensing apparatus comprises a laser to provide collimated excitation light at a wavelength; a sensing optic, comprising at least one optical element having a front receiving surface to focus the received excitation light onto a back surface comprising a target sample and wherein the target sample emits a return light signal that is recollimated by the front receiving surface; a telescope for collecting the recollimated return light signal from the sensing optic; and a detector for detecting and spectrally resolving the return light signal. The back surface further can comprise a substrate that absorbs the target sample from an environment. For example the substrate can be a SERS substrate comprising a roughened metal surface. The return light signal can be a surface-enhanced Raman signal or laser-induced fluorescence signal. For fluorescence applications, the return signal can be enhanced by about 10.sup.5, solely due to recollimation of the fluorescence return signal. For SERS applications, the return signal can be enhanced by 10.sup.9 or more, due both to recollimation and to structuring of the SERS substrate so that the incident laser and Raman scattered fields are in resonance with the surface plasmons of the SERS substrate.

  18. Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Erfani, Ehsan; Mitchell, David L.

    2016-04-07

    Here, ice particle mass- and projected area-dimension (m-D and A-D) power laws are commonly used in the treatment of ice cloud microphysical and optical properties and the remote sensing of ice cloud properties. Although there has long been evidence that a single m-D or A-D power law is often not valid over all ice particle sizes, few studies have addressed this fact. This study develops self-consistent m-D and A-D expressions that are not power laws but can easily be reduced to power laws for the ice particle size (maximum dimension or D) range of interest, and they are valid overmore » a much larger D range than power laws. This was done by combining ground measurements of individual ice particle m and D formed at temperature T < –20 °C during a cloud seeding field campaign with 2-D stereo (2D-S) and cloud particle imager (CPI) probe measurements of D and A, and estimates of m, in synoptic and anvil ice clouds at similar temperatures. The resulting m-D and A-D expressions are functions of temperature and cloud type (synoptic vs. anvil), and are in good agreement with m-D power laws developed from recent field studies considering the same temperature range (–60 °C < T < –20 °C).« less

  19. Lidar for remote sensing; Proceedings of the Meeting, Berlin, Germany, June 24-26, 1992

    SciTech Connect (OSTI)

    Becherer, R.J.; Werner, C.

    1992-01-01

    The present volume on lidar for remote sensing discusses lidar system techniques for remote sensing of atmospheric pollution, airborne and surface-based lidar for environmental sensing of water and oceans, Doppler lidar for wind sensing and related measurement, aerosol measurements using lidar, ozone, water vapor, temperature, and density sensing with lidar systems, and new lidar technology systems and concepts. Attention is given to remote sensing of air pollution over large European cities by lidar, differential absorption lidar monitoring of atmospheric atomic mercury, an experimental evaluation of an airborne depth-sounding lidar, and remote sensing of the sea by tunable multichannel lidar. Topics addressed include recent developments in lidar techniques to measure the wind in the middle atmosphere, recent stratospheric aerosol measurements with a combined Raman elastic-backscatter lidar, the development of an eye-safe IR aerosol lidar, and temperature measurement by rotational Raman lidar.

  20. ARM - Field Campaign - Remote Cloud Sensing (RCS) Field Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IOP" Other Contacts Robert KropfliTom AckermanKenneth SassenAndrew HeymsfieldJohn Goldsmith, Lead Scientists Connor Flynn, DSIT Contact Campaign Data Sets IOP Participant Data...

  1. ARM - Evaluation Product - KAZR Active Remotely-Sensed Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements to provide a more comprehensive dataset. Data Details Developed by Karen Johnson | Michael Jensen Contact Tami Toto ttoto@bnl.gov (631) 344-5952 Upton, NY...

  2. Testing a Cloud Condensation Nuclei Remote Sensing Method

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is calculated from the Kohler theory using the hygroscopic properties of ammonium sulfate. Figure 1 shows the CCN concentration at supersaturations S of 0.01%, 0.1%, and 1%...

  3. Remote Sensing of Cloud Properties Using Ground-Based Measurements...

    Office of Scientific and Technical Information (OSTI)

    We have conducted the first extensive field test of two new methods to retrieve optical ... The test was conducted at the ARM Oklahoma site during September to November 2004. These ...

  4. Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere

    SciTech Connect (OSTI)

    Tooman, T.P.

    1997-01-01

    This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

  5. GMG: A Guaranteed, Efficient Global Optimization Algorithm for Remote Sensing.

    SciTech Connect (OSTI)

    D'Helon, CD

    2004-08-18

    The monocular passive ranging (MPR) problem in remote sensing consists of identifying the precise range of an airborne target (missile, plane, etc.) from its observed radiance. This inverse problem may be set as a global optimization problem (GOP) whereby the difference between the observed and model predicted radiances is minimized over the possible ranges and atmospheric conditions. Using additional information about the error function between the predicted and observed radiances of the target, we developed GMG, a new algorithm to find the Global Minimum with a Guarantee. The new algorithm transforms the original continuous GOP into a discrete search problem, thereby guaranteeing to find the position of the global minimum in a reasonably short time. The algorithm is first applied to the golf course problem, which serves as a litmus test for its performance in the presence of both complete and degraded additional information. GMG is further assessed on a set of standard benchmark functions and then applied to various realizations of the MPR problem.

  6. Prediction of hydrocarbon-bearing structures based on remote sensing

    SciTech Connect (OSTI)

    Smirnova, I.; Gololobov, Yu.; Rusanova, A. )

    1993-09-01

    The technology we developed is based on the use of remotely sensed data and has proved to be effective for identification of structures that appear promising for oil and gas, in particular, reefs in the hydrocarbon-bearing basin of central Asia (Turkmenistan and Uzbekistan). It implements the [open quotes]geoindication[close quotes] concept, the main idea being that landscape components (geoindicators) and subsurface geological features are correlated and depend on each other. Subsurface features (uplifts, depressions, faults, reefs, and other lithological and structural heterogeneities) cause physical and chemical alterations in overlying rocks up to the land surface; thus, they are reflected in distribution of landscape components and observed on airborne and satellite images as specific patterns. The following identified geoindicators are related to different subsurface geological features: definite formations, anticlines, and reefs (barrier, atoll, and bioherm). The geoindicators are extracted from images either visually or by using computer systems. Specially developed software is applied to analyze geoindicator distribution and calculate their characteristics. In the course of processing, it is possible to distinguish folds from reefs. Distribution of geoindicator characteristics is examined on the well studied reefs, and from the regularities, established promising areas with reefs are revealed. When applying the technology in central Asia, the results were successfully verified by field works, seismic methods, and drilling.

  7. Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use

    SciTech Connect (OSTI)

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. Anthropogenic heat discharge was estimated based on a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. Building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/ Energy Information Administration survey data, Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data.

  8. Using remote sensing to quantify albedo of roofs in seven California...

    Office of Scientific and Technical Information (OSTI)

    1: Methods Citation Details In-Document Search This content will become publicly available on March 14, 2017 Title: Using remote sensing to quantify albedo of roofs in seven ...

  9. Remote Sensing Observations from MTI Satellites and GMS Over Tropical Island of Nauru

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Sensing Laboratory Department of Energy's chief risk officer visits Nevada National Security Site Earlier this month, Associate Deputy Secretary John MacWilliams visited the Nevada National Security Site (NNSS) in his role as Chief Risk Officer for the Department of Energy. He reviewed the various ways the NNSS contributes to the department's and NNSA's missions, including radiological

    Remote Sensing Observations from MTI Satellites and GMS Over Tropical Island of Nauru W. M. Porch, P.

  10. Use Remote Sensing Data (selected visible and infrared spectrums) to locate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high temperature ground anomalies in Colorado. Confirm heat flow potential with on-site surveys to drill deep resource wells | Department of Energy Remote Sensing Data (selected visible and infrared spectrums) to locate high temperature ground anomalies in Colorado. Confirm heat flow potential with on-site surveys to drill deep resource wells Use Remote Sensing Data (selected visible and infrared spectrums) to locate high temperature ground anomalies in Colorado. Confirm heat flow potential

  11. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, Lianhong; Huang, Ni; Black, T. Andrew; Wang, Li; Niu, Zheng

    2015-11-23

    Soil respiration (Rs), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this article, we proposed a methodology for the remote estimation of annual Rs at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest).

  12. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2

  13. Geotechnical applications of remote sensing and remote data transmission; Proceedings of the Symposium, Cocoa Beach, FL, Jan. 31-Feb. 1, 1986

    SciTech Connect (OSTI)

    Johnson, A.I.; Pettersson, C.B.

    1988-01-01

    Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis of surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.

  14. Developing and Evaluating Ice Cloud Parameterizations by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by remote sensing is that the transfer functions which relate the observables (e. g., radar Doppler spectrum) to cloud properties (e. g., ice water content, or IWC) are not...

  15. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    SciTech Connect (OSTI)

    Gu, Lianhong; Huang, Ni; Black, T. Andrew; Wang, Li; Niu, Zheng

    2015-11-23

    Soil respiration (Rs), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this article, we proposed a methodology for the remote estimation of annual Rs at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest).

  16. Rapid Damage Assessment Using High-resolution Remote Sensing Imagery: Tools and Techniques

    SciTech Connect (OSTI)

    Vatsavai, Raju; Tuttle, Mark A; Bhaduri, Budhendra L; Bright, Eddie A; Cheriyadat, Anil M; Chandola, Varun; Graesser, Jordan B

    2011-01-01

    Accurate damage assessment caused by major natural and anthropogenic disasters is becoming critical due to increases in human and economic loss. This increase in loss of life and severe damages can be attributed to growing population, as well as human migration to disaster prone regions of the world. Rapid damage assessment and dissemination of accurate information is critical for creating an effective emergency response. Remote sensing and geographic information systems (GIS) based techniques and tools are important in disaster damage assessment and reporting activities. In this review, we will look into the state of the art techniques in damage assessment using remote sensing and GIS.

  17. Manned balloons a calibration tool for air and space based remote sensing measurements in atmospheric research

    SciTech Connect (OSTI)

    Euskirchen, J.; Nebendahl, P.

    1996-10-01

    Remote sensing is accepted as a necessity in science, defense, environmental modelling and politics all over the world. Nevertheless there is sometimes low confidence in measured values achieved by remote sensing and measuring techniques. One of the authors developed sensors in the field of optics (especially visible and IR) and in application development in the field of thermography. Therefore we think that, for example, in the complex field of vertical profiles of photochemistry in gases and aerosols punctual in situ measurements from manned balloons can rise the confidence in values covering large areas achieved by plane or satellite carried scanners. Those values are necessary for global modelling. 5 refs.

  18. Remote sensing of soil radionuclide fluxes in a tropical ecosystem

    SciTech Connect (OSTI)

    Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.

    1980-11-06

    We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant /sup 137/Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose.

  19. Cooling tower and plume modeling for satellite remote sensing applications

    SciTech Connect (OSTI)

    Powers, B.J.

    1995-05-01

    It is often useful in nonproliferation studies to be able to remotely estimate the power generated by a power plant. Such information is indirectly available through an examination of the power dissipated by the plant. Power dissipation is generally accomplished either by transferring the excess heat generated into the atmosphere or into bodies of water. It is the former method with which we are exclusively concerned in this report. We discuss in this report the difficulties associated with such a task. In particular, we primarily address the remote detection of the temperature associated with the condensed water plume emitted from the cooling tower. We find that the effective emissivity of the plume is of fundamental importance for this task. Having examined the dependence of the plume emissivity in several IR bands and with varying liquid water content and droplet size distributions, we conclude that the plume emissivity, and consequently the plume brightness temperature, is dependent upon not only the liquid water content and band, but also upon the droplet size distribution. Finally, we discuss models dependent upon a detailed point-by-point description of the hydrodynamics and thermodynamics of the plume dynamics and those based upon spatially integrated models. We describe in detail a new integral model, the LANL Plume Model, which accounts for the evolution of the droplet size distribution. Some typical results obtained from this model are discussed.

  20. Satellite remote sensing of global rainfall using passive microwave radiometry

    SciTech Connect (OSTI)

    Ferriday, J.G.

    1994-12-31

    Global rainfall over land and ocean is estimated using measurements of upwelling microwaves by a satellite passive microwave radiometer. Radiative transfer calculations through a cloud model are used to parameterize an inversion technique for retrieving rain rates from brightness temperatures measured by the Special Sensor Microwave Imager (SSM/I). The rainfall retrieval technique is based on the interaction between multi-spectral microwave radiances and millimeter sized liquid and frozen hydrometeors distributed in the satellite`s field of view. The rain rate algorithm is sensitive to both hydrometeor emission and scattering while being relatively insensitive to extraneous atmospheric and surface effects. Separate formulations are used over ocean and land to account for different background microwave characteristics and the algorithm corrects for inhomogeneous distributions of rain rates within the satellite`s field of view. Estimates of instantaneous and climate scale rainfall are validated through comparisons with modeled clouds, surface radars, rain gauges and alternative satellite estimates. The accuracy of the rainfall estimates is determined from a combination of validation comparisons, theoretical sampling error calculations, and modeled sensitivity to variations in atmospheric and surface radiative properties. An error budget is constructed for both instantaneous rain rates and climate scale global estimates. At a one degree resolution, the root mean square errors in instantaneous rain rate estimates are 13% over ocean and 20% over land. The root mean square errors in global rainfall totals over a four month period are found to be 46% over ocean and 63% over land. Global rainfall totals are computed on a monthly scale for a three year period from 1987 to 1990. The time series is analyzed for climate scale rainfall distribution and variability.

  1. Deployable large aperture optics system for remote sensing applications.

    SciTech Connect (OSTI)

    Sumali, Anton Hartono; Martin, Jeffrey W.; Main, John A.; Macke, Benjamin T.; Massad, Jordan Elias; Chaplya, Pavel Mikhail

    2004-04-01

    This report summarizes research into effects of electron gun control on piezoelectric polyvinylidene fluoride (PVDF) structures. The experimental apparatus specific to the electron gun control of this structure is detailed, and the equipment developed for the remote examination of the bimorph surface profile is outlined. Experiments conducted to determine the optimum electron beam characteristics for control are summarized. Clearer boundaries on the bimorphs control output capabilities were determined, as was the closed loop response. Further controllability analysis of the bimorph is outlined, and the results are examined. In this research, the bimorph response was tested through a matrix of control inputs of varying current, frequency, and amplitude. Experiments also studied the response to electron gun actuation of piezoelectric bimorph thin film covered with multiple spatial regions of control. Parameter ranges that yielded predictable control under certain circumstances were determined. Research has shown that electron gun control can be used to make macrocontrol and nanocontrol adjustments for PVDF structures. The control response and hysteresis are more linear for a small range of energy levels. Current levels needed for optimum control are established, and the generalized controllability of a PVDF bimorph structure is shown.

  2. Remote Sensing of Complex Flows by Doppler Wind Lidar: Issues and Preliminary Recommendations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Sensing of Complex Flows by Doppler Wind Lidar: Issues and Preliminary Recommendations Lead Author: Andrew Clifton National Renewable Energy Laboratory Technical Report NREL/TP-5000-64634 December 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

  3. Preprint UCRL-JC-153443 Geobotanical Remote Sensing Applied to Targeting New

    Office of Scientific and Technical Information (OSTI)

    Approved for public release; further dissemination unlimited Preprint UCRL-JC-153443 Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV William L. Pickles, Gregory D. Nash, Wendy M. Calvin, Brigette A. Martini, Peter A. Cocks, Ty Kenedy-Bowdoin, Robert B. Mac Knight IV, Eli A. Silver, Donald C. Potts, William Foxall, Paul Kasameyer, Albert F. Waibel This article was submitted to Geothermal Resources

  4. Strategic plan for the utilization of remote sensing technologies in the environmental restoration program

    SciTech Connect (OSTI)

    King, A.D.; Doll, W.E.; Durfee, R.C.; Luxmoore, R.J.; Conder, S.R.; Nyquist, J.E.

    1993-12-01

    The objectives of the Environmental Restoration (ER) Remote Sensing and Special Surveys Program are to apply state-of-the-art remote sensing and geophysical technologies and to manage routine and remotely-sensed examinations of the Oak Ridge Reservation (ORR), the Paducah Gaseous Diffusion Plant (PGDP), the Portsmouth Gaseous Diffusion Plant (PORTS), and their adjacent off-site areas. Repeated multispectral scanner (MSS) imagery, gamma, and photographic surveys will allow monitoring of the degradation that might occur in waste containment vessels and monitoring (at a later stage in the remediation life cycle) of improvements from restoration efforts and cleanup. These technologies, in combination with geophysical surveys, will provide an effective means for identifying unknown waste sites and contaminant transport pathways. All of the data will be maintained in a data base that will be accessible to site managers in the ER Program. The complete analysis of collected data will provide site-specific data to the ER Program for characterizing and monitoring ER Program hazardous waste sites.

  5. Strategic plan for the utilization of remote sensing technologies in the Environmental Restoration Program

    SciTech Connect (OSTI)

    King, A.D.; Doll, W.E.; Durfee, R.C.; Luxmoore, R.J.; Conder, S.R.; Nyquist, J.E.

    1994-03-01

    The objectives of the Environmental Restoration (ER) Remote Sensing and Special Surveys Program are to apply state-of-the-art remote sensing and geophysical technologies and to manage routine and remotely-sensed examinations of the Oak Ridge Reservation (ORR), the Paducah Gaseous Diffusion Plant (PGDP), the Portsmouth Gaseous Diffusion Plant (PORTS), and their adjacent off-site areas. Repeated multispectral scanner (MSS) imagery, gamma, and photographic surveys will allow monitoring of the degradation that might occur in waste containment vessels and monitoring (at a later stage in the remediation life cycle) of improvements from restoration efforts and cleanup. These technologies, in combination with geophysical surveys, will provide an effective means for identifying unknown waste sites and contaminant transport pathways. All of the data will be maintained in a data base that will be accessible to site managers in the ER Program. The complete analysis of collected data will provide site-specific data to the ER Program for characterizing and monitoring ER Program hazardous waste sites.

  6. "Non-Reflective" Boundary Design via Remote Sensing and PID Control Valve

    SciTech Connect (OSTI)

    Zhang, Qin Fen; Karney, Professor Byran W.; Pejovic, Dr. Stanislav

    2011-01-01

    This paper develops the concept of a nonreflective (or semireflective) boundary condition using the combination of a remote sensor and a control system to modulate a relief valve. The essential idea is to sense the pressure change at a remote location and then to use the measured data to adjust the opening of an active control valve at the end of the line to eliminate or attenuate the wave reflections at the valve, thus controlling system transient pressures. This novel idea is shown here through numerical simulation to have considerable potential for transient protection. Using this model, wave reflections and resonance can be effectively eliminated for frictionless pipelines or initial no-flow conditions and can be better controlled in more realistic pipelines for a range of transient disturbances. In addition, the features of even-order harmonics and nonreflective boundary conditions during steady oscillation, obtained through time domain transient analysis, are verified by hydraulic impedance analysis in the frequency domain.

  7. Frequency agile laser safety & hazard analysis for the Sandia Remote Sensing System LIDAR.

    SciTech Connect (OSTI)

    Augustoni, Arnold L.

    2009-05-01

    A laser safety and hazard analysis was performed for the Raytheon Frequency Agile Laser (FAL) to be used with the Sandia Remote Sensing System (SRSS) B-70 Trailer based on the 2007 version of the American National Standards Institute's (ANSI) Standard 136.1, for Safe Use of Lasers and the 2005 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. The B-70 SRSS LIDAR system is a portable platform, which is used to perform laser interaction experiments and tests at various national test sites.

  8. Low-altitude remote sensing dataset of DEM and RGB mosaic for AB corridor on July 13 2013 and L2 corridor on July 21 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baptiste Dafflon

    2015-04-07

    Low-altitude remote sensing dataset including DEM and RGB mosaic for AB (July 13 2013) and L2 corridor (July 21 2013)

  9. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2003-11-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  10. Remote sensing and spectral analysis of plumes from ocean dumping in the New York Bight Apex

    SciTech Connect (OSTI)

    Johnson, R.W.

    1980-05-01

    The application of the remote sensing techniques of aerial photography and multispectral scanning in the qualitative and quantitative analysis of plumes from ocean dumping of waste materials is investigated in the New York Bight Apex. Plumes resulting from the dumping of acid waste and sewage sludge were observed by Ocean Color Scanner at an altitude of 19.7 km and by Modular Multispectral Scanner and mapping camera at an altitude of 3.0 km. Results of the qualitative analysis of multispectral and photographic data for the mapping, location, and identification of pollution features without concurrent sea truth measurements are presented which demonstrate the usefulness of in-scene calibration. Quantitative distributions of the suspended solids in sewage sludge released in spot and line dumps are also determined by a multiple regression analysis of multispectral and sea truth data.

  11. UNMANNED AERIAL VEHICLE (UAV) HYPERSPECTRAL REMOTE SENSING FOR DRYLAND VEGETATION MONITORING

    SciTech Connect (OSTI)

    Nancy F. Glenn; Jessica J. Mitchell; Matthew O. Anderson; Ryan C. Hruska

    2012-06-01

    UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus) and cheatgrass (Bromus tectorum).

  12. Coastal water quality from remote sensing and GIS. A case study on South West Sardinia (Italy)

    SciTech Connect (OSTI)

    Poli, U.; Ippoliti, M.; Venturini, C.; Falcone, P.; Marino, A.

    1997-08-01

    In this paper the application of remote sensing image processing and GIS techniques in monitoring and managing coastal areas is proposed. The methodology has been applied to South-West Sardinia Coast where the environment is endangered by industrial plants and other human activities. The area is characterized by the presence of many submarine springs aligned along coastal cliffs. Water quality parameters (chlorophyll, suspended sediments and temperature) spatial and temporal variations, have been studied using Landsat TM images. Particularly, in this paper are reported the results referred to sea surface thermal gradients, considered as one of the main water quality index. Thermal gradients have been mapped in order to outline water circulation, thermal pollution and presence and distribution of submarine springs. Furthermore, a GIS approach of relating mono and multitemporal TM data with ground referenced information on industrial plants characteristics and distribution has been applied.

  13. Results of the remote sensing feasibility study for the uranium hexafluoride storage cylinder yard program

    SciTech Connect (OSTI)

    Balick, L.K.; Bowman, D.R.; Bounds, J.H.

    1997-02-01

    The US DOE manages the safe storage of approximately 650,000 tons of depleted uranium hexafluoride remaining from the Cold War. This slightly radioactive, but chemically active, material is contained in more than 46,000 steel storage cylinders that are located at Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Some of the cylinders are more than 40 years old, and approximately 17,500 are considered problem cylinders because their physical integrity is questionable. These cylinders require an annual visual inspection. The remainder of the 46,000-plus cylinders must be visually inspected every four years. Currently, the cylinder inspection program is extremely labor intensive. Because these inspections are accomplished visually, they may not be effective in the early detection of leaking cylinders. The inspection program requires approximately 12--14 full-time-equivalent (FTE) employees. At the cost of approximately $125K per FTE, this translates to $1,500K per annum just for cylinder inspection. As part of the technology-development portion of the DOE Cylinder Management Program, the DOE Office of Facility Management requested the Remote Sensing Laboratory (RSL) to evaluate remote sensing techniques that have potential to increase the effectiveness of the inspection program and, at the same time, reduce inspection costs and personnel radiation exposure. During two site visits (March and May 1996) to the K-25 Site at Oak Ridge, TN, RSL personnel tested and characterized seven different operating systems believed to detect leakage, surface contamination, thickness and corrosion of cylinder walls, and general area contamination resulting from breached cylinders. The following techniques were used and their performances are discussed: Laser-induced fluorescent imaging; Long-range alpha detection; Neutron activation analysis; Differential gamma-ray attenuation; Compton scatterometry; Active infrared inspection; and Passive thermal infrared imaging.

  14. A study of the Oklahoma City urban heat island using ground measurements and remote sensing

    SciTech Connect (OSTI)

    Brown, M. J.; Ivey, A.; McPherson, T. N.; Boswell, D.; Pardyjak, E. R.

    2004-01-01

    Measurements of temperature and position were collected during the night from an instrumented van on routes through Oklahoma City and the rural outskirts. The measurements were taken as part of the Joint URBAN 2003 Tracer Field Experiment conducted in Oklahoma City from June 29, 2003 to July 30, 2003 (Allwine et al., 2004). The instrumented van was driven over four primary routes that included legs from the downtown core to four different 'rural' areas. Each route went through residential areas and most often went by a line of permanently fixed temperature probes (Allwine et al., 2004) for cross-checking purposes. Each route took from 20 to 40 minutes to complete. Based on seven nights of data, initial analyses indicate that there was a temperature difference of 0.5-6.5 C between the urban core and nearby 'rural' areas. Analyses also suggest that there were significant fine scale temperature differences over distances of tens of meters within the city and in the nearby rural areas. The temperature measurements that were collected are intended to supplement the meteorological measurements taken during the Joint URBAN 2003 Field Experiment, to assess the importance of the urban heat island phenomenon in Oklahoma City, and to test new urban canopy parameterizations that have been developed for regional scale meteorological codes (e.g., Chin et al., 2000; Holt and Shi, 2004). In addition to the ground measurements, skin temperature measurements were also analyzed from remotely sensed images taken from the Earth Observing System's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). A surface kinetic temperature thermal infrared image captured by the ASTER of the Oklahoma City area on July 21, 2001 was analyzed within ESRI's ArcGIS 8.3 to correlate variations in temperature with land use type. Analysis of this imagery suggests distinct variations in temperature across different land use categories. Through the use of remotely sensed imagery we hope to

  15. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect (OSTI)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  16. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPLINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2004-05-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The third six-month technical report contains a summary of the progress made towards finalizing the design and assembling the airborne, remote methane and ethane sensor. The vendor has been chosen and is on contract to develop the light source with the appropriate linewidth and spectral shape to best utilize the Ophir gas correlation software. Ophir has expanded upon the target reflectance testing begun in the previous performance period by replacing the experimental receiving optics with the proposed airborne large aperture telescope, which is theoretically capable of capturing many times more signal return. The data gathered from these tests has shown the importance of optimizing the fiber optic receiving fiber to the receiving optic and has helped Ophir to optimize the design of the gas cells and narrowband optical filters. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  17. Final Report for the MANNRRSS II Program Management of Nevada's Natural Resources with Remote Sensing Systems, Beatty, NV

    SciTech Connect (OSTI)

    Lester Miller; Brian Horowitz; Chris Kratt; Tim Minor; Stephen F. Zitzer; James. V. Taranik; Zan L. Aslett; Todd O. Morken

    2009-06-04

    This document provides the Final Report on the Management of Nevada’s Natural Resources with Remote Sensing Systems (MANNRRSS) II program. This is a U.S. Department of Energy (DOE)-funded project tasked with utilizing hyperspectral and ancillary electro-optical instrumentation data to create an environmental characterization of an area directly adjacent to the Nevada Test Site (NTS).

  18. Systematic evaluation of satellite remote sensing for identifying uranium mines and mills.

    SciTech Connect (OSTI)

    Blair, Dianna Sue; Stork, Christopher Lyle; Smartt, Heidi Anne; Smith, Jody Lynn

    2006-01-01

    In this report, we systematically evaluate the ability of current-generation, satellite-based spectroscopic sensors to distinguish uranium mines and mills from other mineral mining and milling operations. We perform this systematic evaluation by (1) outlining the remote, spectroscopic signal generation process, (2) documenting the capabilities of current commercial satellite systems, (3) systematically comparing the uranium mining and milling process to other mineral mining and milling operations, and (4) identifying the most promising observables associated with uranium mining and milling that can be identified using satellite remote sensing. The Ranger uranium mine and mill in Australia serves as a case study where we apply and test the techniques developed in this systematic analysis. Based on literature research of mineral mining and milling practices, we develop a decision tree which utilizes the information contained in one or more observables to determine whether uranium is possibly being mined and/or milled at a given site. Promising observables associated with uranium mining and milling at the Ranger site included in the decision tree are uranium ore, sulfur, the uranium pregnant leach liquor, ammonia, and uranyl compounds and sulfate ion disposed of in the tailings pond. Based on the size, concentration, and spectral characteristics of these promising observables, we then determine whether these observables can be identified using current commercial satellite systems, namely Hyperion, ASTER, and Quickbird. We conclude that the only promising observables at Ranger that can be uniquely identified using a current commercial satellite system (notably Hyperion) are magnesium chlorite in the open pit mine and the sulfur stockpile. Based on the identified magnesium chlorite and sulfur observables, the decision tree narrows the possible mineral candidates at Ranger to uranium, copper, zinc, manganese, vanadium, the rare earths, and phosphorus, all of which are

  19. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2003-05-13

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

  20. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    SciTech Connect (OSTI)

    Robert Paul Breckenridge

    2007-05-01

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be

  1. Mapping suitability areas for concentrated solar power plants using remote sensing data

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A.; Singh, Nagendra; Bhaduri, Budhendra L.

    2015-05-14

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on a Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. Furthermore, we present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.

  2. Integration of remote sensing and geographic information systems for Great Lakes water quality monitoring

    SciTech Connect (OSTI)

    Lathrop, R.G. Jr.

    1988-01-01

    The utility of three operational satellite remote sensing systems, namely, the Landsat Thematic Mapper (TM), the SPOT High Resolution Visible (HRV) sensors and the NOAA Advanced Very High Resolution Radiometer (AVHRR), were evaluated as a means of estimating water quality and surface temperature. Empirical calibration through linear regression techniques was used to relate near-simultaneously acquired satellite radiance/reflectance data and water quality observations obtained in Green Bay and the nearshore waters of Lake Michigan. Four dates of TM and one date each of SPOT and AVHRR imagery/surface reference data were acquired and analyzed. Highly significant relationships were identified between the TM and SPOT data and secchi disk depth, nephelometric turbidity, chlorophyll a, total suspended solids (TSS), absorbance, and surface temperature (TM only). The AVHRR data were not analyzed independently but were used for comparison with the TM data. Calibrated water quality image maps were input to a PC-based raster GIS package, EPPL7. Pattern interpretation and spatial analysis techniques were used to document the circulation dynamics and model mixing processes in Green Bay. A GIS facilitates the retrieval, query and spatial analysis of mapped information and provides the framework for an integrated operational monitoring system for the Great Lakes.

  3. Introduction to structure from motion and its applications in remote sensing

    SciTech Connect (OSTI)

    Fair, Matt B

    2011-01-11

    This talk discusses my experience at Los Alamos National Laboratories developing the Wide Area Persistent Surveillance (WAPS) system AngelFire and the problems with working with low resolution surface models. This experience provided a motivation to seek solutions to utilize the redundant WAPS imagery to build surface models of the urban environment. Structure from Motion (SfM) is a process that takes multiple view imagery and compute the 3D structure of a scene. We will walk through the basic algorithm and discuss areas for optimization. Military services and intelligence agencies face long-standing challenges with processing, exploiting, and disseminating ISR data. The problem is that too much data is being produced and not enough people to look at it and the problem is not going away. As a result of this data overload, we need to shift the way we think about data and find creative ways to use and present it so it can be easily digested by decision makers. SfM also provides a means for developing a data processing and organization architecture. Applications for various remote sensing applications will be discussed for motivation for why SfM and Multi-View Stereo rendering is an important area that needs to be continued to be developed.

  4. The application of GIS and remote sensing technologies for site characterization and environmental assessment

    SciTech Connect (OSTI)

    Durfee, R.C.; McCord, R.A.; Dobson, J.E.

    1993-06-01

    Environmental cleanup and restoration of hazardous waste sites are major activities at federal facilities around the US. Geographic information systems (GIS) and remote sensing technologies are very useful computer tools to aid in site characterization, monitoring, assessment, and remediation efforts. Results from applying three technologies are presented to demonstrate examples of site characterization and environmental assessment for a federal facility. The first technology involves the development and use of GIS within the comprehensive Oak Ridge Environmental Information System (OREIS) to integrate facility data, terrain models, aerial and satellite imagery, demographics, waste area information, and geographic data bases. The second technology presents 3-D subsurface analyses and displays of groundwater and contaminant measurements within waste areas. In the third application, aerial survey information is being used to characterize land cover and vegetative patterns, detect change, and study areas of previous waste activities and possible transport pathways. These computer technologies are required to manage, analyze, and display the large amounts of environmental and geographic data that must be handled in carrying out effective environmental restoration.

  5. The application of GIS and remote sensing technologies for site characterization and environmental assessment

    SciTech Connect (OSTI)

    Durfee, R.C.; McCord, R.A.; Dobson, J.E.

    1993-01-01

    Environmental cleanup and restoration of hazardous waste sites are major activities at federal facilities around the US. Geographic information systems (GIS) and remote sensing technologies are very useful computer tools to aid in site characterization, monitoring, assessment, and remediation efforts. Results from applying three technologies are presented to demonstrate examples of site characterization and environmental assessment for a federal facility. The first technology involves the development and use of GIS within the comprehensive Oak Ridge Environmental Information System (OREIS) to integrate facility data, terrain models, aerial and satellite imagery, demographics, waste area information, and geographic data bases. The second technology presents 3-D subsurface analyses and displays of groundwater and contaminant measurements within waste areas. In the third application, aerial survey information is being used to characterize land cover and vegetative patterns, detect change, and study areas of previous waste activities and possible transport pathways. These computer technologies are required to manage, analyze, and display the large amounts of environmental and geographic data that must be handled in carrying out effective environmental restoration.

  6. Remote sensing-based characterization of plant functional type distributions at the Barrow Environmental Observatory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kumar, Jitendra; Hoffman, Forrest M.

    2014-03-18

    Arctic ecosystems have been observed to be warming faster than the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral characteristics which can be harnessed to discriminate plant types and develop quantitative vegetation indices. We have combined high resolution multi-spectral remote sensing from the WorldView 2 satellite with LIDAR-derived digital elevation models to characterize the tundra landscape on the North Slope of Alaska. Classification of landscape using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season to collect vegetation harvests from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. Vegetation distributions developed are being used to provide Plant Functional Type (PFT) maps for use in the Community Land Model (CLM).

  7. Mapping suitability areas for concentrated solar power plants using remote sensing data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Omitaomu, Olufemi A.; Singh, Nagendra; Bhaduri, Budhendra L.

    2015-05-14

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on amore » Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. Furthermore, we present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.« less

  8. Mapping Suitability Areas for Concentrated Solar Power Plants Using Remote Sensing Data

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Singh, Nagendra; Bhaduri, Budhendra L

    2015-01-01

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on a Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. We present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.

  9. Remote sensing-based characterization, 2-m, Plant Functional Type Distributions, Barrow Environmental Observatory, 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zachary Langford; Forrest Hoffman; Jitendra Kumar

    Arctic ecosystems have been observed to be warming faster than the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral characteristics which can be harnessed to discriminate plant types and develop quantitative vegetation indices. We have combined high resolution multi-spectral remote sensing from the WorldView 2 satellite with LIDAR-derived digital elevation models to characterize the tundra landscape on the North Slope of Alaska. Classification of landscape using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season to collect vegetation harvests from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. Vegetation distributions developed are being used to provide Plant Functional Type (PFT) maps for use in the Community Land Model (CLM).

  10. Remote sensing-based characterization of plant functional type distributions at the Barrow Environmental Observatory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kumar, Jitendra; Hoffman, Forrest M.

    Arctic ecosystems have been observed to be warming faster than the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral characteristics which can be harnessed to discriminate plant types and develop quantitative vegetation indices. We have combined high resolution multi-spectral remote sensing from the WorldView 2 satellite with LIDAR-derived digital elevation models to characterize the tundra landscape on the North Slope of Alaska. Classification of landscape using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season to collect vegetation harvests from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. Vegetation distributions developed are being used to provide Plant Functional Type (PFT) maps for use in the Community Land Model (CLM).

  11. Remote sensing-based characterization, 2-m, Plant Functional Type Distributions, Barrow Environmental Observatory, 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zachary Langford; Forrest Hoffman; Jitendra Kumar

    2014-01-01

    Arctic ecosystems have been observed to be warming faster than the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral characteristics which can be harnessed to discriminate plant types and develop quantitative vegetation indices. We have combined high resolution multi-spectral remote sensing from the WorldView 2 satellite with LIDAR-derived digital elevation models to characterize the tundra landscape on the North Slope of Alaska. Classification of landscape using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season to collect vegetation harvests from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. Vegetation distributions developed are being used to provide Plant Functional Type (PFT) maps for use in the Community Land Model (CLM).

  12. Monitoring landscape response to climate change using remote sensing and GIS techniques

    SciTech Connect (OSTI)

    Yuhas, R.H.; Dolan, P.H.; Goetz, A.F.H. (Univ. of Colorado, Boulder, CO (United States))

    1992-01-01

    Increasing concern over the threat of global warming has precipitated the need for study sites which can be scientifically monitored to detect and follow the effects of environmental landscape change. Extensive eolian dune deposits in northeastern Colorado provide an ideal study site. These dune complexes, found along the South Platte River, are currently stabilized by a thin cover of shortgrass prairie vegetation. However, stratigraphic evidence demonstrates that during at least four times in the past 10,000 years, the dunes were actively migrating across the landscape. In addition, climate models indicate that the High Plains could be one of the first areas to react to climate changes when they occur. The scaling relationships that contribute to the evolution of the landscape are nearly impossible to understand without the regional perspective that remote sensing and geographical information system (GIS) techniques provide. Imagery acquired with the NASA/JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is processed to detect the amount of sand exposed, as well as the percent vegetation cover that is currently stabilizing the dunes. Excellent discrimination is found between areas of low and no vegetation, something not possible with traditional analysis methods. Seasonal changes are also emphasized. This information is incorporated into the GIS database the authors created, which also has information on parameters that influence the landscape: elevation, soil type, surface/subsurface hydrology, etc. With these data areas that are susceptible to climate change are highlighted, but more importantly, the reasons for the susceptibility are determined using the GIS's analytical capabilities.

  13. Effective Radius of Cloud Droplets by Ground-Based Remote Sensing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transition Experiment (ASTEX) (Albrecht et al. 1995), and Aerosol ... References Albrecht B. A., C. S. Bretherton, D. Johnson, W. H. Schubert, and A. S. Frisch, ...

  14. Ground-based remote sensing scheme for monitoring aerosol-cloud...

    Office of Scientific and Technical Information (OSTI)

    Publisher: European Geosciences Union Research Org: Delft Univ. of Technology, Stevinweg, Delft (Netherlands) Sponsoring Org: USDOE Country of Publication: United States Language: ...

  15. Computed tomography and optical remote sensing: Development for the study of indoor air pollutant transport and dispersion

    SciTech Connect (OSTI)

    Drescher, A.C.

    1995-06-01

    This thesis investigates the mixing and dispersion of indoor air pollutants under a variety of conditions using standard experimental methods. It also extensively tests and improves a novel technique for measuring contaminant concentrations that has the potential for more rapid, non-intrusive measurements with higher spatial resolution than previously possible. Experiments conducted in a sealed room support the hypothesis that the mixing time of an instantaneously released tracer gas is inversely proportional to the cube root of the mechanical power transferred to the room air. One table-top and several room-scale experiments are performed to test the concept of employing optical remote sensing (ORS) and computed tomography (CT) to measure steady-state gas concentrations in a horizontal plane. Various remote sensing instruments, scanning geometries and reconstruction algorithms are employed. Reconstructed concentration distributions based on existing iterative CT techniques contain a high degree of unrealistic spatial variability and do not agree well with simultaneously gathered point-sample data.

  16. Remote Sensing Analysis of the Sierra Blanca (Faskin Ranch) Low-Level Radioactive Waste Disposal Site, Hudspeth County, Texas

    SciTech Connect (OSTI)

    LeMone, D. V.; Dodge, R.; Xie, H.; Langford, R. P.; Keller, G. R.

    2002-02-26

    Remote sensing images provide useful physical information, revealing such features as geological structure, vegetation, drainage patterns, and variations in consolidated and unconsolidated lithologies. That technology has been applied to the failed Sierra Blanca (Faskin Ranch) shallow burial low-level radioactive waste disposal site selected by the Texas Low-Level Radioactive Waste Disposal Authority. It has been re-examined using data from LANDSAT satellite series. The comparison of the earlier LANDSAT V (5/20/86) (30-m resolution) with the later new, higher resolution ETM imagery (10/23/99) LANDSAT VII data (15-m resolution) clearly shows the superiority of the LANDSAT VII data. The search for surficial indications of evidence of fatal flaws at the Sierra Blanca site utilizing was not successful, as it had been in the case of the earlier remote sensing analysis of the failed Fort Hancock site utilizing LANDSAT V data. The authors conclude that the tectonic activity at the Sierra Blanca site is much less recent and active than in the previously studied Fort Hancock site. The Sierra Blanca site failed primarily on the further needed documentation concerning a subsurface fault underneath the site and environmental justice issues. The presence of this fault was not revealed using the newer LANDSAT VII data. Despite this fact, it must be remembered that remote sensing provides baseline documentation for determining future physical and financial remediation responsibilities. On the basis of the two sites examined by LANDSAT remote sensing imaging, it is concluded that it is an essential, cost-effective tool that should be utilized not only in site examination but also in all nuclear-related facilities.

  17. Hydrocarbon exploration through remote sensing and field work in the onshore Eastern Papuan Fold Belt, Gulf province, Papua New Guinea

    SciTech Connect (OSTI)

    Dekker, F.; Balkwill, H.; Slater, A. ); Herner, R. ); Kampschuur, W. )

    1990-05-01

    Over the years several types of remote sensing surveys have been acquired of the Eastern Papuan Fold Belt, in the Gulf Province of Papua New Guinea. These include aerial photographs, Landsat Multispectral Scanner (MSS), and Synthetic Aperture Radar (SAR). Each has been used by Petro-Canada Inc. for interpreting the geologic structure and stratigraphy of onshore hydrocarbon prospects. Analysis of available remotely sensed imagery reveals greater structural complexity than is shown on published geologic maps. Foremost among the images is SAR because of its low, artificial sun angle. Hence, a comprehensive view of the area has been acquired revealing many structural elements previously not appreciated. A distinct difference in structural style is found between the northern and southern segment of the Eastern Papuan fold belt in the study area. The northern segment shows discontinuous, open folds with widely separated anticlines set in featureless valleys. The southern segment is tightly folded, possessing few anticlines and synclines clearly recognizable on the imagery. However, structural components can be traced easily for tens of miles. Recent field work supports an SAR structural interpretation suggesting most, if not all, anticlines in the northern segment are overturned. The combination of remote sensing and field work proved invaluable in understanding the fold belt tectonics and has aided considerably in the selection of drilling locations.

  18. Recovery Act:Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remoter Sensing and On-Site Exploration, Testing and Analysis

    Broader source: Energy.gov [DOE]

    Recovery Act:Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remoter Sensing and On-Site Exploration, Testing and Analysis presentation at the April 2013 peer review meeting held in Denver, Colorado.

  19. International Symposium on Remote Sensing of Environment, 14th, San Jose, Costa Rica, April 23-30, 1980, Proceedings. Volumes 1, 2 and 3

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Papers are presented on remote sensing applications in resource monitoring and management, data classification and modeling procedures, and the use of remote sensing techniques in developing nations. The subjects of land use/land cover, soil mapping, crop identification, mapping of geological resources, renewable resource analysis, and oceanographic applications are discussed. Papers from Argentina, Bolivia, Brazil, Costa Rica, the Syrian Arab Republic, the People's Republic of China, the Phillipines, Italy, Upper Volta and the United States are included.

  20. Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations S. Kato Center for Atmospheric Sciences Hampton University Hampton, Virginia Introduction Recent development of remote sensing instruments by Atmospheric Radiation Measurement (ARM?) Program provides information of spatial and temporal variability of cloud structures. However it is not clear what cloud properties are required to express complicated cloud

  1. Seasonal and optical characterisation of cirrus clouds over Indian sub-continent using LIDAR

    SciTech Connect (OSTI)

    Jayeshlal, G. S. Satyanarayana, Malladi Dhaman, Reji K. Motty, G. S.

    2014-10-15

    Light Detection and Ranging (LIDAR) is an important remote sensing technique to study about the cirrus clouds. The subject of cirrus clouds and related climate is challenging one. The received scattered signal from Lidar contains information on the physical and optical properties of cirrus clouds. The Lidar profile of the cirrus cloud provides information on the optical characteristics like depolarisation ratio, lidar ratio and optical depth, which give knowledge about possible phase, structure and orientation of cloud particle that affect the radiative budgeting of cirrus clouds. The findings from the study are subjected to generate inputs for better climatic modelling.

  2. The Occurrence of Particle Size Distribution Bimodality in Midlatitude Cirrus as Inferred from Ground-Based Remote Sensing Data

    SciTech Connect (OSTI)

    Zhao, Yang; Mace, Gerald G.; Comstock, Jennifer M.

    2011-06-01

    To better understand the role of small particles in the microphysical processes and the radiative properties of cirrus, the reliability of historical in-situ data must be understood. Recent studies call into question the validity of that data because of shattering of large crystals on probe and aircraft surfaces thereby artificially amplifying the concentration of crystals smaller than approximately 50 ?m. We contend that the general character of the in-situ measurements must be consistent, in a broad sense, with statistics derived from long-term remote sensing data. To examine this consistency, an algorithm using Doppler radar moments and Raman lidar extinction is developed to retrieve a bimodal particle size distribution and its uncertainty. Using case studies and statistics compiled over one year we show that the existence of high concentrations (> 1 cm-3 ) of small (sub 50 ?m) particles in cirrus are not consistent with any reasonable interpretation of the remote sensing data. We conclude that the high concentrations of small particles found in many aircraft data sets are therefore likely an artifact of the in situ measurement process.

  3. Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Mesurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements Z. Li, M. C. Cribb, and F.-L. Chang Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland A. P. Trishchenko and Y. Luo Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Radiation measurements have been widely employed for evaluating cloud parameterization schemes and model simulation results. As the most comprehensive program aiming to improve cloud

  4. Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX project)

    SciTech Connect (OSTI)

    Ian MacDonald

    2011-05-31

    A multi-disciplinary investigation of distribution and magnitude of methane fluxes from seafloor gas hydrate deposits in the Gulf of Mexico was conducted based on results obtained from satellite synthetic aperture radar (SAR) remote sensing and from sampling conducted during a research expedition to three sites where gas hydrate occurs (MC118, GC600, and GC185). Samples of sediments, water, and air were collected from the ship and from an ROV submersible using sediments cores, niskin bottles attached to the ROV and to a rosette, and an automated sea-air interface collector. The SAR images were used to quantify the magnitude and distribution of natural oil and gas seeps that produced perennial oil slicks on the ocean surface. A total of 176 SAR images were processed using a texture classifying neural network algorithm, which segmented the ocean surface into oil-free and oil-covered water. Geostatistical analysis indicates that there are a total of 1081 seep formations distributed over the entire Gulf of Mexico basin. Oil-covered water comprised an average of 780.0 sq. km (sd 86.03) distributed with an area of 147,370 sq. km. Persistent oil and gas seeps were also detected with SAR sampling on other ocean margins located in the Black Sea, western coast of Africa, and offshore Pakistan. Analysis of sediment cores from all three sites show profiles of sulfate, sulfide, calcium and alkalinity that indicated anaerobic oxidation of methane with precipitation of authigenic carbonates. Difference among the three sampling sites may reflect the relative magnitude of methane flux. Methane concentrations in water column samples collected by ROV and rosette deployments from MC118 ranged from {approx}33,000 nM at the seafloor to {approx}12 nM in the mixed layer with isolated peaks up to {approx}13,670 nM coincident with the top of the gas hydrate stability field. Average plume methane, ethane, and propane concentrations in the mixed layer are 7, 630, and 9,540 times saturation

  5. A study of the terrestrial thermosphere by remote sensing of OI dayglow in the far and extreme ultraviolet

    SciTech Connect (OSTI)

    Cotton, D.M.

    1991-01-01

    The upper region of the Earth's atmosphere, the thermosphere, is a key part of the coupled solar-terrestrial system. An important method of obtaining information in the this region is through analysis of radiation excited through the interactions of the thermosphere with solar ionizing, extreme and far ultraviolet radiation. This dissertation presents one such study by the remote sensing of OI in the far and extreme ultraviolet dayglow. The research program included the development construction, and flight of a sounding rocket spectrometer to test this current understanding of the excitation and transport mechanisms of the OI 1356, 1304, 1027, and 989 {angstrom} emissions. This data set was analyzed using current electron and radiative transport models with the purpose of checking the viability of OI remote sensing; that is, whether existing models and input parameters are adequate to predict these detailed measurements. From discrepancies between modeled and measured emissions, inferences about these input parameters were made. Among other things, the data supports a 40% optically thick cascade contribution to the 1304 {angstrom} emission. From upper lying states corresponding to 1040, 1027 and 989 {angstrom} about half of this cascade has been accounted for in this study. There is also evidence that the Lyman {beta} airglow from the geo-corona contributes a significant proportion (30-50%) to the OI 1027 {angstrom} feature. Furthermore, the photoelectron contribution to the 1027 {angstrom} feature appears to be underestimated in the current models by a factor of 20.

  6. A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles

    SciTech Connect (OSTI)

    Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; Behrendt, Andreas; Cadeddu, Maria; Di Girolamo, Paolo; Schlüssel, Peter; van Baelen, Joël; Zus, Florian

    2015-07-08

    A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – and the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.

  7. A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; Behrendt, Andreas; Cadeddu, Maria; Di Girolamo, Paolo; Schlüssel, Peter; van Baelen, Joël; Zus, Florian

    2015-07-08

    A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less

  8. Remote sensing data exploiration for geologic characterization of difficult targets : Laboratory Directed Research and Development project 38703 final report.

    SciTech Connect (OSTI)

    Costin, Laurence S.; Walker, Charles A.; Lappin, Allen R.; Hayat, Majeed M. (University of New Mexico, Albuquerque, NM); Ford, Bridget K.; Paskaleva, Biliana (University of New Mexico, Albuquerque, NM); Moya, Mary M.; Mercier, Jeffrey Alan; Stormont, John C.; Smith, Jody Lynn

    2003-09-01

    Characterizing the geology, geotechnical aspects, and rock properties of deep underground facility sites can enhance targeting strategies for both nuclear and conventional weapons. This report describes the results of a study to investigate the utility of remote spectral sensing for augmenting the geological and geotechnical information provided by traditional methods. The project primarily considered novel exploitation methods for space-based sensors, which allow clandestine collection of data from denied sites. The investigation focused on developing and applying novel data analysis methods to estimate geologic and geotechnical characteristics in the vicinity of deep underground facilities. Two such methods, one for measuring thermal rock properties and one for classifying rock types, were explored in detail. Several other data exploitation techniques, developed under other projects, were also examined for their potential utility in geologic characterization.

  9. Thermodynamic phase profiles of optically thin midlatitude cloud and their relation to temperature

    SciTech Connect (OSTI)

    Naud, C. M.; Del Genio, Anthony D.; Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, Jean-Charles; Turner, David D.; Lo, Chaomei; Comstock, Jennifer M.

    2010-06-03

    Winter cloud phase and temperature profiles derived from ground-based lidar depolarization and radiosonde measurements are analyzed for two midlatitude locations: the United States Atmospheric Radiation Measurement Program Southern Great Plains (SGP) site and the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) in France. Because lidars are attenuated in optically thick clouds, the dataset only includes optically thin clouds (optical thickness < 3). At SGP, 57% of the clouds observed with the lidar in the temperature range 233-273 K are either completely liquid or completely glaciated, while at SIRTA only 42% of the observed clouds are single phase, based on a depolarization ratio threshold of 11% for differentiating liquid from ice. Most optically thin mixed phase clouds show an ice layer at cloud top, and clouds with liquid at cloud top are less frequent. The relationship between ice phase occurrence and temperature only slightly changes between cloud base and top. At both sites liquid is more prevalent at colder temperatures than has been found previously in aircraft flights through frontal clouds of greater optical thicknesses. Liquid in clouds persists to colder temperatures at SGP than SIRTA. This information on the average temperatures of mixed phase clouds at both locations complements earlier passive satellite remote sensing measurements that sample cloud phase near cloud top and for a wider range of cloud optical thicknesses.

  10. 2 micron LIDAR for laser-based remote sensing: Flight demonstration and application survey

    SciTech Connect (OSTI)

    Wagener, T.J.; Demma, N.; Kmetec, J.D.; Kubo, T.S.

    1995-02-01

    A flight test of a diode-pumped solid-state 2 micron Doppler Light Detection And Ranging (LIDAR) system was conducted on-board the NASA Ames DC-8 Airborne Laboratory. This was the first ever airborne demonstration of a 2 micron diode-pumped solid-state Doppler LIDAR. The LIDAR performance was verified by comparing the true-airspeed (TAS) estimate with that found using the pneumatic air data system; excellent agreement was found. The capabilities of this pulsed 2 micron Doppler LIDAR system include high bandwidth air data determination without the need for extensive forebody calibration, remote wind profiling as far as several kilometers away from the aircraft, eye-safe laser transmission at 2 micron, and diode-pumped solid-state design for compact construction and reliable performance. 7 refs.

  11. Remote-Sensed Monitoring of Dominant Plant Species Distribution and Dynamics at Jiuduansha Wetland in Shanghai, China

    SciTech Connect (OSTI)

    Lin, Wenpeng; Chen, Guangsheng; Guo, Pupu; Zhu, Wenquan; Zhang, Donghai

    2015-08-11

    Spartina alterniflora is one of the most hazardous invasive plant species in China. Monitoring the changes in dominant plant species can help identify the invasion mechanisms of S. alterniflora, thereby providing scientific guidelines on managing or controlling the spreading of this invasive species at Jiuduansha Wetland in Shanghai, China. However, because of the complex terrain and the inaccessibility of tidal wetlands, it is very difficult to conduct field experiments on a large scale in this wetland. Hence, remote sensing plays an important role in monitoring the dynamics of plant species and its distribution on both spatial and temporal scales. In this paper, based on multi-spectral and high resolution (<10 m) remote sensing images and field observational data, we analyzed spectral characteristics of four dominant plant species at different green-up phenophases. Based on the difference in spectral characteristics, a decision tree classification was built for identifying the distribution of these plant species. The results indicated that the overall classification accuracy for plant species was 87.17%, and the Kappa Coefficient was 0.81, implying that our classification method could effectively identify the four plant species. We found that the area of Phragmites australi showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 33.77% and 31.92%, respectively. The area of Scirpus mariqueter displayed an increasing trend from 1997 to 2004 (12.16% per year) and a decreasing trend from 2004 to 2012 (-7.05% per year). S. alterniflora has the biggest area (3302.20 ha) as compared to other species, accounting for 51% of total vegetated area at the study region in 2012. It showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 130.63% and 28.11%, respectively. As a result, the native species P. australi was surrounded and the habitats of S. mariqueter were occupied by S

  12. Remote-Sensed Monitoring of Dominant Plant Species Distribution and Dynamics at Jiuduansha Wetland in Shanghai, China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Wenpeng; Chen, Guangsheng; Guo, Pupu; Zhu, Wenquan; Zhang, Donghai

    2015-08-11

    Spartina alterniflora is one of the most hazardous invasive plant species in China. Monitoring the changes in dominant plant species can help identify the invasion mechanisms of S. alterniflora, thereby providing scientific guidelines on managing or controlling the spreading of this invasive species at Jiuduansha Wetland in Shanghai, China. However, because of the complex terrain and the inaccessibility of tidal wetlands, it is very difficult to conduct field experiments on a large scale in this wetland. Hence, remote sensing plays an important role in monitoring the dynamics of plant species and its distribution on both spatial and temporal scales. Inmore » this paper, based on multi-spectral and high resolution (<10 m) remote sensing images and field observational data, we analyzed spectral characteristics of four dominant plant species at different green-up phenophases. Based on the difference in spectral characteristics, a decision tree classification was built for identifying the distribution of these plant species. The results indicated that the overall classification accuracy for plant species was 87.17%, and the Kappa Coefficient was 0.81, implying that our classification method could effectively identify the four plant species. We found that the area of Phragmites australi showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 33.77% and 31.92%, respectively. The area of Scirpus mariqueter displayed an increasing trend from 1997 to 2004 (12.16% per year) and a decreasing trend from 2004 to 2012 (-7.05% per year). S. alterniflora has the biggest area (3302.20 ha) as compared to other species, accounting for 51% of total vegetated area at the study region in 2012. It showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 130.63% and 28.11%, respectively. As a result, the native species P. australi was surrounded and the habitats of S. mariqueter were occupied by S

  13. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  14. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  15. Acidity dependence on cloud drop sizes, enhancement of sulfate production in clouds and its climatic implications from cloud water collected at a remote eastern US site. Master`s thesis

    SciTech Connect (OSTI)

    Logie, B.D.

    1995-09-10

    Two different cloud water collectors were operated simultaneously on a mountain-top platform in Mt. Mitchell State Park, North Carolina (35 deg 44` 05 N 82 deg 17` 15W) to assess differences, if any, in measured acidity, ionic concentrations, and liquid water collection efficiencies during the summer, 1994. The cloud water collectors used were the Daube California Institute of Technology active-string collector (CALTECH) and the non-rotating passive Atmospheric Sciences Research Center string collector. Both collectors transfer cloud water into their sampling bottles by a process analogous to the collision-coalescence process in precipitation initiation by which cloud droplets accumulate on the collector strings and are then transferred to collection bottles as the droplets become large enough to fall. These large drops, in turn, acquire smaller droplets along their path.

  16. SENSE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SENSE (SDN for End-to-End Networking @ Exascale) Project Inder Monga Lead PI What Problem(s) are We Solving * End-to-end network service automaEon - Manual provisioning - No service consistency across domains - No service visibility across domains * ApplicaEon-Network interacEon missing - Ability for science workflows to drive service provisioning - Programming APIs usually not intuiEve and require detailed network knowledge, some not pre-known - Detailed network informaEon needed, usually not

  17. Structural Analysis for Gold Mineralization Using Remote Sensing and Geochemical Techniques in a GIS Environment: Island of Lesvos, Hellas

    SciTech Connect (OSTI)

    Rokos, D. Argialas, D. Mavrantza, R. St Seymour, K.; Vamvoukakis, C.; Kouli, M.; Lamera, S.; Paraskevas, H.; Karfakis, I.; Denes, G

    2000-12-15

    Exploration for epithermal Au has been active lately in the Aegean Sea of the eastern Mediterranean Basin, both in the islands of the Quaternary arc and in those of the back-arc region. The purpose of this study was the structural mapping and analysis for a preliminary investigation of possible epithermal gold mineralization, using remotely sensed data and techniques, structural and field data, and geochemical information, for a specific area on the Island of Lesvos. Therefore, Landsat-TM and SPOT-Pan satellite images and the Digital Elevation Model (DEM) of the study area were processed digitally using spatial filtering techniques for the enhancement and recognition of the geologically significant lineaments, as well as algebraic operations with band ratios and Principal Component Analysis (PCA), for the identification of alteration zones. Statistical rose diagrams and a SCHMIDT projection Stereo Net were generated from the lineament maps and the collected field data (dip and strike measurements of faults, joints, and veins), respectively. The derived lineament map and the band ratio images were manipulated in a GIS environment, in order to study the relation of the tectonic pattern to both the alteration zoning and the geomorphology of the volcanic field of the study area. Target areas of high interest for possible mineralization also were specified using geochemical techniques, such as X-Ray Diffraction (XRD) analysis, trace-element, and fluid-inclusion analysis. Finally, preliminary conclusions were derived about possible mineralization, the type (high or low sulfidation), and the extent of mineralization, by combining the structural information with geochemical information.

  18. Remote Sensing Program

    SciTech Connect (OSTI)

    Philipson, W.R.; Liang, T.; Philpot, W.D.

    1983-01-01

    Field spectroradiometric and airborne multispectral scanner data were related to vineyard yield and other agronomic variables in an attempt to determine the optimum wavelengths for yield prediction modeling. Reflections between vine canopy reflectance and several management practices were also considered. Spectral analysis of test vines found that, although some correlations with vine yield were significant, they were inadequate for producing a yield prediction model. The findings also indicate that the vines examined through the field spectroradiometers were not truly representative. Geologic linears identified from aerial photographys, LANDSAT images, and maps were compared to gas well locations in three New York' counties. Correlations were found between the dominant trends in regional liners and gas field boundaries and trends. Other projects being conducted under the grant include determining vegetable acreage in mucklands, site selection for windmills, spectral effects of sulfur dioxide, and screening tomato seedlings for salt tolerance.

  19. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    SciTech Connect (OSTI)

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali; Salut, Roland; Baida, Fadi I.; Grosjean, Thierry; Nedeljkovic, Dusan; Tannous, Tony

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.

  20. A STUDY OF EXTRACTIVE AND REMOTE-SENSING SAMPLING AND MEASUREMENT OF EMISSIONS FROM MILITARY AIRCRAFT ENGINES

    SciTech Connect (OSTI)

    Cheng, Mengdawn; Corporan, E.

    2010-01-01

    Aircraft emissions contribute to the increased atmospheric burden of particulate matter (e.g., black carbon and secondary organic compounds) that plays a role in air quality, contrail formation and climate change. Sampling and measurement of modern aircraft emissions at the engine exhaust plane (EEP) for to engine and fuel certification remains a daunting task, no agency-certified method is available for the task. In this paper we summarize the results of a recent study that was devoted to investigate both extractive and optical remote-sensing (ORS) technologies in sampling and measurement of gaseous and particulate matter (PM) emitted by a number of military aircraft engines operated with JP-8 and a Fischer-Tropsch (FT) fuel at various engine conditions. These engines include cargo, bomber, and helicopter types of military aircraft that consumes 70-80% of the military aviation fuel each year. The emission indices of selected pollutants are discussed as these data may be of interest for atmospheric modeling and for design of air quality control strategies around the airports and military bases. It was found that non-volatile particles in the engine emissions were all in the ultrafine range. The mean diameter of particles increased as the engine power increased; the mode diameters were in the 20nm range for the low power condition of a new helicopter engine to 80nm for the high power condition of a newly maintained bomber engine. Elemental analysis indicated little metals were present on particles in the exhaust, while most of the materials on the exhaust particles were based on carbon and sulfate. Carbon monoxide, carbon dioxide, nitrogen oxide, sulfur dioxide, formaldehyde, ethylene, acetylene, propylene, and alkanes were detected using both technologies. The last five species (in the air toxics category) were most noticeable only under the low engine power. The emission indices calculated based on the ORS data were however observed to differ significantly (up to

  1. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-02-16

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.« less

  2. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; Feingold, G.; Eloranta, E.; O'Connor, E. J.; Cadeddu, M. P.

    2015-07-02

    Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m-2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m-2.« less

  3. Observed and Simulated Cirrus Cloud Properties at the SGP CART Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Simulated Cirrus Cloud Properties at the SGP CART Site A. D. Del Genio and A. B. Wolf National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York G. G. Mace University of Utah Salt Lake City, Utah Introduction Despite their potential importance in a long-term climate change, less is known about cirrus clouds than most other cloud types, for a variety of reasons (Del Genio 2001) including: (1) the difficulty of remotely sensing ice water content (IWC),

  4. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meskhidze, Nicholas; Nenes, Athanasios

    2010-01-01

    Using smore » atellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between − 0.2 and − 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less

  5. The Tropical Warm Pool International Cloud Experiment

    SciTech Connect (OSTI)

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

  6. Mini-lidar sensor for the remote stand-off sensing of chemical/biological substances and method for sensing same

    DOE Patents [OSTI]

    Ray, Mark D.; Sedlacek, Arthur J.

    2003-08-19

    A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.

  7. Integrating Remote Sensing, Field Observations, and Models to Understand Disturbance and Climate Effects on the Carbon Balance of the West Coast U.S., Final Report

    SciTech Connect (OSTI)

    Beverly E. Law

    2011-10-05

    As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on these multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance.

  8. Low-altitude remote sensing dataset of DEM and RGB mosaic for AB corridor on July 13 2013 and L2 corridor on July 21 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baptiste Dafflon

    2015-04-07

    Low-altitude remote sensing dataset including DEM and RGB mosaic for AB (July 13 2013) and L2 corridor (July 21 2013).Processing flowchart for each corridor:Ground control points (GCP, 20.3 cm square white targets, every 20 m) surveyed with RTK GPS. Acquisition of RGB pictures using a Kite-based platform. Structure from Motion based reconstruction using hundreds of pictures and GCP coordinates. Export of DEM and RGB mosaic in geotiff format (NAD 83, 2012 geoid, UTM zone 4 north) with pixel resolution of about 2 cm, and x,y,z accuracy in centimeter range (less than 10 cm). High-accuracy and high-resolution inside GCPs zone for L2 corridor (500x20m), AB corridor (500x40) DEM will be updated once all GCPs will be measured. Only zones between GCPs are accurate although all the mosaic is provided.

  9. Integrating Remote Sensing, Field Observations, and Models to Understand Disturbance and Climate Effects on the Carbon Balance of the West Coast U.S.

    SciTech Connect (OSTI)

    Cohen, Warren

    2014-07-03

    As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on these multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance.

  10. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 m wavelength relative to 11 m wavelength due to the process of wave resonance or photon tunneling more active at 12 m. This makes the 12/11 m absorption optical depth ratio (or equivalently the 12/11 m Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  11. Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-10

    The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the AprilMay 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administrations (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available.

  12. Cloud properties derived from two lidars over the ARM SGP site

    SciTech Connect (OSTI)

    Dupont, Jean-Charles; Haeffelin, Martial; Morille, Y.; Comstock, Jennifer M.; Flynn, Connor J.; Long, Charles N.; Sivaraman, Chitra; Newsom, Rob K.

    2011-02-16

    [1] Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale (Dupont et al., 2009). Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a 20 cloud optical thickness larger than 3. In this study, 10-years of backscatter lidar signal data are analysed by a unique algorithm called STRucture of ATmosphere (STRAT, Morille et al., 2007). We apply the STRAT algorithm to data from both the collocated Micropulse lidar (MPL) and a Raman lidar (RL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site between 1998 and 2009. Raw backscatter lidar signal is processed and 25 corrections for detector deadtime, afterpulse, and overlap are applied. (Campbell et al.) The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site 30 and (2) to estimate the discrepancies induced by the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPLs, which are the primary ARM lidars, have a distinctly limited range where all of these cloud properties are detectable, especially cloud top and cloud thickness, but even actual cloud base especially during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPLderived annual cycle of cirrus cloud base (top) altitude is

  13. An information system for the utility of the ephemeral tributaries west of the Nile Valley in Sudan. Based on remote sensing and geological techniques

    SciTech Connect (OSTI)

    Al Biely, A.I.; Mohamed, A.H.A.; Khidir, S.O.

    1996-08-01

    Interpretation of landsat MSS and TM satellite and NOAA-AVHRR images, climatological data and conventional geological methods were integrated in this study to arrive at a rigorous scientific geoinformation system that could assist the on-going endeavours to rehabilitate areas west of the Nile Valley. The study area, which repetitively suffered severe spells of drought, extends between latitudes 12{degrees}N-18{degrees}N and longitudes 27{degrees}E-32{degrees}E. The area considered abodes four major ephemeral tributaries of the River Nile, they are Wadi Howar, Wadi El Milk, Wadi El Mugaddam and Khor Abu Habil. Visual interpretation of remotely sensed data coupled with geological investigations revealed that these ephemeral tributaries are structurally controlled and their lower courses are buried under extensive sand sheets, that block their channels from reaching the Nile Valley. Sites where those tributaries disappear could constitute huge reservoirs of groundwater that could be utilized to harness desert encroachment and to plan rehabilitation projects. It is envisaged that, surface and subsurface hydrological engineering constructions in favourable sites, across those tributaries may lead to permanent surface water ponding. The performed study demonstrated the possibility of combating the environmental degradation on the area under consideration through carefully designed rehabilitation and development projects based on the integration of available data in a geoinformation system.

  14. V-071: Cisco ASA 1000V Cloud Firewall H.323 Inspection Bug Lets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Cisco ASA 1000V Cloud Firewall H.323 Inspection Bug Lets Remote Users Deny Service V-071: Cisco ASA 1000V Cloud Firewall H.323 Inspection Bug Lets Remote Users Deny Service ...

  15. Development and Testing of a Life Cycle Model and a Parameterization of Thin Mid-level Stratiform Clouds

    SciTech Connect (OSTI)

    Krueger, Steven K.

    2008-03-03

    We used a cloud-resolving model (a detailed computer model of cloud systems) to evaluate and improve the representation of clouds in global atmospheric models used for numerical weather prediction and climate modeling. We also used observations of the atmospheric state, including clouds, made at DOE's Atmospheric Radiation Measurement (ARM) Program's Climate Research Facility located in the Southern Great Plains (Kansas and Oklahoma) during Intensive Observation Periods to evaluate our detailed computer model as well as a single-column version of a global atmospheric model used for numerical weather prediction (the Global Forecast System of the NOAA National Centers for Environmental Prediction). This so-called Single-Column Modeling approach has proved to be a very effective method for testing the representation of clouds in global atmospheric models. The method relies on detailed observations of the atmospheric state, including clouds, in an atmospheric column comparable in size to a grid column used in a global atmospheric model. The required observations are made by a combination of in situ and remote sensing instruments. One of the greatest problems facing mankind at the present is climate change. Part of the problem is our limited ability to predict the regional patterns of climate change. In order to increase this ability, uncertainties in climate models must be reduced. One of the greatest of these uncertainties is the representation of clouds and cloud processes. This project, and ARM taken as a whole, has helped to improve the representation of clouds in global atmospheric models.

  16. Comparisons of cloud ice mass content retrieved from the radar-infrared radiometer method with aircraft data during the second international satellite cloud climatology project regional experiment (FIRE-II)

    SciTech Connect (OSTI)

    Matrosov, S.Y. |; Heymsfield, A.J.; Kropfli, R.A.; Snider, J.B.

    1996-04-01

    Comparisons of remotely sensed meteorological parameters with in situ direct measurements always present a challenge. Matching sampling volumes is one of the main problems for such comparisons. Aircraft usually collect data when flying along a horizontal leg at a speed of about 100 m/sec (or even greater). The usual sampling time of 5 seconds provides an average horizontal resolution of the order of 500 m. Estimations of vertical profiles of cloud microphysical parameters from aircraft measurements are hampered by sampling a cloud at various altitudes at different times. This paper describes the accuracy of aircraft horizontal and vertical coordinates relative to the location of the ground-based instruments.

  17. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    SciTech Connect (OSTI)

    McFarquhar, Greg

    2015-12-28

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.

  18. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; et al

    2016-01-21

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smallermore » than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × dln(Nliq)/dln(BBt)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm–3) and very high aerosol concentrations (2000–3000 cm–3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm–2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that

  19. Posters Cloud Microphysical and Radiative Properties Measured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laboratory is to develop remote sensing techniques to ... demonstration of new technology at the Atlantic ... NASA Conference Publication 3238, pp. 63-66. Eberhard, W. L. ...

  20. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    SciTech Connect (OSTI)

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the

  1. ARSCL Cloud Statistics - A Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data from active remote sensors to produce an objective determination of cloud location, radar reflectivity, vertical velocity, and Doppler spectral width. Information about the...

  2. Ice Concentration Retrieval in Stratiform Mixed-phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations

    SciTech Connect (OSTI)

    Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.; Fan, Jiwen; Luo, Tao

    2014-10-01

    Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculated from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.

  3. RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations

    SciTech Connect (OSTI)

    Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; Vogelmann, Andrew M.; Toto, Tami; Ackerman, Andrew S.; McFarquhar, Greg M.; Jackson, Robert C.; Jonsson, Haflidi H.; Liu, Yangang

    2015-06-19

    A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations. The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.

  4. RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; Vogelmann, Andrew M.; Toto, Tami; Ackerman, Andrew S.; McFarquhar, Greg M.; Jackson, Robert C.; Jonsson, Haflidi H.; Liu, Yangang

    2015-06-19

    A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations.more » The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.« less

  5. Sensing and Measurement Architecture for Grid Modernization ...

    Office of Scientific and Technical Information (OSTI)

    Subject: 24 POWER TRANSMISSION AND DISTRIBUTION Sensing; Measurement; Architecture; Advanced Distribution; Sensor Network; Cyber; Regulatory; Roadmap Word Cloud More Like This Full ...

  6. Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-01

    Convective processes play a critical role in the Earths energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical parameterizations that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the AprilMay 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administrations (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with

  7. Dual-wavelength millimeter-wave radar measurements of cirrus clouds

    SciTech Connect (OSTI)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E.

    1996-04-01

    In April 1994, the University of Massachusetts` 33-GHz/95-GHz Cloud Profiling Radar System (CPRS) participated in the multi-sensor Remote Cloud Sensing (RCS) Intensive Operation Period (IOP), which was conducted at the Southern Great Plains Cloud and Radiation Testbed (CART). During the 3-week experiment, CPRS measured a variety of cloud types and severe weather. In the context of global warming, the most significant measurements are dual-frequency observations of cirrus clouds, which may eventually be used to estimate ice crystal size and shape. Much of the cirrus data collected with CPRS show differences between 33-GHz and 95-GHz reflectivity measurements that are correlated with Doppler estimates of fall velocity. Because of the small range of reflectivity differences, a precise calibration of the radar is required and differential attenuation must also be removed from the data. Depolarization, which is an indicator of crystal shape, was also observed in several clouds. In this abstract we present examples of Mie scattering from cirrus and estimates of differential attenuation due to water vapor and oxygen that were derived from CART radiosonde measurements.

  8. Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics

    SciTech Connect (OSTI)

    Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

    2013-10-01

    Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

  9. Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.

    SciTech Connect (OSTI)

    Rambukkange,M.; Verlinde, J.; Elorante, E.; Luke, E.; Kollias, P.; Shupe, M.

    2006-07-10

    Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivity of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.

  10. On the relationship among cloud turbulence, droplet formation and drizzle as viewed by Doppler radar, microwave radiometer and lidar

    SciTech Connect (OSTI)

    Feingold, G.; Frisch, A.S.; Cotton, W.R.

    1999-09-01

    Cloud radar, microwave radiometer, and lidar remote sensing data acquired during the Atlantic Stratocumulus Transition Experiment (ASTEX) are analyzed to address the relationship between (1) drop number concentration and cloud turbulence as represented by vertical velocity and vertical velocity variance and (2) drizzle formation and cloud turbulence. Six cases, each of about 12 hours duration, are examined; three of these cases are characteristic of nondrizzling boundary layers and three of drizzling boundary layers. In all cases, microphysical retrievals are only performed when drizzle is negligible (radar reflectivity{lt}{minus}17dBZ). It is shown that for the cases examined, there is, in general, no correlation between drop concentration and cloud base updraft strength, although for two of the nondrizzling cases exhibiting more classical stratocumulus features, these two parameters are correlated. On drizzling days, drop concentration and cloud-base vertical velocity were either not correlated or negatively correlated. There is a significant positive correlation between drop concentration and mean in-cloud vertical velocity variance for both nondrizzling boundary layers (correlation coefficient r=0.45) and boundary layers that have experienced drizzle (r=0.38). In general, there is a high correlation (r{gt}0.5) between radar reflectivity and in-cloud vertical velocity variance, although one of the boundary layers that experienced drizzle exhibited a negative correlation between these parameters. However, in the subcloud region, all boundary layers that experienced drizzle exhibit a negative correlation between radar reflectivity and vertical velocity variance. {copyright} 1999 American Geophysical Union

  11. RACORO long-term, systematic aircraft observations of boundary layer clouds

    SciTech Connect (OSTI)

    Vogelmann, A.M.; McFarquhar, G.; Ogren, J.; Turner, D. D.; Comstock, J. M.; Feingold, G.; Long, C. N.; Jonsson, H. H.; Bucholtz, A.; Collins, D. R.; Diskin, G.; Gerber, H.; Lawson, R. P.; Woods, R. K.; Hubbe, J.; Tomlinson, J.; Schmid, B.

    2010-06-27

    Our knowledge of boundary layer cloud processes is insufficient to resolve pressing scientific problems. Boundary layer clouds often have liquid-water paths (LWPs) less than 100 gm{sup 2}, which are defined here as being 'thin' Clouds with Low Optical Water Depths (CLOWD). This type of cloud is common globally, and the Earth's radiative energy balance is particularly sensitive to small changes in their optical properties. However, it is difficult to retrieve accurately their cloud properties via remote sensing because they are tenuous and often occur in partly cloudy skies. This interferes with our ability to obtain the routine, long-term statistics needed to improve their representation in climate models. To address this problem, in-situ data are needed to investigate cloud processes and to evaluate and refine existing retrieval algorithms. Coordinated by the ARM Aerial Facility (AAF), the Routine AAF CLOWD Optical Radiative Observations (RACORO) field campaign conducted long-term, systematic flights in boundary layer, liquid-water clouds over the ARM Southern Great Plains (SGP) site between 22 January and 30 June 2009. This was the first time that a long-term aircraft campaign was undertaken for systematic in-situ sampling of cloud properties. Using the CIRPAS Twin Otter aircraft equipped with a comprehensive set of instruments to measure solar and thermal radiation, cloud microphysics, aerosol properties and atmospheric state, the RACORO team logged an unprecedented 59 flights and 259 research hours above the SGP site. Data gathered during the RACORO campaign will provide researchers with a statistically relevant data set of boundary-layer cloud and aerosol properties for future study. These data can be used to validate retrieval algorithms and support process studies and model simulations of boundary layer clouds and, in particular, CLOWD-type clouds. In addition to cloud observations, complementary clear-sky flight patterns were conducted to map the surface

  12. Precipitating clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A suggestion for a new focus on cloud microphysical process study in the ARM program 1. Retrieving precipitating mixed- phase cloud properties Zhien Wang University of Wyoming zwang@uwyo.edu Retrieving Precipitating Mixed-phase Cloud Properties Global distribution of supercooled water topped stratiform clouds (top > 1 km and length> 14km) Most of them are mixed-phase with precipitation or virga An multiple sensor based approach to provide water phase as well as ice phase properties

  13. Evaluation of moist processes during intense precipitation in km-scale NWP models using remote sensing and in-situ data: Impact of microphysics size distribution assumptions

    SciTech Connect (OSTI)

    VanWeverberg, K.; vanLipzig, N. P. M.; Delobbe, L.

    2011-02-01

    This study investigates the sensitivity of moist processes and surface precipitation during three extreme precipitation events over Belgium to the representation of rain, snow and hail size distributions in a bulk one-moment microphysics parameterisation scheme. Sensitivities included the use of empirically derived relations to calculate the slope parameter and diagnose the intercept parameter of the exponential snow and rain size distributions and sensitivities to the treatment of hail/graupel. A detailed evaluation of the experiments against various high temporal resolution and spatially distributed observational data was performed to understand how moist processes responded to the implemented size distribution modifications. Net vapor consumption by microphysical processes was found to be unaffected by snow or rain size distribution modifications, while it was reduced replacing formulations for hail by those typical for graupel, mainly due to intense sublimation of graupel. Cloud optical thickness was overestimated in all experiments and all cases, likely due to overestimated snow amounts. The overestimation slightly deteriorated by modifying the rain and snow size distributions due to increased snow depositional growth, while it was reduced by including graupel. The latter was mainly due to enhanced cloud water collection by graupel and reduced snow depositional growth. Radar reflectivity and cloud optical thickness could only be realistically represented by inclusion of graupel during a stratiform case, while hail was found indispensable to simulate the vertical reflectivity profile and the surface precipitation structure. Precipitation amount was not much altered by any of the modifications made and the general overestimation was only decreased slightly during a supercell convective case.

  14. Gamma radiological surveys of the Oak Ridge Reservation, Paducah Gaseous Diffusion Plant, and Portsmouth Gaseous Diffusion Plant, 1990-1993, and overview of data processing and analysis by the Environmental Restoration Remote Sensing Program, Fiscal Year 1995

    SciTech Connect (OSTI)

    Smyre, J.L.; Moll, B.W.; King, A.L.

    1996-06-01

    Three gamma radiological surveys have been conducted under auspices of the ER Remote Sensing Program: (1) Oak Ridge Reservation (ORR) (1992), (2) Clinch River (1992), and (3) Portsmouth Gaseous Diffusion Plant (PORTS) (1993). In addition, the Remote Sensing Program has acquired the results of earlier surveys at Paducah Gaseous Diffusion Plant (PGDP) (1990) and PORTS (1990). These radiological surveys provide data for characterization and long-term monitoring of U.S. Department of Energy (DOE) contamination areas since many of the radioactive materials processed or handled on the ORR, PGDP, and PORTS are direct gamma radiation emitters or have gamma emitting daughter radionuclides. High resolution airborne gamma radiation surveys require a helicopter outfitted with one or two detector pods, a computer-based data acquisition system, and an accurate navigational positioning system for relating collected data to ground location. Sensors measure the ground-level gamma energy spectrum in the 38 to 3,026 KeV range. Analysis can provide gamma emission strength in counts per second for either gross or total man-made gamma emissions. Gross count gamma radiation includes natural background radiation from terrestrial sources (radionuclides present in small amounts in the earth`s soil and bedrock), from radon gas, and from cosmic rays from outer space as well as radiation from man-made radionuclides. Man-made count gamma data include only the portion of the gross count that can be directly attributed to gamma rays from man-made radionuclides. Interpretation of the gamma energy spectra can make possible the determination of which specific radioisotopes contribute to the observed man-made gamma radiation, either as direct or as indirect (i.e., daughter) gamma energy from specific radionuclides (e.g., cesium-137, cobalt-60, uranium-238).

  15. ARM - Measurement - Cloud size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements as cloud thickness, cloud area, and cloud aspect ratio. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  16. Predicting and validating the tracking of a Volcanic Ash Cloud during the 2006 Eruption of Mt. Augustine Volcano

    SciTech Connect (OSTI)

    Webley, Peter W.; Atkinson, D.; Collins, Richard L.; Dean, K.; Fochesatto, J.; Sassen, Kenneth; Cahill, Catherine F.; Prata, A.; Flynn, Connor J.; Mizutani, K.

    2008-11-01

    On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20-year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. UAF aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano and a sulfur-dioxide cloud further from the volcano consistent with the Puff predictions. Lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be

  17. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    SciTech Connect (OSTI)

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  18. Improved Arctic Cloud and Aerosol Research and Model Parameterizations

    SciTech Connect (OSTI)

    Kenneth Sassen

    2007-03-01

    In this report are summarized our contributions to the Atmospheric Measurement (ARM) program supported by the Department of Energy. Our involvement commenced in 1990 during the planning stages of the design of the ARM Cloud and Radiation Testbed (CART) sites. We have worked continuously (up to 2006) on our ARM research objectives, building on our earlier findings to advance our knowledge in several areas. Below we summarize our research over this period, with an emphasis on the most recent work. We have participated in several aircraft-supported deployments at the SGP and NSA sites. In addition to deploying the Polarization Diversity Lidar (PDL) system (Sassen 1994; Noel and Sassen 2005) designed and constructed under ARM funding, we have operated other sophisticated instruments W-band polarimetric Doppler radar, and midinfrared radiometer for intercalibration and student training purposes. We have worked closely with University of North Dakota scientists, twice co-directing the Citation operations through ground-to-air communications, and serving as the CART ground-based mission coordinator with NASA aircraft during the 1996 SUCCESS/IOP campaign. We have also taken a leading role in initiating case study research involving a number of ARM coinvestigators. Analyses of several case studies from these IOPs have been reported in journal articles, as we show in Table 1. The PDL has also participated in other major field projects, including FIRE II and CRYSTAL-FACE. In general, the published results of our IOP research can be divided into two categories: comprehensive cloud case study analyses to shed light on fundamental cloud processes using the unique CART IOP measurement capabilities, and the analysis of in situ data for the testing of remote sensing cloud retrieval algorithms. One of the goals of the case study approach is to provide sufficiently detailed descriptions of cloud systems from the data-rich CART environment to make them suitable for application to

  19. A dual-reservoir remote loading water target system for {sup 18}F and {sup 13}N production with direct in-target liquid level sensing

    SciTech Connect (OSTI)

    Ferrieri, R.A.; Alexoff, D.L.; Schlyer, D.J.; Wolf, A.P.

    1991-12-31

    This report describes our universal water target loading system that serves both [{sup 18}F] and [{sup 13}N] production targets, and a radionuclide delivery system that is specific for [{sup 18}F] fluoride. The system was designed and fabricated around the operation of a single pneumatic syringe dispenser that accesses one of two reservoirs filled with [{sup 18}O] enriched water for [{sup 18}F] fluoride production from the {sup 18}O(p,n){sup 18}F reaction and natural abundance water for [{sup 13}N] nitrate/nitrite production from the {sup 16}O(p,{alpha}){sup 13}N reaction and loads one of two targets depending on the radionuclide desired. The system offers several novel features for reliable radionuclide production. First, there exists an in-target probe for direct liquid level sensing using the conductivity response of water. In addition, transfer of [{sup 18}F] fluoride to the Hot Lab is completely decoupled from the irradiated water through the actions of a resin/recovery system which is located in the cyclotron vault, thus maintaining transfer line integrity. This feature also provides a mechanism for vault-containment of long-lived contaminants generated through target activation and leaching into the water.

  20. A dual-reservoir remote loading water target system for sup 18 F and sup 13 N production with direct in-target liquid level sensing

    SciTech Connect (OSTI)

    Ferrieri, R.A.; Alexoff, D.L.; Schlyer, D.J.; Wolf, A.P.

    1991-01-01

    This report describes our universal water target loading system that serves both ({sup 18}F) and ({sup 13}N) production targets, and a radionuclide delivery system that is specific for ({sup 18}F) fluoride. The system was designed and fabricated around the operation of a single pneumatic syringe dispenser that accesses one of two reservoirs filled with ({sup 18}O) enriched water for ({sup 18}F) fluoride production from the {sup 18}O(p,n){sup 18}F reaction and natural abundance water for ({sup 13}N) nitrate/nitrite production from the {sup 16}O(p,{alpha}){sup 13}N reaction and loads one of two targets depending on the radionuclide desired. The system offers several novel features for reliable radionuclide production. First, there exists an in-target probe for direct liquid level sensing using the conductivity response of water. In addition, transfer of ({sup 18}F) fluoride to the Hot Lab is completely decoupled from the irradiated water through the actions of a resin/recovery system which is located in the cyclotron vault, thus maintaining transfer line integrity. This feature also provides a mechanism for vault-containment of long-lived contaminants generated through target activation and leaching into the water.

  1. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  2. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, Peter F.; Tetzlaff, Wolfgang; Hegland, Joel E.; Jones, Scott C.

    1991-01-01

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission.

  3. Remote Access

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Access Remote Access Laboratory employees can access Research Library databases and products from offsite using our EZproxy service. This service is limited to LANL employees with active Z numbers and cryptocards. Access Electronic Collections with EZproxy Remote Access Journals - Books - Standards - Databases (WOK, etc) How to use EZproxy: From this page: Click on the icon above. From external site: Select "OFFSITE LANL Employee". Enter your Z number and Cryptocard passcode.

  4. HORIZON SENSING

    SciTech Connect (OSTI)

    Larry G. Stolarczyk

    2003-03-18

    With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine appropriately. The Horizon Sensor

  5. ARM - Measurement - Cloud type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Cloud type Cloud type such as cirrus, stratus, cumulus etc Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  6. Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds

    SciTech Connect (OSTI)

    Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O.; Yang, P.

    2008-12-10

    Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in cirrus clouds using a detailed microphysical model and remote sensing measurements obtained at the Department of Energys Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. To help understand dynamic scales important in cirrus formation, we force the model using both large-scale forcing derived using ARM variational analysis, and mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where we have implemented a rigorous classical theory heterogeneous nucleation scheme to compare with empirical representations. We evaluate model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. This approach allows for independent verification of both the large and small particle modes of the particle size distribution. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities, while nucleation mechanism is secondary. Slow ice crystal growth tends to overestimate the number of small ice crystals, but does not seem to influence bulk properties such as ice water path and cloud thickness. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Ice crystal number concentrations on the order of 10-100 L-1 produce results consistent with both lidar and radar observations during a cirrus event observed on 7 December 1999, which has an optical depth range typical of

  7. Dispelling Clouds of Uncertainty

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Ernie; Teixeira, João

    2015-06-15

    How do you build a climate model that accounts for cloud physics and the transitions between cloud regimes? Use MAGIC.

  8. The Midlatitude Continental Convective Clouds Experiment (MC3E)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, M. P.; Petersen, W. A.; Bansemer, A.; Bharadwaj, N.; Carey, L. D.; Cecil, D. J.; Collis, S. M.; DelGenio, A. D.; Dolan, B.; Gerlach, J.; et al

    2015-12-18

    The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deepmore » convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms-1 supported growth of hail and large rain drops. As a result, data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.« less

  9. The Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Jensen, M. P.; Petersen, W. A.; Bansemer, A.; Bharadwaj, N.; Carey, L. D.; Cecil, D. J.; Collis, S. M.; DelGenio, A. D.; Dolan, B.; Gerlach, J.; Giangrande, S. E.; Heymsfield, A.; Heymsfield, G.; Kollias, P.; Lang, T. J.; Nesbitt, S. W.; Neumann, A.; Poellot, M.; Rutledge, S. A.; Schwaller, M.; Tokay, A.; Williams, C. R.; Wolff, D. B.; Xie, S.; Zipser, E. J.

    2015-12-18

    The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deep convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms-1 supported growth of hail and large rain drops. As a result, data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.

  10. NASA Remote Sensing Validation Data: Saudi Arabia

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Myers, Daryl R. [NREL; Al-Abbadi, Naif [King Abdulaziz City for Science and Technology, Energy Research Institite; Wilcox, Steve [NREL

    Since 1995, the King Abdulaziz City for Science and Technology (KACST) and the National Renewable Energy Laboratory (NREL) have co-operated to establish a 12 station network of high quality solar radiation monitoring installations across the Kingdom of Saudi Arabia. NREL and KACST realized the value of accurate surface solar radiation flux measurements for validation of satellite derived surface and atmospheric solar radiation flux measurements, and is making this data available to support validation of satellite data products related to the NASA Mission to Planet Earth component of the Earth Science Enterprise Earth Observing System (EOS) project to evaluate long term climate trends based on measuements from EOS Terra Platforms. A CIMEL 8 channel sunphotometer for measuring aerosol optical depth at 6 wavelengths and total column water has been deployed at the Solar Village station since February 24, 1999. [Taken from http://rredc.nrel.gov/solar/new_data/Saudi_Arabia/

  11. Remotely Sensed Thermal Anomalies in western Colorado

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Landsat Thermal Anomalies Western Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as areas of anomalous surface temperature from Landsat satellite imagery in Western Colorado. Data was obtained for two different dates. The digital numbers of each Landsat scene were converted to radiance and the temperature was calculated in degrees Kelvin and then converted to degrees Celsius for each land cover type using the emissivity of that cover type. And this process was repeated for each of the land cover types (open water, barren, deciduous forest and evergreen forest, mixed forest, shrub/scrub, grassland/herbaceous, pasture hay, and cultivated crops). The temperature of each pixel within each scene was calculated using the thermal band. In order to calculate the temperature an average emissivity value was used for each land cover type within each scene. The NLCD 2001 land cover classification raster data of the zones that cover Colorado were downloaded from USGS site and used to identify the land cover types within each scene. Areas that had temperature residual greater than 2σ, and areas with temperature equal to 1σ to 2σ, were considered Landsat modeled very warm and warm surface exposures (thermal anomalies), respectively Spatial Domain: Extent: Top: 4546381.234113 m Left: 140556.857021 m Right: 573390.000000 m Bottom: 4094583.641581 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  12. Aerosol remote sensing in polar regions

    SciTech Connect (OSTI)

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Mazzola, Mauro; Lanconelli, Christian; Vitale, Vito; Stebel, Kerstin; Aaltonen, Veijo; de Leeuw, Gerrit; Rodriguez, Edith; Herber, Andreas B.; Radionov, Vladimir F.; Zielinski, Tymon; Petelski, Tomasz; Sakerin, Sergey M.; Kabanov, Dmitry M.; Xue, Yong; Mei, Linlu; Istomina, Larysa; Wagener, Richard; McArthur, Bruce; Sobolewski, Piotr S.; Kivi, Rigel; Courcoux, Yann; Larouche, Pierre; Broccardo, Stephen; Piketh, Stuart J.

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i) a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface–atmosphere system over polar regions.

  13. Aerosol remote sensing in polar regions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Wehrli, Christoph; et al

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i)more » a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface–atmosphere system over polar regions.« less

  14. Analytical methods for optical remote sensing

    SciTech Connect (OSTI)

    Spellicy, R.L.

    1997-12-31

    Optical monitoring systems are very powerful because of their ability to see many compounds simultaneously as well as their ability to report results in real time. However, these strengths also present unique problems to analysis of the resulting data and validation of observed results. Today, many FTIR and UV-DOAS systems are in use. Some of these are manned systems supporting short term tests while others are totally unmanned systems which are expected to operate without intervention for weeks or months at a time. The analytical methods needed to support both the diversity of compounds and the diversity of applications is challenging. In this paper, the fundamental concepts of spectral analysis for IR/UV systems are presented. This is followed by examples of specific field data from both short term measurement programs looking at unique sources and long-term unmanned monitoring systems looking at ambient air.

  15. Aerosol remote sensing in polar regions

    SciTech Connect (OSTI)

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Mazzola, Mauro; Lanconelli, Christian; Vitale, Vito; Stebel, Kerstin; Aaltonen, Veijo; de Leeuw, Gerrit; Rodriguez, Edith; Herber, Andreas B.; Radionov, Vladimir F.; Zielinski, Tymon; Petelski, Tomasz; Sakerin, Sergey M.; Kabanov, Dmitry M.; Xue, Yong; Mei, Linlu; Istomina, Larysa; Wagener, Richard; McArthur, Bruce; Sobolewski, Piotr S.; Kivi, Rigel; Courcoux, Yann; Larouche, Pierre; Broccardo, Stephen; Piketh, Stuart J.

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness ?(?) at visible and near-infrared wavelengths, from which best-fit values of ngstrm's exponent ? were calculated. Analysing these data, the monthly mean values of ?(0.50 ?m) and ? and the relative frequency histograms of the daily mean values of both parameters were determined for winterspring and summerautumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of ? versus ?(0.50 ?m) showed: (i) a considerable increase in ?(0.50 ?m) for the Arctic aerosol from summer to winterspring, without marked changes in ?; and (ii) a marked increase in ?(0.50 ?m) passing from the Antarctic Plateau to coastal sites, whereas ? decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of ?(?) and ? at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-lesund. Satellite-based MODIS, MISR, and AATSR retrievals of ?(?) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surfaceatmosphere system over polar regions.

  16. Remote Sensing Techniques | Open Energy Information

    Open Energy Info (EERE)

    LiDAR). In thermal imaging where detectors are measuring heat, it is best to fly when the ground vs. air temperature gradient or contrast is highest. Cooler months are thus better...

  17. Space and Remote Sensing (ISR-2)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space Week Space Week Space Week Preventing Space Traffic Jams With around one thousand active satellites and the tens of thousands of pieces of space junk orbiting Earth, space is getting exceedingly crowded. Researchers at Lawrence Livermore National Lab are working on a system that could help prevent collisions in space. | Graphic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. With space getting exceedingly crowded, researchers at Lawrence Livermore

  18. IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING

    SciTech Connect (OSTI)

    Washington University- St. Louis:; ,; Muthanna Al-Dahhan; E-mail: muthanna@wustl.edu; ,; Rajneesh Varma; Khursheed Karim; Mehul Vesvikar; Rebecca Hoffman; ,; Oak Ridge National Laboratory:; ,; David Depaoli,; Email: depaolidw@ornl.gov; ,; Thomas Klasson; Alan L. Wintenberg; Charles W Alexander; Lloyd Clonts; ,; Iowa Energy Center; ,; ,; Norm Olson; Email: nolson@energy.iastate.edu

    2007-03-26

    The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane and {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately, information and findings in the literature on the effect of mixing on anaerobic digestion are contradictory. One reason is the lack of measurement techniques for opaque systems such as digesters. Better understanding of the mixing and hydrodynamics of digesters will result in appropriate design, configuration selection, scale-up, and performance, which will ultimately enable avoiding digester failures. Accordingly, this project sought to advance the fundamental knowledge and understanding of the design, scale up, operation, and performance of cow manure anaerobic digesters with high solids loading. The project systematically studied parameters affecting cow manure anaerobic digestion performance, in different configurations and sizes by implementing computer automated radioactive particle tracking (CARPT), computed tomography (CT), and computational fluid dynamics (CFD), and by developing novel multiple-particle CARPT (MP-CARPT) and dual source CT (DSCT) techniques. The accomplishments of the project were achieved in a collaborative effort among Washington University, the Oak Ridge National Laboratory, and the Iowa Energy Center teams. The following investigations and achievements were accomplished: Systematic studies of anaerobic digesters performance and kinetics using various configurations, modes of mixing, and scales (laboratory, pilot plant, and commercial sizes) were conducted and are discussed in Chapter 2. It was found that mixing significantly affected the performance of the pilot plant scale digester ({approx}97 liter). The detailed mixing and hydrodynamics were investigated using computer automated radioactive particle tracking (CARPT) techniques, and are discussed in Chapter 3. A novel multiple particle tracking technique (MP-CARPT) technique that can track simultaneously up to 8 particles was developed, tested, validated, and implemented. Phase distribution was investigated using gamma ray computer tomography (CT) techniques, which are discussed in Chapter 4. A novel dual source CT (DSCT) technique was developed to measure the phase distribution of dynamic three phase system such as digesters with high solids loading and other types of gas-liquid-solid fluidization systems. Evaluation and validation of the computational fluid dynamics (CFD) models and closures were conducted to model and simulate the hydrodynamics and mixing intensity of the anaerobic digesters (Chapter 5). It is strongly recommended that additional studies be conducted, both on hydrodynamics and performance, in large scale digesters. The studies should use advanced non-invasive measurement techniques, including the developed novel measurement techniques, to further understand their design, scale-up, performance, and operation to avoid any digester failure. The final goal is a system ready to be used by farmers on site for bioenergy production and for animal/farm waste treatment.

  19. Load sensing system

    DOE Patents [OSTI]

    Sohns, Carl W.; Nodine, Robert N.; Wallace, Steven Allen

    1999-01-01

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast

  20. W-band ARM Cloud Radar (WACR) Update and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W-band ARM Cloud Radar (WACR) Update and Status PopStefanija, Ivan ProSensing, Inc. Mead, ... Widener, Kevin Pacific Northwest National Laboratory Category: Instruments Two W-band ARM ...

  1. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    SciTech Connect (OSTI)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, ?, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  2. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    SciTech Connect (OSTI)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  3. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; et al

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore » for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less

  4. The Mid-Latitude Continental Convective Clouds Experiment (MC3E...

    Office of Scientific and Technical Information (OSTI)

    ... (and soon to become available) ARM facilities: a network of radiosonde stations, NASA ... PRECIPITATIONS; REMOTE SENSING; SIMULATORS; VALIDATION; PLANNING; RESEARCH PROGRAMS

  5. The Mid-Latitude Continental Convective Clouds Experiment (MC3E...

    Office of Scientific and Technical Information (OSTI)

    (and soon to become available) ARM facilities: a network of radiosonde stations, NASA ... PRECIPITATIONS; REMOTE SENSING; SIMULATORS; VALIDATION; PLANNING; RESEARCH PROGRAMS

  6. Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites

    SciTech Connect (OSTI)

    Turner, David D.; Ferrare, Richard

    2015-01-13

    The systematic and routine measurements of aerosol, water vapor, and clouds in the vertical column above the Atmospheric Radiation Measurement (ARM) sites from surface-based remote sensing systems provides a unique and comprehensive data source that can be used to characterize the boundary layer (i.e., the lowest 3 km of the atmosphere) and its evolution. New algorithms have been developed to provide critical datasets from ARM instruments, and these datasets have been used in long-term analyses to better understand the climatology of water vapor and aerosol over Darwin, the turbulent structure of the boundary layer and its statistical properties over Oklahoma, and to better determine the distribution of ice and aerosol particles over northern Alaska.

  7. Dispelling Clouds of Uncertainty

    SciTech Connect (OSTI)

    Lewis, Ernie; Teixeira, João

    2015-06-15

    How do you build a climate model that accounts for cloud physics and the transitions between cloud regimes? Use MAGIC.

  8. ARM - Measurement - Cloud location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    point in space and time, typically expressed as a binary cloud mask. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  9. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    remote sensing for resolving and studying the above processes? (i.e., Satellite CalVal) We have recently added a fourth study focused on the transport and evolution of...

  10. Cloud-based Architecture Capabilities Summary Report

    SciTech Connect (OSTI)

    Vang, Leng; Prescott, Steven R; Smith, Curtis

    2014-09-01

    In collaborating scientific research arena it is important to have an environment where analysts have access to a shared of information documents, software tools and be able to accurately maintain and track historical changes in models. A new cloud-based environment would be accessible remotely from anywhere regardless of computing platforms given that the platform has available of Internet access and proper browser capabilities. Information stored at this environment would be restricted based on user assigned credentials. This report reviews development of a Cloud-based Architecture Capabilities (CAC) as a web portal for PRA tools.

  11. ARM - Field Campaign - Scintillometry and Soil Moisture Remote...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Scintillometry and Soil Moisture Remote Sensing 2015.06.01 - 2015.10.31 Lead Scientist : Jan Hendrickx...

  12. Science Cloud 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Cloud 2011 Science Cloud 2011 June 17, 2011 The Magellan teams at NERSC and Argonne recently presented a joint paper detailing their progress and conclusions. At Science Cloud 2011: The Second Workshop on Scientific Cloud Computing, in a paper titled "Magellan: Experiences from a Science Cloud" (PDF, 320KB), lead author Lavanya Ramakrishnan outlined the groups' most recent achievements and conclusions, including a successful run of real-time data analysis for the STAR

  13. Long-Term Operation Of Ground-Based Atmospheric Sensing Systems In The Tropical Western Pacific

    SciTech Connect (OSTI)

    Ivey, Mark; Jones, Larry J.; Porch, W. M.; Apple, Monty L.; Widener, Kevin B.

    2004-10-14

    Three semi-autonomous atmospheric sensing systems were installed in the tropical western Pacific region. The first of these Atmospheric Radiation and Cloud Stations (ARCS) began operation in 1996. Each ARCS is configured as a system-of-systems since it comprises an ensemble of independent instrument systems. The ARCS collect, process, and transmit large volumes of cloud, solar and thermal radiation, and meteorological data to support climate studies and climate-modeling improvements as part of the U.S Department of Energys Atmospheric and Radiation Measurement (ARM) Program. Data from these tropical ARCS stations have been used for satellite ground-truth data comparisons and validations, including comparisons for MTI and AQUA satellite data. Our experiences with these systems in the tropics led to modifications in their design. An ongoing international logistics effort is required to keep gigabytes per day of quality-assured data flowing to the ARM programs archives. Design criteria, performance, communications methods, and the day-to-day logistics required to support long-term operations of ground-based remote atmospheric sensing systems are discussed. End-to-end data flow from the ARCS systems to the ARM Program archives is discussed.

  14. Layered Atlantic Smoke Interactions with Clouds (LASIC) Science Plan

    Office of Scientific and Technical Information (OSTI)

    (Program Document) | SciTech Connect Layered Atlantic Smoke Interactions with Clouds (LASIC) Science Plan Citation Details In-Document Search Title: Layered Atlantic Smoke Interactions with Clouds (LASIC) Science Plan Southern Africa is the world's largest emitter of biomass-burning (BB) aerosols. Their westward transport over the remote southeast Atlantic Ocean colocates some of the largest atmospheric loadings of absorbing aerosol with the least examined of the Earth's major subtropical

  15. Cloud Properties Working Group Low Clouds Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Properties Working Group Low Clouds Update Low Clouds Update Jennifer Comstock Jennifer Comstock Dave Turner Dave Turner Andy Andy Vogelmann Vogelmann Instruments Instruments 90/150 GHz microwave radiometer 90/150 GHz microwave radiometer Deployed during COPS AMF Deployed during COPS AMF Exploring calibration w/ DPR ( Exploring calibration w/ DPR ( Crewell Crewell & & L L ö ö hnert hnert ) ) See COPS Breakout, Wednesday evening See COPS Breakout, Wednesday evening 183 GHz (GVR)

  16. Load sensing system

    DOE Patents [OSTI]

    Sohns, C.W.; Nodine, R.N.; Wallace, S.A.

    1999-05-04

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.

  17. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2006-01-04

    The project is concerned with the characterization of cloud macrophysical and microphysical properties by combining radar, lidar, and radiometer measurements available from the U.S. Department of Energy's ARM Climate Research Facility (ACRF). To facilitate the production of integrated cloud product by applying different algorithms to the ARM data streams, an advanced cloud classification algorithm was developed to classified clouds into eight types at the SGP site based on ground-based active and passive measurements. Cloud type then can be used as a guidance to select an optimal retrieval algorithm for cloud microphysical property retrieval. The ultimate goal of the effort is to develop an operational cloud classification algorithm for ARM data streams. The vision 1 IDL code of the cloud classification algorithm based on the SGP ACRF site observations was delivered to the ARM cloud translator during 2004 ARM science team meeting. Another goal of the project is to study midlevel clouds, especially mixed-phase clouds, by developing new retrieval algorithms using integrated observations at the ACRF sites. Mixed-phase clouds play a particular role in the Arctic climate system. A multiple remote sensor based algorithm, which can provide ice water content and effective size profiles, liquid water path, and layer-mean effective radius of water droplet, was developed to study arctic mixed-phase clouds. The algorithm is applied to long-term ARM observations at the NSA ACRF site. Based on these retrieval results, we are studying seasonal and interannual variations of arctic mixed-phase cloud macro- and micro-physical properties.

  18. ARM - Measurement - Cloud extinction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud extinction The removal of radiant energy from an incident beam by the process of cloud absorption andor ...

  19. Multiple node remote messaging

    DOE Patents [OSTI]

    Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Ohmacht, Martin; Salapura, Valentina; Steinmacher-Burow, Burkhard; Vranas, Pavlos

    2010-08-31

    A method for passing remote messages in a parallel computer system formed as a network of interconnected compute nodes includes that a first compute node (A) sends a single remote message to a remote second compute node (B) in order to control the remote second compute node (B) to send at least one remote message. The method includes various steps including controlling a DMA engine at first compute node (A) to prepare the single remote message to include a first message descriptor and at least one remote message descriptor for controlling the remote second compute node (B) to send at least one remote message, including putting the first message descriptor into an injection FIFO at the first compute node (A) and sending the single remote message and the at least one remote message descriptor to the second compute node (B).

  20. Scientific Cloud Computing Misconceptions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Cloud Computing Misconceptions Scientific Cloud Computing Misconceptions July 1, 2011 Part of the Magellan project was to understand both the possibilities and the limitations of cloud computing in the pursuit of science. At a recent conference, Magellan investigator Shane Canon outlined some persistent misconceptions about doing science in the cloud - and what Magellan has taught us about them. » Read the ISGTW story. » Download the slides (PDF, 4.1MB

  1. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations

    SciTech Connect (OSTI)

    Hassan, Moinuddin Ilev, Ilko

    2014-10-15

    Contamination of medical devices has become a critical and prevalent public health safety concern since medical devices are being increasingly used in clinical practices for diagnostics, therapeutics and medical implants. The development of effective sensing methods for real-time detection of pathogenic contamination is needed to prevent and reduce the spread of infections to patients and the healthcare community. In this study, a hollow-core fiber-optic Fourier transform infrared spectroscopy methodology employing a grazing incidence angle based sensing approach (FO-FTIR-GIA) was developed for detection of various biochemical contaminants on medical device surfaces. We demonstrated the sensitivity of FO-FTIR-GIA sensing approach for non-contact and label-free detection of contaminants such as lipopolysaccharide from various surface materials relevant to medical device. The proposed sensing system can detect at a minimum loading concentration of approximately 0.7 ?g/cm{sup 2}. The FO-FTIR-GIA has the potential for the detection of unwanted pathogen in real time.

  2. HORIZON SENSING

    SciTech Connect (OSTI)

    Larry G. Stolarczyk, Sc.D.

    2001-07-31

    Project Objectives are to demonstrate the feasibility of real-time stress measurement, bit loading, and horizon sensing on a longwall shearer, boring machine, continuous miner, and loading bucket.

  3. Rapid deployable global sensing hazard alert system

    DOE Patents [OSTI]

    Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M

    2015-04-28

    A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.

  4. V-135: Cisco ASA Multiple Bugs Let Remote Users Deny Service | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 5: Cisco ASA Multiple Bugs Let Remote Users Deny Service V-135: Cisco ASA Multiple Bugs Let Remote Users Deny Service April 16, 2013 - 12:21am Addthis PROBLEM: Cisco ASA Multiple Bugs Let Remote Users Deny Service PLATFORM: Cisco ASA Software for Cisco ASA 5500 Series Adaptive Security Appliances, Cisco ASA Services Module for Cisco Catalyst 6500 Series Switches and Cisco 7600 Series Routers, and Cisco ASA 1000V Cloud Firewall are affected by multiple vulnerabilities. Affected

  5. ARM - Measurement - Cloud fraction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flux Analysis SWFLUXANAL : Shortwave Flux Analysis TSI : Total Sky Imager UAV-EGRETT : UAV-Egrett WSI : Whole Sky Imager WSICLOUD : Whole Sky Imager Cloud Products ...

  6. Finance Idol Word Cloud

    Broader source: Energy.gov [DOE]

    This word cloud represents the topics discussed during the Big and Small Ideas: How to Lower Solar Financing Costs breakout session at the SunShot Grand Challenge.

  7. ARM - Measurement - Cloud phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that involves property descriptors such as stratus, cumulus, and cirrus. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  8. Boundary Layer Cloud Turbulence Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary Layer Cloud Turbulence Characteristics Virendra Ghate Bruce Albrecht Parameter Observational Readiness (/10) Modeling Need (/10) Cloud Boundaries 9 9 Cloud Fraction Variance Skewness Up/Downdraft coverage Dominant Freq. signal Dissipation rate ??? Observation-Modeling Interface

  9. Cyber in the Cloud -- Lessons Learned from INL's Cloud E-Mail Acquisition

    SciTech Connect (OSTI)

    Troy Hiltbrand; Daniel Jones

    2012-12-01

    As we look at the cyber security ecosystem, are we planning to fight the battle as we did yesterday, with firewalls and intrusion detection systems (IDS), or are we sensing a change in how security is evolving and planning accordingly? With the technology enablement and possible financial benefits of cloud computing, the traditional tools for establishing and maintaining our cyber security ecosystems are being dramatically altered.

  10. Cloud computing security.

    SciTech Connect (OSTI)

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  11. Temperature, Water Vapor, and Clouds"

    Office of Scientific and Technical Information (OSTI)

    Radiometric Studies of Temperature, Water Vapor, and Clouds" Project ID: 0011106 ... measurements of column amounts of water vapor and cloud liquid has been well ...

  12. TC_CLOUD_REGIME.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intensity (e.g. May and Ballinger, 2007) Resulting Cloud Properties Examine rain DSD using polarimetric radar Examine ice cloud properties using MMCR and MPL Expect...

  13. ARM - Measurement - Cloud effective radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the number size distribution of cloud particles, whether liquid or ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  14. Posters Brightness Fields of Broken Clouds V. E. Zuev, G. A....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    formulate and solve problems of the remote optical sensing of cloudy atmosphere (e.g., King 1987; Yi et al. 1990) and of satellite meteorology, as well as for retrievals of the...

  15. Radio frequency security system, method for a building facility or the like, and apparatus and methods for remotely monitoring the status of fire extinguishers

    DOE Patents [OSTI]

    Runyon, Larry; Gunter, Wayne M.; Gilbert, Ronald W.

    2006-07-25

    A system for remotely monitoring the status of one or more fire extinguishers includes means for sensing at least one parameter of each of the fire extinguishers; means for selectively transmitting the sensed parameters along with information identifying the fire extinguishers from which the parameters were sensed; and means for receiving the sensed parameters and identifying information for the fire extinguisher or extinguishers at a common location. Other systems and methods for remotely monitoring the status of multiple fire extinguishers are also provided.

  16. HORIZON SENSING

    SciTech Connect (OSTI)

    Larry G. Stolarczyk, Sc.D.

    2002-07-31

    Real-time horizon sensing (HS) on continuous mining (CM) machines is becoming an industry tool. Installation and testing of production-grade HS systems has been ongoing this quarter at Oxbow Mining Company, Monterey Coal Company (EXXON), FMC Trona, Twentymile Coal Company (RAG America), and SASOL Coal. Detailed monitoring of system function, user experience, and mining benefits is ongoing. All horizon sensor components have finished MSHA (United States) and IEC (International) certification.

  17. Remote reset circuit

    DOE Patents [OSTI]

    Gritzo, Russell E.

    1987-01-01

    A remote reset circuit acts as a stand-alone monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients.

  18. Remote reset circuit

    DOE Patents [OSTI]

    Gritzo, R.E.

    1985-09-12

    A remote reset circuit acts as a stand-along monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients. 4 figs.

  19. Remote Systems Design & Deployment

    SciTech Connect (OSTI)

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.

  20. Remote Monitoring Transparency Program

    SciTech Connect (OSTI)

    Sukhoruchkin, V.K.; Shmelev, V.M.; Roumiantsev, A.N.; Croessmann, C.D.; Horton, R.D.; Matter, J.C.; Czajkowski, A.F.; Sheely, K.B.; Bieniawski, A.J.

    1996-12-31

    The objective of the Remote Monitoring Transparency Program is to evaluate and demonstrate the use of remote monitoring technologies to advance nonproliferation and transparency efforts that are currently being developed by Russia and the US without compromising the national security of the participating parties. Under a lab-to-lab transparency contract between Sandia National Laboratories (SNL) and the Kurchatov Institute (KI RRC), the Kurchatov Institute will analyze technical and procedural aspects of the application of remote monitoring as a transparency measure to monitor inventories of direct-use HEU and plutonium (e.g., material recovered from dismantled nuclear weapons). A goal of this program is to assist a broad range of political and technical experts in learning more about remote monitoring technologies that could be used to implement nonproliferation, arms control, and other security and confidence building measures. Specifically, this program will: (1) begin integrating Russian technologies into remote monitoring systems; (2) develop remote monitoring procedures that will assist in the application of remote monitoring techniques to monitor inventories of HEU and Pu from dismantled nuclear weapons; and (3) conduct a workshop to review remote monitoring fundamentals, demonstrate an integrated US/Russian remote monitoring will have on the national security of participating countries.

  1. Remote Alaskan Communities Energy

    Broader source: Energy.gov (indexed) [DOE]

    Remote Alaskan Communities Energy Efficiency Competition (RACEE) Technical Assistance ... X Alaska Sea Grant Marine Advisory Program Seafood processor plant energy audits, ...

  2. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect (OSTI)

    Klein, S A; McCoy, R B; Morrison, H; Ackerman, A; Avramov, A; deBoer, G; Chen, M; Cole, J; DelGenio, A; Golaz, J; Hashino, T; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; Luo, Y; McFarquhar, G; Menon, S; Neggers, R; Park, S; Poellot, M; von Salzen, K; Schmidt, J; Sednev, I; Shipway, B; Shupe, M; Spangenberg, D; Sud, Y; Turner, D; Veron, D; Falk, M; Foster, M; Fridlind, A; Walker, G; Wang, Z; Wolf, A; Xie, S; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

  3. Magellan: A Cloud Computing Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magellan News & Announcements Archive Petascale Initiative Exascale Computing APEX Home » R & D » Archive » Magellan: A Cloud Computing Testbed Magellan: A Cloud Computing Testbed Cloud computing is gaining a foothold in the business world, but can clouds meet the specialized needs of scientists? That was one of the questions NERSC's Magellan cloud computing testbed explored between 2009 and 2011. The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Oce

  4. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  5. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (first echo). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  6. Embracing the Cloud for Better Cyber Security

    SciTech Connect (OSTI)

    Shue, Craig A; Lagesse, Brent J

    2011-01-01

    The future of cyber security is inextricably tied to the future of computing. Organizational needs and economic factors will drive computing outcomes. Cyber security researchers and practitioners must recognize the path of computing evolution and position themselves to influence the process to incorporate security as an inherent property. The best way to predict future computing trends is to look at recent developments and their motivations. Organizations are moving towards outsourcing their data storage, computation, and even user desktop environments. This trend toward cloud computing has a direct impact on cyber security: rather than securing user machines, preventing malware access, and managing removable media, a cloud-based security scheme must focus on enabling secure communication with remote systems. This change in approach will have profound implications for cyber security research efforts. In this work, we highlight existing and emerging technologies and the limitations of cloud computing systems. We then discuss the cyber security efforts that would support these applications. Finally, we discuss the implications of these computing architecture changes, in particular with respect to malware and social engineering.

  7. ARM - VAP Product - arsclbnd1cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Active Remotely-Sensed Cloud Locations : ARSCL Measurements The measurements below provided by this product are those considered scientifically relevant. Cloud base height...

  8. ARM - VAP Product - arsclcbh1cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Active Remotely-Sensed Cloud Locations : ARSCL Measurements The measurements below provided by this product are those considered scientifically relevant. Cloud base height...

  9. ARM - Campaign Instrument - wsicloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (WSICLOUD) Instrument Categories Cloud Properties Campaigns Remote Cloud Sensing (RCS) Field Evaluation Download Data Southern Great Plains, 1995.04.01 - 1995.05.31 The...

  10. ARM - Campaign Instrument - mmcr94psu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MMCR (MMCR94PSU) Instrument Categories Cloud Properties Campaigns Remote Cloud Sensing (RCS) Field Evaluation Download Data Southern Great Plains, 1994.04.01 - 1994.05.31...

  11. Remote actuated valve implant

    DOE Patents [OSTI]

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  12. Science on the Hill: Methane cloud hunting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane cloud hunting Science on the Hill: Methane cloud hunting Los Alamos researchers go ... Science on the Hill: Methane cloud hunting When our team from Los Alamos National ...

  13. Layered Atlantic Smoke Interactions with Clouds (LASIC) Science Plan

    SciTech Connect (OSTI)

    Zuidema, P; Chiu, C; Fairall, CW; Ghan, SJ; Kollias, P; McFarguhar, GM; Mechem, DB; Romps, DM; Wong, H; Yuter, SE; Alvarado, MJ; DeSzoeke, SP; Feingold, G; Haywood, JM; Lewis, ER; McComiskey, A; Redemann, J; Turner, DD; Wood, R; Zhu, P

    2015-12-01

    Southern Africa is the world’s largest emitter of biomass-burning (BB) aerosols. Their westward transport over the remote southeast Atlantic Ocean colocates some of the largest atmospheric loadings of absorbing aerosol with the least examined of the Earth’s major subtropical stratocumulus decks. Global aerosol model results highlight that the largest positive top-of-atmosphere forcing in the world occurs in the southeast Atlantic, but this region exhibits large differences in magnitude and sign between reputable models, in part because of high variability in the underlying model cloud distributions. Many uncertainties contribute to the highly variable model radiation fields: the aging of shortwave-absorbing aerosol during transport, how much of the aerosol mixes into the cloudy boundary layer, and how the low clouds adjust to smoke-radiation and smoke-cloud interactions. In addition, the ability of the BB aerosol to absorb shortwave radiation is known to vary seasonally as the fuel type on land changes.

  14. Remote Access | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Information Systems supports VPN for remotely accessing internal computers and network services. These are: Once connected remotely to Ames Laboratory,...

  15. Evaluation of high‐level clouds in cloud resolving model...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of high-level clouds in cloud resolving model 10.10022015MS000478 simulations with ARM and KWAJEX observations Key Points: * Two-moment microphysics improves simulated ...

  16. Opaque cloud detection

    DOE Patents [OSTI]

    Roskovensky, John K.

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  17. Bringing Clouds into Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bringing Clouds into Focus Bringing Clouds into Focus A New Global Climate Model May Reduce the Uncertainty of Climate Forecasting May 11, 2010 Contact: John Hules, JAHules@lbl.gov , +1 510 486 6008 Randall-fig4.png The large data sets generated by the GCRM require new analysis and visualization capabilities. This 3D plot of vorticity isosurfaces was developed using VisIt, a 3D visualization tool with a parallel distributed architecture, which is being extended to support the geodesic grid used

  18. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  19. TWP Island Cloud Trail Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These island cloud trails have been observed from both the islands of Nauru and Manus, Papua New Guinea. Figure 2 shows an island cloud at Manus observed from MTI and from the ...

  20. ARM - Measurement - Images of Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsImages of Clouds ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Images of Clouds Digital images of cloud scenes (various formats) from satellite, aircraft, and ground-based platforms. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  1. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  2. Remote Alaskan Communities Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Alaskan Communities Energy Efficiency Competition (RACEE) Technical Assistance Guide March 2016 2 Technical Assistance Table of Contents How to Use this Guide ......................................................... Page 2 Technical Assistance Provider Network ..........................................................Page 2 * Regional Liaisons ..........................................................Page 4 * Regional Liaison Contact List

  3. Remote Sensor Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Remote Sensor Placement Collaboration between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email The goal of this work is to develop a new autonomous capability for remotely deploying

  4. Remote electrochemical sensor

    DOE Patents [OSTI]

    Wang, Joseph; Olsen, Khris; Larson, David

    1997-01-01

    An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

  5. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  6. Geobotanical Remote Sensing Applied To Targeting New Geothermal...

    Open Energy Info (EERE)

    Mountain and the Long Valley Caldera, Dixie Meadows NV, Fish Lake Valley NV, and Brady Hot Springs. Areas that are being imaged in the summer of 2003 are the south moat of...

  7. Remote Sensing Survey of the Coso Geothermal Area Inyo County...

    Open Energy Info (EERE)

    in geothermal deposits throughout the western United States. Authors James B. Koenig, Stephen J. Gawarecki and Carl F. Austin Published Naval Weapons Center, 1972 DOI Not Provided...

  8. Special Section Guest Editorial. Advances in Remote Sensing for...

    Office of Scientific and Technical Information (OSTI)

    Pacific Northwest National Lab. (PNNL), Richland, WA (United States) Indiana State Univ., Terre Haute, IN (United States) Univ. of Central Florida, Orlando, FL (United States) ...

  9. Remote Sensing For Geothermal Exploration Over Buffalo Valley...

    Open Energy Info (EERE)

    and spectral resolution of the data allows for the identification of carbonate, sulfate, silica and clay minerals. Quartz- and clay-rich regions of Buffalo Valley were...

  10. Application Of Remote Sensing To Geothermal Prospecting | Open...

    Open Energy Info (EERE)

    << signatures a are also presented. Multiband photography in the visible and near infra-red was used to delineate anomalous spectral reflectance associated with hydrothermal...

  11. Geophysical remote sensing of water reservoirs suitable for desalinization.

    SciTech Connect (OSTI)

    Aldridge, David Franklin; Bartel, Lewis Clark; Bonal, Nedra; Engler, Bruce Phillip

    2009-12-01

    In many parts of the United States, as well as other regions of the world, competing demands for fresh water or water suitable for desalination are outstripping sustainable supplies. In these areas, new water supplies are necessary to sustain economic development and agricultural uses, as well as support expanding populations, particularly in the Southwestern United States. Increasing the supply of water will more than likely come through desalinization of water reservoirs that are not suitable for present use. Surface-deployed seismic and electromagnetic (EM) methods have the potential for addressing these critical issues within large volumes of an aquifer at a lower cost than drilling and sampling. However, for detailed analysis of the water quality, some sampling utilizing boreholes would be required with geophysical methods being employed to extrapolate these sampled results to non-sampled regions of the aquifer. The research in this report addresses using seismic and EM methods in two complimentary ways to aid in the identification of water reservoirs that are suitable for desalinization. The first method uses the seismic data to constrain the earth structure so that detailed EM modeling can estimate the pore water conductivity, and hence the salinity. The second method utilizes the coupling of seismic and EM waves through the seismo-electric (conversion of seismic energy to electrical energy) and the electro-seismic (conversion of electrical energy to seismic energy) to estimate the salinity of the target aquifer. Analytic 1D solutions to coupled pressure and electric wave propagation demonstrate the types of waves one expects when using a seismic or electric source. A 2D seismo-electric/electro-seismic is developed to demonstrate the coupled seismic and EM system. For finite-difference modeling, the seismic and EM wave propagation algorithms are on different spatial and temporal scales. We present a method to solve multiple, finite-difference physics problems that has application beyond the present use. A limited field experiment was conducted to assess the seismo-electric effect. Due to a variety of problems, the observation of the electric field due to a seismic source is not definitive.

  12. Remote sensing-based characterization of plant functional type...

    Office of Scientific and Technical Information (OSTI)

    the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and...

  13. Remote sensing, global warming, and vector-borne disease

    SciTech Connect (OSTI)

    Wood, B.; Beck, L.; Dister, S.; Lobitz, B.

    1997-12-31

    The relationship between climate change and the pattern of vector-borne disease can be viewed at a variety of spatial and temporal scales. At one extreme are changes such as global warming, which are continental in scale and occur over periods of years, decades, or longer. At the opposite extreme are changes associated with severe weather events, which can occur at local and regional scales over periods of days, weeks, or months. Key ecological factors affecting the distribution of vector-borne diseases include temperature, precipitation, and habitat availability, and their impact on vectors, pathogens, reservoirs, and hosts. Global warming can potentially alter these factors, thereby affecting the spatial and temporal patterns of disease.

  14. Unmanned airships for near earth remote sensing missions

    SciTech Connect (OSTI)

    Hochstetler, R.D.

    1996-10-01

    In recent years the study of Earth processes has increased significantly. Conventional aircraft have been employed to a large extent in gathering much of this information. However, with this expansion of research has come the need to investigate and measure phenomena that occur beyond the performance capabilities of conventional aircraft. Where long dwell times or observations at very low attitudes are required there are few platforms that can operate safely, efficiently, and cost-effectively. One type of aircraft that meets all three parameters is the unmanned, autonomously operated airship. The UAV airship is smaller than manned airships but has similar performance characteristics. It`s low speed stability permits high resolution observations and provides a low vibration environment for motion sensitive instruments. Maximum airspeed is usually 30mph to 35mph and endurance can be as high as 36 hours. With scientific payload capacities of 100 kilos and more, the UAV airship offers a unique opportunity for carrying significant instrument loads for protracted periods at the air/surface interface. The US Army has operated UAV airships for several years conducting border surveillance and monitoring, environmental surveys, and detection and mapping of unexploded ordinance. The technical details of UAV airships, their performance, and the potential of such platforms for more advanced research roles will be presented. 3 refs., 5 figs.

  15. Advanced polychromator systems for remote chemical sensing (LDRD...

    Office of Scientific and Technical Information (OSTI)

    The new configuration also relaxes some constraint on the programmable diffraction grating. Authors: Sinclair, Michael B. ; Pfeifer, Kent Bryant ; Allen, James Joe Publication ...

  16. Remote sensing of fugitive methane emissions from oil and gas...

    Energy Savers [EERE]

    ... sys- tems corresponds to 0.7% of the U.S. crude oil production (0.5%-1.7% at the 95% ... (e.g., enteric fermentation in live- stock), were temporally constant to a ...

  17. Advanced polychromator systems for remote chemical sensing (LDRD...

    Office of Scientific and Technical Information (OSTI)

    the optical efficiency of the system without degrading any other aspect of the system. ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 37 ...

  18. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING...

    Office of Scientific and Technical Information (OSTI)

    These products and raw satellite images can be accessed at http:cloudsgate2.larc.nasa.gov... Authors: Minnis, Patrick 1 + Show Author Affiliations NASA Langley Research ...

  19. Remote sensing-based characterization of plant functional type...

    Office of Scientific and Technical Information (OSTI)

    Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral...

  20. Remote sensing-based characterization of plant functional type

    Office of Scientific and Technical Information (OSTI)

    Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral...

  1. Aerial remote sensing surveys, geophysical characterization. Final report

    SciTech Connect (OSTI)

    Labson, V.F.; Pellerin, L.; Anderson, W.L.

    1998-06-01

    The application of helicopter electromagnetic (HEM) and magnetic methods to the requirements of the environmental restoration of the Oak Ridge Reservation (ORR) demand the use of advanced, nontraditional methods of data acquisition, processing and interpretation. The cooperative study by the U.S. Geological Survey (USGS), Oak Ridge National Laboratory (ORNL), and University of California (UCB) has resulted in the planning and supervision of data acquisition, the development of tools for data processing and interpretation, and an intensive application of the methods developed. This final report consists of a series of publications which the USGS collaborated with the ORNL technical staff. These reports represent the full scope of the USGS assistance. Copies of the reports and papers are included in the Appendix. The primary goals of this effort were to quantify the effectiveness of the geophysical methods applied in the survey of the ORR for the identification of buried waste, hydrogeologic pathways by which contamination could migrate through or off the site, and for the more accurate geologic mapping of the ORR. The objectives in buried waste identification are the accurate description of the source of the geophysical anomaly and the determination of the limits of resolution of the geophysical methods to acknowledge what we might have missed. The study of hydrogeologic pathways concentrated on the identification of karst features in the limestone underlying much of the ORR. Work in this study has indicated to the ORNL staff that these karst features can be located from the airborne geophysics. The defining characteristic of this helicopter geophysical study is the collaborative nature of the effort. Each task in which the USGS was involved has included a designated staff member from the Oak Ridge National Laboratory.

  2. Remote sensing survey of the Coso geothermal area, Inyo county...

    Open Energy Info (EERE)

    inherent in geothermal deposits throughout the western United States. Authors Koenig, J.B.; Gawarecki, S.J.; Austin and C.F. Published Publisher Not Provided, 211972 DOI Not...

  3. Remote Sensing- Principles And Interpretation | Open Energy Informatio...

    Open Energy Info (EERE)

    Geothermal Exploration Activities Activities (1) Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) Areas (1) Raft River Geothermal Area Regions (0) Retrieved...

  4. Evaluation of high-level clouds in cloud resolving model simulations...

    Office of Scientific and Technical Information (OSTI)

    Title: Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations: HIGH CLOUD IN CRM Authors: Liu, Zheng 1 ; Muhlbauer, Andreas 2 ; ...

  5. Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France D. Gillotay Institute d'Aeronomie Spatiale de Belgique Brussels, Belgium Introduction In the effort to resolve uncertainties about global climate change, the Atmospheric Radiation Measurement (ARM) Program (www.arm.gov) is improving the treatment of cloud radiative forcing and feedbacks in general

  6. Remote electrochemical sensor

    DOE Patents [OSTI]

    Wang, J.; Olsen, K.; Larson, D.

    1997-10-14

    An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

  7. First observations of tracking clouds using scanning ARM cloud...

    Office of Scientific and Technical Information (OSTI)

    These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator ...

  8. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    SciTech Connect (OSTI)

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-02-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation.

  9. Accounting for sub-pixel variability of clouds and/or unresolved spectral variability, as needed, with generalized radiative transfer theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davis, Anthony B.; Xu, Feng; Collins, William D.

    2015-03-01

    Atmospheric hyperspectral VNIR sensing struggles with sub-pixel variability of clouds and limited spectral resolution mixing molecular lines. Our generalized radiative transfer model addresses both issues with new propagation kernels characterized by power-law decay in space.

  10. RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds

    SciTech Connect (OSTI)

    Vogelmann, A. M.; McFarquhar, Greg; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, G.; Long, Charles N.; Jonsson, Haf; Bucholtz, Anthony; Collins, Donald R.; Diskin, G. S.; Gerber, H.; Lawson, Paul; Woods, Roy; Andrews, Elizabeth; Yang, Hee-Jung; Chiu, Christine J.; Hartsock, Daniel; Hubbe, John M.; Lo, Chaomei; Marshak, A.; Monroe, Justin; McFarlane, Sally A.; Schmid, Beat; Tomlinson, Jason M.; Toto, Tami

    2012-06-30

    A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in-situ statistical characterization of boundary-layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that supports modeling studies and enables evaluating a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about two-thirds of the cloud flights occurred in May and June, boundary-layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 75% of the flights occurring in cumulus and stratocumulus. Preliminary analyses show how these data are being used to analyze cloud-aerosol relationships, determine the aerosol sizes that are responsible for nucleating cloud drops, characterize the horizontal variability of the cloud radiative impacts, and evaluate air-borne and surface-based cloud property retrievals. We discuss how conducting an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.

  11. Holistic Interactions of Shallow Clouds,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems Research Instrumentation HI-SCALE will utilize the ARM Aerial Facility's Gulfstream-159 (G-1), as well as ground instrumentation located at the SGP megasite. 7e G-1 will complete transects over the site at multiple altitudes within the boundary layer, within clouds, and above clouds. 7e payload on the G-1 includes: * high frequency meteorological and radiation (both up and downwelling) measurements that also permit computing

  12. Cumulus Clouds and Reflected Sunlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cumulus Clouds and Reflected Sunlight from Landsat ETM+ G. Wen and L. Oreopoulos National Aeronautics and Space Administration Goddard Space Flight Center University of Maryland Baltimore County Joint Center of Earth System Technology Greenbelt, Maryland R. F. Cahalan and S. C. Tsay National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Introduction Cumulus clouds attenuate solar radiation casting shows on the ground. Cumulus clouds can also enhance solar

  13. ARM - Measurement - Cloud ice particle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Lear Jet PARTIMG : Particle imager UAV-PROTEUS-MICRO : Proteus Cloud Microphysics ... particle imager MET : Surface Meteorological Instrumentation UAV-PROTEUS : UAV Proteus

  14. ARM - Measurement - Cloud droplet size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impactor MIRAI : JAMSTEC Research Vessel Mirai PDI : Phase Doppler Interferometer UAV-PROTEUS-MICRO : Proteus Cloud Microphysics Instruments SPEC-CPI : Stratton Park ...

  15. ARM - Measurement - Cloud optical depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TWST : Three Waveband Spectrally-agile Technique Sensor WRF-CHEM : Weather Research and Forecasting (WRF) Model Output Value-Added Products LBTM-MINNIS : Minnis Cloud Products...

  16. ARM - Measurement - Cloud condensation nuclei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOS : Aerosol Observing System CCN : Cloud Condensation Nuclei Particle Counter TDMA : Tandem Differential Mobility Analyzer Field Campaign Instruments AMT : Aerosol Modeling...

  17. ARM - Measurement - Cloud top height

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RUC : Rapid Update Cycle Model Data Field Campaign Instruments CO2LIDAR : Carbon Dioxide Doppler Lidar MPLCMASK : Cloud mask from Micropulse Lidar VARANAL : Constrained...

  18. Towards Composing Data Aware Systems Biology Workflows on Cloud Platforms: A MeDICi-based Approach

    SciTech Connect (OSTI)

    Gorton, Ian; Liu, Yan; Yin, Jian; Kulkarni, Anand V.; Wynne, Adam S.

    2011-09-08

    Cloud computing is being increasingly adopted for deploying systems biology scientific workflows. Scientists developing these workflows use a wide variety of fragmented and competing data sets and computational tools of all scales to support their research. To this end, the synergy of client side workflow tools with cloud platforms is a promising approach to share and reuse data and workflows. In such systems, the location of data and computation is essential consideration in terms of quality of service for composing a scientific workflow across remote cloud platforms. In this paper, we describe a cloud-based workflow for genome annotation processing that is underpinned by MeDICi - a middleware designed for data intensive scientific applications. The workflow implementation incorporates an execution layer for exploiting data locality that routes the workflow requests to the processing steps that are colocated with the data. We demonstrate our approach by composing two workflowswith the MeDICi pipelines.

  19. Widget:LogoCloud | Open Energy Information

    Open Energy Info (EERE)

    LogoCloud Jump to: navigation, search This widget adds css selectors and javascript for the Template:LogoCloud. For example: Widget:LogoCloud Retrieved from "http:...

  20. Zenith Radiance Retrieval of Cloud Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    retrievals of cloud properties from the AMF/COPS campaign Preliminary retrievals of cloud properties from the AMF/COPS campaign Christine Chiu, UMBC/JCET Alexander Marshak, GSFC Yuri Knyazikhin, Boston University Warren Wiscombe, GSFC Christine Chiu, UMBC/JCET Alexander Marshak, GSFC Yuri Knyazikhin, Boston University Warren Wiscombe, GSFC The cloud optical properties of interest are: The cloud optical properties of interest are: * Cloud optical depth τ - the great unknown * Radiative cloud

  1. [Multifractal cloud properties data assessment

    SciTech Connect (OSTI)

    Gautier, C.; Ricchiazzi, P.; Peterson, P.; Lavallee, D. ); Frouin, R.; Lubin, D. ); Lovejoy, S. ); Schertzer, D. )

    1992-05-06

    Our group has been very active over the last year, analyzing a number of data sets to characterize multifractal cloud properties and assess the effects of clouds on surface radiation properties (spectral and broadband). The data sets analyzed include: AVHRR observations of clouds over the ocean, SPOT observations of clouds over the ocean, SSM/I observations of clouds over the ocean, pyranometer data with all-sky photographs, pyrgeometer data all-sky photographs, and spectral surface irradiance all-sky photographs. A number of radiative transfer computations have been performed to help in the interpretation of these observations or provide theoretical guidance for their analysis. Finally 4 number of radiative transfer models have been acquired and tested to prepare for the interpretation of ARM/CART data.

  2. Remote switch actuator

    DOE Patents [OSTI]

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  3. Satellite determination of stratus cloud microphysical properties...

    Office of Scientific and Technical Information (OSTI)

    of liquid water path from SSMI, broadband albedo from ERBE, and cloud characteristics from ISCCP are used to study stratus regions. An average cloud liquid water path of ...

  4. Clouds Environmental Ltd | Open Energy Information

    Open Energy Info (EERE)

    Clouds Environmental Ltd Jump to: navigation, search Name: Clouds Environmental Ltd Place: Portsmouth, United Kingdom Zip: PO3 5EG Product: Independent consultancy specialising in...

  5. Radiative Effects of Cloud Inhomogeneity and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ackerman et al. 1999), to develop cloud statistics and improve the treatment of subgrid ... and Curry 1989; Liang and Wang 1997). Statistics of Subgrid Cloud Variability We have ...

  6. Proliferation detection using a remote resonance Raman chemical sensor

    SciTech Connect (OSTI)

    Sedlacek, A.J.; Chen, C.L.; Dougherty, D.R.

    1993-08-01

    The authors discussed the potential of the resonance Raman chemical sensor as a remote sensor that can be used for gases, liquids or solids. This spectroscopy has the fundamental advantage that it is based on optical fingerprints that are insensitive to environmental perturbations or excitation frequency. By taking advantage of resonance enhancement, the inelastic scattering cross-section can increase anywhere from 4 to 6 orders of magnitude which translates into increased sensing range or lower detection limits. It was also shown that differential cross-sections as small as 10{sup {minus}27} cm{sup 2}/sr do not preclude the use of this technique as being an important component in one`s remote-sensing arsenal. The results obtained in the early 1970s on various pollutants and the more recent work on atmospheric water cast a favorable light on the prospects for the successful development of a resonance Raman remote sensor. Currently, of the 20 CW agent-related {open_quotes}signature{close_quotes} chemicals that the authors have investigated, 18 show enhancements ranging from 3 to 6 orders of magnitude. The absolute magnitudes of the measured resonance enhanced Raman cross-sections for these 18 chemicals suggest that detection and identification of trace quantities of the {open_quotes}signature{close_quotes} chemicals, through a remote resonance Raman chemical sensor, could be achieved.

  7. Remote repair appliance

    DOE Patents [OSTI]

    Heumann, Frederick K.; Wilkinson, Jay C.; Wooding, David R.

    1997-01-01

    A remote appliance for supporting a tool for performing work at a worksite on a substantially circular bore of a workpiece and for providing video signals of the worksite to a remote monitor comprising: a baseplate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the baseplate and positioned to roll against the bore of the workpiece when the baseplate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the baseplate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the baseplate such that the working end of the tool is positioned on the inner face side of the baseplate; a camera for providing video signals of the worksite to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the baseplate, the camera holding means being adjustably attached to the outer face of the baseplate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris.

  8. Remote repair appliance

    DOE Patents [OSTI]

    Heumann, F.K.; Wilkinson, J.C.; Wooding, D.R.

    1997-12-16

    A remote appliance for supporting a tool for performing work at a work site on a substantially circular bore of a work piece and for providing video signals of the work site to a remote monitor comprises: a base plate having an inner face and an outer face; a plurality of rollers, wherein each roller is rotatably and adjustably attached to the inner face of the base plate and positioned to roll against the bore of the work piece when the base plate is positioned against the mouth of the bore such that the appliance may be rotated about the bore in a plane substantially parallel to the base plate; a tool holding means for supporting the tool, the tool holding means being adjustably attached to the outer face of the base plate such that the working end of the tool is positioned on the inner face side of the base plate; a camera for providing video signals of the work site to the remote monitor; and a camera holding means for supporting the camera on the inner face side of the base plate, the camera holding means being adjustably attached to the outer face of the base plate. In a preferred embodiment, roller guards are provided to protect the rollers from debris and a bore guard is provided to protect the bore from wear by the rollers and damage from debris. 5 figs.

  9. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  10. High temperature, minimally invasive optical sensing modules

    DOE Patents [OSTI]

    Riza, Nabeel Agha; Perez, Frank

    2008-02-05

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

  11. Biogenic Aerosols - Effects on Climate and Clouds. Cloud Optical...

    Office of Scientific and Technical Information (OSTI)

    A good range of cloud conditions were observed from clear sky to heavy rainfall. Authors: Niple, E. R. 1 ; Scott, H. E. 1 + Show Author Affiliations Aerodyne Research, Inc., ...

  12. REMOTE CONTROLLED SWITCHING DEVICE

    DOE Patents [OSTI]

    Hobbs, J.C.

    1959-02-01

    An electrical switching device which can be remotely controlled and in which one or more switches may be accurately operated at predetermined times or with predetermined intervening time intervals is described. The switching device consists essentially of a deck, a post projecting from the deck at right angles thereto, cam means mounted for rotation around said posts and a switch connected to said deck and actuated by said cam means. Means is provided for rotating the cam means at a constant speed and the switching apparatus is enclosed in a sealed container with external adjusting means and electrical connection elements.

  13. Evaluating Clouds, Aerosols, and their Interactions in Three Global Climate Models using COSP and Satellite Observations

    SciTech Connect (OSTI)

    Ban-Weiss, George; Jin, Ling; Bauer, S.; Bennartz, Ralph; Liu, Xiaohong; Zhang, Kai; Ming, Yi; Guo, Huan; Jiang, Jonathan

    2014-09-23

    Accurately representing aerosol-cloud interactions in global climate models is challenging. As parameterizations evolve, it is important to evaluate their performance with appropriate use of observations. In this work we compare aerosols, clouds, and their interactions in three climate models (AM3, CAM5, ModelE) to MODIS satellite observations. Modeled cloud properties were diagnosed using the CFMIP Observations Simulator Package (COSP). Cloud droplet number concentrations (N) were derived using the same algorithm for both satellite-simulated model values and observations. We find that aerosol optical depth tau simulated by models is similar to observations. For N, AM3 and CAM5 capture the observed spatial pattern of higher values in near-coast versus remote ocean regions, though modeled values in general are higher than observed. In contrast, ModelE simulates lower N in most near-coast versus remote regions. Aerosol- cloud interactions were computed as the sensitivity of N to tau for marine liquid clouds off the coasts of South Africa and Eastern Asia where aerosol pollution varies in time. AM3 and CAM5 are in most cases more sensitive than observations, while the sensitivity for ModelE is statistically insignificant. This widely used sensitivity could be subject to misinterpretation due to the confounding influence of meteorology on both aerosols and clouds. A simple framework for assessing the N – tau sensitivity at constant meteorology illustrates that observed sensitivity can change from positive to statistically insignificant when including the confounding influence of relative humidity. Satellite simulated values of N were compared to standard model output and found to be higher with a bias of 83 cm-3.

  14. Remote multiple string well completion

    SciTech Connect (OSTI)

    Kirkland, K.G.

    1981-04-21

    Method and apparatus for multiple string well completions by remote operations in underwater installations, by which the tubing strings are installed independently rather than simultaneously.

  15. Remote Desktop | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Desktop Use a remote desktop connection to access your work computer from home. Using Remote Desktop to Connect to Your Work Computer With Remote Desktop, you can have access to a computer at the Laboratory through another computer. For example, you can connect to your work computer from home and have access to all of your programs, files, and network resources as though you were sitting at your computer at work. You can leave programs running at work and see your work desktop displayed

  16. cloud | OpenEI Community

    Open Energy Info (EERE)

    - 13:42 How cleantech-as-a-service will drive renewable energy adoption 2015 adoption Big Data clean tech clean-tech cleantech cleantech forum cleantech-as-a-service cloud...

  17. Remotely operated pipe connector

    DOE Patents [OSTI]

    Josefiak, Leonard J.; Cramer, Charles E.

    1988-01-01

    An apparatus for remotely assembling and disassembling a Graylock type coctor between a pipe and a closure for the pipe includes a base and a receptacle on the base for the closure. The pipe is moved into position vertically above the closure by a suitable positioning device such that the flange on the pipe is immediately adjacent and concentric with the flange on the closure. A moving device then moves two semicircular collars from a position free of the closure to a position such that the interior cam groove of each collar contacts the two flanges. Finally, a tensioning device automatically allows remote tightening and loosening of a nut and bolt assembly on each side of the collar to cause a seal ring located between the flanges to be compressed and to seal the closure. Release of the pipe and the connector is accomplished in the reverse order. Preferably, the nut and bolt assembly includes an elongate shaft portion on which a removable sleeve is located.

  18. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect (OSTI)

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  19. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    SciTech Connect (OSTI)

    Frisch, A.S.; Fairall, C.W.; Snider, J.B.; Lenshow, D.H.; Mayer, S.D.

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  20. Commonizing Uncommon Sense

    Office of Scientific and Technical Information (OSTI)

    Commonizing Uncommon Sense The universe that Einstein discoveredin which time doesnt pass at the same rate for everyone, space bends, and chance prevails where we would expect ...

  1. Sandia Energy - Sensing & Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensing & Monitoring Home Climate Permalink Gallery The Rush to Exploit an Increasingly Ice-Free Arctic Climate, Earth Sciences Research Center, Global, Global Climate & Energy,...

  2. T-704: RSA enVision Lets Remote Users View Files and Remote Authentica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RSA enVision Lets Remote Users View Files and Remote Authenticated Users Obtain Password T-704: RSA enVision Lets Remote Users View Files and Remote Authenticated Users Obtain...

  3. Evaluation of high-level clouds in cloud resolving model simulations...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations Citation Details In-Document Search Title: Evaluation of high-level clouds in ...

  4. Preliminary Studies on the Variational Assimilation of Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies on the Variational Assimilation of Cloud-Radiation Observations Using ARM ... A linearized cloud scheme and a radiation scheme including cloud effects have been ...

  5. A novel approach for introducing cloud spatial structure into...

    Office of Scientific and Technical Information (OSTI)

    A novel approach for introducing cloud spatial structure into cloud radiative transfer ... Sponsoring Org: USDOE Country of Publication: United Kingdom Language: English Word Cloud ...

  6. MAGIC Cloud Properties from Zenith Radiance Data Final Campaign...

    Office of Scientific and Technical Information (OSTI)

    Title: MAGIC Cloud Properties from Zenith Radiance Data Final Campaign Summary Cloud droplet size and optical depth are the most fundamental properties for understanding cloud ...

  7. Evaluation of Mixed-Phase Cloud Microphysics Parameterizations...

    Office of Scientific and Technical Information (OSTI)

    the partitioning of condensed water into liquid droplets and ice crystals in these Arctic clouds, which affect modeled cloud phase, cloud lifetime and radiative properties. ...

  8. Remote Alaskan Communities Energy Efficiency Competition Social...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Alaskan Communities Energy Efficiency Competition Social Media Kit Remote Alaskan Communities Energy Efficiency Competition Social Media Kit Alaska Stakeholders-Below you ...

  9. REMOTE ACCESS SERVICES | Department of Energy

    Office of Environmental Management (EM)

    Energy IT Services (EITS) Remote Access Services: Outlook Web Access RSA Token Login RSA ... Energy Information Administration (EIA) Remote Access Services Outlook Web Access EIA VPN ...

  10. Micro environmental sensing device

    DOE Patents [OSTI]

    Polosky, Marc A.; Lukens, Laurance L.

    2006-05-02

    A microelectromechanical (MEM) acceleration switch is disclosed which includes a proof mass flexibly connected to a substrate, with the proof mass being moveable in a direction substantially perpendicular to the substrate in response to a sensed acceleration. An electrode on the proof mass contacts one or more electrodes located below the proof mass to provide a switch closure in response to the sensed acceleration. Electrical latching of the switch in the closed position is possible with an optional latching electrode. The MEM acceleration switch, which has applications for use as an environmental sensing device, can be fabricated using micromachining.

  11. Remote direct memory access

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  12. REMOTE HANDLING ARRANGEMENTS

    DOE Patents [OSTI]

    Ginns, D.W.

    1958-04-01

    A means for handling remotely a sample pellet to be irradiated in a nuclear reactor is proposed. It is comprised essentially of an inlet tube extending through the outer shield of the reactor and being inclined so that its outer end is at a higher elevation than its inner end, an outlet tube extending through the outer shield being inclined so that its inner end is at a higher elevation than its outer end, the inner ends of these two tubes being interconnected, and a straight tube extending through the outer shield and into the reactor core between the inlet and outlet tubes and passing through the juncture of said inner ends. A rod-like member is rotatably and slidely operated within the central straight tube and has a receptacle on its inner end for receiving a sample pellet from the inlet tube. The rod member is operated to pick up a sample pellet from the inlet tube, carry the sample pellet into the irradiating position within the core, and return to the receiving position where it is rotated to dump the irradiated pellet into the outlet tube by which it is conveyed by gravity to the outside of the reactor. Stop members are provided in the inlet tube, and electrical operating devices are provided to control the sequence of the operation automatically.

  13. Researching Impact of Clouds on Solar Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    Sandia National Laboratories (SNL) researchers developed a new system to monitor how clouds affect large-scale solar photovoltaic (PV) power plants. By observing cloud shape, size and movement, the...

  14. ARM Cloud Properties Working Group: Meeting Logistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to 1630: J. Comstock - Clouds with Low Optical Water Depth (CLOWD) 1630 to 1645: B. Albrecht - Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CLAP-MBL) 1645 to ...

  15. ARM - Field Campaign - Fall 1997 Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The primary objective of the Cloud IOP was to generate a multi-platform data set that can ... Given the diversity of cloud types sampled during the IOP, the analysis of this data set ...

  16. Evaluating the MMF Using CloudSat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its cloud Evaluate the MMF and improve its cloud simulations simulations Borrowed from Dave Randall, CSU The big picture The big picture ... ... . . Data ARM A-Train, MISR etc. ...

  17. ARM - Measurement - Cloud particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle size distribution The number of cloud particles present in any given volume of air...

  18. ARM - Measurement - Cloud particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume...

  19. Robotics and remote systems applications

    SciTech Connect (OSTI)

    Rabold, D.E.

    1996-05-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling.

  20. Frequency Modulation Spectroscopy Modeling for Remote Chemical Detection

    SciTech Connect (OSTI)

    Sheen, David M.

    2000-09-30

    Frequency modulation (FM) spectroscopy techniques show promise for active infrared remote chemical sensing. FM spectroscopy techniques have reduced sensitivity to optical and electronic noise, and are relatively immune to the effects of various electronic and mechanical drifts. FM systems are responsive to sharp spectral features and can therefore reduce the effects of spectral clutter due to interfering chemicals in the plume or in the atmosphere. The relatively high modulation frequencies used for FM also reduces the effects of albedo (reflectance) and plume variations. Conventional differential absorption lidar (DIAL) systems are performance limited by the noise induced by speckle. Analysis presented in this report shows that FM based sensors may reduce the effects of speckle by one to two orders of magnitude. This can result in reduced dwell times and faster area searches, as well as reducing various forms of spatial clutter. FM systems will require a laser system that is continuously tunable at relatively high frequencies (0.1 to 20 MHz). One promising candidate is the quantum-cascade (QC) laser [1, 2]. The QC laser is potentially capable of power levels on the order of 1 Watt and frequency tuning on the order of 3 - 6 GHz, which is the performance level required for FM spectroscopy based remote sensing. In this report we describe a high-level numerical model for an FM spectroscopy based remote sensing system, and application to two unmanned airborne vehicle (UAV) scenarios. A Predator scenario operating at a slant range of 6.5 km with a 10 cm diameter telescope, and a Global Hawk scenario operating at a range of 30 km with a 20 cm diameter telescope, has been assumed to allow estimation of the performance of potential FM systems.

  1. What Makes Clouds Form, Grow and Die?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Makes Clouds Form, Grow and Die? What Makes Clouds Form, Grow and Die? Simulations Show Raindrops Physics May Affect Climate Model Accuracy February 19, 2015 thunderstorm Brazil shuttle NASA 1984 540 PNNL scientists used real-world observations to simulate how small clouds are likely to stay shallow, while larger clouds grow deeper because they mix with less dry air. Pictured are small and large thunderstorms growing over southern Brazil, taken from the space shuttle. Image: NASA Johnson Space

  2. A path towards uncertainty assignment in an operational cloud-phase algorithm from ARM vertically pointing active sensors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Riihimaki, Laura D.; Comstock, Jennifer M.; Anderson, Kevin K.; Holmes, Aimee; Luke, Edward

    2016-06-10

    Knowledge of cloud phase (liquid, ice, mixed, etc.) is necessary to describe the radiative impact of clouds and their lifetimes, but is a property that is difficult to simulate correctly in climate models. One step towards improving those simulations is to make observations of cloud phase with sufficient accuracy to help constrain model representations of cloud processes. In this study, we outline a methodology using a basic Bayesian classifier to estimate the probabilities of cloud-phase class from Atmospheric Radiation Measurement (ARM) vertically pointing active remote sensors. The advantage of this method over previous ones is that it provides uncertainty informationmore » on the phase classification. We also test the value of including higher moments of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known phase from the Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, we demonstrate a proof of concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow. Over 95 % of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and snow cases are more problematic to identify correctly. When lidar data are not available, including additional information from the Doppler spectrum provides substantial improvement to the algorithm. This is a first step towards an operational algorithm and can be expanded to include additional categories such as drizzle with additional training data.« less

  3. ARM Data for Cloud Parameterization

    SciTech Connect (OSTI)

    Xu, Kuan-Man

    2006-10-02

    The PI's ARM investigation (DE-IA02-02ER633 18) developed a physically-based subgrid-scale saturation representation that fully considers the direct interactions of the parameterized subgrid-scale motions with subgrid-scale cloud microphysical and radiative processes. Major accomplishments under the support of that interagency agreement are summarized in this paper.

  4. Unlocking the Secrets of Clouds

    Broader source: Energy.gov [DOE]

    Clouds may look soft, fluffy and harmless to the untrained eye, but to an expert climate model scientist they represent great challenges. Fortunately the Atmospheric Radiation Measurement (ARM) Climate and Research Facility is kicking off a five-month study which should significantly clear the air.

  5. Nuclear reactor remote disconnect control rod coupling indicator

    DOE Patents [OSTI]

    Vuckovich, Michael

    1977-01-01

    A coupling indicator for use with nuclear reactor control rod assemblies which have remotely disengageable couplings between the control rod and the control rod drive shaft. The coupling indicator indicates whether the control rod and the control rod drive shaft are engaged or disengaged. A resistive network, utilizing magnetic reed switches, senses the position of the control rod drive mechanism lead screw and the control rod position indicating tube, and the relative position of these two elements with respect to each other is compared to determine whether the coupling is engaged or disengaged.

  6. Retroreflective systems for remote readout

    DOE Patents [OSTI]

    Deason, Vance A.; Colwell, Frederick S.; Ricks, Kirk L.

    1998-01-01

    A sensing device for sensing an environmental factor. The device includes a retroreflective layer disposed in a parallel, facing relationship with a sensing layer. The sensing layer has an initial optical absorption capacity for (i) sensing a presence of an environmental factor, (ii) experiencing a change in optical absorption capacity responsive to said environmental factor, and (iii) transmitting and attenuating light. A first portion of the sensing layer is sealed off from exposure to the environment while a second portion remains exposed to the environment such that, when the environmental factor is present, the first portion of the sensing layer is prevented from experiencing a change in optical absorption capacity responsive to said environmental factor. Well-collimated light beams are passed through the sensing layer and are reflected back from the retroreflective layer for processing. When the environmental factor is present, the beams which pass through the second portion are attenuated responsive to an increase in optical absorption capacity and are compared with the non-attenuated beams passing through the first portion to calculate the presence and quantity of the environmental factor.

  7. Retroreflective systems for remote readout

    DOE Patents [OSTI]

    Deason, V.A.; Colwell, F.S.; Ricks, K.L.

    1998-10-13

    A sensing device is described for sensing an environmental factor. The device includes a retroreflective layer disposed in a parallel, facing relationship with a sensing layer. The sensing layer has an initial optical absorption capacity for (1) sensing a presence of an environmental factor, (2) experiencing a change in optical absorption capacity responsive to said environmental factor, and (3) transmitting and attenuating light. A first portion of the sensing layer is sealed off from exposure to the environment while a second portion remains exposed to the environment such that, when the environmental factor is present, the first portion of the sensing layer is prevented from experiencing a change in optical absorption capacity responsive to said environmental factor. Well-collimated light beams are passed through the sensing layer and are reflected back from the retroreflective layer for processing. When the environmental factor is present, the beams which pass through the second portion are attenuated responsive to an increase in optical absorption capacity and are compared with the non-attenuated beams passing through the first portion to calculate the presence and quantity of the environmental factor. 7 figs.

  8. Development and application of new methods to retrieve vertical...

    Office of Scientific and Technical Information (OSTI)

    information, so developments of remote sensing methods for retrievals of parameters in precipitating cloud condition was essential. Providing modelers with retrieval results ...

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... information, so developments of remote sensing methods for retrievals of parameters in precipitating cloud condition was essential. Providing modelers with retrieval results ...

  10. ARM - Journal Articles 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from ARM ground-based remote sensing (Citation) ... Atmospheric and Oceanic Technology ARM Guo Examination of ... in Ice-Over-Water Cloud Systems Using Tropical Rainfall ...

  11. ARM - Journal Articles 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric and Oceanic Technology Yes ARM Johnson The ... of tropical cloud systems observed during the ... on Geoscience and Remote Sensing ARM Long Correcting ...

  12. ARM - Journal Articles 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Citation) Geoscience and Remote Sensing Letters ARM ... Atmospheric and Oceanic Technology ARM Liu Seasonal ... in Modeling Earth Systems ARM ASR Yang GEWEX Cloud ...

  13. ARM - Publications: Science Team Meeting Documents: Influence...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stability on the Cloud Drop Effective Radius Determined by Ground-based Remote Sensing Kim, Byung-Gon Princeton University Miller, Mark Brookhaven National Laboratory Min, Qilong...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are too low and too uncertain for normalization. Although clouds seem to have a distinct boundary, remote sensing measurements find it difficult to distinguish between cloudy and...

  15. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Bookmark and Share A new session, Remote Sensing of Clouds and Aerosols: Techniques and Applications (AS1.6), will be convened at the upcoming European Geosciences...

  16. ARM - Campaign Instrument - rl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrument Categories Aerosols, Atmospheric Profiling Campaigns Remote Cloud Sensing (RCS) Field Evaluation Download Data Southern Great Plains, 1994.04.01 - 1994.05.31...

  17. ARM - Campaign Instrument - aerosol-tower-eml

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (AEROSOL-TOWER-EML) Instrument Categories Aerosols Campaigns Remote Cloud Sensing (RCS) Field Evaluation Download Data Southern Great Plains, 1994.04.01 - 1994.05.31...

  18. Susanne Crewell, University of Cologne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extending operational satellite cloud remote sensing into the submillimeter range: The ... crowd sourcing sites and utilising mobile phone technology. by 2016 0.5-1 one billion ...

  19. Browsing a wealth of millimeter-wavelength doppler spectra data...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES; 97 MATHEMATICAL METHODS AND COMPUTING; CLOUDS; RADAR; REMOTE SENSING; SIMULATORS; ...

  20. Microsoft PowerPoint - cldclass_final_v.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in different climate regions. Pure ice and water clouds are relatively straightforward to identify using ground based remote sensing instruments. However, middle level...

  1. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    SciTech Connect (OSTI)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  2. DIFFERENTIAL FAULT SENSING CIRCUIT

    DOE Patents [OSTI]

    Roberts, J.H.

    1961-09-01

    A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.

  3. Clouds, Aerosols and Precipitation in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Marine Boundary Layer (CAP-MBL) Graciosa Island, Azores, NE Atlantic Ocean Graciosa Island, Azores, NE Atlantic Ocean May 2009-December 2010 May 2009-December 2010 Rob Wood, University of Washington Rob Wood, University of Washington AMF Deployment Team Thanks to Mark Miller: AMF Site Scientist Mark Miller: AMF Site Scientist Kim Nitschke: AMF Site Manager CAP-MBL Proposal Team Importance of Low-Clouds for Climate Imperative that we understand the processes controlling the formation,

  4. T-573: Windows Remote Desktop Client DLL Loading Error Lets Remote Users Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    A vulnerability was reported in Windows Remote Desktop Client. A remote user can cause arbitrary code to be executed on the target user's system.

  5. Vertical microphysical profiles of convective clouds as a tool for

    Office of Scientific and Technical Information (OSTI)

    obtaining aerosol cloud-mediated climate forcings (Technical Report) | SciTech Connect Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings Citation Details In-Document Search Title: Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud

  6. Evaluation of Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Sa...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Satellite and Cloud Radar Y. Luo and S. K. Krueger University of Utah Salt Lake City, Utah Introduction Because of both the various effects clouds exert on the earth-atmospheric system and the cloud feedback, correct representations of clouds in numerical models are critical for accurate climate modeling and weather forecast. Unfortunately, determination of clouds and their radiative

  7. Connecting Remote Clusters with ATM

    SciTech Connect (OSTI)

    Hu, T.C.; Wyckoff, P.S.

    1998-10-01

    Sandia's entry into utilizing clusters of networked workstations is called Computational Plant or CPlant for short. The design of CPlant uses Ethernet to boot the individual nodes, Myrinet to communicate within a node cluster, and ATM to connect between remote clusters. This SAND document covers the work done to enable the use of ATM on the CPlant nodes in the Fall of 1997.

  8. Remote multiple string well completion

    SciTech Connect (OSTI)

    Kirkland, K.G.

    1981-09-15

    In a remotely installed underwater well apparatus, a tubular body, typically a multiple string tubing hanger, is landed in a position oriented rotationally with respect to a reference point on the apparatus and a seal device is then energized by the same tool employed to land and orient the tubular body.

  9. Parameterization of the Extinction Coefficient in Ice and Mixed-Phase Arctic Clouds during the ISDAC Field Campaign

    SciTech Connect (OSTI)

    Korolev, A; Shashkov, A; Barker, H

    2012-03-06

    This report documents the history of attempts to directly measure cloud extinction, the current measurement device known as the Cloud Extinction Probe (CEP), specific problems with direct measurement of extinction coefficient, and the attempts made here to address these problems. Extinction coefficient is one of the fundamental microphysical parameters characterizing bulk properties of clouds. Knowledge of extinction coefficient is of crucial importance for radiative transfer calculations in weather prediction and climate models given that Earth's radiation budget (ERB) is modulated much by clouds. In order for a large-scale model to properly account for ERB and perturbations to it, it must ultimately be able to simulate cloud extinction coefficient well. In turn this requires adequate and simultaneous simulation of profiles of cloud water content and particle habit and size. Similarly, remote inference of cloud properties requires assumptions to be made about cloud phase and associated single-scattering properties, of which extinction coefficient is crucial. Hence, extinction coefficient plays an important role in both application and validation of methods for remote inference of cloud properties from data obtained from both satellite and surface sensors (e.g., Barker et al. 2008). While estimation of extinction coefficient within large-scale models is relatively straightforward for pure water droplets, thanks to Mie theory, mixed-phase and ice clouds still present problems. This is because of the myriad forms and sizes that crystals can achieve, each having their own unique extinction properties. For the foreseeable future, large-scale models will have to be content with diagnostic parametrization of crystal size and type. However, before they are able to provide satisfactory values needed for calculation of radiative transfer, they require the intermediate step of assigning single-scattering properties to particles. The most basic of these is extinction

  10. Testing a New Cirrus Cloud Parameterizaton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing a New Cirrus Cloud Parameterization in NCAR CCM3 D. Zurovac-Jevtic, G. J. Zhang, and V. Ramanathan Center for Atmospheric Sciences Scripps Institute of Oceanography La Jolla, California Introduction Cirrus cloud cover and ice water content (IWC) are the two most important properties of cirrus clouds. However, in general circulation models (GCMs), their treatment is very crude. For example, in the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3), IWC is

  11. Midlatitude Continental Convective Clouds Experiment Science Objective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Midlatitude Continental Convective Clouds Experiment Science Objective Despite improvements in computing power, current weather and climate models are unable to accurately reproduce the formation, growth, and decay of clouds and precipitation associated with storm systems. Not only is this due to a lack of data about precipitation, but also about the 3-dimensional environment of the surrounding clouds, winds, and moisture, and how that affects the transfer of energy between the sun and Earth. To

  12. Storm Peak Lab Cloud Property Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peak Lab Cloud Property Validation Experiment (STORMVEX) Operated by the Atmospheric Radiation Measurement (ARM) Climate Research Facility for the U.S. Department of Energy, the second ARM Mobile Facility (AMF2) begins its inaugural deployment November 2010 in Steamboat Springs, Colorado, for the Storm Peak Lab Cloud Property Validation Experiment, or STORMVEX. For six months, the comprehensive suite of AMF2 instruments will obtain measurements of cloud and aerosol properties at various sites

  13. Microelectromechanical acceleration-sensing apparatus

    DOE Patents [OSTI]

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  14. Tropical Cloud Life Cycle and Overlap Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Cloud Life Cycle and Overlap Structure Vogelmann, Andrew Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Kollias, Pavlos Brookhaven National ...

  15. ARM - Evaluation Product - Cloud Classification VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties includes cloud boundaries, thickness, phase, type, and precipitation information, and hence provides a useful tool for evaluation of model simulations and...

  16. ARM - Midlatitude Continental Convective Clouds - Single Column...

    Office of Scientific and Technical Information (OSTI)

    - Single Column Model Forcing (xie-scmforcing) Title: ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scmforcing) The constrained variational ...

  17. Characterizing Arctic Mixed-phase Cloud Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have two distinguished cloud base heights (CBHs) that can be defined by both ceilometer (black dots) and micropulse lidar (MPL; pink dots) measurements (Figure 1). For a...

  18. ARM - Field Campaign - Spring Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSpring Cloud IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring Cloud IOP 2000.03.01 - 2000.03.26 Lead Scientist : Gerald Mace For data sets, see below. Summary The Atmospheric Radiation Measurement (ARM) Program conducted a Cloud Intensive Operational Period (IOP) in March 2000 that was the first-ever effort to document the 3-dimensional cloud field from observational data. Prior

  19. ARM - Field Campaign - Cloud Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of aerosol properties during clear-sky conditions. The ETL Radar Meteorology and Oceanography Division will field their NOAAK scanning cloud radar near the new ARM millimeter...

  20. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe; Clark, Roger; Nicholson, Phil; Jaumann, Ralf

    2009-09-10

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  1. DOE Research and Development Accomplishments Tag Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Database Tag Cloud This tag cloud is a specific type of weighted list that provides a quick look at the content of the DOE R&D Accomplishments database. It can be easily browsed because terms are in alphabetical order. With this tag cloud, there is a direct correlation between font size and quantity. The more times a term appears in the bibliographic citations, the larger the font size. This tag cloud is also interactive. Clicking on a term will activate a search for that term. Search

  2. The LANL Cloud-Aerosol Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that incorporates two unique aspects in its formulation. First, the model employs a nonlinear solver that requires cloud-aerosol parameterizations be smooth or contain reasonable...

  3. Fragmentation in rotating isothermal protostellar clouds

    SciTech Connect (OSTI)

    Bodenheimer, P.; Tohline, J.E.; Black, D.C.

    1980-01-01

    Results of an extensive set of 3-D hydrodynamic calculations that have been performed to investigate the susceptibility of rotating clouds to gravitational fragmentation are presented. (GHT)

  4. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments You are ...

  5. What Makes Clouds Form, Grow and Die?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were born and grew. Those formulas did not always reflect reality. With more advanced computers came the ability to explicitly simulate large-cloud systems instead of approximating...

  6. Ground-based Microwave Cloud Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Courtesy of Bernhard Mayer Cloud structure important to radiation - Cumulus (Benner & Evans 2001, Pincus et al. 2005), deep convection (DiGiuseppe & Tompkins 2003) - Horizontal...

  7. Mountain-induced Dynamics Influence Cloud Phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-2011 via coordinated projects targeting clouds, precipitation, and dynamics in the Park Range of Colorado. The National Science Foundation sponsored aircraft measurements as...

  8. Working Remotely | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis & Projections Glossary › FAQS › Overview Projection Data Monthly short-term forecasts to 2016 Annual projections to 2040 International projections All projections reports Analysis & Projections Major Topics Most popular Annual Energy Outlook related Congressional & other requests International Energy Outlook related Presentations Recurring Short-Term Outlook Related Special outlooks Testimony All reports Browse by Tag Alphabetical Frequency Tag Cloud Working Paper Series

  9. Working with SRNL - Our Facilities - Remote Systems Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Systems Laboratory Remote Systems Laboratory Working with SRNL Our Facilities - Remote Systems Laboratory The Remote Systems Laboratory is used for the design, development, fabrication, and testing of unique equipment systems for use in radioactive, hazardous or inaccessible environments

  10. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  11. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect (OSTI)

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  12. Gas-sensing optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1988-04-12

    An optrode is provided for sensing dissolved gases or volatile components of a solution. A fiber optic is provided through which light from an associated light source is transmitted from a first end to a second end. A bubble forming means, such as a tube, is attached to the second end of the fiber optic, and an indicator material is disposed in cooperation with the bubble forming means adjacent to the second end of the fiber optic such that it is illuminated by light emanating from the second end. The bubble forming means causes a gas bubble to form whenever the optrode is immersed in the fluid. The gas bubble separates the indicator material from the fluid. Gases, or other volatile components, of the fluid are sensed as they diffuse across the gas bubble from the fluid to the indicator material. 3 figs.

  13. Gas-sensing optrode

    DOE Patents [OSTI]

    Hirschfeld, Tomas B.

    1988-01-01

    An optrode is provided for sensing dissolved gases or volatile components of a solution. A fiber optic is provided through which light from an associated light source is transmitted from a first end to a second end. A bubble forming means, such as a tube, is attached to the second end of the fiber optic, and an indicator material is disposed in cooperation with the bubble forming means adjacent to the second end of the fiber optic such that it is illuminated by light emanating from the second end. The bubble forming means causes a gas bubble to form whenever the optrode is immersed in the fluid. The gas bubble separates the indicator material from the fluid. Gases, or other volatile components, of the fluid are sensed as they diffuse across the gas bubble from the fluid to the indicator material.

  14. Chemical sensing flow probe

    DOE Patents [OSTI]

    Laguna, George R.; Peter, Frank J.; Butler, Michael A.

    1999-01-01

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  15. Chemical sensing flow probe

    DOE Patents [OSTI]

    Laguna, G.R.; Peter, F.J.; Butler, M.A.

    1999-02-16

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Properties Journal Reference: Wang X, KN Liou, SS Ou, GG Mace, and M Deng. 2009. "Remote sensing of ...

  17. ARM - VAP Process - mwrret

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    static Tb offsets are not applied. Additionally, if ARSCL (Active Remote Sensing of Cloud Layers) data is not available in real-time, cloud base height is determined from...

  18. Collaborations with Other ARM Working Groups and with ASP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborations with Other ARM Working Groups and with ASP * Cloud Properties - Aerosol indirect effects remote sensing * Cloud Modeling - Aerosol indirect effects modeling * Radiative Properties - BBHRP aerosol best estimate * ASP - CCN closure - Aerosol extinction closure

  19. ARM - Field Campaign - Measuring Clouds at SGP with Stereo Photogramme...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the form of the Point Cloud of Cloud Points Product (PCCPP). The PCCPP will: provide context on life-cycle stage and cloud position for vertically pointing radars, lidars, and...

  20. VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study () | Data...

    Office of Scientific and Technical Information (OSTI)

    VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study Title: VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international ...

  1. Intercomparison of model simulations of mixed-phase clouds observed...

    Office of Scientific and Technical Information (OSTI)

    Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud Citation Details In-Document ...

  2. Aggregate Remote Memory Copy Interface

    Energy Science and Technology Software Center (OSTI)

    2006-02-23

    The purpose of the Aggregate Remote Memory Copy (ARMCI) library is to provide a general- purpose, efficient, and Widely portable remote memory access (RMA) operations (one-sided communication) optimized for Contiguous and noncontiguous (strided, scatter/gather, I/O vector) data transfers. In addition, ARMCI includes a set of atomic and mutual exclusion operations. The development ARMCI is driven by the need to support the global-addres space communication model in context of distributed regular or irregular distributed data structures,more » communication libraries, and compilers. ARMCI is a standalone system that could be used to support user-level libraries and applications that use MPI or PVM.« less

  3. T-606: Sun Java System Access Manager Lets Remote Users Partially Modify Data and Remote Authenticated Users Partially Access Data

    Broader source: Energy.gov [DOE]

    Sun Java System Access Manager Lets Remote Users Partially Modify Data and Remote Authenticated Users Partially Access Data.

  4. Disposable remote zero headspace extractor

    DOE Patents [OSTI]

    Hand, Julie J.; Roberts, Mark P.

    2006-03-21

    The remote zero headspace extractor uses a sampling container inside a stainless steel vessel to perform toxicity characteristics leaching procedure to analyze volatile organic compounds. The system uses an in line filter for ease of replacement. This eliminates cleaning and disassembly of the extractor. All connections are made with quick connect fittings which can be easily replaced. After use, the bag can be removed and disposed of, and a new sampling container is inserted for the next extraction.

  5. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    SciTech Connect (OSTI)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W.

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  6. Effective Radius of Cloud Droplets Derived from Ground-based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which could eventually facilitate aerosol-cloud interactions. (Kim, Klein, Norris, JGR, 2005) SD z (m) SD LWP (g m -2 ) Efficacy of Aerosol-Cloud Interactions - ...

  7. 915 MHz Wind Profiler for Cloud Forecasting at Brookhaven National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory M Jensen MJ ... Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory M Jensen, ...

  8. ARM: AOS: Cloud Condensation Nuclei Counter (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: AOS: Cloud Condensation Nuclei Counter AOS: Cloud Condensation Nuclei Counter Authors: Scott Smith ; Cynthia Salwen ; Janek Uin ; Gunnar Senum ; Stephen Springston ; ...

  9. ARM - Evaluation Product - CMWG Data - SCM-Forcing Data, Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data. Cloud microphysical properties derived from Mace's data of atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates are regridded to a...

  10. Direct Numerical Simulations and Robust Predictions of Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud. Credit: Computational Science and Engineering Laboratory, ETH Zurich, Switzerland Direct Numerical Simulations and Robust Predictions of Cloud Cavitation Collapse PI Name:...

  11. The Sensitivity of Radiative Fluxes to Parameterized Cloud Microphysic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these fields include cloud altitude, cloud amount, liquid and ice content, particle size spectra, and radiative fluxes at the surface and the TOA. Comparisons with Atmospheric...

  12. City of Red Cloud, Nebraska (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Red Cloud, Nebraska (Utility Company) Jump to: navigation, search Name: Red Cloud Municipal Power Place: Nebraska Phone Number: 402-746-2215 Website: www.redcloudnebraska.comgover...

  13. Determination of Large-Scale Cloud Ice Water Concentration by...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Determination of Large-Scale Cloud Ice Water Concentration by Combining ... Title: Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface ...

  14. ARM: Aerosol Observing System (AOS): cloud condensation nuclei...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Aerosol Observing System (AOS): cloud condensation nuclei data Aerosol Observing System (AOS): cloud condensation nuclei data Authors: Scott Smith ; Cynthia Salwen ; ...

  15. Cloud microphysical relationships and their implication on entrainment...

    Office of Scientific and Technical Information (OSTI)

    Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project Citation Details ...

  16. Summary of workshop session F on electron-cloud instabilities...

    Office of Scientific and Technical Information (OSTI)

    Conference: Summary of workshop session F on electron-cloud instabilities Citation Details In-Document Search Title: Summary of workshop session F on electron-cloud instabilities ...

  17. Understanding and Improving CRM and GCM Simulations of Cloud...

    Office of Scientific and Technical Information (OSTI)

    of convection, clouds and radiative heating rate and fluxes using the ARM ... as well as cloud water contents in producing net radiative fluxes closer to observations. ...

  18. Monitoring of Precipitable Water Vapor and Cloud Liquid Path...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave ... used to measure atmospheric precipitable water vapor (PWV) and cloud liquid path (CLP). ...

  19. Determining Cloud Ice Water Path from High-Frequency Microwave...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determining Cloud Ice Water Path from High-Frequency Microwave Measurements G. Liu ... A better understanding of cloud water content and its large-scale distribution ...

  20. ARM: Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid...

    Office of Scientific and Technical Information (OSTI)

    Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid Water and Precipitable Water Vapor Title: ARM: Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid Water and ...

  1. Final Report on the Development of an Improved Cloud Microphysical...

    Office of Scientific and Technical Information (OSTI)

    Facilities (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative ... integrated over all bin sizes, liquid water content LWC, extinction of liquid clouds ...

  2. Thin Liquid Water Clouds: Their Importance and Our Challenge...

    Office of Scientific and Technical Information (OSTI)

    Thin Liquid Water Clouds: Their Importance and Our Challenge Citation Details In-Document Search Title: Thin Liquid Water Clouds: Their Importance and Our Challenge Many of the ...

  3. ARM: Millimeter Wavelength Cloud Radar (MMCR): transmitted RF...

    Office of Scientific and Technical Information (OSTI)

    transmitted RF power Title: ARM: Millimeter Wavelength Cloud Radar (MMCR): transmitted RF power Millimeter Wavelength Cloud Radar (MMCR): transmitted RF power Authors: Karen ...

  4. USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY Matthew...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hourly cloud classified satellite images are compared to multiple years of ground measured ... type of cloud or weather pattern, as classified by NOAA. Instinctively, the type of ...

  5. Towards a Characterization of Arctic Mixed-Phase Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manual classification of cloud phase. Using collocated cloud radar and depolarization lidar observations, it is shown that mixed-phase conditions have a high correlation with a...

  6. Tropical Cloud Properties and Radiative Heating Profiles (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Tropical Cloud Properties and Radiative Heating Profiles Title: Tropical Cloud Properties ... in that it uses the microwave radiometer to scale the radiosonde column water vapor. ...

  7. Humidity trends imply increased sensitivity to clouds in a warming...

    Office of Scientific and Technical Information (OSTI)

    is modulated by cloud properties; however, CRE also depends on humidity because clouds emit at wavelengths that are semi-transparent to greenhouse gases, most notably water vapour. ...

  8. ARM - Publications: Science Team Meeting Documents: Cloud Radiative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. ... Documentation with data of the effects of clouds on the radiant energy balance of the ...

  9. Positive low cloud and dust feedbacks amplify tropical North...

    Office of Scientific and Technical Information (OSTI)

    amplify tropical North Atlantic Multidecadal Oscillation: CLOUD AND DUST FEEDBACK AND AMO Title: Positive low cloud and dust feedbacks amplify tropical North Atlantic ...

  10. U-247: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CTA 7.3.1 and later with Hotfix ESA-2012-034 Addthis Related Articles V-045: Adobe ColdFusion Lets Local Users Bypass Sandbox Restrictions V-036: EMC Smarts Network...

  11. SENSE-Project-Abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    response to ASCR Program Announcement LAB 15-1295 SENSE: SDN for End-to-end Networked Science at the Exascale Lead PI: Inder Monga, Lawrence Berkeley National Lab, imonga@es.net, 510-499-8065 Team: ANL - Linda Winkler, Kate Keahey, Caltech - Harvey Newman, Ramiro Voicu, FNAL - Phil DeMar, LBNL/ESnet - Chin Guok, John MacAuley, LBNL/NERSC - Jason Hick, UMD/MAX - Tom Lehman, Xi Yang, Alberto Jimenez Abstract: Traditionally, WAN and campus networks and services have evolved independently from each

  12. Radiative properties of ice clouds

    SciTech Connect (OSTI)

    Mitchell, D.L.; Koracin, D.; Carter, E.

    1996-04-01

    A new treatment of cirrus cloud radiative properties has been developed, based on anomalous diffraction theory (ADT), which does not parameterize size distributions in terms of an effective radius. Rather, is uses the size distribution parameters directly, and explicitly considers the ice particle shapes. There are three fundamental features which characterize this treatment: (1) the ice path radiation experiences as it travels through an ice crystal is parameterized, (2) only determines the amount of radiation scattered and absorbed, and (3) as in other treatments, the projected area of the size distribution is conserved. The first two features are unique to this treatment, since it does not convert the ice particles into equivalent volume or area spheres in order to apply Mie theory.

  13. Scanning ARM Cloud Radar Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  14. Modeling Incoherent Electron Cloud Effects

    SciTech Connect (OSTI)

    Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.

    2007-06-18

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed.

  15. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  16. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  17. HOT HYDROGEN IN DIFFUSE CLOUDS

    SciTech Connect (OSTI)

    Cecchi-Pestellini, Cesare; Duley, Walt W.; Williams, David A. E-mail: wwduley@uwaterloo.ca

    2012-08-20

    Laboratory evidence suggests that recombination of adsorbed radicals may cause an abrupt temperature excursion of a dust grain to about 1000 K. One consequence of this is the rapid desorption of adsorbed H{sub 2} molecules with excitation temperatures of this magnitude. We compute the consequences of injection of hot H{sub 2} into cold diffuse interstellar gas at a rate of 1% of the canonical H{sub 2} formation rate. We find that the level populations of H{sub 2} in J = 3, 4, and 5 are close to observed values, and that the abundances of CH{sup +} and OH formed in reactions with hot hydrogen are close to the values obtained from observations of diffuse clouds.

  18. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prather, M. J.

    2015-05-27

    A new approach for modeling photolysis rates (J values) in atmospheres with fractional cloud cover has been developed and implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observed statistics for the vertical correlation of cloud layers, Cloud-J 7.3 provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations represented by four quadrature atmospheres produces mean J values in an atmospheric column with root-mean-square errors of 4% or less compared with 10–20% errors using simpler approximations. Cloud-Jmore » is practical for chemistry-climate models, requiring only an average of 2.8 Fast-J calls per atmosphere, vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections is also incorporated into Cloud-J.« less

  19. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prather, M. J.

    2015-08-14

    A new approach for modeling photolysis rates (J values) in atmospheres with fractional cloud cover has been developed and is implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observations of the vertical correlation of cloud layers, Cloud-J 7.3c provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations by four quadrature atmospheres produces mean J values in an atmospheric column with root mean square (rms) errors of 4 % or less compared with 10–20 % errorsmore » using simpler approximations. Cloud-J is practical for chemistry–climate models, requiring only an average of 2.8 Fast-J calls per atmosphere vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections, is also incorporated into Cloud-J.« less

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating Glaciation Temperature of Deep Convective Clouds with Remote Sensing Data Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A (a) A conceptual diagram of cloud particle size vertical evolution inside a deep convective cloud. (b) Cloud side scanner retrievals of (left) particle size and (right) cloud phase. Homogeneous freezing is inefficient at temperatures

  1. Resistive hydrogen sensing element

    DOE Patents [OSTI]

    Lauf, Robert J.

    2000-01-01

    Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

  2. Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zheng; Muhlbauer, Andreas; Ackerman, Thomas

    2015-11-05

    In this paper, we evaluate high-level clouds in a cloud resolving model during two convective cases, ARM9707 and KWAJEX. The simulated joint histograms of cloud occurrence and radar reflectivity compare well with cloud radar and satellite observations when using a two-moment microphysics scheme. However, simulations performed with a single moment microphysical scheme exhibit low biases of approximately 20 dB. During convective events, two-moment microphysical overestimate the amount of high-level cloud and one-moment microphysics precipitate too readily and underestimate the amount and height of high-level cloud. For ARM9707, persistent large positive biases in high-level cloud are found, which are not sensitivemore » to changes in ice particle fall velocity and ice nuclei number concentration in the two-moment microphysics. These biases are caused by biases in large-scale forcing and maintained by the periodic lateral boundary conditions. The combined effects include significant biases in high-level cloud amount, radiation, and high sensitivity of cloud amount to nudging time scale in both convective cases. The high sensitivity of high-level cloud amount to the thermodynamic nudging time scale suggests that thermodynamic nudging can be a powerful ‘‘tuning’’ parameter for the simulated cloud and radiation but should be applied with caution. The role of the periodic lateral boundary conditions in reinforcing the biases in cloud and radiation suggests that reducing the uncertainty in the large-scale forcing in high levels is important for similar convective cases and has far reaching implications for simulating high-level clouds in super-parameterized global climate models such as the multiscale modeling framework.« less

  3. Absorption of solar radiation in broken clouds

    SciTech Connect (OSTI)

    Zuev, V.E.; Titov, G.A.; Zhuravleva, T.B.

    1996-04-01

    It is recognized now that the plane-parallel model unsatisfactorily describes the transfer of radiation through broken clouds and that, consequently, the radiation codes of general circulation models (GCMs) must be refined. However, before any refinement in a GCM code is made, it is necessary to investigate the dependence of radiative characteristics on the effects caused by the random geometry of cloud fields. Such studies for mean fluxes of downwelling and upwelling solar radiation in the visible and near-infrared (IR) spectral range were performed by Zuev et al. In this work, we investigate the mean spectral and integrated absorption of solar radiation by broken clouds (in what follows, the term {open_quotes}mean{close_quotes} will be implied but not used, for convenience). To evaluate the potential effect of stochastic geometry, we will compare the absorption by cumulus (0.5 {le} {gamma} {le} 2) to that by equivalent stratus ({gamma} <<1) clouds; here {gamma} = H/D, H is the cloud layer thickness and D the characteristic horizontal cloud size. The equivalent stratus clouds differ from cumulus only in the aspect ratio {gamma}, all the other parameters coinciding.

  4. Virtual Sensing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Sensing Virtual Sensing Lead Performer: Lawrence Berkeley National Laboratory (LBNL) - Berkeley, CA Partners: -- Pacific Northwest National Laboratory (PNNL) - Richland, WA -- Oak Ridge National Laboratory (ORNL) - Oak Ridge, TN FY16 DOE Funding: $225,000 Project Term: Current - September 30, 2016 Funding Type: Direct Lab Funding PROJECT OBJECTIVE Virtual or inferential sensing can provide a lower-cost and less-invasive approach to monitor building performance and operation compared to

  5. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, Bruce W. (Espanola, NM)

    1993-01-01

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

  6. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, B.W.

    1993-12-28

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

  7. Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned

    SciTech Connect (OSTI)

    Noakes, Mark W; Burgess, Thomas W; Rowe, John C

    2011-01-01

    Oak Ridge National Laboratory (ORNL) has a long history in the development of remote systems to support the nuclear environment. ORNL, working in conjunction with Central Research Laboratories, created what is believed to be the first microcomputer-based implementation of dual-arm master-slave remote manipulation. As part of the Consolidated Fuel Reprocessing Program, ORNL developed the dual-arm advanced servomanipulator focusing on remote maintainability for systems exposed to high radiation fields. ORNL also participated in almost all of the various technical areas of the U.S. Department of Energy s Robotics Technology Development Program, while leading the Decontamination and Decommissioning and Tank Waste Retrieval categories. Over the course of this involvement, ORNL has developed a substantial base of working knowledge as to what works when and under what circumstances for many types of remote systems tasks as well as operator interface modes, control bandwidth, and sensing requirements to name a few. By using a select list of manipulator systems that is not meant to be exhaustive, this paper will discuss history and outcome of development, field-testing, deployment, and operations from a lessons learned perspective. The final outcome is a summary paper outlining ORNL experiences and guidelines for transition of developmental remote systems to real-world hazardous environments.

  8. Albedo and transmittance of inhomogeneous stratus clouds

    SciTech Connect (OSTI)

    Zuev, V.E.; Kasyanov, E.I.; Titov, G.A.

    1996-04-01

    A highly important topic is the study of the relationship between the statistical parameters of optical and radiative charactertistics of inhomogeneous stratus clouds. This is important because the radiation codes of general circulation models need improvement, and it is important for geophysical information. A cascade model has been developed at the Goddard Space Flight Center to treat stratocumulus clouds with the simplest geometry and horizontal fluctuations of the liquid water path (optical thickness). The model evaluates the strength with which the stochastic geometry of clouds influences the statistical characteristics of albedo and the trnasmittance of solar radiation.

  9. ARM - Field Campaign - Arctic Cloud Infrared Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsArctic Cloud Infrared Imaging Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Arctic Cloud Infrared Imaging 2012.07.16 - 2014.07.31 Lead Scientist : Joseph Shaw For data sets, see below. Abstract The 3rd-generation Infrared Cloud Imager (ICI) instrument was deployed close to the Great White facility at the North Slope of Alaska site and operated as

  10. Remote Access Options | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Access Options Remote Access Options A Virtual Private Network (VPN) is a private connection between two resources that uses the public telecommunication infrastructure. It maintains privacy through the use of a tunneling protocol and security procedures and provides the following abilities. * Messaging via Outlook Web Access (OWA) * Remote desktop and application access via VDI and Citrix(tm) Workplace * Secure access to DOE Headquarters mission-specific internal network resources

  11. REMOTE FIELD EDDY CURRENT INSPECTION OF UNPIGGABLE PIPELINES

    SciTech Connect (OSTI)

    Albert Teitsma

    2004-03-01

    The Remote Field Eddy Current (RFEC) technique is ideal for inspecting unpiggable pipelines because all its components can be made much smaller than the diameter of the pipe to be inspected. We reviewed the technique, and used demonstrations from prior work by others in presentations on the technique and how we plan to develop it. Coils were wound; a jig for pulling the coils through the pipe was manufactured; defects were machined in one six-inch diameter, ten-foot long pipe; and the equipment was assembled. After completing first crude pullout test to show that RFEC inspection would work, we repeated the experiment with a proper jig and got excellent results. The test showed the expected behavior, with the direct field dominating the signal to about two pipe diameters from the drive coil, and the remote field dominating for greater separations between the drive coil and the sensing coils. Response of RFEC to a typical defect was measured, as was the sensitivity to defect size. Before manufacturing defects in the pipe, we measured the effect of defect separation and concluded that defects separated by 18 inches or 1/3rd of the pipe diameter did not interfere with each other. We manufactured a set of 13 defects, and measured the RFEC signals. We found a background variation that was eventually attributed to permeability variations in the seamless pipe. We scanned all thirteen defects and got satisfactory results. The two smallest defects did not show a signal, but these were much too small to be reported in a pipeline inspection. We acquired a ten-foot seam welded pipe that has much less background variation. We are measuring the sensitivity of RFEC signals to mechanical variations between the exciter and sensing coils.

  12. Quick-connect coupler for remote manipulation

    DOE Patents [OSTI]

    Dobbins, James C.

    1990-08-07

    An adaptor for a single-point attachment, push-to-connect/pull-to-disconnect, quick-connect fluid coupler which enables the coupler to be remotely manipulated.

  13. Remote Alaskan Communities Energy Efficiency Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As part of President Obama's commitment to fight climate change and assist remote Alaskan ... Media Kit For Stakeholders FACT SHEET: About RACEE DOWNLOAD: Social Media Kit ENERGY BLOG ...

  14. Quick-connect coupler for remote manipulation

    DOE Patents [OSTI]

    Dobbins, James C. (Idaho Falls, ID)

    1990-01-01

    An adaptor for a single-point attachment, push-to-connect/pull-to-disconnect, quick-connect fluid coupler which enables the coupler to be remotely manipulated.

  15. Remote Alaskan Communities Energy Efficiency Competition | Department...

    Energy Savers [EERE]

    and potential for transformative and sustainable impacts on how the community currently ... accelerate efforts by remote Alaskan communities to adopt sustainable energy strategies. ...

  16. Remote Alaska Communities Energy Efficiency (RACEE) Competition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15 Remote Alaska Communities Energy Efficiency (RACEE) Competition Fact Sheet Background ... 2 2014 Power Cost Equalization Program report, http:www.akenergyauthority.org...

  17. Remote Alaskan Communities Energy Efficiency Competition

    Broader source: Energy.gov [DOE]

    New initiative aims significantly accelerate efforts by remote Alaskan communities to adopt sustainable energy strategies, through a competitive effort to elicit the best approaches.

  18. Cloud-Resolving Model Simulation and Mosaic Treatment of Subgrid Cloud-Radiation Interaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Cloud-Based Transportation Management System Delivers Savings Cloud-Based Transportation Management System Delivers Savings October 21, 2014 - 1:53pm Addthis DOE's cloud based transportation management system (ATLAS) offers dramatically enhanced capabilities and modernization. ATLAS provides a powerful user-friendly system built to allow access to information to meet transportation needs. Its processes promote regulatory compliance, while providing access to qualified carriers and

  19. Ion sensing method

    DOE Patents [OSTI]

    Smith, Richard Harding; Martin, Glenn Brian

    2004-05-18

    The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.

  20. Multichannel optical sensing device

    DOE Patents [OSTI]

    Selkowitz, S.E.

    1985-08-16

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  1. Multichannel optical sensing device

    DOE Patents [OSTI]

    Selkowitz, Stephen E.

    1990-01-01

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  2. Deterministic generation of remote entanglement with active quantum feedback

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta

    2015-12-10

    We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less

  3. Deterministic generation of remote entanglement with active quantum feedback

    SciTech Connect (OSTI)

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta

    2015-12-10

    We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.

  4. Remotely readable fiber optic compass

    DOE Patents [OSTI]

    Migliori, A.; Swift, G.W.; Garrett, S.L.

    1985-04-30

    A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

  5. Remotely readable fiber optic compass

    DOE Patents [OSTI]

    Migliori, Albert; Swift, Gregory W.; Garrett, Steven L.

    1986-01-01

    A remotely readable fiber optic compass. A sheet polarizer is affixed to a magnet rotatably mounted in a compass body, such that the polarizer rotates with the magnet. The optical axis of the sheet polarizer is preferably aligned with the north-south axis of the magnet. A single excitation light beam is divided into four identical beams, two of which are passed through the sheet polarizer and through two fixed polarizing sheets which have their optical axes at right angles to one another. The angle of the compass magnet with respect to a fixed axis of the compass body can be determined by measuring the ratio of the intensities of the two light beams. The remaining ambiguity as to which of the four possible quadrants the magnet is pointing to is resolved by the second pair of light beams, which are passed through the sheet polarizer at positions which are transected by two semicircular opaque strips formed on the sheet polarizer. The incoming excitation beam and the four return beams are communicated by means of optical fibers, giving a remotely readable compass which has no electrical parts.

  6. X.509 Authentication/Authorization in FermiCloud

    SciTech Connect (OSTI)

    Kim, Hyunwoo; Timm, Steven

    2014-11-11

    We present a summary of how X.509 authentication and authorization are used with OpenNebula in FermiCloud. We also describe a history of why the X.509 authentication was needed in FermiCloud, and review X.509 authorization options, both internal and external to OpenNebula. We show how these options can be and have been used to successfully run scientific workflows on federated clouds, which include OpenNebula on FermiCloud and Amazon Web Services as well as other community clouds. We also outline federation options being used by other commercial and open-source clouds and cloud research projects.

  7. QER- Comment of Cloud Peak Energy Inc

    Office of Energy Efficiency and Renewable Energy (EERE)

    Dear Ms Pickett Please find attached comments from Cloud Peak Energy as input to the Department of Energy’s Quadrennial Energy Review. If possible I would appreciate a confirmation that this email has been received Thank you.

  8. Building a private cloud with Open Nebula

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Short Ryan Glenn Ross Nordeen Mentors: Andree Jacobson ISTI-OFF David Kennel DCS-1 LA-UR 10-05197 Why use Virtualized Cloud Computing for HPC? * Support Legacy Software Stacks *...

  9. HPC CLOUD APPLIED TO LATTICE OPTIMIZATION

    SciTech Connect (OSTI)

    Sun, Changchun; Nishimura, Hiroshi; James, Susan; Song, Kai; Muriki, Krishna; Qin, Yong

    2011-03-18

    As Cloud services gain in popularity for enterprise use, vendors are now turning their focus towards providing cloud services suitable for scientific computing. Recently, Amazon Elastic Compute Cloud (EC2) introduced the new Cluster Compute Instances (CCI), a new instance type specifically designed for High Performance Computing (HPC) applications. At Berkeley Lab, the physicists at the Advanced Light Source (ALS) have been running Lattice Optimization on a local cluster, but the queue wait time and the flexibility to request compute resources when needed are not ideal for rapid development work. To explore alternatives, for the first time we investigate running the Lattice Optimization application on Amazon's new CCI to demonstrate the feasibility and trade-offs of using public cloud services for science.

  10. Posters Sensitivity of Cirrus Cloud Radiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Takahashi, T., and K. Kuhara. 1993. Precipitation mechanisms of cumulonimbus clouds at Pohnpei, Micronesia. Meteor. Soc. Japan 71:21-31. Takano, Y., and K. N. Liou. 1989. Radiative ...

  11. Parameterizations of Cloud Microphysics and Indirect Aerosol...

    Office of Scientific and Technical Information (OSTI)

    A recent report published by the National Academy of Science states "The greatest ... 1977 and the "semi-direct" effect on cloud coverage e.g., Ackerman et al., 2000. ...

  12. Science on the Hill: Methane cloud hunting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane cloud hunting Methane cloud hunting Los Alamos researchers go hunting for methane gas over the Four Corners area of northwest New Mexico and find a strange daily pattern. July 12, 2015 methane map Methane, the primary component of natural gas, is also a potent greenhouse gas, trapping energy in the atmosphere. Last year NASA released satellite images showing a hot spot in the area where New Mexico, Colorado, Utah and Arizona meet, prompting scientists to go in search of the sources.

  13. Ignition of Aluminum Particles and Clouds

    SciTech Connect (OSTI)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  14. Electron-Cloud Build-Up: Summary

    SciTech Connect (OSTI)

    Furman, M.A.

    2007-06-18

    I present a summary of topics relevant to the electron-cloud build-up and dissipation that were presented at the International Workshop on Electron-Cloud Effects 'ECLOUD 07' (Daegu, S. Korea, April 9-12, 2007). This summary is not meant to be a comprehensive review of the talks. Rather, I focus on those developments that I found, in my personal opinion, especially interesting. The contributions, all excellent, are posted in http://chep.knu.ac.kr/ecloud07/.

  15. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  16. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  17. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements

    SciTech Connect (OSTI)

    Xie, Yu; Liu, Yangang; Long, Charles N.; Min, Qilong

    2014-07-27

    Ground-based radiation measurements have been widely conducted to gain information on clouds and the surface radiation budget; here several different techniques for retrieving cloud fraction (Long2006, Min2008 and XL2013) and cloud albedo (Min2008, Liu2011 and XL2013) from ground-based shortwave broadband and spectral radiation measurements are examined, and sixteen years of retrievals collected at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared. The comparison shows overall good agreement between the retrievals of both cloud fraction and cloud albedo, with noted differences however. The Long2006 and Min2008 cloud fractions are greater on average than the XL2013 values. Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater for thin clouds but smaller for thick clouds, with the differences decreasing with increasing cloud fraction. Further analysis reveals that the approaches that retrieve cloud fraction and cloud albedo separately may suffer from mutual contamination of errors in retrieved cloud fraction and cloud albedo. Potential influences of cloud absorption, land-surface albedo, cloud structure, and measurement instruments are explored.

  18. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, Robert C. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  19. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  20. Longwave scattering effects on fluxes in broken cloud fields

    SciTech Connect (OSTI)

    Takara, E.E.; Ellingson, R.G.

    1996-04-01

    The optical properties of clouds in the radiative energy balance are important. Most works on the effects of scattering have been in the shortwave; but longwave effects can be significant. In this work, the fluxes above and below a single cloud layer are presented, along with the errors in assuming flat black plate clouds or black clouds. The predicted fluxes are the averaged results of analysis of several fields with the same cloud amount.

  1. Magellan Explores Cloud Computing for DOE's Scientific Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explores Cloud Computing for DOE's Scientific Mission Magellan Explores Cloud Computing for DOE's Scientific Mission March 30, 2011 Cloud Control -This is a picture of the Magellan management and network control racks at NERSC. To test cloud computing for scientific capability, NERSC and the Argonne Leadership Computing Facility (ALCF) installed purpose-built testbeds for running scientific applications on the IBM iDataPlex cluster. (Photo Credit: Roy Kaltschmidt) Cloud computing is gaining

  2. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Campaign Links Final Campaign Summary BAECC Website ARM Data Discovery Browse Data Related Campaigns Biogenic Aerosols - Effects on Clouds and Climate: Cloud OD Sensor TWST 2014.06.15, Scott, AMF Biogenic Aerosols - Effects on Clouds and Climate: Extended Radiosonde IOP 2014.05.01, Nicoll, AMF Biogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 2014.04.01, Thornton, AMF Biogenic Aerosols - Effects on Clouds and Climate: Snowfall

  3. ARM - Publications: Science Team Meeting Documents: Day and Night cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fraction - Cloud Inter-Compariosn IOP results Day and Night cloud fraction - Cloud Inter-Compariosn IOP results Genkova, Iliana University of Illinois-Champaign Long, Chuck Pacific Northwest National Laboratory Turner, David Pacific Northwest National Laboratory We present results from the CIC IOP from March-may, 2003. Day time and night time cloud fraction retrieval algorithms have been presented and intercompared. Amount of low, middle and high cloud have been estimated and compared to

  4. Star formation relations in nearby molecular clouds

    SciTech Connect (OSTI)

    Evans, Neal J. II; Heiderman, Amanda; Vutisalchavakul, Nalin

    2014-02-20

    We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free-free emission from ionized gas, also agree with this linear relation.

  5. Remotely Monitored Sealing Array Software

    SciTech Connect (OSTI)

    2012-09-12

    The Remotely Monitored Sealing Array (RMSA) utilizes the Secure Sensor Platform (SSP) framework to establish the fundamental operating capabilities for communication, security, power management, and cryptography. In addition to the SSP framework the RMSA software has unique capabilities to support monitoring a fiber optic seal. Fiber monitoring includes open and closed as well as parametric monitoring to detect tampering attacks. The fiber monitoring techniques, using the SSP power management processes, allow the seals to last for years while maintaining the security requirements of the monitoring application. The seal is enclosed in a tamper resistant housing with software to support active tamper monitoring. New features include LED notification of fiber closure, the ability to retrieve the entire fiber optic history via translator command, separate memory storage for fiber optic events, and a more robust method for tracking and resending failed messages.

  6. Remotely Monitored Sealing Array Software

    Energy Science and Technology Software Center (OSTI)

    2012-09-12

    The Remotely Monitored Sealing Array (RMSA) utilizes the Secure Sensor Platform (SSP) framework to establish the fundamental operating capabilities for communication, security, power management, and cryptography. In addition to the SSP framework the RMSA software has unique capabilities to support monitoring a fiber optic seal. Fiber monitoring includes open and closed as well as parametric monitoring to detect tampering attacks. The fiber monitoring techniques, using the SSP power management processes, allow the seals to lastmore » for years while maintaining the security requirements of the monitoring application. The seal is enclosed in a tamper resistant housing with software to support active tamper monitoring. New features include LED notification of fiber closure, the ability to retrieve the entire fiber optic history via translator command, separate memory storage for fiber optic events, and a more robust method for tracking and resending failed messages.« less

  7. Remote Whispering Applying Time Reversal

    SciTech Connect (OSTI)

    Anderson, Brian Eric

    2015-07-16

    The purpose of this project was to explore the use of time reversal technologies as a means for communication to a targeted individual or location. The idea is to have the privacy of whispering in one’s ear, but to do this remotely from loudspeakers not located near the target. Applications of this work include communicating with hostages and survivors in rescue operations, communicating imaging and operational conditions in deep drilling operations, monitoring storage of spent nuclear fuel in storage casks without wires, or clandestine activities requiring signaling between specific points. This technology provides a solution in any application where wires and radio communications are not possible or not desired. It also may be configured to self calibrate on a regular basis to adjust for changing conditions. These communications allow two people to converse with one another in real time, converse in an inaudible frequency range or medium (i.e. using ultrasonic frequencies and/or sending vibrations through a structure), or send information for a system to interpret (even allowing remote control of a system using sound). The time reversal process allows one to focus energy to a specific location in space and to send a clean transmission of a selected signal only to that location. In order for the time reversal process to work, a calibration signal must be obtained. This signal may be obtained experimentally using an impulsive sound, a known chirp signal, or other known signals. It may also be determined from a numerical model of a known environment in which the focusing is desired or from passive listening over time to ambient noise.

  8. Cable load sensing device

    DOE Patents [OSTI]

    Beus, Michael J.; McCoy, William G.

    1998-01-01

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  9. Hydroball string sensing system

    DOE Patents [OSTI]

    Hurwitz, Michael J.; Ekeroth, Douglas E.; Squarer, David

    1991-01-01

    A hydroball string sensing system for a nuclear reactor that includes stainless tubes positioned to guide hydroball strings into and out of the nuclear reactor core. A sensor such as an ultrasonic transducer transmitter and receiver is positioned outside of the nuclear reactor core and adjacent to the tube. The presence of an object such a bullet member positioned at an end a hydroball string, or any one of the hydroballs interrupts the transmission of ultrasound from the transmitter to the receiver. Alternatively, if the bullet member and hydroballs include a ferritic material, either a Hall effect sensor or other magnetic field sensors such as a magnetic field rate of change sensor can be used to detect the location and position of a hydroball string. Placing two sensors along the tube with a known distance between the sensors enables the velocity of a hydroball string to be determined. This determined velocity can be used to control the flow rate of a fluid within the tube so as to control the velocity of the hydroball string.

  10. A study of Monte Carlo radiative transfer through fractal clouds

    SciTech Connect (OSTI)

    Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P.

    1996-04-01

    An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.

  11. A comparison of cloud properties at a coastal and inland site...

    Office of Scientific and Technical Information (OSTI)

    have examined differences in cloud liquid water paths (LWPs) at a coastal (Barrow) and an ... KEYWORDS: arctic clouds, cloud liquid water, microwave radiometer, ECMWF model, ...

  12. Cloud classification using whole-sky imager data

    SciTech Connect (OSTI)

    Buch, K.A. Jr.; Sun, C.H.; Thorne, L.R.

    1996-04-01

    Clouds are one of the most important moderators of the earth radiation budget and one of the least understood. The effect that clouds have on the reflection and absorption of solar and terrestrial radiation is strongly influenced by their shape, size, and composition. Physically accurate parameterization of clouds is necessary for any general circulation model (GCM) to yield meaningful results. The work presented here is part of a larger project that is aimed at producing realistic three-dimensional (3D) volume renderings of cloud scenes based on measured data from real cloud scenes. These renderings will provide the important shape information for parameterizing GCMs. The specific goal of the current study is to develop an algorithm that automatically classifies (by cloud type) the clouds observed in the scene. This information will assist the volume rendering program in determining the shape of the cloud. Much work has been done on cloud classification using multispectral satellite images. Most of these references use some kind of texture measure to distinguish the different cloud types and some also use topological features (such as cloud/sky connectivity or total number of clouds). A wide variety of classification methods has been used, including neural networks, various types of clustering, and thresholding. The work presented here uses binary decision trees to distinguish the different cloud types based on cloud features vectors.

  13. Sensing and Measurement Architecture for Grid Modernization ...

    Office of Scientific and Technical Information (OSTI)

    Sensing and Measurement Architecture for Grid Modernization Citation Details In-Document Search Title: Sensing and Measurement Architecture for Grid Modernization You are ...

  14. V-149: Microsoft Internet Explorer Object Access Bug Lets Remote...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Microsoft Internet Explorer Object Access Bug Lets Remote Users Execute Arbitrary Code V-149: Microsoft Internet Explorer Object Access Bug Lets Remote Users Execute Arbitrary...

  15. U-262: Microsoft Internet Explorer Flaw Lets Remote Users Execute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Microsoft Internet Explorer Flaw Lets Remote Users Execute Arbitrary Code U-262: Microsoft Internet Explorer Flaw Lets Remote Users Execute Arbitrary Code September 18, 2012 -...

  16. Advanced Remote Maintenance Design for Pilot-Scale Centrifugal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Advanced Remote Maintenance Design for Pilot-Scale Centrifugal Contactors Citation Details In-Document Search Title: Advanced Remote Maintenance Design for ...

  17. V-202: Cisco Video Surveillance Manager Bugs Let Remote Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Video Surveillance Manager Bugs Let Remote Users Obtain Potentially Sensitive Information V-202: Cisco Video Surveillance Manager Bugs Let Remote Users Obtain Potentially Sensitive...

  18. V-150: Apache VCL Input Validation Flaw Lets Remote Authenticated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apache VCL Input Validation Flaw Lets Remote Authenticated Users Gain Elevated Privileges V-150: Apache VCL Input Validation Flaw Lets Remote Authenticated Users Gain Elevated...

  19. V-155: Apache Tomcat FORM Authenticator Lets Remote Users Conduct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Apache Tomcat FORM Authenticator Lets Remote Users Conduct Session Fixation Attacks V-155: Apache Tomcat FORM Authenticator Lets Remote Users Conduct Session Fixation Attacks...

  20. V-220: Juniper Security Threat Response Manager Lets Remote Authentica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Threat Response Manager Lets Remote Authenticated Users Execute Arbitrary Commands V-220: Juniper Security Threat Response Manager Lets Remote Authenticated Users Execute...