Powered by Deep Web Technologies
Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Goals  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video Mission Goals Organizational Goals LANL's goals ensure...

2

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

RAIS Chemical Risk Calculator RAIS Chemical Soil to Ground Water Calculator Radionuclide Calculators Preliminary Remediation Goals (PRGs) Radionuclide Calculator RAIS...

3

Estimated Chemical Warfare Agent Surface Clearance Goals for Remediation Pre-Planning  

SciTech Connect

Health-based surface clearance goals, in units of mg/cm2, have been developed for the persistent chemical warfare agents sulfur mustard (HD) and nerve agent VX as well as their principal degradation products. Selection of model parameters and critical receptor (toddler child) allow calculation of surface residue estimates protective for the toddler child, the general population and adult employees of a facilty that has undergone chemical warfare agent attack.

Dolislager, Frederick [University of Tennessee, Knoxville (UTK); Bansleben, Dr. Donald [U.S. Department of Homeland Security; Watson, Annetta Paule [ORNL

2010-01-01T23:59:59.000Z

4

Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals)  

NLE Websites -- All DOE Office Websites (Extended Search)

B, B, Development of Risk-based Preliminary Remediation Goals) Interim United States Office of Research and EPA/540/R-92/003 Environmental Protection Development December 1991 Agency Washington, DC 20460 EPA/540/R-92/003 Publication 9285.7-01 B December 1991 Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals) Interim Office of Emergency and Remedial Response U.S. Environmental Protection Agency Washington, DC 20460 Printed on Recycled Paper N O T I C E The policies set out in this document are intended solely as guidance; they are not final U.S. Environmental Protection Agency (EPA) actions. These policies are not intended, nor can they be relied upon, to create any rights enforceable by any party in litigation with the United States. EPA officials may

5

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Preliminary Remediation Goals (PRGs) for Radionuclides User's Guide Preliminary Remediation Goals (PRGs) for Radionuclides User's Guide Note The RAIS presents this updated PRG calculator in response to the following: incorporating chemical-specific parameters from the lastest EPI release, addition of air as a media, and conversion to a new database structure. The previous RAIS PRG calculator presented PRGs for radionuclides and chemcials together. Recent development of chemical and radionuclide exposure equations has necessitated that the RAIS separate the chemicals and the radionuclides. To calculate PRGs for chemicals, use the RAIS Preliminary Remediation Goals (PRGs) for Chemicals calculator. Currently the agricultural equations for the RAIS chemical and radionuclide PRG calculators are identical. The EPA's Preliminary Remediation Goals for

6

Developing health-based pre-planning clearance goals for airport remediation following chemical terrorist attack: Introduction and key assessment considerations  

Science Conference Proceedings (OSTI)

In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility re-use and re-entry could require hours to multiple days. While restoration timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical terrorist release. What follows is the first of a two-part analysis identifying key considerations, critical information, and decision criteria to facilitate post-attack and post-decontamination consequence management activities. A conceptual site model and human health-based exposure guidelines are developed and reported as an aid to site-specific pre-planning in the current absence of U.S. state or Federal values designated as compound-specific remediation or re-entry concentrations, and to safely expedite facility recovery to full operational status. Chemicals of concern include chemical warfare nerve and vesicant agents and the toxic industrial compounds phosgene, hydrogen cyanide, and cyanogen chloride. This work has been performed as a national case study conducted in partnership with the Los Angeles International Airport and The Bradley International Terminal. All recommended guidelines have been selected for consistency with airport scenario release parameters of a one-time, short-duration, finite airborne release from a single source followed by compound-specific decontamination.

Watson, Annetta Paule [ORNL; Raber, Ellen [Lawrence Livermore National Laboratory (LLNL); Dolislager, Frederick [University of Tennessee, Knoxville (UTK); Hauschild, Veronique [U.S. Army Center for Health Promotion and Preventive Medicine; Hall, Dr. Linda [ENVIRON International Corporation; Love, Dr. Adam [Johnson Wright, Inc.

2011-01-01T23:59:59.000Z

7

Developing health-based pre-planning clearance goals for airport remediation following a chemical terrorist attack: Decision criteria for multipathway exposure routes  

Science Conference Proceedings (OSTI)

In the event of a chemical terrorist attack on a transportation hub, post-event remediation and restoration activities necessary to attain unrestricted facility re-use and re-entry could require hours to multiple days. While timeframes are dependent on numerous variables, a primary controlling factor is the level of pre-planning and decision-making completed prior to chemical release. What follows is the second of a two-part analysis identifying key considerations, critical information and decision criteria to facilitate post-attack and post-decontamination consequence management activities. Decision criteria analysis presented here provides first-time, open-literature documentation of multi-pathway, health-based remediation exposure guidelines for selected toxic industrial compounds, chemical warfare agents, and agent degradation products for pre-planning application in anticipation of a chemical terrorist attack. Guideline values are provided for inhalation and direct ocular vapor exposure routes as well as percutaneous vapor, surface contact, and ingestion. Target populations include various employees as well as transit passengers. This work has been performed as a national case study conducted in partnership with the Los Angeles International Airport and The Bradley International Terminal. All recommended guidelines have been selected for consistency with airport scenario release parameters of a one-time, short-duration, finite airborne release from a single source followed by compound-specific decontamination.

Watson, Annetta Paule [ORNL; Dolislager, Frederick [University of Tennessee, Knoxville (UTK); Hall, Dr. Linda [ENVIRON International Corporation; Hauschild, Veronique [U.S. Army Center for Health Promotion and Preventive Medicine; Raber, Ellen [Lawrence Livermore National Laboratory (LLNL); Love, Dr. Adam [Johnson Wright, Inc.

2011-01-01T23:59:59.000Z

8

Sustainability Goals  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Goals Sustainability Goals We support and encourage energy conservation and environmental sustainability. Energy Conservation Efficient Water Use & Management...

9

CENTRAL PLATEAU REMEDIATION  

Science Conference Proceedings (OSTI)

A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

ROMINE, L.D.

2006-02-01T23:59:59.000Z

10

Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III  

SciTech Connect

The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

R. P. Wells

2006-09-19T23:59:59.000Z

11

Innovative Sediment Remediation Using a Risk-based Mixed Remedy at the Laconia Manufactured Gas Plant Site: Data and Lessons  

Science Conference Proceedings (OSTI)

This report presents a case study of the sediment remediation project at the Messer Street manufactured gas plant in Laconia, New Hampshire. The report describes a strategy developed to achieve the goal of a remedial action satisfactory to stakeholder goals and interests and which met the utility's business objectives of cost control, schedule, and positive community relations. Key elements in the strategy included a focused site characterization resulting in a remedial action plan prescribed to definite...

2001-11-26T23:59:59.000Z

12

Goals for the Workshop  

E-Print Network (OSTI)

loss & Electron-cloud in the SNS ring: Issues and Remedies,Ēsources PSR (LANL) and SNS (ORNL) was apparently held insimulations of the ECE for PSR, SNS, ISIS, JPARC, heavy-ion

Furman, M.A.

2004-01-01T23:59:59.000Z

13

Review of the Hanford Site CH2M Hill Plateau Remediation Company...  

NLE Websites -- All DOE Office Websites (Extended Search)

general goals. CHPRC is the prime contractor for the environmental cleanup of the Hanford Site, including remediation of the Central Plateau and groundwater across the...

14

Pinellas Remediation Agreement Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pinellas Pinellas Agreement Name Remediation Agreement for the Four and One-Half Acre Site in Largo, Pinellas County, Florida State Florida Agreement Type Remediation Agreement Legal Driver(s) CERCLA/ Atomic Energy Act of 1954, as amended/ Florida Air and Water Pollution Control Act Scope Summary Remediation of property adjacent to the former Pinellas Plant Parties DOE; Florida Department of Environmental Protection Date 3/12/2001 SCOPE * Remediate the groundwater under a parcel of property adjacent to DOE's former Pinellas Plant to levels consistent with industrial use. * Complete remedial actions at the site in accordance with a Remedial Action Plan prepared by DOE and approved by FDEP. * Submit quarterly reports of interim remedial actions at the Site.

15

Plowshare program goals  

SciTech Connect

This memorandum describes the goals for the fourth quarter of fiscal year 1967, for the Plowshare Program. The goals are set out as minimum goals to be achieved by different divisions in the laboratory which are involved in this program. Some of the direction depends upon whether a preliminary test explosion is fired.

Werth, G.C.

1967-03-13T23:59:59.000Z

16

Savannah River Remediation Procurement  

NLE Websites -- All DOE Office Websites (Extended Search)

and procedures, rules and regulations, terms and conditions and the orders and directives under which Savannah River Remediation LLC (SRR) develops, issues, administers and...

17

Goals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and economic infrastructure relating to natural resource development and electrification Bring electrical power and service to Indian land and the homes of tribal members. Goals...

18

Savannah River Remediation SRR Savannah River Remediation SRR  

NLE Websites -- All DOE Office Websites (Extended Search)

- Hanford Paducah Remediation Services Bechtel Jacobs - ETTP DOE-EM Average without Construction WRPS - TOC Hanford Mission Support Alliance - RL Bechtel National Remediation...

19

SUSTAINABLE REMEDIATION SOFTWARE TOOL EXERCISE AND EVALUATION  

SciTech Connect

The goal of this study was to examine two different software tools designed to account for the environmental impacts of remediation projects. Three case studies from the Savannah River Site (SRS) near Aiken, SC were used to exercise SiteWise (SW) and Sustainable Remediation Tool (SRT) by including both traditional and novel remediation techniques, contaminants, and contaminated media. This study combined retrospective analysis of implemented projects with prospective analysis of options that were not implemented. Input data were derived from engineering plans, project reports, and planning documents with a few factors supplied from calculations based on Life Cycle Assessment (LCA). Conclusions drawn from software output were generally consistent within a tool; both tools identified the same remediation options as the 'best' for a given site. Magnitudes of impacts varied between the two tools, and it was not always possible to identify the source of the disagreement. The tools differed in their quantitative approaches: SRT based impacts on specific contaminants, media, and site geometry and modeled contaminant removal. SW based impacts on processes and equipment instead of chemical modeling. While SW was able to handle greater variety in remediation scenarios, it did not include a measure of the effectiveness of the scenario.

Kohn, J.; Nichols, R.; Looney, B.

2011-05-12T23:59:59.000Z

20

Source Remediation vs. Plume  

E-Print Network (OSTI)

This summary paper reviews just some of the extensive scientific literature from the past 20 years on the various aspects of contaminant source remediation and plume management. Some of the major findings of the numerous research projects are presented.

Management Critical Factors; G. Teutsch; H. Rgner; D. Zamfirescu; M. Finkel; M. Bittens

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Attenuation Based Remedies  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Attenuation Based Remedies in the Subsurface Applied Field Research Initiative is to seek holistic solutions to DOEís groundwater contamination problems that consider not only...

22

Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action  

SciTech Connect

The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

1994-09-01T23:59:59.000Z

23

Strategic Safety Goals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fatalities Fatalities Radiological exposures > 2 rem Radiological releases above regulatory limits Chemical/hazardous material releases above regulatory limits Infrastructure Losses > $5 million Total 2 4 1 3 1 1 (Vehicle) 1 3 1 0 0 1 2007 2008 2009 2010 2011 2012 (Yr to Date) Total 1 1 0 1 1* 0 Total 1 0 0 0 0 0 Total 2 3 2 0 2 0 Total 0 0 0 0 1 0 Safety Performance for 2 nd Quarter 2012 Strategic Safety Goals: Events DOE Strives to Avoid 1 * In 2012, to date, there has been a single fatality involving a motor vehicle accident outside the boundary of the Waste Isolation Pilot Plant (WIPP) when a dump trailer and a General Services Administration (GSA) pickup driven by a WIPP employee collided. * Two occurrences have been added to the 2011 calendar year total for chemical and hazardous material releases above regulatory

24

SAFARI 2000 Goals  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Objectives Research Objectives The goal of SAFARI 2000 is to understand the key linkages between the physical, chemical and biological processes, including human activities, that comprise the southern African biogeophysical system. More specifically, SAFARI 2000 aims to: characterize, quantify and understand the processes driving biogenic, pyrogenic and anthropogenic emissions in southern Africa; combine atmospheric transport and chemistry models with ground-based, airborne, and satellite-based observations to validate and extend our understanding of the transport and transformations of these emissions; identify where, when and how the emissions are deposited, and determine their impacts, and, lay the foundation for monitoring longer-term climatic, hydrological, and ecosystem consequences of these biogeochemical and physical processes.

25

Radioactive tank waste remediation focus area  

SciTech Connect

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

1996-08-01T23:59:59.000Z

26

Belief-Goal Relationships in Possibilistic Goal Generation  

Science Conference Proceedings (OSTI)

The way in which the relationships between beliefs, goals, and intentions are captured by a formalism can have a significant impact on the design of a rational agent. In particular, what Rao and Georgeff underline about the relationships between goals ...

Cťlia da Costa Pereira; Andrea G. B. Tettamanzi

2010-08-01T23:59:59.000Z

27

Remedial Action Performed  

Office of Legacy Management (LM)

General Motors Site in General Motors Site in Adrian, Michigan Department of Energy OiZce of Assistant Manager for Environmental Management Oak Ridge Operations January 2001 69 Printed on recycledhcydable paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE GENERAL MOTORS SITE ADRIAN, MICHIGAN JANUARY 200 1 Prepared for United States Army Corps of Engineers Under Contract No. DACW45-98-D-0028 BY Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS FIGURES .............................................................................................................................................. TABLES ...............................................................................................................................................

28

Goal-oriented Web search  

E-Print Network (OSTI)

We have designed and implemented a Goal-oriented Web application to search videos, images, and news by querying YouTube, Truveo, Google and Yahoo search services. The Planner module decomposes functionality in Goals and ...

Williamson, Victor Lamont

2010-01-01T23:59:59.000Z

29

CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY  

SciTech Connect

THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

BERGMAN TB; STEFANSKI LD; SEELEY PN; ZINSLI LC; CUSACK LJ

2012-09-19T23:59:59.000Z

30

Remedial Action Performed  

Office of Legacy Management (LM)

Aliquippa Forge Site Aliquippa Forge Site in Aliquippa, Pennsylvania Department of Energy Former Sites Restoration Division Oak Ridge Operations Office November 1996 CERTIFICATION DOCKE.~ FOR THE REMEDIAL ACTION PERFORMED AT THE ALIQUIPPA FORGE SITE IN ALIQUIPPA, PENNSYLVANIA NOVEMBER 1996 Prepared for . UNITED STATES DEPARTMENT OF ENERGY Oak Ridge Operations Office Under Contract No. DE-AC05-9 1 OR2 1949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS Page FIGURES v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TABLES vii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii UNITSOFMEASURE ix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INTRODUCTION xi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

Remedial Action Performed  

Office of Legacy Management (LM)

Baker and Williams Baker and Williams Warehouses Site in New York, New York, 7997 - 7993 Department of Energy Former Sites Restoration Division Oak Ridge Operations Office November 7 995 CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE BAKER AND WILLIAMS WAREHOUSES SITE IN NEW YORK, NEW YORK, 1991-1993 NOVEMBER 1995 Prepared for United States Department of Energy Oak Ridge Operations Office Under Contract No. DE-AC05-910R21949 BY Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 __ CONTENTS .- ~_- _- ..- ^_ FIGURES . ...,.,.....,,........,,.,_.....,.,.,.__,....,,,,, v TABLES ,.,__...,,....,..._._..,,,,_._...,.,.,,.,,,..._,,,, vi ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..v~

32

Remedial Action Performed  

Office of Legacy Management (LM)

' ' at the C. H. Schnoor Site, Springdale, Pennsylvania, in 1 994 Department of Energy Former Sites Restoration Division Oak Ridge Operations Office November 1996 CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE C. H. SCHNOOR SITE SPRINGDALE, PENNSYLVANIA, IN 1994 NOVEMBER 1996 prep&ed for United States Department of ~nergy Oak Ridge Operations Off= r Under Contract No. DE-AC05-910R21949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. '14501 CONTENTS FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi UNITS OF MEASURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

33

Remedial Action Performed  

Office of Legacy Management (LM)

Alba Craft Laboratory and Alba Craft Laboratory and Vicinity Properties Site in Oxford, Ohio C Department of Energy Former Sites Restoration Division Oak Ridge Operations Office January 1997 $$@T Op% 3 @!B . i~d!l Ab Printed on recycled/recyclable paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE FORMER ALBA CRAFT LABORATORY AND VICINITY PROPERTIES SITE IN OXFORD, OHIO JANUARY 1997 Prepared for United States Department of Energy Oak Ridge Operations Office Under Contract No. DE-AC0591 OR2 1949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS Page FIGURES .............................................................................................................................................. v TABLES.. .............................................................................................................................................. vi

34

REMEDIAL ACTION PLAN  

E-Print Network (OSTI)

designated site consists of the 111-acre tailings pile, the mill yard, and piles of demolition rubble awaiting burial. The site contains 2.659 million cubic yards of tailings including 277,000 cubic yards of contaminated material in the mill yard, ore storage area, and Ann Lee Mine area; 151,000 cubic yards in the protore storage and leach pad areas; and 664,000 cubic yards of windblown contaminated soil, including excess soil that would result from excavation. Remedial action The remedial action will start with the excavation of windblown contaminated material and placement around the west, south, and east sides of the pile to buttress the slopes for increased stability. Most of the demolition rubble will be placed in the southern part of the pile and be covered with tailings. The northern part of the tailings pile (one million cubic yards) will then be excavated and placed on the south part of the pile to reduce the size of the disposal cell footprint. Demolition rubble that

Inactive Uranium; Mill Tailings Site; Uranium Mill Tremedial

1990-01-01T23:59:59.000Z

35

EM Rolls Ahead of DOE Goals to Trim Vehicle Fleet Inventory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rolls Ahead of DOE Goals to Trim Vehicle Fleet Inventory Rolls Ahead of DOE Goals to Trim Vehicle Fleet Inventory EM Rolls Ahead of DOE Goals to Trim Vehicle Fleet Inventory March 12, 2013 - 12:00pm Addthis Workers use this mobile survey vehicle in American Recovery and Reinvestment Act work at the Hanford site to survey remediated areas for radiological contamination. Workers use this mobile survey vehicle in American Recovery and Reinvestment Act work at the Hanford site to survey remediated areas for radiological contamination. WASHINGTON, D.C. - EM exceeded a DOE goal to reduce its vehicle fleet inventory, advancing the Department's broader initiative to cut greenhouse gas emissions and decrease petroleum consumption across the complex. With a 45 percent cut to its fleet in fiscal year 2012, EM beat the Department's goal of a 35 percent drop by fiscal year 2013 a year early.

36

Goals:  

NLE Websites -- All DOE Office Websites (Extended Search)

CUG 2009 Proceedings 1 of 8 CUG 2009 Proceedings 1 of 8 User and Performance Impacts from Franklin Upgrades Yun (Helen) He National Energy Research Supercomputing Center Lawrence Berkeley National Laboratory Berkeley, CA 94720 ABSTRACT: The NERSC flagship computer Cray XT4 system "Franklin" has gone through three major upgrades: quad core upgrade, CLE 2.1 upgrade, and IO upgrade, during the past year. In this paper, we will discuss the various aspects of the user impacts such as user access, user environment, and user issues etc from these upgrades. The performance impacts on the kernel benchmarks and selected application benchmarks will also be presented. KEYWORDS: Cray XT4, Franklin, NERSC, Quad Core, CLE 2.1, Application Performance, IO Performance, User Impacts.

37

Goals:  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of Franklin at NERSC NERSC is US Department of Energy's (DOE) keystone high performance computing facility that serves the needs of the DOE and open science computational...

38

GOALS  

NLE Websites -- All DOE Office Websites (Extended Search)

REMOVAL (Selexol(tm)) AIR HPIPMPLP STEAM GENERATOR GAS TURBINE STEAM TURBINE TO CONDENSER AIR COAL 95% O2 SLAG HPIPLP STEAM SULFUR RECOVERY TAIL GAS TREATING UNIT ACID GAS...

39

Source control strategy accelerates remediation  

SciTech Connect

Shallow land burial of ion-level radioactive wastes at ORNL has resulted in the release of contaminants into surrounding soil, groundwater, and surface water. Multiple contaminated areas occurring in close proximity make it difficult to relate contaminant releases to a specific site. To address this issue, similar and contiguous contaminated sites within the same drainage area have been combined into Waste Area Groupings. These Waste Area Groupings were prioritized and became the focus of the Comprehensive Environmental Response, Compensation, and Liability Act remediation process. Since the majority of the groupings are in the White Oak Creek drainage basin, the remediation strategy is to control contaminant releases from these source areas first, followed by remediation of White Oak Creek. In planning the remediation program, it became clear that until the issues of ultimate land use and institutional control, waste treatment technologies, and waste disposal facilities are resolved, final remediation objectives cannot be defined and remedial alternatives cannot be evaluated. Consequently, instead of postponing remedial actions until these issues are resolved, a strategy to control the sources of contaminant release with a serie s of interim actions was developed. In the near term, this strategy reduces off-site risk by eliminating contaminant releases and controls on-site risk through institutional control. Source control will allow time to achieve consensus on long-term institutional control and land use issues to develop appropriate treatment technologies, and to construct the necessary disposal facilities without further environmental degradation.

Garland, S.B. II [Oak Ridge National Lab., TN (United States); Hammond, R. [Environmental Protection Agency, Atlanta, GA (United States). Region IV

1993-06-01T23:59:59.000Z

40

Radioactive Tank Waste Remediation Focus Area. Technology summary  

SciTech Connect

In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

NONE

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fermilab | Muon Collider | Research Goals  

NLE Websites -- All DOE Office Websites (Extended Search)

website: Quantum Universe Report Quantum Universe Report Research Goals What is the nature of the universe and what is it made of? What are matter, energy, space and time? How did...

42

Guam- Renewable Energy Portfolio Goal  

Energy.gov (U.S. Department of Energy (DOE))

Guam Bill 166, enacted in March 2008, established a renewable energy portfolio goal of 25% renewable energy by 2035.* Under this law, each utility that sells electricity for consumption on Guam...

43

ICDF Complex Remedial Action Report  

SciTech Connect

This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

W. M. Heileson

2007-09-26T23:59:59.000Z

44

Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Request  

SciTech Connect

This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

L. Davison

2009-06-30T23:59:59.000Z

45

Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Report  

SciTech Connect

This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

Lee Davison

2009-06-30T23:59:59.000Z

46

Operable Unit 3-13, Group 3, Other Surface Soils (Phase I) Remedial Action Report  

SciTech Connect

This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 3, Other Surface Soils, Phase I sites at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The 10 sites addressed in this report were defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for these 10 sites have been accomplished and are hereafter considered No Action or No Further Action sites.

L. Davison

2007-07-31T23:59:59.000Z

47

X-701B Groundwater Remedy Portsmouth Ohio | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-701B Groundwater Remedy Portsmouth Ohio X-701B Groundwater Remedy Portsmouth Ohio Full Document and Summary Versions are available for download X-701B Groundwater Remedy...

48

Remedial Action Contacts Directory - 1997  

SciTech Connect

This document, which was prepared for the US Department of Energy (DOE) Office of Environmental Restoration (ER), is a directory of 2628 individuals interested or involved in environmental restoration and/or remedial actions at radioactively contaminated sites. This directory contains a list of mailing addresses and phone numbers of DOE operations, area, site, project, and contractor offices; an index of DOE operations, area, site, project, and contractor office sorted by state; a list of individuals, presented by last name, facsimile number, and e-mail address; an index of affiliations presented alphabetically, with individual contacts appearing below each affiliation name; and an index of foreign contacta sorted by country and affiliation. This document was generated from the Remedial Action Contacts Database, which is maintained by the Remedial Action Program Information Center (RAPIC).

1997-05-01T23:59:59.000Z

49

Site remediation in a virtual environment  

Science Conference Proceedings (OSTI)

We describe the process used in combining an existing computer simulation with both Virtual Reality (VR) input and output devices, and conventional visualization tools, so as to make the simulation easier to use and the results easier to understand. VR input technology facilitates direct user manipulation of three dimensional simulation parameters. Commercially available visualization tools provide a flexible environment for representing abstract scientific data. VR output technology provides a more flexible and convincing way to view the visualization results than is afforded in contemporary visualization software. The desired goal of this process is a prototype system that minimizes man-machine interface barriers, as well as enhanced control over the simulation itself, so as to maximize the use of scientific judgement and intuition. In environmental remediation, the goal is to clean up contaminants either by removing them or rendering them non-toxic. A computer model simulates water or chemical flooding to mobilize and extract hydrocarbon contaminants from a volume of saturated soil/rock. Several wells are drilled in the vicinity of the contaminant, water and/or chemicals are injected into some of the wells, and fluid containing the mobilized hydrocarbons is pumped out of the remaining wells. The user is tasked with finding well locations and pumping rates that maximize recovery of the contaminants while minimizing drilling and pumping costs to clean up the site of interest.

Bethel, W.; Jacobsen, J.; Holland, P.

1994-01-01T23:59:59.000Z

50

Remediation of Chicken Processing Wastewater using ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Materials Processing Fundamentals. Presentation Title, Remediation of†...

51

Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediate and Restore Former Waste Sites, Help Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint The Hanford Site is looking greener these days after American Recovery and Reinvestment Act workers revegetated 166 acres across 12 waste sites, planting over 1,100 pounds of seeds and about 280,000 pounds of mulch. The largest of the sites, known as the BC Control Area, is an approximately 13-square-mile area associated with a waste disposal system used during Hanford operations. Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint More Documents & Publications 2011 ARRA Newsletters Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of

52

Clean Cities: Clean Cities Goals and Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Goals and Accomplishments Clean Cities Goals and Accomplishments to someone by E-mail Share Clean Cities: Clean Cities Goals and Accomplishments on Facebook Tweet about Clean Cities: Clean Cities Goals and Accomplishments on Twitter Bookmark Clean Cities: Clean Cities Goals and Accomplishments on Google Bookmark Clean Cities: Clean Cities Goals and Accomplishments on Delicious Rank Clean Cities: Clean Cities Goals and Accomplishments on Digg Find More places to share Clean Cities: Clean Cities Goals and Accomplishments on AddThis.com... Goals & Accomplishments Clean Cities 20th Anniversary Partnerships Hall of Fame Contacts Clean Cities Goals and Accomplishments Clean Cities' primary goal is to cut petroleum use in the United States by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities

53

Federal Energy Management Program: Technology Deployment Goals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment Goals and Initiatives to someone by E-mail Share Federal Energy Management Program: Technology Deployment Goals and Initiatives on Facebook Tweet about...

54

Summary Protocol: Identification, Characterization, Designation, Remedial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Protocol: Identification, Characterization, Designation, Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification (January 1986) Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification (January 1986) More Documents & Publications Supplement No. 1 to the FUSRAP Summary Protocol - Designation/Elimination Protocol Pre-MARSSIM Surveys in a MARSSIM World: Demonstrating How Pre-MARSSIM Radiological Data Demonstrate Protectiveness at Formerly Utilized Sites Remedial Action Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at

55

Soil & Groundwater Remediation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Soil & Groundwater Soil & Groundwater Remediation Soil & Groundwater Remediation Soil & Groundwater Remediation The U.S. Department of Energy (DOE) manages the largest groundwater and soil remediation effort in the world. The inventory at the DOE sites includes 6.5 trillion liters of contaminated groundwater, an amount equal to about four times the daily U.S. water consumption, and 40 million cubic meters of soil and debris contaminated with radionuclides, metals, and organics. The Office of Groundwater and Soil Remediation is working with DOE site managers around the country regarding specific technical issues. At the large sites such as Hanford, Savannah River, and Oak Ridge, the Office of Groundwater and Soil Remediation has conducted research and demonstration projects to test new technologies and remediation

56

Innovative Vitrification for Soil Remediation  

DOE Green Energy (OSTI)

Vortec has successfully completed Phases 1 and 2 of a technology demonstration program for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation.'' The principal objective of the program is to demonstrate the ability of a Vortec Cyclone Melting System (CMS) to remediate DOE contaminated soils and other waste forms containing TM RCRA hazardous materials, low levels of radionuclides and TSCA (PCB) containing wastes. The demonstration program will verify the ability of this vitrification process to produce a chemically stable glass final waste form which passes both TCLP and PCT quality control requirements, while meeting all federal and state emission control regulations. The demonstration system is designed to process 36 ton/day of as-received drummed or bulk wastes. The processing capacity equates to approximately 160 barrels/day of waste materials containing 30% moisture at an average weight of 450 lbs./barrel.

Hnat, James G.; Patten, John S.; Jetta, Norman W.

1996-12-31T23:59:59.000Z

57

Status report: Fernald site remediation  

Science Conference Proceedings (OSTI)

The Fernald site is rapidly transitioning from a Remedial Investigation/ Feasibility Study (RI/FS) site to one where design and construction of the remedies dominates. Fernald is one of the first sites in the Department of Energy (DOE) complex to accomplish this task and real physical progress is being made in moving the five operable units through the CERCLA process. Two of the required Records of Decision (ROD) are in hand and all five operable units will have received their RODs (IROD for OU3) by the end of 1995. Pre-design investigations, design work or construction are now in progress on the operable units. The lessons learned from the work done to date include implementing innovations in the RI and FS process as well as effective use of Removal Actions to begin the actual site remediation. Also, forging close working relationships with the Federal and State Regulators, citizens action groups and the Fernald Citizens Task Force has helped move the program forward. The Fernald successes have been achieved by close coordination and cooperation among all groups working on the projects and by application of innovative technologies within the decision making process.

Craig, J.R. Jr. [USDOE Fernald Field Office, OH (United States); Saric, J.A. [Environmental Protection Agency, Washington, DC (United States); Schneider, T. [Ohio State Environmental Protection Agency, Columbus, OH (United States); Yates, M.K. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States)

1995-01-30T23:59:59.000Z

58

Widget:GoalMeter | Open Energy Information  

Open Energy Info (EERE)

GoalMeter GoalMeter Jump to: navigation, search This widget produces an image showing progress against some numeric goal. Parameters Parameter Type Required? Example Description goal Integer Y 100 Total goal value http_link String Y groups.google.com/group/openei URL to which the meter will hyperlink. Note that the leading "http://" must be omitted. title String Y Google Group Members The goal's title. value Integer Y 25 Current value of progress against the goal. height Integer N (default=100) 150 Height of the meter image (in pixels). width Integer N (default=200) 300 Width of the meter image (in pixels). Example Output Google Group Members (goal: 100) Retrieved from "http://en.openei.org/w/index.php?title=Widget:GoalMeter&oldid=271157"

59

X-701B Groundwater Remedy Portsmouth Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-701B Groundwater Remediation X-701B Groundwater Remediation ETR Report Date: December 2008 ETR-20 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the X-701B Groundwater Remedy, Portsmouth, Ohio Why DOE-EM Did This Review The Department of Energy (DOE) Portsmouth Paducah Project Office (PPPO) has responsibility for remediation of the X-701B ground water plume with the key contaminant of trichloroethene (TCE). The remedy has been divided into four phases: Phase I- Initial Source Area Treatment, Phase II-Expanded Source Area Treatment, Phase III-Evaluation and Reporting, and Phase IV- Downgradient Remediation and Confirmation of Source Area Treatment. Phase II treatment has injected

60

Renewable Energy Goal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Goal Renewable Energy Goal Renewable Energy Goal < Back Eligibility Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Energy Sources Solar Home Weatherization Wind Program Info State Oklahoma Program Type Renewables Portfolio Standard Provider Oklahoma Corporation Commission In May 2010, Oklahoma established a renewable energy goal for electric utilities operating in the state. The goal calls for 15% of the total installed generation capacity in Oklahoma to be derived from renewable sources by 2015. There are no interim targets, and the goal does not extend past 2015. Eligible renewable energy resources include wind, solar, hydropower, hydrogen, geothermal, biomass, and other renewable energy

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Arsenic Remediation Technologies for Groundwater and Soil  

Science Conference Proceedings (OSTI)

In October 2003, the Electric Power Research Institute (EPRI) released report 1008881, Arsenic Remediation Technologies for Soils and Groundwater. The report provides a review of available technologies for the remediation of arsenic in soils, groundwater, and surface water, primarily at substation sites. In most cases, the technologies reviewed are applicable to a much wider range of projects. In the six years since the publication of that report, the technologies for the remediation of arsenic have cont...

2009-09-22T23:59:59.000Z

62

DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Plateau Remediation Company for Plateau CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site June 19, 2008 - 1:29pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that CH2M Hill Plateau Remediation Company has been selected as the plateau remediation contractor for DOE's Hanford Site in southeastern Washington State. The contract is a cost-plus award-fee contract valued at approximately $4.5 billion over ten years (a five-year base period with the option to extend it for another five years). CH2M Hill Plateau Remediation Company is a limited liability company formed by CH2M Hill Constructors, Inc. The team also includes AREVA Federal

63

Electrochemical Arsenic Remediation for Rural Bangladesh  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Arsenic Remediation for Rural Bangladesh NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be updated until...

64

Nuclear facility decommissioning and site remedial actions  

SciTech Connect

The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

1990-09-01T23:59:59.000Z

65

Use of American Lotus in Pond Remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

American Lotus in Pond Remediation Adam S. Riazi, Mathematics Department, Lincoln County High School, WV and Michael G. Ryon, Environmental Sciences Division, Oak Ridge National...

66

Introduction to Green & Sustainable Remediation: Three Approaches  

NLE Websites -- All DOE Office Websites (Extended Search)

TO GREEN & SUSTAINABLE REMEDIATION: THREE APPROACHES Dr. Jerry DiCerbo, Office of Sustainability Support (HS-21) June 2013 What is GSR? * Definitions differ among organizations...

67

Surfactant biocatalyst for remediation of recalcitrant ...  

Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals United States Patent. Patent Number: 7,906,315: Issued: March 15, ...

68

Remedial Action Work Plan Amchitka Island Mud Pit Closures  

Science Conference Proceedings (OSTI)

This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

DOE /NV

2001-04-05T23:59:59.000Z

69

City of Phoenix- Renewable Energy Goal  

Energy.gov (U.S. Department of Energy (DOE))

In 2008, the Phoenix City Council approved a renewable energy goal for the city. The city aims for 15% of the electricity used by the city to come from renewable energy sources by 2025. This goal...

70

Remedy Evaluation Framework for Inorganic, Non-Volatile Contaminants in the Vadose Zone  

Science Conference Proceedings (OSTI)

Contaminants in the vadose zone may act as a potential long-term source of groundwater contamination and need to be considered in remedy evaluations. In many cases, remediation decisions for the vadose zone will need to be made all or in part based on projected impacts to groundwater. Because there are significant natural attenuation processes inherent in vadose zone contaminant transport, remediation in the vadose zone to protect groundwater is functionally a combination of natural attenuation and use of other remediation techniques, as needed, to mitigate contaminant flux to groundwater. Attenuation processes include both hydrobiogeochemical processes that serve to retain contaminants within porous media and physical processes that mitigate the rate of water flux. In particular, the physical processes controlling fluid flow in the vadose zone are quite different and generally have a more significant attenuation impact on contaminant transport relative to those within the groundwater system. A remedy evaluation framework is presented herein that uses an adaptation of the established EPA Monitored Natural Attenuation (MNA) evaluation approach and a conceptual model based approach focused on identifying and quantifying features and processes that control contaminant flux through the vadose zone. A key concept for this framework is to recognize that MNA will comprise some portion of all remedies in the vadose zone. Thus, structuring evaluation of vadose zone waste sites to use an MNA-based approach provides information necessary to either select MNA as the remedy, if appropriate, or to quantify how much additional attenuation would need to be induced by a remedial action (e.g., technologies considered in a feasibility study) to augment the natural attenuation processes and meet groundwater protection goals.

Truex, Michael J.; Carroll, Kenneth C.

2013-05-01T23:59:59.000Z

71

Energy Reduction Goals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction Goals Reduction Goals Energy Reduction Goals < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Other Program Info State Vermont Program Type Energy Efficiency Resource Standard Provider Vermont Energy Investment Corporation In June 1999, Vermont enacted legislation authorizing the Vermont Public Service Board (PSB) to establish a volumetric charge on all electric customers' bills to support energy efficiency programs and goals.* The subsequent year the PSB established Efficiency Vermont, a statewide "energy efficiency utility," and a funding mechanism to support it. Efficiency Vermont is currently administered by Vermont Energy Investment Corporation (VEIC), an independent, non-profit corporation. Efficiency Vermont periodically establishes certain goals that constitute

72

FY 2010 Performance Goals Artificial Retina Project  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Performance Goals 10 Performance Goals 2010 Annual Goal: Advance blind patient sight: Initiate preclinical studies of 200+ electrode implantable device. Complete specification for 1000+ pixel device. Performance Goal/Annual Target Quarter Quarter Goal Quarterly Results: Yes or No? 1st Quarter Design verification of subsystems for preclinical 200+ system. Goal Met. The design verification of the subsystems for the preclinical 200+ system has been completed. The thin film electrode array and the demultiplexer which were updated based on the A - 60 clinical trials have been fabricated and successfully tested. 2nd Quarter Assembly of preclinical 200+ systems. Goal Met. The assembly of the components including the thin film electrode array and the electronics package for a Preclinical 200+ system has been completed. Initial functional testing has verified that wireless power and telemetry was transmitted and received from the Preclinical 200+ system.

73

FY 2009 Performance Goals Artificial Retina Project  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2009 Performance Goals FY 2009 Performance Goals 2009 Annual Goal: Advance blind patient sight. FY09: Complete in vitro/benchtop development of implantable 200+ electrode prototype. 2009 Annual Goal Met: The bench-top development of an implantable 200+ electrode prototype has been completed. All the components of the 200+ electrode prototype have been integrated and characterized. Performance Goal/Annual Target Quarter Quarter Goal Quarterly Results: Yes or No? 1st Quarter Build electronics module for implantable active A-200+ system Goal Met. The electronics module for an implantable active A-200+ system was assembled and tested. It is a key component required to fabricate the active A-200+ prototype system. 2nd Quarter Complete fabrication of active A - 200+ Prototype system

74

Agencies plan continued DOE landfill remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

Agencies plan continued DOE landfill remediation Agencies plan continued DOE landfill remediation The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality and U.S. Environmental Protection Agency have released a planning document that specifies how DOE will continue to remediate a landfill containing hazardous and transuranic waste at DOE's Idaho Site located in eastern Idaho. The Phase 1 Remedial Design/Remedial Action Work Plan for Operable Unit 7-13/14 document was issued after the September 2008 Record of Decision (ROD) and implements the retrieval of targeted waste at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC). The SDA began receiving waste in 1952 and contains radioactive and chemical waste in approximately 35 acres of disposal pits, trenches and soil vaults.

75

Remediation of Mercury and Industrial Contaminants Applied Field...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research...

76

SBA Increases Size Standards for Waste Remediation Services ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Increases Size Standards for Waste Remediation Services & InformationAdmin Support SBA Increases Size Standards for Waste Remediation Services & InformationAdmin Support December...

77

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County,...

78

EA-1331: Remediation of Subsurface and Groundwater Contamination...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site, Sweetwater County, Wyoming EA-1331: Remediation of Subsurface and...

79

Building C-400 Thermal Treatment 90% Remedial Design Report and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation Full Document...

80

Arsenic Remediation of Bangladesh Drinking Water using Iron-oxide...  

NLE Websites -- All DOE Office Websites (Extended Search)

Arsenic Remediation of Bangladesh Drinking Water using Iron-oxide Coated Coal Ash Title Arsenic Remediation of Bangladesh Drinking Water using Iron-oxide Coated Coal Ash...

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

195: Remedial Actions at Operable Unit 4, Fernald Environmental Management Project, Fernald, Ohio EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental Management...

82

Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater Remedial Design/Remedial Action Scope of Work  

SciTech Connect

This Remedial Design/Remedial Action (RD/RA) Scope of Work pertains to OU 3-14 Idaho Nuclear Technology and Engineering Center and the Idaho National Laboratory and identifies the remediation strategy, project scope, schedule, and budget that implement the tank farm soil and groundwater remediation, in accordance with the May 2007 Record of Decision. Specifically, this RD/RA Scope of Work identifies and defines the remedial action approach and the plan for preparing the remedial design documents.

D. E. Shanklin

2007-07-25T23:59:59.000Z

83

DEMO Project Goals | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

DEMO Project Goals | National Nuclear Security Administration DEMO Project Goals | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog DEMO Project Goals Home > About Us > Our Operations > Management and Budget > Human Resources > Pay-banding > DEMO Project Goals DEMO Project Goals The goals of this demonstration project are to Improve hiring by allowing NNSA to compete more effectively for high

84

Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part B, Characterization; robotics/automation  

SciTech Connect

The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate theses problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part B of Volume 3 and contains the Characterization and Robotics/Automation sections.

NONE

1994-09-01T23:59:59.000Z

85

Mission and Goals | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission and Goals The mission of the Advanced Photon Source (APS) is to deliver world-class science and technology by operating an outstanding synchrotron radiation research...

86

Annual status report on the Uranium Mill Tailings Remedial Action Program  

SciTech Connect

This fourteenth annual status report for the Uranium Mill Tailings Remedial Action (UMTRA) Project Office summarizes activities of the Uranium Mill Tailings Remedial Action Surface (UMTRA-Surface) and Uranium Mill Tailings Remedial Action Groundwater (UMTRA-Groundwater) Projects undertaken during fiscal year (FY) 1992 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1993 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604. The DOE will continue to submit annual reports to DOE-Headquarters, the states, tribes, and local representatives through Project completion in order to inform the public of the yearly Project status. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive material (RRM) located on the inactive uranium processing sites in a safe and environmentally sound manner, and to minimize or eliminate potential health hazards. Commercial and residential properties near designated processing sites that are contaminated with material from the sites, herein referred to as ``vicinity properties (VP),`` are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated VPs located in 10 states, and the VPs associated with the Edgemont, South Dakota, uranium mill currently owned by the Tennessee Valley Authority (TVA) (Figure A.1, Appendix A).

Not Available

1992-12-01T23:59:59.000Z

87

Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Superfund Site, Richmond, California  

SciTech Connect

This report, PNNL-11911 Rev. 1, was published in July 2000 and replaces PNNL-11911, which was published in September 1998. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Chlorinated pesticide concentrations in water samples were similar to pre-remediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.65 ng/L to 18.1 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 0.65 ng/L to 103 ng/L and exceeded the remediation goal of 0.59 ng/L. The highest concentrations of both pesticides were found in Lauritzen Canal, and the lowest levels were from the Richmond Inner Harbor Channel water. Unusual amounts of detritus in the water column at the time of sampling, particularly in Lauritzen Canal, could have contributed to the elevated pesticide concentrations and poor analytical precision.

LD Antrim; NP Kohn

2000-09-05T23:59:59.000Z

88

Goal-Oriented Adaptivity and Multilevel Preconditioning for the Poisson-Boltzmann Equation  

E-Print Network (OSTI)

In this article, we develop goal-oriented error indicators to drive adaptive refinement algorithms for the Poisson-Boltzmann equation. Empirical results for the solvation free energy linear functional demonstrate that goal-oriented indicators are not sufficient on their own to lead to a superior refinement algorithm. To remedy this, we propose a problem-specific marking strategy using the solvation free energy computed from the solution of the linear regularized Poisson-Boltzmann equation. The convergence of the solvation free energy using this marking strategy, combined with goal-oriented refinement, compares favorably to adaptive methods using an energy-based error indicator. Due to the use of adaptive mesh refinement, it is critical to use multilevel preconditioning in order to maintain optimal computational complexity. We use variants of the classical multigrid method, which can be viewed as generalizations of the hierarchical basis multigrid and Bramble-Pasciak-Xu (BPX) preconditioners.

Burak Aksoylu; Stephen Bond; Eric Cyr; Michael Holst

2011-09-19T23:59:59.000Z

89

DEEP VADOSE ZONE APPLIED FIELD RESEARCH CENTER: TRANSFORMATIONAL TECHNOLOGY DEVELOPMENT FOR ENVIRONMENTAL REMEDIATION  

SciTech Connect

DOE-EM, Office of Groundwater and Soil Remediation and DOE Richland, in collaboration with the Hanford site and Pacific Northwest National Laboratory, have established the Deep Vadose Zone Applied Field Research Center (DVZ-AFRC). The DVZ-AFRC leverages DOE investments in basic science from the Office of Science, applied research from DOE EM Office of Technology Innovation and Development, and site operation (e.g., site contractors [CH2M HILL Plateau Remediation Contractor and Washington River Protection Solutions], DOE-EM RL and ORP) in a collaborative effort to address the complex region of the deep vadose zone. Although the aim, goal, motivation, and contractual obligation of each organization is different, the integration of these activities into the framework of the DVZ-AFRC brings the resources and creativity of many to provide sites with viable alternative remedial strategies to current baseline approaches for persistent contaminants and deep vadose zone contamination. This cooperative strategy removes stove pipes, prevents duplication of efforts, maximizes resources, and facilitates development of the scientific foundation needed to make sound and defensible remedial decisions that will successfully meet the target cleanup goals for one of DOE EM's most intractable problems, in a manner that is acceptable by regulators.

Wellman, Dawn M.; Triplett, Mark B.; Freshley, Mark D.; Truex, Michael J.; Gephart, Roy E.; Johnson, Timothy C.; Chronister, Glen B.; Gerdes, Kurt D.; Chamberlain, Skip; Marble, Justin; Ramirez, Rosa

2011-02-27T23:59:59.000Z

90

Water Efficiency Goal Guidance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Efficiency Goal Guidance Water Efficiency Goal Guidance Water Efficiency Goal Guidance Water Efficiency Definitions A clear understanding of water efficiency definitions is very helpful in complying with the water-reduction goals of E.O. 13514. See section 3.0 of Federal Agency Implementation of Water Efficiency and Management Provisions of Executive Order 13514 for key definitions. The Council on Environmental Quality (CEQ) issued water efficiency goal guidance in Federal Agency Implementation of Water Efficiency and Management Provisions of Executive Order 13514. This comprehensive document establishes guidelines for Federal agencies in meeting the water-related requirements of Executive Order (E.O.) 13514 and includes information about baseline development, reporting requirements, and strategies for

91

Energy Efficiency Goals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Goals Energy Efficiency Goals Energy Efficiency Goals < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Other Program Info State Florida Program Type Energy Efficiency Resource Standard Provider Florida Public Service Commission In 1980, Florida enacted the Florida Energy Efficiency and Conservation Act (FEECA), creating Florida Statutes Section 366.80-366.85 and Section 403.519. Section 366.82(6) requires the Florida Public Service Commission to review the conservation goals of each utility subject to FEECA at least every five years. Most recently, goals were established on December 30, 2009 with the passage of Order No. PSC-09-0855-FOF-EG. Utilities whose annual sales amount to less than 2,000 GWh as of July 1, 1993 are not

92

Energy Efficiency Goals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Goals Energy Efficiency Goals Energy Efficiency Goals < Back Eligibility Investor-Owned Utility Utility Savings Category Other Program Info State Missouri Program Type Energy Efficiency Resource Standard Provider Missouri Public Service Commission In 2009, Missouri enacted the Missouri Energy Efficiency Investment Act, creating energy efficiency sales and peak reduction goals to be met through investment in demand side management. The goals outlined below were created by the Public Service Commission (PSC) in 2010, with benchmarks beginning in 2012. Year Annual Sales Reductions Annual Peak Reductions Cumulative Sales Reductions Cumulative Peak Reductions 2012 0.3% 1.0% 0.3% 1.0% 2013 0.5% 1.0% 0.8% 2.0% 2014 0.7% 1.0% 1.5% 3.0% 2015 0.9% 1.0% 2.4% 4.0%

93

Current goal for this year is:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17, 2009 17, 2009 MEMORANDUM FOR DAVID W. GEISER ACTING DIRECTOR OFFICE OF LEGACY MANAGEMENT g h it. D~gitally signed by Tracy FROM: TRACY RIBEIRO 7' Ribeiro ENVIRONMENTAL MANAGEMENT SYSTEM (EMS) COORDINATOR SUBJECT: APPROVAL OF FY 2010 EMS GOALS AND INITIATIVES In accordance with the requirements of the DOE-LM Environmental Management Svslem I)c.scriplion, the EMS goals and initiatives for FY 2010 are enclosed for your formal approval. The EMS Core Team developed these goals after reviewing the project environmental aspects. The FY 201 0 goals were presented to S.M. Stoller and DOE-LM management during the annual EMS Management Review on July 23,2009 and finalized on August 26,2009. The EMS goals and initiatives align with DOE Order 450.1 A, Environmental Protection Program;

94

Applied Field Research Initiative Attenuation Based Remedies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PA00133 - March 2011 PA00133 - March 2011 Applied Field Research Initiative Attenuation Based Remedies in the Subsurface Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) was established to develop the tools, approaches and technologies that will be required to address the technical challenges associated characteriza- tion, remediation and long-term monitoring of recalcitrant compounds in the subsurface at Department of Energy (DOE) Environmental Management (EM) sites. The ABRS AFRI site provides a unique setting for researchers in both applied and basic science fields. A wealth of subsurface data is available to support research activities and remedial decision making.

95

List of Contractors to Support Anthrax Remediation  

SciTech Connect

This document responds to a need identified by private sector businesses for information on contractors that may be qualified to support building remediation efforts following a wide-area anthrax release.

Judd, Kathleen S.; Lesperance, Ann M.

2010-05-14T23:59:59.000Z

96

Remediation of Mercury and Industrial Contaminants  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

97

Guidance for Conducting Remedial Investigations and Feasibility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Protection Agency Office of Emergency and Remedial Response Washington, DC 20460 PE89-184626 EPA540G-89004 OSWER Directive 9355.3-01 October 1988 Superfund EPA Guidance for...

98

Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan  

SciTech Connect

This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

D. E. Shanklin

2006-06-01T23:59:59.000Z

99

Nuclear facility decommissioning and site remedial actions  

SciTech Connect

The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

1989-09-01T23:59:59.000Z

100

Clean Energy Portfolio Goal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portfolio Goal Portfolio Goal Clean Energy Portfolio Goal < Back Eligibility Investor-Owned Utility Retail Supplier Utility Savings Category Heating & Cooling Commercial Heating & Cooling Heating Bioenergy Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Water Heating Wind Program Info State Indiana Program Type Renewables Portfolio Standard Provider Indiana Utility Regulatory Commission In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean energy by 2025, based on the amount of electricity supplied by the utility in 2010. The Indiana Utility Regulatory Commission (IURC) adopted emergency rules (RM #11-05) for the CPS in December 2011. Final rules were adopted in June

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mission and Goals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission and Goals Mission and Goals Mission and Goals October 10, 2013 - 11:56am Addthis Mission Develop and demonstrate new, energy-efficient processing and materials technologies at a scale adequate to prove their value to manufacturers and spur investment. Develop broadly applicable manufacturing processes that reduce energy intensity and improve production. Develop and demonstrate pervasive materials technologies, enabling improved products that use less energy throughout their lifecycles. Conduct technical assistance activities that promote use of advanced technologies and better energy management to capture U.S. competitive advantage. Goal Reduce by 50% in 10 years the life-cycle energy consumption of manufactured goods by targeting the production and use of advanced manufacturing

102

Clean Cities: Clean Cities Goals and Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals and Accomplishments Goals and Accomplishments Clean Cities' primary goal is to cut petroleum use in the United States by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities employs three strategies: Replace petroleum with alternative and renewable fuels Reduce petroleum consumption through smarter driving practices and fuel economy improvements Eliminate petroleum use through idle reduction and other fuel-saving technologies and practices. Clean Cities coalitions and stakeholders have saved more than 5 billion gallons of petroleum since the program's inception in 1993. Clean Cities efforts have helped deploy thousands of alternative fuel vehicles and the fueling stations needed to serve them, aided in the elimination of millions of hours of vehicle idling, and helped accelerate the entry of electric-drive vehicles into the marketplace.

103

Energy Efficiency Goal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home ¬Ľ Energy Efficiency Goal Energy Efficiency Goal < Back Eligibility Investor-Owned Utility Savings Category Heating & Cooling Solar Water Heating Program Info State Texas Program Type Energy Efficiency Resource Standard Texas is credited with being the first state to establish an Energy Efficiency Resource Standard in the United States.* Originally, the goal called for investor owned utilities (IOUs) to meet 10% of its annual growth in electricity demand through energy efficiency. The legislature updated those standards in 2008 ([http://www.capitol.state.tx.us/tlodocs/80R/billtext/html/HB03693F.htm HB3693]) and the Public Utility Commission of Texas (PUCT) finalized the goals and provided additional guidance on how to achieve them. SB1125

104

Share energy goals and progress | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Engage occupants Provide a seat at the table Share energy goals and progress Identify energy-saving actions Spread the word about how to help Give incentives and recognition...

105

ICDF Complex Remedial Action Work Plan  

SciTech Connect

This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

W. M. Heileson

2006-12-01T23:59:59.000Z

106

LANL exceeds Early Recovery Act recycling goals  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

107

Los Alamos exceeds waste shipping goal  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. Contact Fred deSousa Communications Office (505) 665-3430 Email "We've made significant progress removing waste stored above ground at Area G, and we made this progress while maintaining an excellent safety record," said Jeff Mousseau, associate director of Environmental Programs

108

Los Alamos exceeds waste shipping goal  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. Contact Fred deSousa Communications Office (505) 665-3430 Email "We've made significant progress removing waste stored above ground at Area G, and we made this progress while maintaining an excellent safety record," said Jeff Mousseau, associate director of Environmental Programs

109

Renewables Portfolio Goal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home ¬Ľ Renewables Portfolio Goal Renewables Portfolio Goal < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Home Weatherization Heating & Cooling Heating Water Heating Wind Program Info State Utah Program Type Renewables Portfolio Standard Provider Office of Energy Development Utah enacted ''The Energy Resource and Carbon Emission Reduction Initiative'' ([http://le.utah.gov/~2008/bills/sbillenr/sb0202.pdf S.B. 202]) in March 2008. While this law contains some provisions similar to those found in renewable portfolio standards (RPSs) adopted by other

110

Remediation of Soil at Nuclear Sites  

Science Conference Proceedings (OSTI)

As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste.

Holmes, R.; Boardman, C.; Robbins, R; Fox, Robert Vincent; Mincher, Bruce Jay

2000-03-01T23:59:59.000Z

111

Remediation of soil at nuclear sites  

SciTech Connect

As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste

R. Holmes; C. Boardman; R. Robbins (BNFL); R. Fox; B. J. Mincher (INEEL)

2000-02-28T23:59:59.000Z

112

Technology development activities supporting tank waste remediation  

Science Conference Proceedings (OSTI)

This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

Bonner, W.F.; Beeman, G.H.

1994-06-01T23:59:59.000Z

113

Annual status report on the Uranium Mill Tailings Remedial Action Program  

SciTech Connect

This eleventh annual status report summarizes activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project undertaken during Fiscal Year (FY) 1989 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1990 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95--604. The DOE will continue to submit an annual report through project completion in order to inform the public of yearly project status. Title I of the UMTRCA authorizes the DOE, in cooperation with affected states and Indian tribes within whose boundaries designated uranium processing sites are located, to provide a program of assessment and remedial action at such sites. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive materials located on the inactive uranium processing sites in a safe and environmentally sound manner and to minimize or eliminate potential radiation health hazards. Commercial and residential properties in the vicinity of designated processing sites that are contaminated with material from the sites, herein referred to as vicinity properties,'' are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated vicinity properties located in 10 states, and the vicinity properties associated with Edgemont, South Dakota, an inactive uranium mill currently owned by the Tennessee Valley Authority (TVA).

Not Available

1989-12-01T23:59:59.000Z

114

FY 2010 EMS Goals and Initiatives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 EMS Goals and Initiatives FY 2010 EMS Goals and Initiatives Joint Environmental Management System (EMS) FY 2010 EMS Goals and Initiatives FY 2010 EMS Goals and Initiatives More...

115

FY 2011 EMS Goals and Initiatives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 EMS Goals and Initiatives FY 2011 EMS Goals and Initiatives Joint Environmental Management System (EMS) FY 2011 EMS Goals and Initiatives FY 2011 EMS Goals and Initiatives More...

116

Post-Remediation Biomonitoring of Pesticides and Other Contaminants in Marine Waters and Sediment Near the United Heckathorn Superfund Site, Richmond, California  

SciTech Connect

This report, PNNL-1 3059 Rev. 1, was published in July 2000 and replaces PNNL-1 3059 which is dated October 1999. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathom Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissue s) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.62 ng/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both DDT and dieldrin were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. PCBS were not detected in water samples in 1999.

LD Antrim; NP Kohn

2000-09-06T23:59:59.000Z

117

Remedial action planning for Trench 1  

SciTech Connect

The accelerated action to remove the depleted uranium chips and associated soils and wastes from Trench 1 at the Rocky Flats Environmental Technology Site (RFETS) will begin in June 1998. To ensure that the remedial action is conducted safely, a rigorous and disciplined planning process was followed that incorporates the principles of Integrated Safety Management and Enhanced Work Planning. Critical to the success of the planning was early involvement of project staff (salaried and hourly) and associated technical support groups and disciplines. Feedback was and will continue to be solicited, and lessons learned incorporated to ensure the safe remediation of this site.

Primrose, A.; Sproles, W.; Burmeister, M.; Wagner, R.; Law, J. [Rocky Mountain Remediation Services, LLC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Greengard, T. [Kaiser Hill/SAIC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Castaneda, N. [Dept. of Energy, Golden, CO (United States). Rocky Flats Environmental Technology Site

1998-07-01T23:59:59.000Z

118

DESCRIPTION OF MODELING ANALYSES IN SUPPORT OF THE 200-ZP-1 REMEDIAL DESIGN/REMEDIAL ACTION  

Science Conference Proceedings (OSTI)

The Feasibility Study/or the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-28) and the Proposed Plan/or Remediation of the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-33) describe the use of groundwater pump-and-treat technology for the 200-ZP-1 Groundwater Operable Unit (OU) as part of an expanded groundwater remedy. During fiscal year 2008 (FY08), a groundwater flow and contaminant transport (flow and transport) model was developed to support remedy design decisions at the 200-ZP-1 OU. This model was developed because the size and influence of the proposed 200-ZP-1 groundwater pump-and-treat remedy will have a larger areal extent than the current interim remedy, and modeling is required to provide estimates of influent concentrations and contaminant mass removal rates to support the design of the aboveground treatment train. The 200 West Area Pre-Conceptual Design/or Final Extraction/Injection Well Network: Modeling Analyses (DOE/RL-2008-56) documents the development of the first version of the MODFLOW/MT3DMS model of the Hanford Site's Central Plateau, as well as the initial application of that model to simulate a potential well field for the 200-ZP-1 remedy (considering only the contaminants carbon tetrachloride and technetium-99). This document focuses on the use of the flow and transport model to identify suitable extraction and injection well locations as part of the 200 West Area 200-ZP-1 Pump-and-Treat Remedial Design/Remedial Action Work Plan (DOEIRL-2008-78). Currently, the model has been developed to the extent necessary to provide approximate results and to lay a foundation for the design basis concentrations that are required in support of the remedial design/remediation action (RD/RA) work plan. The discussion in this document includes the following: (1) Assignment of flow and transport parameters for the model; (2) Definition of initial conditions for the transport model for each simulated contaminant of concern (COC) (i.e., carbon tetrachloride, technetium-99, iodine-129, nitrate [as NO{sub 3}], trichloroethene [TCE], total chromium, tritium), plus uranium; (3) Assumptions underlying the predictive simulations, including the phased implementation of the final full remedy; (4) Approximate number, locations, and rates of extraction and injection wells; and (5) Predicted amounts of contaminant mass extracted and influent concentrations at individual extraction wells for each COC and for uranium. This document is a companion report to pre-conceptual design document (DOE/RL-2008-56). Together these documents describe the sequential, progressive development of the modeling analyses and design basis for the 200-ZP-1 OU remedy.

VONGARGEN BH

2009-11-03T23:59:59.000Z

119

INDEPENDENT REVIEW OF THE X-701B GROUNDWATER REMEDY, PORTSMOUTH, OHIO: TECHNICAL EVALUATION AND RECOMMENDATIONS  

Science Conference Proceedings (OSTI)

The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-22) to provide independent technical experts to evaluate past and ongoing remedial activities at the Portsmouth facility that were completed to address TCE contamination associated with the X-701B groundwater plume and to make recommendations for future efforts. The Independent Technical Review team was provided with a detailed and specific charter. The charter requested that the technical team first review the past and current activities completed for the X-701B groundwater remedy for trichloroethene (TCE) in accordance with a Decision Document that was issued by Ohio EPA on December 8, 2003 and a Work Plan that was approved by Ohio EPA on September 22, 2006. The remedy for X-701B divides the activities into four phases: Phase I - Initial Source Area Treatment, Phase II - Expanded Source Area Treatment, Phase III - Evaluation and Reporting, and Phase IV - Downgradient Remediation and Confirmation of Source Area Treatment. Phase I of the remedy was completed during FY2006, and DOE has now completed six oxidant injection events within Phase II. The Independent Technical Review team was asked to evaluate Phase II activities, including soil and groundwater results, and to determine whether or not the criteria that were defined in the Work Plan for the Phase II end point had been met. The following criteria are defined in the Work Plan as an acceptable Phase II end point: (1) Groundwater samples from the identified source area monitoring wells have concentrations below the Preliminary Remediation Goal (PRG) for TCE in groundwater, or (2) The remedy is no longer effective in removing TCE mass from the source area. In addition, the charter specifies that if the Review Team determines that the Phase II endpoint has not been reached, then the team should address the following issues: (1) If additional injection events are recommended, the team should identify the type of injection and target soil horizon for these injections; (2) Consider the feasibility of declaring Technical Impracticability and proceeding with the RCRA Cap for the X-701B; and (3) Provide a summary of other cost-effective technologies that could be implemented (especially for the lower Gallia). The Independent Technical Review team focused its evaluation solely on the X-701B source zone and contaminant plume. It did not review current or planned remedial activities at other plumes, waste areas, or landfills at the Portsmouth site, nor did it attempt to integrate such activities into its recommendations for X-701B. However, the ultimate selection of a remedy for X-701B by site personnel and regulators should take into account potentially synergistic efforts at other waste areas. Assessment of remedial alternatives in the context of site-wide management practices may reveal opportunities for leveraging and savings that would not otherwise be identified. For example, the cost of source-zone excavation or construction of a permeable reactive barrier at X-701B might be substantially reduced if contaminated soil could be buried on site at an existing or planned landfill. This allowance would improve the feasibility and competitiveness of both remedies. A comprehensive examination of ongoing and future environmental activities across the Portsmouth Gaseous Diffusion Plant is necessary to optimize the selection and timing of X-701B remediation with respect to cleanup efficiency, safety, and economics. A selected group of technical experts attended the technical workshop at the Portsmouth Gaseous Diffusion Plant from November 18 through 21, 2008. During the first day of the workshop, both contractor and DOE site personnel briefed the workshop participants and took them on a tour of the X-701B site. The initial briefing was attended by representatives of Ohio EPA who participated in the discussions. On subsequent days, the team reviewed baseline data and reports, were provided additional technical information from site personne

Looney, B.; Eddy-Dilek, C.; Costanza, J.; Rossabi, J.; Early, T.; Skubal, K.; Magnuson, C.

2008-12-15T23:59:59.000Z

120

Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonaqueous-Phase Liquid Characterization and Post-Remediation Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. May 2004, Monterey, California. Charles Tabor, Randall Juhlin, Paul Darr, Julian Caballero, Joseph Daniel, David Ingle Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling More Documents & Publications Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonaqueous-Phase Liquid Characterization and Post-Remediation Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. May 2004, Monterey, California. Charles Tabor, Randall Juhlin, Paul Darr, Julian Caballero, Joseph Daniel, David Ingle Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling More Documents & Publications Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center

122

Mitigation and Remediation of Mercury Contamination at the Y...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and...

123

EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah...

124

DOE Selects CH2M Hill Plateau Remediation Company for Plateau...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its...

125

Groundwater Remediation Strategy Using Global Optimization Algorithms  

E-Print Network (OSTI)

. DOI: 10.1061/ ASCE 0733-9496 2002 128:6 431 CE Database keywords: Ground water; Remedial action; Algorithms; Ground-water management. Introduction The contamination of groundwater is a widespread problem al. 1992 , Jonoski et al. 1997 ; and Willis and Yeh 1987 . However, the fact that the optimization

Neumaier, Arnold

126

FTCP FY 2011 Operational Plan - Goal 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Accelerate and Expand Implementation of eTQP Champions: Allen Tate, SSO and Robert Hastings, RL Goal was not achieved due to change in software platform. The goal to automate portions of the TQP is identified in the FTCP FY2011 Ops Plan as a separate issue. Objective 1: Acceleration of eTQP Baseline Champion: Allen Tate Accomplishments The team developed an implementation schedule but the rest of the objective was not accomplished due to HC-1 decision to change the eTQP software platform to PLATEAU versus Vision. Subsequent energy of the team was spent on trying to find alternative approaches to fund and use Vision. The fiscal year ended with no solutions. Objective 2: Accelerate Implementation of eTQP Champion: Rob Hastings Accomplishments

127

DEPARTMENT OF THE NAVY Energy Goals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NAVY NAVY Energy Goals 31 May 2013 CAPT Kerry Gilpin, USN Director, 1GW Task Force Marines checking door-to-door in New Orleans, September 2005 SECNAV Energy Goals Increase Alternative Energy Sources Ashore Sail the "Great Green Fleet" Reduce Non-tactical Petroleum Use Energy Efficient Acquisitions Increase Alternative Energy Department-wide It's about the Mission Gunnery Control Console, USS ANZIO (CG 68) What's the next mission? SH-60F helicopter from USS RONALD REAGAN (CVN 76) surveys tsunami damage, 21 March 2011 1GW of renewable energy: enough to power 250,000 homes or a city the size of Orlando, FL http://www.secnav.navy.mil/eie/ Pages/Energy.aspx Naval Station Sasebo, Japan

128

Scientific Opportunity to Reduce Risk in Groundwater and Soil Remediation  

Science Conference Proceedings (OSTI)

In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focus research efforts on addressing the problems and challenges that are causing ďfailureĒ in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EMís applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five ďcrosscuttingĒ themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.

Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.; Looney, Brian B.; Zachara, John M.; Liang, Liyuan; Lesmes, D.; Chamberlain, G. M.; Skubal, Karen L.; Adams, V.; Denham, Miles E.; Wellman, Dawn M.

2009-08-25T23:59:59.000Z

129

Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR-13 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Mitigation and Remediation of Mercury Contamination at the Y-12 Plant, Oak Ridge, TN Why DOE-EM Did This Review From 1953 to 1983, ~240,000 pounds of mercury (Hg) were released to the East Fork Popular Creek during the operation of the Y-12 Plant. In 1963, direct systematic releases of mercury stopped; however, mercury continues to be released into the creek from various sources of contamination in the Y-12 complex. Remediation completed up to 1992 resulted in an overall reduction of Hg loading from 150 g/day in 1983 to 15 g/day in 1992, with a current goal of 5g/day or less. The objective was to

130

Preliminary Notice of Violation, Rocky Mountain Remediation Services -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Remediation Rocky Mountain Remediation Services - EA-97-04 Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 June 6, 1997 Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) This letter refers to the Department of Energy's (DOE) evaluation of noncompliances associated with the dispersal of radioactive material during the remediation of trenches. Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 More Documents & Publications Preliminary Notice of Violation, Kaiser-Hill Company - EA-97-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site

131

Rate of Contamination Removal of Two Phyto-remediation Sites at the DOE Portsmouth Gaseous Diffusion Plant  

SciTech Connect

This paper describes applications of phyto-remediation at the Portsmouth Gaseous Diffusion Plant (PORTS), a Department of Energy (DOE) Facility that enriched uranium from the early 1950's until 2000. Phyto-remediation has been implemented to assist in the removal of TCE (trichloroethylene) in the groundwater at two locations at the PORTS facility: the X-740 area and the X-749/X-120 area. Phyto-remediation technology is based on the ability of certain plants species (in this case hybrid poplar trees) and their associated rhizo-spheric microorganisms to remove, degrade, or contain chemical contaminants located in the soil, sediment, surface water, groundwater, and possibly even the atmosphere. Phyto-remediation technology is a promising clean-up solution for a wide variety of pollutants and sites. Mature trees, such as the hybrid poplar, can consume up to 3,000 gallons of groundwater per acre per day. Organic compounds are captured in the trees' root systems. These organic compounds are degraded by ultraviolet light as they are transpired along with the water vapor through the leaves of the trees. The phyto-remediation system at the X-740 area encompasses 766 one-year old hybrid poplar trees (Populus nigra x nigra, Populus nigra x maximowiczii, and Populus deltoides x nigra) that were planted 10 feet apart in rows 10 feet to 20 feet apart, over an area of 2.6 acres. The system was installed to manage the VOC contaminant plume. At the X749/X-120 area, a phyto-remediation system of 2,640 hybrid poplar trees (Populus nigra x maximowiczii) was planted in seven areas/zones to manage the VOC contaminant plume. The objectives of these systems are to remove contamination from the groundwater and to prevent further migration of contaminants. The goal of these remediation procedures is to achieve completely mature and functional phyto-remediation systems within two years of the initial planting of the hybrid poplar trees at each planting location. There is a direct relationship between plant transpiration, soil moisture, and groundwater flow in a phyto-remediation system. The existing monitoring program was expanded in 2004 in order to evaluate the interactions among these processes. The purpose of this monitoring program was to determine the rate of contaminant removal and to more accurately predict the amount of time needed to remediate the contaminated groundwater. Initial planting occurred in 1999 at the X-740 area, with additional replanting in 2001 and 2002. In 2003, coring of selected trees and chemical analyses illustrated the presence of TCE; however, little impact was observed in groundwater levels, analytical monitoring, and periodic tree diameter monitoring at the X-740 area. To provide better understanding of how these phyto-remediation systems work, a portable weather station was installed at the X-740 area to provide data for estimating transpiration and two different systems for measuring sap flow and sap velocity were outfitted to numerous trees. After evaluating and refining the groundwater flow and contaminant transport models, the data gathered by these two inventive methods can be used to establish a rate of contaminant removal and to better predict the time required in order to meet remediation goals for the phyto-remediation systems located at the PORTS site. (authors)

Lewis, A.C.; Baird, D.R. [CDM Federal Services, P.O. Box 789, Piketon, OH 45661 (United States)

2006-07-01T23:59:59.000Z

132

Armored Enzyme Nanoparticles for Remediation of Subsurface  

Science Conference Proceedings (OSTI)

The remediation of subsurface contaminants is a critical problem for the Department of Energy, other government agencies, and our nation. Severe contamination of soil and groundwater exists at several DOE sites due to various methods of intentional and unintentional release. Given the difficulties involved in conventional removal or separation processes, it is vital to develop methods to transform contaminants and contaminated earth/water to reduce risks to human health and the environment. Transformation of the contaminants themselves may involve conversion to other immobile species that do not migrate into well water or surface waters, as is proposed for metals and radionuclides; or degradation to harmless molecules, as is desired for organic contaminants. Transformation of contaminated earth (as opposed to the contaminants themselves) may entail reductions in volume or release of bound contaminants for remediation.

Grate, Jay W.

2005-09-01T23:59:59.000Z

133

2010sr31_box-remediation.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Thursday, November 18, 2010 Thursday, November 18, 2010 james-r.giusti@srs.gov Paivi Nettamo, SRNS, (803) 292-2484 paivi.nettamo@srs.gov SRS Recovery Act TRU Waste Project Ahead of Schedule with Box Remediation Program Aiken, SC - The U.S. Department of Energy's Savannah River Site (SRS) started off the last 12 months of the American Recovery and Reinvestment Act with an enormous success in its legacy transuranic (TRU) waste program. The H-Canyon

134

Tank waste remediation system mission analysis report  

SciTech Connect

This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors` facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission.

Acree, C.D.

1998-01-09T23:59:59.000Z

135

Proceedings: Hazardous Waste Material Remediation Technology Workshop  

Science Conference Proceedings (OSTI)

This report presents the proceedings of an EPRI workshop on hazardous waste materials remediation. The workshop was the fourth in a series initiated by EPRI to aid utility personnel in assessing technologies for decommissioning nuclear power plants. This workshop focused on specific aspects of hazardous waste management as they relate to nuclear plant decommissioning. The information will help utilities understand hazardous waste issues, select technologies for their individual projects, and reduce decom...

1999-11-23T23:59:59.000Z

136

Remediation and Recycling of Linde FUSRAP Materials  

SciTech Connect

During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community.

Coutts, P. W.; Franz, J. P.; Rehmann, M. R.

2002-02-27T23:59:59.000Z

137

Laboratory/industry partnerships for environmental remediation  

SciTech Connect

There are two measures of ``successful`` technology transfer in DOE`s environmental restoration and waste management program. The first is remediation of DOE sites, and the second is commercialization of an environmental remediation process or product. The ideal case merges these two in laboratory/industry partnerships for environmental remediation. The elements to be discussed in terms of their effectiveness in aiding technology transfer include: a decision-making champion; timely and sufficient funding; well organized technology transfer function; well defined DOE and commercial markets; and industry/commercial partnering. Several case studies are presented, including the successful commercialization of a process for vitrification of low-level radioactive waste, the commercial marketing of software for hazardous waste characterization, and the application of a monitoring technique that has won a prestigious technical award. Case studies will include: vitrification of low-level radioactive waste (GTS Duratek, Columbia, MD); borehole liner for emplacing instrumentation and sampling groundwater (Science and Engineering Associates, Inc., Santa Fe, NM); electronic cone penetrometer (Applied Research Associates, Inc., South Royalton, VT); and software for hazardous waste monitoring ConSolve, Inc. (Lexington, MA). The roles of the Department of Energy and Argonne National Laboratory in these successes will be characterized.

Beskid, N.J.; Zussman, S.K.

1994-09-01T23:59:59.000Z

138

Tank waste remediation system configuration management plan  

SciTech Connect

The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.

Vann, J.M.

1998-01-08T23:59:59.000Z

139

Better Buildings Neighborhood Program: Step 2: Establish Goals...  

NLE Websites -- All DOE Office Websites (Extended Search)

2: Establish Goals and Objectives to someone by E-mail Share Better Buildings Neighborhood Program: Step 2: Establish Goals and Objectives on Facebook Tweet about Better Buildings...

140

Vehicle Technologies Program: Goals, Strategies, and Top Accomplishmen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Program: Goals, Strategies, and Top Accomplishments Chevy Volt plug-in hybrid electric vehicle. Courtesy of Wieck Media Services Key Goals Hybrid Electric...

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of Schedule Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of Schedule The Hanford Site...

142

A Global Cloud Resolving Model Goals  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Resolving Model Cloud Resolving Model Goals Uniform global horizontal grid spacing of 4 km or better ("cloud permitting") 100 or more layers up to at least the stratopause Parameterizations of microphysics, turbulence (including small clouds), and radiation Execution speed of at least several simulated days per wall-clock day on immediately available systems Annual cycle simulation by end of 2011. Motivations Parameterizations are still problematic. There are no spectral gaps. The equations themselves change at high resolution. GCRMs will be used for NWP within 10 years. GCRMs will be used for climate time-slices shortly thereafter. It's going to take some time to learn how to do GCRMs well. Scaling Science Length, Spatial extent, #Atoms, Weak scaling Time scale

143

Environment and safety: major goals for MARS  

Science Conference Proceedings (OSTI)

The Mirror Advanced Reactor Study (MARS) is a conceptual design study for a commercial fusion power reactor. One of the major goals of MARS is to develop design guidance so that fusion reactors can meet reasonable expectations for environmental health and safety. One of the first steps in the assessment of health and safety requirements was to examine what the guidelines might be for health and safety in disposal of radioactive wastes from fusion reactors. Then, using these quidelines as criteria, the impact of materials selection upon generation of radioactive wastes through neutron activation of structural materials was investigated. A conclusion of this work is that fusion power systems may need substantial engineering effort in new materials development and selection to meet the probable publicly acceptable levels of radioactivity for waste disposal in the future.

Maninger, R.C.

1983-03-16T23:59:59.000Z

144

The Concept of Goals-Driven Safeguards  

Science Conference Proceedings (OSTI)

The IAEA, NRC, and DOE regulations and requirements for safeguarding nuclear material and facilities have been reviewed and each organizationís purpose, objectives, and scope are discussed in this report. Current safeguards approaches are re-examined considering technological advancements and how these developments are changing safeguards approaches used by these organizations. Additionally, the physical protection approaches required by the IAEA, NRC, and DOE were reviewed and the respective goals, objectives, and requirements are identified and summarized in this report. From these, a brief comparison is presented showing the high-level similarities among these regulatory organizationsí approaches to physical protection. The regulatory documents used in this paper have been assembled into a convenient reference library called the Nuclear Safeguards and Security Reference Library. The index of that library is included in this report, and DVDs containing the full library are available.

R. Wigeland; T Bjornard; B. Castle

2009-02-01T23:59:59.000Z

145

Salmon Site Remedial Investigation Report, Exhibit 5  

Science Conference Proceedings (OSTI)

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

USDOE /NV

1999-09-01T23:59:59.000Z

146

Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program (March 2012)

147

TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300  

SciTech Connect

The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

Eddy-Dilek, C.; Miles, D.; Abitz, R.

2009-08-14T23:59:59.000Z

148

Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments (Brochure)  

DOE Green Energy (OSTI)

Fact sheet describes the Vehicle Technologies Program and its goals, strategies and top accomplishments.

Not Available

2010-12-01T23:59:59.000Z

149

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

150

Independent Activity Report, CH2M Hill Plateau Remediation Company -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Activity Report, CH2M Hill Plateau Remediation Company Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 January 2011 Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003] The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security, during a site visit from January 10-14, 2011, presented the results of a technical review of the CH2M Hill Plateau Remediation Company (PRC) Unreviewed Safety Question (USQ) Procedure. Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 More Documents & Publications CX-009415: Categorical Exclusion Determination Independent Activity Report, Richland Operations Office - January 2011

151

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

152

Remediation of Mercury and Industrial Contaminants Applied Field Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Located on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee, the RoMIC-AFRI was established to protect water resources by addressing the challenge of preventing contamination. The initiative at Oak Ridge is a collaborative effort that leverages DOE investments in basic science and applied research and the work of site contractors to address the complex challenges in the remediation of legacy waste at the Oak Ridge Reservation. The mission of the Remediation of Mercury and Industrial Contaminants

153

Uranium Mill Tailings Remedial Action Project 1993 Environmental Report  

SciTech Connect

This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

Not Available

1994-10-01T23:59:59.000Z

154

Phase I remedial investigation report of Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This report presents the activities and findings of the first phase of a three-phase remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, and updates the scope and strategy for WAG-2-related efforts. WAG 2 contains White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake, White Oak Creek Embayment on the Clinch River, and the associated floodplain and subsurface environment. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This report includes field activities completed through October 1992. The remediation of WAG 2 is scheduled to follow the cessation of contaminant input from hydrologically upgradient WAGs. While upgradient areas are being remediated, the strategy for WAG 2 is to conduct a long-term monitoring and investigation program that takes full advantage of WAG 2`s role as an integrator of contaminant fluxes from other ORNL WAGs and focuses on four key goals: (1) Implement, in concert with other programs, long-term, multimedia environmental monitoring and tracking of contaminants leaving other WAGs, entering WAG 2, and being transported off-site. (2) Provide a conceptual framework to integrate and develop information at the watershed-level for pathways and processes that are key to contaminant movement, and so support remedial efforts at ORNL. (3) Provide periodic updates of estimates of potential risk (both human health and ecological) associated with contaminants accumulating in and moving through WAG 2 to off-site areas. (4) Support the ORNL Environmental Restoration Program efforts to prioritize, remediate, and verify remedial effectiveness for contaminated sites at ORNL, through long-term monitoring and continually updated risk assessments.

Miller, D.E. [ed.

1995-07-01T23:59:59.000Z

155

Historical hydronuclear testing: Characterization and remediation technologies  

SciTech Connect

This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

Shaulis, L.; Wilson, G.; Jacobson, R.

1997-09-01T23:59:59.000Z

156

The mission of the Remediation of Mercury and Industrial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

157

Conative Factors in the Context of Adolescent Reading Remediation.  

E-Print Network (OSTI)

??The present study investigated variability in the remedial outcomes of 105 adolescents with reading disabilities who participated in PHAST PACES, a research-based reading intervention withÖ (more)

Luckett-Gatopoulos, Sarah Elizabeth Anastasia

2011-01-01T23:59:59.000Z

158

Mitigation and Remediation of Mercury Contamination at the Y...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

159

DOE Selects Savannah River Remediation, LLC for Liquid Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2009. Savannah River Remediation, LLC is a limited liability company consisting of URS Washington Division; Babcock & Wilcox Technical Services Group, Inc.; Bechtel National,...

160

Building C-400 Thermal Treatment 90% Remedial Design Report and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Paducah Gaseous Diffusion Plant (PGDP) Review Report: Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, PGDP, Paducah Kentucky...

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 January 2005 HYDROGEN EMBRITTLEMENT OF PIPELINE STEELS: CAUSES AND REMEDIATION P. Sofronis, I. Robertson, D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline...

162

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

or the general public under current conditions of site usage. . 1 U.S. Department of Energy Guidelines for Residual Radioactivity at Formerly Utilized Sites Remedial Action...

163

Microsoft Word - Remedial Action Program Update.rtf  

Office of Legacy Management (LM)

contamination that the owner must address. The Corps and the site owner are exploring alternative ways of remediating the site to achieve the most cost effective and efficient...

164

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

for Residual Radioactivity at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Rev. 1, July 1985). .. . -.-----...

165

Attenuation-Based Remedies in the Subsurface Applied Field Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subsurface Applied Field Research Initiative (ABRS AFRI) Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied...

166

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

no remedial action is necessary at this site and has eliminated the Westinghouse Atomic Power Development Plant from further consideration under the Formerly Utilized Sites...

167

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

BUILDING 7 BLOOMFIELD, NEW JERSEY SW 30 1985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site...

168

Savannah River Remediation Donates $10,000 to South Carolina...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS Waste Tank Closures Since 1997 A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where...

169

Savannah River Remediation Donates $10,000 to South Carolina...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commemorate Historic Cleanup Milestone A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where...

170

Federal Energy Management Program: Water Efficiency Goal Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Goal Guidance to someone by E-mail Goal Guidance to someone by E-mail Share Federal Energy Management Program: Water Efficiency Goal Guidance on Facebook Tweet about Federal Energy Management Program: Water Efficiency Goal Guidance on Twitter Bookmark Federal Energy Management Program: Water Efficiency Goal Guidance on Google Bookmark Federal Energy Management Program: Water Efficiency Goal Guidance on Delicious Rank Federal Energy Management Program: Water Efficiency Goal Guidance on Digg Find More places to share Federal Energy Management Program: Water Efficiency Goal Guidance on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Basics Federal Requirements Water Efficiency Goal Guidance Baseline & Annual Water Use Guidance Best Management Practices

171

Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Sales Renewable Fuel Sales Volume Goals to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Sales Volume Goals The Wisconsin Legislature sets goals for minimum annual renewable fuel

172

SunShot Initiative: Mission, Vision, and Goals  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission, Vision, and Goals to Mission, Vision, and Goals to someone by E-mail Share SunShot Initiative: Mission, Vision, and Goals on Facebook Tweet about SunShot Initiative: Mission, Vision, and Goals on Twitter Bookmark SunShot Initiative: Mission, Vision, and Goals on Google Bookmark SunShot Initiative: Mission, Vision, and Goals on Delicious Rank SunShot Initiative: Mission, Vision, and Goals on Digg Find More places to share SunShot Initiative: Mission, Vision, and Goals on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Balance of Systems Mission, Vision, and Goals Photo of a male silhouetted against a solar array. Researcher Josh Stein of Sandia National Laboratories studies how clouds impact large-scale solar photovoltaic (PV) power plants. Photo from Randy

173

2006 Department of Energy Strategic Plan - Linking Strategic Goals to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2006 Department of Energy Strategic Plan - Linking Strategic Goals 2006 Department of Energy Strategic Plan - Linking Strategic Goals to Annual Performance Goals 2006 Department of Energy Strategic Plan - Linking Strategic Goals to Annual Performance Goals Section 10 of the U.S. Department of Energy's Strategic Plan discusses Linking Strategic Goals to Annual Performance Goals through Program Assessment. DOE uses a variety of methods and tools to assess its programs. Internally, programs are required to report quarterly on their progress in meeting annual performance metrics. The data is then consolidated for senior management review. 2006 Department of Energy Strategic Plan - Linking Strategic Goals to Annual Performance Goals More Documents & Publications 2006 Department of Energy Strategic Plan U.S Department of Energy Strategic Plan

174

Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient Vehicle Fuel-Efficient Vehicle Acquisition Goals to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel-Efficient Vehicle Acquisition Goals To help achieve the statewide goal of reducing petroleum use by 20% by July

175

GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES  

SciTech Connect

Iodine-129 ({sup 129}I) has not received as much attention in basic and applied research as other contaminants associated with DOE plumes. These other contaminants, such as uranium, plutonium, strontium, and technetium are more widespread and exist at more DOE facilities. Yet, at the Hanford Site and the Savannah River Site {sup 129}I occurs in groundwater at concentrations significantly above the primary drinking water standard and there is no accepted method for treating it, other than pump-and-treat systems. With the potential arrival of a 'Nuclear Renaissance', new nuclear power facilities will be creating additional {sup 129}I waste at a rate of 1 Ci/gigawatts energy produced. If all 22 proposed nuclear power facilities in the U.S. get approved, they will produce more {sup 129}I waste in seven years than presently exists at the two facilities containing the largest {sup 129}I inventories, ({approx}146 Ci {sup 129}I at the Hanford Site and the Savannah River Site). Hence, there is an important need to fully understand {sup 129}I behavior in the environment to clean up existing plumes and to support the expected future expansion of nuclear power production. {sup 129}I is among the key risk drivers at all DOE nuclear disposal facilities where {sup 129}I is buried, because of its long half-life (16 million years), high toxicity (90% of the body's iodine accumulates in the thyroid), high inventory, and perceived high mobility in the subsurface environment. Another important reason that {sup 129}I is a key risk driver is that there is the uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define {sup 129}I mass balance and flux at sites, but can not accurately predict its response to changes in the environment. This uncertainty is in part responsible for the low drinking water standard, 1 pCi/L {sup 129}I, and the low permissible inventory limits (Ci) at the Savannah River Site, Hanford Site, and the former Yucca Mountain disposal facilities. The objectives of this report are to: (1) compile the background information necessary to understand behavior of {sup 129}I in the environment, (2) discuss sustainable remediation approaches to {sup 129}I contaminated groundwater, and (3) identify areas of research that will facilitate remediation of {sup 129}I contaminated areas on DOE sites. Lines of scientific inquiry that would significantly advance the goals of basic and applied research programs for accelerating {sup 129}I environmental remediation and reducing uncertainty associated with disposal of {sup 129}I waste are: (1) Evaluation of amendments or other treatment systems that can sequester subsurface groundwater {sup 129}I. (2) Develop analytical techniques for measurement of total {sup 129}I that eliminate the necessity of collecting and shipping large samples of groundwater. (3) Develop and evaluate ways to manipulate areas with organic-rich soil, such as wetlands, to maximize {sup 129}I sorption, minimizing releases during anoxic conditions. (4) Develop analytical techniques that can identify the various {sup 129}I species in the subsurface aqueous and solid phases at ambient concentrations and under ambient conditions. (5) Identify the mechanisms and factors controlling iodine-natural organic matter interactions at appropriate environmental concentrations. (6) Understand the biological processes that transform iodine species throughout different compartments of subsurface waste sites and the role that these processes have on {sup 129}I flux.

Denham, M.; Kaplan, D.; Yeager, C.

2009-09-23T23:59:59.000Z

176

RCRA Information Brief, June 1996: Conditional remedies under RCRA correction action  

Science Conference Proceedings (OSTI)

This document describes conditional remedies under RCRA corrective action. The definition of conditional remedies, criteria that must be met, applications to DOE facilities, applicable clean-up standards, and implementation of conditional remedies are discussed in the document.

NONE

1996-06-01T23:59:59.000Z

177

New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B  

Science Conference Proceedings (OSTI)

This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

Nelson, L. O.

2007-06-12T23:59:59.000Z

178

Remediation of Abandoned Mines Using Coal Combustion By-Products  

E-Print Network (OSTI)

Remediation of Abandoned Mines Using Coal Combustion By-Products Sowmya Bulusu1 ; Ahmet H. Aydilek that occurs when pyrite that is present in abandoned coal mines comes in contact with oxygen and water, which subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ash

Aydilek, Ahmet

179

Groundwater and Soil Remediation Guidelines for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Groundwater and Soil Remediation Guidelines provides the nuclear power industry with technical guidance for evaluating the need for and timing of remediation of soil and/or groundwater contamination from onsite leaks, spills, or inadvertent releases to a) prevent migration of licensed material off-site and b) minimize decommissioning impacts.

2010-12-21T23:59:59.000Z

180

Uranium Mill Tailings Remedial Action Project 1994 environmental report  

Science Conference Proceedings (OSTI)

This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

NONE

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

E-Print Network (OSTI)

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop% · Contractor share: 25% · Barriers ­ Hydrogen embrittlement of pipelines and remediation (mixing with water

182

In Situ Environmental Remediation of an Energized Substation  

Science Conference Proceedings (OSTI)

The remediation of contaminated soil and groundwater at energized substations presents special technical, safety, and cost challenges to affected utilities. This study, conducted at an energized substation contaminated with arsenic, evaluated remedial technologies for groundwater and soil treatment and analyzed their cost effectiveness.

2001-12-04T23:59:59.000Z

183

Better Buildings Neighborhood Program: Step 1: Set Goals and Objectives  

NLE Websites -- All DOE Office Websites (Extended Search)

1: Set 1: Set Goals and Objectives to someone by E-mail Share Better Buildings Neighborhood Program: Step 1: Set Goals and Objectives on Facebook Tweet about Better Buildings Neighborhood Program: Step 1: Set Goals and Objectives on Twitter Bookmark Better Buildings Neighborhood Program: Step 1: Set Goals and Objectives on Google Bookmark Better Buildings Neighborhood Program: Step 1: Set Goals and Objectives on Delicious Rank Better Buildings Neighborhood Program: Step 1: Set Goals and Objectives on Digg Find More places to share Better Buildings Neighborhood Program: Step 1: Set Goals and Objectives on AddThis.com... Getting Started Driving Demand Set Goals & Objectives Create an Evaluation Plan Conduct Audience Research Identify Target Audiences & Behavior Changes

184

DOE Hydrogen Analysis Repository: Impact of Program Goals on...  

NLE Websites -- All DOE Office Websites (Extended Search)

by Date U.S. Department of Energy Impact of Program Goals on Hydrogen Vehicles: Market Prospect, Costs, and Benefits Project Summary Full Title: Impact of Program Goals on...

185

Hydrogen Goal-Setting Methodologies Report to Congress  

Fuel Cell Technologies Publication and Product Library (EERE)

DOE's Hydrogen Goal-Setting Methodologies Report to Congress summarizes the processes used to set Hydrogen Program goals and milestones. Published in August 2006, it fulfills the requirement under se

186

Independent Activity Report, Savannah River Remediation - July 2010 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation - July 2010 Remediation - July 2010 Independent Activity Report, Savannah River Remediation - July 2010 July 2010 Savannah River Operations Office Integrated Safety Management System Phase II Verification Review of Savannah River Remediation The U.S. Department of Energy (DOE), Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), participated in the DOE Savannah River Operations Office (DOE-SR), Office of Safety and Quality Assurance (OSQA), Technical Support Division (TSD) Integrated Safety Management System (ISMS), Phase II Verification of Savannah River Remediation (SRR). The purpose of the DOE-SR Phase II ISMS Verification was to verify that the SRR ISMS Description that was submitted to and approved by the DOE-SR Manager is being effectively implemented at the Savannah

187

DOE Awards Contract for Environmental Remediation Services at California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Remediation Services at Environmental Remediation Services at California Santa Susana Field Laboratory DOE Awards Contract for Environmental Remediation Services at California Santa Susana Field Laboratory September 27, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy (DOE) today awarded a task order (contract) to CDM, A Joint Venture, of Fairfax, Virginia, to provide environmental remediation services for the Energy Technology Engineering Center at the Santa Susana Field Laboratory, Canoga Park, California. The cost-plus incentive fee task order has a 36-month performance period and a value of $11.3 million. CDM will continue to assist DOE in chemical sampling, the preparation of a chemical data gap analysis and preparing a soils remediation action

188

EA-1331: Remediation of Subsurface and Groundwater Contamination at the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

331: Remediation of Subsurface and Groundwater Contamination at 331: Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site, Sweetwater County, Wyoming EA-1331: Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site, Sweetwater County, Wyoming SUMMARY This EA evaluates the environmental impacts for the proposal for the Rock Springs In-Situ Oil Shale Retort Test Site remediation that would be performed at the Rock Springs site in Sweetwater County, Wyoming. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 31, 2000 EA-1331: Finding of No Significant Impact Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site July 31, 2000 EA-1331: Final Environmental Assessment

189

EIS-0198: Uranium Mill Tailings Remedial Action Groundwater Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

198: Uranium Mill Tailings Remedial Action Groundwater Project 198: Uranium Mill Tailings Remedial Action Groundwater Project EIS-0198: Uranium Mill Tailings Remedial Action Groundwater Project SUMMARY This EIS assesses the potential programmatic impacts of conducting the Ground Water Project, provides a method for determining the site-specific ground water compliance strategies, and provides data and information that can be used to prepare site-specific environmental impacts analyses more efficiently. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 28, 1997 EIS-0198: Record of Decision Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project (April 1997) December 1, 1996 EIS-0198: Programmatic Environmental Impact Statement Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project

190

Implementation of the Formerly Utilized Sites Remedial Action Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementation of the Formerly Utilized Sites Remedial Action Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers (Waste Management Conference 2010) Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers (Waste Management Conference 2010) More Documents & Publications Recent Developments in DOE FUSRAP

191

Summary - X-701B Groundwater Remedy, Portsmouth, Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-701B Groundwater Remediation ETR Report Date: December 2008 ETR-20 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the X-701B Groundwater Remedy, Portsmouth, Ohio Why DOE-EM Did This Review The Department of Energy (DOE) Portsmouth Paducah Project Office (PPPO) has responsibility for remediation of the X-701B ground water plume with the key contaminant of trichloroethene (TCE). The remedy has been divided into four phases: Phase I- Initial Source Area Treatment, Phase II-Expanded Source Area Treatment, Phase III-Evaluation and Reporting, and Phase IV- Downgradient Remediation and Confirmation of Source Area Treatment. Phase II treatment has injected catalyzed hydrogen peroxide without meeting the

192

DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION  

SciTech Connect

The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

Barry L. Burks

2002-12-01T23:59:59.000Z

193

Distribution of goals addressed to a group of agents  

Science Conference Proceedings (OSTI)

The problem investigated in this paper is the distribution of goals addressed to a group of rational agents. Those agents are characterized by their ability (i.e. what they can do), their knowledge about the world and their commitments.The goals of the ... Keywords: goal selection, modal logic, multiagent systems, qualitative decision theory, theories of rational agency

Laurence Cholvy; Christophe Garion

2003-07-01T23:59:59.000Z

194

C:\DOCS\NEW-VER.FRM  

NLE Websites -- All DOE Office Websites (Extended Search)

Verification Report Verification Report This form, or a similar form, is used to maintain quality assurance over the Statistical Analysis System (SAS ) or comparable program used to calculate excess cancer risks or hazard quotients for the ¬ģ Department of Energy Oak Ridge Operations (DOE-ORO) Environmental Management (EM) Program. Specifically, this form verifies the use of correct exposure equations, exposure parameters, and toxicity values (or ecotoxicological benchmarks) and verifies the correct calculation of exposures, excess cancer risks, and hazard quotients for all human health or ecological risk assessments that involve risk calculations or the development of Preliminary Remediation Goals (PRGs). In addition, this form presents issues identified during the verification and their resolutions.

195

Inefficient remediation of ground-water pollution  

SciTech Connect

The problem of trying to remove ground-water pollution by pumping and treating are pointed out. Various Superfund sites are discussed briefly. It is pointed out that many chemicals have been discarded in an undocumented manner, and their place in the groundwater is not known. Results of a remedial program to remove perchloroethylene at a concentration of 6132 parts per billion from groundwater in a site in New Jersey showed that with an average extraction rate of 300 gallons per minute from 1978 to 1984 contamination level was lowered below 100 parts per billion. However, after shutdown of pumping the level rose to 12,588 parts per billion in 1988. These results lead the author to propose that the practical solutions for water supplies may be treatment at the time it enters the system for use.

Abelson, P.H.

1990-11-09T23:59:59.000Z

196

Tank waste remediation system engineering plan  

SciTech Connect

This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

Rifaey, S.H.

1998-01-09T23:59:59.000Z

197

Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results  

Science Conference Proceedings (OSTI)

This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

2000-03-14T23:59:59.000Z

198

Remedial design and remedial action guidance for the Idaho National Engineering Laboratory  

SciTech Connect

The US Department of Energy, Idaho Operations Office (DOE-ID), the US Environmental Protection Agency, Region X (EPA), and the Idaho Department of Health and Welfare (IDHW) have developed this guidance on the remedial design and remedial action (RD/RA) process. This guidance is applicable to activities conducted under the Idaho National Engineering Laboratory (INEL) Federal Facility Agreement and Consent Order (FFA/CO) and Action Plan. The INEL FFA/CO and Action Plan provides the framework for performing environmental restoration according to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The guidance is intended for use by the DOE-ID, the EPA, and the IDHW Waste Area Group (WAG) managers and others involved in the planning and implementation of CERCLA environmental restoration activities. The scope of the guidance includes the RD/RA strategy for INEL environmental restoration projects and the approach to development and review of RD/RA documentation. Chapter 2 discusses the general process, roles and responsibilities, and other elements that define the RD/RA strategy. Chapters 3 through 7 describe the RD/RA documents identified in the FFA/CO and Action Plan. Chapter 8 provides examples of how this guidance can be applied to restoration projects. Appendices are included that provide excerpts from the FFA/CO pertinent to RD/RA (Appendix A), a applicable US Department of Energy (DOE) orders (Appendix B), and an EPA Engineering ``Data Gaps in Remedial Design`` (Appendix C).

1993-10-01T23:59:59.000Z

199

Effects of remediation amendments on vadose zone microorganisms  

SciTech Connect

Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

Miller, Hannah M.; Tilton, Fred A.

2012-08-10T23:59:59.000Z

200

Tank waste remediation system environmental program plan  

SciTech Connect

This Environmental Program Plan has been developed in support of the Integrated Environmental, Safety and Health Management System and consistent with the goals of DOE/RL-96-50, Hanford Strategic Plan (RL 1996a), and the specifications and guidance for ANSI/ISO 14001-1996, Environmental Management Systems Specification with guidance for use (ANSI/ISO 1996).

Borneman, L.E.

1998-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

I I c. ,..I -. i FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR BRIDGEPORT BRASS COMPANY HAVENS LABORATORY (REACTIVE METALS, INC.) KOSSUTH AND PULASKI STREETS BRIDGEPORT, CONNECTICUT i Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decomnissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 . 2 ii .-_. _.--_- "~ ELIMINATION REPORT FORMER BRIDGEPORT BRASS COMPANY HAVENS LABORATORY (REACTIVE METALS, INC. 1 KOSSUTH AND PULASKI STREETS BRIDGEPORT, CONNECTICUT INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and kaste Technology, Division of Facility and Site

202

FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT ELIMINATION REPORT  

Office of Legacy Management (LM)

(' (' . . FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT ELIMINATION REPORT FORMER VITRO LABORATORIES FORMER VITRO LABORATORIES VITRO CORPORATION VITRO CORPORATION WEST ORANGE, NEW JERSEY WEST ORANGE, NEW JERSEY SEP 30 1985 SEP 30 1985 Department of Energy Office of Nuclear Waste Office of Remedial Action and Waste Technology Division of Facility and Site Deconxnissioning Projects . CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii Page 7 3 4 - _- mI _---. ELSMINATION REPORT FORMER VITRO LABORATORIES, VITRO CORPORATION, WEST ORAN6E, NEW JERSEY INTRODUCTION . The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site

203

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM . ELIMINATION REPORT FOR AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) _ WATERYLIET, NEW YORK, AND DUNKIRK, NEW YORK SEP 301985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ----- ----_l_.._- .._. _- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii .- --- .- Page . 1 4 ELIMINATION REPORT AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) WATERYLIET, NEW YORK, AND DUNKIRK, NEW YORK 1 INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office

204

Sulfate Reduction in Groundwater: Characterization and Applications for Remediation  

Science Conference Proceedings (OSTI)

Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, with a specific focus on implications for groundwater remediation. A case study presenting the results of a pilot-scale ethanol injection test illustrates the advantages and difficulties associated with the use of electron-donor amendments for sulfate remediation.

Miao, Z.; Brusseau, M. L.; Carroll, Kenneth C.; Carreon-Diazconti, C.; Johnson, B.

2012-06-01T23:59:59.000Z

205

Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Land Recycling and Environmental Remediation Standards Act Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources

206

WATER AS A REAGENT FOR SOIL REMEDIATION  

SciTech Connect

SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology or hot water extraction (HWE) technology for remediating petroleum-contaminated soils. Most current remediation practices either fail to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites, are too costly, or require the use of organic solvents at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. SRI has conducted experiments to measure the solubility and rate of solubilization of selected PAHs (fluoranthene, pyrene, chrysene, 9,10-dimethylanthracene) in water using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. SRI data shows a very rapid increase in solubility of PAHs with increase in temperature in the range 25-275 C. SRI also measured the rate of solubilization, which is a key factor in determining the reactor parameters. SRI results for fluoranthene, pyrene, chrysene, and 9,10-dimethylanthracene show a linear relationship between rate of solubilization and equilibrium solubility. Also, we have found the rate of solubilization of pyrene at 275 C to be 6.5 ppm/s, indicating that the equilibrium solubilization will be reached in less than 3 min at 275 C; equilibrium solubility of pyrene at 275 C is 1000 ppm. Also, pyrene and fluoranthene appear to have higher solubilities in the presence of sodium carbonate. In addition to this study, SRI studied the rate of removal of selected PAHs from spiked samples under varying conditions (temperature, pore sizes, and pH). We have found a higher removal of PAHs in the presence of sodium carbonate in both sand and bentonite systems. Also, sodium carbonate greatly reduces the possible reactor corrosion under hydrothermal conditions. Our results show that a water-to-sand ratio of at least 3:1 is required to efficiently remove PAH from soil under static conditions.

Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

2001-03-29T23:59:59.000Z

207

Voluntary Renewable Energy Portfolio Goal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Voluntary Renewable Energy Portfolio Goal Voluntary Renewable Energy Portfolio Goal Voluntary Renewable Energy Portfolio Goal < Back Eligibility Investor-Owned Utility Savings Category Bioenergy Buying & Making Electricity Water Solar Wind Program Info State Virginia Program Type Renewables Portfolio Standard Provider Virginia State Corporation Commission As part of legislation to re-regulate the state's electricity industry, Virginia enacted a voluntary renewable energy portfolio goal in 2007. Legislation passed in 2009 (HB 1994) expanded the goal, encouraging investor-owned utilities to procure a percentage of the power sold in Virginia from eligible renewable energy sources. Legislation passed in 2012 (SB 413) allows investor-owned utilities to meet up to 20% of a renewable energy goal through certificated research and development activity expenses

208

Energy Efficiency Resource Goal (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Resource Goal (Virginia) Energy Efficiency Resource Goal (Virginia) Energy Efficiency Resource Goal (Virginia) < Back Eligibility Investor-Owned Utility Program Info State Virginia Program Type Energy Efficiency Resource Standard In March 2007, the Virginia legislature passed SB 1416 thereby amending Virginia's earlier electric industry restructuring law, including a energy efficiency goal of 10% electricity savings by 2022 relative to 2006 base sales. With SB 1416, the State Corporation Commission (SCC) was directed to conduct a series of proceedings to consider whether the 10% goal could be met cost-effectively, determine the mix of programs that should be implemented and their cost, and develop a plan for development and implementation of these programs. The SCC completed a report verifying the energy efficiency goal of 10% by

209

In Situ Remediation Integrated Program: Evaluation and assessment of containment technology  

SciTech Connect

Containment technology refers to a broad range of methods that are used to contain waste or contaminated groundwater and to keep uncontaminated water from entering a waste site. The U.S. Department of Energy`s (DOE) Office of Technology Development has instituted the In Situ Remediation Integrated Program (ISRIP) to advance the state-of-the-art of innovative technologies that contain or treat, in situ, contaminated media such as soil and groundwater, to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. The information provided here is an overview of the state-of-the-art of containment technology and includes a discussion of ongoing development projects; identifies the technical gaps; discusses the priorities for resolution of the technical gaps; and identifies the site parameters affecting the application of a specific containment method. The containment technology described in this document cover surface caps; vertical barriers such as slurry walls, grout curtains, sheet pilings, frozen soil barriers, and vitrified barriers; horizontal barriers; sorbent barriers; and gravel layers/curtains. Within DOE, containment technology could be used to prevent water infiltration into buried waste; to provide for long-term containment of pits, trenches, and buried waste sites; for the interim containment of leaking underground storage tanks and piping; for the removal of contaminants from groundwater to prevent contamination from migrating off-site; and as an interim measure to prevent the further migration of contamination during the application of an in situ treatment technology such as soil flushing. The ultimate goal is the implementation of containment technology at DOE sites as a cost-effective, efficient, and safe choice for environmental remediation and restoration activities.

Gerber, M.A.; Fayer, M.J.

1994-06-01T23:59:59.000Z

210

Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part B, Remedial Action  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA.

Not Available

1993-09-01T23:59:59.000Z

211

Versatile microbial surface-display for environmental remediation and biofuels production  

E-Print Network (OSTI)

remediation and biofuel production will be discussed. Newpollutant degradation, biofuel production and production of

Hawkes, Daniel S

2008-01-01T23:59:59.000Z

212

Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation Company- November 2012  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes

213

Sustainably Priced Energy Enterprise Development (SPEED) Goals | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainably Priced Energy Enterprise Development (SPEED) Goals Sustainably Priced Energy Enterprise Development (SPEED) Goals Sustainably Priced Energy Enterprise Development (SPEED) Goals < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Heating & Cooling Water Heating Wind Program Info State Vermont Program Type Renewables Portfolio Standard Provider Vermont Public Service Board Vermont's Sustainably Priced Energy Enterprise Development (SPEED) Program was created by legislation in 2005 to promote renewable energy development. The SPEED program itself is not a renewable portfolio goal or standard. However, if the Vermont Public Service Board (PSB) determines that the

214

Energy Efficiency Goals and Requirements for Public Entities...  

Open Energy Info (EERE)

Requirements vary by sector (see list in summary below) Goal General: Reduce electricity consumption by 5% each year for ten years, beginning September 1, 2011 School...

215

NNSA Production Office tops Feds Feed Families campaign goal...  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA Production Office tops ... NNSA Production Office tops Feds Feed Families campaign goal Posted: September 16, 2013 - 9:45am Oak Ridge, Tenn. - Employees of the National...

216

A Theoretical Rationalization of a Goal-Oriented Systems ...  

Science Conference Proceedings (OSTI)

Page 1. NBS-GCR-79-163 A Theoretical Rationalization of a Goal-Oriented Systems Approach to Building Fire Safety February 28. 1979 ...

2008-12-02T23:59:59.000Z

217

Small Business Program Goals | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

1 Create and implement the government's best enterprise-wide small business strategy and program. Goal 2 Maximize procurement opportunities for small businesses throughout the...

218

Reproductive Goals and Behavior Among Teen Mothers Receiving AFDC  

E-Print Network (OSTI)

GOALS AND BEHAVIORS AMONG TEEN MOTHERS RECEIVING AFDC ReportSubmitted AFDC Policy to: Brandl Services Implementationnot living No boyfnend status: AFDC Program Currently on

Mauldon, Jane; Maestas, Nicole

1999-01-01T23:59:59.000Z

219

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR OCCIDENTAL CHEMICAL CORPORATION ( FORMER HOOKER ELECTROCHEMICAL COMPANY ) NIAGARA FALLS, NEW YORK SEP 30 1985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ELIMINATION REPORT FOR OCCIDENTAL CHEMICAL CORPORATION (FORMER HOOKER ELECTROCHEMICAL COMPANY) L NIAGARA FALLS, NEW YORK- INTRODUCTION The Department ' of Energy (DDE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or the predecessor agencies, offices, and divisions), has reviewed the past activities of the Manhattan Engineer District (MED) and the Atomic Energy Commission (MED/AEC) at

220

CH2M HILL Plateau Remediation Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company The Office of Hea1th, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances of a series of radiological work deficiencies at the Plutonium Finishing Plant (PFP) and the 105 K-East Reactor Facility (105KE Reactor) by CH2M HILL Plateau Remediation Company (CHPRC). The radiological work deficiencies at PFP are documented in the April 29, 2011, Department of Energy Richland Operations Office (DOE-RL) Surveillance Report S-11-SED-CHP~C-PFP-002, Planning and Execution of Radiological Work. S-11-SED-CHPRC-PFP-002 documented four examples where inadequate hazard analysis resulted in airborne radioactivity that exceeded the limits of the controlling radiological work permit.

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Environmental Restoration Remedial Action Program records management plan  

SciTech Connect

The US Department of Energy-Richland Operations Office (DOE-RL) Environmental Restoration Field Office Management Plan ((FOMP) DOE-RL 1989) describes the plans, organization, and control systems to be used for management of the Hanford Site environmental restoration remedial action program. The FOMP, in conjunction with the Environmental Restoration Remedial Action Quality Assurance Requirements document ((QARD) DOE-RL 1991), provides all the environmental restoration remedial action program requirements governing environmental restoration work on the Hanford Site. The FOMP requires a records management plan be written. The Westinghouse Hanford Company (Westinghouse Hanford) Environmental Restoration Remedial Action (ERRA) Program Office has developed this ERRA Records Management Plan to fulfill the requirements of the FOMP. This records management plan will enable the program office to identify, control, and maintain the quality assurance, decisional, or regulatory prescribed records generated and used in support of the ERRA Program. 8 refs., 1 fig.

Michael, L.E.

1991-07-01T23:59:59.000Z

222

Environmental Remediation Strategic Planning of Fukushima Nuclear Accident  

Science Conference Proceedings (OSTI)

Environmntal Remediation Assessment and other respons decision making on Environmental monitoring, experiments and assessment. Preliminary assessment to grasp the overall picture and determine critical locations, phenomena, people, etc. Using simple methods and models.

Onishi, Yasuo

2011-12-01T23:59:59.000Z

223

SBA Increases Size Standards for Waste Remediation Services &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SBA Increases Size Standards for Waste Remediation Services & SBA Increases Size Standards for Waste Remediation Services & Information/Admin Support SBA Increases Size Standards for Waste Remediation Services & Information/Admin Support December 12, 2012 - 10:22am Addthis John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization Earlier this week, the U.S. Small Business Administration announced that they have revised size definitions for small businesses in Administrative and Support & Waste Management and Remediation Services categories, saying these revisions "reflect changes in marketplace conditions." The new standards are published in the Federal Register. Increases to size standards will enable some growing small businesses in these sectors to retain their small business status; will give federal

224

Salmon Site Remedial Investigation Report - Volume I  

Office of Legacy Management (LM)

494-VOL I/REV 1 494-VOL I/REV 1 U.S. Department of Energy Nevada Operations Office E nv i r onm ent al R es t or at i on D i v i s i on N ev ada E nv i r onm ent al R es t or at i on Pr oj ect S al m on S i t e R em edi al Inv es t i gat i on R epor t Vol u m e I R ev i s i on N o. : 1 S ept em ber 1999 Approved for public release; further dissemination unlimited. This page intentionally left blank DOE/NV--494-VOL I/REV 1 SALMON SITE REMEDIAL INVESTIGATION REPORT DOE Nevada Operations Office Las Vegas, Nevada Revision No.: 1 September 1999 Approved for public release; further dissemination unlimited. Available to the public from - U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650 Available electronically at http://www.doe.gov/bridge. Available to U.S. Department of Energy and its contractors in paper from -

225

Volatile organic compound remedial action project  

SciTech Connect

This Environmental Assessment (EA) reviews a proposed project that is planned to reduce the levels of volatile organic compound (VOC) contaminants present in the Mound domestic water supply. The potable and industrial process water supply for Mound is presently obtained from a shallow aquifer via on-site production wells. The present levels of VOCs in the water supply drawn from the on-site wells are below the maximum contaminant levels (MCLs) permissible for drinking water under Safe Drinking Water Act (SDWA; 40 CFR 141); however, Mound has determined that remedial measures should be taken to further reduce the VOC levels. The proposed project action is the reduction of the VOC levels in the water supply using packed tower aeration (PTA). This document is intended to satisfy the requirements of the National Environmental Policy Act (NEPA) of 1969 and associated Council on Environmental Quality regulations (40 CFR parts 1500 through 1508) as implemented through U.S. Department of Energy (DOE) Order 5440.1D and supporting DOE NEPA Guidelines (52 FR 47662), as amended (54 FR 12474; 55 FR 37174), and as modified by the Secretary of Energy Notice (SEN) 15-90 and associated guidance. As required, this EA provides sufficient information on the probable environmental impacts of the proposed action and alternatives to support a DOE decision either to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact (FONSI).

NONE

1991-12-01T23:59:59.000Z

226

Least-Cost Groundwater Remediation Design Using Uncertain Hydrogeological Information  

Science Conference Proceedings (OSTI)

The research conducted by at the Research Center for Groundwater Remediation Design at the University of Vermont funded by the Department of Energy continues to focus on the implementation of a new method of including uncertainty into the optimal design of groundwater remediation systems. The uncertain parameter is the hydraulic conductivity of an aquifer. The optimization method utilized for this project is called robust optimization. The uncertainty of the hydraulic conductivity is described by a probability density function, PDF.

Pinder, George F.

1999-06-01T23:59:59.000Z

227

ACTIVE CAPPING TECHNOLOGY - NEW APPROACHES FOR IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS  

SciTech Connect

This study evaluated pilot-scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal-contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one-year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals.

Knox, A.; Paller, M.; Roberts, J.

2012-02-13T23:59:59.000Z

228

Agile Development & Business Goals: The Six Week Solution  

Science Conference Proceedings (OSTI)

Agile Development and Business Goals describes a unique, state-of-the-art methodology that aligns the critical but often "silo-ed" software development process with core company goals. Eschewing long-winded "agile philosophy" in favor of a formally ...

Bill Holtsnider; Tom Wheeler; George Stragand; Joseph Gee

2010-06-01T23:59:59.000Z

229

Manifestations of everyday design: guiding goals and motivations  

Science Conference Proceedings (OSTI)

This paper explores the relationship between goals, materials and competences in the practice of everyday design. Appropriations and creative uses of design artifacts are often reported in terms of outcomes and goals; however, we observe a gap in understanding ... Keywords: DIY, appropriation, everyday design, families, hobby, jewelry, practice theory, steampunk

Audrey Desjardins; Ron Wakkary

2013-06-01T23:59:59.000Z

230

Long-term goals for solar thermal technology  

DOE Green Energy (OSTI)

This document describes long-term performance and cost goals for three solar thermal technologies. Pacific Northwest Laboratory (PNL) developed these goals in support of the Draft Five Year Research and Development Plan for the National Solar Thermal Technology Program (DOE 1984b). These technology goals are intended to provide targets that, if met, will lead to the widespread use of solar thermal technologies in the marketplace. Goals were developed for three technologies and two applications: central receiver and dish technologies for utility-generated electricity applications, and central receiver, dish, and trough technologies for industrial process heat applications. These technologies and applications were chosen because they are the primary technologies and applications that have been researched by DOE in the past. System goals were developed through analysis of future price projections for energy sources competing with solar thermal in the middle-to-late 1990's time frame. The system goals selected were levelized energy costs of $0.05/kWh for electricity and $9/MBtu for industrial process heat (1984 $). Component goals established to meet system goals were developed based upon projections of solar thermal component performance and cost which could be achieved in the same time frame.

Williams, T.A.; Dirks, J.A.; Brown, D.R.

1985-05-01T23:59:59.000Z

231

Optimal Motion Planning for Multiple Robots Having Independent Goals  

E-Print Network (OSTI)

is nearby, while the other robot has a distant goal. Combining the performance measures might produce a plan that is good for the robot that has the distant goal; however, the performance of the other robot would and priorities change, then only needs to select an alternative minimal plan, as opposed to re­exploring

LaValle, Steven M.

232

Programmatic Environmental Report for remedial actions at UMTRA (Uranium Mill Tailings Remedial Action) Project vicinity properties  

Science Conference Proceedings (OSTI)

This Environmental Report (ER) examines the environmental consequences of implementing a remedial action that would remove radioactive uranium mill tailings and associated contaminated materials from 394 vicinity properties near 14 inactive uranium processing sites included in the Uranium Mill Tailings Remedial Action (UMTRA) Project pursuant to Public Law 95--604, the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. Vicinity properties are those properties in the vicinity of the UMTRA Project inactive mill sites, either public or private, that are believed to be contaminated by residual radioactive material originating from one of the 14 inactive uranium processing sites, and which have been designated under Section 102(a)(1) of UMTRCA. The principal hazard associated with the contaminated properties results from the production of radon, a radioactive decay product of the radium contained in the tailings. Radon, a radioactive gas, can diffuse through the contaminated material and be released into the atmosphere where it and its radioactive decay products may be inhaled by humans. A second radiation exposure pathway results from the emission of gamma radiation from uranium decay products contained in the tailings. Gamma radiation emitted from contaminated material delivers an external exposure to the whole body. If the concentration of radon and its decay products is high enough and the exposure time long enough, or if the exposure to direct gamma radiation is long enough, cancers (i.e., excess health effects) may develop in persons living and working at the vicinity properties. 3 refs., 7 tabs.

Not Available

1985-03-01T23:59:59.000Z

233

Leveraging Tribal Renewable Resources to Support Military Energy Goals |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leveraging Tribal Renewable Resources to Support Military Energy Leveraging Tribal Renewable Resources to Support Military Energy Goals Leveraging Tribal Renewable Resources to Support Military Energy Goals The DOE Office of Indian Energy Tribal Leader Forum on "Leveraging Tribal Renewable Resources to Support Military Energy Goals" was held May 30-31 in Phoenix, Arizona. Photo by Brooke Oleen Tieperman, NCSL. The DOE Office of Indian Energy Tribal Leader Forum on "Leveraging Tribal Renewable Resources to Support Military Energy Goals" was held May 30-31 in Phoenix, Arizona. Photo by Brooke Oleen Tieperman, NCSL. The DOE Office of Indian Energy Tribal Leader Forum on "Leveraging Tribal Renewable Resources to Support Military Energy Goals" was held May 30-31 in Phoenix, Arizona. Photo by Brooke Oleen Tieperman, NCSL.

234

Energy Goals and Standards for Federal Government | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Goals and Standards for Federal Government Energy Goals and Standards for Federal Government Energy Goals and Standards for Federal Government < Back Eligibility Fed. Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Energy Sources Buying & Making Electricity Solar Water Heating Program Info Program Type Energy Standards for Public Buildings Provider U.S. Department of Energy The federal Energy Policy Act of 2005 (EPAct 2005) established several goals and standards to reduce energy use in existing and new federal buildings. Executive Order 13423, signed in January 2007, expanded on those goals and standards and was later reaffirmed by congress with the Energy Independence and Security Act of 2007 (EISA 2007). EISA 2007 extended an

235

Determine Institutional Change Sustainability Goals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determine Institutional Change Sustainability Goals Determine Institutional Change Sustainability Goals Determine Institutional Change Sustainability Goals October 8, 2013 - 11:17am Addthis Institutional Change Continuous Improvement Cycle The first step in the institutional change process is defining your Federal agency's sustainability goals. That is, decide what outcomes are desired (or required) over what period of time. Behavioral, organizational, and institutional changes typically are means to achieve desired energy, resource, or greenhouse gas emission outcomes. They are not ends in and of themselves. Agencies may derive goals from multiple sources, such as: Formal executive orders (E.O.s) or other requirements. For example, E.O. 13514 and associated agency strategic sustainability performance plans

236

Leveraging Tribal Renewable Resources to Support Military Energy Goals |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leveraging Tribal Renewable Resources to Support Military Energy Leveraging Tribal Renewable Resources to Support Military Energy Goals Leveraging Tribal Renewable Resources to Support Military Energy Goals The DOE Office of Indian Energy Tribal Leader Forum on "Leveraging Tribal Renewable Resources to Support Military Energy Goals" was held May 30-31 in Phoenix, Arizona. Photo by Brooke Oleen Tieperman, NCSL. The DOE Office of Indian Energy Tribal Leader Forum on "Leveraging Tribal Renewable Resources to Support Military Energy Goals" was held May 30-31 in Phoenix, Arizona. Photo by Brooke Oleen Tieperman, NCSL. The DOE Office of Indian Energy Tribal Leader Forum on "Leveraging Tribal Renewable Resources to Support Military Energy Goals" was held May 30-31 in Phoenix, Arizona. Photo by Brooke Oleen Tieperman, NCSL.

237

Phyto remediation groundwater trends at the DOE portsmouth gaseous  

Science Conference Proceedings (OSTI)

This paper describes the progress of a phyto-remediation action being performed at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) X-740 Waste Oil Handling Facility to remediate contaminated groundwater under a Resource Conservation and Recovery Act (RCRA) closure action. This action was effected by an Ohio Environmental Protection Agency (OEPA) decision to use phyto-remediation as the preferred remedy for the X-740 groundwater contamination. This remedy was recognized as a cost-effective, low-maintenance, and promising method to remediate groundwater contaminated with volatile organic compounds (VOCs), primarily trichloroethylene (TCE). During 1999, prior to the tree installation at the X-740 Phyto-remediation Area, water level measurements in the area were collected from 10 monitoring wells completed in the Gallia Formation. The Gallia is the uppermost water-bearing zone and contains most of the groundwater contamination at PORTS. During the tree installation which took place during the summer of 1999, four new Gallia monitoring wells were installed at the X-740 Area in addition to the 10 Gallia wells which had been installed in the same area during the early 1990's. Manual water level measurements were collected quarterly from these 14 Gallia monitoring wells between 1998 and 2001. These manual water level measurements were collected to monitor the combined impact of the trees on the groundwater prior to root development. Beginning in 2001, water level measurements were collected monthly during the growing season (April-September) and quarterly during the dormant season (October-March). A total of eight water level measurements were collected annually to monitor the phyto-remediation system's effect on the groundwater in the X- 740 Area. The primary function of the X-740 Phyto-remediation Area is to hydraulically prevent further spreading of the TCE plume. This process utilizes deep-rooted plants, such as poplar trees, to extract large quantities of water from the saturated zone. The focus of any phyto-remediation system is to develop a cone of depression under the entire plantation area. This cone of depression can halt migration of the contaminant plume and can create a hydraulic barrier, thereby maintaining plume capture. While a cone of depression is not yet evident at the X-740 Phyto-remediation Area, water level measurements in 2004 and 2005 differed from measurements taken in previous years, indicating that the now mature trees are influencing groundwater flow direction and gradient at the site. Water level measurements taken from 2003 through 2005 indicate a trend whereby groundwater elevations steadily decreased in the X-740 Phyto-remediation System. During this time, an average groundwater table drop of 0.30 feet was observed. Although the time for the phyto-remediation system to mature had been estimated at two to three years, these monitoring data indicate a period of four to five years for the trees to reach maturity. Although, these trends are not apparent from analysis of the potentiometric surface contours, it does appear that the head gradient across the site is higher during the spring and lower during the fall. It is not clear, however, whether this trend was initiated by the installation of the phyto-remediation system. This paper will present the groundwater data collected to date to illustrate the effects of the trees on the groundwater table. (authors)

Lewis, A.C.; Baird, D.R. [CDM, Piketon, OH (United States)

2007-07-01T23:59:59.000Z

238

A RE-LOOK AT THE US NRC SAFETY GOALS  

SciTech Connect

Since they were adopted in 1986, the US NRCís Safety Goals have played a valuable role as a de facto risk acceptance criterion against which the predicted performance of a commercial nuclear power reactor can be evaluated and assessed. The current safety goals are cast in terms of risk metrics called quantitative health objectives (QHOs), limiting numerical values of the risks of the early and latent health effects of accidental releases of radioactivity to the offsite population. However, while demonstrating compliance with current safety goals has been an important step in assessing the acceptance of the risk posed by LWRs, new or somewhat different goals may be needed that go beyond the current early fatality and latent cancer fatality QHOs in assessing reactor risk. Natural phenomena such as hurricanes seem to be suitable candidates for establishing a background rate to derive a risk goal as their order of magnitude cost of damages is similar to those estimated in severe accident Level 3 PRAs done for nuclear power plants. This paper obtains a risk goal that could have a wider applicability, compared to the current QHOs, as a technology-neutral goal applicable to future reactors and multi-unit sites.

mubayi v.

2013-09-22T23:59:59.000Z

239

State Energy Policy Goal and Development (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Policy Goal and Development (Montana) State Energy Policy Goal and Development (Montana) State Energy Policy Goal and Development (Montana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Generation Disclosure Provider Montana Legislature, Legislative Services Division

240

PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA  

Science Conference Proceedings (OSTI)

This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing plan as well as facility processing rates. These lessons learned, challenges, and improvements will be discussed to aid other sites in their efforts to conduct similar activities.

Rodriguez, M.

2010-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nuclear facility decommissioning and site remedial actions: a selected bibliography  

SciTech Connect

This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

1982-09-01T23:59:59.000Z

242

Nuclear facility decommissioning and site remedial actions: a selected bibliography  

SciTech Connect

This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

1982-09-01T23:59:59.000Z

243

Remediation plan for fluorescent light fixtures containing polychlorinated biphenyls (PCBs)  

SciTech Connect

This report describes the remedial action to achieve compliance with 29 CFR 1910 Occupational Safety and Health Administration (OSHA) requirements of fluorescent light fixtures containing PCBs at K-25 site. This remedial action is called the Remediation Plan for Fluorescent Light Fixtures Containing PCBs at the K-25 Site (The Plan). The Plan specifically discusses (1) conditions of non-compliance, (2) alternative solutions, (3) recommended solution, (4) remediation plan costs, (5) corrective action, (6) disposal of PCB waste, (7) training, and (8) plan conclusions. The results from inspections by Energy Systems personnel in 2 buildings at K-25 site and statistical extension of this data to 91 selected buildings at the K-25 site indicates that there are approximately 28,000 fluorescent light fixtures containing 47,036 ballasts. Approximately 38,531 contain PCBs and 2,799 of the 38,531 ballasts are leaking PCBs. Review of reportable occurrences at K-25 for the 12 month period of September 1990 through August 1991 shows that Energy Systems personnel reported 69 ballasts leaking PCBs. Each leaking ballast is in non-compliance with 29 CFR 1910 - Table Z-1-A. The age of the K-25 facilities indicate a continued and potential increase in ballasts leaking PCBs. This report considers 4 alternative solutions for dealing with the ballasts leaking PCBs. The advantages and disadvantages of each alternative solution are discussed and ranked using cost of remediation, reduction of health risks, and compliance with OSHA as criteria.

1992-04-30T23:59:59.000Z

244

Electrochemical arsenic remediation for rural Bangladesh  

Science Conference Proceedings (OSTI)

Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three regions to below the WHO limit of 10 mu g=L. Prototype fabrication and field testing are currently underway.

Addy, Susan Amrose

2009-01-01T23:59:59.000Z

245

New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect

This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

L. O. Nelson

2003-09-01T23:59:59.000Z

246

Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration  

E-Print Network (OSTI)

Remediation, and Carbon Sequestration References Anderson,Remediation, and Carbon Sequestration rhizosphere byRemediation, and Carbon Sequestration Figure 1. Examples of

Bernard, S.

2009-01-01T23:59:59.000Z

247

Collaborating Towards a Common Goal to Advance America's Solar Industry |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collaborating Towards a Common Goal to Advance America's Solar Collaborating Towards a Common Goal to Advance America's Solar Industry Collaborating Towards a Common Goal to Advance America's Solar Industry June 21, 2012 - 6:07pm Addthis Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Justin Vandenbroeck Intern, Office of Energy Efficiency and Renewable Energy Change takes more than desire -- it takes collaboration, communication, and a common goal. This idea was perhaps best exemplified at the SunShot Grand Challenge Summit in Denver. As a former participant in the Solar Decathlon and a current Energy Department intern, I attended the Summit to

248

Renewables Portfolio Standards and Goals | Open Energy Information  

Open Energy Info (EERE)

Standards and Goals Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleRenewablesPortf...

249

Federal Facility Efficiency Investment and Progress toward Sustainability Goals  

NLE Websites -- All DOE Office Websites (Extended Search)

1 | Energy Efficiency and Renewable Energy eere.energy.gov Federal Energy Management Program (FEMP) Chris Tremper, Program Analyst chris.tremper@ee.doe.gov 202-586-7632 Federal Facility Efficiency Investment and Progress toward Sustainability Goals July 31, 2013 Overall Facility Goal Progress, FY 2012 Goal/Requirement for FY 2012 FY 2012 Federal Performance E.O. 13423/EISA: Reduce energy intensity (Btu/GSF) by 21% compared to 2003; 30% reduction required in FY 2015. Government decreased energy intensity by 20.6% in FY 2012 relative to FY 2003 17 of 24 Scorecard agencies achieved the goal. EPACT 2005/E.O. 13423: Use renewable electric energy equivalent to at least 5% of total electricity use; at least half of which must come from sources developed after January 1,

250

Federal Facility Efficiency Investment and Progress toward Sustainability Goals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 | Energy Efficiency and Renewable Energy eere.energy.gov Federal Energy Management Program (FEMP) Chris Tremper, Program Analyst chris.tremper@ee.doe.gov 202-586-7632 Federal Facility Efficiency Investment and Progress toward Sustainability Goals July 31, 2013 Overall Facility Goal Progress, FY 2012 Goal/Requirement for FY 2012 FY 2012 Federal Performance E.O. 13423/EISA: Reduce energy intensity (Btu/GSF) by 21% compared to 2003; 30% reduction required in FY 2015. Government decreased energy intensity by 20.6% in FY 2012 relative to FY 2003 17 of 24 Scorecard agencies achieved the goal. EPACT 2005/E.O. 13423: Use renewable electric energy equivalent to at least 5% of total electricity use; at least half of which must come from sources developed after January 1,

251

Collaborating Towards a Common Goal to Advance America's Solar Industry |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collaborating Towards a Common Goal to Advance America's Solar Collaborating Towards a Common Goal to Advance America's Solar Industry Collaborating Towards a Common Goal to Advance America's Solar Industry June 21, 2012 - 6:07pm Addthis Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Justin Vandenbroeck Intern, Office of Energy Efficiency and Renewable Energy Change takes more than desire -- it takes collaboration, communication, and a common goal. This idea was perhaps best exemplified at the SunShot Grand Challenge Summit in Denver. As a former participant in the Solar Decathlon and a current Energy Department intern, I attended the Summit to

252

EM Exceeds Sustainability Goal by Reducing Carbon Footprint | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Exceeds Sustainability Goal by Reducing Carbon Footprint EM Exceeds Sustainability Goal by Reducing Carbon Footprint EM Exceeds Sustainability Goal by Reducing Carbon Footprint April 8, 2013 - 12:00pm Addthis Spanning 34 acres, the Savannah River Site Biomass Cogeneration Facility is the culmination of 30 months and more than 600,000 hours of labor. Spanning 34 acres, the Savannah River Site Biomass Cogeneration Facility is the culmination of 30 months and more than 600,000 hours of labor. Sources of greenhouse gas emissions. Sources of greenhouse gas emissions. Spanning 34 acres, the Savannah River Site Biomass Cogeneration Facility is the culmination of 30 months and more than 600,000 hours of labor. Sources of greenhouse gas emissions. WASHINGTON, D.C. - EM has surpassed another DOE sustainability goal, this

253

Hydrogen Program Goal-Setting Methodologies Report to Congress  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Hydrogen Program Goal-Setting Methodologies Report to Congress (ESECS EE-4015) Hydrogen Program Goal-Setting Methodologies (This page intentionally left blank) 8/7/2006 - 2 - Hydrogen Program Goal-Setting Methodologies Introduction This report addresses section 1819 of Public Law 109-58, also referred to as the Energy Policy Act of 2005. Section 1819 states: "Not later than 1 year after the date of enactment of this Act, the Secretary shall submit to Congress a report evaluating methodologies to ensure the widest participation practicable in setting goals and milestones under the hydrogen program of the Department, including international participants." In response to section 1819, the United States Department of Energy (DOE) delivers this report

254

FTCP FY09 Operational Plan GOAL 2 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Programs Reviewed for FTCP on Monthly Call: March 2009 - Mid-Level Recruitment Programs White Paper Posted on FTCP Website: June 2009 5 August 25, 2009 FTCP FY09 OPSPLAN GOAL 2...

255

Journey to Excellence Goal 2 and Enhanced Tank Waste Strategy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Agenda * Journey to Excellence - Goal 2 on reducing EM's Life Cycle Costs * Enhanced Tank Waste Strategy - What it is and what we need to do...

256

Precise goal-independent abstract interpretation of constraint logic programs  

Science Conference Proceedings (OSTI)

We present a goal-independent abstract interpretation framework for constraint logic programs, and prove the sufficiency of a set of conditions for abstract domains to ensure that the analysis will never lose precision. Along the way, we formally define ...

Peter Schachte

2003-02-01T23:59:59.000Z

257

EM Exceeds Sustainability Goal by Reducing Carbon Footprint | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exceeds Sustainability Goal by Reducing Carbon Footprint Exceeds Sustainability Goal by Reducing Carbon Footprint EM Exceeds Sustainability Goal by Reducing Carbon Footprint April 8, 2013 - 12:00pm Addthis Spanning 34 acres, the Savannah River Site Biomass Cogeneration Facility is the culmination of 30 months and more than 600,000 hours of labor. Spanning 34 acres, the Savannah River Site Biomass Cogeneration Facility is the culmination of 30 months and more than 600,000 hours of labor. Sources of greenhouse gas emissions. Sources of greenhouse gas emissions. Spanning 34 acres, the Savannah River Site Biomass Cogeneration Facility is the culmination of 30 months and more than 600,000 hours of labor. Sources of greenhouse gas emissions. WASHINGTON, D.C. - EM has surpassed another DOE sustainability goal, this

258

Small Business Goaling Report Dataset | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

is an exact copy of the Federal Procurement Database System - Next Generation (FPDS-NG) minus goaling exclusions (e.g. Overseas Contracts are not eligible for small business)...

259

Modeling Guidance for Developing Site-specific Nutrient Goals  

Science Conference Proceedings (OSTI)

One of the highest-profile challenges facing states and the regulated community is the development of scientifically sound nutrient goals, such as total maximum daily loads and site-specific numeric nutrient criteria. Goals must recognize that responses of receiving water to nutrients depend on site-specific characteristics (that is, morphology, hydrology, turbidity, temperature, etc.), all of which vary in space and time. There is a need for practical, model-based approaches and guidance for ...

2013-12-16T23:59:59.000Z

260

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

-p,l-I -p,l-I . . FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR MOBIL MINING AND MINERALS COMPANY (THE FORMER MATHIESON CHEMICAL COMPANY) PASADENA, TEXAS D Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 2 2 2 3 3 4 ii --. ELIMINATION REPORT MOBIL MINING AND MINERALS COMPANY (THE FORMER MATHIESON CHEMICAL COMPANY) PASADENA, TEXAS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions),

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

itI.2 -2 itI.2 -2 FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR THE FORMER BRUSH BERYLLIUM COMPANY CLEVELAND, OHIO Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects __I__,_-. - ---.. ____- .- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Pa e -5 2 2 2 4 4 4 ii ELIMINATION REPORT THE FORMER BRUSH BERYLLIUM COMPANY CLEVELAND, OHIO INTRODUCTION The Oepartment of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decorrnnissioning Projects (and/or predecessor agencies, offices and divisionsa has reviewed the past activities of the Manhattan Engineer

262

Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis  

NLE Websites -- All DOE Office Websites (Extended Search)

Geoengineering: Plan B Remedy for Global Warming Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis NASA Goddard Institute for Space Studies Accelerated melting of Greenland ice is a clear indication that consequences of global warming are real and impending. The underlying causes of global warming are well enough understood, but the necessary reduction of greenhouse gases to prevent irreversible climate change is unlikely to happen before the point of no return is reached. To reverse the impending sea level rise, geoengineering counter- measures may be required to counter the current global energy imbalance due to global warming. Of the many proposed remedies, deploying aerosols within the stratosphere offers realistic prospects. Sulfur injections in the lower stratosphere would have the cooling effect of naturally occurring volcanic aerosols. Soot at

263

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

fi.q 2, fi.q 2, I: * FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects INTRODUCTION BACKGROUND CONTENTS Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 4 iii ELIMINATION REPORT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decormnissioning Projects (and/or predecessor agencies, offices and

264

Northeast Site Area A NAPL Remediation Final Report.doc  

Office of Legacy Management (LM)

82-TAC 82-TAC U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy DE-AC13-02GJ79491 Approved for public release; distribution is unlimited. Pinellas Environmental Restoration Project Northeast Site Area A NAPL Remediation Final Report September 2003 N0065200 GJO- 2003- 482- TAC GJO- PIN 13.12.10 Pinellas Environmental Restoration Project Northeast Site Area A NAPL Remediation Final Report Young - Rainey STAR Center September 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13- 02GJ79491 Document Number N0065200 Contents DOE/Grand Junction Office Northeast Site Area A NAPL Remediation Final Report September 2003 Page iii

265

The mission of the Remediation of Mercury and Industrial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of protecting surface water, groundwater, and ecological receptors. For more information, contact: Eric Pierce Oak Ridge National Laboratory 1 Bethel Valley Road, MS 6038 Oak Ridge, TN 37831 pierceem@ornl.gov (865) 574-9968 Kurt Gerdes DOE-EM Office of Groundwater and Soil Remediation kurt.gerdes@em.doe.gov (301) 903-7289 Sediment Biota Groundwater Flow Fluctuating Water Table Hg in building structures and rubble Waterborne mercury (mercury being transported via water being released from the facilities to the creeks) Hg currently present in the creek and sediments along the base of the creek

266

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

BETHLEHEM STEEL CORPORATION BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects P bl@ C.' , 1 & cr INTRODUCTION BACKGROUND CONTENTS Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 5 iii ELIMINATION REPORT BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices and divisions), has reviewed the past activities of the Atomic Energy Commission (AEC) at the Bethlehem Steel Corporation, Lackawanna, New

267

Designation of Sites for Remedial Action - Metal Hydrides, Beverly,  

Office of Legacy Management (LM)

T: T: Designation of Sites for Remedial Action - Metal Hydrides, Beverly, MA; Bridgeport Brass, Adrian, MI and Seymour, Chicago, IL CT; National Guard Armory, 0: Joe LaGrone, Manager Oak Ridge Operations Office Based on the attached radiological survey data (Attachments 1 through 3) and an appropriate authority review, the following properties are being authorized for remedial action. It should be noted that the attached survey data are for designation purposes only and that Bechtel National, Inc. (BNI) should conduct appropriate comprehensive characterization studies to determine the extent'and magnitude of contamination on properties. Site Location Priority Former Bridgeport Brass Co. (General Motors) Adrian, MI Low Former Bridgeport Brass Co.

268

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

UNIVERSITY OF ARIZONA UNIVERSITY OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects -- --- .- _- --__ CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii - ,. -- Page 1 4 4 ..I___ - ~-___- ELIMINATION REPORT UNIVERSITY OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions) has reviewed the past activities of the Atomic Energy Commission (AEC)

269

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

NATIONAL BUREAU OF STANDARDS BUILDINGS NATIONAL BUREAU OF STANDARDS BUILDINGS VAN NESS STREET WASHINGTON, D.C. Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects - __-~---- -._.. .._ .-. .- INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status CONTENTS ELIMINATION ANALYSIS REFERENCES ii Paqe 1 4 INiRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities conducted for the Atomic Energy Commission and the Manhattan Engineer District (MED) (DOE predecessors) at

270

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

,: /A (,) i_ - z ,: /A (,) i_ - z FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR FORMERLY UTILIZED PORTIONS OF THE WATERTOWN ARSENAL WATERTOWN, MASSACHUSETTS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decotwnissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Radiological History and Status ELIMINATION ANALYSIS Findings and Recommendation 6 REFERENCES iii Page 1 1 1 3 4 7 "..*.w..,, -. ._ ..- ". --. AUTHORITY REVIEW WATERTOWN ARSENAL WATERTOWN, MASSACHUSETTS INTRODUCTION The purpose of this review is to present information pertaining to work performed under the sponsorship of the Atomic Energy Commission (AEC) Manhattan Engineer District (MED) and the facts and circum-

271

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

SENECA ARMY DEPOT SENECA ARMY DEPOT ROMULUS, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and kaste Technology. Division of Facility and Site Decommissioning Projects INTRODUCTION t3ACKGROUND CONTENTS . -Page Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES 1 4 ii .___ -_-_..--. ._.".. ELIMINATION REPORT SENECA ARMY DEPOT ROMULUS, NEW YORK . INTRODUCTION The Department pf Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities of the Manhattan Engineer District (MED) at Seneca Army Depot, Romulus, hew York. Based on the

272

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

\ \ ,.-c , 2 2 a. . FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM . ELIMINATION REPORT FOR THE FORMER GENERAL SERVICES ADMINISTRATION 39TH STREET WAREHOUSE 1716 PERSHING ROAD CHICAGO, ILLINOIS SEP301985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects __--... -_ -._.-_- _"_-. .___.. -... .._ ..-. .-. ..--- . , ' , CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii 4 __-.I ._-----.- --- ELIMINATION REPORT FOR THE FORMER GENERAL SERVICES ADMINISTRATION 39TH STREET WAREHOUSE 1716 PERSHING ROAD CHICAGO, ILLINOIS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office

273

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

CF INDUSTRIES, INC. CF INDUSTRIES, INC. ( THE FORMER INTERNATIONAL MI NERALS AND CHEMICAL CORPORATION) BARTON, FLORIDA Department of Energy Office of Nuclear Energy. Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects - - .._. ..--.. . . I."__ . - INTRODUCTION CONTENTS Page BACKGROUND Site Function Site Description Radiological. History and Status ELIMINATION ANALYSIS REFERENCES Summary of Findings ii 7 8 --..I--- - ..-___-_--.___-"-- -- ' . ELIMINATION REPORT CF INDUSTRIES, INC. (THE FORMER INTERNATIONAL MINERALS AND CHEMICAL CORPORATION) BARTOW, FLORIDA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and

274

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

ROHM & HAAS COMPANY ROHM & HAAS COMPANY PHILADELPHIA, PENNSYLYANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS Page INTRODUCTIOk BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES 2 2 2 2 3 3 iii ELIMINATION REPORT ROHM & HAAS COMPANY PHILADELPHIA, PENNSYLVANXA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions) has reviewed the past activities of the Atomic Energy Commission (AEC) at the Rohm & Haas Company, Philadelphia, Pennsylvania. Based on a

275

OIL WELL REMEDIATION IN CLAY AND WAYNE COUNTIES, IL  

SciTech Connect

This is the second progress and final technical report of the remediation of abandoned wells in Clay and Wayne Counties in Illinois. The wells will be identified as the Routt No.3 and No.4 and the Bates Hosselton 1 and 2. Both sites have met all legal, financial and environmental requirements to drill and/or pump oil on both leases. We have also obtained all available information about both leases. All steps were taken to improve access roads, dig the necessary pits, and build the necessary firewalls. This progress and final technical report will address the remediation efforts as well as our results and conclusions.

Peter L. Dakuras; Larry Stieber; Dick Young

2003-07-09T23:59:59.000Z

276

Successful Field-Scale In Situ Thermal NAPL Remediation at the...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center...

277

Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites  

Energy.gov (U.S. Department of Energy (DOE))

This document summarizes radiological conditions at sites remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP) and transferred to the U.S. Department of Energy (DOE) for...

278

DOE/OR/20722-83 Formerly Utilized Sites Remedial Action Program...  

Office of Legacy Management (LM)

3 Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-810R20722 POST-REMEDIAL ACTION REPORT FOR THE RESIDENTIAL PROPERTIES ON GROVE AVENUE AND PARKWAY...

279

Ignition Method Development and First Field Demonstration of In Situ Smouldering Remediation.  

E-Print Network (OSTI)

??Self-sustaining Treatment for Active Remediation (STAR), a smouldering combustion-based technology for remediating sites contaminated by industrial liquids, has been extensively studied in the laboratory. TheÖ (more)

Scholes, Grant C

2013-01-01T23:59:59.000Z

280

Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. May 2004, Monterey, California. Gorm Heron, Steven Carroll, Hank Sowers, Bruce McGee, Randall Juhlin, Joe Daniel, David S. Ingle Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center More Documents & Publications Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

REVIEW REPORT: BUILDING C-400 THERMAL TREATMENT 90 PERCENT REMEDIAL DESIGN REPORT AND SITE INVESTIGATION, PGDP, PADUCAH, KENTUCKY  

Science Conference Proceedings (OSTI)

On 9 April 2007, the U.S. Department of Energy (DOE) Headquarters, Office of Soil and Groundwater Remediation (EM-22) initiated an Independent Technical Review (ITR) of the 90% Remedial Design Report (RDR) and Site Investigation (RDSI) for thermal treatment of trichloroethylene (TCE) in the soil and groundwater in the vicinity of Building C-400 at the Paducah Gaseous Diffusion Plant (PGDP). The general ITR goals were to assess the technical adequacy of the 90% RDSI and provide recommendations sufficient for DOE to determine if modifications are warranted pertaining to the design, schedule, or cost of implementing the proposed design. The ultimate goal of the effort was to assist the DOE Paducah/Portsmouth Project Office (PPPO) and their contractor team in ''removing'' the TCE source zone located near the C-400 Building. This report provides the ITR findings and recommendations and supporting evaluations as needed to facilitate use of the recommendations. The ITR team supports the remedial action objective (RAO) at C-400 to reduce the TCE source area via subsurface Electrical Resistance Heating (ERH). Further, the ITR team commends PPPO, their contractor team, regulators, and stakeholders for the significant efforts taken in preparing the 90% RDR. To maximize TCE removal at the target source area, several themes emerge from the review which the ITR team believes should be considered and addressed before implementing the thermal treatment. These themes include the need for: (1) Accurate and site-specific models as the basis to verify the ERH design for full-scale implementation for this challenging hydrogeologic setting; (2) Flexible project implementation and operation to allow the project team to respond to observations and data collected during construction and operation; (3) Defensible performance metrics and monitoring, appropriate for ERH, to ensure sufficient and efficient clean-up; and (4) Comprehensive (creative and diverse) contingencies to address the potential for system underperformance, and other unforeseen conditions These themes weave through the ITR report and the various analyses and recommendations. The ITR team recognizes that a number of technologies are available for treatment of TCE sources. Further, the team supports the regulatory process through which the selected remedy is being implemented, and concurs that ERH is a potentially viable remedial technology to meet the RAOs adjacent to C-400. Nonetheless, the ITR team concluded that additional efforts are needed to provide an adequate basis for the planned ERH design, particularly in the highly permeable Regional Gravel Aquifer (RGA), where sustaining target temperatures present a challenge. The ERH design modeling in the 90% RDR does not fully substantiate that heating in the deep RGA, at the interface with the McNairy formation, will meet the design goals; specifically the target temperatures. Full-scale implementation of ERH to meet the RAOs is a challenge in the complex hydrogeologic setting at PGDP. Where possible, risks to the project identified in this ITR report as ''issues'' and ''recommendations'' should be mitigated as part of the final design process to increase the likelihood of remedial success. The ITR efforts were organized into five lines of inquiry (LOIs): (1) Site investigation and target zone delineation; (2) Performance objectives; (3) Project and design topics; (4) Health and safety; and (5) Cross cutting and independent cost evaluation. Within each of these LOIs, the ITR team identified a series of unresolved issues--topics that have remaining uncertainties or potential project risks. These issues were analyzed and one or more recommendations were developed for each. In the end, the ITR team identified 27 issues and provided 50 recommendations. The issues and recommendations are briefly summarized below, developed in Section 5, and consolidated into a single list in Section 6. The ITR team concluded that there are substantive unresolved issues and system design uncertainties, resulting in technical and financial risks to DOE.

Looney, B; Jed Costanza, J; Eva Davis, E; Joe Rossabi, J; Lloyd (Bo) Stewart, L; Hans Stroo, H

2007-08-15T23:59:59.000Z

282

Energy Efficiency Goals and Requirements for Public Entities | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Goals and Requirements for Public Entities Energy Efficiency Goals and Requirements for Public Entities Energy Efficiency Goals and Requirements for Public Entities < Back Eligibility Institutional Local Government Schools State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State Texas Program Type Energy Standards for Public Buildings Provider State Energy Conservation Office In 2001, Texas Senate Bill 5 ([http://www.capitol.state.tx.us/tlodocs/77R/billtext/html/SB00005F.htm S.B. 5]), was enacted to help the state comply with federal Clean Air Act standards. S.B. 5 amended the state's Health and Safety Code to require that each political subdivision in 38 (later amended to 41) Texas counties: * Implement all energy efficiency measures that meet the standards

283

Global Leaders Meet To Collaborate on Energy Efficiency Goals | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leaders Meet To Collaborate on Energy Efficiency Goals Leaders Meet To Collaborate on Energy Efficiency Goals Global Leaders Meet To Collaborate on Energy Efficiency Goals May 11, 2010 - 12:00am Addthis WASHINGTON - Assistant Secretary Cathy Zoi of the Department of Energy's Office of Energy Efficiency and Renewable Energy joined leaders from 15 countries and the European Commission today at the first Policy Committee meeting of the International Partnership for Energy Efficiency Cooperation (IPEEC) to promote global collaboration on energy-saving programs and policies. U.S. participation in this partnership, launched at the Group of 8 (G8) Energy Ministers Meeting in Rome in May 2009, continues the Obama Administration's efforts to forge partnerships among governments to address climate change, reduce reliance on fossil fuels, and grow the global clean

284

Energy Innovation Hubs: Achieving Our Energy Goals with Science |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Hubs: Achieving Our Energy Goals with Science Innovation Hubs: Achieving Our Energy Goals with Science Energy Innovation Hubs: Achieving Our Energy Goals with Science March 2, 2012 - 6:44pm Addthis Secretary Chu stops at Oak Ridge National Lab in February 2012 for a quick, nuclear-themed visit that included a tour of the Consortium for Advanced Simulation of Light Water Reactors (CASL) and a stop at the new Manufacturing Demonstration Facility (MDF). | Photo courtesy of Oak Ridge National Lab Secretary Chu stops at Oak Ridge National Lab in February 2012 for a quick, nuclear-themed visit that included a tour of the Consortium for Advanced Simulation of Light Water Reactors (CASL) and a stop at the new Manufacturing Demonstration Facility (MDF). | Photo courtesy of Oak Ridge National Lab Michael Hess Michael Hess

285

Thermal and cost goal analysis for passive solar heating designs  

DOE Green Energy (OSTI)

Economic methodologies developed over the past several years for the design of residential solar systems have been based on life cycle cost (LCC) minimization. Because of uncertainties involving future economic conditions and the varied decision making processes of home designers, builders, and owners, LCC design approaches are not always appropriate. To deal with some of the constraints that enter the design process, and to narrow the number of variables to those that do not depend on future economic conditions, a simplified thermal and cost goal approach for passive designs is presented. Arithmetic and graphical approaches are presented with examples given for each. Goals discussed include simple payback, solar savings fraction, collection area, maximum allowable construction budget, variable cost goals, and Btu savings.

Noll, S.A.; Kirschner, C.

1980-01-01T23:59:59.000Z

286

NEAC Recommended Goals for Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAC Recommended Goals for Nuclear Energy NEAC Recommended Goals for Nuclear Energy NEAC Recommended Goals for Nuclear Energy Nuclear energy currently provides approxi- mately 20 percent of the electricity for the U.S. The primary alternative for power generation is fossil fuels. Though still controversial, evidence continues to mount about the negative health and environmental effects of carbon emissions. Nuclear power is the most significant technology available for meeting anticipated energy needs while reducing emissions to the environment. Nuclear energy is an essential component to a secure and prosperous future for the U.S. and the world. The reliance on fossil fuels for the growing energy usage of an expanding world population will bring about enormous global environmental problems. Nuclear energy is the single largest tool

287

DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Simulator Training to Brazil's Petrobas Advances Goal of DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying Clean Coal Technology at Home and Abroad DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying Clean Coal Technology at Home and Abroad September 25, 2012 - 1:00pm Addthis Washington, DC - A recently-completed comprehensive Department of Energy (DOE) training initiative using an innovative high-fidelity combined-cycle dynamic simulator has provided employees of a Brazilian multi-national company the opportunity to learn to operate and control the near-zero-emission power plants critical to a cleaner energy future. The 8-day course for power plant operators from Petrobras used a simulator from the National Energy Technology Laboratory (NETL)-sponsored AVESTAR¬ô (Advanced Virtual Energy Simulation Training and Research) Center.

288

EIA - AEO2010 - State renewable energy requirements and goals: Update  

Gasoline and Diesel Fuel Update (EIA)

State renewable energy requirements and goals: Update through 2009 State renewable energy requirements and goals: Update through 2009 Annual Energy Outlook 2010 with Projections to 2035 State renewable energy requirements and goals: Update through 2009 To the extent possible, AEO2010 incorporates the impacts of State laws requiring the addition of renewable generation or capacity by utilities doing business in the States. Currently, 30 States and the District of Columbia have enforceable RPS or similar laws (Table 2). Under such standards, each State determines its own levels of generation, eligible technologies, and noncompliance penalties. AEO2010 includes the impacts of all laws in effect as of September 2009 (with the exception of Hawaii, because NEMS provides electricity market projections for the continental United States only).

289

Kansas City Weatherization Efforts Exceed Goals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weatherization Efforts Exceed Goals Weatherization Efforts Exceed Goals Kansas City Weatherization Efforts Exceed Goals July 23, 2010 - 11:43am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Kansas City's rainy summer is good news for lawns but not so good news for homes in need of weatherization, since wet conditions slow down work. But Bob Jackson isn't worried. "We've had a significantly wet season... but we're two and half months ahead," says the manager of the city's Property Preservation Division, which oversees weatherization efforts for Kansas City and some satellite towns. Even so, Jackson far exceeded the target number of income-eligible homes to weatherize, as set forth by the Missouri's Department of Natural Resources (DNR) and the U.S. Department of Energy's Weatherization Assistance

290

Kansas City Weatherization Efforts Exceed Goals | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kansas City Weatherization Efforts Exceed Goals Kansas City Weatherization Efforts Exceed Goals Kansas City Weatherization Efforts Exceed Goals July 23, 2010 - 11:43am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Kansas City's rainy summer is good news for lawns but not so good news for homes in need of weatherization, since wet conditions slow down work. But Bob Jackson isn't worried. "We've had a significantly wet season... but we're two and half months ahead," says the manager of the city's Property Preservation Division, which oversees weatherization efforts for Kansas City and some satellite towns. Even so, Jackson far exceeded the target number of income-eligible homes to weatherize, as set forth by the Missouri's Department of Natural Resources (DNR) and the U.S. Department of Energy's Weatherization Assistance

291

NNSA Production Office tops Feds Feed Families campaign goal | National  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Office tops Feds Feed Families campaign goal | National Production Office tops Feds Feed Families campaign goal | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA Production Office tops Feds Feed Families ... NNSA Production Office tops Feds Feed Families campaign goal Posted By Office of Public Affairs Employees of the NNSA Production Office (NPO) have donated 17,348 pounds of

292

Two Facilities, One Goal: Advancing America's Wind Industry | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry November 27, 2013 - 1:35pm Addthis Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University The Clemson University Wind Turbine Drivetrain Testing Facility in North Charleston, South Carolina will test large, commercial scale turbines. | Photo courtesy of Clemson University The Clemson University Wind Turbine Drivetrain Testing Facility in North

293

FTCP FY09 Operational Plan GOAL 3 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY09 OPSPLAN FY09 OPSPLAN GOAL 3 Summary Carol Sohn Mike Mikolanis 2 FTCP FY09 OPSPLAN GOAL 3 Summary * Objective 1: Define and describe the key steps an individual should take following initial TQP qualification to achieve status as a DOE-recognized expert (Dave Chaney, Lead) ‚ąö Attributes, responsibilities and qualification methods for current DOE/NNSA experts document completed ‚ąö Methods of potential designation/institutionalization of "recognized expert" document completed ‚ąö Evaluation of external industry groups relative to recognized experts completed ‚ąö Definition of DOE/NNSA recognized expert completed ‚ąö Approach to institutionalize DOE/NNSA recognized experts white paper completed 3 FTCP FY09 OPSPLAN GOAL 3 Summary * Objective 2: Define and clarify the term "continuous

294

Savannah River Tritium Enterprise exceeds productivity savings goals for  

NLE Websites -- All DOE Office Websites (Extended Search)

Tritium Enterprise exceeds productivity savings goals for Tritium Enterprise exceeds productivity savings goals for FY13 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Savannah River Tritium Enterprise exceeds productivity savings ... Savannah River Tritium Enterprise exceeds productivity savings goals for FY13 Posted By Office of Public Affairs

295

Savannah River Tritium Enterprise exceeds productivity savings goals for  

National Nuclear Security Administration (NNSA)

Tritium Enterprise exceeds productivity savings goals for Tritium Enterprise exceeds productivity savings goals for FY13 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Savannah River Tritium Enterprise exceeds productivity savings ... Savannah River Tritium Enterprise exceeds productivity savings goals for FY13 Posted By Office of Public Affairs

296

Two Facilities, One Goal: Advancing America's Wind Industry | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry November 27, 2013 - 1:35pm Addthis Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University The Clemson University Wind Turbine Drivetrain Testing Facility in North Charleston, South Carolina will test large, commercial scale turbines. | Photo courtesy of Clemson University The Clemson University Wind Turbine Drivetrain Testing Facility in North

297

Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Achieves Transuranic Waste Disposition Goal in Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 December 24, 2013 - 12:00pm Addthis Workers gather behind a √ʬĬúSafety and Security begins with Me√Ę¬Ä¬Ě banner at the Savannah River Site. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. SRR employees Glenn Kelly and Fred Merriweather pour the final amount of grout into Tank 6. SRR employees Glenn Kelly and Fred Merriweather pour the final amount of grout into Tank 6. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site.

298

Assessing the displacement goals in the Energy Policy Act  

SciTech Connect

This paper discusses studies required by sections 502 and 504 of the Energy Policy Act of 1992 (EPACT). The principal focus is the feasibility of achieving the percentage reduction in petroleum-based transportation fuels used by light-duty vehicles (10% in 2000, 30% in 2010) as required by section 502(b)(2). The percentage goals must be consistent with the general goals of section 502(a), which include reducing oil imports, reducing greenhouse gases, and improving the nation`s economy. This paper draws upon conditional projections of replacement-fuel use in two separate 1994 studies conducted by the U.S. Department of Energy`s Energy Information Administration and its Office of Transportation Technologies. By referring to these published results and their context, this paper identifies key issues that must be considered in an evaluation of various section 502 goals as required by section 504(a).

Santini, D.J.; Krinke, M.; Mintz, M.; Singh, M.

1995-02-01T23:59:59.000Z

299

Utilization of Proven Technology to Meet Energy Conservation Goals  

E-Print Network (OSTI)

Despite the widely scattered locations of its operations, the Production Department of Exxon Company, U.S.A. has been able to attain a twenty percent reduction in total energy consumption today compared with 1972. In order to realize these accomplishments, an energy management program was instituted which: identified specific conservation objectives, established yearly conservation goals, utilized proven technology to implement projects where justified, and established a system to document the savings realized to evaluate the performance of the program versus the goals established. Although the methods employed to achieve the conservation goals are not new to the petroleum industry, this paper will describe how effective utilization of proven technology has significantly impacted energy usage.

Kelly, P. H.; Stuchly, M. A.

1981-01-01T23:59:59.000Z

300

Department of Energy Achieves Goal of 200 Energy Savings Assessments |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieves Goal of 200 Energy Savings Achieves Goal of 200 Energy Savings Assessments Department of Energy Achieves Goal of 200 Energy Savings Assessments March 2, 2007 - 10:28am Addthis Over 50 Trillion Btus of Natural Gas Savings Found AUSTIN, TX - The U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Andy Karsner today announced the completion of Energy Savings Assessments (ESAs) at 200 of the largest industrial facilities in the nation, identifying opportunities to save over 50 trillion Btus of natural gas - roughly equivalent to the natural gas used in 700,000 American homes. In 2007, DOE will conduct 250 additional Energy Savings Assessments and offer cost-sharing options with industry, utilities and other partners. Assistant Secretary Karsner made the

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Long Island Power Authority - Renewable Electricity Goal | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Goal Renewable Electricity Goal Long Island Power Authority - Renewable Electricity Goal < Back Eligibility Municipal Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State New York Program Type Renewables Portfolio Standard Provider Long Island Power Authority As a municipal utility, the Long Island Power Authority (LIPA) is not obligated to comply with the [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... New York Renewable Portfolio Standard (RPS)]. The LIPA Board of Trustees has nevertheless decided to make their own renewable energy commitment mirroring the requirements for New York's investor owned utilities. The initiative is outlined in LIPA's 2004-2013 Energy Plan, approved in June

302

San Antonio City Public Service (CPS Energy) - Renewables Portfolio Goal |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Antonio City Public Service (CPS Energy) - Renewables Portfolio San Antonio City Public Service (CPS Energy) - Renewables Portfolio Goal San Antonio City Public Service (CPS Energy) - Renewables Portfolio Goal < Back Eligibility Municipal Utility Savings Category Bioenergy Solar Buying & Making Electricity Wind Program Info State Texas Program Type Renewables Portfolio Standard In 2003 San Antonio's municipal electric utility, City Public Service (CPS Energy) established a goal of meeting 15% of its electrical peak demand with renewable energy by 2020 under its Strategic Energy Plan. In June 2008 the utility announced plans to increase the overall renewables target to 20% by 2020 with at least 100 megawatts (MW) from non-wind renewable energy sources. As of November 2012, the utility had 11% of their peak electric

303

Fermilab | Take Five for Goal Zero | Useful Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Take Five for Goal Zero: At Work and at Home Take Five for Goal Zero: At Work and at Home Martha Michels Martha Michels What does Take Five for Goal Zero mean to me? To me, it is a reminder to stop and think about myself, others and the environment before I act. I hope the Take 5 campaign has helped keep your awareness up as it has mine. Whether it is using the proper tool, donning appropriate personal protective equipment, buying the greener option, or minimizing waste, you have the choice to make a positive impact here at Fermilab. Take Five to make that choice. Click on the categories below for helpful links that will help you improve ESH&Q and promote best practices. ESH&Q is everyone's responsibility! If you'd like to suggest a link to add to this page, please contact us. Take 5 Winter Challenge 2013

304

Versatile microbial surface-display for environmental remediation and biofuels production  

E-Print Network (OSTI)

Strategies to address the mixed-waste situation require thea valuable solution for mixed-waste remediation by reducing

Hawkes, Daniel S

2008-01-01T23:59:59.000Z

305

C-1. Ground Water Remedial Technologies and Process Options C-1.1. Ground Water Extraction  

E-Print Network (OSTI)

This appendix presents detailed descriptions of the remedial technologies and process options presented in Chapter 3. Sources for these descriptions are referenced at the end of appropriate sections. Several of the remedial technologies described in this appendix have already been tested and used at Lawrence Livermore National Laboratory (LLNL) Site 300. The remedial technologies already being used in ongoing removal actions or prototype remedial actions at Site 300 are identified in the following discussion.

C. Ground; Water Extraction Wells

1999-01-01T23:59:59.000Z

306

Recommendation 170: Remedial Investigation/Feasibility Study for East Tennessee Technology Park  

Energy.gov (U.S. Department of Energy (DOE))

The ORSSAB Recommendation to DOE on a Remedial Investigation/Feasibility Study for East Tennessee Technology Park.

307

Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program  

Energy.gov (U.S. Department of Energy (DOE))

Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program (March 2012)

308

Decommissioning of the remediation systems at Waverly, Nebraska, in 2011-2012.  

SciTech Connect

The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility in Waverly, Nebraska, from 1952 to 1974. During this time, the grain fumigant '80/20' (carbon tetrachloride/carbon disulfide) was used to preserve stored grain. In 1982, sampling by the U.S. Environmental Protection Agency (EPA) found carbon tetrachloride contamination in the town's groundwater. After an investigation of the contaminant distribution, the site was placed on the National Priority List (NPL) in 1986, and the CCC/USDA accepted responsibility for the contamination. An Interagency Compliance Agreement between the EPA and the CCC/USDA was finalized in May 1988 (EPA 1990). The EPA (Woodward-Clyde Consultants, contractor) started immediate cleanup efforts in 1987 with the installation of an air stripper, a soil vapor extraction system, a groundwater extraction well, and groundwater and soil gas monitoring wells (Woodward-Clyde 1986, 1988a,b). After the EPA issued its Record of Decision (ROD; EPA 1990), the CCC/USDA (Argonne National Laboratory, contractor) took over operation of the treatment systems. The CCC/USDA conducted a site investigation (Argonne 1991, 1992a,b), during which a carbon tetrachloride plume in groundwater was discovered northeast of the former facility. This plume was not being captured by the existing groundwater extraction system. The remediation system was modified in 1994 (Argonne 1993) with the installation of a second groundwater extraction well to contain the contamination further. Subsequently, a detailed evaluation of the system resulted in a recommendation to pump only the second well to conserve water in the aquifer (Argonne 1995). Sampling and analysis after implementation of this recommendation showed continued decreases in the extent and concentrations of the contamination with only one well pumping (Argonne 1999). The CCC/USDA issued quarterly monitoring reports from 1988 to 2009. Complete documentation of the CCC/USDA characterization and remediation efforts, including the quarterly monitoring reports, is on the compact disc inside the back cover of this report. The EPA reported on the progress of the remediation systems in a series of five-year reviews (EPA 1993, 1999, 2004, 2009). These reports and other EPA documentation are also on the compact disc inside the back cover of this report, along with the Woodward-Clyde (1986, 1988a,b) documentation cited. Starting in 2006, the analytical results for groundwater (the only medium still being monitored) showed no carbon tetrachloride concentrations above the maximum contaminant level (MCL) of 5.0 g/L. Because the cleanup goals specified in the ROD (EPA 1990) had been met, the EPA removed the site from the NPL in November 2006 (Appendix A). In 2008 the National Pollutant Discharge Elimination System (NPDES) permit for the remediation system was deactivated, and a year later the EPA released its fourth and final five-year report (EPA 2009), indicating that no further action was required for the site and that the site was ready for unlimited use. In 2011-2012, the CCC/USDA decommissioned the remediation systems at Waverly. This report documents the decommission process and closure of the site.

LaFreniere, L. M. (Environmental Science Division)

2012-06-29T23:59:59.000Z

309

In-situ remediation system for groundwater and soils  

DOE Patents (OSTI)

The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Corey, J.C.; Kaback, D.S.; Looney, B.B.

1991-01-01T23:59:59.000Z

310

Biogeochemical Considerations Related To The Remediation Of I-129 Plumes  

Science Conference Proceedings (OSTI)

The objectives of this report were to: provide a current state of the science of radioiodine biogeochemistry relevant to its fate and transport at the Hanford Site; conduct a review of Hanford Site data dealing with groundwater {sup 129}I; and identify critical knowledge gaps necessary for successful selection, implementation, and technical defensibility in support of remediation decisions.

Kaplan, D. I. [Savannah River Site (SRS), Aiken, SC (United States); Yeager, C. [Los Alamos National Laboratory , Los Alamos, NM (United States); Denham, M. E. [Savannah River Site (SRS), Aiken, SC (United States); Zhang, S. [Texas A& M University, Galveston, TX (United States); Xu, C. [Texas A& M University, Galveston, TX (United States); Schwehr, K. A. [Texas A& M University, Galveston, TX (United States); Li, H. P. [Texas A& M University, Galveston, TX (United States); Brinkmeyer, R. [Texas A& M University, Galveston, TX (United States); Santschi, P. H. [Texas A& M University, Galveston, TX (United States)

2012-09-24T23:59:59.000Z

311

National conference on environmental remediation science and technology: Abstracts  

Science Conference Proceedings (OSTI)

This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

NONE

1998-12-31T23:59:59.000Z

312

Problems Encountered During the Radiological Remediation of Old Buildings  

SciTech Connect

With several military base closures resulting in property transfer to public use and the decommissioning of many legacy waste facilities, the opportunity for remediation of older buildings is increasing. Along with these projects, come several problems that could give the potential remediator some surprises. During the preconstruction and planning phases of the original construction activities, several generations of drawings were most likely produced for approval and permit submittal. Over the years, buildings may undergo several renovations with or without the full characterization or remediation that should be done when radioactive materials are used on a site. New walls or floors may be built over the original construction materials. Contamination in and around the building may have resulted from processes that were accepted at the time or from inadvertent activities that may have been covered up, including accidental spills. Many buildings contain hidden rooms or accesses that over time became useless and have been closed up or over, these areas may not be very obvious. When characterizing a building the effluents of the building are usually forgotten, sewer lines are important areas to investigate. All these items could cause a remediator to overlook a potentially highly contaminated area. With more of these facilities being turned over for public use, correctly characterizing these buildings will become a more common problem.

Krieger, K. V.; Schillings, D. C.

2003-02-25T23:59:59.000Z

313

Remedial Methods for Intergranular Attack of Alloy 600 Tubing, Volume 1: Plant Corrosion Morphologies and Remedial Methods, Volume 2: Additives and Test Plans for Remedial Methods, Volume 3: Boric Acid and Acetic Acid Remedial Methods  

Science Conference Proceedings (OSTI)

Intergranular attack and stress corrosion cracking of alloy 600 tubing have caused costly PWR shutdowns and even necessitated steam generator replacement. This research identified chemicals that might mitigate such degradation but showed that on-line treatment of boric acid is the best existing remedy.

1986-06-30T23:59:59.000Z

314

Uranium Mill Tailings Remedial Action Project surface project management plan  

SciTech Connect

This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

Not Available

1994-09-01T23:59:59.000Z

315

BIOGEOCHEMICAL CONSIDERATIONS RELATED TO THE REMEDIATION OF I-129 PLUMES  

SciTech Connect

The objectives of this report were to: provide a current state of the science of radioiodine biogeochemistry relevant to its fate and transport at the Hanford Site; conduct a review of Hanford Site data dealing with groundwater {sup 129}I; and identify critical knowledge gaps necessary for successful selection, implementation, and technical defensibility in support of remediation decisions.

Kaplan, D.; Yeager, C.; Denham, M.; Zhang, S.; Xu, C.; Schwehr, K.; Li, H.; Brinkmeyer, R.; Santschi, P.

2012-09-24T23:59:59.000Z

316

Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks  

SciTech Connect

This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

T. M. Blakley; W. D. Schofield

2007-09-10T23:59:59.000Z

317

Groundwater Remediation of Inorganic Constituents at Coal Combustion Product Management Sites  

Science Conference Proceedings (OSTI)

This report reviews constituents that potentially may trigger groundwater remediation at coal combustion product (CCP) management sites and briefly summarizes various in situ and ex situ remediation technologies and their applicability to treat these constituents. The report provides a more detailed discussion for one potentially promising in situ remediation technology, permeable reactive barriers (PRBs).

2006-10-29T23:59:59.000Z

318

Nevada National Security Site Environmental Remediation Progress Toward Closure of Contaminated Sites  

SciTech Connect

The Environmental Restoration activities at the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office assess the environmental impacts that resulted from atmospheric and underground nuclear tests conducted from 1951 to 1992 on the Nevada National Security Site and Nevada Test and Training Range (which includes the Tonopah Test Range). The goal is to protect public health and the environment through investigations and corrective actions. The Federal Facility Agreement and Consent Order (FFACO), established in 1996 between the State of Nevada Division of Environmental Protection (NDEP), DOE, and the U.S. Department of Defense, serves as the cleanup agreement for the Environmental Restoration activities and provides the framework for identifying, prioritizing, investigating, remediating, and monitoring contaminated sites. This agreement satisfies the corrective action requirements of the Resource Conservation and Recovery Act. To ensure efficiency in managing these corrective actions, the sites are grouped according to location, physical and geological characteristics, and/or contaminants. These groups, called corrective action units, are prioritized based on potential risk to workers and the public, available technology, future land use, agency and stakeholder concerns, and other criteria. Environmental Restoration activities include: Industrial Sites, Soils, and Underground Test Area. Nearly 15 years have passed since the FFACO was established, and during this time, more than 3,000 sites have been identified as requiring investigation or corrective actions. To date, approximately 1,945 sites have been investigated and closed through no further action, clean closure, or closure in place. Another 985 sites are currently being investigated or are in the remediation phase, leaving approximately 80 contaminated sites yet to be addressed.

Patrick Matthews (N-I) and Robert Boehlecke (NSO)

2011-03-03T23:59:59.000Z

319

INDEPENDENT TECHNICAL REVIEW OF THE C-400 INTERIM REMEDIAL PROJECT PHASE I RESULTS, PADUCAH, KENTUCKY  

Science Conference Proceedings (OSTI)

The groundwater and soil in the vicinity of the C-400 Building at the Paducah Gaseous Diffusion Plant (PGDP), is contaminated with substantial quantities of industrial solvents, primarily trichoroethene (TCE). This solvent 'source' is recognized as a significant challenge and an important remediation target in the overall environmental cleanup strategy for PGDP. Thus, the cleanup of the C-400 TCE Source is a principal focus for the Department of Energy (DOE) and its contractors, and for PGDP regulators and stakeholders. Using a formal investigation, feasibility study and decision process, Electrical Resistance Heating (ERH) was selected for the treatment of the soil and groundwater in the vicinity of C-400. ERH was selected as an interim action to remove 'a significant portion of the contaminant mass of TCE at the C-400 Cleaning Building area through treatment' with the longer term goal of reducing 'the period the TCE concentration in groundwater remains above its Maximum Contaminant Level (MCL).' ERH is a thermal treatment that enhances the removal of TCE and related solvents from soil and groundwater. The heterogeneous conditions at PGDP, particularly the high permeability regional gravel aquifer (RGA), are challenging to ERH. Thus, a phased approach is being followed to implement this relatively expensive and complex remediation technology. Conceptually, the phased approach encourages safety and efficiency by providing a 'lessons learned' process and allowing appropriate adjustments to be identified and implemented prior to follow-on phase(s) of treatment. More specifically, early deployment targeted portions of the challenging RGA treatment zone with relatively little contamination reducing the risk of adverse collateral impacts from underperformance in terms of heating and capture. Because of the importance and scope of the C-400 TCE source remediation activities, DOE chartered an Independent Technical Review (ITR) in 2007 to assess the C-400 ERH plans prior to deployment and a second ITR to evaluate Phase I performance in September 2010. In this report, these ITR efforts are referenced as the '2007 ITR' and the 'current ITR', respectively. The 2007 ITR document (Looney et al., 2007) provided a detailed technical evaluation that remains relevant and this report builds on that analysis. The primary objective of the current ITR is to provide an expedited assessment of the available Phase I data to assist the PGDP team as they develop the lessons learned from Phase I and prepare plans for Phase II.

Looney, B.; Rossabi, J.; Stewart,L.; Richards, W.

2010-10-29T23:59:59.000Z

320

Achieving millennium development goals: Role of ICTS innovations in India  

Science Conference Proceedings (OSTI)

The paper outlines the problem faced by India, in dealing with its rural poor, who live in 600,000 villages with poor infrastructure and continue to do so, even after 60 years of independence and constitute about 72.2% of 1027 million. The paper also ... Keywords: Achievements, India, Information and communication technologies, Innovations, Millennium development goals

Subba Rao Siriginidi

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Enforcing a security pattern in stakeholder goal models  

Science Conference Proceedings (OSTI)

Patterns are useful knowledge about recurring problems and solutions. Detecting a security problem using patterns in requirements models may lead to its early solution. In order to facilitate early detection and resolution of security problems, in this ... Keywords: goal models, model transformations, rbac, security patterns

Yijun Yu; Haruhiko Kaiya; Hironori Washizaki; Yingfei Xiong; Zhenjiang Hu; Nobukazu Yoshioka

2008-10-01T23:59:59.000Z

322

Companion cognitive systems: Design goals and some lessons learned  

E-Print Network (OSTI)

Companion Cognitive Systems is a cognitive architecture inspired by natural intelligent systems. In this paper, we describe seven design goals of Companions, relate them to properties of human reasoning, and discuss their implications. We present our experiences in developing and experimenting with Companions thus far, and the challenges that remain.

Ken Forbus; Matt Klenk; Tom Hinrichs

2008-01-01T23:59:59.000Z

323

A GOAL-BASED FRAMEWORK FOR SEMANTIC SERVICE PROVISIONING  

E-Print Network (OSTI)

the NXT robot, which runs a static program whose major goal is to expose most of the devices of the NXT over the network. To do this a remote NXT model is created. A program that runs on Figure2 be extended by using class in- heritance. Besides realizing the IManagement

Twente, Universiteit

324

Optimality in goal-dependent analysis of sharing  

Science Conference Proceedings (OSTI)

We face the problems of correctness, optimality, and precision for the static analysis of logic programs, using the theory of abstract interpretation. We propose a framework with a denotational, goal-dependent semantics equipped with two unification ... Keywords: abstract interpretation, existentially quantified substitutions, logic programming, matching, sharing, unification

Gianluca Amato; Francesca Scozzari

2009-09-01T23:59:59.000Z

325

A 0-1 goal programming model for nurse scheduling  

Science Conference Proceedings (OSTI)

In this study, a computerized nurse-scheduling model is developed. The model is approached through a 0-1 linear goal program. It is adapted to Riyadh Al-Kharj hospital Program (in Saudi Arabia) to improve the current manual-made schedules. The developed ...

M. N. Azaiez; S. S. Al Sharif

2005-03-01T23:59:59.000Z

326

Developing Oregon's renewable energy portfolio using fuzzy goal programming model  

Science Conference Proceedings (OSTI)

Renewable energy continues to be a hot topic in the United States affecting security and sustainability. A model to create renewable energy portfolio is established using guidelines drawn by Oregon's Renewable Portfolio Standard (RPS) legislation with ... Keywords: Fuzzy goal programming, Oregon, Renewable energy portfolio

Tugrul U. Daim; Gulgun Kayakutlu; Kelly Cowan

2010-11-01T23:59:59.000Z

327

Inferring robot goals from violations of semantic knowledge  

Science Conference Proceedings (OSTI)

A growing body of literature shows that endowing a mobile robot with semantic knowledge and with the ability to reason from this knowledge can greatly increase its capabilities. In this paper, we present a novel use of semantic knowledge, to encode information ... Keywords: Description logics, Environment stabilization, Fault detection and isolation, Goal autonomy, Mobile robotics, Norms, Ontology, Planning, Semantic maps

Cipriano Galindo, Alessandro Saffiotti

2013-10-01T23:59:59.000Z

328

Goal Orientation as Shaping the Firm's Entrepreneurial Orientation and Performance  

E-Print Network (OSTI)

Firmsí top decision makers cannot possibly know what decisions to make. Rather, decision makers must interpret their situations and make the best possible decision based upon their interpretation of their situations. In this dissertation, I examine decision-makersí goal orientations as influencing how they interpret their situations and then respond through making decisions in terms of their firmsí entrepreneurial orientations. I also examine whether these decisions influence firm performance. I surveyed top firm decision makers in the Association of Former Studentsí database at Texas A and M University. The hypotheses were tested using a structural equation modeling. Using a sample of 273 firms, I find that decision-makersí goal orientations shape their firmís entrepreneurial orientations, which in turn influence firm growth, relative performance, and expected future performance. Possessing a learning goal orientation was found to be positively related to innovativeness, proactiveness, and risk taking. A performance prove goal orientation was positively related to innovativeness, whereas a performance avoid goal orientation was negatively related to innovativeness and risk taking. Only a proactive firm posture was found to be positively related to firm performance. The results for this dissertation provide compelling support for upper echelons theory. Decision-makersí finer-grained personal attributes are found to shape firm-level outcomes. More specifically, decision-makersí goal orientations are found to shape the firmís entrepreneurial orientation and, to some extent, performance. Interestingly, coarse-grained personal attributes captured in demographic proxies and used as control variables in the analyses did not provide consistent support for upper echelons theory. The results suggest that scholars need to take a finer-grained perspective of upper echelons theory. A substantial amount of research has established the link between individualsí goal orientations and how they interpret and respond to their situations. The research here has extended this relationship to the top decision-making context in firms where individuals face strong situational forces caused by uncertainty, complexity, and dynamism. I hope that this research encourages other scholars to (1) examine more complex models of how decision-makersí personal attributes influence their entrepreneurial decisions in terms of both recognizing and exploiting opportunities, and (2) examine other finer-grained attributes of top decision makers within a finer-grained framework of the decision-making process.

Webb, Justin W.

2009-12-01T23:59:59.000Z

329

Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV  

Science Conference Proceedings (OSTI)

This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

R. P. Wells

2006-11-14T23:59:59.000Z

330

Installation Restoration Program. Remedial investigation report. Site 1. Fire Training Area. Volk Field Air National Guard Base, Camp Douglas, Wi. Volume 1. Final remedial investigation report  

SciTech Connect

Volume 1 of this report covers the Remedial Investigation conducted on Site 1, Fire Training Area at Volk Field Air National Guard Base. The remedial work is described and the testing conducted after remediation to insure all contamination has been removed. The study as conducted under the Air National Guard's Installation Restoration Program. Partial contents include: Meteorology; Hydrology; Soils; Water wells; Groundwater; Borings; Samplings; Chemical contamination; Migration; Decontamination.

Not Available

1990-07-01T23:59:59.000Z

331

Apparatus and method for extraction of chemicals from aquifer remediation effluent water  

DOE Patents (OSTI)

An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Moses, John M. (Dedham, MA); Barker, Donna L. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

332

Method and system for extraction of chemicals from aquifer remediation effluent water  

DOE Patents (OSTI)

A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Barker, Donna L. (Idaho Falls, ID)

2003-01-01T23:59:59.000Z

333

Savannah River Remediation Donates $10,000 to South Carolina State Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Donates $10,000 to South Carolina State Savannah River Remediation Donates $10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates $10,000 to South Carolina State Nuclear Engineering Program September 28, 2012 - 9:27am Addthis Savannah River Remediation presents a $10,000 to South Carolina State University to support its Nuclear Engineering Program. In the photo, from left: Kayla Miller, Savannah River Remediation Procurement Department and South Carolina State University 2010 graduate; Dr. John Corbitt, Acting Chairman of the South Carolina State University Board of Trustees; Dr. Cynthia Warrick, Interim South Carolina State University President; and Dave Olson, Savannah River Remediation President and Project Manager. Savannah River Remediation presents a $10,000 to South Carolina State

334

The U.S. Department of Energy Formerly Utilized Sites Remedial Action  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The U.S. Department of Energy Formerly Utilized Sites Remedial The U.S. Department of Energy Formerly Utilized Sites Remedial Action Program: Ensuring Protectiveness and Preserving Knowledge The U.S. Department of Energy Formerly Utilized Sites Remedial Action Program: Ensuring Protectiveness and Preserving Knowledge The U.S. Department of Energy Formerly Utilized Sites Remedial Action Program: Ensuring Protectiveness and Preserving Knowledge (Waste Management Conference 2010) The U.S. Department of Energy Formerly Utilized Sites Remedial Action Program: Ensuring Protectiveness and Preserving Knowledge More Documents & Publications Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP

335

Leveraging Tribal Renewable Resources to Support Military Energy Goals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEVERAGING TRIBAL RENEWABLE RESOURCES TO LEVERAGING TRIBAL RENEWABLE RESOURCES TO SUPPORT MILITARY ENERGY GOALS May 30-31, 2013 WILD HORSE PASS HOTEL AND CASINO 5040 Wild Horse Pass Blvd. Chandler, Arizona The seventh in a series of planned U.S. DOE Office of Indian Energy-sponsored strategic energy development forums, this Tribal Leader Forum is designed to provide information for western U.S. tribal leaders and military leaders on the renewable energy resource development potential on tribal lands, and the opportunities for partnerships between tribes and military installations to promote energy development on tribal lands to achieve military energy security goals. Tribal leaders will also have the opportunity to directly converse with each other and key military leadership by participating in a roundtable discussion to

336

Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groundwater Contamination Areas Shrink as EM Exceeds Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals June 26, 2013 - 12:00pm Addthis The 200 West Pump and Treat System is Hanford√ʬĬôs largest facility for treating contaminated groundwater. The 200 West Pump and Treat System is Hanford's largest facility for treating contaminated groundwater. A graphic showing the 200 West Pump and Treat plumes and well network. A graphic showing the 200 West Pump and Treat plumes and well network. The 200 West Pump and Treat System is Hanford's largest facility for treating contaminated groundwater. A graphic showing the 200 West Pump and Treat plumes and well network. RICHLAND, Wash. - Workers supporting groundwater cleanup for EM's

337

Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals  

Gasoline and Diesel Fuel Update (EIA)

1 1 Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals March 2006 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester. Energy Information Administration / Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

338

Green goal: Argonne wins federal award for energy savings | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Green goal: Argonne wins federal award for energy savings Green goal: Argonne wins federal award for energy savings By Louise Lerner * October 19, 2010 Tweet EmailPrint The U.S. Department of Energy's (DOE) Argonne National Laboratory won a 2010 Federal Energy and Water Management Award for its aggressive energy savings plan, which relies on in-house personnel to find creative ways to reduce energy. The lab also employs outside companies for larger projects. The federal awards recognize individuals, groups or agencies for outstanding contributions in energy efficiency, water conservation and bringing advanced, renewable energy technology to federal facilities. Instead of bringing in outside consultants, Argonne reduced costs by using its own team of engineers and maintenance mechanics to identify projects to save energy. When the projects save money, Argonne reinvests those funds in

339

Clean Energy Projects Helping Wisconsin Tribe Achieve Sustainability Goals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Projects Helping Wisconsin Tribe Achieve Clean Energy Projects Helping Wisconsin Tribe Achieve Sustainability Goals Clean Energy Projects Helping Wisconsin Tribe Achieve Sustainability Goals January 13, 2014 - 11:19am Addthis Before (left) and after photo of historic Wunder Hall, where Milwaukee's Forest County Potawatomi Community completed a major energy upgrade project. The building now serves as the tribe's economic development center. | Courtesy of Forest County Potawatomi Community Before (left) and after photo of historic Wunder Hall, where Milwaukee's Forest County Potawatomi Community completed a major energy upgrade project. The building now serves as the tribe's economic development center. | Courtesy of Forest County Potawatomi Community Lizana Pierce Project Manager, Tribal Energy Program

340

Report on goals of RTG impact member research  

DOE Green Energy (OSTI)

During recent years, Battelle has been engaged in research on impact members of radioisotope thermal generators (RTGs) for space use. Emphasis in the research to date has been on developing a materials technology. This effort has now reached a stage where consideration can be given to engineering measures for assessing and upgrading the performance of impact members in RTGs of current interest, including particularly General Electric Company's Multi-Hundred Watt (MHW) RTG and the General Purpose Heat Source (GPHS) being developed by Los Alamos Scientific Laboratory. New research goals have been set accordingly. The purpose of the report is to present these goals, give the rationale for them, and indicate the research approaches for meeting them.

Duckworth, W.H.

1978-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

What Next? A Dozen Information-Technology Research Goals  

E-Print Network (OSTI)

Charles Babbage's vision of computing has largely been realized. We are on the verge of realizing Vannevar Bush's Memex. But, we are some distance from passing the Turing Test. These three visions and their associated problems have provided long-range research goals for many of us. For example, the scalability problem has motivated me for several decades. This talk defines a set of fundamental research problems that broaden the Babbage, Bush, and Turing visions. They extend Babbage's computational goal to include highly-secure, highly-available, self-programming, self-managing, and self-replicating systems. They extend Bush's Memex vision to include a system that automatically organizes, indexes, digests, evaluates, and summarizes information (as well as a human might). Another group of problems extends Turing's vision of intelligent machines to include prosthetic vision, speech, hearing, and other senses. Each problem is simply stated and each is orthogonal from the others, though they share some common core technologies

Jim Gray

1999-11-11T23:59:59.000Z

342

Vehicles and E85 Stations Needed to Achieve Ethanol Goals  

SciTech Connect

This paper presents an analysis of the numbers of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85). The paper does not analyze issues related to the supply of ethanol which may turn out to be of even greater concern. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived and preliminary results for 2010, 2017 and 2030 consistent with the President s 2007 biofuels program goals are presented (1). A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85, and that 125 to 200 million flexible fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: (1) there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline, (2) the future prices of E85 and gasoline are uncertain; and (3) the method of analysis used is highly aggregated; it does not consider the potential benefits of regional strategies nor the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce FFVs and insure widespread availability of E85.

Greene, David L [ORNL

2008-01-01T23:59:59.000Z

343

Implementing Water Conservation Goals at Federal Facilities: Lessons Learned  

SciTech Connect

Executive Order 13123 (June 1999) directed Federal agencies to improve water-use efficiency at government-owned facilities. The order required agencies to determine their water consumption and establish a goal for reducing it. Under the leadership of the Department of Energy's Federal Energy Management Program (FEMP) and National Renewal Energy Laboratory (NREL), representatives from several agencies established a working group to recommend guidelines and methods for improving water efficiency. Some agencies were already implementing effective conservation measures. However, many agencies lacked ways to determine how much water they were using or what it cost. In 1999, FEMP established methods agencies can use to identify baseline water usage and set reasonable water efficiency improvement goals. As a result, 10 Best Management Practices (BMPs), similar to those established by the California Urban Water Conservation Council, were developed for Federal water efficiency. The Federal BMPs focus on office water use, landscaping, heating and cooling, leak detection, and education. They emphasize flexibility, cost-effectiveness, and creativity. This paper describes these methods for determining baseline usage, selecting appropriate BMPs for a facility, and meeting efficiency goals. It also includes lessons learned throughout the process.

Tanner, S.; Braver, D.

2001-12-01T23:59:59.000Z

344

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

Embrittlement Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop Augusta, GA, August 30, 2005 Funding and Duration * Timeline - Project start date: 7/20/05 - Project end date: 7/19/09 - Percent complete: 0.1% * Budget: Total project funding: 300k/yr * DOE share: 75% * Contractor share: 25% * Barriers - Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) - Assessment of hydrogen compatibility of the existing natural gas pipeline system for transporting hydrogen - Suitable steels, and/or coatings, or other materials to provide safe and reliable hydrogen transport and reduced capital cost 2 Team and Collaborators 3 * Industrial Partners: SECAT

345

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

SYLVANIA-CORNING NUCLEAR CORPORATION SYLVANIA-CORNING NUCLEAR CORPORATION BAYSIDE, NEW YORK VW. Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ..- .-- ---- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii Page 1 L 2 2 3 3 5 5 - --__( -_..... _ .._ ELIMINATION REPORT THE FORMER SYLVANIA-CORNING NUCLEAR CORPORATION BAYSIDE, NEW YORK L -rc c INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities of the Atomic Energy

346

NE-24 Unlverslty of Chicayo Remedial Action Plan  

Office of Legacy Management (LM)

(YJ 4 tlsj .?I2 (YJ 4 tlsj .?I2 416 17 1983 NE-24 Unlverslty of Chicayo Remedial Action Plan 22&d 7 IA +-- E. I.. Keller, Director Technical Services Division Oak Ridge Operations Ufflce In response to your memorandum dated July 29, 1983, the Field Task Proposal/Agreement (FTP/A) received frw Aryonne National Laboratory (ANL) appears to be satisfactory, and this office concurs in the use of ANL to provide the decontamination effort as noted in the FTP/A. The final decontaminatton report should Include the data needed for certiff- cation of the cleanup and any contamination left In place, e.g., sewer lines should be so documented in the permanent records of the University as well as the certification documents and reports. The remedial action to be conducted appears to be clearly InsIgnifIcant from an environmental

347

Monticello Mill Tailings Site Operable Unit Ill Interim Remedial Action  

Office of Legacy Management (LM)

Site Site Operable Unit Ill Interim Remedial Action Mark Perfxmed Under DOE Contrici No. DE-AC13-96CJ873.35 for th3 U.S. De[:ar!menf of Energy app~oveJioi'ptiL#ic re1ease;dCinWlionis Unlimilra' This page intentionally left blank Monticello Mill Tailings Site Operable Unit I11 Interim Remedial Action Annual Status Report August 1999 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Project Number MSG-035-0011-00-000 Document Number Q0017700 Work Performed Under DOE Contract Number DE-AC13-96GJ87335 Task Order Number MAC99-03 This page intentionally blank Document Number Q0017700 Acronyms Contents Page ACRONYMS .............................................................................................................................. V

348

Final Report Northeast Site Area B NAPL Remediation Project  

Office of Legacy Management (LM)

Northeast Site Area B Northeast Site Area B NAPL Remediation Project at the Young - Rainey STAR Center Largo, Pinellas County, Florida April 2007 Office of Legacy Management DOE M/1457 2007 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank DOE-LM/1457-2007 Final Report Northeast Site Area B NAPL Remediation Project at the Young - Rainey STAR Center Largo, Pinellas County, Florida April 2007 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado

349

Oak Ridge Operations Formerly Utilized Sites Remedial Action Program  

Office of Legacy Management (LM)

IC77GLg /'-Oi. SEP 20 1982 IC77GLg /'-Oi. SEP 20 1982 10-05-04B-001 Deportment of Energy Oak Ridge Operations Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-810R20722 PRELIMINARY ENGINEERING EVALUATION OF REMEDIAL ACTION ALTERNATIVES BAYO CANYON SITE, LOS ALAMOS, NEW MEXICO SEPTEMBER 1982 Bechtel Job 14501 Bechtel National, Inc. Nuclear Fuel Operations LEGAL NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use

350

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT,  

Office of Legacy Management (LM)

REPORT, REPORT, FOR AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) WATERVLIET, NEW YORK, AND DUNKIRK, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste.Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES * 1 2 2 2 3 4 4 . . . 111 ELIMINATION REPORT AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) WATERVLIET. NEW YORK, AND DUNKIRK, NEW YORK INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and

351

Remedial Alternative Selection for the F Area Tank Farm,  

NLE Websites -- All DOE Office Websites (Extended Search)

Notice of Availability: Notice of Availability: Explanation of Significant Difference for Incorporating Tanks 18 and 19 into Revision 1 Interim Record Of Decision Remedial Alternative Selection for the F Area Tank Farm, Waste Tanks 17 and 20 at the Savannah River Site The Explanation of Significant Difference for Incorporating Tanks 18 and 19 into Revision 1 Interim Record of Decision Remedial Alternative Selection for the F Area Tank Farm, (hereafter referred to as the Tank 18 and 19 ESD) is being issued by the U.S. Department of Energy (DOE), the lead agency for the Savannah River Site (SRS), with concurrence by the U.S. Environmental Protection Agency - Region 4 (EPA), and South Carolina Department of Health and Environmental Control (SCDHEC). The Tank 18 and 19 ESD modifies

352

In-situ groundwater remediation by selective colloid mobilization  

DOE Patents (OSTI)

An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.

Seaman, John C. (New Ellenton, SC); Bertch, Paul M. (Aiken, SC)

1998-01-01T23:59:59.000Z

353

ENVIRONMENTAL ASSESSMENT OF No REMEDIAL ACTION AT THE INACTIVE URANIFEROUS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 206 7 206 REV. 0 ENVIRONMENTAL ASSESSMENT OF No REMEDIAL ACTION AT THE INACTIVE URANIFEROUS LIGNITE ASHING SITES AT BELFIELD AND BOWMAN. NORTH DAKOTA United States Department of Energy Uranium Mill Tailings Remedial Action Project June 1997 INTENDED FOR PUBLIC RELEASE This report has been reproduced from the best available copy. Available in paper copy and microfiche Number of pages in this report: 5 8 DOE and DOE contractors can obtain copies of this report from: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 (61 5) 576-8401 This report is publicly available from: National Technical Information Service Department of Commerce 5285 Port Royai Road Springfield, VA 22161 (703) 487-4650 DOE/EA-1206 REV. 0 ENVIRONMENTAL ASSESSMENT

354

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIkNATION REPORT  

Office of Legacy Management (LM)

ELIkNATION REPORT ELIkNATION REPORT .FOR WESTINGHOUSE .ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Deconrmissioning Projects l CONTENTS INTRODUCTICIN BACKGROUND. Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 2 2 2' 4 4 iii ELIMINATION~REPORT WESTINGHOUSE ATOMIC POWER,DEVELOPMENT,PLANT: EAST PITTSBURGH PLANT: 'FOREST HILLS ,PITTS.BURGH, PENNSYLVANIA INTRODUCTION The Department of,Energy (DOE), Office of Nuclear Energy, Office of 'Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices and

355

In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer  

NLE Websites -- All DOE Office Websites (Extended Search)

In Situ Biological Uranium Remediation In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer Matthew Ginder-Vogel1, Wei-Min Wu1, Jack Carley2, Phillip Jardine2, Scott Fendorf1 and Craig Criddle1 1Stanford University, Stanford, CA 2Oak Ridge National Laboratory, Oak Ridge, TN Microbial Respiration Figure 1. Uranium(VI) reduction is driven by microbial respiration resulting in the precipitation of uraninite. Uranium contamination of ground and surface waters has been detected at numerous sites throughout the world, including agricultural evaporation ponds (1), U.S. Department of Energy nuclear weapons manufacturing areas, and mine tailings sites (2). In oxygen-containing groundwater, uranium is generally found in the hexavalent oxidation state (3,4), which is a relatively soluble chemical form. As U(VI) is transported through

356

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM - ELIMINATION REPORT FOR  

Office of Legacy Management (LM)

- - ELIMINATION REPORT FOR . UNIVERSITY OF NEVADA MACKAY SCHOOL OF MINES RENO, NEVADA s,d k I",, ici ;3J(, i Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES 1 , Page . 1 2 2 2' 3 3 iii The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions) has reviewed the past activities conducted under contract to the Atomic Energy Conrmission (AEC) at the University of Nevada, Mackay

357

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

FORMER ALLIED CHEMICAL CORPORATION, CHEMICALS COMPANY FORMER ALLIED CHEMICAL CORPORATION, CHEMICALS COMPANY (NOW GENERAL CHEMICAL CORPORATION) NORTH CLAYMONT, DELAWARE Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioni.ng Projects " .___ . ..-. --.- ------ ". CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 1 1 2 2 2 4 ii INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities of the Manhattan Engineer -- District (MED) and the Atomic Energy Commission (AEC) at the Allied Chemical

358

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

AMOCO CHEMICAL COMPANY AMOCO CHEMICAL COMPANY (THE FORMER TEXAS CITY CHEMICALS, INC.) TEXAS CITY, TEXAS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS Summary of Findings REFERENCES ii --.. ---_ .l.- _-__II__-_. -. Page 1 7 7 ' c . ELIMINATION REPORT AMOCO CHEMICAL COMPANY (THE FORMER TEXAS CITY CHEMICALS, INC.) TEXAS CITY, TEXAS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions), has reviewed the past activities conducted on behalf of the Atomic

359

Supporting soil remediation at Fernald by electron beam methods  

SciTech Connect

Electron beam techniques have been used to characterize uranium-contaminated soils at the Fernald Site, Ohio. The major uranium phases have been identified by analytical electron microscopy (AEM) as uranyl phosphate (autunite), uranium oxide (uraninite), and uranium phosphite [U(PO{sub 3}){sub 4}]. Luminescence and X-ray absorption spectroscopy incorrectly identified uranium oxide hydrate (schoepite) as the major phase in Fernald soils. The solubilities of schoepite and autunite are very different, so a solubility-dependent remediation method selected for schoepite will not be effective for removing autunite. AEM is the only technique capable of precisely identifying unknown submicron phases. The uranium phosphite has been found predominantly at the incinerator site at Fernald. This phase has not been removed successfully by any of the chemical remediation technologies. We suggest that an alternative physical extraction procedure be applied to remove this phase.

Buck, E.C.; Brown, N.R.; Dietz, N.L.; Cunnane, J.C.

1994-02-01T23:59:59.000Z

360

Using GIS to Identify Remediation Areas in Landfills  

Science Conference Proceedings (OSTI)

This paper reports the use of GIS mapping softwareóArcMap and ArcInfo Workstationóby the Idaho National Engineering and Environmental Laboratory (INEEL) as a non-intrusive method of locating and characterizing radioactive waste in a 97-acre landfill to aid in planning cleanup efforts. The fine-scale techniques and methods used offer potential application for other burial sites for which hazards indicate a non-intrusive approach. By converting many boxes of paper shipping records in multiple formats into a relational database linked to spatial data, the INEEL has related the paper history to our current GIS technologies and spatial data layers. The wide breadth of GIS techniques and tools quickly display areas in need of remediation as well as evaluate methods of remediation for specific areas as the site characterization is better understood and early assumptions are refined.

Linda A.Tedrow

2004-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Environmental Restoration Strategic Plan. Remediating the nuclear weapons complex  

SciTech Connect

With the end of the cold war, the US has a reduced need for nuclear weapons production. In response, the Department of Energy has redirected resources from weapons production to weapons dismantlement and environmental remediation. To this end, in November 1989, the US Department of Energy (DOE) established the Office of Environmental Restoration and Waste Management (renamed the Office of Environmental Management in 1994). It was created to bring under a central authority the management of radioactive and hazardous wastes at DOE sites and inactive or shut down facilities. The Environmental Restoration Program, a major component of DOE`s Environmental Management Program, is responsible for the remediation and management of contaminated environmental media (e.g., soil, groundwater, sediments) and the decommissioning of facilities and structures at 130 sites in over 30 states and territories.

1995-08-01T23:59:59.000Z

362

Least-Cost Groundwater Remediation Using Uncertain Hydrogeological Information  

SciTech Connect

The design of groundwater remediation pump-and-treat well networks under aquifer parameter measurement uncertainty can be addressed using an optimal-design strategy based upon the concept of robust optimization. The robust-optimization approach allows for the admission of design alternatives that do not satisfy all design constraints. However in the selection process the algorithm penalizes such selections based upon the number of constraints violated. The result is a design which balances the importance of reliability with overall project cost. The robust-optimization method has been applied to the problem of groundwater plume containment and risk-based groundwater remediation design. Designs dedicated to groundwater-plume containment assure that the contaminant plume will not extend beyond a prespecified perimeter. Inwardly directed groundwater velocity must be achieved along this perimeter. The outer-approximation optimization technique in combination with a groundwater flow model ( PTC) is used to solve this optimal-design problem.

George F. Pinder; Karen Ricciardi; George P. Karatzas

2001-11-28T23:59:59.000Z

363

FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT FOR FORMER CARPENTER STEEL COMPANY; 101 WEST BERN STREET; READING, PENNSYLVANIA December 1991 U.S. Department of Energy Office of Environmental Restoration Elimination Report Former Carpenter Steel Company CONTENTS INTRODUCTION ........................... 1 BACKGROUND ............................ 1 Site Function ......................... Site Description. ....................... : Radiological History and Status ................ 2 ELIMINATION ANALYSIS ....................... 3 REFERENCES ............................ 4 Elimination Report Former Carpenter Steel Company INTRODUCTION The Department of Energy (DOE), Office of Environmental Restoration, has reviewed the past activities of the Manhattan Engineer District (MEO) and

364

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

< < .. ,:. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR JESSOP STEEL COMPANY; 500 GREEN STREET: WASHINGTON, PENNSYLVANIA December 1991 U.S. Department of Energy Office of Environmental Restoration Elimination Report Jessop Steel Company CONTENTS INTRODUCTION ...................... .'. .... 1 BACKGROUND ............................. 1 Site Function Site Description : : : : : : : .................................... : Radiological History and Status ................. 2 ELIMINATION ANALYSIS ........................ 3 REFERENCES .............................. 4 Elimination Report Jessop Steel Company 1 INTRODUCTION The Department of Energy (DOE)., Office of Environmental Restoration, has reviewed the past activities of the Manhattan Engineer District (MED) and

365

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

REMEDIAL ACTION PROGRAM ELIMINATION REPORT SONABOND ULTRASONICS FORMERLY AEROPROJECTS, INC. 200-T E. ROSEDALE AVENUE WEST CHESTER,~PENNSYLVANIA December 1991 U.S. Department of Energy Office of Environmental Restoration and Waste Management Office of Environmental Restoration Office of Eastern Area Programs . . . CONTENTS INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS . . . . . . . . . . . . . . . . . . . REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . m . . 1 . . 1 . . 2 . . 2 I . . ELIMINATIO N REPO R T SONABOND ULTRASONICS FORMERLY AEROPROJECTS, INC. 200-T E. ROSEDALE AVENUE W EST CHESTER, PENNSYLVANIA

366

Handbook of Remedial Alternatives for MGP Sites with Contaminated Sediments  

Science Conference Proceedings (OSTI)

Contaminated sediment management is a rapidly developing and maturing field of environmental engineering, with an expansive set of publicly available documents in the scientific and engineering literature. This Handbook of Remedial Alternatives for MGP Sites with Contaminated Sediments provides a compendium of the state-of-the-practice from the literature, and augments it with practical case-study experience from the field. It is intended to provide MGP site-managers with a single source document for eva...

2007-02-26T23:59:59.000Z

367

Remediation of Embedded Piping: Trojan Nuclear Plant Decommissioning Experience  

Science Conference Proceedings (OSTI)

Characterization, decontamination, survey, and/or removal of contaminated embedded piping can have a substantial financial impact on decommissioning projects, depending on the project approach. This report presents a discussion of the Trojan Embedded Pipe Remediation Project (EPRP) activities, including categorization and characterization of affected piping, modeling for the proposed contamination acceptance criteria, and evaluations of various decontamination and survey techniques. The report also descr...

2000-10-19T23:59:59.000Z

368

Tank waste remediation system nuclear criticality safety program management review  

SciTech Connect

This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.

BRADY RAAP, M.C.

1999-06-24T23:59:59.000Z

369

Solvent Extraction for Remediation of Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

EPRI has assessed the feasibility of using a solvent extraction process to remove coal tar from the subsurface or to treat contaminated soil excavated from manufactured gas plant (MGP) sites. The assessment indicates that in situ solvent extraction may recover a significant amount of tar from the subsurface within a reasonable timeframe, provided subsurface conditions are conducive to process implementation. This work will help utilities searching for cost-effective technologies to remediate MGP sites.

1993-02-18T23:59:59.000Z

370

Acoustically enhanced remediation of contaminated soil and ground water  

SciTech Connect

This program systematically evaluates the use of acoustic excitation fields (AEFs) to increase fluid and contaminant extraction rates from a wide range of unconsolidated soils. Successful completion of this program will result in a commercially-viable, advanced in-situ remediation technology that will significantly reduce clean-up times and costs. This technology should have wide applicability since it is envisioned to augment existing remediation technologies, such as traditional pump and treat and soil vapor extraction, not replace them. The overall program has three phases: Phase 1--laboratory scale parametric investigation; Phase 2--technology scaling study; Phase 3--field demonstration. Phase 1 of the program, corresponding to this period of performance, has as its primary objectives to provide a laboratory-scale proof of concept, and to fully characterize the effects of AEFs on fluid and contaminant extraction rates in a wide variety of soil types. The laboratory measurements of the soil transport properties and process parameters will be used in a computer model of the enhanced remediation process. A Technology Merit and Trade Study will complete Phase 1.

Iovenitti, J.L.; Rynne, T.M.; Spencer, J.W. Jr.

1994-12-31T23:59:59.000Z

371

FORMERLY UTILIZED elTEB REMEDIAL ACTION PROORAM [FUSRAP] AND  

Office of Legacy Management (LM)

bE8IQM CRITERIA FOR bE8IQM CRITERIA FOR r FORMERLY UTILIZED elTEB REMEDIAL ACTION PROORAM [FUSRAP] AND r 8URPLUS FACIL~TIES MANAOEMENT PROQRAM [SFMPI FEBRUARY 1886 i r s o i - o o - ~ c - o l - 1 ~ R e v . 1 DESIGN CRITERIA FOR FORMERLY UTILIZED Sf TES REMEDIAL' ACTION PROGAM ( PUSRAPL AND . . -- SURPLUS F A C I L I T I E S UANAGEMENT PROGRAM ( SFMP ( I S S U E D FOR CLIENT APPROVAL) SF proved by: 2-24-86 D a t e T e c h n i c a l Services D i v i s i o n A p p r o v e d by: 2-24-86 D a t e C o n s t r u c t i o n a n d E n g i n e e r i n g Oak R i d g e O p e r a t i o n s O f f ice 14SOl-00-PC-01 Rev. 1 PREFACE T O DESIGN CRITERIA These design criteria have been written in a generic form that sunmarizes criteria applicabl'e for remedial action and long-tern ranasenent activities associated with t h e radioactive wastes at the FOSRAP *and SFflP sites. Site-specific information i

372

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

WINCHESTER ENGINEERING AND ANALYTICAL CENTER WINCHESTER ENGINEERING AND ANALYTICAL CENTER (NORTHEASTERN RADIOLOGICAL HEALTH LABORATORY) WINCHESTER, MASSACHUSE'ITS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects . . I . I C O N T E N T S IN T R O D U C T IO N B A C K G R O U N D S i te F u n c ti o n S i te D e s c ri p ti o n R a d i o l o g i c a l H i s to ry a n d S ta tu s E L IM IN A T IO N A N A L Y S IS R E F E R E N C E S - P a g e 1 2 2 2 3 5 5 i i i -..- - ELIMINATION REPORT WINCHESTER ENGINEERING AND ANALYTICAL CENTER (NORTHEASTERN RADIOLOGICAL HEALTH LABORATORY) WINCHESTER, MASSACHUSETTS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Terminal Waste Disposal and Remedial Action, Division of Remedial Action Projects (and/or predecessor agencies, offices and divisions,)

373

Uranium Mill Tailings Remedial Action (UMTRA) Project. [UMTRA project  

SciTech Connect

The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, hereinafter referred to as the Act.'' Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial action at designated inactive uranium processing sites (Attachment 1 and 2) and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing site. The purpose of the remedial actions is to stabilize and control such uranium mill tailings and other residual radioactive materials in a safe and environmentally sound manner to minimize radiation health hazards to the public. The principal health hazards and environmental concerns are: the inhalation of air particulates contaminated as a result of the emanation of radon from the tailings piles and the subsequent decay of radon daughters; and the contamination of surface and groundwaters with radionuclides or other chemically toxic materials. This UMTRA Project Plan identifies the mission and objectives of the project, outlines the technical and managerial approach for achieving them, and summarizes the performance, cost, and schedule baselines which have been established to guide operational activity. Estimated cost increases by 15 percent, or if the schedule slips by six months. 4 refs.

Not Available

1989-09-01T23:59:59.000Z

374

EVALUATION OF REMEDIATION TECHNOLOGIES FOR PLUTONIUM CONTAMINATED SOIL  

SciTech Connect

Soils contaminated with radionuclides are an environmental concern at most Department of Energy (DOE) sites. Clean up efforts at many of these sites are ongoing using conventional remediation techniques. These remediation techniques are often expensive and may not achieve desired soil volume reduction. Several studies using alternative remediation techniques have been performed on plutonium-contaminated soils from the Nevada Test Site. Results to date exhibit less than encouraging results, but these processes were often not fully optimized, and other approaches are possible. Clemson University and teaming partner Waste Policy Institute, through a cooperative agreement with the National Environmental Technologies Laboratory, are assisting the Nevada Test Site (NTS) in re-evaluating technologies that have the potential of reducing the volume of plutonium contaminated soil. This efforts includes (1) a through literature review and summary of (a) NTS soil characterization and (b) volume reduction treatment technologies applied to plutonium-contaminated NTS soils, (2) an interactive workshop for vendors, representatives from DOE sites and end-users, and (3) bench scale demonstration of applicable vendor technologies at the Clemson Environmental Technologies Laboratory.

Hoeffner, S. L.; Navratil, J. D.; Torrao, G.; Smalley, R.

2002-02-25T23:59:59.000Z

375

Hanford site tank waste remediation system programmatic environmental review report  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

Haass, C.C.

1998-09-03T23:59:59.000Z

376

Remedial evaluation of a UST site impacted with chlorinated hydrocarbons  

Science Conference Proceedings (OSTI)

During assessment and remedial planning of an underground storage tank (UST) site, it was discovered that chlorinated hydrocarbons were present. A network of selected wells were sampled for analysis of halogenated volatile organics and volatile organic compounds to determine the extent of constituents not traditionally associated with refined petroleum motor fuel products. The constituents detected included vinyl chloride, tetrachloroethylene (PCE), bromodichloromethane, and 2-chloroethylvinyl ether. These analytical data were evaluated as to what effect the nonpetroleum hydrocarbon constituents may have on the remedial approach utilized the site hydrogeologic properties to its advantage and took into consideration the residential nature of the impacted area. The geometry of the dissolved plume is very flat and broad, emanating from the site and extending downgradient under a residential area situated in a transmissive sand unit. Ground-water pumping was proposed from two areas of the dissolved plume including five wells pumping at a combined rate of 55 gallons per minute (gpm) at a downgradient position, and two wells on-site to remove free product and highly impacted ground water. Also, to assist in remediation of the dissolved plume and to control vapors, a bioventing system was proposed throughout the plume area.

Ilgner, B.; Rainey, E. (Geraghty and Miller, Inc., Oak Ridge, TN (United States)); Ball, M.; Schutt, M.

1993-10-01T23:59:59.000Z

377

In Situ Remediation Integrated Program: FY 1994 program summary  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials.

NONE

1995-04-01T23:59:59.000Z

378

Long term performance of different radon remedial methods in Sweden  

E-Print Network (OSTI)

The object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation comprised of 105 dwellings (91 single-family houses and 14 flats in multi-family buildings). In all of the dwellings remedial measures were carried out in the eighties. Before and immediately after the reduction the local measured the radon concentrations. New measurements of the radon concentrations have been made every third year; in 1991, 1994, 1997 and in 2000. Twelve different radon remedial methods and method combinations were used. The radon sources were building materials as well as sub-soils. In all of the dwellings the radon concentrations were measured by nuclear track films during 3 months (January-March) measurements and in half of them the air change rates by passive tracer gas methods. The results of the 2000 and the 1991 (within brackets) studies showed that the radon concentration was up to 200 Bq/m sup 3 in 54 (54) sin...

Clavensjoe, B

2002-01-01T23:59:59.000Z

379

Safety goals and functional performance criteria. [Advanced Reactor Design  

DOE Green Energy (OSTI)

This report discusses a possible approach to the development of functional performance criteria to be applied to evolutionary LWR designs. Key safety functions are first identified; then, criteria are drawn up for each individual function, based on the premise that no single function's projected unreliability should be allowed to exhaust the safety goal frequencies. In the area of core damage prevention, functional criteria are cast in terms of necessary levels of redundancy and diversity of critical equipment. In the area of core damage mitigation (containment), functional performance criteria are cast with the aim of mitigating post-core-melt phenomena with sufficient assurance to eliminate major uncertainties in containment performance. 9 refs.

Youngblood, R.W.; Pratt, W.T. (Brookhaven National Lab., Upton, NY (USA)); Hardin, W.B. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of Regulatory Applications)

1990-01-01T23:59:59.000Z

380

N reactor individual risk comparison to quantitative nuclear safety goals  

Science Conference Proceedings (OSTI)

A full-scope level III probabilistic risk assessment (PRA) has been completed for N reactor, a US Department of Energy (DOE) production reactor located on the Hanford Reservation in the state of Washington. Sandia National Laboratories (SNL) provided the technical leadership for this work, using the state-of-the-art NUREG-1150 methodology developed for the US Nuclear Regulatory Commission (NRC). The main objectives of this effort were to assess the risks to the public and to the on-site workers posed by the operation of N reactor, to identify changes to the plant that could reduce the overall risk, and to compare those risks to the proposed NRC and DOE quantitative safety goals. This paper presents the methodology adopted by Westinghouse Hanford Company (WHC) and SNL for individual health risk evaluation, its results, and a comparison to the NRC safety objectives and the DOE nuclear safety guidelines. The N reactor results, are also compared with the five NUREG-1150 nuclear plants. Only internal events are compared here because external events are not yet reported in the current draft NUREG-1150. This is the first full-scope level III PRA study with a detailed quantitative safety goal comparison performed for DOE production reactors.

Wang, O.S.; Rainey, T.E.; Zentner, M.D.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Seismic design and evaluation criteria based on target performance goals  

SciTech Connect

The Department of Energy utilizes deterministic seismic design/evaluation criteria developed to achieve probabilistic performance goals. These seismic design and evaluation criteria are intended to apply equally to the design of new facilities and to the evaluation of existing facilities. In addition, the criteria are intended to cover design and evaluation of buildings, equipment, piping, and other structures. Four separate sets of seismic design/evaluation criteria have been presented each with a different performance goal. In all these criteria, earthquake loading is selected from seismic hazard curves on a probabilistic basis but seismic response evaluation methods and acceptable behavior limits are deterministic approaches with which design engineers are familiar. For analytical evaluations, conservatism has been introduced through the use of conservative inelastic demand-capacity ratios combined with ductile detailing requirements, through the use of minimum specified material strengths and conservative code capacity equations, and through the use of a seismic scale factor. For evaluation by testing or by experience data, conservatism has been introduced through the use of an increase scale factor which is applied to the prescribed design/evaluation input motion.

Murray, R.C.; Nelson, T.A. [Lawrence Livermore National Lab., CA (United States); Kennedy, R.P. [Structural Mechanics Consulting, Inc., Yorba Linda, CA (United States); Short, S.A. [EQE International, Inc., Irvine, CA (United States)

1994-04-01T23:59:59.000Z

382

Remedial investigation work plan for the Upper East Fork Poplar Creek Characterization Area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

More than 200 contaminated sites created by past waste management practices have been identified at the Y-12 Plant. Many of the sites have been grouped into operable units based on priority and on investigative and remediation requirements. The Y-12 Plant is one of three major facilities on the ORR. The ORR contains both hazardous and mixed-waste sites that are subject to regulations promulgated under the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986. Under RCRA guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions.

NONE

1996-03-01T23:59:59.000Z

383

DOE-EMSP Final Report: Characterization of Changes in Colloid and DNAPL Affecting Surface Chemistry and Remediation  

SciTech Connect

The waste disposal to the M-area basin and A-14 outfall at the Savannah River Department of Energy facility in Aiken SC (USA) included a wide variety of inorganic aqueous flows and organic solvents in the form of dense non-aqueous phase liquids (DNAPL). The DNAPL has migrated through the subsurface resulting in widespread groundwater contamination. The goal of this research was to identify and quantify processes that could have affected the migration and remediation of the DNAPL in the subsurface. It was hypothesized that the variety of waste disposed at this site could have altered the mineral, microbial and DNAPL properties at this site relative to other DNAPL sites. The DNAPL was determined to have a very low interfacial tension and is suspected to be distributed in fine grained media, thereby reducing the effectiveness of soil vapor extraction remediation efforts. Although the DNAPL is primarily comprised of tetrachloroethene and trichloroethane, it also contains organic acids and several heavy metals. Experimental results suggest that iron from the aqueous and DNAPL phases undergoes precipitation and dechlorination reactions at the DNAPL-water interface, contributing to the low interfacial tension and acidity of the DNAPL. Biological activity in the contaminated region can also contribute to the low interfacial tension. PCE degrading bacteria produce biosurfactants and adhere to the DNAPL-water interface when stressed by high tetrachloroethene or low dissolved oxygen concentrations. The presence of iron can reduce the interfacial tension by nearly an order of magnitude, while the PCE degraders reduced the interfacial tension by nearly 50%. Abiotic changes in the mineral characteristics were not found to be substantially different between contaminated and background samples. The research completed here begins to shed some insight into the complexities of DNAPL fate and migration at sites where co-disposal of many different waste products occurred. Quantifying the low interfacial tension of the SRS DNAPL helps to formulate a new conceptual picture of the subsurface DNAPL migration and provides an explanation of the limited effectiveness of remediation efforts. Alternative designs for remediation that are more effective for sites with DNAPL in fine grained media are required.

Susan E. Powers; Stefan J. Grimberg; Miles Denham

2007-02-07T23:59:59.000Z

384

EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

355: Remediation of the Moab Uranium Mill Tailings, Grand and 355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah Summary The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy's (DOE's) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water

385

DOE/OR/20722-88 Formerly Utilized Sites Remedial Action Program (FUSRAP)  

Office of Legacy Management (LM)

88 88 . Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-810R20722 POST-REMEDIAL ACTION REPORT FOR THE WAYNE SITE - 1985 AND 1987 Wayne, New Jersey March 1989 Bechtel National, Inc. DOE/OR/20722-88 POST-REMEDIAL ACTION REPORT FOR THE WAYNE SITE - 1985 AND 1987 WAYNE, NEW JERSEY MARCH 1989 Prepared for UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722 BY R. M. Howard Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 TABLE OF CONTENTS Paqe 1.0 2.0 3.0 4.0 Introduction 1.1 Background 1.2 History Remedial Action Guidelines 5 Remedial Action 3.1 Cleanup/Decontamination Activities 3.2 Contamination Control During the Cleanup 8 8 11 Post-Remedial-Action Sampling 13

386

In Situ Bioremediation Interim Remedial Action Report, Test Area North, Operable Unit 1-07B  

E-Print Network (OSTI)

This Interim Remedial Action Report is for the in situ bioremediation remedial component of Operable Unit 1-07B at Test Area North at the Idaho National Laboratory. Under U.S. Environmental Protection Agency guidance, an interim report for a long-term groundwater remedial action provides a chronology of events and a description of the remedial action facilities, systems, components, and operating documents that lead to a declaration that the system is operational and functional. It is the conclusion of this report that the in situ bioremediation remedial component includes the infrastructure and programs necessary to achieve the objectives of the in situ bioremediation remedial component for contaminated groundwater in the vicinity of the TSF-05 well; therefore, it can be deemed operational and functional. iii ivCONTENTS ABSTRACT.................................................................................................................................................iii

Unit -b; Prepared For The

2009-01-01T23:59:59.000Z

387

Remediation progress at the Iron Mountain Mine Superfund site, California. Information Circular/1991  

Science Conference Proceedings (OSTI)

The report was prepared by the U.S. Bureau of Mines to present a brief history of the listing of Iron Mountain Mine as a Superfund site on the National Priorities List (NPL) and subsequent remedial actions. The mine area is located on 4,400 acres near Redding, CA, and includes underground workings, an open pit area, waste rock dumps, and tailings piles. The property involves multiple sources of acid mine drainage (AMD) that are high in copper, zinc, and cadmium. The selected remedial actions, based on the Record of Decision of 1986, would partially cap the richmond mineralized zone to reduce infiltration of clean water, divert clean surface waters away from contaminated areas, fill surface subsidence areas, and enlarge the Spring Creek debris dam to provide increased surge capacity. Site remediation efforts at Iron Mountain are well into the remedial design-remedial action phase. Details of activities and designs of remedial elements are presented, and future activities, discussed.

Biggs, F.R.

1991-01-01T23:59:59.000Z

388

Feasibility study for remedial action for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri  

SciTech Connect

The U.S. Department of Energy (DOE) and the U.S. Department of Army (DA) are conducting an evaluation to identify the appropriate response action to address groundwater contamination at the Weldon Spring Chemical Plant (WSCP) and the Weldon Spring Ordnance Works (WSOW), respectively. The two areas are located in St. Charles County, about 48 km (30 rni) west of St. Louis. The groundwater operable unit (GWOU) at the WSCP is one of four operable units being evaluated by DOE as part of the Weldon Spring Site Remedial Action Project (WSSRAP). The groundwater operable unit at the WSOW is being evaluated by the DA as Operable Unit 2 (OU2); soil and pipeline contamination are being managed under Operable Unit 1 (OU1). Remedial activities at the WSCP and the WSOW are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. A remedial investigation/feasibility study (RI/FS) work plan summarizing initial site conditions and providing site hydrogeological and exposure models was published in August of 1995 (DOE 1995). The remedial investigation (RI) and baseline risk assessment (BRA) have also recently been completed. The RI (DOE and DA 1998b) discusses in detail the nature, extent, fate, and transport of groundwater and spring water contamination. The BRA (DOE and DA 1998a) is a combined baseline assessment of potential human health and ecological impacts and provides the estimated potential health risks and ecological impacts associated with groundwater and springwater contamination if no remedial action were taken. This feasibility study (FS) has been prepared to evaluate potential options for addressing groundwater contamination at the WSCP and the WSOW. A brief description of the history and environmental setting of the sites is presented in Section 1.1, key information relative to the nature and extent of contamination is presented in Section 1.2, and the results of the BRA are summarized in Section 1.3. The objective of this FS is discussed in Section 1.4, and preliminary remediation goals are identified in Section 1.5. The organization of the remaining chapters of this FS is outlined in Section 1.6.

NONE

1999-07-15T23:59:59.000Z

389

Recommended mission directed goals for electric vehicle battery research and development. The task force on electric vehicle battery goals  

SciTech Connect

Research and development goal packages were developed for the state-of-the-art, flow-through, and bipolar lead-acid batteries, nickel/iron, nickel/zinc, nickel/cadmium, zinc/bromine, iron/air, lithium/iron sulfide, and sodium/sulfur technologies. Since each battery must satisfy mission power/energy requirements throughout every cycle of its operating life, the principal ''design point'' is the end-of-life condition. Since all batteries exhibit deteriorating performance with age, excess kWh capacity of 20 to 30 percent is required early in life. The Battery Panel first identified present state-of-the-art performance characteristics and design interrelationships for each battery technology, and projected the degree of advance expected by 1995. Near-term and 1995 design tradeoffs were modeled using the EVA computerized system developed by ANL. The next step was to target each battery system for a single range (80, 120 or 160 km), depending on its projected 1995 capabilities. For each battery, baseline calculations were carried out assuming the maximum battery weight (695 kg) to be on board. In addition to performance, life, and cost goals, development targets were also established for efficiency, maintenance, and allowable self-discharge rate. The Task Force attempted to establish battery cost requirements, assuming economic parity (in 1995) with other modes of transportation.

Not Available

1986-03-01T23:59:59.000Z

390

DOE/OFVZ1949402 Formerly Utilized Sites Remedial Action Program (FUSRAP)  

Office of Legacy Management (LM)

DOE/OFVZ1949402 DOE/OFVZ1949402 Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-ACO5-9%OR21949 Post-Remedial Action Report for the Former Baker Brothers Site Toledd, Ohio . February 1997 . . DOWORRl949-402 POST-REMEDIAL ACTION REPORT FOR THE REMEDIAL ACTION ATTHE FORMER BAKER BROTHERS SITE TOLEDO. OHIO FEBRUARY 1997 . United States Department of Energy I OakRidgeOpcrationsOfficc Under Contract No. DE-AC059 I OR2 1949 BY Bcchtcl National, Inc. . . : ; '.' OakRldnc.Tc~~~.- ~--~-' -------m . . Be&cl Job No. 14501 CQNTENTS FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~~................................................................................ iv TABLES . . . . . . . ..i.................................................................................................................................

391

Remedial System Performance Improvement for the 200-ZP-1_PW-1 Operable Units at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Operations Review Report: Feasibility Study Strategies and Remedial System Performance Improvement for the 200- ZP-1/PW-1 Operable Units at Hanford Prepared for Office of Groundwater and Soil Remediation Office of Environmental Management February 9, 2007 i EXECUTIVE SUMMARY At the request of the U.S. Department of Energy, Headquarters' Office of Environmental Management, the Office of Groundwater and Soil Remediation (EM-22), performed a Remediation System Evaluation (RSE) of the 200-ZP-1/PW-1 groundwater pump and treat (P&T) system, as well as the vadose zone Soil Vapor Extraction (SVE) system at the Hanford

392

EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental Management Project, Fernald, Ohio  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the potential environmental impacts of a proposal to conduct remedial action at Operable Unit 4 at the Fernald Environmental Management Project.

393

A Comparison of Popular Remedial Technologies for Petroleum Contaminated Soils from Leaking Underground Storage Tanks  

E-Print Network (OSTI)

1992. Bioremediation of Petroleum Contaminated Sites. BocaApplied Bioremediation of Petroleum Hydrocarbons. Columbus:Eve. 1998. Remediation of Petroleum Contaminated Soils. Boca

Kujat, Jonathon D.

1999-01-01T23:59:59.000Z

394

Versatile microbial surface-display for environmental remediation and biofuels production  

E-Print Network (OSTI)

engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

Hawkes, Daniel S

2008-01-01T23:59:59.000Z

395

Audit Report APPROVAL OF TITLE X REMEDIATION CLAIMS, WR-B-99...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and codified as Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites (10 CFR 765). This regulation allowed for mining companies to submit...

396

Remedial Action Report for Operable Units 6-05 and 10-04, Phase III  

SciTech Connect

This Phase III remedial action report addresses the remediation of lead-contaminated soils found at the Security Training Facility STF-02 Gun Range at the Idaho National Laboratory Site. Phase I, consisting of developing and implementing institutional controls at Operble Unit 10-04 sites and developing and implementing Idaho National Laboratory Site-wide plans for both institutional controls and ecological monitoring, was addressed in a previous report. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase IV will remediate hazards from unexploded ordnance.

R. P. Wells

2007-08-15T23:59:59.000Z

397

Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

398

FORMERLY USED SITES REMEDIAL ACTION PROGRAM DESIGNATION SUMMARY  

Office of Legacy Management (LM)

USED SITES USED SITES REMEDIAL ACTION PROGRAM DESIGNATION SUMMARY FOR ALBA CRAFT LABORATORY OXFORD, OHIO October 1, 1992 U.S. DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL RESTORATION Designation Summary Alba Craft Laboratory. Oxford CONTENTS INTRODUCTION .......... . . ..................... 1 BACKGROUND Site Function ......................... Site Description ..................... 1 Owner History ................. .. 2 Radiological History and Status............ 2 Authority Review .................... .. 3 DESIGNATION DETERMINATION ........ ....... 3 REFERENCES . ............ .... . 3 Designation Summary Alba Craft Laboratory, Oxford INTRODUCTION The Department of Energy (DOE), Office of Environmental Restoration, has reviewed the past activities of the Atomic Energy Commission (AEC) at the

399

Adaptive management: a paradigm for remediation of public facilities  

SciTech Connect

Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a disruptive event suggest numerous advantages over preset linearly-structured plans by incorporating the flexibility and overlap of processes inherent in effective facility restoration. We discuss three restoration case studies (e.g., the Hart Senate Office Building anthrax restoration, Rocky Flats actinide remediation, and hurricane destruction restoration), that implement aspects of adaptive management but not a formal approach. We propose that more formal adoption of adaptive management principles could be a basis for more flexible standards to improve site-specific remediation plans under conditions of high uncertainty.

Janecky, David R [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory; Doerr, Ted B [NON LANL

2009-01-01T23:59:59.000Z

400

Activities of HPS standards committee in environmental remediation  

SciTech Connect

The Health Physics Society (HPS) develops American National Standards in the area of radiation protection using methods approved by the American National Standards Institute (ANSI). Two of its sections, Environmental Health Physics and Contamination Limits, have ongoing standards development which are important to some environmental remediation efforts. This paper describes the role of the HPS standards process and indicates particular standards under development which will be of interest to the reader. In addition, the authors solicit readers to participate in the voluntary standards process by either joining active working groups (WG) or suggesting appropriate and relevant topics which should be placed into the standards process.

Stencel, J.R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Chen, S.Y. [Argonne National Lab., IL (United States)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Enhancement of in situ microbial remediation of aquifers  

DOE Patents (OSTI)

Methods are provided for remediating subsurface areas contaminated by toxic organic compounds. An innocuous oil, such as vegetable oil, mineral oil, or other immiscible organic liquid, is introduced into the contaminated area and permitted to move therethrough. The oil concentrates or strips the organic contaminants, such that the concentration of the contaminants is reduced and such contaminants are available to be either pumped out of the subsurface area or metabolized by microorganisms. Microorganisms may be introduced into the contaminated area to effect bioremediation of the contamination. The methods may be adapted to deliver microorganisms, enzymes, nutrients and electron donors to subsurface zones contaminated by nitrate in order to stimulate or enhance denitrification.

Fredrickson, James K. (Kennewick, WA); Brockman, Fred J. (Kennewick, WA); Streile, Gary P. (both or Richland, WA); Cary, John W. (both or Richland, WA); McBride, John F. (Carrboro, NC)

1993-01-01T23:59:59.000Z

402

Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report  

SciTech Connect

In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989.

NONE

1996-06-01T23:59:59.000Z

403

Uranium Mill Tailings Remedial Action Project environmental protection implementation plan  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

Not Available

1994-10-01T23:59:59.000Z

404

Science Goals for the ARM Recovery Act Radars  

SciTech Connect

Science Goals for the ARM Recovery Act Radars. In October 2008, an ARM workshop brought together approximately 30 climate research scientists to discuss the Atmospheric Radiation Measurement (ARM) Climate Research Facility's role in solving outstanding climate science issues. Through this discussion it was noted that one of ARM's primary contributions is to provide detailed information about cloud profiles and their impact on radiative fluxes. This work supports cloud parameterization development and improved understanding of cloud processes necessary for that development. A critical part of this work is measuring microphysical properties (cloud ice and liquid water content, cloud particle sizes, shapes, and distribution). ARM measurements and research have long included an emphasis on obtaining the best possible microphysical parameters with the available instrumentation. At the time of the workshop, this research was reaching the point where additional reduction in uncertainties in these critical parameters required new instrumentation for applications such as specifying radiative heating profiles, measuring vertical velocities, and studying the convective triggering and evolution of three-dimensional (3D) cloud fields. ARM was already operating a subset of the necessary instrumentation to make some progress on these problems; each of the ARM sites included (and still includes) a cloud radar (operating at 35 or 94 GHz), a cloud lidar, and balloon-borne temperature and humidity sensors. However, these measurements were inadequate for determining detailed microphysical properties in most cases. Additional instrumentation needed to improve retrievals of microphysical processes includes radars at two additional frequencies for a total of three at a single site (35 GHz, 94 GHz, and a precipitation radar) and a Doppler lidar. Evolving to a multi-frequency scanning radar is a medium-term goal to bridge our understanding of two-dimensional (2D) retrievals to the 3D cloud field. These additional microphysical measurements would allow detailed cloud properties to be derived even in the presence of light precipitation. It is important to couple these detailed measurements of cloud microphysics to vertical motion on the cloud scale to couple microphysics with meteorological processes. Vertically pointing Doppler radars provide the vertical motion of cloud particles but, to separate particle motion from air motion, a wind profiler is required. The American Recovery and Reinvestment Act provided the means to address these needs and implement a multi-frequency suite of radars, including scanning radars, at each of the ARM sites. In addition, Doppler lidars have been deployed at several sites. With these new measurement capabilities, ARM has the measurement capabilities to tackle the problems of improving microphysical profile descriptions and evaluating the relationship between our current narrow-field-of view, zenith perspective on clouds to a description of the full 3D cloud field and its temporal evolution.

JH Mather

2012-05-29T23:59:59.000Z

405

Enhanced Remedial Amendment Delivery through Fluid Viscosity Modifications: Experiments and numerical simulations  

SciTech Connect

Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscosity of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a density difference between the fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior. The simulator may be used to predict the subsurface remediation performance when a shear thinning fluid is used to remediate a heterogeneous system.

Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.; Covert, Matthew A.

2008-07-29T23:59:59.000Z

406

Tank Waste Remediation System decisions and risk assessment  

SciTech Connect

The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize the highly radioactive Hanford Site tank wastes and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost effective manner. Additionally, the TWRS conducts, as part of this mission, resolution of safety issues associated with the wastes within the 177 underground radioactive waste tanks. Systems engineering principles are being applied to determine the functions and establish requirements necessary for accomplishing the TWRS mission (DOE 1994 draft). This systematic evaluation of the TWRS program has identified key decisions that must be executed to establish mission scope, determine requirements, or select a technical solution for accomplishing identified functions and requirements. Key decisions identified through the systematic evaluation of the TWRS mission are presented in this document. Potential alternative solutions to each decision are discussed. After-discussion and evaluation of each decision with effected stakeholder groups, the US Department of Energy (DOE) will select a solution from the identified alternatives for implementation. In order to proceed with the development and execution of the tank waste remediation program, the DOE has adopted a planning basis for several of these decisions, until a formal basis is established. The planning bases adopted by the DOE is continuing to be discussed with stakeholder groups to establish consensus for proceeding with proposed actions. Technical and programmatic risks associated with the planning basis adopted by the DOE are discussed.

Johnson, M.E.

1994-09-01T23:59:59.000Z

407

Analysis of SPR salt cavern remedial leach program 2013.  

SciTech Connect

The storage caverns of the US Strategic Petroleum Reserve (SPR) exhibit creep behavior resulting in reduction of storage capacity over time. Maintenance of oil storage capacity requires periodic controlled leaching named remedial leach. The 30 MMB sale in summer 2011 provided space available to facilitate leaching operations. The objective of this report is to present the results and analyses of remedial leach activity at the SPR following the 2011 sale until mid-January 2013. This report focuses on caverns BH101, BH104, WH105 and WH106. Three of the four hanging strings were damaged resulting in deviations from normal leach patterns; however, the deviations did not affect the immediate geomechanical stability of the caverns. Significant leaching occurred in the toes of the caverns likely decreasing the number of available drawdowns until P/D ratio criteria are met. SANSMIC shows good agreement with sonar data and reasonably predicted the location and size of the enhanced leaching region resulting from string breakage.

Weber, Paula D.; Gutierrez, Karen A.; Lord, David L.; Rudeen, David Keith [GRAM, Inc., Albuquerque, NM

2013-09-01T23:59:59.000Z

408

Contaminant plumes containment and remediation focus area. Technology summary  

Science Conference Proceedings (OSTI)

EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

NONE

1995-06-01T23:59:59.000Z

409

Technique for rapid establishment of American lotus in remediation efforts  

Science Conference Proceedings (OSTI)

A technique for increasing the establishment rate of American lotus (Nelumbo lutea) and simplifying planting was developed as part of a pond remediation project. Lotus propagation techniques typically require scarification of the seed, germination in heated water, and planting in nursery containers. Then mature (~ 1 yr) nursery-grown stock is transferred to planting site or scarified seed are broadcast applied. Mature plants should grow more quickly, but can be sensitive to handling, require more time to plant, and cost more. Scarified seeds are easier to plant and inexpensive, but have a lag time in growth, can fail to germinate, and can be difficult to site precisely. We developed an intermediate technique using small burlap bags that makes planting easier, provides greater germination success, and avoids lag time in growth. Data on survival and growth from experiments using mature stock, scarified seeds, and bag lotus demonstrate that bag lotus grow rapidly in a variety of conditions, have a high survival rate, can be processed and planted easily and quickly, and are very suitable for a variety of remediation projects

Ryon, Michael G [ORNL; Fortner, Allison M [ORNL; Goins, Kenneth N [ORNL; Jett, Robert T [ORNL; McCracken, Kitty [ORNL; Morris, Gail Wright [ORNL; Riazzi, Adam [Lincoln County HS, Hamlin WV; Roy, W Kelly [ORNL

2013-01-01T23:59:59.000Z

410

Uranium Mill Tailings Remedial Action Project (UMTRAP) Public Participation Plan  

SciTech Connect

The purpose of this Public Participation Plan is to explain the Department of Energy`s plan for involving the public in the decision-making process related to the Uranium Mill Tailings Remedial Action (UMTRA) Project. This project was authorized by Congress in the Uranium Mill Tailings Radiation Control Act of 1978. The Act provides for a cooperative effort with affected states and Indian tribes for the eventual cleanup of abandoned or inactive uranium mill tailings sites, which are located in nine western states and in Pennsylvania. Section 111 of the Act states, ``in carrying out the provisions of this title, including the designation of processing sites, establishing priorities for such sites, the selection of remedial actions and the execution of cooperative agreements, the Secretary (of Energy), the Administrator (of the Environmental Protection Agency), and the (Nuclear Regulatory) Commission shall encourage public participation and, where appropriate, the Secretary shall hold public hearings relative to such matters in the States where processing sites and disposal sites are located.`` The objective of this document is to show when, where, and how the public will be involved in this project.

NONE

1981-05-01T23:59:59.000Z

411

Review of the Vortec soil remediation demonstration program  

Science Conference Proceedings (OSTI)

The principal objective of the METC/Vortec program is to develop and demonstrate the effectiveness of the Vortec CMS in remediating soils contaminated with hazardous materials and/or low levels of radionuclides. To convincingly demonstrate the CMS`s capability, a Demonstration Plant will be constructed and operated at a DOE site that has a need for the remediation of contamination soil. The following objectives will be met during the program: (1) establish the glass chemistry requirements to achieve vitrification of contaminated soils found at the selected DOE site; (2) complete the design of a fully integrated soil vitrification demonstration plant with a capacity to process 25 TPD of soil; (3) establish the cost of a fully integrated soil demonstration plant with a capacity to process 25 TPD of soil; (4) construct and operate a fully integrated demonstration plant; (5) analyze all influent and effluent streams to establish the partitioning of contaminants and to demonstrate compliance with all applicable health, safety, and environmental requirements; (6) demonstrate that the CMS technology has the capability to produce a vitrified product that will immobilize the hazardous and radionuclide materials consistent with the needs of the specific DOE waste repositories.

Patten, J.S.

1994-12-31T23:59:59.000Z

412

Reliable Muddle: Transportation Scenarios for the 80% Greenhouse Gas Reduction Goal for 2050 (Presentation)  

DOE Green Energy (OSTI)

Presentation describing transportation scenarios for meeting the 2050 DOE goal of reducing greenhouse gases by 80%.

Melaina, M.; Webster, K.

2009-10-28T23:59:59.000Z

413

Fuel Technologies: Goals, Strategies, and Top Accomplishments; Vehicle Technologies Program (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet describes the top accomplishments, goals, and strategies of DOE's Fuel Technologies sub program.

Not Available

2009-04-01T23:59:59.000Z

414

Oil Independence: Achievable National Goal or Empty Slogan?  

Science Conference Proceedings (OSTI)

Oil independence has been a goal of U.S. energy policy for the past 30 years yet has never been rigorously defined. A rigorous, measurable definition is proposed: to reduce the costs of oil dependence to less than 1% of GDP in the next 20 to 25 years, with 95% probability. A simulation model incorporating the possibility of future oil supply disruptions and other sources of uncertainty is used to test whether two alternative energy policy strategies, Business as Usual and an interpretation of the strategy proposed by the National Commission on Energy Policy (NCEP), can achieve oil independence for the United States. Business as Usual does not produce oil independence. The augmented NCEP strategy comes close to achieving oil independence for the U.S. economy within the next 20-25 years but more is needed. The success of the strategy appears to be robust regardless of how the Organization of the Petroleum Exporting Countries (OPEC) responds to it. Expected annual savings are estimated to exceed $250 billion per year by 2030.

Greene, David L [ORNL; Leiby, Paul Newsome [ORNL; Patterson, Philip D [U.S. Department of Energy, Office of Planning, Budget and Analysis; Plotkin, Steven E [Argonne National Laboratory (ANL); Singh, Margaret K [Argonne National Laboratory (ANL)

2007-01-01T23:59:59.000Z

415

FTCP FY09 Operational Plan GOAL 2 Objectives and Actions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Technical Capability Program Federal Technical Capability Program FY 2009 Operational Plan Preserve and Enhance Technical Capability Action Plan F F E E D D E E R R A A L L T T E E C C H H N N I I C C A A L L C C A A P P A A B B I I L L I I T T Y Y P P R R O O G G R R A A M M F F Y Y 2 2 0 0 0 0 9 9 O O P P E E R R A A T T I I O O N N A A L L P P L L A A N N GOAL 2: Preserve and Enhance Technical Capability * Champions: Dave Chaney, NNSA Service Center and Larry Kelly, Oak Ridge Office Objectives/Actions Identify Resource and Organizational Structure Needs to Improve Qualification Consistency and Transportability * Champion: Allen Tate, SSO * Determine appropriate resource levels * Determine effective organizational structure Establish an Effective Mid-Level Recruitment Program * Champions:Sean Clayton, HQ HC-13 and Barry Weaver, ETS * Benchmark existing programs

416

Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography  

Science Conference Proceedings (OSTI)

This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

Owen, P.T.; Michelson, D.C.; Knox, N.P.

1985-09-01T23:59:59.000Z

417

Collinearity and Two-Step Estimation of Sample Selection Models: Problems, Origins, and Remedies  

Science Conference Proceedings (OSTI)

This paper investigates the origins of the collinearity problems encountered in the two-step estimation method for sample selection models. The analysis reveals several critical misconceptions and deficiencies in the literature. Remedies to the ... Keywords: Heckman's two-step method, Monte Carlo experiment, collinearity problem, remedy, sample selection, wage equation

Siu Fai Leung; Shihti Yu

2000-06-01T23:59:59.000Z

418

Petroleum-contaminated groundwater remediation systems design: A data envelopment analysis based approach  

Science Conference Proceedings (OSTI)

Groundwater contamination is one of important environmental problems at petroleum-related sites, which is causing more and more attention. It can bring serious adverse effects on the environment and human health. Design of a groundwater remediation system ... Keywords: Cross-efficiency, Data envelopment analysis, Groundwater remediation systems design, Super-efficiency

Xiaodong Zhang; Guo H. Huang; Qianguo Lin; Hui Yu

2009-04-01T23:59:59.000Z

419

Groundwater and Soil Remediation Guidelines for Nuclear Power Plants: Public Edition  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Groundwater and Soil Remediation Guidelines provides the nuclear power industry with technical guidance for evaluating the need for and timing of remediation of soil and/or groundwater contamination from onsite leaks, spills, or inadvertent releases to a) prevent migration of licensed material off-site and b) minimize decommissioning impacts.

2011-07-08T23:59:59.000Z

420

Evaluation of In Situ Remedial Technologies for Sites Contaminated With Hydrocarbons  

Science Conference Proceedings (OSTI)

Utility managers are faced at times with decision making regarding remediation of sites contaminated with petroleum hydrocarbons. This report, which presents the results of a survey of the literature on established and emerging technologies for in situ remediation of petroleum hydrocarbons, is intended to support such decision making.

1998-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Remediation of Gas Holders at MGP Sites: A Manual of Practice  

Science Conference Proceedings (OSTI)

This Manual of Practice has been developed jointly by EPRI and GRI (formerly the Gas Research Institute) to assist utility members in choosing strategies for remediating former manufactured gas plant (MGP) sites. Specifically, the manual addresses former gas holders, a prominent feature of MGP facilities and frequently a focus of remediation efforts at these sites.

1999-12-16T23:59:59.000Z

422

Tank waste remediation system retrieval and disposal mission initial updated baseline summary  

Science Conference Proceedings (OSTI)

This document provides a summary of the proposed Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost) developed to demonstrate the Tank Waste Remediation System contractor`s Readiness-to-Proceed in support of the Phase 1B mission.

Swita, W.R.

1998-01-05T23:59:59.000Z

423

Environmental remediation 1991: ``Cleaning up the environment for the 21st Century``. Proceedings  

Science Conference Proceedings (OSTI)

This report presents discussions given at a conference on environmental remediation, September 8--11, Pasco, Washington. Topics include: public confidence; education; in-situ remediation; Hanford tank operations; risk assessments; field experiences; standards; site characterization and monitoring; technology discussions; regulatory issues; compliance; and the UMTRA project. Individual projects are processed separately for the data bases.

Wood, D.E. [ed.] [Westinghouse Hanford Co., Richland, WA (United States)

1991-12-31T23:59:59.000Z

424

The Office of Groundwater & Soil Remediation Fiscal Year 2011 Research & Development Program  

Science Conference Proceedings (OSTI)

The U.S. Department of Energyís (DOE) Office of Groundwater and Soil Remediation supports applied research and technology development (AR&TD) for remediation of environments contaminated by legacy nuclear waste. The program centers on delivering advanced scientific approaches and technologies from highly-leveraged, strategic investments that maximize impact to reduce risk and life-cycle cleanup costs. The current groundwater and soil remediation program consists of four applied programmatic areas: ē Deep Vadose Zone Ė Applied Field Research Initiative ē Attenuation Based Remedies Ė Applied Field Research Initiative ē Remediation of Mercury and Industrial Contaminants Ė Applied Field Research Initiative ē Advanced Simulation Capability for Environmental Management. This paper provides an overview of the applied programmatic areas, fiscal year 11 accomplishments, and their near-term technical direction.

Gerdes, Kurt D.; Chamberlain, Grover S.; Aylward, R. S.; Cercy, Mike; Seitz, Roger; Ramirez, Rosa; Skubal, Karen L.; Marble, Justin; Wellman, Dawn M.; Bunn, Amoret L.; Liang, Liyuan; Pierce, Eric M.

2011-12-02T23:59:59.000Z

425

The Use of Ecological Restoration Principles To Achieve Remedy Protection at the Fernald Preserve and Weldon Spring Sites  

Energy.gov (U.S. Department of Energy (DOE))

The Use of Ecological Restoration Principles To Achieve Remedy Protection at the Fernald Preserve and Weldon Spring Sites

426

UC-70A Formerly Utilized Sites Remedial Action Program (FUSRAP)  

Office of Legacy Management (LM)

F. a% F. a% .~~~~~~":~,~~~~,~. .-+smiii"-l ," ^.-. _ _I ,a ,' ~, *p2 - QRkl~ oR,o~ DOE/OR/20722- 29 UC-70A Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-ACO5-81OR20722 CI c F c F F c CI c c F P RADIOLOGICAL SURVEY OF THE ALBANY RESEARCH CENTER Albany, O regon Bechtel National, inc. Advanced Technology Division L- ..^___ ~. _ .._.. -.~~_-- ._ ._.. .._ .^.". January 1985 Technical information Center Office of Scientific and Technical Information U.S. Department of Energy LEGAL NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied,

427

Remedial Action Certification Docket - Sodium Reactor Experiment (SRE)  

Office of Legacy Management (LM)

c~-?i-- c~-?i-- I ,3-l Remedial Action Certification Docket - Sodium Reactor Experiment (SRE) .Complex and the Hot Cave Facility (Bldg. 003), Santa Susana ,Fie!d Laboratory, Chatsworth, California ..:'..~::Yerlette Gatl in, MA-232 I am attaching for entry into the Public Document Room, one copy of the N -23 subject documentat ion. These documents are the backup data for the certification that the facilfties are radiologically acceptable for b- unrestricted use as noted in the certification statement published in the &aney Federal Register. Inasmuch as the certification for unrestricted use is 9/2(/85 being published in the Federal Register, it is prudent that the attached documentation also be available to the public. These documents should be retained In accordance with DOE Order 1324.2--disposal schedule 25.

428

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

CONTENTS CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii Pa e -5 1 : 2 2 4 ELIMINATION REPORT THE FORMER VIRGINIA-CAROLINA CHEMICAL CORPORATION RICHMOND, VIRGINIA INTROUUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices and divisions, has reviewed the past activities of the Atomic Energy Commission (AEC) at the former Virginia-Carolina Chemical Corporation, Richmond, Virginia. On the basis of historical information, DOE has determined that any radioactive material potentially remaining from these activities would be insignificant in terms of both its quantity and the hazard it would

429

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

. . CONTENTS INTROOUCTION BACKGROUND Site Function Site Description Radiological History,and Status ELIMINATION ANALYSIS REFERENCES 9 1 1 2 2 2 4 ii ELIMINATION REPORT THE FORMER VIRGINIA-CAROLINA CHEMICAL CORPORATION RICHMOND. VIRGINIA INTROLJUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of ,Remedial Action and Waste Technology, Division of Facility and Site Deconunissioning Projects (and/or predecessor agencies, offices and divisions, has reviewed the past activities of the Atomic Energy Carmission (AEC) at the former Virginia-Carolina Chemical Corporation, Richmond, Virginia. On the basis of historical information, DOE has determined that any radioactive material potentially remaining from these activities would oe insignificant in terms of both its quantity and the hazard it would

430

The Hanford site tank waste remediation system technical strategy  

SciTech Connect

The US Department of Energy`s Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of radioactive tank the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m{sup 3} (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have accumulated in 177 tanks. In addition, significant amounts of {sup 90}S and {sup 137}Cs were removed from the tank waste, converted to salts, doubly encapsulated in metal containers, and stored in water basins. A Tank Waste Remediation System Program was established by the US DOE Energy in 1991 to safely manage and immobilize these wastes for permanent disposal of the high-level waste fraction in a geologic repository. The technical strategy to manage and dispose of these wastes has been revised and successfully negotiated with the regulatory agencies.

Wodrich, D.D.

1994-04-01T23:59:59.000Z

431

Microscopic characterization of radionuclide contaminated soils to assist remediation efforts  

Science Conference Proceedings (OSTI)

A combination of optical, scanning, and analytical electron microscopies have been used to describe the nature of radionuclide contamination at several sites. These investigations were conducted to provide information for remediation efforts. This technique has been used successfully with uranium-contaminated soils from Fernald, OH, and Portsmouth, OH, thorium-contaminated soil from a plant in Tennessee, plutonium-contamination sand from Johnston Island in the Pacific Ocean, and incinerator ash from Los Alamos, NM. Selecting the most suitable method for cleaning a particular site is difficult if the nature of the contamination is not understood. Microscopic characterization allows the most appropriate method to be selected for removing the contamination and can show the effect a particular method is having on the soil. A method of sample preparation has been developed that allows direct comparison of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, enabling characterization of TEM samples to be more representative of the bulk sample.

Buck, E.C.; Brown, N.R.; Dietz, N.L.; Fortner, J.A.; Bates, J.K.

1994-11-01T23:59:59.000Z

432

Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references.

Vollmer, A.T.

1993-10-01T23:59:59.000Z

433

Tank waste remediation system systems engineering management plan  

Science Conference Proceedings (OSTI)

This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.

Peck, L.G.

1998-01-08T23:59:59.000Z

434

Tank waste remediation system functions and requirements document  

Science Conference Proceedings (OSTI)

This is the Tank Waste Remediation System (TWRS) Functions and Requirements Document derived from the TWRS Technical Baseline. The document consists of several text sections that provide the purpose, scope, background information, and an explanation of how this document assists the application of Systems Engineering to the TWRS. The primary functions identified in the TWRS Functions and Requirements Document are identified in Figure 4.1 (Section 4.0) Currently, this document is part of the overall effort to develop the TWRS Functional Requirements Baseline, and contains the functions and requirements needed to properly define the top three TWRS function levels. TWRS Technical Baseline information (RDD-100 database) included in the appendices of the attached document contain the TWRS functions, requirements, and architecture necessary to define the TWRS Functional Requirements Baseline. Document organization and user directions are provided in the introductory text. This document will continue to be modified during the TWRS life-cycle.

Carpenter, K.E

1996-10-03T23:59:59.000Z

435

Formerly Utilized Sites Remedial Action Program environmental compliance assessment checklists  

Science Conference Proceedings (OSTI)

The purpose of the Environmental Compliance Assessment Program is to assess the compliance of Formerly Utilized Site Remedial Action Program (FUSRAP) sites with applicable environmental regulations and Department of Energy (DOE) Orders. The mission is to identify, assess, and decontaminate sites utilized during the 1940s, 1950s, and 1960s to process and store uranium and thorium ores in support of the Manhattan Engineer District and the Atomic Energy Commission. To conduct the FUSRAP environmental compliance assessment, checklists were developed that outline audit procedures to determine the compliance status of the site. The checklists are divided in four groups to correspond to these regulatory areas: Hazardous Waste Management, PCB Management, Air Emissions, and Water Discharges.

Levine, M.B.; Sigmon, C.F.

1989-09-29T23:59:59.000Z

436

DOE/EA-1155 Uranium Mill Tailing Remedial Action Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

55 55 Uranium Mill Tailing Remedial Action Project Environmental Assessment of Ground- Water Compliance Activities At the Uranium Mill Tailings Site Spook, Wyoming February 1997 Prepared by U.S. Department of Energy Albuquerque Operations Office Grand Junction Office This page intentionally blank : illegible Portions of tbis DISCLAIMER document may be in electronic image products. Images are produced fiom the best available original dOClMXlf?IlL DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liabili- ty or responsibility for the accuracy, completeness,

437

Armored Enzyme Nanoparticles for Remediation of Subsurface Contaminants  

Science Conference Proceedings (OSTI)

The remediation of subsurface contaminants is a critical problem for the Department of Energy, other government agencies, and our nation. Severe contamination of soil and groundwater exists at several DOE sites due to various methods of intentional and unintentional release. Given the difficulties involved in conventional removal or separation processes, it is vital to develop methods to transform contaminants and contaminated earth/water to reduce risks to human health and the environment. Transformation of the contaminants themselves may involve conversion to other immobile species that do not migrate into well water or surface waters, as is proposed for metals and radionuclides; or degradation to harmless molecules, as is desired for organic contaminants. Transformation of contaminated earth (as opposed to the contaminants themselves) may entail reductions in volume or release of bound contaminants for remediation. Research at Rensselaer focused on the development of haloalkane dehalogenase as a critical enzyme in the dehalogenation of contaminated materials (ultimately trichloroethylene and related pollutants). A combination of bioinformatic investigation and experimental work was performed. The bioinformatics was focused on identifying a range of dehalogenase enzymes that could be obtained from the known proteomes of major microorganisms. This work identified several candidate enzymes that could be obtained through relatively straightforward gene cloning and expression approaches. The experimental work focused on the isolation of haloalkane dehalogenase from a Xanthobacter species followed by incorporating the enzyme into silicates to form biocatalytic silicates. These are the precursors of SENs. At the conclusion of the study, dehalogenase was incorporated into SENs, although the loading was low. This work supported a single Ph.D. student (Ms. Philippa Reeder) for two years. The project ended prior to her being able to perform substantive bioinformatics efforts that would identify more promising dehalogenase enzymes. The SEN synthesis, however, was demonstrated to be partially successful with dehalogenases. Further work would provide optimized dehalogenases in SENs for use in pollution remission.

Jonathan S. Dordick; Jay Grate; Jungbae Kim

2007-02-19T23:59:59.000Z

438

MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD  

SciTech Connect

In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

KRONVALL CM

2011-01-14T23:59:59.000Z

439

Clean Slate Environmental Remediation DSA for 10 CFR 830 Compliance  

Science Conference Proceedings (OSTI)

Clean Slate Sites II and III are scheduled for environmental remediation (ER) to remove elevated levels of radionuclides in soil. These sites are contaminated with legacy remains of non-nuclear yield nuclear weapons experiments at the Nevada Test Site, that involved high explosive, fissile, and related materials. The sites may also hold unexploded ordnance (UXO) from military training activities in the area over the intervening years. Regulation 10 CFR 830 (Ref. 1) identifies DOE-STD-1120-98 (Ref. 2) and 29 CFR 1910.120 (Ref. 3) as the safe harbor methodologies for performing these remediation operations. Of these methodologies, DOE-STD-1120-98 has been superseded by DOE-STD-1120-2005 (Ref. 4). The project adopted DOE-STD-1120-2005, which includes an approach for ER projects, in combination with 29 CFR 1910.120, as the basis documents for preparing the documented safety analysis (DSA). To securely implement the safe harbor methodologies, we applied DOE-STD-1027-92 (Ref. 5) and DOE-STD-3009-94 (Ref. 6), as needed, to develop a robust hazard classification and hazards analysis that addresses non-standard hazards such as radionuclides and UXO. The hazard analyses provided the basis for identifying Technical Safety Requirements (TSR) level controls. The DOE-STD-1186-2004 (Ref. 7) methodology showed that some controls warranted elevation to Specific Administrative Control (SAC) status. In addition to the Evaluation Guideline (EG) of DOE-STD-3009-94, we also applied the DOE G 420.1 (Ref. 8) annual, radiological dose, siting criterion to define a controlled area around the operation to protect the maximally exposed offsite individual (MOI).

James L. Traynor, Stephen L. Nicolosi, Michael L. Space, Louis F. Restrepo

2006-08-01T23:59:59.000Z

440

MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD  

SciTech Connect

In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

KRONVALL CM

2011-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "remediation goals prgs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

Not Available

1993-09-01T23:59:59.000Z

442

Development of Alternate Soil Clean-Up Goals for Hanford Waste Sites Using Fate and Transport Modeling  

SciTech Connect

Remedial Action Goals (RAGs) for soil contaminant levels that are protective of groundwater have been determined for the Removal/Treatment/Disposal (RTD) sites at the 200-UW-1 Operable Unit on the Hanford Site. The RAG values were determined using a methodology involving the back-calculation of soil contaminant levels protective of groundwater (i.e., resulting groundwater concentrations are {<=} MCLs) in conjunction with the fate and transport modeling as a risk-based alternative to the currently prescribed use of background or detection limit default values. This methodology is important for waste management activities at the Hanford Site because it provides risk-based metrics and a technical basis for determining the levels of contamination 'left in place' in the Hanford Site vadose zone that are protective of human health and the environment. The methodology and the use of fate and transport modeling described here comply with federal guidelines for the use of environmental models. This approach is also consistent with one of several allowable methods identified in State guidelines for deriving soil concentrations for ground water protection. Federal and state guidelines recommend the use of site-specific information and data in risk-based assessments of risk and/or protectiveness. The site-specific characteristics of the Hanford Site, which include consideration of the semi-arid climate, an unsaturated zone thickness of over 80 m (262 feet), and associated/other site features and processes, are integral for the risk-based assessments associated with the protection of groundwater pathway. This methodology yields soil cleanup values (RAGs) for the 200-UW-1 OU waste sites selected for the removal/treatment/disposal (RTD) remedy. These proposed RAGs for uranium, nitrate, and technetium-99 are derived from soil concentrations calculated not to cause contamination of groundwater at levels that exceed the ground water MCLs, and are 40 to 200 times greater than currently prescribed default values. The proposed RAG soil concentration values derive from the results of the fate and transport modeling for a reference volume of contaminated soil extending to a depth of 15 feet, and also for a depth extending from 15 feet to 30 feet. The site-specific parameters for the 200-UW-1 OU RTD waste sites used to calculate the proposed RAG values, and the fate and transport modeling are also described. The assessment of uncertainties, assumptions, and model limitations indicate that the model is capable of adequately representing the Hanford vadose zone system and that the estimated soil cleanup levels are conservatively biased toward over-estimation of groundwater impacts. The risk-based metrics provided by this methodology can potentially greatly reduce the amount of excavation needed at the hundreds of RTD waste sites, and also have significant implications for deeper vadose zone applications. These implications include an improved technical basis for remedy selection, decisions, characterization, and stakeholder communication and cost savings in the range of hundreds of millions of dollars. (authors)

Hoover, J.D. [Fluor Hanford, Inc. (United States); McMahon, W.J. [CH2M Hill Hanford Group (United States); Leary, K.D. [DOE/RL (United States)

2008-07-01T23:59:59.000Z

443

Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5  

SciTech Connect

This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

1984-09-01T23:59:59.000Z

444

An economic decision framework using modeling for improving aquifer remediation design  

Science Conference Proceedings (OSTI)

Reducing cost is a critical challenge facing environmental remediation today. One of the most effective ways of reducing costs is to improve decision-making. This can range from choosing more cost- effective remediation alternatives (for example, determining whether a groundwater contamination plume should be remediated or not) to improving data collection (for example, determining when data collection should stoop). Uncertainty in site conditions presents a major challenge for effective decision-making. We present a framework for increasing the effectiveness of remedial design decision-making at groundwater contamination sites where there is uncertainty in many parameters that affect remediation design. The objective is to provide an easy-to-use economic framework for making remediation decisions. The presented framework is used to 1) select the best remedial design from a suite of possible ones, 2) estimate if additional data collection is cost-effective, and 3) determine the most important parameters to be sampled. The framework is developed by combining elements from Latin-Hypercube simulation of contaminant transport, economic risk-cost-benefit analysis, and Regional Sensitivity Analysis (RSA).

James, B.R.; Gwo, J.P.; Toran, L.E.

1995-11-01T23:59:59.000Z

445

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program  

SciTech Connect

The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

Not Available

1991-09-01T23:59:59.000Z

446

Y-12 Plant Remedial Action technology logic diagram. Volume I: Technology evaluation  

Science Conference Proceedings (OSTI)

The Y-12 Plant Remedial Action Program addresses remediation of the contaminated groundwater, surface water and soil in the following areas located on the Oak Ridge Reservation: Chestnut Ridge, Bear Creek Valley, the Upper and Lower East Fork Popular Creek Watersheds, CAPCA 1, which includes several areas in which remediation has been completed, and CAPCA 2, which includes dense nonaqueous phase liquid wells and a storage facility. There are many facilities within these areas that are contaminated by uranium, mercury, organics, and other materials. This Technology Logic Diagram identifies possible remediation technologies that can be applied to the soil, water, and contaminants for characterization, treatment, and waste management technology options are supplemented by identification of possible robotics or automation technologies. These would facilitate the cleanup effort by improving safety, of remediation, improving the final remediation product, or decreasing the remediation cost. The Technology Logic Diagram was prepared by a diverse group of more than 35 scientists and engineers from across the Oak Ridge Reservation. Most are specialists in the areas of their contributions. 22 refs., 25 tabs.

NONE

1994-09-01T23:59:59.000Z

447

Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Truck Technical Goals and Teams to someone by E-mail Share Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Facebook Tweet about Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Twitter Bookmark Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Google Bookmark Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Delicious Rank Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Digg Find More places to share Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget

448

Solid-State Lighting: A Bold Goal: Boston Manufacturing R&D Workshop...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Bold Goal: Boston Manufacturing R&D Workshop Video to someone by E-mail Share Solid-State Lighting: A Bold Goal: Boston Manufacturing R&D Workshop Video on Facebook Tweet about...

449

Goal-directed planning and plan recognition for the sustainable control of homes  

E-Print Network (OSTI)

The goal of this thesis is to design an autonomous control system for the sustainable control of buildings. The control system focusses on satisfying three goals to encourage and facilitate a more sustainable lifestyle for ...

Graybill, Wesley (Wesley Darwin)

2012-01-01T23:59:59.000Z

450

Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9  

SciTech Connect

The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

1988-09-01T23:59:59.000Z

451

Lessons Learned from V-Tank Waste Remediation Activities at the Idaho National Laboratory  

SciTech Connect

The purpose of this paper is to discuss major activities and lessons learned from remediation of the V-tank waste at Idaho National Laboratory's (INL's) Test Area North (TAN) complex. Remediation activities involved the on-site treatment, solidification and disposal of over 61,000 L (16,000 gal) of radioactively hazardous V-tank waste. In July, 2006, over 98% of the V-tank waste was disposed of at the Idaho CERCLA Disposal Facility (ICDF). Disposal was accomplished using the three 38,000-L (10,000-gal) V-tanks that had stored most of the V-tank waste for over 30 years. Included in V-Tank remediation was the removal of approximately 7,650 m{sup 3} (10,000 yd{sup 3}) of contaminated soil. Plans are to treat the remaining V-tank waste off-site in early 2007, with the treated residual also disposed of at the ICDF. Disposal of the treated V-tank waste at ICDF marked a major step in completing remediation of the TAN V-tanks, a task begun in 1999 when the original Record of Decision (ROD) was published. Over this time, there have been a number of stops and starts associated with remediating this waste. Although many of these stops and starts were unavoidable, there are a number of lessons learned for the V-tank remediation that